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Abstract: Cell mechanics are a biophysical indicator of cell state, such as cancer metastasis, leukocyte
activation, and cell cycle progression. Atomic force microscopy (AFM) is a widely used technique to
measure cell mechanics, where the Young modulus of a cell is usually derived from the Hertz contact
model. However, the Hertz model assumes that the cell is an elastic, isotropic, and homogeneous
material and that the indentation is small compared to the cell size. These assumptions neglect the
effects of the cytoskeleton, cell size and shape, and cell environment on cell deformation. In this
study, we investigated the influence of cell size on the estimated Young’s modulus using liposomes
as cell models. Liposomes were prepared with different sizes and filled with phosphate buffered
saline (PBS) or hyaluronic acid (HA) to mimic the cytoplasm. AFM was used to obtain the force
indentation curves and fit them to the Hertz model. We found that the larger the liposome, the lower
the estimated Young’s modulus for both PBS-filled and HA-filled liposomes. This suggests that the
Young modulus obtained from the Hertz model is not only a property of the cell material but also
depends on the cell dimensions. Therefore, when comparing or interpreting cell mechanics using the
Hertz model, it is essential to account for cell size.

Keywords: atomic force microscopy (AFM); cell mechanics; cell stiffness; Hertz contact model

1. Introduction

In the past 30 years, atomic force microscopy (AFM) has revolutionized the way
we probe cell mechanics [1]. Originally developed to provide topographic images of
solid surfaces [2], it is now routinely applied to measure the mechanical properties of
individual cells [3]. AFM quantifies cell mechanics by applying a subtle but controlled
force or displacement to a cell through a tiny tip and measuring the response with high
precision [4].

Unlike other methods such as fluorescent microscopy, cryo-electron tomography, or
three-dimensional electron microscopy, AFM allows cells to be studied without staining,
labeling, or fixation, thus under physiological conditions [3]. Cell mechanics are observed
to indicate cell biological functions such as adhesion, migration, or differentiation [1,5,6].
The mechanical properties of cells are also related to pathology, particularly metastatic
cancer [7], cardiovascular disease [8], or infection by microbes or viruses [9].

During the development of the AFM technique, considerable effort was put into de-
veloping fast, accurate, and gentle microscopes. The high-speed imaging of living cells
permits the study of drugs in surface cell structures [1] or the mechanical mapping of sub-
cellular and subnuclear structures in real time [10]. Although progress in instrumentation
and method has been considerable, little has changed in the processing and analysis of
AFM results.
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In mechanical analysis, the response of the material to external stimuli, such as applied
fields or forces, is expressed by constitutive parameters [11]. These are quantities that are
specific to each material. In theory, the constitutive parameters should be independent
of the measurement instrument, sample, method, or model. In a first approximation, the
cell could be considered a homogeneous isotropic elastic material and hence characterized
by two parameters, e.g., Young’s modulus E, and Poisson ratio ν [12]. Young’s modulus
describes how a cell material resists deformation when uniaxial stress is applied, while
Poisson’s ratio is a measure of how much the cell deforms in the lateral direction when
compressed in the axial direction. Since the Poisson ratio of most soft biological tissues
is very close to 0.5 [13] and the error in Young’s modulus due to the unknown Poisson
ratio is less than 10% [14], the cell mechanics are usually characterized only by the Young
modulus [12].

The AFM provides a non-linear force/displacement curve even for elastic engineering
materials that are conditioned by non-linear contact mechanics between the small tip and
large sample. To extract the elastic modulus from AFM experiments, a model of contact
mechanics is usually employed. The most common models are the Hertz and the Sneddon
models for spherical and conical indenters, respectively [15,16]. The general description of
indentation curve analysis was provided later by Pharr, Oliver, and Brotzen, 1992 [17].

It has been shown that both the Hertz model and Oliver–Pharr model provide identical
results for purely elastic samples and for spherical indenters [18]. For the Hertz model, the
dependence between the indentation force F and indentation depth h for a stiff spherical
tip of radius R is expressed as [19]:

F =
4
3

E∗√Rh3/2

where E∗ is the reduced Young modulus:

E∗ =
E

1 − ν2

The derivation of the Hertz model along with its assumptions are outlined in Appendix A.
The basic assumptions of the Hertz model are that the strains are small and within the elastic
limit, which means that the cell material behaves linearly and recovers its original shape
after the contact; the surfaces of the cell and indenter are continuous and nonconforming,
which means that the contact area is much smaller than the characteristic dimensions of
the cell and the tip; the cell surface is frictionless, which means that there is no tangential
force or shear stress between the surfaces of the AFM tip and cell; and the AFM tip is
absolutely stiff with the shape of an exact sphere, which means that deformations of the
tip and substrate are negligible compared to cells. Deviation from these assumptions in
live cells given by the geometry, composition, and material heterogeneity of the cells brings
additional variability into the estimated Young’s modulus [20]. It is further assumed that
if the cell is much larger than the depth of indentation, the stresses induced by loading
vanish far from the indentation point. As shown in Appendix A, this assumption considers
the cell to be an elastic half-space, meaning the cell volume is infinitely large compared to
the area of contact. The elastic half-space assumption is a cornerstone for both the Hertz
and Oliver–Pharr models [21].

Although theoretical and experimental studies based on elastic shell theory [22] and
liquid drop theory [23] suggest that cell stiffness is considerably affected by its dimensions,
this factor is neglected in Hertz theory. We hypothesize that larger cells will have lower
stiffness and therefore a smaller Young’s modulus, and vice versa. To minimize the effect
of mechanical and shape variability between individual cells, we will use liposomes as
cell models and evaluate Young’s modulus by fitting the standard Hertz model to the
experimental AFM force/deflection curves as outlined in Figure 1.
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BA

experiment

Hertz model

Figure 1. Overview of study: AFM measurement of liposomes of various sizes: A small diameter, B
large diameter; curves fitting with Hertz contact model; estimation of Young’s modulus of elasticity
as fitting parameter.

2. Results

The Hertz model provides a good fit to the AFM data as evidenced by the high
correlation coefficient between the measured and predicted values (Pearson correlation
coefficient mean 0.998 for all measurements, range 0.9881–0.999). Representative loading
curves are presented in Figure 2. Young’s modulus in HA-filled liposomes (mean 1.11 kPa,
range 0.30–1.85 kPa) is significantly higher than in PBS-filled liposomes (mean 0.37 kPa,
range 0.62–1.28 kPa) (Wilcoxon rank sum test, W = 423, p < 0.001). The higher stiffness
in HA-filled liposomes corresponds to steeper force/deflection curves (Figure 2). The
results showed a high degree of agreement between repeated measurements as indicated
by the low variation between the measured curves and in the estimated Young modulus
(Figures 2 and 3).

Linear regression was used to test whether the liposome size significantly predicts
Young’s modulus. For both liposomes filled with PBS and HA, the effect of the liposome
diameter d is statistically significant and negative (β = −23.44, 95% CI [−28.33, −18.56],
p < 0.001 for the liposome filled with PBS and β = −36.53, 95% CI [−45.58, −27.48],
p < 0.001 for liposomes filled with HA). The effect of the diameter of the liposome on
Young’s modulus is significantly higher for HA-filled liposomes (ANOVA p = 0.008).

B
A

C D

Figure 2. Measured indentation curve for DPPC liposomes in PBS filled with (DPPC) PBS and
(DPPC + HA) HA solution. The fit of indentation by the Hertz contact model for the hemispherical
AFM tip is shown. Refer to Figure 3 for details on individual liposomes properties (capital letters).
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Figure 3. Linear regression plot with 95% confidence intervals (shaded areas) showing measured
dependence between the size of DPPC liposomes and Young’s modulus estimated from Hertz model.
Measured data along with the range of measured values are shown for liposomes filled with PBS
and HA solution, denoted as DPPC and DPPC + HA, respectively. Indentation curves for selected
liposomes A-D are shown in Figure 2.

3. Discussion

One of the primary assumptions of the Hertz model for analyzing contact mechanics
is that the cell is elastic, isotropic, and homogeneous, and that the indentation is small
compared to the size of the cell [19]. In this study, we evaluated the effect of cell size on
the estimated Young’s modulus using liposomes as cell models, and adopting methods
proposed for cell mechanics measurements [24]. We demonstrated a significant dependence
between the size of the measured liposome and its stiffness (Figures 2 and 3).

Our findings are consistent with previous studies by Delorme et al. (2006) [25], who
observed higher stiffness in smaller liposomes. The observed size effect of liposomes aligns
with the shell theory of cell deformation [26,27]. Real-time deformability cytometry also
indicates greater deformation for larger cells of the same phenotype [28] as observed in
our study.

The scattering of data in Figure 3 suggests the influence of additional factors on
the measured mechanical response. One such factor that warrants further evaluation
is liposome adhesion. Theoretical [29] and experimental studies [30] have shown that
extensive cell adhesion increases cell membrane tension and stiffness. AFM measurements
also indicate that the stiffness of adherent epithelial cells increases with the projected area
of apical cells [31]. Hence, liposomes with significant adhesion to the surface were excluded
from our analysis. Overbeck et al. (2017) demonstrated that osmotic pressure can also affect
cell response, with higher osmolarity contributing to decreased cell stiffness [23].

For spherical probes, it has been reported that the sample can be considered an
elastic half-space if the indenter’s radius is at least ten times smaller than each horizontal
dimension of the sample [15]. The Oliver–Pharr indentation analysis further suggests that
the Hertz model is applicable for spherical indenters when the h/R ratio is less than 10 [18].
Modifications to the Hertz model have been proposed to introduce correction factors for
substantial deformations [18].

The presented results were obtained using liposomes as cell models, which reduces
variability in input parameters by employing experimental samples with controlled compo-
sition and geometry. While liposomes mimic basic cell structures, they may not fully capture
the active behavior of living cells. Cells are heterogeneous structures with intricate internal
organization. For instance, the anisotropy of the cytoskeleton induces non-axisymmetric
deformations [32], and the stiffness of subcellular structures influences local mechanical
responses [10]. The prolonged or repeated indentation of single cells can lead to cytoskeletal
remodeling [33], which further impacts cell stiffness. When measuring live cells, active
responses due to cytoskeletal remodeling should also be considered [34]. The experimental
model could be enhanced by incorporating self-assembled actin shells [35].
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To create a more realistic artificial cell model, we tested HA-filled liposomes. The high
molecular weight and semi-flexible chain of HA impart viscous and elastic properties [36],
akin to those observed in the cytoplasm [37]. The viscosity of the HA solution used
(100 Pa s) [38] corresponds to the viscosity of cell cytoplasm [39]. The addition of HA,
mimicking cytoplasm, increases the effect of cell size on the estimated Young’s modulus.
Our results underscore the importance of considering the internal environment in modeling
cell mechanics. Further research is needed to quantify the relationship between cell size and
stiffness in confluent and highly adherent living cells with complex internal organization.

4. Materials and Methods
4.1. Liposomes Preparation

Liposomes are prepared using a two-stage microfluidic device that produces filled
liposomes using the double emulsion drop method. The custom-made microfluidic device
is manufactured using PolyJet technology (Polyjet J750, Stratasys, Eden Prairie, MN, USA)
from VeroClear-RGD810. The device consists of an inner aqueous phase channel, two
lipid-carrying organic phase channels, an intermediate channel, two outer aqueous phase
channels, and a downstream channel [40]. Using volume-controlled flow pumps, the inner
aqueous stream of HA (molecular weight 2000–2200 kDa, concentration 5:1, Contipro,
DolníDobrouč, Czechia) is dissolved in PBS (200 mL) for filled liposomes or PBS (10 mL)
for PBS-filled liposomes. The surrounding lipid-carrying streams (DPPC in isopropyl
alcohol, Sigma-Aldrich, Burlington, MA, US) are hydrodynamically focused, and a single
emulsion droplet is formed by shearing the inner phase. Subsequently, a double emulsion
is formed by two external streams of aqueous PBS (10 mL). As the aim of the study
is to produce liposomes of various sizes, the diameter of the inner channel is 0.5 mm,
allowing the formation of multidispersed liposomes. Liposome formation is driven by
shear flow at the junctions by setting the individual flow rate ratio at 5, 10 and 15 mL/h
for phospholipids, inner fluid and outer fluid, respectively. Liposome formation and flow
focusing are inspected in situ using a phase microscope (NIB-100 Inverted Microscope with
Canon SCR Camera, Canon, Tokyo, Japan).

4.2. Liposomes Fixation

The binding required to measure the mechanical properties of liposomes by AFM
was achieved using an avidin–biotin complex. Biotin–DOPE and DPPC lipids were used
at a concentration ratio of 1:1000. The biotinylated surface was incubated with avidin
(0.30 mg/mL) and washed three times with PBS buffer. Subsequently, 1 mL of the liposomal
formulation and approximately 1 mL of PBS buffer were applied to a Petri dish and
incubated for 5 min at room temperature [41,42].

4.3. AFM Measurements

Mechanical testing of the liposomes was performed using the NanoWizard® 3 NanoOp-
tics AFM System (JPK, DE). A colloidal probe with a diameter of 5.2 µm and a spring con-
stant of 0.0307 N/m (APPnano, Mountain View, CA, USA) was employed. The cantilever
was calibrated according to the manufacturer’s standard procedure. First, the sensitivity
of the cantilever was determined via indentation measurements on glass, followed by
determining the stiffness using thermal noise analysis. Force spectroscopy of the liposomes
was performed with a z length of 15 µm, a relative set point of 20 nN, and a loading rate of
3.75 µm/s.

The following inclusion criteria were applied: the isolated spherical shape of the
liposome without collapse [43] or extensive adhesion to the surface [44], and at least
two successful measurements per liposome. Force/deformation curves were measured at
the center of each liposome.
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4.4. Data Processing

After subtracting the deflection of the cantilever, the force/displacement curves were
fitted using the Hertz model for a hemispherical cantilever tip with and cell Poisson ratio of
0.5, according to the method described by Thomas et al. (2013) [24]. Data indicating strong
attachment of liposomes to the surface (small height compared to diameter), liposome
burst (rapid change in force), or extensive noise (AFM tip fouling) were excluded from
the analysis. The final analysis included 162 measurements (116 and 46 in PBS- and
HA-filled liposomes, respectively) across 46 liposomes (31 and 15 in PBS- and HA-filled
liposomes, respectively).

4.5. Statistical Analyses

Statistical analyses were performed using R software (version 4.1.2, R Core Team, 2021).
A p value less than 0.05 was considered statistically significant. The normality of the data
was tested using the Shapiro–Wilk test. Differences in Young’s modulus between dif-
ferent liposome types or treatments were analyzed using one-way analysis of variance
(ANOVA), followed by Tukey’s post hoc test for normally distributed data, and by the
Wilcoxon rank sum test otherwise. The correlation between Young’s modulus and cell
size was assessed using linear regression (package lme4), considering repeated measure-
ments [45]. In total, 95% confidence intervals (CI) and p values were calculated using a
Wald t distribution approximation.

5. Conclusions

Atomic force microscopy (AFM) provides estimations of cellular stiffness. To attain
statistical robustness in the analysis of highly heterogeneous cellular populations, a compre-
hensive examination of numerous individual cells is essential [46]. Moreover, the versatility
of AFM encompasses the determination of cellular states through assessments at the single-
cell level [47]. Enhancing the reliability of single-cell mechanics techniques necessitates
the identification of potential variability sources among cells. Variability arises not only
from physiological disparities but also from the methodologies employed in testing and
subsequent data processing. Our empirical data suggest that cellular size, an aspect not
accounted for in the foundational assumptions of the Hertz model, considerably influences
the measured stiffness and the inferred Young’s modulus. Consequently, for comparative
analyses, it is advisable to select cells with commensurate dimensions. Further research is
required to develop a correction factor tailored to the unique characteristics of living cells
with complex internal structures.
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Appendix A. On Derivation of Hertz Contact Theory for AFM Measurements Evaluation

The Hertz contact equations used to evaluate cell mechanics—relating the size of the
contact area, the loading force, and the elastic compression—are rarely derived in studies
related to AFM measurements. An accurate description of the Hertz equations falls within
the field of contact mechanics. The theoretical description of the contact problem [19] makes
the derivation challenging for a general audience, except for mathematicians and theoret-
ical mechanicians. Although the final equations are relatively simple, their derivation is
not straightforward.

For the sake of simplicity, we will further consider the simplest yet relevant problem to cell
mechanics: a spherical indenter in contact with an elastic cell. The Hertzian contact pressure
can be derived from the theory of elasticity based on the following assumptions [48,49]:

• The size of the cell is much larger than the size of the indenter, allowing the cell surface
to be considered flat relative to the indenter.

• The spherical indenter is considered a rigid body, meaning it maintains its shape
under loading.

• The cell in contact is considered homogeneous, meaning it possesses uniform qualities
at different sites or consistent properties with increasing depth.

• The cell is isotropic, meaning it has identical properties in all directions.
• The displacements and stresses must satisfy the differential equations of equilibrium for

elastic bodies, and the stresses must vanish at a great distance from the contact surface.
• The indenter and the cell are in frictionless contact.
• The surfaces of both the cell and the indenter have negligible roughness.
• At the surface of the bodies, the normal pressure is zero outside the contact area and

equal and opposite inside the circle of contact.
• The distance between the surfaces of the two bodies is zero inside the circle of contact

and greater than zero outside it.
• The weight of both the indenter and the cell is neglected.

In the following, we will present two methods for deriving the Hertz equations,
highlighting the assumptions described above. The first method will offer a conceptual
derivation as proposed by Johnson (1982) [50], while the second method will follow a
more rigorous approach based on Boussinesq’s problem as typically described in contact
mechanics textbooks [19,48,51,52].

Appendix A.1. Hertz Contact Theory—Conceptual Solution

As the contact problem is axisymmetrical along the z axis, it is suitable to define
the r coordinate as the radial distance from the axis of symmetry (Figure A1). The size
of the contact zone in radial coordinates is denoted as a. At the surface of the cell, the
normal pressure is zero outside the contact zone. Maximum deformation occurs under the
loading force at r = 0. The relationship between the contact zone size a and the maximum
deformation within the contact zone is defined geometrically as:

(R − h)2 + a2 = R2 (A1)

side view top view

Probe

Cell

Figure A1. Geometry of contact between spherical indenter and cell.
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If we assume that the deformation is much smaller than the size of the contact zone
(d ≪ a), we may express

h =
a2

2R
(A2)

The deformation can be defined as a dimensionless quantity:

h
a
=

a
2R

(A3)

An overview of the derivation of the Hertz equations was proposed by Johnson, 1982.
If the cell behaves as an elastic body, the cell deformation depends on the stress and the
material stiffness:

a
R

∝
p

E∗ (A4)

where p is the average contact pressure, and E∗ corresponds to the material stiffness. For
the spherical indenter and the definition of mean pressure, it holds that:

F = πa2 p (A5)

Thus, combining Equations (A4) and (A5), we obtain:

F ∝ πE∗ a3

R
(A6)

From the geometry of contact given by Equation (A1), it follows that:

F ∝ πE∗√Rh3/2 (A7)

The elasticity constant E∗ should reflect the plane strain as discussed below in the
rotationally symmetric problem. For the plane strain, the equivalent elasticity modulus can
be expressed as:

E∗ =
E

1 − ν2 (A8)

where ν is Poisson’s ratio. Although the analysis in Equations (A1)–(A7) is formally correct,
it does not provide the proportionality constants. To obtain the exact expression, one must
adopt the principles of elasticity analysis. Further, it neglects the deformation outside the
contact zone.

Appendix A.2. Boussinesq’s Problem

To rigorously derive the treatment of contact, we adopt a simplified approach inspired
by Hertz’s method in his seminal paper [53]. This approach is based on what is known
as Boussinesq’s problem, which addresses the stresses and deformations within an elastic
half-space caused by isolated force [54] (Figure A2). An elastic half-space is an idealized
infinite object constrained by a single infinite plane.

Figure A2. Boussinesq’s problem.
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The coordinate system is defined such that the x, y plane coincides with the free surface
of the medium, and the z-axis points towards the elastic object. The origin of the coordinate
system coincides with the point of action of the isolated force.

The geometry of the problem is axisymmetric, and thus the force induces axisym-
metric loading. For such loading, the state can be described by the plane strain condition
of deformation [55]:

u = (ur, 0, uz) (A9)

where ur and uz are displacements in the axisymmetric polar coordinates. The strain tensor
is given by:

ϵ =


∂ur
∂r 0 1

2

(
∂ur
∂z + ∂uz

∂r

)
0 ur

r 0
1
2

(
∂ur
∂z + ∂uz

∂r

)
0 ∂uz

∂z

 (A10)

The stress tensor is defined as:

σ =

 σrr 0 σrz
0 σθθ 0

σrz 0 σzz

 (A11)

Assuming linear elastic behavior of the material, the stress–strain relation is given by
Hooke’s law:

σ = λtr(ϵ)I + 2µϵ (A12)

where λ and µ are Lame’s constants, and I is the identity tensor. Neglecting body forces,
the equations of equilibrium can be expressed as [19]:

∇ · σ = 0 (A13)

where ∇ is the divergence operator. These differential equations can be solved using
various methods, such as limiting cases of general normal loading, Kelvin’s solution
for a point force within an infinite space, or integral transform techniques (e.g., Love’s
strain function) [56].

In the analysis of cell deformation, the z-displacement is typically the only component
considered. From the mathematical analysis of Boussinesq’s problem, the displacement is
obtained as [57]:

uz =
1 + ν

2πE

[
2(1 − ν)

ρ
+

z2

ρ3

]
F (A14)

where ρ =
√

x2 + y2 + z2. For surface deformation (z = 0), this simplifies to:

uz =
1 − ν2

πE
1
r

F (A15)

If the force F acts over a surface element, it can be expressed in axisymmetric coordinates:

p(r, θ) =
F(r, θ)

r dθ dr
(A16)

and the equation transforms to:

duz =
1 − ν2

πE
1
r

p(r, θ)r dθ dr (A17)

The contact problem can be decomposed into the superposition of deformations caused
by individual forces acting simultaneously:

uz(x, y) =
∫∫ 1 − ν2

πE
p(x′, y′)

r′
dx′ dy′ (A18)
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where r′ =
√
(x − x′)2 + (y − y′)2.

Appendix A.3. Hertz Contact Theory

The integral in Equation (A18) cannot be solved without knowing the stress distribu-
tion function. The pressure distribution can be represented as a shape function p = p0 f (r),
where p0 is the maximum contact pressure. Hertz (1882) [53] proposed that the pressure
distribution in the contact area is given by

f (r) =


0 r ≤ a√

1 − (r/a)2 0 < r < a
1 r = 0

(A19)

The maximum deformation (uz(0, 0) = h, Figure A3) can be calculated from
Equations (A17) and (A18) as:

h =
2p0

E∗

a∫
0

√
1 −

( r
a

)2
dr =

πp0a
2E∗ (A20)

For other points, spherical symmetry dictates that deformations can be determined
for any arbitrary point at distance r from the center, e.g., points lying on the x-axis. The
position of an arbitrary point A on the x-axis is given in spherical coordinates as [r, 0]. The
contribution of stress to deformation at such points depends on the radial distance from
this point. A detailed derivation can be found in Popov, 2017 [52], where it is shown that:

uz(r) =
πp0

4aE∗

(
2a2 − r2

)
(A21)

Using Equation (A1) and setting r = a in Equation (A21), we obtain for the size of
contact area:

πp0

4E∗ a = h − a2

2R
(A22)

a =
πp0R
2E∗ (A23)

The contact radius is related to the deformation as:

a2 = Rh (A24)

The sum of all pressures over the contact area gives the resultant loading force:

F =

a∫
0

2π∫
0

p0 f (r)r dθ dr = 2πp0

a∫
0

√
1 −

( r
a

)2
r dr =

2
3

p0πa2 (A25)

Substituting from Equations (A18)–(A25), we obtain:

F =
4
3

E∗√Rh3/2 (A26)

Figure A3. Schematic view of a rigid probe in contact with an elastic half-space.
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