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Abstract Eukaryotic cells adhere to extracellular matrix during the normal development of
the organism, forming static adhesion as well as during cell motility. We study this process
by considering a simplified coarse-grained model of a vesicle that has uniform adhesion
energy with a flat substrate, mobile-curved membrane proteins and active forces. We find
that a high concentration of curved proteins alone increases the spreading of the vesicle, by
the self-organization of the curved proteins at the high-curvature vesicle–substrate contact
line, thereby reducing the bending energy penalty at the vesicle rim. This is most significant
in the regime of low bare vesicle–substrate adhesion. When these curved proteins induce
protrusive forces, representing the actin cytoskeleton, we find efficient spreading, in the form
of sheet-like lamellipodia. Finally, the same mechanism of spreading is found to include a
minimal set of ingredients needed to give rise to motile phenotypes.

1 Introduction

The adhesion of cells to an external substrate is an essential process allowing cells to form
cohesive tissues, migrate and proliferate [1]. The stages of cellular spreading over an adhesive
surface have been studied experimentally [2–9] and involve an initial stage of non-specific
and weak adhesion, followed usually by spreading that is driven by the formation of thin
sheet-like lamellipodia. These structures form when actin polymerization is recruited to the
leading edge of the lamellipodia [10]. The actin provides both a protrusive force that pushes
the membrane outwards and traction forces that enhance the growth of adhesion complexes.
When actin polymerization is inhibited, cells exhibit very weak spreading, reduced adhered
area [5], and strongly retract (if the drug is delivered after normal spreading [11]).

While this complex process has been explored from its biological aspects, a more basic
physics understanding of the cell spreading process is lacking [12]. There are several theoret-
ical treatments of the cell spreading process, with various levels of coarse-graining and detail,
starting from the simplest dynamical-scaling model [4]. Some models focus on the role of
actin and actin–adhesion coupling during the spreading and adhesion, but do not describe the
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membrane shape dynamics in detail [13–16]. Other models describe in detail the cell shape
and the stress fibres that span the adhered cell [17,18], with the higher realism obtained at a
price of much higher model complexity.

The simpler process of vesicle adhesion, which has been explored using in vitro systematic
experiments [19–23], is amenable to theoretical physics description [23]. A large number of
theoretical studies treated the coarse-grained adhesion of a vesicle with uniform adhesion
[24–26], while other studies have explored the molecular-scale adhesion dynamics [27–29],
which include ligand binding/unbinding as well as diffusion and aggregation of ligands on the
membrane–substrate interface (through direct and membrane-induced interactions [30,31]).

We aim here to help bridge the gap between our understanding of vesicle adhesion and
the more complex process of active cellular spreading. We do this by exploring a simple,
coarse-grained theoretical model of vesicle adhesion which contains two ingredients: (i) we
add a fixed density of curved membrane proteins and (ii) exert active protrusive forces at the
locations of the membrane proteins. Both of these components are motivated by experimental
properties of cells: cell membranes contain a plethora of curved membrane proteins [32,33],
and many of these curved proteins (or membrane-bound protein complexes) are involved
in the recruitment of actin polymerization activity to the membrane [34,35]. These two
ingredients have been recently shown theoretically [36] and experimentally [37,38] to be
sufficient to induce the formation of sheet-like lamellipodia protrusions in cells. We therefore
set out to explore theoretically the role of these ingredients during active spreading of cells.

2 Model

We use here the same theoretical model of [36], adapted to include membrane–substrate
adhesion. We consider a three-dimensional vesicle that is described by a surface of N ver-
tices, each connected to its neighbours with bonds of length l, to form closed, dynamically
triangulated, self-avoiding network, with the topology of a sphere, as shown in Fig. 1. The
location of the vertices is described by the position vector −→r i , where i runs from 1 to N . An
adhesive surface is placed near the vesicle, parallel to x–y plane and at position z = zad (see
Fig. 1). The total energy of the vesicle is the sum of four contributions: (1) the local bending
energy due to its curvature, (2) the energy due to binding between neighbouring proteins
(direct interaction energy), (3) the energy due to the active cytoskeleton force and (4) the
adhesive energy due to the attractive interaction between the vesicle and the substrate.

Note that the term ‘curved membrane proteins’ stands for any complex of such proteins
and lipids (such as in nanodomains) in general [39,40] that has a spontaneous curvature and
can induce local polymerization of the cortical actin cytoskeleton.

The bending energy can be mathematically expressed using the Helfrich expression [41]
as,

Wb = κ

2

∫
A
(C1 + C2 − C0)

2dA (1)

where C1 and C2 are principle curvatures, C0 is the spontaneous curvature at any position of
the vesicle, and κ is the bending rigidity. The bending energy is properly discretized following
Refs. [42–44]. We model the spontaneous curvature as discrete entities that is occupied by a
vertex. The spontaneous curvature of a vertex that is occupied by curved proteins is taken to
have some nonzero value C0 = c0, and zero otherwise. In our model, we consider a positive
(convex) and isotropic spontaneous curvature having numerical value c0 = 1.0 l−1

min, where
lmin is the minimal length of a bond in our triangulated surface. The ratio of vesicle size to
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protein size in our model is of the order 10–100, while in real cells the ratio can be of the
order 104–105. Thus, the proteins in our model can be interpreted as protein complexes or
curved nanodomains. Alternatively, the vesicle in our simulations can be viewed as a cell
fragment rather than a whole cell, but the dynamics we expose here can also be scaled up to
the cellular scale.

The energy due to the binding between proteins is expressed as,

Wd = −w
∑
i< j

H(r0 − ri j ) (2)

where H is the Heaviside step function, having a value of unity if the argument is positive,
otherwise vanishes, ri j = |−→r j − −→r i | is the distance between proteins, r0 is the range of
attraction, beyond which the attractive force becomes zero, and w is a positive constant
(throughout the paper we use: w = 1 kBT ). In our model, we choose r0 to be such that only
the proteins in neighbouring vertices can bind with each other.

The actin cytoskeleton that is recruited by the curved proteins exerts an outward force,
which therefore gives the following energy contribution,

WF = −F
∑
i

n̂i · −→r i (3)

where F is the magnitude of the force, n̂i is the outward normal of the vertex that contains
a protein, and −→r i is the position vector of the protein. The assumption of a normal active
force is motivated by simplicity [36], as well as by a coarse-grained view of the average
direction of forces applied by actin filaments on the membrane. Note that this active force
appears as an energy term which is not bounded from below and therefore drives the system
out of equilibrium. In a real cell, the active forces arise from the internal consumption of
chemical energy, which we describe here by an external force. Furthermore, we assume here
for simplicity that the active force follows the dynamics of the proteins. This means that
when a protein changes its location, the active force acts immediately in the new position
of the protein and vanishes from the protein’s previous location. This adiabatic assumption
may be valid for membrane proteins that are closely bound to the cortical actin, such as actin
nucleators [45,46].

Finally, the vesicle can adhere on the adhesive surface, due to which it has the energy
contribution,

WA = −
∫
A
V (z)dA (4)

where V (z) is the interaction potential between the adhesive surface and the vesicle. In our
model, we choose the interaction potential V (z) to be a Heaviside step function, such that
the adhesion interaction energy is negative for all the adhered vertices and zero otherwise.
In other words, WA = −∑

i ′ Ead, where Ead is a constant, termed as adhesion strength,
and the sum runs over all the adhered vertices for which the z-coordinate is within the
range: zad ≤ z(i) ≤ (zad + Δz), where zad is the z-coordinate of the adhesive surface, and
Δz = 1 lmin is the width of the adhesion potential energy (see Fig. 1b). The adhesive surface
is considered to be a hard surface, such that a vertex cannot penetrate it.

Thus, the total energy of the system can be written as,

W = Wb + Wd + WF + WA (5)

The simulation details are given in Appendix A. Throughout these simulations, we do not
conserve the vesicle volume, which is appropriate for cells that are observed to change their
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Adhesive surface Range of adhesive

(a) (b)

interaction

Fig. 1 A schematic representation of our model. a A three-dimensional vesicle is placed on the adhesive
surface, having uniform adhesion interaction with the vesicle throughout. The position of the adhesive surface
is at z = zad and parallel to x− y plan. b The range of adhesive interaction is within a distance of Δz above the
adhesive surface. The total adhesion energy will be Ead times the number of vertices within this interaction
range, where Ead is the adhesion strength, defined as the adhesion energy per adhered vertex

volume significantly during spreading and adhesion [47,48]. One can, however, add to the
model the effects of an internal osmotic pressure that inflates the vesicle [36].

Note that during the process of vesicle adhesion and spreading, there are hydrodynamic
processes that we do not include in our model, such as fluid flow within the vesicle, between
the vesicle and the substrate, and of the fluid membrane, i.e. visco-elastic properties of the
system were neglected (see, for example, [49]). These omissions mean that the dynamics
that we extract from the simulations, in MC time steps, may not be simply mapped to a real
timescale.

3 Results

In order to validate our simulation method, we first compared the steady-state shapes of
adhered protein-free vesicles (Movie 1) to those previously obtained using detailed numerical
solutions [23,50]. The very good agreement between the two different methods (Fig. 10
of Appendix B) verifies the accuracy of our simulations. The equilibrium vesicle shapes
minimize the energy, striking a balance between the adhesion energy that drives the spreading
and the bending energy that resists the deformation of the membrane.

Next, we explore the effects of the curved proteins and the active forces that they recruit.

3.1 Spreading of vesicles with passive-curved proteins

We start by exploring the effects of passive-curved proteins, without active cytoskeletal
forces. Since there is no active force acting on the system, the system reaches an equilibrium
configuration after evolving it for sufficiently long times. We aim to understand here, how
the presence of the curved proteins affects the vesicle shape, as well as the demixing of the
curved proteins.

In Fig. 2, we plot snapshots of typical equilibrium adhered vesicle shape and the protein
cluster-size distribution for different values of adhesion strength (Ead) and the number density
of proteins (ρ = Nc/N ). The background colour shows the adhered area fraction (AAF,
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Fig. 2 Typical steady-state configurations of the vesicles and cluster distribution in the Ead − ρ plane for
the passive case (F = 0). The background colour shows the fraction of adhered area of the vesicle on the
adhesive surface. The blue part in the vesicle denotes the protein-free regions, and the red colour denotes the
curved proteins. In the inset, we show the cluster distribution of proteins near each snapshot; x-axis is the size
of the cluster, and the y-axis is the corresponding frequency of having the particular cluster in the ensemble.
The y-axis is shown in the log-scale. We show the snapshots for Ead = 0.20, 0.75, 1.5, 2.5 (in units of kBT )
and ρ = 3.45%, 10.36%, 17.27% and 24.18%. Other parameters are: total number of vertices, N = 1447,
κ = 20 kBT and w = 1 kBT . The width of the potential, Δz, is taken to be lmin, and the spontaneous curvature
of the curved proteins is taken to be c0 = 1 l−1

min

Aad/A), where Aad is the area adhered on the adhesive surface and A is the total area of the
vesicle (so that the maximal possible value is Aad/A � 0.5 for very small volume).

For small ρ and small Ead, the vesicle shape is quasi-spherical, similar to adhered protein-
free vesicles. The proteins are weakly clustered, and there are small patches of proteins around
the whole vesicle. For very small adhesion energy, such as Ead = 0.2, increasing ρ increases
the adhesion area, but does not lead to full flattening of the vesicle. At higher values of Ead,
as ρ increases, the vesicle fully spreads and becomes flatter (since the volume is not fixed;
see Movie 2). This spreading is driven by the aggregation of the curved proteins at the high-
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curvature region [39,51] where the adhered vesicle contacts the substrate (‘contact line’,
Fig. 3a). Due to their large convex spontaneous curvature, the aggregation of the proteins
in this region lowers significantly the bending energy of the vesicle and facilitates stronger
bending and larger spreading on the substrate compared to the protein-free vesicle (Fig. 3b).

Note that demixing and phase separation of membrane proteins on an adhered vesicle were
considered theoretically [52], however, the curvature-based demixing [53] that we discuss
here was not previously treated during membrane adhesion. A simplified analytic model (see
Appendix C) allows us to qualitatively recover the same trends found in the simulations. We
find that the aggregation of curved proteins along the high curvature rim of the vesicle leads
to a monotonous increase in the AAF and decrease in the bending energy with increasing
protein density (for low ρ, Fig. 13).

As ρ increases, the vesicle flattens and surplus proteins that have no more space along the
contact line form necklace-like protein clusters around the vesicle (Fig. 2). The necklace-
like structures are formed because of the isotropic membrane proteins used in our simulation
[36,54]. The AAF increases with ρ as long as the shape of the vesicle remains quasi-spherical
or pancake-like. However, for large ρ, the shape of the vesicle changes and the surplus-curved
proteins lead to budding all over the membrane. These buds (isolated and necklace-like)
deform the membrane away from the flat shape and give rise to a decrease in the AAF with
increasing ρ (Fig. 2).

As Ead is increased, the vesicle is more spread, and the natural curvature along the contact
line increases. This has the effect of aggregating the curved proteins more strongly and the
flattening effect of the curved proteins sets at lower densities (Fig. 2). Similarly to low Ead,
the AAF decreases for large ρ, and the peak in the AAF shifts to smaller values of ρ. As Ead

increases, the proteins form a large cluster at the contact line, where almost all the proteins
are clustered in a single cluster.

To quantify the effect of the curved proteins on the vesicle spreading, we measure the
ratio of AAF between vesicles with highly curved passive proteins and protein-free vesicles
(Fig. 3c). We find that this ratio is larger for small Ead, where the protein-free vesicles are
very weakly adhered. As expected from Fig. 2, the enhancement of spreading due to the
curved proteins has a maximum as function of ρ, with the peak shifted to lower values of ρ

as Ead increases. Note that for the passive case (F = 0), a protein-free vesicle is similar to a
vesicle with flat proteins (c0 = 0). For details, please see Appendix D.

3.2 Spreading of vesicles with active-curved proteins

Next, we study the active system, with active cytoskeletal forces acting outward on the
proteins. To highlight the effects of the active force, we start with a large value of F =
4 kBT/ lmin (Fig. 4). Despite the presence of the active force, we find that for sufficiently
large times, most systems do reach a well-defined steady state, which allows us to extract
average quantities, such as the AAF and the cluster distribution. When the density ρ is small,
the shapes of the adhered vesicle are quite different compared to the passive case (Fig. 2;
Movie 3). However, for large ρ, the shapes are quite similar to the passive case (see Movie
4).

For small value of ρ, unlike the passive case (Fig. 2), the shape of the vesicle is highly
non-rotationally symmetric (Fig. 4, and Movie 3). The transition into this class of shapes,
for ρ to the left of the vertical dashed green line (around 5.25%), is very sharp and was also
observed for free vesicles with active-curved proteins (denoted by the vertical dashed red
line, ρ ∼ 7.26%) [36]. At a low number of proteins, there are simply not enough proteins
to complete a circular aggregate around the rim of the adhered vesicle. Instead, the proteins
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(a)

(b) (c)

Fig. 3 Curved proteins facilitate spreading at low adhesion energy. a Protein distribution along the angle θ

for the passive case with Ead = 0.50 kBT and various ρ along with the snapshots. The angle (θ ) is defined as
the angle between the line parallel to the x–y plane, passing through the COM of vesicle, and the line joining
the surface of the vesicle and its COM, as shown in figure. (Pθ ) is the probability that there is a protein at
the angle θ , averaged over the azimuthal direction, such that θ varies from −π/2 to π/2. b Bending energy
as a function of AAF with and without proteins. The blue circles are for protein-free vesicle, and the red
triangles are for passive case. We also show the snapshots for each case, in the minimum and the maximum
adhered state. For protein-free vesicle, we vary Ead from 0.50 kBT to 4.0 kBT , while for passive vesicle, we
fix Ead to 0.50 kBT and vary ρ from 0.70 to 27.64%. c Ratio of AAF between vesicles with highly curved
passive proteins (Fig. 2) and protein-free vesicles. The ratio closely approaches unity for either ρ → 0 or for
Ead → ∞

settle into two opposing arc-like aggregates, which exert opposing forces on the vesicle, that
therefore assumes a stretched tube-like shape.

In Fig. 5a, we demonstrate the dynamics of the spreading in the low ρ regime. We find that
often the proteins form three or more aggregates that drive the spreading, but they coarsen
over time to form the stable two-arc shapes (see Movie 5). These two-arc shapes are mostly
non-motile, but due to asymmetry between the sizes of the arc-like protein aggregates on
either side, there can be a net force that leads to sliding of these vesicles in the direction of
the end that has the larger aggregate (see Fig. 9c and Movie 6).

For ρ values to the right of the red dashed line in Fig. 4, there is a transition to pancake-
like shapes that correspond to very efficient spreading and high AAF. For even larger protein
density, there is not enough space on the outer rim of the vesicle to accommodate all the
proteins, so the pancake-like shape does not remain stable. Small bud-like structure appears
around the vesicle and the AAF decreases, similar to the passive case at high densities (Fig. 2).

The transition between the two-arc and pancake-like shapes for different values of ρ and
Ead is shown in more detail in Fig. 5b. As Ead → 0, the transition density increases and
approaches its value for a free vesicle. The pancake transition is quantified by the mean
cluster size (〈Ncl〉), which we plot as function of ρ (Fig. 5c). The quantity 〈Ncl〉 exhibits a
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Fig. 4 Typical steady-state configuration of vesicle shape and cluster-size distribution with active forces.
Similar to Fig. 2 for an active protrusive force F = 4 kBT/ lmin. The green dashed line circles denote the
transition to a pancake-like shape. The red dashed vertical line denotes the density for the pancake transition
for a free vesicle (without adhesion, [36]). We estimate these transition lines by measuring the mean cluster
size, which shows a sharp jump at the critical ρ (Fig. 5c). Snapshots are shown for Ead = 0.75, 1.5, 2.5 (in
units of kBT ) and ρ = 3.45%, 10.36%, 17.27% and 24.18%. All the other parameters are the same as in Fig. 2

sharp jump near the pancake transition, where one cluster contains almost all the proteins
(phase separation).

Next, we study the AAF as a function of F , for different values of Ead and a fixed density
ρ = 10.36% (Fig. 6a). For large Ead, the force increases the AAF smoothly, as the vesicles
are already spread even in the absence of active forces. For small Ead, the AAF shows a
large increase with F , including an abrupt jump for Ead = 0.25 kBT at F ∼ 0.8 kBT/ lmin.
This jump corresponds to crossing the pancake transition line for these parameters. In Fig. 7,
we plot a more complete phase diagram, of the steady-state shapes of the vesicle for low
adhesion (Ead = 0.5 kBT ), as function of the proteins density and active force. The active
force is seen to shift the transition to the pancake (or the two-arc) shape, to lower values of
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(a) (b) (c)

Fig. 5 Transition to pancake-like, highly spread shape, for active-curved proteins (F = 4 kBT/ lmin). a
Snapshots of the vesicle for small density, at different instants of time. Here, we show that there are different
possible metastable states in the small density regime. We use here ρ = 3.45%, Ead = 0.75, 1.5, 2.5 (in units
of kBT ). b Configurations of vesicle for different values of Ead and ρ. The green line with circles denotes the
density for a given Ead at which the pancake-like shape is obtained. c Mean cluster size of proteins, 〈Ncl〉, as
a function of ρ for different values of Ead. The sharp increase in the value of 〈Ncl〉 shows the discontinuous
transition to pancake-like shape. We also show the snapshots of vesicle for Ead = 2.5 kBT for different
densities to show how the jump in the value of 〈Ncl〉 gives rise to the pancake-like shape transition

(a) (b) (c)

Fig. 6 Variation of adhered fraction due to the active force (F). a Fraction of adhered area with F for different
values of Ead for a fixed ρ(= 10.36%). Red, blue and green circles are for: Ead = 0.25, 0.4, and 0.75 kBT ,
respectively. For small Ead, the fraction Aad/A increases with F significantly; however, as Ead increases, the
value of Aad/A does not vary much. We also show the shape of the vesicle for Ead = 0.25 kBT . b The ratio
of adhered area of active vesicle with c0 = 1 l−1

min to the passive vesicle with c0 = 0. The ratio is maximal for
small Ead over a wide range of ρ. c The ratio of adhered area of active to passive vesicle, with spontaneous
curvature c0 = 1 l−1

min. We note that the maximum increase in the adhered area of the active vesicle over
passive one is in the small ρ and small Ead region

the density, compared with the passive system (at F = 0). This shift to lower densities due
to the force is also seen for the initiation of protein aggregation (Appendix E, Fig.17).

The role of the active force in increasing the steady-state AAF is emphasized in Fig. 6b,
where we plot its ratio with the AAF of the protein-free vesicle. We find that the largest
increase in AAF due to the active-curved proteins is for low Ead. Compared to the vesicle
containing curved passive proteins, this enhanced spreading is extended to lower values of
ρ due to the pancake transition (compared to Fig. 3c). This is emphasized in Fig. 6c where
we plot the ratio of the AAF of the active- and passive-curved protein systems. The largest
contribution of the active force is for low Ead and ρ, where the passive proteins do not form
strong aggregation at the contact line and are ineffective in driving spreading, while the added
active forces drive the pancake transition and strongly enhance spreading.

We note that for large Ead and large ρ, the AAF is also increased due to activity, compared
to the passive-curved proteins (Fig. 6c). This is the region where the passive proteins form
large necklace-like structures which decrease the adhered area (Fig. 2), while the active forces
tend to destabilize them and therefore increase the AAF.
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The active forces exerted at the locations of the curved proteins may give rise to a nonzero
net force. While the planar component of this force simply pushes the vesicle on the substrate,
the vertical component (along z-direction) can affect the adhesion. Since the curved proteins
prefer the free (dorsal) side of the vesicle over the perfectly flat basal side, this force tends to
overall push the vesicle away from the substrate. In the regime of very low Ead and large ρ,
the active forces exerted by the proteins can lead to lowering the AAF by partially detaching
the vesicle. In Fig. 18 of Appendix F, we show the behaviour of vesicles where we apply
an external force that balances the total vertical component of the active forces. For a living
cell, this condition corresponds to assuming that actin filaments that are pushing the top
membrane upwards exert an equal and opposite force on the bottom membrane. We see that
except at the lowest Ead, there is no qualitative difference, compared to the previous results
(Fig. 4).

The importance of coupling the force to curvature is demonstrated by simulating the
adhesion of a vesicle with flat active proteins (zero spontaneous curvature, c0 = 0). As in
previous studies [36,38], we find the formation of long protrusions that are highly dynamic
(Fig. 19 of Appendix G). Due to the adhesion, the long protrusions are found to often grow
along the substrate. However, when they point upwards, they lead to partial detachment of the
vesicle. Clearly, active forces that are not coupled to curvature do not contribute to effective
spreading and adhesion. Note that when the vesicle forms a pancake or two-arc shapes, the
non-equilibrium nature of the active forces becomes harder to distinguish directly from the
dynamics of the vesicle, since the centre of mass is stationary and the shape is very stable.
The fact that the active term in the Hamiltonian is unbounded (Eq. 3) indicates that these
shapes are in a non-equilibrium steady state.

When comparing our results with experimental observations of the shapes of adhered
cells, we begin by noting that cells undergo a much diminished and slower spreading (or
strong retraction) when actin polymerization is inhibited [55]. (Adhered area decreases by
factor of ∼ 4 [5].) Decreasing the density of proteins can similarly convert the cell from
the well-spread pancake to the elongated two-arc shape, in the model (Fig. 5b, c) and in
experiments [56]. These observations suggest that the bare adhesion of the cell to external
substrates is typically low, so that in terms of our model, cells are usually in the regime of
low Ead. In this regime, we demonstrate that self-organization of the actin polymerization
recruited by curved membrane proteins can increase the adhered area by factors that are
similar to those observed experimentally (Fig. 6b, c).

However, the actin polymerization in the cell does more than just provide a protrusive
force, as we assumed in our model. The actin retrograde flow produces shearing forces that
triggers the growth of integrin-based adhesion complexes [3,8]. This suggests that the activity
of actin polymerization also effectively increases Ead for the cell, compared to the actin-
inhibited cell. Similarly, increased adhesion strength (Ead) allows for stronger mechanical
coupling between the actin filaments and the substrate, inducing a larger effective protrusive
force F [15,57]. These effects mean that when comparing our model to cell shapes, the
effective actin protrusive force F and the effective value of Ead are not independent of each
other.

Many adhered cells are found not to be circularly spread, but have a distinct spindle-like
shape with usually two oppositely formed lamellipodia protrusions [58]. This typical shape
appears naturally in our model when the density of the curved proteins is below the pancake
transition value, and the adhered vesicle assumes the elongated two-arc shape (Figs. 4 and
5). Note that since the critical density for the pancake transition increases for decreasing
Ead (Fig. 5b), we expect that cells can transform from the pancake to the elongated two-arc
shape with decreasing adhesion strength. This is indeed observed in experiments [3,8,59].
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Fig. 7 Typical steady-state configurations of vesicle shape and cluster-size distribution for different F and ρ,
for a given small adhesion strength: Ead = 0.50 kBT . The snapshots are shown for F = 0.50, 1.50, 2.50 and
3.50 (in units of kBT/ lmin), and ρ = 3.45%, 10.36%, 17.27% and 24.18%. The yellow dotted lines denote
the transition to a pancake-like shape. For large F , the transition to a pancake shape from a two-arc shape is
very sharp, and the transition line is estimated by measuring the mean cluster, as explained in Fig. 5. For small
F , the transition is not very sharp. Here, in order to identify the transition line, we measure the largest cluster,
and we approximate the shape to be a pancake when the largest cluster is at least 60% of the total number of
proteins (see Fig. 21 of Appendix I). The green dotted line represents the transition from a quasi-spherical to
a two-arc type shape. The slope of this transition line diverges as ρ → 0. This transition is also estimated by
measuring the largest cluster, and the threshold value of the largest cluster is taken to be 30% in this case, as
there are two separate clusters in the two-arc shape. All the other parameters are the same as in Fig. 2

The morphology of two oppositely oriented lamellipodia (similar to our two-arc shapes) was
observed to stretch cells and is sometimes utilized to drive cell division [60,61].
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Dynamics of the spreading process. a Variation of adhered area with time for a protein-free vesicle.
Here, we use Ead = 5.0 kBT . b Variation of adhered area with time for a passive vesicle with ρ = 13.82%
and Ead = 0.50 kBT . c Variation of adhered area with time for an active vesicle with F = 4 kBT/ lmin,
ρ = 10.36% and Ead = 0.50 kBT . We note that the protein-free vesicle adheres much faster than the other
cases. The spreading of passive vesicle is very smooth, while the active vesicle spreading is very noisy. Here,
the unit of time (t) is 2 × 103 MC steps for (a)–(c). d Variation of adhered radius (Rad) with time, for
protein-free, passive and active vesicles. The blue circles are for protein-free vesicle, the red triangles are for
passive vesicle, and the black boxes are for active vesicle. We note that the growth of a protein-free vesicle and
passive vesicle is uniform in the beginning and then saturates; however, for active case, there are two phases
of growth in the small time regime before Rad saturates. For protein-free vesicle, Rad(t) ∼ t0.152, while for
a passive vesicle, Rad(t) ∼ t0.183. Unlike the protein-free and passive vesicles, the active vesicle exhibits
two growth phases: a slower initial growth of Rad(t) ∼ t0.063 followed by a faster growth Rad(t) ∼ t0.267.
Here, we use Ead = 5.0 kBT for protein-free vesicle, and ρ = 10.36% and Ead = 0.50 kBT for passive and
active vesicles. For active vesicle, we use F = 4 kBT/ lmin. e Variation of Rad with time for an active vesicle
with various values of Ead: from bottom to top, the symbols of star, box, circle, triangle and cross represent
Ead = 0.25, 0.5, 1.0, 2.0, 5.0 kBT , respectively. Note that the fast growth phase takes longer to appear for
lower Ead, while the growth exponent of the fast growth phase decreases with Ead. We vary Ead from 0.25 kBT
to 5.0 kBT that gives rise to variation in the exponent from 0.51 to 0.19. For very large Ead(= 5.0 kBT ), the
two growth phases merge into one, similar to the protein-free spreading at the same adhesion energy (Fig. 8d).
In this adhesion energy, the vesicle collapses onto the adhesive surface at long times, and the simulation is
therefore terminated at an earlier time. Here, we use ρ = 10.36 % and F = 4 kBT/ lmin. The unit of time (t)
is 2 × 104 MC steps. f The circularity of the vesicle shows non-monotonic variation with time. Here, we use
F = 4 kBT/ lmin, Ead = 0.50 kBT and ρ = 10.36%

3.3 Spreading dynamics

We compare our results for the spreading dynamics of a protein-free vesicle, a vesicle with
passive-curved and active-curved proteins, respectively, in Fig. 8a–c (see Movie 1, Movie 2,
Movie 4 and Movie 7). The vesicles with proteins are shown in the interesting regime of low
Ead. We note that the active vesicle spreading is much noisier than the passive spreading.
This is because in the active case the vesicle may transiently get locally de-adhered from
the substrate, which gives rise to large variations in the measurement of the AAF (Fig. 8c,
and Movie 7). In Fig. 20 of Appendix H, we plot the cross-sectional shapes, side views and
three-dimensional shapes, of the spreading vesicles as function of time, for all three cases.
Clearly, the passive systems are observed to spread more isotropically, compared to the active
system. The anisotropic spreading of the active vesicles is quantified in Fig. 8f, where we see
a sharp reduction in the circularity of the adhered region during the initial stages of spreading.
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Next, we plot the increase in the adhered radius (Rad) as function of time, which is defined
as

√
Aad/π , where Aad is the adhered area (Fig. 8d, e). We find that for the passive systems,

the adhered radius (Rad) grows with time as ∼ tβ , where the exponent β is different for
the different cases. Although this plot is given in MC time steps and does not include the
hydrodynamic effects of the membrane flow and the fluid flow within and around the vesicle,
the calculated dynamics of the passive vesicles resemble the experimental observations for
spreading artificial vesicles [21].

For the active case (Fig. 8e), we averaged over those cases which adhered smoothly without
significant events of de-adhesion, in order to get a less noisy curve. For this case, we find
that there is a slower growth in the beginning (Fig. 8d), followed by a faster growth regime.
The exponent of the faster growth stage depends on Ead (Fig. 8e). The slower initial growth
is due to the low circularity of the active vesicle, with the protein aggregates spread over
the vesicle and pushing the membrane upwards and in uncoordinated manner (see Movies 4,
7). Once the proteins form the circular aggregate along the contact line, they induce a very
efficient and rapid spreading, which corresponds to the fast growth phase. Note that in the
large Ead regime, the spreading is dominated by the adhesion energy, and in this limit, the
growth exponent approaches that of the protein-free vesicle (Fig. 8d).

The calculated spreading dynamics for an active vesicle resemble several aspects experi-
mentally observed in spreading living cells [2,7,62]: (i) The active vesicles exhibit an initially
accelerating radial growth, followed by a growth with almost constant velocity (Fig. 8c, d).
These features are observed in living cells and do not appear for our passive vesicles. (ii)
The initiation of the rapid spreading phase takes longer to appear for cells on substrates of
lower adhesiveness, as we also find (Fig. 8e). (iii) Compared to the passive system, the active
vesicle initially grows more slowly (Fig. 8d), similar to experimental observations [4].

Other features of cell spreading are also manifested in our spreading active vesicles:
similar to the case of spreading cells [13], we find that the circularity of the spreading active
vesicles decreases sharply during the beginning of the spreading process and recovers slowly
afterwards. Furthermore, the active forces often give rise to the transient upwards detachment
of the leading edge in our simulations (Fig. 8c), resembling the ruffles observed at the leading
edge of spreading cells [6,9,37,63].

Note that since we do not conserve the vesicle volume, we find that the volume strongly
decreases as the vesicles spread. We discuss this in more detail in Appendix J (Fig. 22).

3.4 Motile vesicles at low protein densities

In the regime of low (curved and active) protein density, where there are not enough proteins
to form a circular aggregate around the cell rim (pancake shape), we find that the vesicles
can form motile shapes. By ‘motile’, we mean that the active proteins form a single large
aggregate on one side of the vesicle that results in an unbalanced force that pushes the vesicle
along the adhesive substrate. Such motile crescent shapes are shown, for example, in Fig. 9a,
c (see Movie 8 and Movie 9).

In Fig. 9a, we show the regime of active force and adhesion energy that gives rise to the
motile crescent shapes, at very low protein density (ρ = 3.45%). We find that the regime
where the crescent shapes appear coexists with two-arc shapes, and the two can transiently
convert into each other (see, for example, Fig. 9c and Movie 10). When moving, the crescent
shape remains persistent by maintaining a sharp leading edge (Fig. 9c, inset), due to the active
force concentrated in a single cluster, while the rear region is less curved due to minimization
of bending energy and area conservation.
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(a) (b)

(c)

(d)

Fig. 9 Motile vesicles with crescent shape, its speed and stability. a Probability for a vesicle to be found
in a crescent-shaped state (background colour), in the Ead − F plane for small ρ = 3.45%. In the region,
where there is nonzero probability of obtaining a crescent-shaped vesicle, the snapshots of a crescent-shaped
vesicles are shown; otherwise, a typical snapshot is shown. The yellow solid line is the analytical prediction
separating the two-arc phase to a crescent phase (Eq. 7). Here, we fit the numerical data and obtain a good
fit at Ead � 2.04 F2. We also numerically calculated the prefactor, and it turns out to be � 1.96, close to
the value obtained by fitting the curve (see Fig. 26 for details). The yellow dots are the simulation points
separating the two-arc shapes from crescent-shaped vesicle: For a given Ead, these dots represent the value
of F , above which we do not find crescent-shaped vesicles. The green dashed line separates the region of
vesicles with disordered small protein clusters (below) and the regime of clustered proteins (either two-arc
or crescent shape). Here, we estimate this line by measuring the largest cluster, and if the largest cluster is
less than 30% of the total proteins, we regard it to be in the disordered state of small protein clusters. The
snapshots are shown for Ead = 0.50, 1.5, 2 and 3 (in units of kBT ) and F = 0.50, 2 and 4 (in units of
kBT/ lmin). b Speed of the crescent-shaped vesicle, scaled by Ead. We calculate the speed as the displacement
of COM per MC step (divided by Ead) and then normalize all the values by the maximum speed found for the
range of parameters shown here, where the maximum value of the speed is 0.164 lmin per MC step. For large
Ead but small F , the crescent vesicles exhibit diffusive behaviour (Fig. 24). c Spontaneous transition from
crescent shape to two-arc shape (viewed from above), demonstrating the transient nature of the motile shapes.
Note the protein aggregates (red) along the vesicle edge. In the inset, we show the cross-sectional view of a
motile crescent-shaped vesicles. The red dot shows the location of the high protein density. d Examples of
asymmetric two-arc shapes (viewed from above), which exhibit weak residual motility. Below each shape, we
also mention the ratio of smallest to largest protein cluster. For both (c, d), we use Ead = 3.0 kBT , ρ = 3.45%
and F = 4 kBT/ lmin
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In Fig. 9b, we plot the average velocity of the crescent shapes, calculated from the simu-
lations, divided by an effective friction coefficient that is assumed to be linear in Ead. (The
vesicle speed before this scaling is shown in Fig. 23 of Appendix K.) Note that also the
two-arc shapes are weakly motile, as the protein aggregates at each end of the cell are not
identical in size and there is a small residual force (Fig. 9d and Movie 6). The crescent shapes
exhibited persistent motility with a well defined velocity in the high force regime (Movie 8),
while for weak active forces, they exhibited diffusive motility (see Movie 9 and Fig. 24 of
Appendix L).

The region of crescent shapes in Fig. 9a is bounded by two transition lines. The lower
line denotes the line below which the proteins do not form large clusters. In this regime, the
proteins form disordered small clusters, and the vesicle remains approximately hemispherical.
Above this line, the proteins form one or two large aggregates, thereby enabling the formation
of the crescent or two-arc shapes. Above the transition line, the large adhesion energy or
strong active forces induce the sufficiently high curvature at the vesicle contact line, which
concentrates the proteins and drives the formation of large aggregates. This is similar to the
pancake (and two-arc) transition line denoted in Fig. 7, where increasing Ead corresponds to
higher ρ at the contact-line region. Note that the direct protein–protein interaction strength
w plays a minor role in this transition, which can occur even for w = 0 kBT (Fig. 25a of
Appendix M).

The upper transition line that bounds the crescent shapes regime in Fig. 9a can be estimated
by comparing the bending and adhesion energies of a two-arc shape versus the crescent shape.
Compared to the crescent shape, the two-arc shape has a lower adhesion energy, since the
elongated cylindrical part is more weakly adhered as it is devoid of curved proteins. It is
also more strongly curved compared to the circular shape of the crescent vesicle. On the
other hand, the work done by the active forces that elongate the two-arc vesicle counts as a
negative energy contribution. The net difference between the two classes of shapes can be
approximately written as

ΔW = −NFL + 2πRL
κ

2R2 + EadΔA (6)

where R, L are the radius and length of the cylindrical segment of the two-arc shape, N is the
number of proteins that pull the membrane at the two ends of the cell, and ΔA is the difference
in adhered area between the two-arc and crescent shape. We first minimize with respect to
the radius R, taking the total area of the cylindrical segment to be conserved Acyl = 2πRL .
We find that R = 2πκ/(NF). We substitute this value in Eq. (6) and calculate the critical
adhesion energy at which ΔW = 0

ΔW = 0 → Ead = Acyl

2κΔA

(
NF

2π

)2

(7)

We assumed here for simplicity that ΔA is constant along this transition line, which is
approximately obeyed by the simulation results (Fig. 26, Appendix N). The relation in Eq. (7)
appears to capture correctly the essence of the transition between the two shapes, as shown
in Fig. 9a. We fit Eq. (7) with simulation data points and obtain the relation Ead � 2.04 F2

that matches well with the simulation. We also estimate this prefactor of F2 by calculation
ΔA and Acyl from simulation and obtain a value � 1.96 close to the value obtained by fitting
the curve (see Fig. 26 for details). In the regime where crescent shapes appear, they are more
stable (Fig. 9a) and propagate faster (Fig. 9b), as Ead increases. This arises in our model due
to the higher curvature at the leading edge when the adhesion is stronger, which stabilizes
the leading edge protein aggregate, as demonstrated in Appendix P.
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When comparing the motile shapes that our model produces, we note that they bear
similarity to the shapes of different motile cells [64]. Similar to experimental observations
[65–67], we predict a maximum of the migration speed as function of the adhesion strength
(Fig. 9b). These results indicate that the coupling of curved proteins that recruit the actin
polymerization, and adhesion, can self-organize into a spontaneously motile shape. However,
these ingredients give rise to rather delicate and transient motility, which can either disappear
spontaneously (Fig. 9c) or when confronted with an external perturbation (Fig. 27, Appendix
O).

Nevertheless, we can compare some of our results with observations of motile cells.
First, our observation of a leading edge that spontaneously splits into two arcs (Fig. 9c) is
reminiscent of very similar dynamics observed in motile cells [68–70]. Note that in cells,
there are mechanisms that allow the cell to regain motility by converting one of the two arcs
into a new leading edge, which we do not describe here. Specifically, as cells in the two-arc
shape elongate beyond a critical length, they are likely to polarize [71].

Our predicted transition from two-arc to motile-crescent phenotypes when the actin force
is reduced (solid yellow line in Fig. 9a) may explain the observation made in [72] whereby
knocking-down one of the actin nucleators had a very similar effect on the shape and motility
of cells. A similar trend was observed in [56], where decreasing the amount of Rac-GTPase,
which activates down-stream actin nucleators [73], stabilizes a single leading edge and con-
verts the cell to persistent motility. The lower transition line (dashed green line in Fig. 9a),
from the motile-crescent to the non-motile phenotypes when the adhesion strength is reduced,
can be compared to the experimentally observed loss of motility below a critical substrate
concentration of adhesion molecules [74].

Finally, our model may suggest a natural explanation of the experimental observation that
the leading edge of motile cells becomes more persistent and stable when their lamellipodia
extend into a narrow slit [75]. Within our model, the confinement by the narrow slit increases
the curvature of the leading edge and therefore stabilizes the aggregation of the curved active
proteins (see Appendix P, Fig. 28).

Within the wider context of active-matter systems, our motile vesicles can be compared to
recent works that have shown similar symmetry breaking that is driven by self-organization
of active elements [76].

4 Discussion

We have shown here how interacting curved membrane proteins, passive and active, affect
the process of vesicle spreading and adhesion. We find that large density of passive-curved
proteins can greatly enhance the adhesion of vesicles on low adhesion substrates. Coupling
the curved proteins with active protrusive forces extends this enhancement to lower densities
of curved proteins. By spontaneously self-organizing curved proteins at the cell–substrate
contact line, the active forces drive a shape transition into a flat geometry with high adhered
area and robust spreading. At very low densities of curved proteins, the protrusive activity
can stabilize either spindle-like elongated cells, or motile crescent shapes.

Our simplified model does not contain all the complexities of a real cell, which strongly
affect its final adhered shape. One such component, the network of stress fibres, is known to
determine the cell shape in many cell types [12]. In addition, the cytoskeleton and internal
organs (such as the nucleus) hinder the shape changes of the cell and exert volume constraints.
Future extensions of our model can include additional components of the cell adhesion
process. For example, we could add non-uniform adhesion that is activated closer in proximity
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to the curved proteins, to describe the activation of adhesion by actin retrograde flow [1,77–
79]. Nevertheless, our model describes many features of spreading cells, allowing to relate
the observed cell spreading dynamics and the cell shape to the parameters of the model.

Observations in living cells emphasize the central role played by actin polymerization
during cell spreading and adhesion. These observations suggest that in living cells, the mem-
brane density of highly curved proteins is relatively low, and cells are not likely to be in the
regime where a high density of curved proteins alone drives the spreading and adhesion (Fig.
2). Loading the membrane with a large density of such curved proteins may be problematic
for the cell and limit its ability to dynamically control and modify its spreading and adhesion
strength. Our model demonstrates that by having a low bare adhesion, and low density of
curved proteins, the cell can achieve robust and dynamic adhesion by activating the pro-
trusive force of actin polymerization, in a highly localized and self-organized pattern. The
spontaneous aggregation of the curved proteins along the cell–substrate contact line, driven
by the actin-induced forces (and attractive direct interactions between the proteins), provides
a highly controllable mechanism for cell spreading and adhesion.

In addition to non-motile steady-state shapes of adhered vesicles, we found that in the
low ρ regime, the vesicles may form a polarized, crescent shape, that is motile (Fig. 9).
This motile vesicle resembles the shapes of motile cells that depend on adhesion [80] and
demonstrates that the combination of curved proteins that recruit the actin polymerization,
and adhesion, provides a minimal set of ingredients needed for motility. However, in order to
make the polarization that drives the motility robust and persistent (as opposed to transient),
cells have evolved additional biochemical feedbacks of various types [81–83]. Our model
does not contain many components that play important roles in cell motility, such as contrac-
tility, and more realistic treatment of the actin–adhesion coupling, such as catch and slip-bond
dynamics. Our results, however, highlight that curvature-force coupling, with adhesion, pro-
vides the basic coarse-grained components that can self-organize to spontaneously break the
symmetry and form a motile system.
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A Simulation details

The time evolution of the vesicle in our MC simulations consists of [36,44]: (1) vertex
movement and (2) bond flip. In the vertex movement, a vertex is randomly chosen and
attempts to move by a random length and direction within a sphere of radius s drawn around
the vertex. In the bond flip movement, a single bond is chosen, which is a common side of
two neighbouring triangles. The bond connecting the two vertices in diagonal direction is cut
and reestablished between the other two, previously unconnected vertices. In order to satisfy
self-avoidance, the ratio of maximum and minimum bond length, i.e. lmax/ lmin = 1.7, and

123

https://doi.org/10.1140/epjp/s13360-021-01433-9
https://doi.org/10.1140/epjp/s13360-021-01433-9


  495 Page 18 of 37 Eur. Phys. J. Plus         (2021) 136:495 

the maximum possible displacement of a vertex in a given attempt is taken to be s = 0.15 in
units of lmin.

We use Metropolis algorithm to update our system. Any movement that increases the
energy of the system by an amount ΔE occurs with rate exp(−ΔE/kBT ); otherwise, if
the movement decreases the system energy, it occurs with rate unity. We let the system
evolve according the above rule and wait till the system reaches steady state. All the average
quantities are measured after the system reaches steady state.

In the simulations presented in this paper, we use the following model parameters: total
number of vertices, N = 1447, the bending rigidity κ = 20 kBT , the protein–protein
attraction strength w = 1 kBT . The width of the potential, Δz, is taken to be lmin. Among
all the N vertices, Nc of them are occupied by curved membrane proteins. The spontaneous
curvature at all Nc vertices is taken to be c0 = 1 l−1

min, unless stated otherwise. We chose this
set of parameters to be in the interesting regime where the curved proteins form aggregates
and exhibit a force-driven phase separation into a pancake-like shape [36].

B Comparison of simulated and detailed numerical solutions of the adhered vesicle
shape

In this section, we compare the results of our MC simulations for the shapes of adhered
protein-free vesicles, with detailed numerical solutions that appeared recently in Ref. [23,50].
In the detailed numerical solutions, the parameters used are w̃, the scaled adhesion strength,
and v, the reduced volume. The parameter w̃ is defined as, w̃ = EadR2

s /κ , where Ead is
the adhesion energy per unit adhered area and Rs is the radius of a spherical vesicle with
same volume as the original. Since in our model we define Ead as the adhesion energy per
vertex, we properly scaled it before comparison. In [23,50], the reduced volume v is fixed;
however, in our model, we cannot fix v before the adhesion and spreading dynamics. In
order to access different values of v for the same w̃, we use the osmotic pressure difference
p = pinside − poutside that adds one more energy term −pV to Eq. (5), where V is the total
volume of the vesicle [36]. In Fig. 10, we show the comparisons of the shapes of the vesicle
from our simulation and the detailed numerical solution (as given in Fig. 5 of ref. [23]). The
small differences between the two calculations in the regions of the high curvature rim can
be most visibly noticed furthest away from these parts, which is along the flatter top part of
the vesicle. This is the reason that in this region of low curvature, the separation between
the two calculations is most noticeable. Nevertheless, the shapes of the detailed numerical
solutions are comparable to our MC simulations, and the agreement is very reasonable,
thereby validating the MC approach.

(a) (b) (c) (d)

Fig. 10 Comparison of the results of MC simulation with detailed numerical solutions [23,50]. The red circles
are for simulation results, and the blue boxes are for detailed numerical solution. a w̃ = 6.4, v = 0.545, b
w̃ = 6.4, v = 0.75, c w̃ = 6.4, v = 0.85 and d w̃ = 6.4, v = 0.95. For detailed numerical solution, the data
are extracted from Fig. 5 of Ref. [23] using the ‘digitize image’ tool from ‘OriginLab’ software
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C Analytical model

We now present an analytic calculation of the adhered shape of the vesicle, in the presence of
curved proteins and active forces. This calculation correctly describes the qualitative features
that we found in the simulations, but fails quantitatively. The main failure is the use of protein–
protein interactions that are good for the dilute limit (Eq. A3) and do not capture the large
density increase at the contact line as in the simulations. In regimes where the protein–protein
interactions are not playing an important role, for example, when the active force is large,
we find quantitative agreement (Figs. 14 and 15).

We assume the average shape of the vesicle consists of three parts: (1) the base area,
which is having a circular shape, with radius Rb, (2) the annulus part curving around the
circular base, which is the part of a torus, with radius of the tube Rt , and (3) the spherical
cap, which is a part of sphere, with radius Rc (see Fig. 11). θ is the angle between the vertical
line passing through the centre of the sphere (OQ) and the line joining the centre of sphere
and the contact point of sphere and the torus (OP), as shown in Fig. 11. We neglect any
thermal fluctuation in the shape of the vesicle. Total area of the vesicle A = Ab + At + Ac �
πR2

b + 2πRt Rb(π − θ) + 2π(1 − cos θ)R2
c , where Ab denotes the area of the base, At is

the area of the annulus part (torus), and Ac is the area of the spherical cap. Total area A is
taken to be constant [26].

Let ρ be the density of the spontaneous curvature c0, ρc be the density on cap, and ρt
be the density on the annulus, such that ρA = ρt At + ρc Ac. Here, we assume that bottom
part of the vesicle does not contain proteins, which is also seen in the simulations. Now, the
adhesion energy is given by,

WA = −EadπR2
b, (A1)

the bending energy is given by,

Wb = 1

2
κAt

(
1

Rb
+ 1

Rt
− c0ρt

)2

+ 1

2
κAc

(
2

Rc
− c0ρc

)2

, (A2)

the protein–protein nearest neighbour attraction energy is of the form,

Wd = −w

2
(Acρ

2
c + Atρ

2
t ), (A3)

the energy due to active force is,

WF = −FRtρc Ac − FRbρt At , (A4)

Fig. 11 Schematic
representation of the analytical
model. Rc is the radius of the
spherical cap, Rt is the radius of
the annulus part (torus), and Rb is
the radius of the circular disc at
the base. θ is the angle between
the line perpendicular to the
plane ‘OQ’ and the line joining
the centre of sphere ‘O’ and the
point ‘P’, where the spherical cap
and torus section meet
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and finally, the entropy is,

S = −Ac{ρcln(ρc) + (1 − ρc)ln(1 − ρc)} − At {ρt ln(ρt ) + (1 − ρt )ln(1 − ρt )}, (A5)

where Ead is the adhesion energy per unit adhered area and κ is the bending rigidity. Note
that the entropy is only due to the thermal fluctuation of proteins and any entropy due to
the thermal fluctuation in the vesicle shape is not considered here. In the calculation of
entropy, we assume that only the spherical cap of the vesicle and the annulus part (torus part)
contain proteins, while the base of the vesicle does not contain proteins, which is also seen in
simulations. Since the slope of the surface changes continuously along the angle θ , the slope
at the contact point of torus and spherical cap should be the same. This gives us a constrains,
Rc sin θ = Rb + Rt sin θ . The free energy is given by,

F = Wb + WA + Wd + WF − T S (A6)

We assume the total area A to be a constant. We then minimize the free energy (Eq. A6),
in the (Rb, ρt , θ ) plane, and express other parameters in terms of these three parameters.
More explicitly, we solve the equations, ∂F

∂Rb
= 0, ∂F

∂ρt
= 0, and ∂F

∂θ
= 0 with the constraint

∂2F
∂R2

b
> 0 and ∂2F

∂ρ2
t

> 0, ∂2F
∂θ2 > 0. Among several solutions, we consider the physical one.

In the analytical model, we define Ead as the adhesion energy per unit of adhered area
(having dimension of energy/length2), while, in the simulation, we define it as the adhesion
energy per adhered number of vertex (with dimension of energy). In order to compare the
simulation and analytical results, we properly scale Ead such that the definition becomes
consistent in both the cases. The value of the parameters used here is: A = 2200 l2min, which
is approximately the average area of a unstretched vesicle in our simulation, c0 = 1.0 l−1

min,
κ = 20 kBT , w = 1.0 kBT . The value of kBT is taken to be unity.

For passive case (F = 0), we compare our analytical results for the cross-sectional shape
of the vesicles with different ρ in Fig. 12. We note that the effect of increasing ρ is not
very strong in the analytical model. We show the comparison of adhered fraction, density
of proteins in the curved regions (ρt ) and the different energies in Fig. 13. We note that the
fraction of adhered area increases with Ead similar to our simulations. With increasing Ead,
the vesicle becomes more and more flat and tends to the value 1/2 for large enough Ead

(Fig. 13a). The analytical prediction is, however, lower than the simulation results. We also
measure the density of curved proteins in the annulus part, ρt . As Ead increases, ρt also
increases and tends to unity for simulations; however, the analytical prediction is very low
(Fig. 13b). This indicates that for large Ead, most of the proteins are aggregated in the curved
annulus region. In our simulation, we also note that for large Ead, we do have a pancake-like
phase, where all the proteins are clustered in the curved region. We also measure the fraction
Aad/A as a function of ρ for given Ead (Fig. 13c). We note that similar to the simulation
results, our analytical model also shows non-monotonic variation in Aad/A with ρ; however,
here also, the quantitative comparison is not very well. Finally, we also show the variation
of ρt with ρ, which also show an increase similar to simulation results (Fig. 13d).

We also compare the different energies in the lower panel of Fig. 13 for simulation and
analytical cases. We note that the energy values are quite different, but the maximum differ-
ence is the protein–protein interaction energy (Fig. 13g), due to which increasing ρ is not
very sensitive in our analytical model. Thus, we conclude that because of the simplicity of
the analytical model, the quantitative comparison is not so good; however, it could describe
the qualitative features of our system very well. Next, we compare the results for the active
case.
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(a) (b)

(c) (d)

Fig. 12 Comparison of the shape of vesicle for simulation results and analytical results for passive case with
Ead = 0.50 kBT/ l2min and various ρ. Red circles are for the MC simulation results, and blue line is for the
analytical results

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13 Results for analytical model for passive case (F = 0) and comparison with simulation. Red circles
are for simulation results, and blue line is for analytical results. a Fraction of adhered area with adhesion
strength Ead for ρ = 10.36%. The adhered area increases and tends to 1/2 for large Ead. b The density of
curved proteins in the annulus part of the vesicle (ρt ) as a function of Ead for ρ = 10.36%. It shows that
the density ρt increases and tends to unity for large Ead. Here also, the analytical prediction is smaller than
the simulation results. c Fraction of adhered area with the protein density ρ for a given Ead. We note that
the analytical prediction also shows non-monotonic variation as seen in the simulation. d ρt with ρ for given
Ead. e The adhesion energy (WA)) as a function of ρ. f The bending energy (Wb) as a function of ρ. g The
protein–protein interaction energy (Wd ) as a function of ρ. h The total energy (W ) as a function of ρ. For c–h,
we use Ead = 0.50 kBT/ l2min. For analytical results, we use here A = 2200 l2min, which is the average area

of a unstretched vesicle in our simulation, c0 = 1 l−1
min, κ = 20 kBT , w = 1.0 kBT . For analytical results,

kBT is taken to be unity. For MC simulations, the other parameters are same as Fig. 2

In the active case, we compare the cross-sectional shape of the vesicle for a given ρ and
different values of F in Fig. 14. We note that the effect of increasing F is very effective in
analytical model. We also compare other results in Fig. 15. We note that the adhered fraction
is very close to our MC simulations in the large F region (Fig. 15a). In this case also, the
energy values are not very comparable (see Fig. 15c–g).
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(a) (b)

(c) (d)

Fig. 14 Comparison of the shape of vesicle for simulation results and analytical results for active case with
ρ = 10.36%, Ead = 0.40 kBT/ l2min and various F . Red circles are for simulation results, and blue line is for
analytical results

(a) (b) (c)
(d)

(e) (f) (g)

Fig. 15 Results for analytical model for active case and comparison with simulation. Red circles are for
simulation results, and blue line is for analytical results. a Fraction of adhered area as a function of F . b The
density of curved proteins in the annulus part of the vesicle (ρt ) as a function of F . c The adhesion energy
(WA)) as a function of F . d The bending energy (Wb) as a function of F . e The protein–protein interaction
energy (Wd ) as a function of F . f The active energy due to cytoskeleton forces (WF ) as a function of F g The
total energy (W ) as a function of F . Here, we use ρ = 10.36% and Ead = 0.40 kBT/ l2min. Other parameters
are same as Fig. 13

D Passive vesicle with proteins having zero spontaneous curvature

In Fig. 16, we show our results for a passive vesicle with proteins having zero spontaneous
curvature, i.e. c0 = 0. This serves as a verification of our calculation: since the proteins and
the membrane are identical, we indeed find that the adhered area remains constant with the
density of proteins, only depending on Ead.
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Fig. 16 Microstate of vesicle and cluster distributions for passive case with flat proteins (c0 = 0). The
background colour shows the fraction of adhered area. For the snapshots, we use ρ = 3.45%, 10.36%,
17.27%, 24.18% and Ead = 0.75, 1.5, 2.5 (in units of kBT ). The other parameters are the same as Fig. 2

E Linear stability analysis for budding transition and comparison with the contour
for 〈Ncl〉 = 2

In [36], an expression for the critical temperature (T c) is derived using linear stability analysis
(Eq. 6 of [36]), below which the proteins will start forming aggregates (buds) [84]. We use
this expression and obtain the critical force Fc as a function of ρ and other variables as,

Fc = 12w

l2minc0

1
(1−1/ρR0)

(
kBT

12wρ(1−ρ)
− 1

)2
. Here, 1/R0 is the mean curvature at the site of the

curved membrane protein. In the limit R0 → ∞, the expression for Fc will turn out to be,

Fc(R0 → ∞) → 12w

l2minc0

(
kBT

12wρ(1 − ρ)
− 1

)2

(A7)
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Fig. 17 The critical force Fc obtained by linear stability analysis (Eq. A7) using the protein density at the
contact line is compared with the line where 〈Ncl〉 = 2. The other transition lines are as in Fig. 7

We use the above equation to calculate the Fc for our case and compare this line with the
contour, where mean cluster 〈Ncl〉 = 2. Since the budding forms along the contact line with
the adhesive substrate, where the protein density is higher (ρt , say) than the average ρ (see,
for example, Fig. 3a and Appendix C), we use in Eq. (A7) the value of ρt obtained from the
simulations to calculate the critical force Fc and plot it as a function of the average ρ (see
Fig. 17). We note that the line is almost vertical, and in the large F regime, it is in between
the pancake transition (see Fig. 7) and the line 〈Ncl〉 = 2. Qualitatively, the shape of this
analytic line and its dependence on the density at the contact line describe the transition of the
proteins into small aggregates. The pancake transition at larger values of ρ has qualitatively
the same shape, but of course cannot be captured by the linear stability analysis.

F Simulations with balanced total vertical force

The active force may in general act in a direction that tries to de-adhere the vesicle from
the adhesive surface. In order to cancel this effect, we apply an external force in the vertical
direction (along z-direction), when the net vertical force acts upward (that tends to de-adhere
the vesicle). We note that even after applying the external force, see Fig. 18, there is no
qualitative change in the results. The benefit of applying this external force is that we could
now explore much smaller Ead which could not be explored before, due to the de-adhesion
of vesicle from the substrate.
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Fig. 18 Microstates and cluster distribution of vesicle for active case with balanced total vertical force. The
external force is applied to all the vesicle nodes, such that it balances the net vertical force when it acts in the
upward direction (i.e.when it acts against the adhesion process). We show the snapshots and cluster distribution
of the vesicle with Ead = 0.20, 0.75, 1.5 (in units of kBT ) and ρ = 3.45%, 10.36%, 17.27% and 24.18%.
The green dashed line denotes the transition to a pancake-like shape. The red dashed vertical line denotes
the density for the pancake transition for a free vesicle (without adhesion, [36]). Compared to the calculation
without applying a balancing external force (Fig. 4), we do not observe any qualitative change except for the
fact that in this case, we could explore much smaller Ead values. Other parameters are the same as in Fig. 4

G Active vesicle with zero spontaneous curvature proteins

In this section, we show our results for the active case with proteins having zero spontaneous
curvature. The shape of the vesicle is very dynamic in this case and changes with time. We
show few snapshots of the vesicle in Fig. 19a. The shapes shown in this figure should not
be assumed to be a steady-state shape. We also show the dynamic nature of the vesicle in
Fig. 19b, where we show the snapshot for a given density (ρ = 10.36%) at different instants
of time, for few values of Ead. In Fig. 19c, we plot the fraction of adhered area with time,
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(a) (b) (c)

Fig. 19 Results for active case (F = 4 kBT/ lmin) with proteins having zero spontaneous curvature. a
Microstate of vesicle and cluster distributions for different values of ρ and Ead. We show the snapshots for
ρ = 3.45%, 6.91%, 10.36%, 13.82%, 17.27% and Ead = 3, 4, 5 (in units of kBT ). b The dynamic nature of
the vesicle for a given density 10.36% and Ead = 3, 4, 5, 6 (in units of kBT ). c Variation of adhered fraction
with time along with snapshots. We use here ρ = 10.36% and Ead = 0.50 kBT . The other parameters are the
same as in Fig. 4

and also the snapshots near the plot. This plot also explains the dynamic nature of the vesicle
(see Movie 11).

H Spreading dynamics and time-dependent shapes of vesicles

Here, we show our results for the dynamics of spreading of the vesicles, by plotting the
cross-sectional shapes and snapshots with time (Fig. 20). We study three different cases: a
protein-free vesicle (Fig. 20a), a vesicle with passive proteins (Fig. 20b) and a vesicle with
active proteins (Fig. 20c). For the protein-free vesicle, we chose a large adhesion energy
Ead = 5.0 kBT such that the vesicle could spread significantly. For the passive vesicle, we
chose a small adhesion energy Ead = 0.50 kBT and ρ = 13.82%, in the regime where
the curved proteins dominate the spreading dynamics. For the active case, we use F =
4 kBT/ lmin, Ead = 0.50 kBT and a comparably smaller density of proteins ρ = 10.36%,
where the active forces dominate the spreading. For each of the three cases, we plot (i) the
cross section of adhered area, (ii) the side view of the vesicle and (iii) the three-dimensional
view of the vesicle.
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(a)

(b)

(c)

Fig. 20 Spreading dynamics. a Spreading of a protein-free vesicle. Here, we choose Ead = 5 kBT . (i) The
bottom view of the adhered area with time, showing that the vesicle adhere quickly. (ii) The side view of the
vesicle, showing how the cross-sectional area decreases with the adhesion of vesicles. (iii) Three-dimensional
view of the vesicle with time. b Spreading of passive vesicle with ρ = 13.82% and Ead = 0.50 kBT . Panels
(i), (ii) and (iii) are the same as above. The adhered area grows uniformly from the beginning. c Spreading of
an active vesicle, with ρ = 10.36%, Ead = 0.50 kBT and F = 4 kBT/ lmin. In the beginning, the growth of
adhered area is slow and then accelerates and finally the vesicle takes the shape of a pancake. The unit of time
(t) is taken as 2 × 103 MC steps
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I Quantifying pancake transition by measuring the fraction of largest cluster

In Fig. 21, we show our results for the fraction of largest cluster as function of ρ for active
case with different values of F and a small value of Ead = 0.50 kBT . We note that for large
F , there is a sharp jump in the value of the fraction at the pancake transition (dashed vertical
line in Fig. 21a); however, for small F , the fraction does not show any big jump. In order
to quantify the pancake transition for small F , we choose a threshold value of the fraction,
above which we assume the shape to be a pancake. By monitoring the data of Fig. 21, we
choose the threshold value to be 0.60, above which the shape looks like a pancake.

(a) (b) (c)

Fig. 21 Fraction of largest cluster with ρ for various values of F and Ead = 0.50 kBT . a F = 2.0 kBT/ lmin,
b F = 1.0 kBT/ lmin and c F = 0.50 kBT/ lmin. The vertical dashed line of (a) shows the pancake transition,
which is a sharp transition. For (b) or (c), the pancake transition is not very sharp, and the shape is assumed
to be a pancake when the size of largest cluster is at least 60 % of the total number of proteins

J Adhered area–volume relation

As the cells spread, their volume is observed to decrease [47,48]. We find similar dynamics
in our model simulations. The steady-state relation between the vesicle volume and adhered
area is also similar to the experimental observations, although we have explored a smaller
range of values (see Fig. 22). Note that in cells, there are internal organelles, such as the
large nucleus, that limit the decrease in volume and which our model does not describe. In
addition, osmotic pressure and ion fluxes also contribute to the volume control in cells [85].
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(a) (b)

Fig. 22 Area–volume relation. a The variation of area and volume with time for an active vesicle. The red
triangles are for the volume, and the blue circles are for the area. We use here ρ = 10.36%, Ead = 0.50 kBT
and F = 4 kBT/ lmin. b The area–volume relation in the steady state for active case with Ead = 0.50 kBT
and two different values of ρ. The hollow magenta circles are for ρ = 4.84%, and the green solid circles
are for ρ = 10.36%. We also show the snapshot of vesicles for both the ρ, for their highest area. Here, we
vary F in order to access different areas and volumes in the steady state. We note that for larger ρ (which
corresponds to the pancake shape), the system can access larger area and smaller volume in comparison with
lower ρ (which corresponds to the two-arc elongated shapes)

K Speed of the crescent-shaped vesicle in the Ead − F plane

In Fig. 23, we show the speed of the crescent-shaped vesicle in the Ead − F plane, without
scaling by Ead (as is shown in Fig. 9b). We normalize the speed by the maximum value,
where the maximum value of the speed is 0.328 lmin per MC steps. We note that the speed is
maximum for large Ead and large F region.

Fig. 23 Speed of the crescent-shaped vesicle in the Ead − F plane. Here, we calculate the speed as the
displacement of COM per MC step and then normalize all the values by the maximum speed, where the
maximum value of the speed is 0.328 lmin per MC step. For large Ead but small F , the vesicle speed is zero,
but it might show diffusive behaviour as well. The speed is maximum for large Ead and large F region
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L Mean square displacement of the crescent-shaped vesicle

In Fig. 24, we show the mean square displacement of the COM of the crescent-shaped vesicle
with time, for Ead = 2.0 kBT , ρ = 3.45% and various values of F . We note that for large F ,
there is a finite speed which increases with F ; however, for small F , the displacement grows
diffusively.

Fig. 24 Mean square
displacement (MSD) of the COM
of vesicle. a F = 0.25 kBT/ lmin,
b F = 0.50 kBT/ lmin, c
F = 2.0 kBT/ lmin and d
F = 4.0 kBT/ lmin. We note that
for small F , MSD shows
diffusive behaviour, while for
large F , the vesicle has a finite
speed. The y-axis is in the unit of
lmin, and the typical size of a
vesicle (radius of a pancake
shape, say) is ∼ 20 lmin. Here,
we use Ead = 2.0 kBT and
ρ = 3.45%

(a) (b)

(c) (d)

M Effect of varying the protein–protein interaction strength w

Throughout the paper, we kept the value of the protein–protein interaction strength (w) to be
fixed at w = 1 kBT . In Fig. 25a, we show that even if we take w = 0 kBT , the qualitative
nature of the shapes of vesicles does not change. We still obtain the two-arc shapes or the
crescent-like shapes. However, increasing w to a value such that w � F · lmin changes
qualitatively the shapes of the vesicle, as shown for w = 10 kBT in Fig. 25b (see Movie 12).
The bud-like protein clusters are now solid-like and do not easily deform or break-up and do
not merge over time.

123



Eur. Phys. J. Plus         (2021) 136:495 Page 31 of 37   495 

(a)

(b)

Fig. 25 Snapshots of vesicle with various values of protein–protein interaction strength w. a For w = 0 kBT ,
we obtain the two-arc and crescent-like shapes as found for the case of w = 1 kBT (Fig. 9). For (i), we use
Ead = 2.0 kBT , F = 4.0 kBT/ lmin and ρ = 3.45%, and for (ii), we use Ead = 3.0 kBT , F = 2.0 kBT/ lmin
and ρ = 3.45%. b For very large w = 10 kBT , the vesicle forms small isolated clusters that do not break-up
or merge after long time. Here, for (i), we use Ead = 2.0 kBT , F = 3.0 kBT/ lmin and ρ = 3.45%, and for
(ii), we use Ead = 2.0 kBT , F = 4.0 kBT/ lmin and ρ = 3.45%

N Difference in the adhered area of a crescent-shaped vesicle and a two-arc-shaped
vesicle across the crescent to two-arc transition line (Fig. 9a)

The analytical calculation of the transition line (Fig. 9a) separating a crescent shape and
two-arc shape (Eq. 7) depends on the value of ΔA, which is different in adhered area of
the crescent-shaped vesicle and the two-arc-shaped vesicle across the transition line. Here,
we plot the value of ΔA across this transition line as a function of Ead as extracted from
the simulations (Fig. 26a). The value of ΔA does not show any monotonic variation with
Ead and is approximately constant along the transition line (as was assumed in Eq. 7). The
average value of ΔA is � 144.32. The analytical calculation also contains the area of the
cylindrical part of the vesicle, Acyl. We also measure this area and note that this value is also
roughly a constant along the transition line (Fig. 26b). The average value of this area turns
out to be Acyl � 1083.52. We assume the number of proteins at each end of the cell to be
N = 25, half of the total number of proteins. Since the unit of Ead is different in simulations
and analytical calculation, we properly scale it to make it consistent for both the cases. Using
all these values, we obtain the prefactor of F2 in Eq. (7) as � 1.96. This value if very close to
the value of 2.04 is obtained by fitting the simulation points along the transition line (Fig. 9a)
with the equation.
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(a) (b)

Fig. 26 a The difference in the adhered area of a crescent-shaped vesicle and a two-arc-shaped vesicle across
the crescent to two-arc transition line, ΔA (in units of l2min), as a function of Ead. We note that the value of ΔA
does not show any monotonic variation with Ead and is approximately constant along the transition line (as
was assumed in Eq. 7). b The area of cylindrical part in a two-arc shape Acyl (in units of l2min), as a function
of Ead. This value also seems to be roughly a constant along the transition line

O Motile vesicle growing against an immobile barrier

In Fig. 27, we allow a motile crescent shape to hit a rigid non-movable barrier, placed
perpendicular to the direction of motion of the crescent. We take a non-adhesive as well as
an adhesive barrier. In both the cases, the crescent shape finally breaks into two-arc shape
(see Movie 13 and Movie 14).

(a)

(b)

(c)

Fig. 27 Motile vesicle growing against an immobile barrier. a We plot the snapshots of vesicle with time for
a non-adhesive barrier. b The snapshots of the vesicle with time for an adhesive barrier. c The side view of the
vesicle for the adhesive case. We note that in both the adhesive and non-adhesive cases, the crescent-shaped
vesicle breaks into two-arc shape. Here, we use ρ = 3.45%, F = 4 kBT/ lmin and Ead = 3.0 kBT . For the
adhesive barrier also, we use Ead = 3.0 kBT
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P Motile vesicle moving inside a narrow slit

In order to study the effect of confinement on the shape of the leading edge of the motile
vesicle, we direct the motile vesicle into a narrow slit. This is motivated by the observation
of wider and more persistent lamellipodia leading edge of a motile cell when it extends its
lamellipodia into such a narrow slit [75].

The slit in the simulations consists of two flat surfaces: the bottom one is the same as
the adhesive surface on which the vesicle is crawling, while the top one is a parallel non-
adhesive surface, such that the vesicle gets confined between these two surfaces (see Fig. 28a
and Movie 15). The width of the slit is chosen to be narrower than the thickness of the motile
vesicle (∼ 3lmin).

We find that due to the confinement, the mean curvature of the leading edge increases (Fig.
28b) when the vesicle is stopped by the slit. This higher curvature at the leading edge manifests
in reduced fluctuations of the proteins, and the proteins become more strongly confined within
one large cluster (Fig. 28b, inset). The position of the leading edge as function of time is
shown in Fig. 28c, showing that the vesicle gets stopped by the slit. Finally, we show in
Fig. 28d the separation between the centre of mass of the vesicle and the leading edge, over
time. This indicates that the vesicle gets stretched when it is stopped by the slit, and this
separation increases.

Note that we use here a relatively small value of the active force (F = 1.0 kBT/ lmin),
such that the vesicle is thick enough to be stopped by the slit. At a larger active force, the
vesicle can be more strongly deformed and continue to crawl inside the slit.

(a)

(b) (c) (d)

Fig. 28 Motile vesicle moving inside a narrow slit. a The configurations of the vesicle moving inside a narrow
slit, at different instants of time. The three panels show the vesicle from different views. The top surface is
shown as transparent for a better view. b The mean curvature of the leading region of the vesicle before (green
triangles) and after (blue circles) the vesicle enters the slit. The insets show the protein cluster-size distribution,
before and after the vesicle gets stuck in the slit. c The position of the leading edge with time. d The separation
between the position of the centre of mass of the vesicle (rcom) and the position of the leading edge (rleading),
with time. Here, we use ρ = 3.45%, F = 1 kBT/ lmin and Ead = 3.0 kBT . The slit width is taken to be 3lmin
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44. S. Penič, A. Iglič, I. Bivas, M. Fošnarič, Bending elasticity of vesicle membranes studied by Monte Carlo
simulations of vesicle thermal shape fluctuations. Soft Matter 11, 5004–5009 (2015)

45. D.M. Andrade, M.P. Clausen, J. Keller, V. Mueller, C. Wu, J.E. Bear, S.W. Hell, B.C. Lagerholm, C.
Eggeling, Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma
membrane—a minimally invasive investigation by STED-FCS. Sci. Rep. 5(1), 11454 (2015)

46. S. Saha, I.-H. Lee, A. Polley, J.T. Groves, M. Rao, S. Mayor, Diffusion of GPI-anchored proteins is
influenced by the activity of dynamic cortical actin. Mol. Biol. Cell 26(22), 4033–4045 (2015). (PMID:
26378258)

47. M. Guo, A.F. Pegoraro, A. Mao, E.H. Zhou, P.R. Arany, Y. Han, D.T. Burnette, M.H. Jensen, K.E. Kasza,
J.R. Moore et al., Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc.
Natl. Acad. Sci. 114(41), E8618–E8627 (2017)

48. K. Xie, Y. Yang, H. Jiang, Controlling cellular volume via mechanical and physical properties of substrate.
Biophys. J. 114(3), 675–687 (2018)

49. A.-L. Bernard, M.-A. Guedeau-Boudeville, L. Jullien, J.-M. Di Meglio, Strong adhesion of giant vesicles
on surfaces: dynamics and permeability. Langmuir 16(17), 6809–6820 (2000)
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