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A B S T R A C T   

The lack of ultimate scaling relations for previtreous changes of the primary relaxation time or 
viscosity in glass-forming systems constitutes the grand fundamental challenge, also hindering the 
development of relevant material engineering applications. The report links the problem to the 
location of the previtreous domain remote from a hypothetical divergence, hidden in the solid 
glass state. As the solution, the distortions-sensitive and linearized derivative-based analysis is 
proposed. It is implemented to scaling relations being checkpoints of basic glass transition 
models: free volume, entropic, critical-like, avoided criticality, kinetically constrained, or Ising 
model related. For discussed scaling relations, alternative formulations based on fragility, the 
semi-universal metric for previtreous dynamics, are presented. The alternative approach based on 
the activation energy index, showing its relative changes, is also presented. Derived relations are 
validated for the primary relaxation time experimental data in the homologous series of polyols, 
from glycerol to sorbitol. Only two scaling equations passed the exam: MYEGA, the recent 
‘activation and critical’ (AC), and their pressure counterparts. The report shows that the coherent 
picture linking (i) the Super-Arrhenius for the temperature path, (ii) the Super-Barus behavior for 
the pressure path, and anomalous changes detected on compessing, namely (iii) inflection, and 
(iv) viscosity decrease or speeding for relaxation time, is possible. 

The report also shows the limited reliability of the so-called Stickel analysis and its pressure 
counterpart used for detecting the dynamic crossover in the previtreous domain.   

1. Introduction 

Vitrification and glass transition are common in nature [1–6] and essential for a variety of applications: from food [7], pharma-
ceuticals [8], cosmetics [9], polymers [10], modern materials engineering [11,12], chemical processing [13], and cryogenic imple-
mentations [14]. It also constitutes a grand fundamental challenge for which the long-awaited cognitive breakthrough has been 
expected for decades [15–19]. Consequently, one may ask why it is not happening yet? 

The answer may provide a comparison with the Physics of Critical Phenomena, in which the descriptions of pretransitional effects on 
approaching the singular temperature (spinodal/pseudospinodal TS, or critical TC) were the essential inspiration [20–28]. Related 
models predicted functional forms of pretransitional effects and values of relevant parameters, such as critical exponents [20,23,28]. 
The dominant impact of collective pretransitional fluctuations was identified as universal patterns source. The pretransitional behavior 
is described by power terms, linked to universal critical exponents, and limited to a single term very close to TC ( TC + 1K) [20,21]. 
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Contents lists available at ScienceDirect 

Progress in Materials Science 

journal homepage: www.elsevier.com/locate/pmatsci 

https://doi.org/10.1016/j.pmatsci.2023.101074 
Received 14 May 2021; Received in revised form 27 December 2022; Accepted 8 January 2023   

mailto:arzoska@unipress.waw.pl
mailto:sylwester.rzoska@gmail.com
mailto:starzoneks@unipress.waw.pl
www.sciencedirect.com/science/journal/00796425
https://www.elsevier.com/locate/pmatsci
https://doi.org/10.1016/j.pmatsci.2023.101074
https://doi.org/10.1016/j.pmatsci.2023.101074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmatsci.2023.101074&domain=pdf
https://doi.org/10.1016/j.pmatsci.2023.101074
nAhRYdx4j
Highlight



Progress in Materials Science 134 (2023) 101074

2

Such a simple description may extend even to a few tens of Kelvins for the mean-field type behavior [23–26,28]. Worth recalling is the 
case of weakly discontinuous phase transitions, where the singularity is hidden below a discontinuous phase transition temperature 
(Tm), but ‘strong’ pretransitional anomalies still exist [20,22–29]. One may evoke the pseudospinodal behavior in near-critical liquids 
or the isotropic – mesophase transitions in liquid crystalline (LC) [23–26] and plastic crystalline (PC) systems [27,28]. They are 
characterized by the discontinuity metric ΔT* = Tm − Ts ranging from ΔT* = 1 − 2K for the isotropic liquid – nematic transition 
[20,23–25] to even ΔT* 30K for transitions to highly ordered mesophases such as smectic E (SmE) in LCs [26] or orientationally 
disordered crystals (ODIC in PCs) [27,28]. Notably, even the ‘very weak’ discontinuity ΔT* = 1 − 2K can yield significant uncertainty 
in describing pretransitional effects if the nonlinear fitting is involved [23,29]. 

The glass transition is associated with pretransitional/previtreous effects starting 100 K or more above the glass temperature Tg, 
and manifesting for such dynamic properties as viscosity η(T) or the primary (alpha (α), structural) relaxation time τ(T). Surprisingly, 
after almost a century of studies, the portrayal of this phenomenon remains puzzling [17–19]. The experimental evidence indicates 
that previtreous effects can be portrayed by a single 3-parameter function in the range Tg < T < Tg + 80K. Generally, it is expressed by 
the heuristical Super-Arrhenius (SA) relation [16–19]: 

τ(T) = τ∞exp
(

Ea(T)
RT

)

, η(T) = η∞exp
(

Ea(T)
RT

)

(1)  

where T > Tg; R stands denotes the gas constant. The basic Arrhenius dependence is retrieved if Ea(T) = Ea = const, in the given 
temperature domain. 

Worth stressing is the equivalence of the primary relaxation time τ(T), and the viscosity η(T) previtreous evolutions: η(T, P)/η
(
Tref ,

Pref
)
= C

[
τ(T, P)/τ

(
Tref , Pref

) ]
, where Tref ., Pref . are for the reference temperature and pressure, C = K(T, P)/K

(
Tref ,Pref

)
, and K stands 

for the bulk modulus [30]. Worth noting is also another link between these magnitudes: τ(T, P) = (AV/kBT)η(T, P), where A is a 
system-dependent constant, V is molecular volume, T and P are for temperature and pressure, respectively [31]. This report is 
developed mainly in terms of τ(T,P) to clarify the discussion. 

The authors stress that previtreous ‘anomalies’ are associated with the ‘discontinuity’ ΔT*
g = Tg − T0 = 20 K – 50 K, or even more, 

where T0 < Tg is the extrapolated singular temperature [16–19]. 
This report focuses on the comprehensive presentation of issues enabling the reduction of the parasitic impact of the huge 

discontinuity ΔT*
g on the reliable description of the previtreous effect, both for the temperature and pressure paths. 

The SA concept is supported the normalized plot log10τ(T) or log10η(T) vs Tg/T for the common presentation of dynamics in various 
glass-forming liquids, introduced by Angell et al. [32–35], for polymers and low molecular weight liquids. It was associated with the 
empirical ‘normalized’ assumption τ

(
Tg
)
= 100s or η

(
Tg
)
= 1013Poise. Angell et al. [32–35] also introduced the empirical metric for 

SA dynamics in various glass formers, namely the curvature at glass temperature called fragility (m): 

m = mP
(
T → Tg

)
= dlog10τ

(
T→ Tg

)
/d
(
Tg/T

)
, m = dlog10η

(
T→ Tg

)
/d
(
Tg/T

)
(2) 

For the ‘Angell plot’ Arrhenius dynamics is a terminal reference, manifested by a straight line between (Tg/T = 1, log10τ
(
Tg
)
= 2)

and (Tg/T = 0, log10τ∞ = − 14). Originally, the τ∞ = 10− 14s was assumed as an estimation of a typical value [25–29]. It yields m =

log10τ
(
Tg
)
− log10τ∞ = 16 for the fragility for the basic Arrhenius behavior. Systems with a relatively weak deviation from such 

reference (m < 40-50) are called ‘strong’ glass formers. Those related to m > 50 are ‘fragile’ glass formers, with notable SA dynamics 
[32–35]. For the most fragile system, a limit value m 220 is indicated [36,37]. The fragility has become one of central concepts of the 
glass transition physics [16–19,31–38]. 

SA relation (Eq. (1)) enable a cognitive insight into the previtreous behavior, but not the parameterization of empirical data due to 
the unknown form of Ea(T) [24–27]. Consequently, replacement equations are required. The dominant position reached the Vogel- 
Fulcher-Tammann (VFT) relation [39–41], nowadays used in the form [17–19,42–44]: 

τ(T) = τ∞exp
(

Φ
T − T0

)

= τ∞exp
(

DT T0

T − T0

)

(3)  

where T > Tg, extrapolated VFT singular temperature T0 < Tg is usually located 20 − 100K below Tg; the amplitude Φ = DTTo = const,
DT is the fragility strength coefficient describing the degree of deviation from the basic Arrhenius pattern. 

The comparison of Eqs. (1) and (3) yield the VFT formula for the apparent activation energy Ea(T): 

Ea(T) = (RDT T0)[(T − T0)/T ]
− 1

= (RDT T0)t− 1 = Et− 1.E = const (4) 

The hypothetical universality of the VFT relation supported its applications for determining glass transition characterizations, 
basing on the analysis remote from Tg, for instance [34,38]: 

m =
DT T0Tg

(
ΔT*

g

)2
ln10

or m = μ
(

1+
ln10
DT

)

⇒ DT =
μln10
m − μ (5)  

where ΔT*
g = Tg − T0, μ = mmin = log10τ

(
Tg
)
− log10τ∞. 
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For macromolecular systems Williams-Landell-Ferry (WLF, 1955) relation [45], the VFT parallel, is most often used, as more 
convenient for some experimental methods, for instance rheological measurements [19]. VFT equation is related to three adjustable 
parameters: pre-exponential factor τ∞, extrapolated singular temperature T0 and fragility strength DT. This number is recognized as the 
optimal for scaling relations describing the previtreous dynamics [16–19,34,35]. 

The extensive experimental evidence supporting the meaning of the VFT/WLF relations made them an empirical symbol of the 
previtreous dynamics’ universality [16–19,33–38]. Consequently, the derivation of VFT relation became a checkpoint for theoretical 
models [16–19,42,43]. However, none of the glass transition models manage to derive specific values of parameters in this equation 
[16–19,42,43]. This trend also strongly supports numerous experimental results suggesting a coincidence between the temperature T0 
determined from dynamic studies and the Kauzmann temperature TK (ideal glass) determined from the configuration entropy analysis, 
i.e., the thermodynamic insight [16–19,42–44,46–48]. Notwithstanding, the state-of-the-art analysis for 52 glass-formers carried out 
by Tanaka [49] showed that 0.8 < T0/TK < 2.2, so the correlation T0 ≈ TK can be considered only selected systems. Further, precise 
tests of the fragility determined via Eq. (5) revealed notable discrepancies with the direct estimation of the fragility index based on the 
‘Angell plot’ [48,50]. Decisive arguments questioning the universality and fundamental significance of the VFT equation delivered the 
analysis based on the activation energy index (see below) [51–56]. Being inspired by these results, McKenna conducted a subtle study 
of the previtreous effect in polymers using the WLF relation and showed a systematic rise of deviations when cooling toward the glass 
temperature Tg [53]. These results questioned the fundamental significance of VFT and WLF relations [44,45]. After decades of 
research, the most crucial experimental fact in the physics of glass transition turned out to be unknown. It seemed that only new 3- 
parameter model equations could overcome this cognitive deadlock [52]. 

The principal method of verifying new scaling equations is a visual or quantitative (residual) comparison of fitting quality for 
different experimental data sets [16–19,42,43,57–64]. However, such a classic analysis did not lead to a decisive prevalence of one 
model equation over another. This confusion may explain the mentioned non-accessibility of a domain in the vicinity of the singular 
temperature T0 with the most characteristic changes of τ(T) or η(T). Another way to prove the adequacy of a given scaling relation is a 
plot linking several dozen sets of experimental data for different glass-forming systems and obtaining a single scaling curve within 
overlapping data sets [58–69]. Such plots often serve as the essential empirical validations of the theoretical model matched to the 
given scaling relation. However, such analysis is performed using a three-parameters determined individually via fitting subsequent 
sets of experimental data. Hence, such superposition is a kind of the ‘tautological validation’, which success is guaranteed in advance. 

But even with such weakly conclusive results, one may find that some equations offer a subtly better fit than others. Unfortunately, 
for other glass-forming systems, the situation seems to be flipped. 

Hence, a question arises if a universal scaling equation for the previtreous dynamics exists? 
This report presents the innovative methodology for analyzing previtreous effects that may respond to the above challenges. It 

bases on the linearized differential analysis sensitive to subtle disturbances between a scaling relation and experimental data. Contrary 
to the common practice, experimental validation tests are focused on a portrayal within a homologous series of glass-formers, with a 
systematic change of molecular structure symmetry. Finally, the state-of-the-art analysis of the pressure path approaching the glass 
transition is presented. It offers new reliable dependences able to portray not only the SB slowing down but also occurring in some 
systems the inflection behavior and the anomalous speeding up on compressing. In summary, it is stressed that the ultimate selection of 
the optimal scaling equation for the previtreous dynamics, essential for the validation of the ultimate glass transition model, requires 
the analysis considering both temperature and pressure paths. The report present new conclusions regarding the dynamical crossover 
phenomenon, showing a limited reliability of the popular ‘Stickel’ method and its pressure counterpart. 

2. VFT relation and its links to basic glass transition models 

In 1889 Arrhenius [70] proposed the empirical formula for the temperature dependence of chemical reaction rates k(T) =

k∞exp(Ea/RT). This relation introduced the concept of a process activation energy, easily determined from the linearized plot 
lnk(1/T) = lnk∞ + Ea(1/T)/R. It became the base for describing many thermally induced dynamic processes in physical chemistry, 
including viscosity (Guzman, 1913 [71], Raman 1923 [72] and Andrade, 1933 [73]), primary relaxation time (Williams, 1964 
[74,75]) as well as diffusion or the electric conductivity changes. In the 20th century, the industrial revolution entered a stage where 
the detailed description of such behavior became important for technological implementations. However, it became clear that the 
behavior goes beyond the Arrhenius pattern for many systems. Vogel (1921, [39] for mineral oils (lubricants, fuels, petrochemical 
industry) as well as Tammann [40], and Fulcher [41], in response to the challenges of the glass industry, introduced an additional 
parameter to the Arrhenius relation creating the enhanced ‘functional flexibility: log10η(T) = A + B/(T − T0). For example, with this 
relation’s help, Fulcher successfully described changes in the viscosity of soda-lime glasses with various compositions ranging from 
500 to even 1400 ◦C [41]. 

The universality of VFT and WLF relations in subsequent decadence caused its derivation to become the checkpoint for glass 
transition models [16–19,42,43]. Doolittle [76], Turnbull, and Cohen [77,78] considered the free volume concept allowing for a 
molecule, or a polymer segment [74] movement, reaching the output relation: 

τ = τ∞exp
(γυ*

free

υfree

)

= τ∞exp(γϕ) (6)  

where υ*
free is a minimum required volume of void for the reorientation process, γ is an overlap factor that should lie between 0.5 and 1, 

and υfree is specific free volume; fraction coefficient: ϕ = υ*
free/υfree. 
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Eq. (6) converts into the VFT Eq. (3), assuming.ϕ = A(T − T0)

Adam and Gibbs [79] visualized a supercooled liquid as a progressively self-organized cooperatively rearranging region (CRR), 
which arrangement is inversely proportional to the configurational entropy SC. Hence, the configurational entropy SC(T) decreases on 
cooling, coupled with the increase of particle number in CRRs. The primary relaxation time is interpreted as the rate needed to 
rearrange the region, and its evolution is expressed by model output relation [36]: 

τ(T) = τ∞exp
z*Δμ
kBT

= τ∞exp
B

TSC(T)
(7)  

where Δμ denotes transition state activation energy, z* is the temperature-dependent number of cooperatively rearranging molecular 
entities determined by macroscopic configurational entropy SC, in such a way that z*/s*

c = NA/SC(T), in which s*
c stands for the entropy 

of the smallest number of rearranging molecular entities and NA is the Avogadro number. 
Experimentally, configurational entropy SC(T) is estimated from the evolution of the heat capacity excess ΔCP(T) [16–19,80]: 

SC =

∫ T

TK

ΔCP(T)
T

dT (8) 

In practice, it is assumed ΔCP(T) = CLiq.
P − CSolidGlass

P , with the heat capacity of glass, instead of solid crystal entropy changes, hardly 
detectable in glass formers. VFT equation is retrieved if the following behavior for heat capacity and configurational entropy is 
assumed [18,19,42,80]: 

SC(T) = S0

(

1 −
TK

T

)

= S0

(
T − TK

T

)

= S0t (9)  

where S0 describes high temperature entropy and TK is the Kauzmann temperature. 
Notably, Eq. (9) constitutes the essential tool for estimating the Kauzmann temperature [16–19,81] from the evolution of the 

configurational entropy. Its derivation is based on the ‘rough’ approximation of the specific heat capacity, which is in only qualitative 
agreement with experimental data. Hence, the crucial validation is related to obtaining the VFT Eq. (3) when Eq. (9) is substituted to 
Eq. (7). 

The random first-order field theory (RFOT), also known as the mosaic theory, assumes the nucleation of ‘entropic droplets’ between 
different metastable configurations, creating a patchwork of local metastable configurations in a supercooled liquid [42,82,83]. It 
predicts the link between the primary (α, structural) relaxation time, static length scale ξ(T) and configurational entropy SC(T) [82–84]: 

τ(T) = τ∞exp
(

Aξψ

T

)

and ξ(T)∝
(

1
Sc(T)

) 1
d− θ

(10)  

where d is a spatial dimension, θ is an exponent related to interface energy (Y) changes between two amorphous states. The exponent ψ 
is related to a free energy barrier to overcome when rearranging a correlated volume of ξ size. Model-values linking exponent to a 
specific glass former have not been computed yet. Comparing Eqs. (7) and (10), the enhanced AG model equation emerges [84]: 

τ(T) = τ∞exp
(

AG

T(SC)
α

)

(11)  

where the exponent α = ψ/(d − θ). 
This basic RFOT relation can be reduced to VFT dependence if the exponent ψ = d − θ and TSC(T) = (T − TK). 
Tanaka [85] considered a pretransitional behavior as a critical-like and Ising-like phenomenon and derived the relation τ(T) =

τ∞expDT(ξ(T)/ξ∞ )
d/2, where the correlation length ξ(T) = ξ∞(T − TK)

ν=2/d is associated with the singularity at the extrapolated 
Kauzmann temperature. 

As described above, basic problems of VFT parameterization are inspired by the development of alternative scaling relations, 
particularly without the finite temperature divergence. The leading position seems to gain Mauro-Yue-Ellison-Gupta-Allan (MYEGA) 
dependence [86], for which configurational entropy is considered within the topological constraint model as SC(T) = ft(T)NkBlnΩ, 
where N is the number of species (atoms, molecules), kB is the Boltzmann factor, and Ω is the number of degenerate configurations per 
floppy mode. Subsequently, the two-state model for topological degrees of freedom, for which network constraints are either intact or 
broken, was implemented. Relating the energy difference H(T) to enthalpy, it was derived that ft(T) = 3exp( − H/kBT). The final 
substitution of the configurational entropy into AG model Eq. (11) led to MYEGA equation, with the name recalling the authors of ref. 
[86]: 

τ(T) = τ∞exp
[

C
T

exp
(

K
T

)]

(12)  

where K = AAG/3NkBlnΩ and C = H/K are constants. 
It can be approximated by VFT dependence assuming the validity of first-order term Taylor series expansion [59]: 

A. Drozd-Rzoska et al.                                                                                                                                                                                                



Progress in Materials Science 134 (2023) 101074

5

ln
(

τ(T)
τ∞

)

=
C
T

exp
(

K
T

)

=
C

Texp( − K/T)
≈

C
T(1 − K/T)

=
C

T − K
(13) 

This yields the VFT equation for K = T0 and C = DTT0. 
Models described above consider the VFT, or alternatively WLF, relation as a peculiar universal pattern of pre-vitrification dy-

namics. The appearance of this relationship in the qualities of various glass systems made it possible to explain the extraordinary pre- 
vitrification effects, such as the consequences of free volume or configuration entropy on a global (macro) scale, as in the AG [79] or 
MYEGA [86] models, or local (micro), related to the appearance of heterogeneity with an increasing radius correlation (RFOT) 
[82–84]. 

There are also models suggesting the need for some significant modifications in the reference VFT relation. The free volume Cohen- 
Grest (CG) model is perhaps the most common reference [87]. It treats the supercooled dynamics considering diffusion in a system 
divided in liquidlike and solid-like cells, only the former having free volume. The model resulted in SA-type checkpoint relation most 
often presented in the following form [87]: 

log10τ(T) = ACG +
BCG

T − T0+
[
(T − T0)

2
+ CCG

]1/2 (14)  

where ACG, BCG, CCG, and singular temperature T0 is linked to the percolation threshold reached when each liquidlike molecule is 
proximate to at least two other liquid-like molecules. 

Notably, CG Eq. (4) contains 4 adjustable parameters, i.e., more than VFT-related equation discussed above. 
Rössler et al. [88] proposed yet another SA-type broad temperature range previtreous portrayal, assuming that the activation 

energy is the sum of two contributions: Ea(T) = E∞ + Ecoop(T), where Ea = const is the high-temperature activation energy and Ecoop(T)
is the activation energy for the cooperative energy, varying exponentially with T. These yielded the SA-type relation, most often 
presented in the following form [88]: 

log10τ(T)/τ∞ =
E∞ + aexp( − λ(T/TA − 1) )

T
(15)  

where TA is the crossover temperature from the Super-Arrhenius to Arrhenius behavior in high-temperature regions, described solely 
by E∞ activation energy. 

In the title, ref. [88] the above relationship is referred to as 3-parameter scaling relation, although it contains as many as 5 pa-
rameters: τ∞. λ, a, TA, E∞. It results from the apriori assumption that the precise estimation of E∞, TA and even the prefactor τ∞ is 
always possible, thus yielding extremely reliable fitting. This is validated for 15 glass-forming liquids, including glycerol, discussed as 
an example material in the given. Unfortunately, the existing experimental evidence and the practice of the authors of this work show 
that the explicit transition to the Arrhenius domain is rarely achieved. Moreover, in the dynamic low-temperature domain, most often 
in the Tg < T < Tg +80K range, it is inherently impossible to reach the Arrhenius domain. Hence, it is difficult to recognize the above 
relations as 2 or 3 parameters scaling equations. 

CG model Eq. (14) [87] is related to 4, Roessler et al. Eq. (15) [88] even 5 adjustable parameters. It ‘guarantees’ the high 
reproducibility of τ(T) experimental data in the previtreous domain, but at the cost of a very large absolute error in parameters fitted. 
For such reasons, this report will not discuss multi-parameter (4, 5. …) relations, recalling the VFT equation as the reference. This 
reports report focuses on 3-parameters relations for describing the previtreous dynamics, indicated as the most optimal, regarding the 
relationship between the reproducibility of experimental data and the real experimental error of parameters. 

When discussing VFT-type relations, notable are also ‘extended’ relations that introduce the additional power exponent [89–91]: 

τ(T) = τ∞exp

(
Φ

(T − T0)
θ

)

(16) 

Formally, the exponent increases the number of parameters to 4, but there are models defining its value. Bendler et al. [89,90] 
linked the ultraviscous/ultraslow behavior to the appearance of local and temporary mobile defects. In the Defect Diffusion Model 
(DDM) model, supercooled liquid is considered a binary solution of defected and non-defected structures. “Phase separation” should 
have occurred at the crystallization temperature, with the formation of a translationally and rotationally ordered crystal phase and 
simultaneous disappearance and conversion of defect to ordered structures. In complex glass-forming materials, a large nucleation 
barrier to crystallization permits supercooling of the disordered “mixture,” trapping “dissolved” defects and preventing their reor-
ganization and conversion to the lower free-energy structural units. If the free-energy mismatch and defect density are high enough, 
pretransitional fluctuations and correlations become evident before Tg is reached, leading to Eq. (16) with exponent θ = 3/2. In DDM 
model, the singular temperature T0 is interpreted as the temperature at which a binary consolute point would occur if the system 
mobility (on the time scale of the experiment) did not vanish first. The generic link of the DDM to the percolation phenomenon causes 
is often considered for describing DC electric conductivity σ in glassy ionic liquids. In such a case, one should consider the impact of the 
translational-orientational (t-o) decoupling in the low-temperature dynamic domain. Its generalized form, taking into account both 
temperature (T) and pressure (P) paths: [τ(T,P) ]Sσ(T,P) = cT ⇒ σ− 1 = σ− 1

∞ τS, where c, σ∞ = const and s ≤ 1 is the decoupling exponent: 
the t-o coupling occurs for s = 1. The latter is expected in the high-temperature dynamic domain, although exceptions from this rule 
were also noted. 
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Very recently, Chamberlin [91] considered Ising Model with Orthogonal dynamics (OIM) for explaining the previtreous dynamics 
properties of supercooled glassy liquids. The model allows energy conservation and angular momentum to proceed independently on 
their preferred time scales. It also includes a unique step that makes or breaks the interaction between neighboring spins, facilitating an 
equilibrium distribution of bond energies. Within the mean-field approximation, it yields the following dependence [91]: 

τ(T) = τ∞exp

[
1/C

(1 − TC/T)2

]

= τ∞exp

[
T2/C

(T − TC)
2

]

(17) 

In the above relation, the original notation of ref.[17] is preserved, where TC is explained as resembling the Curie-Weiss type 
‘critical’ divergence temperature. 

Eq. (14) with the exponent θ = 2, called VFT2 in ref. [17]. I, that the possibility of emerging the additional term ‘VFT4′. The test of 
VFT2, is some cases supplemented by VFT4 relation, is the crucial validation for the OIM model. It has been carried out for 5 
supercooled liquids, including glycerol, via the residual analysis, compared with VFT and MYEGA relations fitting. It is supplemented 
by Stickel-type derivative analysis [91,92], which is discussed in subsequent sections. One should note that linking VFT2 and VFT4 
relations increases the number of parameters to 6. 

The above resume shows the essential significance of VFT type portrayal of the previtreous effect for basic glass transition model. 
The problem emerges when taking into account references, recalled at the end of the Introduction section, questioning two para-
digmatic assumptions: (i) the correlation between the ‘dynamic singularity’ (T0) associated with τ(T) evolution, and the ‘thermody-
namic singularity’ i.e., Kauzmann temperature (TK) related and configurational entropy changes [93], (ii) the omnipotence and 
fundamental validity of the VFT equation. The latter offers only an effective portrayal, limited to selected glass systems. Notwith-
standing, usage of the VFT equation in experimental, theoretical, and practical applications has grown permanently in the last decades, 
as illustrated in Fig. 1. 

When discussing experimental validation of VFT Eq. (3), it is worth also recalling the analysis proposed by Stickel, [92] used to 
detect the dynamic crossover temperature TB [42,68,82,92,94,95]. It is realized by the transformation of experimental data τ(T) → 
φT =

[
dlog10τ(T)/d(1/T)

]− 1/2, and plot φT(T) vs 1/T, yielding two lines intersecting at dynamic crossover temperature TB. The latter 
separates ergodic (HT, high-temperature) and non-ergodic (LT, low-temperature) dynamic domains in the ultraviscous region 
[42,68,82,94,95]. In both domains, another optimal evolution of dynamic properties is predicted. For the HT one, for T > TB +

(10KÃ ⋅ 20K), the description is very similar to an extrapolated singular temperature TMCT
C ≈ TB [42,94,98,99]: 

τ(T) = τ0
(
T − TMCT

C

)γ (18)  

where the exponent γ = 1.3 − 4 is related to parameters describing the high-frequency part of the imaginary part of the dielectric 
permittivity spectrum [17,42]. 

The description in HT domain using relation (15) is well-founded within the mode-coupling theory (MCT). Usually TB ≈ 1.3Tg, 
which estimates the range of LT domain to 80KÃ ⋅ 100K [17,42,94,98–100]. Novikov and Sokolov [68] strengthened the possible 
fundamental significance of TB and ϕT(T) plot, by announcing the semi-universal ‘magic’ time scale τ(TB⇆) = 10− 7±1s. This empirical 
finding was obtained by the use of φT(T) plots for 29 glass-forming low-molecular-weight liquids, polymers, ionic systems, covalent 
systems, and plastic crystals [84]. Notwithstanding, a few striking discrepancies from the ‘magic’ time-scale has been noted later 
[31,59,86,87]. Casalini and Roland [95] developed the above concept for pressure path on approaching glass transition via plot 

Fig. 1. Number of reports presenting VFT relation in the last two decades. It also shows many works using the MYEGA relation, which has been an 
essential alternative description of the pre-vitrification dynamics since 2010. Results were obtained using Google Scholar. 
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(
dlog10τ(P)/dP

)− 1/2 vs P and indicated empirical invariance τ(TB⇄,PB) = 10− 7±1s in the pressure–temperature plane. However, the 
question arises as to whether the Stickel analysis [92], closely related to VFT relation, is influenced by fundamental doubts about the 
latter? Another issue is that Stickel et al. [92] analysis assumed the preference for VFT description in both dynamic domains, while the 
experimental evidence indicates a universal tendency to prefer MCT Eq. (18) in HT dynamic domain. 

3. Experimental 

Studies were carried out in homologous series of polyols, from glycerol to sorbitol, for which changes in molecular structure lead to 
the emergence of the uniaxial molecular symmetry. They belong to classic glass-forming systems, which hardly crystallize when the 
melting temperature passes [34,42,101–107]. Such a feature facilitates broadband dielectric spectroscopy (BDS) studies, requiring 
frequency scans of the electric impedance, lasting several minutes or more for T → Tg [103]. Compounds were purchased from Sigma- 
Aldrich, anhydrous, analytic quality grade, and used without additional purification. The measurement capacitor was filled in a dry 
box. The gap of the capacitor d = 0.2mm and the voltage of the applied electric field U = 1V were performed. The Quattro automatized 
unit supplemented the Novocontrol impedance analyzer for temperature control was used. These enabled the five-digit permanent 
resolutions for parameters, and the temperature stability was better than 0.1 K. 

The research was focused on the primary (alpha, structural) relaxation time, determined using derivative analysis of the primary loss 

curve to find the location where dlog10ε˝
(

f = fpeak

)
/dlog19f = 0 what yields relaxation time τ = 1/2πfpeak. Such an approach mini-

mizes the fitting uncertainty, which may be significant for the most popular way of multi-parameter fitting of ε˝(f) loss curve using the 
Havriliak-Negami or related functions [105]. Obtained evolutions of primary relaxation time in tested compounds are shown in Fig. 2, 
using normalized Angell plot presentation. For such a plot, the Arrhenius behavior is referred to as linear. Increasing curvature il-
lustrates the rising degree of SA behavior, characterized by fragility index m. It changes from m ≈ 52 for glycerol to m ≈ 158 for 
sorbitol, in agreement with earlier estimations [17,103]. This rise correlates with the emergence of uniaxial structures or the increasing 
importance of hydrogen bonding [17,102–107]. Generally, the previtreous dynamics of polyols are discussed concerning the essential 
role of hydrogen bonding. The emergence of local, preferably uniaxial structures increases the number of neighboring molecules, 
which yields more possibilities for hydrogen bonding and densifying –OH groups locally. A similar impact of the uniaxial form of 
molecules is well known in the isotropic liquid phase of rod-like liquid crystals. Consequently, there is no contradiction between the 
increasing role of hydrogen bonds and the less frequently discussed uniaxiality of molecular structure in discussed polyols. Instead, a 
synergy between mentioned factors may be expected. 

4. Linearized, derivative-based analysis of the previtreous dynamics 

Previtreous changes of dynamic properties, such as viscosity or primary relaxation time, start even more than 100 K above the glass 
temperature [103]. Their analysis via scaling relations is possible only remote from singular temperatures, such T0 in VFT Eq. (3). One 
may introduce the discontinuity metric ΔT*

g = Tg − T0, which can even exceed 50 K [98,101,105]. It estimates the domain in the 
vicinity of singular temperature, which is non-accessible for analysis of τ(T) or η(T) evolutions. Unfortunately, it is also a region with 

Fig. 2. Normalized Angell plot for previtreous changes of primary relaxation time in polyols: glycerol (Tg = 187.7 K), threitol (Tg = 224.4 K), xylitol 
(Tg = 247.6 K), and sorbitol (Tg = 268.3 K) [103–107]. Schematic structures of compounds are shown. Solid (low-temperature, non-ergodic dynamic 
domain) and dashed curves (high temperature, ergodic domain) are related to activation-critical relation Eq. (33), parameters are given in Table 1. 
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the most characteristic changes in these properties. The experimentally accessible region T > Tg = T0 +ΔT*
g can be considered as the 

specific ‘long tail’ of previtreous changes. Consequently, the validation test of scaling relations based only on the visual or residual 
analysis cannot be decisive. The cognitive impasse can be overcome by using the linearized distortions-sensitive analysis discussed in 
this section. It bases on the distortions-sensitive transformation of experimental data, yielding linear behavior in the domain where the 
given scaling relation may be applied. The significant problem of scaling relations derived from glass transition models is that the latter 
does not yield specific values of parameters linked to the given experimental system [24–27,35–37,49,52,59,76,77,79]. To limit this 
problem, model scaling relations are also presented in terms of fragility, the surrogate empirical parameter characterizing the potential 
universality of dynamics in glass formers. Fragility constitutes a terminal of apparent fragility mP

(
T ≤ Tg

)
, also known as the steepness 

[42], which is directly linked to apparent activation enthalpy Ha(T): 

τ(T) → H’
a(T) =

Ha(T)
R

=
dlnτ(T)
d(1/T)

=

(
Tg

log10e

)
dlog10τ(T)
d
(
Tg/T

) =
(
Tgln10

)
mP(T) (19) 

The discussion of basic model-relations starts from MYEGA Eq. (12), often indicated as a possible successor of VFT dependence 
grand success. It is finished with issues related to the basic SA-type VFT and critical-like (CL) portrayals and the recent relation linking 
these approaches. As described above, basic problems of VFT parameterization inspired the development of alternative scaling re-
lations, particularly without finite temperature divergence. The leading position seems to gain Mauro-Yue-Ellison-Gupta-Allan 
(MYEGA) dependence [59]. Eq. (12) can also be expressed in fragility-related characteristics, namely K = μTg = const and C =
[
(μ − 1)Tg/T

]
− 1 =

[
(μ − 1)Tg − T

]/
T [59]. 

Note that Eq. (12) may be alternatively derived from the basic free volume, assuming f = C′Texp(K/T). Focusing on the linearized, 
distortions-sensitive test for MYEGA dependence [59], one obtains: 

dlnτ(T)
d(1/T)

= H’
a(T) = Cexp

(
K
T

)

+
CK
T

exp
(

K
T

)

= exp
(

K
T

)[

C+
CK
T

]

→ lnH’
a(T) =

K
T
+ ln

[

C
(

1 +
K
T

)]

≈
2K
T

+ lnC = A
1
T
+B (20) 

Linear domain in the plot H’
a(T)/exp(1/T) vs 1/T indicates the region of applicability of MYEGA description. The linear regression 

yields parameters: K = B/A, C = A/expK. 
Fig. 3 shows tests for distortion-sensitive analysis via Eq. (20) of MYEGA Eq. (12). Linear domains appear for the low-temperature 

and high-temperature dynamical domains. It indicates MYEGA Eq. (12) possibilities to portray previtreous dynamics and a new way to 
test the dynamic crossover phenomenon. 

Notwithstanding, determining the crossover temperatures TB is associated with some arbitrariness, as visible in Fig. 3. However, it 
is even more pronounced for the commonly used ‘Stickel operator’ analysis [68,82,93–96], linked to the VFT relation (Eq. (3)), which 
fundamental significance can be questioned, as indicated in the given report. 

Over three decades ago, Avramov and Milchev derived another scaling relation for the previtreous dynamics avoiding the finite 
temperature singularity [60]: 

τ(T) = τ∞exp
(

AAM

TD

)

(21) 

Fig. 3. Distortion-sensitive tests for preferable portrayal τ(T) previtreous changes in polyols via MYEGA relation [59] (Eqs. (12)): such domains 
should follow linear patterns. Intersections of straight lines indicate possible dynamical crossover temperatures: (i) glycerol TB = 312 K, (ii) threitol 
TB = 315 K, (iii) xylitol TB = 300 K, and (iv) sorbitol TB = 295 K. 
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Applying the fragility concept, one may express this dependence in the ‘universal’ form D =m/μ. Notably, link to the earlier Bässler 
equation for which D = 2 [109]. Comparing AM Eq. (21) with Eqs. (6) and (7), one obtains f = C/TD for free volume fraction and SC∝ 
TD− 1 for configurational entropy, disagreed with experimental evidence (see exp. results in [18,19,42]). Considering linearized, 
derivative-based test for AM Eq. (19), one obtains [110]: 

log10

[
d(lnτ)
d(1/T)

]

= log10H’
a = log10(CD)+ (1 − D)log10T = A+Blog10T (22) 

For plot log10H’
a(T) vs log10T, linear behavior indicates the region of applicability of AM relation, and linear regression yields 

optimal values of parameters: D = 1 − B and C = 10A/(1 − B). 
Fig. 4 presents the linearized, distortions-sensitive test of Avramov-Milchev [60] and Bässler [109] equations. The latter is 

considered one of the possible output relations for Kinetic Constraint Models (KCM) [94]. For the broader range of temperatures, the 
preference for AM Eq. (22) portrayal appears only for glycerol, but with the parameter D ∕= 2. 

In the last decade, notable efforts have been devoted to dynamic facilitation theories (DFT), particularly within KCM models frames 
[65,111–113]. They considered vitrification a purely kinetic phenomenon, for which movements of molecules in previtreous, 
supercooled regions are associated with excitations that appear/disappear in the adjacent areas. These facilitated dynamics develop in 
a hierarchical and correlated fashion in a specific direction. This picture emerges when cooling below inset temperature, associated 
with the Arrhenius–non-Arrhenius crossover. Chandler, Garrahan, and Elmatad (CGE) [65,111–113] derived the basic experimental 
checkpoint relation for KCM approaches, obeying the high-temperature Arrhenius – non-Arrhenius onset temperature To and the glass 
temperature Tg [65,111]: 

log10

(
τ(T)

τo

)

=

(
J
To

)2(To

T
− 1
)2

⇒ τ(T) = τoexp

[

G
(

1
T
−

1
T0

)2
]

(23)  

where G = J2/ln10. 
For a large enough value of To, it may be approximated by the Bässler equation [108], which appears in the East model within the 

simplified DFT approach [111–113]. For the linear derivative-based test of CGE Eq. (21) the following relation can be derived: 

mP(T) =
2J
Tg

(
1
T
−

1
To

)

= A
1
T
+B (24) 

For the plot mP(T) or H’
a(T) vs 1/T linear behavior validates the CGE Eq. (23) application for the glass former and in the given 

temperature domain. The subsequent linear regression yields optimal values of parameters J = A/2Tg, To = A/B. One can also present 
Eq. (21) in terms of the ‘universal’ metric, fragility, substituting J2 = (m/2)

[
Tg/
(
To/Tg − 1

) ]
, as results from Eq. (24) for T = Tg. Eq. 

(23) is often recalled as the ‘parabolic relation’ for describing previtreous dynamics due to the Bässler-type approximation: log10τ(T)∝ 
1/T2 [110–112]. Overlapping of τ(T) experimental data for 68 glass-forming systems in ref. [65], is recalled as a crucial argument 
supporting the universal meaning of CGE Eq.(21) and the experimental validation of DFT/KCM models. In the opinion of the authors, 
this experimental result (shown in ref. [65]) has tautological features and cannot be considered a conclusive validation of CGE Eq. (23), 
since the basic plot is scaled: log10(τ/τo) vs (J/To)

2
(To/T − 1)2, i.e., using all adjustable parameters included in Eq. (21), individually for 

each selected glass-formers. Similarly, 3-parameters-based scaling plots showing overlapping of experimental data are known for other 

Fig. 4. Distortion-sensitive plot focused on searching domains, preferably described by the AM [60] Eq. (22): straight lines indicate them.  
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scaling relations, for instance: (τ(T)/τ0 )
− 1/ϕ vs T/TC for the critical-like Eq. (27) [62,68], log10τ vs AVFT/(T − T0) for VFT Eq. (3) 

[17,67,100,101], log10τ vs AAM/TD for AM Eq. (21) [60]. One may also propose a plot for MYEGA Eq. (12): Tlog10τ vs C’ln(K/T). In each 
case, such scaling plots a priori lead to overlapping all used experimental data, if only the given relation may effectively portray results 
data within the limits of experimental errors. Hence, such multiple-scaled plots cannot be considered valid for a given model relation. 

Fig. 5 shows that for a member of tested series of polyols, changes of mP(T) are strongly non-linear, including glycerol, for which an 
additional test is shown in the inset. Following Eq. (21) the results presented in Fig. 5 show the fundamental inadequacy of ‘parabolic’ 
CGE Eq. (23) [66,111–113] for portraying previtreous dynamics in glycerol, threitol, xylitol, and sorbitol. 

As mentioned above, the VFT Eq. (3) may be considered as dominant relation for portraying previtreous dynamics. It can be 
alternatively presented using the fragility: 

log10τ(T) = log10τ∞ +
ϛ2

m
(

T/Tg − 1
)
+ μ

(25)  

where ϛ = mlog10τ
(
Tg
)
log10τ∞min.

The comparison of Eqs. (3) and (25) yields the link: DT = Tgm2
min/m and T0 = Tg

(
1 − mmin./m(T/Tg − 1)

)
. 

For VFT relation, one may derive the following linearized equation [102]: 

dlnτ(T)
d(1/T)

= − T2dlnτ(T)
dT

= Φ
(

T
T − T0

)2

(26)  

where Φ = DTT0 and dlnτ(T)/d(1/T) = H′

a(T) = Ha(T)/R; Ha(T) is for the apparent activation enthalpy, and R means the gas constant. 
The above relation directly yields the linearized equation [102]: 
[

dlnτ(T)
d(1/T)

]− 1/2

=
[
H’

a(T)
]− 1/2

= (DT T0)
− 1/2

− T0(DT T0)
− 1/2

×
1
T
= − A

1
T
+B (27) 

Note the direct link to the ‘Stickel operator’ [93] ϕT = dlog10τ(T)/d(1/T) introduced for determining the dynamic crossover 
temperature TB, and the apparent fragility: 

(
dlnτ(T)
d(1/T)

)− 1/2

=
[
H’

a(T)
]− 1/2

=
(
Tgln10

)− 1/2
[mP(T) ]− 1/2

=
1
̅̅̅̅̅̅̅̅̅
ln10

√ φT(T) (28) 

The comparison of Eqs. (27) and (28) explicitly show that the broadly applied ‘Stickel analysis’ [93] is based on the assumption that 
both the lower and upper fragility are described by the VFT Eq. (3), but with a different set of parameters: DT related to fragility and the 
singular temperature T0. All of these led to the ‘virtual’ glass temperature for the upper dynamic domain and the real dynamic domain 
in the lower dynamic domain. Eq. (27) also indicates the possibility of an alternative plot: 

T
[
H’

a(T)
]− 1/2

= (DT T0)
− 1/2

× T − T0(DT T0)
− 1/2

= AT − B 

Fig. 5. Temperature evolution of apparent fragility (steepness index), in polyols, using scale correlated to Angell plot and Eq. (22). The latter is 
focused on testing the preference for CGE description [57]: such domains should follow a linear pattern. The inset presents derivative data from the 
central part of the plot, indicating that evolution mP(1/T) is not linear for glycerol. 
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Alternative plots [dlnτ(T)/d(1/T) ]− 1/2 
[Ha’(T) ]− 1/2, [mP(T) ]− 1/2 or ϕT(T) vs 1/T or alternatively T× [Ha’(T) ]− 1/2, T × [mP(T) ]− 1/2 vs 

T should yield the linear behavior for the validated description of experimental data by the VFT relation. Linear regression fit can yield 
parameters A and B, and then: DT = 1/AB and T0 = B/A. 

As mentioned above, in high-temperature dynamic domains of supercooled systems, critical-like portrayal within the MCT 
approach is advised [68,97,98]. The same type of portraying was considered for the low-temperature dynamic domain, close to the 
glass temperature: 

τ(T) = τ’
0(T − TC)

− φ
, τ(T) = τ0

(
T − TC

TC

)− φ

(29)  

τ(T) = τ0

(
T − TC

T

)− φ

(30)  

where T ≥ Tg, TC < Tg. For dynamic critical phenomena [114]: φ = zν; ν and z is exponents for correlation length ξ, and z is a dynamic 
exponent. 

Four decades ago, Souletie and Bertrand conducted comparative tests of such descriptions for several systems [115,116]. Unfor-
tunately, their results show the non-conclusive scatter of the exponent φ and a relatively poor-fitting quality. Saltzmann and 
Schweitzer [117] analyzed a hypothetical critical universality numerically in polymeric glass formers and suggested φ ≈ 1.7. 
Experimental validation of these results in low molecular weight liquids seems doubtful [115–117]. Two decades ago, Colby [63,64] 
announced hypothetically breakthrough results, indicating universal and critical-like behavior by Eq. (29) with the universal exponent 
φ = z× ν = 6 • 3/2 = 9, supported by validating evidence for 35 glass-forming systems [63]. The exponential multiplicator was 
advised for some molecular liquids [64]. Heuristic considerations supporting this reasoning were called the ‘dynamic scaling model’ 
(DSM) [63,64]. However, this result has been skeptically treated even for the same experimental datasets as in ref. [63,64] declared 
universal DSM criticality was not confirmed [62]. 

Authors of this report developed the linearized distortions-sensitive analysis for the critical-like Eq. (19) [102]: 

T2

H′

a
=

TC

φ
− φ− 1T = A − BT (31) 

Using a plot T2/H′

a(T) vs T, linear behavior shows domains where Eqs. (29) and (31) can be applied; subsequent linear regression 
yields basic parameters: TC = AB and φ = 1/B. 

In refs. [38,55,99,118–122] the linearized distortion-sensitive analysis was applied for liquid crystalline glass-formers composed of 
rod-like molecules, showing a clear prevalence for critical-like portrayal with the exponent φ = 9. Hence, behavior suggested by DSM 
approach appears, although not in systems indicated in basic DSM refs. [63,64]. The prevalence of the critical-like portrayal was also 
found in plastic crystals and some low-molecular-weight liquids and polymers where local elements of uniaxial symmetry occur 
[55,99,105]. 

Figs. 6 and 7 present results of linearized, the derivative-based analysis focused on VFT (Eq. (3)) and the critical-like (Eq. (31)) 
scaling of previtreous dynamics. Distortion-sensitive analysis reveals that near Tg VFT portrayal obeys only glycerol. Such a behavior 
ceases to be optimal when shifting from glycerol to sorbitol in a homologous series, as visible by emerging non-linearity. A reversed 
behavior occurs when testing critical-like portrayal preference (Eq. (31)). It is optimal for sorbitol and becomes non-optimal when 

Fig. 6. Distortion-sensitive plot (Eq. (27)) focused on searching domains, preferably described by VFT description Eq. (3): straight lines indicate 
them. The presentation is equivalent to the Stickel et al. [93] plot introduced for detecting the dynamic cross-over temperature TB. 
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shifting from sorbitol to glycerol in the tested series, as visible in Fig. 7. Notable that for sorbitol, which molecule shows the ‘strongest’ 
uniaxial features, the exponent φ ≈ 9.5 for T → Tg. Such a value is approximately the same as in rod-like liquid crystalline glass- 
formers [118–122] and roughly the same as introduced by Colby within the Dynamical Scaling Model [63,64]. In the high- 
temperature domain, well above Tg, the second critical-like domain emerges (Fig. 7), in agreement with the MCT approach expec-
tations for HT ergodic part of the previtreous domain. The plot also shows the values of MCT [68,97,98] exponents ‘critical’ tem-
peratures in the high-temperature dynamic domain. Regarding the low-temperature domain near Tg the following parameters have 
been obtained: (i) for glycerol TC = 155K and ϕ ≈ 23, (ii) TC = 214K, ϕ ≈ 16 for threitol, (iii) for xylitol TC = 233K and ϕ ≈ 13, (iv) 
TC = 254K, ϕ ≈ 9.5 for sorbitol. The latter extends up to ca. Tg + 50K. 

Recently, one of the authors (ADR) showed the common pattern empirically for the evolution of the apparent fragility for ten glass 
formers, covering low molecular weight liquids, liquid crystals, plastic crystals, polymers, and resins [99]: 

mP(T) =
dlog10τ(T)
d
(
Tg/T

)

⃒
⃒
⃒
⃒
⃒

T>Tg

=
A

T − T*
g

(32) 

The extrapolated singular temperature T*
g < Tg may be simply determined from the condition 1/mP

(
T*

g

)
= 0. Linking the above 

empirical equation with the definition of apparent fragility, one obtains the differential equation, which solution leads to the following 
scaling dependence for the previtreous behavior [99]: 

τ(T) = CΓ

(T − T*
g

T

)− Γ[

exp
(T − T*

g

T

)]Γ

= CΓ
(
t− 1expt

)Γ (33)  

where t =
(

T − T*
g

)/
T 

The power exponent can be expressed via basic empirical metrics of the glass transition: = mln10
(

Tg/T*
g

)/(
1/
(

ΔT*
g/Tg

)
− 1
)

, 

Fig. 7. Distortion-sensitive plot focused on searching domains, preferably described by the critical-like description Eq. (31): straight lines indi-
cate them. 

Table 1 
Values of parameters for the AC Eq. (33). T*

g , Γ, CΓ are for the low-temperature (LT) dynamic domain. Parameters for the high-temperature (HT) 
dynamic domain are denoted as T*

B, ΓB, CΓB, and related numbers are in italic.  

Glass-former Tg(K) T*
g(K) 

T*
B 

Γ log10CΓlog10CΓB 

Glycerol  186.0 147 0.1 
225.1 

34.3 
7.05 

− 19.48 
− 13.31 

Threitol  224.2 200.4 
270.1 

19.3 
4.7 

− 17.47 
− 12.6 

Xylitol  247.6 231.5 
299.3 

16.02 
4.1 

− 17.08 
− 12.6 

Sorbitol  267.0 259.1 
300.1 

11.4 
3.85 

− 15.33 
− 12.7  
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ΔT*
g = Tg − T*

g . The unique feature of Eq. (33) is the ‘activation-critical’ (AC) formula linking critical-like and activation (SA-type) 
features. The value of the exponent determines their relative share in the previtreous effect. The parallel relation may be introduced for 
the high-temperature dynamic domain. In this case, the singular temperature T*

B < TB and the power exponent ΓB replace parameters 
in Eqs. (31). 

Emerging from the comparison of Figs. 6 and 7, interplays between activation-type (SA) and critical-like (CL) dynamics indicate 
‘mixed’ scaling as a possible optimal parameterization for the homologous series of tested polyols. Such a relation (Eq. (31)) has been 
introduced recently and validated for a set of glass-forming systems [86]. 

Values of parameters are collected in Table 1. It is worth noting that values of singular temperatures T*
g and T*

B may be readily 
determined before the fitting of τ(T) experimental data by analysis, which results are shown in Fig. 8. This causes a final fit of τ(T) can 
be limited only to two parameters. Values of parameters given in Table 1 show that the power exponent in Eq. (33) is responsible for 
the relative impact of the critical-like and activation contributions to the previtreous effect. 

Finally, returning to ‘extended’ VFT-type relation, related to DDM Eq. (16) and OIM Eq. (17) checkpoint relations. As for Eq. (16) 
one can consider the following derivative-based transformation: 

dlnτ(T)
dT = − θΦ(T − T0)

− θ− 1
=

Tgln10
T2

dlog10τ(T)
d(Tg/T)

=
Tgln10

T2 mP(T) ⇒ θ = 3/2 ⇒ 

⇒
[

dlnτ(T)
dT

]− 5/2

=
Tgln10

T2 =
T3

(
Tgln10

)5/2(mP(T) )− 5/2
= AT − B (34)  

where A = θΦ, and B = TCθΦ.

The analysis of experimental data based on the plot 
(
mp
)− 5/2, or alternatively 

(
H’

a
)− 5/2

= (dlnτ/d(1/T) )− 5/2 vs T yielded linear 
dependences less pronounced than for the VFT or MYEGA relations discussed above. 

The unique functional modification of the references introduces the OIM related VFT2 Eq. (17). The functional form of this 
dependence suggests the following derivative-based linearized relation: 

dlnτ(T)
d(TC/T)

=
1
C
(T − TC)

− 3 ⇒
[

dlnτ(T)
d(TC/T)

]− 1/3

= C1/3T − C1/3TC = AT − B (35) 

The plot defined by Eq. (35) was used in ref. [92] for testing the validity of OIM Eq. (17). It was carried of for glycerol, propylene 
glycol (PG), polyvinyl acetate (PVAc), propylene carbonate (PC), sorbitol. For PVAc, Sorbitol, and particularly PC, the analysis 
revealed a strong distortion from linearity when cooling towards Tg, was explained as the impact of the VFT4 term. The supplementary 
fit of τ(T) experimental data via VFT Eq. (3), MYEGA Eq. (12), and (OIM) Eq. (17) showed the prevalence of the latter via the slightly 
smaller coefficient χ2 showing the normalized mean square of the deviation between experimental data and portraying function. 

Notable that Eq. (17) requires the knowledge of the OIM ‘critical’ temperature in prior, which can be determined, for instance, 
using (dlnτ(T)/d(1/T) )− 3 s. vs T plot. Fig. 9 shows the derivative-based linearized test of the OIM Eq. (17) scaling relation for the 
homologous series of tested polyols using the following parallel of Eq. (35): 

[
Tg

TC

dlnτ(T)
d(Tg/T)

]
− 1/3

= (
Tg

TC
)
− 1/3

(mP(T))− 1/3 ⇒ (mP(T))− 3
= A

′

T − B
′ (36)  

Fig. 8. Previtreous universal changes of the apparent fragility in the previtreous domain of polyols emerging due to for 1/m(T) vs T plot. Arrows 
indicate glass temperatures. Linear behavior is linked to Eq. (32). 
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where A = C3( TC/Tg
)1/3, B = TC

(
TC/Tg

)1/3. The singular (‘critical’) temperature is determined from the extrapolation of the linear 
down to (mP(T) )− 1/3

= 0.
In ref. [92] OIM Eq. (17) was validated via the above derivative-based plot, which enables a convenient estimation of the singular 

temperature and the comparison of χ2 values for portraying experimental τ(T) data via VFT, MYEGA, OIM scaling relations. Tests were 
carried out in the previtreous domain of glycerol, sorbitol, polyvinyl acetate, propylene glycol, and propylene carbonate. 

Fig. 9 shows that OIM Eq. (17) is able to portray only dynamics in the high temperature dynamic (HT) domain, and even in the 
given case, this domain shrinks when shifting from glycerol to sorbitol. When entering the LT dynamic, the portrayal via Eq. (17) fails, 
as shown by significant nonlinear changes. In ref. [ ] such distortions were explained by the rising impact of VFT4 term. However, 
taking this factor into account increases the number of fitted parameters. 

5. Activation energy index for analysis previtreous dynamics 

Hecksher et al. [53] proposed to focus on the activation energy index introduced by Dyre and Olsen [43]: IDO(T) =

− dlnEa(T)/dlnT = (dEa/Ea)/(dT/T), i.e., to transform experimental data τ(T) → IDO(T). The required apparent activation energy was 
calculated from general SA Eq. (1), Ea(T) = RTln(τ(T)/τ∞ ) assuming the universal value of τ∞. In ref. [53] the analysis of 42 low- 
molecular-weight glass formers led to the conclusion: ‘…there is no compelling evidence for the Vogel–Fulcher–Tammann (VFT) predic-
tion that the relaxation time diverges at a finite temperature. We conclude that theories with a dynamic divergence of the VFT form lack a direct 
experimental basis.’. 

It was formulated by comparing experimental IDO(T) evolutions with model IDO(T) dependences for the VFT relation and two 
proposed functions without finite temperature singularities (denoted as FF1 and FF2 in ref. [53]). In subsequent years, ref. [53] has 
become an inspiration for developing theoretical models avoiding finite temperature singularities below Tg. However, the pre- 
exponential factor assumption regarding the universal, constant value τ∞ = 10− 14s in ref. [53], poorly correlate with experimental 
evidence and may lead to a bias for calculated values of Ea(T) and then IDO(T). In ref. [55] protocol avoiding this problem was pro-
posed: apparent activation energy was calculated as a solution of differential equation resulting from SA Eq. (1) or the selected set of 
τ(T) experimental data: 

R
dlnτ(T)
d(1/T)

=
1
T

dEa(T)
d(1/T)

+Ea(T) (37) 

In Eq. (34) dlnτ/d(1/T) = H’
a(T) = Ha(T)/R, where Ha(T) is the apparent activation enthalpy. As results from Eq. (34) Ha(T) ∕=

Ea(T) for the SA dynamics. In refs. [55–57] the analysis exploring Eq. (34) for determining the apparent activation energy was applied 
for 26 glass formers, ranging from low-molecular-weight liquids, polymers, plastic crystals to liquid crystals. The common ‘universal’ 
pattern of the index was found: 1/IDO = a + bT. Subsequently, a hypothetical general formula for activation energy index was found 
[56,57]: 

IDO(T) = nT0/(T − T0) =
nT0

T − T0
(38) 

It was concluded from IDO(T) derived form for VFT, Avramov-Milchev (AM), MYEGA, and critical-like (CL) dependences [45]. The 
study of experimental data in refs. [55,123] showed that 0.18 < (n = − 1/a) < 2.2. VFT portrayal appears for systems characterized by 

Fig. 9. The linearized derivative-based test (Eq. (36)) of the ability of the OIM Eq. (17) for portraying previtreous dynamics in the homologous 
series of polyols. The ‘validated domain’ is indicated by linear behavior. 
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n = 1 with orientational, uniaxial ordering, whereas n 0.18 for systems with translational symmetry. Notably, for MYEGA [59] 
equation a = 0, and the Avramov-Milchev (AM) [0] dependence b = 0 and then 1/IDO(T) = const. For VFT and CL scaling relations: 
a ∕= 0 and b ∕= 0. 

Elmatad et al. [66] considered a parabolic scaling plot of activation energy defining a cross-over temperature To > Tm, and J is a 
parameter setting the excitation energy [59]. The activation energy for this scaling approach can be written as: 

Ea(T) =
(

J
To

)2

T
(

To

T
− 1
)2

, for T < To (39) 

Consequently, the following formula for the activation energy index is obtained: 

IDO(T) =
T + To

T − To
(40) 

Reciprocal of the index does not follow linear behavior and exhibits an artificial anomaly associated with an onset temperature To, 
related to the crossover between Arrhenius and Super-Arrhenius dynamics domains in the high-temperature region. 

A similar disagreement with experiment occurs for Roessler et al. [88] Eq. (15), for which the derived index is given in Table 2. 
Notable is the relation links apparent activation energy, activation energy index, and configurational entropy derived in Refs. 

[45,120] is: 

IDO(T) =
1
T

dlnEa

d(1/T)
= −

1
TSC(T)

dSC(T)
d(1/T)

(41) 

By applying the experimental evidence for apparent activation energy index evolution (Eq. (35)) one obtains the following relation 
for previtreous changes of configurational entropy [55]: 

SC(T) = S0

(

1 −
T0

T

)n

= S0tn (42)  

where t = (T − T0)/T. 
It is worth stressing that the essential difference between Eq. (39) and the ‘classic’ Eq. (9), associated with n = 1 and T0 = TK, and 

leading to VFT Eq. (3) after the substitution to Adam-Gibbs model Eq. (7). Eq. (39) is related to n ∕= 1. The functional form of Eq. (42) 
resembles the behavior observed for Critical Phenomena. This link is strengthened by the empirical correlation between ‘n’ values and 
the local symmetry of the system. Particularly worth stressing is the value n ≈ 3/2 detected in glass forming rod-like liquid crystalline 
compounds. In the given case, the local uniaxial molecular symmetry is matched with the lack of translational symmetry. On the other 
hand, in orientationally disordered crystals (ODICs) n ≈ 0.18 [55,120]. In the given case, the translational ordering is linked to the 
orientational freedom. Worth stressing is the empirical correlation between the singular temperature T0 and the Kauzmann temper-
ature TK [46] Such correlation is limited for n = 1. Moreover, the behavior described by Eq. (42) extends in the low-temperature 
(ultraviscous, ultraslow) dynamical domain extending up to Tg +80K [42]. Substituting Eq. (42) to the basic AG model relation (Eq. 
(7)), one obtains the extended VFT following dependence: 

τ(T) = τ∞exp
(

DTn− 1

(T − T0)
n

)

= τ∞exp
(

D/T
tn

)

(43)  

where D = AΔμ/S0. 
For n = 1 Eq. (40) converts into basic VFT Eq. (3), and then D = DT, T0 is the VFT singular temperature. Extended VFT Eq. (43) with 

n ∕= 1 was independently introduced to portray previtreous dynamics in polyvinylidene disulfide (PVDF) and BST ferroelectric mi-
croparticles [124] as well as for relaxor ceramics [125]. Formally, Eq. (43) is associated with four fitted parameters, but values of n and 
T0 may be estimated from activation energy index analysis or heat capacity data. It is worth stressing, that the emerging similarity of 
Eq. (43) and RFOT model [85] general relation (Eq. (10)). The latter can be retrieved if the power exponent n = α = ψ/(d − θ). 

It is notable that Eq. (43) for τ(T) evolution was obtained assuming configurational entropy derived from τ(T) experimental data 
expressed by Eq. (42). Crucial validation requires obtaining behavior described by Eq. (42) from thermodynamic data analysis. At first 
sight, the credibility of Eq. (41) seems to be doubtful since experimental confirmation of classic Eq. (9), linked to n = 1, is very 
extensive [49,54,67,70,75,78]. Notwithstanding, analysis based on non-linear fitting of experimental data remote from singular 
Kauzmann temperature TK. The very recent report [110] copes with this essential feature of previtreous behavior for glass transitions, 
analyzing high-resolution experimental data for 8 glass-forming systems via the following distortions-sensitive approach for Eq. (39): 

lnSC(T) = lnS0 + nln
(

1 −
TK

T

)

⇒
dlnSC

d(1/T)
=

nTK

1 − TK/T
(44) 

Consequently, one obtains the following linear behavior validating Eq. (39) for the plot defined by the following relations: 
[

dlnSC(T)
d(1/T)

]− 1

=
1

nTK
−

(
1
n

)(
1
T

)

= A+B
(

1
T

)

(45) 

Figs. 10 and 11 show the results of such analysis for glycerol and propanol. Table 3 below presents the summary of results discussed 
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in ref. [124]. These results support the generalized Eq. (42) for the configurational entropy, with the exponent n ∕= 1, within frames 
indicated by ref. [124]. 

Fig. 10 shows that direct portrayals of SC(T) experimental data for T > Tg via discussed dependences, associated with n ∕= 1, and 
n = 1, yields almost indistinguishable fitting qualities, particularly when including the impact of the experimental error. Notwith-
standing, the generalized relation for configurational entropy evolution (Eq. (42)) yields notable correction in the estimation of the 
Kauzmann temperature, as shown in Fig. 11 and ref. [124]. 

As a general comment for the analysis exploring activation energy index for relaxation, one should note that it applies the second 
and even the third-order derivative of τ(T) experimental data, supported by numerical filtering using the Savitzky-Golay principle 
[55]. All of these introduce some degree of uncertainty to results. 

6. Distortion-sensitive tests of previtreous dynamics under pressure 

Isothermal compressing constitutes an alternative way of approaching the glass transition. Relation to describe pressure-viscosity 
behavior was firstly proposed by Barus (B) in 1893, via the relation η(P)∝exp(αP), α = const [126]. Nowadays, this relation is used in 
the super-Barus (SB) form, with a pressure-dependent coefficient α(P): 

τ(P) = τT
∞exp(α(P) × P ) = τT

∞exp
(

Va(P)
RT

P
)

(46)  

where T = const, P < Pg and Pg is for glass (vitrification) pressure; Va(P) denotes apparent activation volume. 

Table 2 
Basic model relation and related forms of reciprocal of the activation energy index, including the corresponding parameter ’n’. The experimental 
evidence is also summarized.   

Model Equation 1/IDO Parameter n 

Theory/Models 
VFT: τ(T) = τ∞exp

( DTT0

T − T0

) ( 1
T0

)

T − 1 
1 

MYEGA: τ(T) = τ∞exp
[C
T

exp
(

K
T

)]
( 1
C

)

T 
0 

AM: τ(T) = τ∞exp
(AAM

TD

) 1
D − 1 

undefined 

Critical-like: τ(T) = τ∞(T − TC)
− φ ( 1

φ

)

T −
TC

φ 
~ 0.2 (PC)~1.5  
(LC) 

CGE: τ(T) = τ∞exp
[

C
(1

T
−

1
T0

)2 ] T − To

T + To 

undefined 

Roessler et al.[ ]: 

τ(T) = τ∞exp
[E∞ + aexp( − λ(T/TA − 1) )

T

]
T/TA

1 + exp[λ(T/TA − 1) ]
undefined 

Experiment: 1/IDO = aT + b,n = − 1/b 
(PC: critical-like) ⇐ 0.18 < n < 2.2 ⇒ (LC: critical-like) 
n = 1 (SA: VFT)  

Fig. 10. The derivative-based analysis of configurational entropy (Eq. (42)) for two selected supercooled liquids focused on testing new relation 
SC(T) behavior, given by Eq. (41). 
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Note that in both Barus (B) and Super-Barus (SB) equations, the pre-exponential factor: 

τT
∞ = τ(P = 0) ≈ τ(P = 0.1MPa) (47) 

Williams introduced the activation volume into this relation in 1964 [75,76], as follows: 

Va = RT
dlnτ(P)

dP
(48)  

where Va(P) = Va = const in the given pressure domain, related to the basic Barus relation. The latter equation is not valid for pressure- 
dependent apparent activation volume, i.e., for the SB dynamics: 

RT
dlnτ(P)

dP
= Va(P)+P

dVa

dP
(49)  

and consequently 

V#(P) = RT
dlnτ(P)

dP
∕= Va (50) 

Taking into account the definition of pressure-related apparent fragility (steepness index) defined below, one may show that 
V#(T)∝mT(P). The general Super-Arrhenius and Super-Barus relation may be obtained by linking Eqs. (1) and (46) [127]: 

τ(T,P) = τ(T)τ(P) = τref .exp
(

Ea(T) + PVa(P)
RT

)

(51)  

where T > Tg and P < Pg. A similar relation occurs for η(T, P) changes. 
Following eq. (51), an isobaric temperature evolution is described by: 

τ(T) =
[

τT
∞exp

(
PVa(P)

RT

)]

exp
(

Ea(T)
RT

)

= τP
∞exp

(
EP

a (T)
RT

)

(52) 

Eq. (48) correlates with SA Eq. (1) for P = 0. Such an isobar may be approximated by temperature studies under atmospheric 
pressure (P ≈ 0.1MPa). Eq. (48) shows a pattern of changes in pre-exponential factor when carrying out temperature tests under higher 
pressures. 

For isothermal pressure-related previtreous behavior, plot log10τ(P) or log10η(P) vs P/Pg is often indicated as a possible pressure 

Fig. 11. Temperature dependences of configurational entropy in glycerol and sorbitol. In red, the description classic description by Eq. (9), 
alternatively Eq. (42) with parameter n = 1 are shown. In blue fitt9ng via Eq. (42) with parameters n ∕= 1, derived in Fig. 10, is presented. 

Table 3 
Values of parameter n reported in ref. [110] using the derivative-based analysis via Eq. (42).  

System Sorbitol 8*OCB 
(LC: rod-like) 

Ethanol Glycerol Diethyl 
phtalate 

Cycloheptanol 
(PC: ODIC) 

n  1.57  1.51  1.28  1.04  0.98  0.18  
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counterpart of the Angell plot. However, such a presentation of data leads to a gamut of curves instead of a compact representation 
characterizing a temperature-related Angell plot. The mentioned normalized τ(P) or η(P) evolutions lead to the following pressure- 
related steepness index (apparent fragility) [128,129]: 

mT(P) =
dlog10τ(P)
d
(
P/Pg

) , mT = mT
(
P → Pg

)
(53)  

where mT denotes pressure-related fragility metric. The above yields μP = log10τ
(
Pg
)
− log10τP

∞ for the minimal fragility characterizing 
the basic Barus dynamics: fragility. However, depending on the tested isotherm, it may range from 1 to even 14. It is also notable that 
Eqs. (48) and (49) lead to the ‘artificial’ anomaly of apparent fragility for P → 0 [128,129]. All above indicates significant in-
consistencies in the general characterization of the previtreous effect in super-pressed liquids. 

Similar to basic SA Eq. (1) and SB Eq. (43) does not enable the portrayal of experimental data due to an unknown form of an 
evolution of apparent activation volume. Consequently, replacement relations are necessary. In 1972 Johari and Whalley (JW) applied 
the following empirical dependence for portraying experimental data in super-pressed glycerol (T = 20◦C) [130]: 

τ(P) = τT
∞exp

(
J

P0 − P

)

(54)  

where J = const, P < Pg, extrapolated singular pressure P0 > Pg. 
However, this relation may reliably portray experimental data only if they are relatively close to the basic Arrhenius/Barus pattern 

(i.e., ‘strong’ glass-formers) or in a ‘narrow’ range of pressures. Moreover, it cannot be reduced to basic Barus equations with Va(P) =

Va = const, an essential feature required for any SB replacement scaling relation. When comparing general SB Eq. (46) and JW Eq. (54) 
a significant inconsistency also occurs for the pre-exponential factor: in Eq. (54) τT

∞ ∕= τ(P = 0). In 1998, an application of new BDS 
facilities and designs of measurement capacitors placed within pressure chambers enabled obtaining the high-resolution τ(P) exper-
imental data for ultraviscous glycerol compressed up to 0.35 GPa for T 260K, showing the explicit fragile behavior. Analysis showed 
limited adequacy of Eq. (50) and the fair portrayal by an empirical relation [131]: 

τ(P) = τT
∞exp

(
J(P)

P0 − P

)

= τT
∞exp

(
DPP

P0 − P

)

(55) 

It can fair portray dynamics for both ‘strong’ and ‘fragile’ glass-formers. It also introduced the fragility strength coefficient DP for a 
pressure path. Notably, it may be reduced to the basic Barus equation and the prefactor τT

∞ = τ(P = 0), as in basic Barus and Super- 
Barus relations (Eq. (43)). It also can be derived from the VFT Eq. (3) by a simple substitution T = δ/P, and δ = const, i.e., the 
basic qualitative link between cooling and compressing: 

τ(T) = τ∞exp
(

DT T0

T − T0

)

⇒ (56)  

τT
∞exp

[
DT(δ/P0)

δ/P − δ/P0

]

= τT
∞exp

[
DT(δ/P0)

δ(1/P − 1/P0)

]

= τT
∞exp

⎡

⎢
⎢
⎣

DT(δ/P0)

δ
(

P0 − P
P0P

)

⎤

⎥
⎥
⎦ = τT

∞exp
[

DT P
P0 − P

]

Notwithstanding, in a new PVFT Eq. (55), the problem of pre-exponential factor inconsistency, characterizing SB Eq. (46), remains. 
It may be solved, considering that liquids or solids can be isotopically stretched, which is equivalent to negative pressures, and passing 
P = 0 without any hallmark [132,133]. The stretching is possible until an absolute stability limit spinodal PSL < 0, where intermo-
lecular interactions break, is reached. Experimental evidence of smooth passing from the ‘positive’ to the ‘negative’ pressure domains 
in glass-forming liquids was shown by Angell and Quing [134]. All these led to generalized SB and PVFT relations [110]: 

τ(P) = τT
∞exp

(
Va(P)

RT
ΔP
)

(57)  

τ(P) = τT
∞exp

(
DSL

P (P − PSL)

P − P0

)

= τT
∞exp

(
DSL

P ΔP
P − P0

)

(58)  

where DSL
P is fragility strength corrected by the impact of stability limit (SL) pressure and ΔP = P − PSL. 

Note that Eq. (57) resembles the one proposed by Kießkalt yet in 1927 [135]: η = ηoea(P− P0). but P0 was referred to as some 
‘characteristic positive’ pressure, and the negative pressures domain was not considered there. Eqs. (57) and (58) directly lead to the 
plot log10τ(P) vs ΔP = P − PSL as the pressure counterpart of Angell plot, see ref. [110]. It is worth noting that Eqs. (57 and 58) are 
associated with similar values of prefactor τT

∞ ∕= τ(PSL) 10− 11s, yielding one value for minimal (Barus-related) fragility μP ≈ 13, for 
arbitrary tested isotherm. All these led to a new definition of apparent fragility mΔP

T , which can be linked to the ‘old’ one as follows 
[113: 
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mΔP
T =

dlog10τ(P)
d
(
ΔP/ΔPg

) = ΔPg
dlog10τ(P)

d(ΔP)
=

ΔPg

Pg

dlog10τ(P)
d
(
P/Pg

) =
ΔPg

Pg
mT(P) (59)  

where P = P − PSL, ΔPg = Pg − PSL and P ≤ Pg.

The new PVFT Eq. (58) contains four adjustable parameters. However, their validity can be tested by derivative-based analysis 
given below, which also yields optimal values of basic parameters [110]: 

[
dlnτ(P)

dP

]− 1/2

= (DPP0)
− 1/2P0 − (DPP)− 1/2P = A+BP (60)  

[
dlnτ(P)

dP

]− 1/2

=
[
DSL

P (P0 − PSL)
]− 1/2P0 −

[
DSL

P (P0 − PSL)
]− 1/2P = A+BP (61) 

Eq. (60) is for basic PVFT and Eq. (55) and new N-PVFT Eq. (58). The comparison of Eqs. (60) and (61) show a link between fragility 
strength [110]: DSL

P = DP[(P0 − PSL)/P0 ]. 
Despite the PVFT relation’s success, none theoretical model offers its derivation. Notwithstanding, one may transform the basic 

VFT Eq. (3) into the PVFT Eq. (53) by a simple substitution T = A/P: τ(T) = τ∞(T)exp(DTT0/(T − T0) ) ⇒. 
τ(P) = τ∞exp[DT(A/P0)/((A/P) − (A/P0) ) ] = τ∞exp[DTP/(P0 − P) ]. Such a simple link leads to a question of whether significant 

problems of the basic VFT relation also extend to PVFT one. 
Notably, a relation resembling basic PVFT Eq. (55) was reported in 1963 by Roelands et al. (1963): η(P) = η0exp(α0P/(1 + R3P) ), 

where R3 and α0 are constants, for describing viscosity changes in lubricating oils [136]. One can also consider yet another relation, 
introduced by Roeland, originally for viscosity [136]: 

τ(P) = τ∞exp
(
R1PR2) (62)  

were R1 and R2 are system-dependent empirical constants. 
Although heuristic considerations developed this relation in ref. [136], it can also be directly derived from the Avramov-Milchev 

(AM) model scaling relation. Namely, taking into account the basic relationship between cooling and compressing: 

τ(T) = τ∞exp
(

AM

TD

)

⇒ T =
A
P

⇒ τ(P) = τ∞exp
(
A’

MPD) (63) 

It shows that R2 parameter in Roelands Eq. (62) reflects the pressure-related fragility. Note that Eqs. (62) and (63) suffer from the 
same problem with pre-exponential factor values like basic PVFT Eq. (55). This problem disappears if an ‘extended version’ of Eqs. (62) 
and (63) is considered: 

τ(P) = τ∞exp
(
R’

1(P − PSL)
R’

2
)
= τ∞exp

(
R’

1(ΔP)R’
2
)

(64)  

where the absolute stability limit pressure PSL < 0.
The following distortions-sensitive test can be proposed: 

lnτ(P) = lnτ∞ +R’
1(ΔP)R’

2 ⇒
dlnτ(P)

dP
= R’

1R’
2(ΔP)R’

2 − 1 ⇒  

⇒ ln
(

dlnτ(P)
dP

)

= lnV#(P) = R
′

1R′

2

(
R′

2 − 1
)
ln(ΔP) (65) 

It can be simplified to the following dependence for the basic Roeland Eq. (62): 

ln
(

dlnτ(P)
dP

)

= lnP (66)  

where R = R′

1R′

2
(
R′

2 − 1
)
. 

Eqs. (58) and (60) can be validated by the linear domain appears in the plot lnV#(P) vs P or ΔP. Subsequent linear regression fit may 
yield optimal values of basic parameters. The above reasoning can be implemented for introducing other relations describing pressure- 
related SB dynamics. Taking MYEGA Eq. (12) as a reference, one may propose its pressure counterpart: 

τ(T) = τ∞exp
[

C
T

exp
(

K
T

)]

⇒ T =
A
P

⇒ τ(P) = τ∞exp(C’Pexp(K’P) ) (67)  

where, C′

= C/A and K′

= K/A. I. 
It can be validated by the appearance of the linear domain in the plot defined by the following relation: 

lnτ(P) = lnτ∞ +C’Pexp(K’P) ⇒ V# =
lnτ(P)

dP
= C’exp(K’P)[K’P+ 1] ⇒ 
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lnV# = lnC’+K’P+ ln(K’P + 1) ≈ 2K’P+ lnC’ = aP+ b (68)  

where the term ln(K’P+1) is expanded in the Taylor series. 
We would like to name the pressure-related Eq. (67) as the ‘Unipress’ equation.2 

The question arises for the advantage of Eq. (67) over PVFT or Roland relations. Notable that for the temperatures-related pre-
vitreous behavior the explicit prevalence of MYEGA relation over the VFT and AM descriptions was shown above. Fig. 12 shows the SB- 
type slowing down of the primary relaxation time in glycerol and xylitol in the enormous, GPa domain. High-pressure BDS studies are 
still limited to frequency range f 10MHz, i.e., relaxation time τ < 10− 7s. It means that only ultraviscous/ultraslow domain is directly 
available experimentally for glass forming systems via BDS. Fig. 13 presents the fairly validation of the Unipress Eq. (67), based on the 
distortions-sensitive analysis defined by Eq. (68). Note linear behavior, which can also support determining of optimal parameters 
values for Eq. (67) and the explicit manifestation of two dynamical domains. 

Figs. 14 and 15 show distortions sensitive comparison of the PVFT (Eqs. (55) and the critical-like Eqs. (72), using data trans-
formations defined by Eqs. (60) and (71), respectively. The analysis is based on experimental results given in Fig. 12. In both cases, the 
evident prevalence of the critical-like portrayal is manifested via explicit linear behavior. For the ‘standard’ PVFT description only an 
effective portrayal in a limited range of pressure can be considered. 

One may also consider RFOT [85] glass transition model checkpoint relation toward its pressure counterpart: 

τ(T) = τ∞exp
(

AG

T(SC(T) )α

)

⇒ τ(P) = τ∞exp
(
A’

GP(SC(P) )α ) (69)  

where basic AG model is related to the exponent α = 1. 
Following Eq. (69) one can propose the relation for pressure evolution of the configurational entropy: 

SC(P) =
S0

(P0 − P)n’ (70)  

where the exponent n’ may be related to both empirical symmetry-related exponent n and the RFOT exponent α. For experimental 
validation of Eq. (66) necessary is challenging and still non-available pressure-related changes in configurational entropy. 

The above discussion of Super-Barus dynamics has been tested using the Author’s experimental data for glycerol and xylitol. Such 
results are still hardly evidenced, particularly when considering GPa domain. The first challenging problem for studies under a high- 
pressure liquid system is isolating tested samples from a pressurized medium. 

Recently, it has been discovered that transforming τ(P) experimental data from the SB-type previtreous domain to pressure-related 
steepness index, i.e., apparent fragility ‘universal’ dependence for plot [mT(P) ]− 1 vs, the simple and presumably universal evolution 
emerges [137]: 

1
mT(P)

= aHP + bHPP → mT(P) =
AHP

P* − P
(71)  

where P1/m
B < P < Pg and P* > Pg; singular pressure is estimated via the condition 1/mT

(
P*

g

)
= 0. 

Linking Eq. (71) with the definition of pressure-related apparent fragility, one obtains a differential equation, which solution leads 
to new critical-like relation for portraying pressure-related previtreous dynamics [137]: 

τ(P) = τ∞P
(
P* − P

)− Ψ (72) 

Using the preliminary analysis via Eq. (67) one may determine a singular pressure 1/mT
(
P*
)
= 0 or 1/V#(P) = 0 and then 

‘discontinuity’: ΔP*
g = P*

g − Pg. All these allow estimating the power exponent in Eq. 568: Ψ = ln10
(

ΔP*
g/P*

g

)
mT
(
Pg
)
. 

As mentioned in this section, estimating the evolution of apparent activation energy hypothetically responsible for previtreous 
slowing down requires the solution of a differential equation associated with the second-order derivative of experimental data. For the 
pressure path, the leading role plays Barus-Williams Eq. (46) governed by apparent activation volume. Most often, it is determined as 
V#(P) = dlnτ(P)/dP. However, such estimation for SB behavior is incorrect, namely based on SB Eq. (43) one obtains [138]: 

V#(P) =
dlnτ(P)

dP
=

(
1

RT

)

Va(P)+
(

1
RT

)

P
dVa(P)

dP
, for T = const (73) 

The above relation clearly shows that V#(P) ∕= Va(P), except in the case P → 0 or for basic Barus behavior. As shown in ref. [138] for 
SB dynamics V#(P)∝mT(P). However, for pressure-related previtreous effects, the pre-exponential factor is perfectly known what 
allows to calculate of the real apparent activation volume directly from the SB Eq. (43) [138]: 

2 Following the 50th years anniversary of IHPP PAS ‘Unipress’. 
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Va(P) =
RT
P

ln
(

τ(P)
τ∞

)

, T = const (74) 

In ref. [121] also, the relation for pressure evolution of apparent activation volume was derived: 

Va(P) =
C

ΔP
+

Ψ
ΔP

ln|P* − P| (75)  

where C = const and ΔP = |P − PSL|, PSL < 0 is for the absolute stability limit hidden in the negative pressures domain. 
Notably, ‘traditional’ (but erroneous) dependence is qualitatively different [138]: 

mT(P) V#(P)
1

(
P*

g − P
)Ψ (76)  

Fig. 12. Pressure evolution of primary relaxation time in super-pressed xylitol (T = 280 K isotherm) and glycerol (T = 250 K isotherm).  

Fig. 13. Linearized and derivative-based analysis tested the validity of the portrayal of τ(P) experimental data shown in Fig. 11, using the Unipress 
Eq. (63). Domains of its validity are indicated by the linear behavior (see Eq. (64)). Solid and dashed lines are for high pressures (non-ergodic, near 
Pg) and low pressures (ergodic, remote from Pg) dynamic domains. 
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7. The violation of Super-Barus previtreous behavior 

The above discussion addressed Super-Arrhenius-type previtreous behavior on cooling and Super-Barus-type behavior on com-
pressing. They are associated with an extreme and systematic previtreous rise of viscosity or slowing down for relaxation time. 
However, the experimental evolution of η(P) or τ(P) may also exhibit a set of ‘anomalous’ patterns, namely:  

(i) Up to moderate pressures changes η(P) or τ(P) may be weaker than Super-Barus, or even basic Barus behavior is observed. On 
further compressing, the return to SB pattern occurs. It is called the ‘inflection’ phenomenon. Such a behavior is often observed 
for elastohydrodynamic lubrication (EHL), which is important for machinery applications. [139–141].  

(ii) η(P) or τ(P) may decrease during compressing. It can be preceded by almost constant changes or even a slight increase at low- 
moderate pressures. Such behavior is often observed in relevant geophysical systems [142,143].  

(iii) Evolution of η(P) or τ(P) can change from ‘fragile’ SB behavior to a ‘strong’ one or almost Barus pattern when the temperature of 
the tested isotherm increases. It is named as the inflection phenomenon [144–149]. 

Finally, one raises the question, why τ(T) or η(T) changes are described solely by ‘strong’ or ‘fragile’ SB behavior? 
This section discusses the possible coherent picture linking the above patterns for viscosity and the coupled primary relaxation 

time. As indicated above, viscosity and primary relaxation time behavior are coupled via Debye-Stokes-Einstein relation [1. The 
technological importance of case (i) leads to heuristic relations that could portray such a behavior. The basic one was proposed in 1952 

Fig. 14. Linearized and derivative-based focused testing for PVFT (Eqs. (55), 60) and critical-like portrayals (Eqs. (72), 71) in super-pressed xylitol, 
based on experimental data shown in Fig. 12. Mentioned scaling relations are validated by the linear behavior’s emergence, which occurs only for 
the critical-like portrayal. Note: V#(P) = dlnτ(P)/dP. 

Fig. 15. Linearized and derivative-based focused on testing PVFT (Eqs. (55), 60) and critical-like portrayals (Eqs. (72), 71) in super-pressed 
glycerol, based on experimental data shown in Fig. 12. Scaling relations are validated by the emergence of linear behavior, which occurs only 
for the critical-like portrayal. Note: V#(P) = dlnτ(P)/dP. 
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by McEwan, 1952 [141,144]: 

η(P) = η0exp
(

1 +
P

(q/a’)

)q

(77)  

where η0, a’, q are constant parameters. 
A few decades later, analysis that recalls Tait classical equation of state for pressure-related changes of volume/density led to 

dependence [141]: 

η(P) = Aexp
[

Bln
(

C + P
C + Pr

)]

(78)  

where Pr denotes the reference pressure. McEwan Eq. (77) may be retrieved from the above relation for Pr ≈ 0. 
The authors of this paper suggest that McEwan relation may also be derived by the use of the extended Avramov-Milchev Eq. (21), 

namely 

η(T,P) = τ∞exp
(

AM

T

)D

= η∞exp

(

μln10
(

Tg(P)
T

)D
)

(79)  

where μ = log10τ
(
Tg,Pg

)
− log10τ∞ is the minimal, reference fragility. The parallel of this relation can be written for viscosity. 

Substituting the Andersson-Andersson (AA) relation [150] for pressure evolution of glass temperature Tg(P) = T0(1 + P/a)1/b one 
obtains a relation in agreement with Eq. (77): 

η(P) = η∞exp

(
μln10

TD

(

1 +
P
a

)D/b
)

∝C
(

1 +
P
a

)D/b

(80) 

Recalling analysis of AA relation, which is parallel to Simon-Glatzel dependence used for pressure evolution of melting temper-
ature, the exponent b is related to the first derivative of bulk modulus and a to bulk modulus itself. 

For describing η(P) or η(P) in a broad range of pressures, including the inflection phenomenon, i.e., crossover from McEwan to SB 
dynamics pattern, Paluch et al. [128,130] proposed heuristic link of McEwan Eq. (77) and PVFT Eq. (55): 

τ(P) = τ∞exp
(

1 +
P

(q/a’)

)q

exp
(

DPP
P0 − P

)

(81) 

It was applied successfully for portraying pressure changes of relaxation time, viscosity, or electric conductivity upon compressing. 
Bair proposed to supplement it with the Casalini-Roland (C-R) pressure counterpart by Stickel et al. analysis [147], φP(P) =
[
dlog10η(P)/dP

]− 1/2 or φP(P) =
[
dlog10τ(P)/dP

]− 1/2 to validate PVFT behavior at higher pressures. However, such an analysis assumes a 
priori universality of VFT and PVFT previtreous behavior, which seems to be questionable, as discussed above. A significant problem of 
the ‘hybrid’ Eq. (81) constitutes 5 adjustable parameters, leading to a considerable error of parameters in the non-linear fitting as well 
as to ‘fitting flexibility’ able to offer a parameterization in a broad range of parameters. 

One can propose alternative ‘hybrid’ relations, which can be supported by convenient preliminary derivative-based analysis, 
reducing the number of adjustable parameters, namely: 

η(P) = η0

(

1 +
P
al

)ql
(

1 +
P
ah

)qh

(82)  

where indices ‘l’ and ‘h’ stand for the low and high-pressure domains (below and above the inflection), power exponents ql > 0 and 
qh < 0. 

Alternatively, one can consider the ‘double-critical-like’ hybrid relation: 

η(P) = η0

⃒
⃒P*

l − P
⃒
⃒φl
⃒
⃒P*

h − P
⃒
⃒φh (83)  

where power exponents φl > 0 and φh < 0 and P* denote the extrapolated singular pressure. 
Let’s consider linearized derivative-based and distortions-sensitive analysis for leading terms for the above dependencies. For the 

leading term in critical-type Eq. (83): 

log10η(P) = log10η0 +φlog10|P* − P| ⇒
dlog10η(P)

dP
=

φ
ln10

1
|P − P*|

⇒
[

dlog10η(P)
dP

]− 1

=
ln10

φ
|P − P*| = AP − B (84)  

and then φ = ln10/A ≈ 2.3/A, and P* = B/A.
For the leading term in McEwan-type Eq. (82): 

log10η(P) = log10η0 + qlog10

(

1+
P
a

)

⇒
dlog10η(P)

dP
=

q
ln10

1
(a + P)/a

⇒
[

dlog10η(P)
dP

]− 1

=
ln10
qa

(a+P) = AP+B (85) 
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and then q = ln10/A ≈ 2.3/A and a = B/A.
Hence, the same plot 

[
dlog10η(P)/dP

]− 1 vs P can verify a double-critical-type and double-McEwan-type relations by the emergence 
of a linear domain. Linear regression fit can yield optimal values of parameters: φ = q = ln10/A ≈ 2.3/A and a = P* = B/A. 
Remarkably, the latter is worth stressing since it is related to 

[
dlog10η(P)/dP

]− 1
= 0, easily determined graphically. Results of the 

analysis based on Eqs. (84) and (85) is shown in Fig. 17, for compressed di-isobutyl phthalate. The plot shows that the described 
analysis enables the precise determination of the inflection pressure for the given tested isotherm. Values of related parameters 
determined via the linear regression fit are also given in the figure. Results presented in Fig. 17 have been obtained using experimental 
data presented in Fig. 16. The central part of the plot shows the fair portrayal of η(P) experimental data by single critical-type (Eq. (82)) 
and McEwan-type (Eq.(83)) terms, separately for both domains, below and above Pinf ., with parameters given in Fig. 17 for each 
domain. The visible overlapping of both types of portrayals for P < Pinf . shows that the basic McEwan relation is equivalent/isomorphic 
to a critical-like one, with the exponent φ > 0 and singular pressure P* < 0. For both cases, extension into the negative pressure 
domain, down P = P* = a is possible. 

The common description of both domains (for pressures below and above the inflection) by ‘double relations, Eq. (82) or (83), 
yields a fair portrayal of experimental data, as shown in the inset in Fig. 16. However, a comparable fitting quality can be obtained for 
parameters different even by 50 % or more, particularly regarding the power exponent q or φ. Results presented in the inset in Fig. 15 
are for singular pressure values (P*, a). As indicated below, the infection phenomenon may be considered as the propagation of an 
impact of a maximum of Tg(P) curve, for tested isotherms located above the maximum. Generally, at least in liquids, one may expect 
vitrification to be associated with ‘mechanism I’ and ‘mechanism II’ [127]. The latter emerges under extreme pressures and is related to 
the domination of repulsive, hard-sphere-type interactions. For lower pressures, an interplay between attractive and repulsive 
interaction may even lead to a crossover in compressing. This may give the emergence of Tg(P) maximum and following portrayal 
[82,151,152]: 

Tg(P) = F(P)D(P) = T0
g

(

1 +
ΔP
Π

)1/b

exp
(

P
c

)

= T0
g

(

1 +
P − P0

g

π + P0
g

)1/b

exp
(

P
c

)

(86)  

where F(P) and D(P) are for the rising (SG-type) and damping terms, π < 0 is for the terminal of absolute stability limit pressure at T =

0, and c is for the damping pressure coefficient. The above relation is valid for an arbitrary pressure along Tg(P) curve and may 
penetrate the negative pressure domain. It can even describe systems where the maximum is hidden in the negative pressures domain. 
It parallel obeys for pressure dependence of melting temperature Tm(P). Worth recalling is a link between both magnitudes, known as 
the Turnbull criterion: Tm/Tg ≈ w < 1. For systems particularly ‘easily’ passing Tm and entering the supercooled, pre-vitreous domain 
w ≈ 2/3 is suggested. Assuming T0

g = Tg(P = 0.1MPa) and P0
g = 0.1MPa one may approximate the above relation in the form first 

derived by Rein and Demus [153] and recalled by Kechin [154]: 

Fig. 16. Pressure dependence of viscosity in di-isobutyl phthalate (DIIB) for the isotherm T = 320 K. Open circles are related to viscosity mea-
surement [156. 157] supplemented by scaled primary dielectric relaxation time. Full circles are for the authors scaled primary relaxation time 
measurement, supplementing mentioned results. Blue, green, and red curves are related to Eqs. (84) with parameters derived separately for each 
domain, as shown in Fig. 17. The inset shows the double-critical portrayal parameterization via Eq. (84). 
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Tg(P) ≈ T0
g

(

1 +
P
π

)1/b

exp
(

P
c

)

(87) 

It obeys for P ≥ 0. When neglecting a damping term (c → ∞) it has a form of the Andersson-Andersson (AA) equation [150] or glass 
temperatures or the Simon-Glatzel relation for melting temperature [127]. For such an approximation Tg(P) and Tm(P) permanently 
increase when compressing. Notwithstanding, AA- or SG-related approximations may be used below the hypothetical maximum of 
Tg(P) or Tm(P), for systems where dTg,m(P)/dP > 0. 

In a hybrid Eq. (78) and ‘doubled’ Eqs. (79) and (80) a low-pressure behavior for P < Pinf . is associated with basic McEwan Eq. (73). 
Following the derivation of Eq. (75), its pressure characterization is determined by Tg(P) behavior, i.e., assuming the AA relation as a 
background and omitting decreases of Tg(P) passing the maximum (dTg/dP < 0). The latter means that the influence of vitrification 
‘mechanism I’ diminish for > Pinf .. However, for the basic McEwan equation impact of ‘mechanism I’ continuously increases when 
passing Pinf , leading to the parasitic bias of fitting results. Consequently, new ‘doubled’ Eqs. (79, 80) as well as the popular ‘hybrid one 
(Eq. (78)) may be considered only as an effective, practical tool for portrayal η(P), τ(P) or σ(P) dependences exhibiting the inflection 
phenomenon. Consequently, fundamentally justified seems to be the separate treatment of domain P < Pinf . as single McEwan-type 
dependence and for P > Pinf . by PVFT or critical-like relations with the exponent φh < 0. Leading parameters can be supported by 
the derivative-based estimations shown in Fig. 16. However, it is possible to propose a new ‘hybrid’ relation describing the whole range 
of pressures and coupled to reference values of parameters given by validation preliminary derivative-based analysis (Fig. 15). It can be 
‘designed’ linking Eqs. (79) and (86). It allows proposing the McEwan-type equation, which impact diminishes when passing Pinf .

η(P) = η∞exp

(
μln10

TD

(

1 +
P
a

)D/b

exp
(

P
c/D

))

∝C
(

1 +
P
a

)D/b

exp
(

P
c/D

)

⇒  

⇒ η(P) = η0

(

1 +
P
a

)b’

exp
(

P
c’

)

(88)  

where Pinf . > P ≥ 0, extension into negative pressures domain requires substitution P → ΔP = P − PSL. The latter can be estimated as 
PSL a = π.

To describe the whole range of pressures above and below Pinf . the following hybrid relation can be considered: 

η(P) = η0

(

1 +
P
a

)b’

exp
(

P
c’

)
(
P*

II − P
)φh (89)  

for P > 0. 
Taking into account the above considerations, an extension into the following extension may also cover the negative pressures 

domain: 

η(P) = η0

(

1 +
P + a

a

)b’

exp
(

P + a
c’

)
(
P*

II − P
)φh (90) 

Eqs. (86) and (87) contain 5 adjustable parameters. For comparison, the hybrid Eq. (78) by Paluch et al. also includes 5 parameters. 

Fig. 17. Inflection showed based on results of derivative-based analysis related to Eqs. (79) and (80) obtained in di-isobuthyl phtalate taken 
from Fig. 15. 
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However, in Eqs. (86) and (87) four parameters (a, b’) and 
(
P*

II ,φh
)

can be determined from the preliminary derivative-based analysis 
shown in Fig. 16. The pre-exponential factor η0 = η(P = 0) ≈ η(P = 0.1MPa), i.e., it may be determined directly from the experiment. 
Consequently, for the final fitting, only the coefficient c’ (1 parameter) remains. Results of such portrayal are also shown in Fig. 16. 

Fig. 18 schematically shows pressure evolution of glass temperature for a ‘model-liquid’. It contains both vitrification mechanisms 
(I, II) discussed above. The plot indicates the basic paths used for η(P) or τ(P) studies. Path (1) is for ‘basic’ Super-Barus dynamics. For 
path (3) one expects the appearance of the inflection phenomenon when passing a dotted line related to Pinf .. This is a specific 
manifestation of the propagation of a maximum of Tg(P) curve impact in the over-glass domain of supercooled glass-forming liquid. 
The ‘inflection area’ is terminated by paths (4) and (2). For the latter, near the top of Tg(P) curve can cause significant or even 
negligible changes in dynamics. When passing the maximum, for P > Pinf . one can expect even a slight decrease of η(P) or τ(P) changes 
until the rise on further compressing, caused by approaching the ‘mechanism II’ glass transition line. The possibility of the emergence 
of such ‘S-shape’ behavior was recently indicated for compressed acetone. For path 4, the impact of the ‘inflection line’ diminishes, and 
one can expect strong dynamics, close to basic Barus behavior until approaching the ‘mechanism II” vitrification domain at extreme 
pressure. The gradual transformation from the ‘fragile’ to ‘strong’ η(P) or τ(P) evolution when increasing temperatures of tested 
isotherms can be found for glycerol, for instance. For paths (5) and (6) one can expect that η(P) or τ(P) firstly increase on compressing 
until the rise associated with approaching the line related to the second vitrification mechanism emerges. For path (6) one can expect 
that, at first, the ‘flat’ domain associated with the proximity of Tg(P) curve maxim before the drop of η(P) associated with moving away 
from the ‘mechanism I’ glass transition curve starts to dominate. For some systems, the maximum of the Tg(P) can be hidden under 
negative pressures, and for such systems, the behavior associated with dTg/dP < 0 domain can be expected for pressures P > 0 (paths 5 
and 6). It can explain ‘anomalous’ patterns of viscosity changes observed in geophysical significant, strongly bonded, magmatic fluids 
[142,143]. Note that none of the above ‘anomalous’ patterns for η(P) or τ(P) evolutions cannot occur for previtreous η(T) or τ(T)
changes, as explicitly shown in the results presented in Fig. 17. An exception can be expected for cooling under extreme pressures, close 
to the slowly approaching ‘mechanism II” vitrification curve. However, no such experimental results are available yet. 

8. Conclusions 

The transition from the ‘liquid-like’ ultraviscous/ultraslow system to the solid glass state remains the grand challenge of solid-state 
physics and material engineering. The key cognitive attractor constitutes long-range previtreous changes of the primary (α, structural) 
relaxation time or viscosity. Their portrayal is the essential checkpoint for theoretical models explaining the glass transition phe-
nomenon. For decades the Vogel-Fulcher-Tammann (VFT), or alternatively Williams-Landel-Ferry (WLF), relations were considered as 
the symbolic presentation of the previtreous dynamics universality. Consequently, its derivation was used as the significant argument 
validating theoretical models: Adam-Gibbs entropic model, the basic free volume approach, or Tanaka’s critical model can serve as 
examples. However, the state-of-the-art tests explicitly showed that VFT portrayals can be considered only as an effective way of 
parameterization, for the vast majority of glass-forming systems. It was a significant motivation for developing glass transition models 
proposing different scaling relations for the previtreous dynamics. Two ways of experimental model-validation were used. The first one 
was related to showing the prevalence of the fitting quality against experimental data compared to other popular scaling relations. 

Fig. 18. Schematic plot of pressure evolution of glass temperature. The glass temperature is represented by τ
(
Pg
)
= 100s and η

(
Pg
)
= 1013Poise and 

the brown curve. Red dashed one indicates an isochronal/isoviscous curve slightly above glass transition τ(P) = 10s and η(P) = 1012Poise. 
Horizontal colored lines (1–4) indicate paths along which viscosity or relaxation time changes may be tested. The dotted vertical line indicates the 
suggested ‘inflection line’ above a maximum of Tg(P) curve. Squares in grey indicate different impacts of pressure changes near glass transition for 
selected paths. 
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Unfortunately, such an approach has not yielded conclusive results, particularly when a broader set of glass formers was taken into 
account. The second approach was related to the superposition of τ(T) or η(T) experimental data for dozens of glass-formers in the plot 
with a scaled axis, according to the tested model-equation requirements. Data-scaling parameters are determined individually for each 
system, in prior. Hence, it is a ‘tautological validation’, with success guaranteed in advance. 

As discussed in the given report, the problem may arise from omitting the fact that the previtreous domain extends well above the 
singular temperature (T* = T0, TC), i.e., for T > Tg = T*+ ΔT*, where the discontinuity’ ΔT* = Tg - T* = 20 – 100 K. Only the ‚tail’ of the 
previtreous effect is available for the empirical analysis. The region of strong, characteristic changes near T* is inherently unavailable. 
Experiences from studies of weakly-discontinuous phase transitions show that even a small discontinuity ΔT*~1K, can introduce 
crucial uncertainty to pretransitional effects. 

Therefore, a methodology sensitive to subtle deviations of experimental data from the trend defined by a given scaling equation 
should be applied, such as the linearized derivative-based analysis, discussed in detail in the given report. It is associated with 
following steps: 

(i) The transformation of experimental data to the apparent fragility, apparent enthalpy, or other alternative derivative repre-
sentations: τ (T) ⇒ mP(T), Ha(T), dlnτ(T)/d(1/T)

or τ (P) ⇒ mT(P), V#(P) = dlnτ(P)/dP.

(ii) Subsequently, relation showing mP(T), Ha(T), …V#(P) changes are derived for selected scaling model-equations. Next, they are 
transformed into a linearized form. 

(iii) The latter defines the way in which transformed experimental data should be presented. The appearance of a linear behavior 
validates the application of the selected scaling equation in the given temperature domain. T linear regression can yield optimal values 
of relevant parameters. 

This report shows the implementation of the above protocol for the set of scaling equations validating a set of glass transition 
models. Notable that it is extended for the pressure path of approaching the glass transition, still poorly represented in the glass 
transition model analysis. 

Following the discussion in this report only two types of model-equations seem to pass the distortions-sensitive tests, namely:  

1. MYEGA Eq. (12) and its pressure counterpart: Unipress Eq. (67) - derived in the given report  
2. Fragility-anomaly-related scaling equations: ‘activation-critical’ Eq. (33) for the temperature path and the ‘critical” Eq. (72). 

Notable that the SA-type previtreous slowing down or viscosity rise occurs on cooling for an arbitrary glass forming system. For 
compressing, the SB-type previtreous slowing down or viscosity rise also often takes place, but additionally, two ‘anomalous’ patterns 
also occurs: (i) ‚speeding up’ for τ(P) or viscosity decrease on compressing, (ii) inflection-type changes on compressing. 

This report shows that existing evidence enables the coherent explanation of all the above evolutions for temperature and pressure 
paths. For the latter, the way of the precise estimation of the inflection pressure matched with the new scaling relation for τ(P) or η(P)
portrayals is given. 

The authors want to stress some other consequences of the resume presented in this report. In 1996 Stickel et al. [93] indicated the 
existence of two dynamical domains in the previtreous domain via the analysis of experimental data transformed using the ‘Skickel 
operator’ φT(T) =

[
dlog10τ(T)/d(1/T)

]− 1/2, mainly used for determining the dynamic crossover temperature TB. The pressure parallel 

based on experimental data transformed via the function: φP(P) =
[
dlog10τ(P)/dP

]− 1/2 for determining the crossover pressure PB also 
was introduced [155]. However, φT(T) and φP(P) are directly coupled to VFT and PVFT relations. The general validity of VFT and PVFT 
equation is limited, as discussed in the given report. Hence, conclusions of numerous research reports [17–19, 107, 138, and ref. 
therein] exploring φT(T) and φP(P) for getting insight into the dynamical crossover should be re-considered. 

The major part of the report is focused on the linearized distortions-sensitive and derivative-based analysis of τ(T) experimental 
data to reveal ‘hidden’ features of the previtreous dynamics, particularly regarding possibilities of their portrayal by glass transition 
models related scaling equations. However, this report presents yet another innovative approach developed in the last decade based on 
the activation energy index. Worth stressing is the extension of this approach beyond the existing evidence, for CGE [66] and Roessler 
et al. [89] scaling equations. The report also addresses the related evolution of the configurational entropy changes developed in refs. 
[45,123]. This issue is worth stressing due to the emerging link to critical phenomena and local symmetry of the vitrifying system. 

Just recently, the authors’ noted one more issue requiring the reliable and validated extrapolation of the primary relaxation time 
well beyond the experimental liquid-like domain. Recently, it was discovered that annealing under moderate pressures, P ~ 1 GPa, in 
the solid glass phase just below Tg can yield extraordinary properties, preserved after decompressing. Some of them are significant for 
innovative applications. One can recall exceptional surface hardness and densification in Gorilla-type glasses for innovative display 
covers [155] or 2–3 decades boost of electric conductivity in solid glasses, considered as cathodes in new generation batteries [156]. 
Notable, that generally compressing of crystalline or amorphous (well below Tg) solids also can yield extraordinary material features. 
However, it requires tens – hundreds of GPa, and unique properties disappear after decompressing. 

No explanation of unique features emerging due to annealing under ‘moderate range’ compressing in the shade of Tg has been 
proposed so far. The authors want to indicate, that very recently, Song et al. [157] announced the discovery of a new relaxation process 
in the previtreous domain, called the Slow Arrhenius process (SAP) to indicate its main features (i) the location in the low frequencies 
domain of ε’’(f) spectrum, well below the primary relaxation, (ii) the simple Arrhenius evolution of the related relaxation time τSAP. It 
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was suggested in ref. [157] that, it can be significant for the overall equilibration rate coefficient, defined as: 

1
teq.

=
csap

τSAP
+

cα

τα
(91)  

where cSAP, cα are constant coefficients, and τα = τ. 
Notable that SAP and the alpha relaxation process can smoothly extend into the solid glass. It is relatively easy detectable for τSAP 

which changes are relatively mild, since they follow the basic changes Arrhenius pattern. The primary (α) relaxation time evolution 
terminates at T ≈ Tg, where it reaches τ

(
Tg
)
≈ 100s or alternatively η

(
Tg
)
≈ 1013Poise. Below Tg, in the solid glass, the relaxation time 

boosts so strongly that its estimations of are impossible or at least extremely difficult. 
For the solid glass state, Eq. (91) can mean that the solid glass below Tg can be split into the ‘soft glass’, near Tg, and the ‘hard glass’, 

well below Tg. The singularity associated with the evolution of τ(T) can estimate the border between these domains. Consequently, 
extraordinary properties associated with annealing under moderate pressures and preserved after decompressing can be yielded in the 
‘soft glass domain’, depending on the distance from Tg. 

Although speculative and requiring focused studies, the latter section can indicate the existence of specific previtreous effects in the 
solid phase, below Tg, and the practical significance of a reliable and fundamentally justified description of the primary relaxation time 
evolution. 
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