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Abstract

In this study, we implement the deviatoric curvature model to examine dynamically tri-
angulated surfaces with anisotropic membrane inclusions. The Monte-Carlo numerical
scheme is devised to not only minimize the total bending energy of the membrane but
also the in-plane nematic order of the inclusions by considering the mismatch between the
curvature of the membrane and the intrinsic curvature of the inclusion. Neighboring
inclusions can either attract with nearest-neighbor interaction or with a nematic interaction
derived from liquid crystal theory. Orientational order determines whether vesicles fully
covered with inclusions result in bulbs connected by necks or long tubes. Remarkably,
when inclusions on vesicles with no vacancies interact non-nematically, a spontaneous local
order can lead to a bulb transition which may have implications in cell or organelle division.
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22 Yoav Ravid et al.

Furthermore we find that average nematic order is inversely proportional to the number of
thin necks formed in the vesicles. Our method shows good convergence and is suitable for
further upgrades, for example to vesicles constrained by volume.

1. Introduction

Cellular shape holds immense importance in various functions like
division, movement, and signaling. In biophysics, there’s a significant interest
in comprehending how cells take shape. Research involving theories and
computer simulations indicates that the physical traits of the cell membrane,
like its uneven components and dynamic forces, significantly influence
structure. The precise interplay between these elements in shaping cells
remains uncertain.

Membrane shape depends on the intrinsic shape of the membrane’s
molecular constituents [1-5] and their interactions with other components,
such as membrane skeleton and cytoskeleton [6-16]. It has been shown that
a non-homogeneous lateral distribution and phase separation of membrane
inclusions may be a driving force of cell shape transformations and necessary
for the stabilization of highly curved membrane structures [2,3,17-23].

In recent years, there have been significant advances in experimental
techniques for studying cell mechanics [24—26]. However, theoretical and
computational studies remain important for gaining insight into the under-
lying physical mechanisms. For example, the study of vesicle shapes driven
by coupling curved inclusions and active cytoskeletal forces has shown that
the inhomogeneous nature of membrane constituents, such as curved
inclusions, can have a significant impact on vesicle shapes [11,20,27-33].

In this work, we apply the deviatoric curvature model to investigate
dynamically triangulated surfaces containing anisotropic membrane inclu-
sions that are banana shaped. A Monte-Carlo numerical approach is
employed not only to reduce the overall bending energy of the membrane
but also to minimize the in-plane nematic order of the inclusions. This is
achieved by considering the discrepancy between the curvature of the
membrane and the inclusion it contains. We find that the orientational
order has an effect on the overall limiting cell shape. Additionally, we
present a possible mechanism of cell division when inclusions interact non-
nematically through spontaneous ordering. Furthermore, we find that the
total bonding energy of the fully covered vesicles is inversely proportional
to the number of necks and buds in the vesicles.
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2, Theoretical background

Theoretical background is based on the derivation of membrane
energy and anisotropic inclusion interactions, as outlined by Kralj-Igli¢
et al. [2,4,34]. The model presents the membrane as a 2D anisotropic
continuum surface. The elastic energy of a small membrane section
becomes null when its principal curvatures C; and C, align with their
intrinsic counterparts of the anisotropic inclusions Cy,, and C,,,, and when
the orientations of the local membrane curvature tensor C coincide with
the intrinsic membrane curvature tensor C,,. A shape with these properties
throughout exhibits zero elastic energy.

In essence, the elastic energy per unit area of a thin plate element with
area dA is defined by the discrepancy between its actual local membrane
curvature and its intrinsic curvature. Representing the actual and intrinsic
curvatures with tensors C and C,,, respectively, where in their principal
systems, the curvature tensor matrices feature only diagonal elements [2,34]:

= Cl 0 C = Clm 0
B 0 CZ ’ " 0 CZm '

In this examination, the principal systems of tensors generally undergo an angle
o rotation in the tangent plane. The disparity between the actual and intrinsic
Jocal membrane curvature is expressed by the tensor [2,4] M = RC,R™' — C,
involving the rotation matrix

R = [cOs® —sin @
sinw cosw )

A small shell patch adjusts to conform to the actual membrane, reflecting
the energy required for deformation (see Fig. 1B). The approximate elastic
energy E; unfolds through an expansion in powers of all independent
invariants of the tensor M. Employing the trace and determinant of the
tensor as invariants yields [2—4,34]:

E, = KlTMZ DetM dA
1= 7(r ) + K,DetM dA, 1)

integrated across the entire vesicle. With constants Ky and K5, the energy

E; is [2,4,34,35]:

L

= / (2K, + Ky)(H — H,)? — Ky(D? — 2DD, cos 2 + D7) d4,
2
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(a)

(b)

Fig. 1 Example of a banana inclusion. For this particular inclusion, H,, = D,, = 0.25 (A).
The mismatch between a membrane inclusion and local curvature of the triangulated
membrane (B). Here, 7 is the orientation of the inclusion and 7 is its perpendicular
direction in the local tangent plane.

where D = (C; — C,)/2 stands as the curvature deviator, an invariant of
the curvature tensor (D’ = (Tr(C)/2f* — Det(C) = H? — C,C,); H,,
=(Cim *+ Cs,)/2 denotes the intrinsic mean curvature; and D,, = (Cy,,
— C,,,)/2 represents the intrinsic curvature deviator.

In the case of an isotropic membrane where D,, = 0, it becomes evident
that this equates to the Helfrich bending energy density [36] described by
E, = k[2(2H - CO)2 + koK, with H = (C; + C,)/2 as the mean curvature,
Cy as the spontaneous curvature, K = C; C, as the Gaussian curvature, and
k. and k¢ as the bending and splay modulus, respectively [3,4,34].

2.1 Binding energy

Inclusions may bond on the membrane by a simple energy gain for two
neighboring vertices.

L= {—w i, j are binding
. 0 else (3)

where the type and the binding strength w are vertex properties, reflecting
aggregation. Throughout this paper, we refer to this type of bonding as normal
bonding. This kind of bonding is observed in surfactants and proteins, since it
arises from spontaneous self-assembly on the membrane [11,37].

2.2 Nematic energy

If we want to impose a directional energy penalty to neighboring inclu-
sions, we use a nematic-nematic interaction employed from liquid crystal
theory. The energy between neighboring inclusions will be lower if their
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principal curvatures are aligned. We model this based on Frank’s free
energy density for nematic liquid crystals [38]:

k k
E, = f(—c(v-??)z + =<V TP, dA
2 2 4)

Here, V represents the covariant derivative on the curved surface,

denotes the orientation of the inclusion, and 7 signifies its perpendicular
direction in the local tangent plane. The constants kg and k. correspond to
the splay and bending elastic constants governing in-plane nematic inter-
actions. The variable r, takes a value of 1 if a nematic is present on a vertex;
otherwise, it is O.

A discrete form of this energy is employed to facilitate implementation
in Monte-Carlo (MC) simulations. If we assume a one-constant approx-
imation (kg =k), Eq. (4) can be rewritten in a way that makes the
implementation suitable for MC simulations (Lebwohl-Lasher model) [39]:

¢ 3 1
- ek — =2
E,~ — _/2 €1 z (E(n,- n)” — E)ry dA.

k=1 i>j (5)
Here, €11 is the strength of the nematic interaction. The sum X;>; is over all
the nearest neighbor (i, j) vertices on the triangulated grid, promoting
alignment among the neighboring orientation vectors. An even simpler
form of this approximation for the in-plane orientational field is the XY

model on a random surface [40]:

E fz (77 dA.
i (6)

Here, w represents the strength of the direct interaction constant, and
the summation runs over all inclusion-inclusion pairs. The sum of E; and
E> is minimized numerically, while E; is either normal (Eq. (3)) or nematic
bonding (Eq. (6)). There is no volume restricting the vesicle shapes. All the
inclusions in this work are banana-shaped (see Fig. 1A). Normal interaction
reflects the tendency of inclusions to self-aggregate. Nematic interaction
goes further and implies the tendency to both self-aggregate and also align
inclusions’ principal curvatures.

The details of the Monte-Carlo procedure are given in Appendix A.1
and the details of the mesh generation and finding the principal curvatures
are given in Appendix A.2.1.
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3. Results and discussion
3.1 Small meshes

We start by examining smaller vesicles (N = 502 vertices) with a fraction of
their surface p covered with banana shaped inclusions as shown in Fig. 1A.
One of their main curvatures is positive and another is zero, which
translates to H,, = D,, =0.25. With increasing p and normal interaction
between inclusions, we get the sequence shown in Fig. 2. Due to the
inclusions’ strong affinity to aggregate (w = 3), they form a rim around
the perimeter of the vesicle even at low values of p. With increasing p, the
vesicles become flattened and oblate and later elongated (but not prolate).
Only above p =0.7 does the high inclusion content clip the vesicle into
two bulbs connected by a thin neck.

We want to quantify the degree of order between neighboring aniso-
tropic inclusions. For this reason we can define the nematic order of the
inclusion at vertex i by

— 130520 —
S, = 2(3cos 60— 1), @)

where the angle & measures the angle between directors (or principal
curvature Cy,,) of neighboring inclusions on the membrane. The more
aligned the neighboring inclusions are, the more this value approaches
unity. In our numerical approach it is calculated as follows: at vertex i, we

._)
average the dot product of the director d; with all immediate neighboring

=103

(S) = 0.12 0.14 0.15 0.18 0.21 0.20

Fig. 2 A sequence of equilibrium shapes for a small mesh with normal interaction
between banana inclusions. The constant of inclusion interaction is w =3, while the
curvatures are Hy, = D, = 0.25. The inclusions are marked in red, the empty membrane
in blue. The principal direction of the curvature C;,,, is shown with the white lines. The
average order parameter of each shape (S) is given in the bottom and calculated by
Eg. (8).
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vertices (see Appendix A.2.3). The average nematic order across the entire
membrane is then

1 N
($y=—Y's,
N ,; ®)

Returning to Fig. 2, we notice that predictably the nematic order increases with
increasing p, but peaks just before the bulb transition. Their binding promotes a
rim on the membrane that accommodates their spontaneous curvature best
when they all align in a similar direction (see Fig. 2 for p = 0.3-0.7). When the
inclusion density is large enough, the ordering ceases, resulting in two prolate
bulbs connected by a neck where nematic order decreases. We call this the bulb
transition. The average order parameter at the bottom of Fig. 2 shows that the
bulb transition decreases the average order.

Next we investigate vesicles with all places on the membrane occupied by
inclusions. These two limiting cases of p =1 are shown in Fig. 3. Here, we
observe the evolution of the vesicle shapes from its spherical start. We may think
of consequential MC steps as simulation time shown on the x-axis.

First, we look at the normal interaction between inclusions shown in
Fig. 3A. The inclusions predictably show no sign of nematic order on the
membrane, prompting neighbors to point in a random direction and hence
promote the spherical shape that persists for a long time. This is because the
average curvature of many random directions results in a net zero curvature and
a spherical shape. However, the fluctuations with time lead again to a bulb
transition. The bulb transition coincides with a sharp decline in the bending
energy (accompanied by a decline in volume) shown in Fig. 3A. The average
nematic order slightly increases before it returns to its pre-transition values.

Upon closer inspection of an increase in (S) preceding the bulb tran-
sition for Fig. 3A, we notice an interesting sequence of events shown in
Fig. 4. Inclusions spontaneously order along the circumference of the
prolate vesicle, resulting in an increase of (S) (see Fig. 4B). This is followed
by a sudden narrowing of the midsection and results in a bulb transition
(Fig. 4C). Here, (S) and bending energy decrease relative to their pre-
transition values. The spontaneous ordering of the inclusions can therefore
have lasting impact on the morphology of the vesicle and may facilitate in
the mechanism of cell division.

If we run the same simulation with nematic interactions between
inclusions, the limiting shape is an elongated cylinder shown in Fig. 3B.
The bending energy continuously decreases in proportion with the average
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Fig. 3 Simulations of vesicles fully covered in banana inclusions (H,,, = D,, = 0.25) for a
small mesh (N=502) and normal interaction (w = 3)(A) and nematic interaction (B).



Numerical studies of triangulated vesicles with anisotropic membrane inclusions 29

radius of the cylinder and leveling out at a limiting value. The overall
bending energy of the thin cylinder is lower than the bulbs connected by a
thin neck.

The nematic order interestingly slightly decreases (cca. 10%) as the
cylinder becomes elongated. This decrease may be a result of inclusions that
are packed around a tighter radius. Let us envision this with a graphical
example. In the limit of a very thin cylinder there may be only 5 vertices
encircling the smaller cylinder as shown in Fig. 5. Even though the
inclusions’ directions are aligned, neighboring angles are relatively large
resulting in near zero nematic order (see Fig. 5).

3.2 Larger meshes

Now we turn our attention to larger vesicles (IN = 2002). We start again by
gradually increasing the fraction of inclusions in the membrane with other
parameters staying the same as before. The results are given in Fig. 6.

At p=0.2, the equilibrium shapes resemble quasi-spherical vesicles
with isolated patches of inclusions forming ridges along the membrane
surface. The ridges are formed due to the accommodation of the principal
curvature of the inclusions Cj,,. Increasing p results in patches joining
together to form a single ridge around the outer circumference of a flat-
tened vesicle. As we can see in Fig. 6 for p =0.4, the continuous ridge
forces the vesicle shape away from the oblate pancake into a global saddle
shape. Increasing p further results in separation of a single saddle pancake to
two separate ones. With p = 0.6, each of the pancakes starts forming buds
connected by a very thin neck. At p = 0.8, nearly the whole surface of the
mesh consists of buds covered with inclusions to resemble a pearling shape.

Fig. 7 shows a heat map of the nematic order for a fully covered vesicle
for a small (A, B) and larger mesh (C, D). Normal and nematic interaction
between inclusions is considered for (A, C) and (B, D), respectively. We
observe that nematic ordering results in elongated cylinders with nematic
order near unity everywhere except at the poles of the cylinders, where a
nematic defect is observed in blue (Fig. 7B). For larger meshes with
nematic interactions the budding from the main trunk of the vesicle still

With consequent MC steps, the shapes relax to an energy minimum. For normal
interactions, the resulting shape is a two bulbs connected by a thin neck. For the
nematic case, the limiting shape is an elongated and thin cylinder. The average order
parameter (S) for both cases is shown below the main graph.
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Fig. 4 A close-up of the average order parameter during the bulb transition (see
Fig. 3A). A spontaneous ordering of the inclusions (B) results in the transition from a
sphere-like shape (A) to bulbs connected by a thin neck (C). After the transition, (S)
decreases together with the bending energy.
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Director of proteins

Fig. 5 Low nematic order as a consequence of very thin necks of meshes. Although
the curvature of the inclusions fits well around the circumference, the calculation of
average nematic order given in Eq. (7) will be low because of the large angles (6)
between neighboring inclusions. This artefact also accounts for near zero nematic
order in the necks of buds.

Fig. 6 Simulation results for larger meshes (N =2002), H,, = D, =0.25, normal inter-
action (w = 3) after 2 - 10° MC steps in dependence of inclusion coverage fraction p.
The color code is the same as in Fig. 2.

occur, but the buds themselves are cylindrical. As expected, we notice that
the nematic order is close to O in the necks where the radius is very thin.

For each final shape at constant p for Figs. 6 and 8 shows the bending
energy, bonding energy and volume as a function of MC steps of the
simulation. We observe that the vesicles approach their final volume faster
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Fig. 7 Nematic order as a heat map for small (A, B) and larger meshes (C, D). When the
inclusion interaction is normal (A, C), there is little neighbor ordering shown by values
close to 0 and a blue color. Conversely, red color represents strong nematic order as
expected by the nematic neighbor interaction (B, D). Some spontaneous ordering may
happen as seen by the orange patch in (A). The heatmap S; gives the local order
parameter.

in proportion to p. This likely happens as a consequence of budding which
is more prevalent at higher inclusion content. The limiting pearling shape
has the least volume per given vesicle area and the largest bending energy of
all the shapes in the sequence of Fig. 6.

3.3 Low nematic order is proportional to the number of buds

Lastly we look at fully covered vesicles with nematic interaction with
deviatoric curvature H,, =D,, =0.75 and all other parameters same as
before. The banana shape of the inclusion is preserved, but its curvature is
increased. Fig. 9A shows the graphs of bending and bonding energy with
respect to w.

Bonding energy depends on two things; the strength of interaction w
and local nematic order. We find that high bonding energy (and hence
worst nematic order) goes to membranes with highest curved inclusions
H,, =0.75. This implies at least one of two things are taking place: either
vesicles form many offShoot buds with their respective necks, or the
vesicles resemble very elongated thin tubular structures. Fig. 9B shows such
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Time (1000 MC

Fig. 8 The convergence of bonding energy, bending energy and volume for the final
results of Fig. 6. The panels give different values of p: 0.2 (A), 0.4 (B), 0.6 (C) and 0.8 (D).
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Fig. 9 Total energy per vertex in dependence on w for H,, =D, =0.75 (A). Highly
curved anisotropic inclusions result in very thin spaghetti-like shapes for normal
interaction (w = 2). The nematic order here is low because of the thin radius of the

tubes (B).
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a final shape (H,, = D,, = 0.75) and confirms our prediction of a low
nematic order (and high bonding energy).

4. Conclusion

Membrane deformations in cells occur due to curved inclusions working
in synergy with each other. Cell mechanics studied from a simple model with
few assumptions might shed new light on formation of vesicle morphology.

In this paper we demonstrated a new way of simulating anisotropic
membrane inclusions by implementing the deviatoric elasticity model that
was developed nearly twenty years ago [34]. Although our investigation
was limited only to banana membrane inclusions, we found that orienta-
tional order determines whether vesicles fully covered with inclusions
result in pearls connected by necks or long tubes with few necks. Addi-
tionally, we observed that the average nematic order is inversely propor-
tional to the number of thin necks formed by the vesicles.

The dynamics shown in Fig. 4 may indicate a mechanism for primitive
cell division or division of organelles inside the cell, using many curved
banana-shaped membrane proteins. It is crucial that the membrane inclu-
sions interact non-nematically. Nematic ordering of inclusions result in
long narrow tubes and does not lead to fission-like geometries. This is a
mechanism that will be explored in further papers.

An obvious advantage of this model is the absence of limitations of axial
symmetry. On the other hand, the model has few parameters, and its phase
space ofters further investigation. One could for example look at inclusion
concentrations lower than 10% or use a combination of curved inclusions.
Some processes, like clathrin mediated endocytosis and formation of three
way junctions in the endoplasmic reticulum [41,42], are examples of
membrane deformation and stabilization of induced curvature due to a
combination of curved inclusions.

A further development would entail a constraint of constant volume. This
could be achieved by introducing a new term to the Hamiltonian to include a
volume potential to force the vesicles toward a wanted set volume. In this way,
vesicle morphologies could be compared to the standard empty Helfrich dia-
gram [36] and study the effects that inclusions have on the overall morphology.
Furthermore, membranes with active inclusions could be modeled by adding a
non-conservative force acting perpendicular away from the vesicle to simulate
the polymerization of actin [11,43].
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Appendix A. Appendix—Methods

A.1 Monte-Carlo procedure
The membrane is represented by a set of N vertices that are linked by tethers of variable
length [ to form a closed, dynamically triangulated, self-avoiding two-dimensional network
of approximately 2 N triangles and with the topology of a sphere [44,45]. The lengths of the
tethers can vary between a minimal and a maximal value, [,;,, and [,,.., respectively. Self-
avoidance of the network is ensured by choosing the appropriate values for [,,, and the
maximal displacement of the vertex s in a single updating step.

One Monte-Carlo sweep (MCs) consists of individual attempts to displace each of the
N vertices by a random increment in the sphere with radius s, centered at the vertex,
followed by RpN attempts to flip a randomly chosen bond. We denote Ry as the bond-flip
ratio, which defines how many attempts to flip a bond are made per one attempt to move a
vertex in one MCs. Note that the bond-flip ratio is connected to the lateral diffusion
coefficient within the membrane, i.e. to the membrane viscosity. In this work we have
chosen Rp =3, s/l =0.15 and 0/l = 1.7. The dynamically triangulated network
acquires its lateral fluidity from a bond flip mechanism. A single bond-flip involves the four
vertices of two neighboring triangles. The tether connecting the two vertices in diagonal
direction is cut and reestablished between the other two, previously unconnected, vertices.
The self-avoidance of the network is implemented by ensuring that no vertex can penetrate
through the triangular network and that no bond can cut through another bond [46,47].

A.2 Anisotropic code details
A.2.1 Representing the membrane as a mesh
Our solver is called Trisurf. It models the vesicle as a closed, triangulated surface: a graph
with vertices i € IV and edges ¢; € E, and an auxiliary set of triangles t;; € T. The triangles
make the approximation of the surface, but it is the vertices which are the principle
dynamical entities which holds the properties of the membrane (intrinsic curvature,
membrane composition, nematic directm etc.) and move in space.
_, From the position ofthe vertices, % we can compute the normal vector to iz)lch triangle
Nj, and circumcenter O 4 (center of the circle containing the position of X X, %, ) This
allows us to divide the triangle to six parts and assign two pieces to each vertex

For vertex i, these are the sub-triangle between the vertex position %, the triangle

center Oﬂe! and the middle of one of the edges At , and a similar sub- trlangle for the other
edge ik. We can denote the vector for the side between the vertex and the edge middle as half
the edge length €; = 7 = x and the side between center and the edge middle, which is half
of the dual (Voron01) edge, as I Jk (the other half of the voronoi edge is on the nelghbormg
triangle ij) We can compute this ¢ from the circumcenter and the middle of X j
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o4 =

(A1)

With this, we assign an area A() and a normal N(i) for each vertex i, by running over
the neighbors j— 1, j, j+ 1... and the adjacent triangles (i, j— 1, j), (i, j, j+ 1)...

2

alsl sl
A(i) = OZJ; 5% ‘ 041 | + 5 ?:j l Q}J—11 (A2)
o _ Zip F]fm] ’ i “ 01 ’ + K’:.j—u | & ” 91 ‘

N(i)
o] (A3)
Where the j vertices are the counterclockwise ordered neighbors of .
The fluidity of the surface is achieved by bond-flips, where a bond ij and the two
triangles that share it is ijk, ji¢ are replaced by a cross bond kf and two triangles ilk, jk€,
which allows vertices to change neighbors.

A.2.2 Anisotropic curvature on the vesicle
To get the anisotropic bending energy of the surface, we use the method by Ref. [40] to
estimate the shape operator matrix S on each vertex, which represents the shape of the
surface at the point. We then calculate the mismatch tensor M = S — C,,, where C,, is the
intrinsic curvature tensor whose direction is determined by the director and the other
tangent vector to the local normal (f = N x 3)
—ltDg iy S=Dig;
2 (A4)
where Cy, Dy are the spontaneous curvature and spontaneous deviator at the vertex,
respectively, which reflects the physical characteristics of local membrane composition.
The bending energy is calculated by inserting the mismatch tensor in the Hamiltonian

K, 5
E, = —(TtM)” + K,DetM
L= 5 (TtM)”™ + K,De (A5)
Where K; and K; are the bending moduli of the vertex, again reflecting physical parameters
due to local composition.
To calculate the shape curvature of a vertex i based on Ref. [40], each edge 7 is assigned
a shape tensor estimation

End -
Sy=hyb ® b (A6)

.
: ; & — > _ = . A
b is the binormal at the edge Nj X ¢;, where ¢; =% — X is the edge vector and Nj is

the normal of the edge N,-/« = (Ni,j—l,f + I\AI,«:/-JH)/I...I which is the sum of the normal of
the two triangles sharing the edge, normalized. hi; is a factor representing the directional

derivative of the area = v,A

h{v,- =2 I & l cos(%) (A7)

Where @ is the dihedral angle (angle between the two triangle sharing the edge).
Luckily there is a simple triple product formula for this factor
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by = 2| G| Ry (Nyor x &) (A8)

The cross product of the edge direction and a triangle normal gives a vector on the
triangle which is perpendicular to the edge, which is at an angle % from the edge
normal. )

The full vertex shape tensor is a sum of the edge tensor, weighted by the match of the
normal of the edge to the normal of the vertex.

Al Z i (A9)

We then project this 3 X 3 matrix in real space £, §, 2 to the tangent plane of the vertex d,

. [de dSr}
9%2 =
i-Sd iSi

A

(A10)

The mean curvature H at the vertex is half the trace, while the Gaussian curvature K is
the determinant, which are two of the degrees of freedom in the Hamiltonian.
The mismatch matrix can be calculated

Co+ Dy
dd ) Sdf

Co— Dy

St S = =5 (A11)

The angle between the director and the eigenvectors of the shape matrix is what results in

the @ angle dependence, which is the final degree of freedom. The mismatch tensor is
simply plugged to the Eq. (A5) to compute the bending energy of the vertex. If we integrate
it across the whole membrane, we get Eq. (1).

A.2.3 Dicretization of the order parameter
The order parameter is calculated by a python script shown below. The director gives the
direction of the inclusion 7 .

import numpy as np

import sys

sys.path.append(’ path_to_vtu_file ’)
import vtu

v=vtu.PyVtu(’ timestep_x.vtu’)

nvtx=len(v.type)
nematic_order=np.zeros(nvtx)

for i in np.arange(nvtx)[v.type!=4]:

js = v.get_neighbors (i)
js = js[v.c0[js]1>0]
di = v.director[i]

nematic_order[i] = np.nanmean(3*(v.director[js]@di)*%2-1)/2

v.update_array (’nematic_order ’,nematic_order)
v.update_all ()
v.write_vtu(’nematic_order.vtu’)
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