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Cell motility is fundamental to many biological processes, and cells exhibit a variety of migration pat-
terns. Many motile cell types follow a universal law that connects their speed and persistency, a property
that can originate from the intracellular transport of polarity cues due to the global actin retrograde flow.
This mechanism was termed the “Universal Coupling between cell Speed and Persistency”(UCSP). Here we
implement a simplified version of the UCSP mechanism in a coarse-grained “minimal-cell” model, which is
composed of a three-dimensional vesicle that contains curved active proteins. This model spontaneously forms
a lamellipodia-like motile cell shape, which is, however, sensitive and can depolarize into a nonmotile form
due to random fluctuations or when interacting with external obstacles. The UCSP implementation introduces
long-range inhibition, which stabilizes the motile phenotype. This allows our model to describe the robust
polarity observed in cells and explain a large variety of cellular dynamics, such as the relation between cell speed
and aspect ratio, cell-barrier scattering, and cellular oscillations in different types of geometric confinements.
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I. INTRODUCTION

During cell migration within the body, such as in the de-
velopment or cancer, cells often have to navigate complex
geometries defined by external barriers, tissues, and extra-
cellular matrix (ECM) fibers [1]. These external constraints
and confinements challenge the ability of cells to maintain
their internal polarization and exhibit persistent migration.
Cellular motility during interaction with complex external
constraints and confinement presents an open challenge for
our understanding of cell migration.

This process has been explored over recent years us-
ing in-vitro experiments where motile cells were observed
while migrating over various topographies and confined
within various geometries [2–6]. Theoretical models that
describe cellular migration in complex geometries have re-
lied on different coarse-grained cell mechanics approaches
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[7,8], phase-field and cellular Potts model (CPM) frameworks
[9,10], or more coarse-grained approaches [11]. Examples of
theoretical treatments of the three-dimensional shape dynam-
ics of the motile cell has been proposed [12]. In this model the
polarization of the cell that triggers its migration is applied as
an external constraint, and does not arise spontaneously due
to self-organization of the model components. This is also the
case for this two-dimensional model of cell migration [13].
In the two-dimensional cell migration model [14] there is a
mechanism for spontaneous polarization of the cell, but the
model does not describe the three-dimensional cell shape.
These previous models do not consider the role of curved
membrane components and local membrane curvature at the
leading edge during lamellipodia-driven cell migration, which
is our focus here.

Recently, we introduced a “minimal-cell” model where a
motile phenotype emerges spontaneously due to the coupling
between curved membrane complexes (CMC) and protrusive
forces that result from the recruitment of actin polymerization
to these membrane sites [15,16]. This coupling can lead to
the formation of a lamellipodia-looking protrusion, with a
leading-edge cluster of the CMC, and a total resultant force
that moves the vesicle in the forward direction [Fig. 1(a)(i)].
This simple model was successful in explaining the origin
of several curvotaxis behaviors [17], and since this model is
based on only a few physical ingredients, it is very general
and applies to many cell types. We note that there are re-
cent experimental indications for the curvature-sensitivity of
the leading-edge components of the lamellipodia [18–22], as
arises in our model.
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(a)

(b)

FIG. 1. Implementation of the UCSP mechanism and polarity cue advection into the MC simulations of the vesicle shape. This is demon-
strated here for two main phenotypes that coexist in the absence of UCSP [15]. (a) Polar crescent-shaped vesicle (Ead = 3kBT, F = 2kBT l−1

min).
(i) The active force at each CMC site is denoted by a red arrow, directed at the local outwards normal. The big red arrow at the center of mass
(denoted by a red cross) denotes the total active force due to all the active CMC. The black dashed line shows the calculated axis for the net
internal flow. (ii) The center of mass of the protein cluster is denoted by a blue solid circle. The small blue arrows denote the local contribution
of each CMC to the global actin retrograde flow [opposite to the direction of the local active force in (i)], and the large arrow denotes the total
internal actin-retrograde flow [Eq. (1)]. (iii) The concentration profile of the polarity-cue (inhibitor of the actin polymerization activity), using
Eq. (2). (b) Nonpolar and immotile two-arc-shaped vesicle (Ead = 1kBT, F = 3kBT l−1

min). (i)–(iii) as in (a). For each snapshot, we present top
and side views.

Nevertheless, within this model the polarized, motile
phenotype was rather fragile, and once its leading-edge clus-
ter breaks up, the vesicle irreversibly loses its polarization
and forms a non-motile two-arc shape [Fig. 1(b)(i)]. Such
polarity-loss events can be triggered spontaneously by shape
fluctuations or due to the vesicle interacting with external rigid
barriers [15]. Similar events of break-up of the leading-edge
are observed in motile cells [23–25], however, cells have
mechanisms that allow them to repolarize and resume their
motile phenotype [26,27].

Here we implement a mechanism for internal cellular po-
larization [28,29] into our minimal-cell model, thereby greatly
increasing the robustness of the motile phenotype within
this model. This allows us to use this model to explain the
observed relation between cell speed and shape, as well as
the scattering and spontaneous oscillations of motile cells

when interacting with external rigid topographical barriers
and complex adhesion patterns.

We note that cell motility and polarity is reinforced by
multiple cell-shape and biochemical feedbacks, and our model
does not provide a complete description of all these compo-
nents [30]. Our model demonstrates the rich dynamics that
arises from the curvature-activity coupling, reinforced and
coupled to a global inhibitory field, and the large variety of
cellular behaviors that this model captures.

II. THEORETICAL MODEL

Our minimal-cell model is based on the Monte Carlo
calculation of the dynamics of a closed three-dimensional
triangulated self-avoiding vesicle with a spherical topol-
ogy (Fig. 1) [15,31,32] [see Supplemental Material (SM)
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Sec. S-1 [33] for details]. Within this model we denote the
bare membrane nodes in blue, and the nodes containing the
CMC in red (where the active protrusive forces are applied).
Our model is purely a membrane model, and it does not
include any information about the internal structure of the cell,
such as organelles (nucleus) or bulk elastic deformations and
their associated energy cost.

The mechanism we implement for the internal polarization
of the cell is based on the universal coupling between cell
shape and persistency (UCSP) [11,28,29]. Within this model
the actin polymerization at the leading edges of the cell gives
rise to a net advection of polarity cues across the cell. This
advection results in a gradient of the polarity cue along the
cell length, and these polarity cue gradients, in turn, affect
the actin polymerization activity at the leading edges, thereby
completing a positive feedback that can give rise to spon-
taneous polarization of the cell. The model was previously
mostly implemented in a simple one-dimensional represen-
tation of the cell [11,28,29], and here we similarly implement
it in a simplified manner by projecting the polarity cue gra-
dient and feedback along a one-dimensional axis (ignoring
hydrodynamic flow patterns—see in a two-dimensional cell
[34]). We further note that the front-back inhibition may
arise in cells due to other types of long-range inhibition,
and one can view our implementation as an example of
a large class of intracellular mechanisms that stabilize cell
polarization [35–40].

First, we calculate the axis of the net retrograde flow within
the vesicle, for the instantaneous configuration of membrane
shape and CMC clusters. This is shown in Fig. 1, and more
details are given in the SM Sec. S-2 [33]. The method of
finding the axis of the retrograde flow based on the config-
uration of CMC clusters described in the SM was found to
be very robust, and to give qualitatively similar results to a
simpler vector sum of all the individual CMC contributions.
The magnitude of the net retrograde flow is related to the ac-
tive cytoskeleton force exerted by the CMC [Figs. 1(a)(i) and
1(b)(i)] by a positive coupling factor β. Each CMC contributes
to the total actin retrograde flow, which is oppositely directed
to the active protrusive force

V = −β
∑

i

Fact
i · ê, (1)

where ê is the direction of net retrograde flow along the calcu-
lated axis in such a way as to have a positive V [Figs. 1(a)(ii)
and 1(b)(ii)], and Fact

i is the active actin-driven protrusive
force due to a CMC at the ith vertex, pointing at the outwards
normal.

Using the calculated retrograde flow, we calculate the
polarity cue distribution along this axis, given by

c(p) = ctotV (p f − pb)

DVves

e−V p/D

e−V pb/D − e−V p f /D
, (2)

as shown in [Figs. 1(a)(iii) and 1(b)(iii)]. Here, p is the projec-
tion of a vertex position with respect to the center of mass on
the axis of retrograde flow, Vves is the volume of the vesicle,
and D is the diffusion coefficient of the inhibitory polarity
cues. p f and pb are the projections of the vertices at the
front and the back of the cell with respect to the retrograde
flow axis. The quantity ctot denotes the total amount of the

polarity cue: ctot = ∫
vesicle c(p)dτ . In our model the unit of

the actin retrograde flow V is given by D/lmin since it is only
the ratio V/D that appears in Eq. (2). The force has units of
kBT l−1

min, and therefore, the coupling parameter β has units
of D

lmin

1
kBT l−1

min
= D/kBT . Note that we assume here that the

inhibitory field equilibrates to its steady-state profile [Eq. (2)]
faster than the rate at which the cell changes its shape and
the organization of the CMC and actin polymerization on the
membrane. This assumption, of the separation of timescales,
was also made in [28,29], and is supported by measurements
of myosin-II (serving as an example of a polarity cue) redis-
tribution time when advected by actin (∼10 s) [41], while
the stick-slip cycles of the cellular shape changes are over
timescales of tens of minutes [29].

The polarity cue distribution, in turn, affects the local
strength of the protrusive force induced by actin polymeriza-
tion at the location of each CMC, according to the following
steady state of first-order kinetics:

F̃ = F

1 + c(p)/cs
, (3)

where cs is the saturation concentration for this inhibitory re-
action. This feedback means that, in the region with the higher
concentration of inhibitor the CMC induce weaker protrusive
forces, and contribute less to the total actin retrograde flow
[Eq. (1)]. This is clearly demonstrated in Fig. 1(b).

The modified actin polymerization forces [Eq. (3)], and the
modified contribution to the actin retrograde flow [Eq. (1)],
are then used to calculate again the polarity cue profile
[Eq. (2)] until these repeated iterations converge to within
some fixed error threshold of 0.1%. The Monte Carlo (MC)
simulation is then allowed to proceed with the modified CMC
forces, until the vesicle shape has changed by more than some
threshold value 10%, and the UCSP calculation is updated,
whereby a new axis for the net flow is calculated and the
whole process is repeated.

The examples shown in Fig. 1 demonstrate the principles of
this procedure for two typical shapes that form spontaneously
in our model: the motile crescent shape and the nonmotile
two-arc shape. Both shapes coexist in the same parameter
regime, when we do not implement the UCSP calculation
[15]. To demonstrate the UCSP procedure of calculating the
net flow and forces for a given fixed configuration of vesi-
cle shape and CMC distribution, we start with these two
steady-state configurations. In both cases, we let the UCSP
calculation converge, and indicate the final identification of
the axis of the net retrograde flow, the resulting concentration
profile of the polarity cue and active forces. We show here
the result of the first converged UCSP calculation, without
allowing the system to proceed forward in the MC simulation.
These examples demonstrate how the UCSP further enhances
the robustness of the crescent shape [Fig. 1(a)], while it breaks
the symmetry of the forces that maintain the two-arc shape
[Fig. 1(b)], leading eventually to its transformation into a
crescent shape (see Figs. 2 and 3 below).

It is not, however, clear that this convergence is unique,
especially in nonpolar configurations of the CMC clusters,
with almost balanced forces acting in different directions. In
these circumstances small changes in configuration could lead
to very different converged states. However, these converged
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(a) (b)

FIG. 2. Stabilization of the crescent-shaped, polar vesicle by the UCSP mechanism and transition between shapes. (a) Examples of the
dynamics of the motile vesicle for different values of the UCSP coupling strength β. In the absence of UCSP (β = 0 D/kBT ) the crescent
shape is transiently stable, and thermal fluctuations break it into the two-arc shape [15]. As the coupling strength β increases, the instability is
delayed or allows the polar state to be partially recovered (β = 0.4 D/kBT ). When the coupling is strong (β = 20 D/kBT ) the crescent shape
becomes absolutely stable. To maintain a constant maximal active force magnitude of F̃max ≈ 4kBT l−1

min, we use F = 4, 7.1, 4kBT l−1
min for the

cases of β = 0, 0.4, 20.0 D/kBT , respectively (the adhesion parameter Ead = 1 kBT ). See SM Movie 1 [33]. (b) The concentration profile of
the polarity cue along the UCSP axis at the final times of the cases shown in (a).

(a) (b) (c)

(d)

(g) (h)

(e) (f)

µ

FIG. 3. Transition between polar and nonpolar shapes. (a)–(c) The transition of a two-arc shape to a crescent polar-shaped vesicle (See
SM Movie 4 [33]). The trajectories indicate the speed of the vesicle using the heatmap. We start the simulations with a two-arc-shaped vesicle
using F = 3kBT l−1

min, Ead = 1 kBT . (a) In the absence of UCSP coupling (β = 0 D/kBT ), the two-arc shape is stable. (b), (c) For higher coupling
strength (β = 5, 10 D/kBT ), the UCSP mechanism breaks the symmetry of the two-arc shape and makes a transition to the crescent, motile
shape (shown at times 0, 699, 999). (d) The planar force magnitude Fxy is shown for β = 0, 5, and 10 in units of D/kBT with green, red, and
black, respectively. (e) The snapshots of the shape transition from a two-arc to a crescent shape for β = 10 D/kBT [the case β = 10 D/kBT
shown in (c)]. The CMC on the right (xi > xCM) and left (xi < xCM) of the center of mass are marked by red and blue, respectively. The
concentration profile of the inhibitory polarity cues is shown. (f) The time evolution of the ratio of the average curvature of the CMC on the
right and left of the center of mass. (g) Increased amplitude of thermal fluctuations by decreasing the bending rigidity κ = 15kBT , giving rise
to spontaneous transition between polar and nonpolar shapes. We set the coupling parameter β = 20 D/kBT . The polar-shaped vesicle makes
a transition to a nearly two-arc shape and back to a motile crescent shape (See SM Movie 3 [33]). The two-arc shape corresponds to the dip in
the planar speed plot (blue), and a peak in the ratio of left/right number of CMC with respect to the center of mass along the polarity axis (red).
(h) Experimental data are showing a D. discoideum cell undergoing a transition between polar and nonpolar (cells scaled down by a factor of
2, labeled with LifeAct-GFP and PHcrac-RFP). The snapshots are shown at 40 s, 160 s, and 320 s (See SM Movie 5 [33]). The planar speed
vxy shows a similar dip when it becomes a two-arc. The dashed lines correspond to the time at which we show the shape of the cell from the
experiment.
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states are characterized by low net flow, and so can easily
switch from one to the other, which is a realistic behavior for
a weakly polarized cell.

In the UCSP model, we find that spontaneous polarization
of the cell occurs when the coupling parameter between the
actin flow and the asymmetry in the polarity cue (β) is larger
than a critical value [28], which also depends on the cell length
[29]. We show in the SM a similar transition from a non-
motile to a motile (polarized) state above a critical value of β

(Fig. S-1) [33].
All the vesicles used in this work are composed of N =

1447 vertices to create the triangulated membrane. We use the
time unit as 20 000 Monte Carlo steps and the protein per-
centage is ρ = 3.45% if not specified (for the pancake shape,
we use ρ = 5.53% in Fig. 4). We use the following UCSP
parameters throughout the paper: ctot = 4000, D = 4000, and
cs = 1, and the CMC binding energy was fixed at w = 1 kBT .

III. RESULTS

We now demonstrate the results of implementing the inter-
nal polarization mechanism (UCSP) on the motility dynamics
of our minimal-cell model.

A. UCSP mechanism stabilizing the motile phenotype

We previously showed that the crescent shape is transiently
stable and can make a spontaneous transition to a two-arc
shape since both shapes coexist in the same parameter regime
[15]. This instability occurs faster for large protrusive force F
and weak adhesion Ead, and is shown in Fig. 2. In Fig. 2(a)
we demonstrate that, in the absence of UCSP (β = 0 D/kBT ),
the leading-edge cluster can spontaneously break into two,
whereby the vesicle changes to the two-arc shape and motility
is irreversibly lost. As the coupling between the asymme-
try in the polarity cue and the actin flow (β) increases, the
UCSP mechanism can stabilize the crescent-shaped vesicle
and suppress the transition to the nonmotile two-arc shape.
As β increases the polarity cue profile becomes sharper from
back to front [Fig. 2(b)], and the net retrograde flow remains
more stable (Fig. S-2 [33]), preventing the transition to the
two-arc shape.

Next, we study the UCSP-induced polarization of the two-
arc shape (Fig. 3). We start the simulation with a nonmotile
two-arc-shaped vesicle, which is stable in the absence of the
UCSP mechanism [Fig. 3(a)]. We then switch on the UCSP
mechanism and demonstrate how the vesicle becomes more
polarized, crescent-like, and motile as β increases [Figs. 3(b)
and 3(c)]. The total active force increases as the cell polarizes
and transforms from the two-arc to the crescent shape, as
shown in Fig. 3(d).

The polarization process proceeds as follows: the polar-
ity cue concentration peaks at one end of the two-arc shape
[Fig. 3(e)], inhibiting the protrusive forces in this “losing”
CMC cluster. This reduction in the amplitude of the protrusive
forces causes this cluster to lose its high curvature [Fig. 3(f)],
which then loses its stability, breaks up, and its CMC diffuse
to join the “winning” cluster at the opposite end of the two-arc
shape [Fig. 3(e)], where the large protrusive force maintains

(a)

(c)

(d)

(f)

(e)

(b)

FIG. 4. The relation between the vesicle’s initial shape and po-
larization (a), (b) The initial state of a spread vesicle, with a circular
leading-edge cluster (grey background image). An external force
field [black arrows in (a)] is applied to deform the vesicle, mimicking
the effect of a strong fluid flow in the x̂ direction. The force is acting
within a range of �x of the vesicle’s rear. The strength of the force
has a Gaussian form (heatmap). (b) The final deformed, crescent
shape when the external force field is turned off. The leading-edge
cluster is broken up in the region deformed by the external force, due
to the membrane losing its high curvature. The local active forces are
indicated by the red arrows. (c) Vesicle shapes at different times for
different coupling strengths (β = 0, 10, 20 in units of D/kBT ), for
the pancake and the deformed crescent shapes (b). (d), (e) The time
dependence of the total planar active force F tot

xy and velocity vxy. The
color code of the lines is elaborated in (f), where we show a bar plot
of vxy averaged over a time window indicated by the shaded region in
(e). The parameters used: parameter protein density ρ = 5.53%, ad-
hesion strength Ead = 3kBT and active force parameter F = 2, 2.5,

and 2 in units of kBT l−1
min for the cases β = 0, 10, and 20 in units of

D/kBT , respectively, to maintain the maximum force at one vertex
F̃max ≈ 2kBT l−1

min.
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a high curvature at the leading edge. This process thereby
converts the two-arc shape into the crescent motile phenotype
with a single large CMC cluster [Figs. 3(c)–3(e)]. Clearly,
there is a transition regime of values β ∼ 1–5 in units of
D/kBT above which the minimal cell can robustly repolarize
following its transition to the nonmotile two-arc shape. It is
not easy to compare the critical parameter value of beta that
initiates the polarization transition to observations in living
cells, as this critical value depends in the model also on the
values of other parameters such as ctot which are unknown.
The values of beta found in the original one-dimensional
(1D) version of the UCSP model [29,42] to give comparable
migration patterns as observed in living cells were in the range
of beta 5 to 10, which is not so different from the range of
values we find in the present work.

To observe more dynamic transitions in polarity, which are
often observed in living cells, we need to allow for larger
fluctuations in our system. By reducing the bending rigid-
ity parameter from κ = 20 kBT to κ = 15 kBT (and using
an active force parameter F = 2kBT l−1

min) we induce larger
amplitude shape fluctuations, effectively emulating the large
level of metabolic noise observed in cells. Now, we ob-
serve spontaneous shape changes (see SM Movie 3 [33])
from crescent-shaped polar to nonpolar nearly two-arc-shaped
vesicle, as shown in Fig. 3(g). The planar speed vxy dips
when the vesicle transitions to a two-arc shape [blue line in
Fig. 3(g)]. To quantify the distribution of the CMC clusters
we plot the ratio NL

p /NR
p of the number of proteins on the

left and right sides of the center of mass, along the po-
larity axis [red line in Fig. 3(g) on a dual axis]. As this
ratio approaches 0 (1) it implies a more (less) polar vesi-
cle, and indeed this ratio NL

p /NR
p reaches its maximum when

the planar speed is lowest. This sequence of polarity loss,
and recovery, is observed in experiments with D. discoideum
cells, where spontaneous switches between a crescent-shaped
polar mode of locomotion and a non-polar state were re-
ported [43] for an example see Fig. 3(h) (see SM Movie 5
[33]). A similar dip in planar speed vxy is observed exper-
imentally when the cell takes a two-arc shape. Note that,
in the absence of UCSP (β = 0 D/kBT ), the larger ther-
mal fluctuations break up the motile vesicle, which quickly
becomes two-arc (see SM Movie 2 [33]).

We further investigate the interplay between cell shape and
polarization by starting with a nonpolar vesicle where the
CMC form a circular leading edge around the entire shape
[using a higher CMC concentration, Fig. 4(a)]. In the absence
of UCSP this “pancake” shape is stable and nonmotile [15].
We then apply a transient external force field, which emulates
the effect of blowing fluid at high pressure on the vesicle
(see SM Sec. S-5 [33] for the details of this external force
field), resulting in the deformation of the pancake into a cres-
cent shape [Fig. 4(b)]. This simulation is motivated by the
experiments that demonstrated the conversion of a nonmotile
circular cell fragment into a motile phenotype by deforming it
into a crescent shape by an applied shear flow [44].

In Figs. 4(c)–4(f)] we demonstrate the effect of such a
transient shape deformation on the polarization of the vesicle,
for different values of the UCSP coupling parameter β. When
the transient external force field is switched off, we implement
the UCSP mechanism, and follow the consequent evolution of

the vesicle’s polarization. We find that the shape deformation
leads to a small polarization for small (or no) UCSP coupling
strength, which decays over time. Initially the crescent shape
disrupts the CMC cluster in the region facing the external
force field [Fig. 4(b)], as its curvature becomes small or nega-
tive (concave). However, this polarization of the CMC and the
total force is short-lived and the vesicle resumes the pancake
shape, with decaying polarization.

At large values of β the UCSP coupling is strong
enough to break the symmetry and polarize even the pan-
cake shape without the transient crescent shape deformation.
There is, however, an intermediate regime [for example, β =
10 D/kBT , Fig. 4(f), and Movie 6 [33]], where we find that
the transient crescent shape deformation enables the system
to attain a persistent high polarity form, which it cannot
reach spontaneously from the pancake shape. This observation
demonstrates that within our model there can be a coexistence
of long-lived low- and high-polarity phenotypes which depend
on their initial shape, as observed in experiments [44]. In
addition, we apply a subsequent transient flow in the opposite
direction of the vesicle’s motion, and find that the vesicle
repolarizes in some other direction, but does not lose its high
polarity state (see Fig. S-4, Movie 6 [33]).

The correlation between cell polarization, as manifested by
the cell velocity, and cell shape were experimentally measured
for different types of motile cells [45,46]. We use our model
to explore this relation by simulating vesicles with different
densities of CMC and strength of the UCSP coupling (Fig. 5).
For each combination of CMC concentration and β we plot
in Fig. 5(a) the instantaneous speed and aspect ratio of the
vesicle’s projection on the x-y plane (calculated with respect
to the direction of motion). In Figs. 5(b)–5(e) we show typ-
ical snapshots of the vesicle shape and CMC cluster along
the vesicle leading edge. Remarkably, the relation that we
obtain between speed and aspect ratio [Fig. 5(a)] exhibits the
same step-like behavior observed in experiments, including
the large scatter [45,46].

As expected, the vesicles with the lower concentration of
CMC maintain a more polar form, with and without the UCSP.
In fact, the vesicles with UCSP of intermediate coupling
strength (β = 10 D/kBT , red dots) have a lower aspect ratio
compared to no UCSP (β = 0 D/kBT , grey dots) since the
forces exert sideways, which stretch the vesicle perpendicular
to its direction of motion, are inhibited in this case. With larger
aspect ratio a larger proportion of the forces are oriented in the
direction of motion, allowing for higher average speed. When
the CMC form a circular cluster, the cell can still polarize
for significant coupling strength (β = 10 D/kBT , similar to
Fig. 4), but with lower speeds due to significant forces acting
opposite to the direction of motion.

Our model, therefore, allows to explain the aspect-ratio-
speed relation, through the processes by which the active
forces at the leading edge both propel and deform the cell,
with the efficiency of the propulsion (speed) dependent on
the shape and the resulting distribution of the leading-edge
cluster around the cell. Note that our model at present does not
include the contractile forces that occur at the rear of polar-
ized cells and cell fragments [44–47]. Such contractile forces,
localized at the cell rear, can deform polarized cells and cell
fragments into the crescent shapes observed in experiments.
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(a)

(b)

FIG. 5. Relation between the vesicle’s aspect ratio and speed. (a) Scatterplot of the instantaneous speed and aspect ratio of the vesicle for
four different cases: (i) polar vesicle, β = 0 D/kBT ; (ii) polar vesicle, β = 10 D/kBT ; (iii) polar vesicle, β = 20 D/kBT ; and (iv) pancake-
shaped vesicle, β = 0 D/kBT in grey, red, green, and blue, respectively. The black line shows the fitted-curve with a saturating functional form
v0 tanh b(x − x0 ) through the average coordinates of each cluster. We find v0 = 0.3 ± 0.0014, b = 0.06 ± 0.002, and x0 = 0.977 ± 0.0003
using PYTHON SCIPY package. (b) Typical shapes of the vesicles for the different cases, and the polarity cue distribution profiles. The CMC
density is 3.45% and 5.53% for the polar and the pancake shapes, respectively.

B. Interactions with barriers and confinements

We now explore the dynamics of our minimal-cell model,
incorporating the UCSP, when interacting with external bar-
riers and confinements. In the absence of the UCSP (β =
0 D/kBT ), we find that when our motile vesicle impinges on
a rigid wall barrier, it loses its polarity and converted to the
nonpolar two-arc shape [15] [Fig. 6(a)]. This happens in our
model due to the membrane flattening against the rigid barrier,
losing its high curvature along the leading-edge and the subse-
quent migration of the highly curved CMC to the nearest free
membrane on either side along the barrier (see Movie 7 [33]).
While real cells do transiently lose or diminish their polarity
when scattering off barriers, they can recover their motility
and migrate away [26,27]. Similar behavior is observed when
cells collide [48], giving rise to cell-cell scattering and a form
of contact inhibition of locomotion (CIL) [49].

In Fig. 6(a) we demonstrate the trajectory of the same vesi-
cle in the presence of UCSP (β = 6, 15 D/kBT ) (see Movie

8 [33] for β = 15 D/kBT ). While the speed and polariza-
tion transiently diminish when the vesicle hits the barrier
[Figs. 6(b) and S-6(a) [33]], it recovers and the vesicle mi-
grates away. In Fig. S-7 [33] we give more examples of
cell-barrier scattering simulations at various angles.

In Fig. 6(c), we demonstrate an experimental trajectory of
a D. discoideum cell that hits a rigid barrier, and continues
to slide along it. The speed of the cell is shown in Fig. 6(d).
During the interaction with the barrier, the cell transiently
loses its motility (blue shaded region) and then recovers the
speed again as it slides along the barrier edge. This is very
similar to the behavior in our simulations [Figs. 6(a) and 5(b)].

Recently, it was observed that when the cells can partially
penetrate the barrier, they often get trapped at the barrier for
a significant period of time, before escaping away [50]. We
simulate the effect of a soft barrier by allowing the vesicle
to move into the barrier [Figs. 6(e) and 6(f)], which ex-
erts a spring-like restoring force on each membrane node,
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FIG. 6. Scattering and repolarization of a cell hitting a barrier. (a) The trajectory and shapes of the vesicle hitting a rigid barrier (grey
region) for three different values of the coupling parameter β = 0, 6, 15 in units of D/kBT (see Movies 7, 8 [33]). (b) The planar speed
vxy from the simulation is shown for the rigid barrier. We use green, blue, and red colors for β = 0, 6, 15 in units of D/kBT respectively.
(c) Trajectory and shapes of a D. discoideum cell migrating and hitting a rigid barrier in the experiment (see Movie 10 [33]). The snapshots
from different times (insets with a white border) where overlaid on the bright field channel, to visualize the barrier. Only the red channel
(PHcrac) and bright field channel are shown. (d) The planar speed vxy of the D. discoideum cell from the experiment. (e) The trajectory and
shapes of the vesicle hitting a soft barrier (spring constant kw = 0.1kBT l−2

min, grey region) for two values of the coupling parameter β = 0, 15
in units of D/kBT . (f) Penetration percentage is plotted over MC steps in the case of soft barriers for β = 0, 15 D/kBT in green and red,
respectively. The trajectories in (a) and (e) are colored cyan if the vesicle is not in contact with the wall, or magenta if it is touching (within
s = 0.15 lmin of the rigid wall) or penetrating the soft wall region. We use F = 2kBT l−1

min, Ead = 3kBT .

proportional to the penetration distance (see SM Sec. S-6 [33]
for more details). Comparing to the hard-wall case, we find
that even without the UCSP mechanism (β = 0 D/kBT ) the
motile vesicle maintains its polarity when hitting the soft wall
[Fig. 6(e)]. This is facilitated by the membrane maintaining its
high curvature along its leading-edge, thereby preventing the
CMC cluster from breaking up into the two-arc configuration
(see Movie 12 [33]). After spending some time stuck against
the wall, the vesicle spontaneously rotates and migrates away
[with significantly diminished polarization, Figs. S-6(b) and
S-6(c) [33]]. In the presence of UCSP, the cells get stuck pen-
etrating the barrier for longer times as the coupling strength
increases [Fig. 6(f)], before migrating away (see Movie 13
[33]). As the coupling parameter β increases, the vesicle be-
come more persistent and the vesicle retains its highly curved
lamellipodia in the original direction for a longer time when
the barrier is soft.

A more extreme scattering configuration is presented in
Fig. 7. Motivated by experiments we let our motile vesicle
hit the triangular tip of a square-shaped barrier, edge on (the
shape of the triangular tip is explained in SM Sec. S-7A [33]).
As expected, in the absence of UCSP, the vesicle loses its

polarity to the immotile (see Movie 14 [33]) two-arc shape
[Fig. 7(a)]. As the values of β increase the UCSP mechanism
which allows the vesicle to recover its polarized shape follow-
ing the scattering with the barrier, and continue its migration
(see Movie 15 [33]). In Fig. 7(d) we show similar scattering
events in experiments using D. discoideum cells hitting PDMS
barriers (see Movie 16 [33]). As in the model, the cells can
lose their polarity, form two competing protrusions with very
large shape elongation (similar to the two-arc shape), and
recover their polarity.

The most elaborate test of our vesicle’s motility un-
der confinement is shown in Fig. 8(a). Here, we consider
a dumbbell-shaped region surrounded by rigid barriers.
The configuration of this confinement is motivated by
experiments that have demonstrated spontaneous cellular os-
cillations within this system [51,52]. In these experiments
it was found that cells spontaneously oscillate along the
dumbbell pattern, and our model displays very similar be-
havior [Figs. 8(a) and 8(b)]. Within our model, the origin
of this oscillatory behavior is explained in Fig. 8(c). As the
vesicle moves to the right, its leading edge reaches the rigid
walls of the confining barrier, where the leading edge loses
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(a)

(d)

(b)

(c)

FIG. 7. Scattering of a vesicle and a cell from a triangular shape. (a) Snapshots of the vesicle, initially in the polar state, when hitting head-
on a rigid boundary with a triangular shape, for four different coupling strengths β = 0, 10, 20 D/kBT . We use the active force F = 4kBT l−1

min

and adhesion strength Ead = 3kBT . For β = 0 D/kBT , we can see that the vesicle loses its polarity. For intermediate coupling, β = 10 D/kBT ,
the repolarization of the vesicle is partial, while it is complete for strong coupling, β = 20 D/kBT . (b), (c) The total planar active force F tot

xy

and velocity vxy, respectively. This demonstrates the loss of polarization, and its recovery as function of time for the different values of β.
(d) Snapshots from experiments showing similar dynamics of motile D. discoideum cells scattering off the triangular tip of a PDMS barrier.
The cropped regions of interest (ROIs) are rotated to display the same orientation as the examples shown in (a). The ROI in the first and second
row is 50 × 50 µm and 75 × 75 µm, respectively.

its high curvature [Fig. 8(d)], and the leading edge cluster
breaks into two (or more) clusters on either side, protruding
mainly along the perpendicular directions. The contributions
of these clusters to the global retrograde actin flow ap-
proximately cancel each other, and the global flow along
the long axis of the pattern (x-axis) becomes dominated by
the trailing edge CMC cluster and switches direction. As the
flow direction switches, so does the polarity cue gradient and
the activity of the CMC becomes strong in the new lead-
ing edge and weak at the new trailing edge, and the cell
moves towards the opposite end of the dumbbell, and so on
(see Movie 17 [33]).

In the SM Sec. S-7B (Fig. S-10) [33] we demonstrate
these oscillations in a dumbbell pattern confined by adhesion
(see Movie 18 [33]), rather than rigid barriers, where the

mechanism for the oscillations is identical: since the leading
edge does not easily extend over the nonadhesive region, it
loses its sharp edge, flattens and breaks up. We also demon-
strate these oscillations in a simpler rectangular adhesive
confinement (SM Sec. S-8, see Movie 19 [33]). In this case,
the cell can get stuck for longer times at the end of the
rectangle, as there is less space available for the leading edge
to quickly break up into two opposing parts compared to
the dumbbell pattern. Indeed, cells inside confining adhesion
patterns often exhibit random oscillatory dynamics in exper-
iments [52,53], sometimes getting stuck at the ends of the
patterns before switching their direction of migration [54].
When the end of the rectangular adhesive confinement has a
sharp tip (Fig. S-12 [33]), we find that the direction reversal
times are similar to the blunt tip, with mainly the very fast
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(a)

(b)

(c)

(d)

FIG. 8. Oscillations within a dumbbell topographic confinement.
(a) Snapshots of the vesicle within the dumbbell-shaped confinement
at time 475, 600, 725, 825, 950, and 1025 in the units of 20 000
MC steps during a complete oscillation between the two chambers.
The total active force F tot

xy (excluding the z direction) is shown with
the red arrow for each snapshot. (b) The oscillation along the x
coordinate of the vesicle over time. The xmin, xmean, and xmax of all
the vertices of the vesicle are shown in blue, grey, and red solid
lines, respectively. Black dashed lines indicate the dimensions of the
dumbbell shaped-confinement, where, Lx1 = 36, Lx2 = 78, Ly1 = 16,
and Ly2 = 32 in the units of lmin. The time evolution of the x compo-
nent of the total force F tot

x is shown in orange (scale on the right).
Green vertical dotted lines denote the times of the snapshots in (a).
(c) Different protein clusters are shown in different colors on a x-y
plane from the top view during the polarity flip. We indicate the actin
flow contribution from each cluster in the corresponding coloured
arrow at the mean position of that cluster. The total actin flow is
indicated using a black arrow at the center of mass of the vesicle.
We use the adhesion strength Ead = 3kBT , active force parameter
F = 3kBT l−1

min, and the coupling parameter β = 20 D/kBT . (d) On
the left, a schematic diagram of the vesicle where the curved proteins
are coloured with red if it’s x coordinate xi > xCM, and with blue if
xi < xCM. The center of mass is denoted by a lime-colored marker.
On the right, the mean curvature for the curved proteins for xi > xCM

and xi < xCM in red and blue, respectively. The black dashed lines
denote the times of the force reversals along the x direction.

reversals inhibited by the sharp tip. This is in qualitative
agreement with the experimental observations [54]. The origin
of this is behavior is that the sharp tip stabilizes the leading
edge in a curved shape that extends slightly outside the tip,
thereby delaying its breakup and direction reversal

This effect of the pointed tip on the oscillations is also ob-
served in Fig. S-13 (Movie 20 [33]), when the spindle-shaped
adhesive region has a width that is comparable to that of the
cell. When the width is much wider, the vesicle moves around
the boundary, as also observed on a circular adhesive patch
(see Fig. S-14, Movie 21 [33]). In these cases the flat boundary
breaks up the leading edge, which forms at the side of the
cell-boundary contact line.

Finally, in Fig. S-15 [33] we compare the shapes and
speeds of the vesicle when migrating over a free surface,
compared to its steady-state migration periods on the narrow
rectangles. We find that the speed decreases with the increas-
ing confinement, which we attribute to the smaller length of
the leading-edge cluster that provides the protrusive forces. In
addition, we find that the leading edge of the vesicle becomes
less sharp (lower curvature) with higher confinement. Both of
these features were previously observed in experiments [55],
which our model therefore explains.

Our model is based on a physical mechanism that inhibits
the leading edge at the pattern’s edge, namely, its curvature
sensitivity, which explains both the behavior for adhesive and
topographic confinement. Additional biochemical feedbacks
may also contribute [9,56]. Our results are also relevant to
cellular oscillations observed when cells form their own ad-
hesive “confinement” by deposition of extracellular matrix
(ECM) [57,58].

IV. DISCUSSION AND CONCLUSION

Recently, we demonstrated that the coupling of curvature
(through CMC) and recruitment of active protrusive forces
due to actin polymerization, together with surface adhesion
[15], provides a powerful organizing principle that can explain
a variety of cellular shape dynamics and migration patterns
[16,17,32]. Here we extended this model by implementing a
simplified mechanism that couples the membrane organiza-
tion of the CMC to an internal net actin flow that induces a
polarity cue gradient across the cell. This polarity cue, in turn,
introduces long-range inhibition of the local forces exerted by
the CMC, thereby completing the feedback between the CMC
organization and global polarization of the cell [28,29].

This extension greatly increases the robustness of the po-
larized vesicle in our model. It allows us to use our model
to explain a large variety of cellular dynamics which are
observed in living cells, such as the relation between cell
speed and aspect-ratio, cell-barrier scattering, and cellular
oscillations in different types of geometric confinements.
The agreement between the experiments and the model em-
phasizes that curved protein complexes are crucial in the
formation and dynamics of lamellipodia-driven cell migra-
tion [21], and explain the sensitivity of the lamellipodium’s
stability to its leading-edge curvature [59]. We demonstrate
that simple, and therefore general (not cell-type specific),
physics-based mechanisms play essential roles in directing
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cellular shape and migration. Biological and biochemical
complexity allows cells to exert more precise control over
these physical mechanisms, in response to different external
conditions.
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