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A B S T R A C T

We study experimentally and theoretically liquid crystal structure of smectic oily streaks, focusing on planar wall 
defects hosted within smectic flattened hemicylinders (SFHs). The wall configuration is singular both in orien
tational and translational order and we refer to it as the Total Wall Defect (TWD). Here “singular” refers to 
nematic director field and smectic phase field. In theoretical analysis of the TWD we use a mesoscopic Landau-de 
Gennes-Ginsburg approach in terms of the nematic tensor order parameter and smectic A (SmA) complex order 
parameter field. The smectic layer structure is experimentally determined using polarizing optical microscopy 
and X-ray diffraction measurements at Synchrotron facilities. We demonstrate theoretically and numerically that 
the experimentally observed abrupt change of the SmA layering in the centre of the wall defect is realized via 
nematic order reconstruction mechanism. Our experiments reveal that smectic layer spacing above and below the 
wall are almost similar. The theoretical analysis suggests that lateral SFH boundary conditions determine the 
vertical position of TWD.

1. Introduction

Interfaces and thin films formed by soft anisotropic materials [1–3] 
display a rich variety of different configurations, which are of interest 
for various applications and also for fundamental physics. Particularly 
complex patterns could emerge in the presence of geometrically 
imposed frustrations. These could stabilize topological defects (TDs) [4] 
enabling abrupt configurational changes on a short distance. In the 
present paper, we study such phenomena in geometrically frustrated 
thin smectic A (SmA) liquid crystal (LC) films.

SmA LCs represent one of the simplest LC phases simultaneously 
exhibiting liquid-like, orientational and translational order [5]. In a 
Landau-de Gennes-Ginsburg-type mesoscopic approach [6], the orien
tational order is given by the tensor nematic order parameter Q. In a 
bulk equilibrium, the orientational order is uniaxial and spatially 

homogenous. Furthermore, the system possesses a mass density spatial 
variation in the form of one-dimensional stack of equidistant layers, 
with translational order being characterized by the smectic complex 
order parameter ψ. The uniaxial orientational order is commonly 
expressed [6] as Q = s(n⊗n − I/3) in terms of the uniaxial scalar order 
parameter s and the nematic director field n. Here s measures the 
amplitude of orientational order. The unit vector n points along the local 
axial direction, where the states ± n are physically equivalent (the 
so-called head-to-tail invariance). On the other hand, the transitional 
order is mimicked by [6] ψ = ηeiϕ, where η measures the amplitude of 
layering and the smectic phase, ϕ, determines the location of smectic 
layers. In bulk equilibrium, s and η are spatially homogenous, n points 
along a single symmetry breaking direction, and ϕ = qon.r. The wave 
vector qo = 2π/d0 determines the equilibrium smectic layer distance d0.

If LC order is frustrated, topological defects could emerge both in 
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orientational and translational order. TDs [4,5,7] refer to localized 
distortions, where the relevant order is in general not uniquely defined. 
In nematic orientational order, point or line defects [5] are commonly 
observed and could be stabilized topologically. On the other hand, wall 
defects in orientational order, which play an important role in our study, 
could be stabilized only energetically [5]. For instance, nematic wall 
defect-like structure could be realized in severely confined LCs by locally 
entering biaxial states. A classic example corresponds to 
order-reconstruction (OR) nematic deformation [8] realized in strong 
spatial confinement [8–10] within a plan-parallel cell of thickness h 
imposing frustrating boundary conditions [8]. A typical geometrical 
setup in which OR nematic pattern could be realized is depicted in Fig. 1. 
In this setting one substrate enforces i) homeotropic anchoring, while 
another one enforces ii) tangential anchoring. Such boundary conditions 
enforce n to be locally aligned along the i) substrate surface normal and 
ii) perpendicular to it, respectively. In thick enough cells (with respect to 
the nematic biaxial order parameter correlation length ξb [8]), the 
nematic order within the cells is essentially uniaxial and n gradually 
reorients on traversing the cell to satisfy the conflicting boundary con
ditions, as depicted in Fig. 1a. For the cases where a similar orientational 
conflict is imposed on a distance comparable to ξb, the frustration is 
resolved via the OR mechanism [8–10] in which Q must enter biaxial 
states. The corresponding structural transformation is realized by the 
exchange [11] of Q eigenvalues, while the Q eigenvector frame remains 
fixed (Fig. 1b). This behavior is accompanied by Q eigenvalues spatial 
variations in two-dimensional nematic amplitude order parameter space 
(see Methods and Fig. 7). The key requirement for the OR activation is 
the presence of a large enough contradicting orientational order 
imposed on the length scale ξb. In this contribution, we show that a 
wall-like OR structure can be triggered also via the SmA order in 
hybrid-like confinements.

We consider the so-called smectic oily streaks [12–16], which can 
appear in free thin SmA films covering a flat substrate enforcing 
tangential order. In the case where SmA-air interface imposes homeo
tropic anchoring, the resulting antagonistic anchoring leads to the for
mation of periodic smectic flattened hemicylinders (SFHs), separated by 
grain boundaries, as schematically shown in Fig. 2a. Two quarter cyl
inders are formed at each edge of the SFHs [14]. The hallmark feature of 
SFHs are planar wall defects, at which smectic layer stacking suffers 
discontinuous reorientation (Fig. 2b) [14]. The structure of this wall 

represents the open problem that we resolve in this paper. We show that 
the wall represents a Total Wall Defect (TWD) where both smectic and 
nematic order become frustrated, the latter exhibiting OR 
transformation.

2. Results

To understand the LC structural details of the wall defect embedded 
within the SFHs, we first present experimental measurements of oily 
streaks using Polarizing Optical Microscopy (POM) and X-ray diffrac
tion. Then we reveal the LC configurational details using a mesoscopic 
Landau-de Gennes-Ginsburg approach using least possible algebra to 
describe the key structural features.

2.1. Experimental measurements

Smectic films of average thickness 180 nm have been prepared by 
depositing smectic 4-n-octyl-4′-cyanobiphenyl (8CB) on rubbed 
polyvinyl-alcohol (PVA) substrate that promote a planar unidirectional 
anchoring whereas air imposes homeotropic anchoring. The schematic 
presentation of the resulting oily streaks is given in Fig. 2a. Due to this 
hybrid anchoring, the smectic layers are curved in SFHs oriented along a 
single direction (Ox) perpendicular to the PVA substrate rubbing. These 
SFHs can be detected by POM in reflection between crossed polarizers 
(Fig. 2c). They are of width around 600 nm for a thickness 180 nm. Their 
internal structure has been extensively studied using combined X-ray 
diffraction and ellipsometry measurements [14,16]. As shown in Fig. 2b, 
which displays a side-view ((Oyz) plane) of one given hemicylinder, a 
sublayer of perpendicular smectic layers is formed at the basis of each 
SFH, covering all the PVA substrate, in line with a strong planar unidi
rectional anchoring. It is of thickness of the order of 20 - 30 nm [14]. A 
two-dimensional (2D) central defect (in green in Fig. 2b) of width 
around 400 nm is then created in the flattened hemicylinder centre on 
the top of the sublayer [14]. It connects the perpendicular layers in the 
sublayer and the parallel layers above the defect.

Using X-ray diffraction, we probe layers covering the substrate, 
including in particular the ones below the central defect. For such a 
purpose, we have firstly used a reflection set-up in Grazing Incidence 
where the X-ray beam is almost parallel to the 8CB hemicylinders, being 
only slightly tilted with respect to the SFHs by an out of plane incident 

Fig. 1. Qualitatively different LC structures within a plane-parallel cell of thickness h enforcing hybrid orientational boundary conditions: homogeneous tangential 
along the y-axis at z = 0 and homeotropic at z = h. a) In the nematic phase, a non-singular “escaped” solution is formed if h = h1 is larger than the biaxial coherence 
lengthξb. The nematic order within this structure is essentially uniaxial and can be well presented by the nematic director field. The lines represent a typical 
orientational order for such cases. b) Schematic presentation of nematic LC order within a cell in which the imposed frustration in orientational order is resolved via 
the OR mechanism. The shown orientational order depicts orientations of the principal Q eigenvector. The imposed orientational frustration is resolved by forming a 
wall defect at z = zw, which requires entering biaxial states. More detailed changes across the wall are depicted in Figs. 7 in Methods. In the nematic phase, such 
structure is possible only if h = h2 ∼ ξb, i.e., h2 ≪ h1. c) The case where SmA layers are formed (they are indicated by dotted lines). These layers suppress the nematic 
bend deformation if the smectic order is strong enough. In this case OR could be realized also in thicker cells (e.g., h ≫ ξb). The smectic layer period d above (d1) and 
below (d2) the wall could be different.
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angle ω that has been varied between 0.15◦ and 0.6◦ (see Methods). For 
all ω values, a scattering ring is observed in the (qy,qz) plane of the 
reciprocal space as shown on Fig. 3a. If the Bragg conditions are fulfilled, 
which is provided using two incident angles (see Methods), the position 
of the scattered ring defines the wave-vector transfer q of the absolute 
value q = 2π/d, where d is the average smectic layers spacing for layers 
of normal parallel to q. The q orientation along the ring is determined by 
the angle α (Fig. 3a) with the ring intensity for a given α being thus 
associated with the smectic layers oriented with their normal at α with 
respect to the substrate (Fig. 2b). The ring intensity and position have 
been measured from α around 15◦ (at the basis of the circle, associated 
with smectic layers almost perpendicular to the substrate) to α around 
90◦ (at the top of the circle, associated with smectic layers parallel to the 
substrate, see Methods). The observation of a continuous scattered ring 
(Fig. 3a) confirms a structure similar to the one shown on Fig. 2b for the 
edges of the SFHs where the orientation of the smectic layers 

continuously varies. The increase of intensity when α reaches 90◦

(Methods – see Fig. 6) confirms the presence of a large zone of straight 
smectic layers, almost parallel to the substrate, in the centre of the SFHs 
on top of the central defect in green in Fig. 2b Around 90◦ the signal is 
thus dominated by the straight central smectic layers. The q curve ob
tained in Bragg conditions (see Methods) as a function of α has been 
accordingly extracted from α ∼ 15◦ to α ∼ 90∘ (Fig. 3b - see Methods). 
Due to refraction effects, values for α smaller than around 15◦ could not 
be obtained (see Methods). To complement the q(α) curve from α= 0◦ to 
α= 12◦, TSAXS measurements have been conducted where the sample is 
now almost perpendicular to the X-ray beam, i.e. ω= 90◦, while being 
slightly rotated around the Ox axis by 16◦ (see Methods).

The complete q(α) curve obtained in Bragg conditions is shown on 
Fig. 3b It is divided into three main parts. The first part around α ∼ 90∘ 

corresponds to the central smectic layers on top of the central defect. The 
central layers being confined between the central defect and air are 

Fig. 2. a) Simplified 3D schematics of the oily streaks where smectic layers are curved in flattened hemicylinders, with the molecular orientation shown in yellow. b) 
Cross-sectional views ((Oyz) plane) of one given hemicylinder for a film height of 180 nm. In contrast with the schematics of Fig. 2a, all layers are shown including 
the perpendicular layers at the proximity of the substrate. Two rotating grain boundaries in red terminated by a dislocation in purple are expected close to the centre 
of curvature of the curved smectic layers at the edges of the hemicylinders. The 2D central defect in the centre of the hemicylinders is shown in green. c) The POM 
picture in reflection shows the top view of oily streaks ((Oxy) plane) for an 8CB film thickness around 200 nm, with each stripe corresponding to one hemicylinder.

Fig. 3. a) 2D X-ray diffraction pattern for an incident angle ω= 0.15◦ and a detector dead zone centred on the top of the ring (see section Methods) b) Evolution of the 
wave-vector transfer value q in Bragg condition when the orientation of the wave-vector transfer q varies over 93◦ in overall. Red and black symbols correspond to 
data from TSAXS and GISAXS measurements, respectively.
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expected to present a non-modified layer spacing that may be the nat
ural 8CB period (d0 = 2π/ q0). Indeed q0 = 2.003 ± 0.001 nm-1 is close to 
the already published values for q0 around 2 nm-1 [17,18]. The second 
part between α = 85◦ and α = 10◦ corresponds to the rotating smectic 
layers at the edge of the SFHs. The data indicate that the rotating layers 
are dilated, as shown by the average q values being consistently lower 
than q0 for all α (consequently, the layer spacing d is larger than d0). This 
observed dilation of the rotating layers associated with average d values 
~0.25 % smaller than d0 may be the result of the extremely large 
bending energy of the smectic layers of small radius of curvature shown 
in Fig. 2b at the edge of the SFHs. Dilation of rotating smectic layers 
indeed allows to increase the curvature radius. Since the perpendicular 
layers below the rotating layers can be viewed as a continuation of these 
rotating layers when α decreases towards 0◦, we can consider that their 
average q value, q⊥,1, is almost the one measured at α = 15◦, q⊥,1 =

1.992 ± 0.001 nm-1. The third part of the curve in Fig. 3b around α =
0◦ corresponds to the average q value of all smectic layers perpendicular 
to the substrate q⊥ = 1.999 ± 0.001 nm-1. Two families of perpendicular 
smectic layers are expected. The first one corresponds to the perpen
dicular smectic layers at the edges of the SFHs, below the rotating 
smectic layers, which average value is q⊥,1. The second family is below 
the central defect with its average q⊥,2. The fact that the average q⊥ for 
the two families is q⊥ = 1.999 ± 0.001 nm-1, which is larger than q⊥,1, 
shows that q⊥,2 is significantly larger than q⊥,1. Considering that the 
width of an entire flattened hemicylinder for a thickness 180 nm is 570 
nm [14], we obtain an overall number of perpendicular smectic layers of 
about 184. Further considering that the width of the central defect is 
around 400 nm [14], we obtain a number of perpendicular layers below 
the central defect of about 130. We consequently estimate 72 % of 
perpendicular layers below the central defects and 28 % below the 
rotating layers. q⊥,2 can thus be estimated: q⊥,2 = 1/0.72 (q⊥ – 0.28 q⊥,1) 
= 2.0017 ± 0.001 nm-1. It is very close to q0, suggesting that below and 
above the central defect, smectic layers possess similar layer spacings d1 
and d2 (see Fig. 1c) that differ by <0.05 %. This is consistent with the 
sample preparation that doesn’t imply any memory effect due to the 
substrate, where each 8CB film is being deposited on a freshly rubbed 
PVA substrate.

2.2. Total wall defect structure

The experimental results presented above combined with the previ
ous studies [14] suggest that the smectic layers exhibit a discontinuous 
smectic layer rearrangement at the distance z = zw ≈ 20 − 30 nm, where 
the wall defect is localized. So far, a consistent theoretical model of the 
wall structure is absent, and the main aim of our study is to clarify its 
structure at the mesoscopic level. Below we show that this singularity 
represents a “total defect”, which is singular both in orientational and 
translational order parameter fields, which are used to describe the bulk 
equilibrium order. We show that the orientational frustration is resolved 
via the order reconstruction mechanism and that its stability is enabled 
via SmA order.

To describe the wall LC structures, we use a Landau-de Gennes- 
Ginsburg – type phenomenological model in terms of nematic tensor 
order parameter Q (Eq. (5) in Methods) combined with smectic complex 
order parameter ψ (Eq. (9) in Methods). The structural changes are 
mainly enabled by spatial variations in the amplitudes of the order pa
rameters. The nematic tensor Q is traceless, while the space of the Q 
amplitude parameters is two-dimensional. We describe the two variables 
as s0 and γ (see Methods, Eqs. (7)). Here s0 measures the effective 
nematic amplitude and γ measures the degree of biaxiality. The latter is 
also commonly measured by the biaxial parameter [19,20] 

β2 = 1 −
6
(
TrQ3)2

(
TrQ2)3 = sin2(3γ) ∈ [0,1]. (1) 

Nematic uniaxial states are determined by β2 = 0. Biaxiality is 

fingerprinted in β2 > 0, where β2 = 1 corresponds to the maximal degree 
of biaxiality. The space of the smectic amplitude order parameter is one- 
dimensional, given by η = |ψ|. The geometry of the problem and key 
structural features of the system are depicted in Fig. 1c and in Methods 
(Fig. 7) using Cartesian coordinates (x,y,z). To illustrate the phenomena 
of interest, we use the simplest possible geometrical setup which cap
tures the essential physics. We set that the LC body is confined within a 
plane-parallel cell of thickness h. At z = 0 we impose strong uniaxial 
tangential anchoring along the y-axis, while at z = h uniaxial homeo
tropic anchoring condition is imposed. These anchoring conditions 
mimic our experimental sample (i.e., substrate-LC interaction at z =
0 and air-LC interaction at the free LC surface) quite well when only the 
centre of the SFHs shown on Fig. 2a and b is considered. To accordingly 
consider flat interfaces, we can assume that the amplitudes of order pa
rameters exhibit variations only along the z-axis, therefore not consid
ering curvature of the smectic layers at the two extremities of the wall 
defect.

In agreement with the previously published combined X-ray 
diffraction – ellipsometry measurements [14], we assume that the SmA 
layer stacking exhibits discontinuous reorientation at the wall located at 
the distance zw (scheme sketched in Fig. 1c). Below and above the wall, 
the smectic layers run along the y-axis and z-axis, respectively. Smectic 
configurations associated with the structures similar to the ones of our 
system were studied in [21]. The authors have formulated a model that 
is amenable to finite element simulations. They calculated that the same 
boundary conditions as the ones used in our study can be resolved by 
introducing edge disclinations at the edges of the hemicylinder. Such a 
configuration is not of the same thickness but similar to the structure 
that we propose in Fig. 2b for the centre of the hemicylinders (perpen
dicular smectic layers directly connected to each other in a planar 
defect). However, they did not study the biaxiality features of their 
structure. We believe that in their structure, biaxiality associated with 
OR is also present, which is the subject of our study.

The amplitude of translational order η must be melted at z = zw (i.e., 
η(zw) = 0) to reconcile the different stacking of smectic layers above and 
below zw. This abrupt change in smectic translational order also imposes 
severe frustration on orientational LC order. It enforces abrupt change in 
orientation of the nematic order occurring on a length scale equal to ξs - 
the smectic order parameter correlation length that is in the nanometer 
range. This can only be achieved either via order-reconstruction (OR) or 
by locally melting the nematic order. The latter mechanism is too costly 
because room temperature for 8CB is far below the isotropic-nematic 
transition. Therefore, the only option is the transformation of local LC 
order involving the OR mechanism [8–11]. In this structure, the nematic 
order enters biaxial states which mediate the conflicting orientational 
order enforced above and below zw. The nematic structural trans
formation is realized without Q eigen frame rotation. The resulting 
qualitative changes in mesoscopic orientational order on traversing the 
wall at zw are depicted in detail in Fig. 7a (mesoscopic shape variations) 
and Fig. 7b (degree of biaxiality) in Methods.

These configurational changes could be predicted by mapping 
structural variations in real space to the nematic amplitude order 
parameter space, shown in Fig. 7c in Methods. The corresponding points 
in real (Fig. 7a and b) and 2D amplitude order parameter space (Fig. 7c) 
are labelled with the numbers 1–5. The initial (1) nematic state at z =
0 is positively uniaxial along the y-axis (which is reflected in the prolate 
mesoscopic molecular shape) until z = zw − Δh, corresponding to γ = 0. 
Δh is the defect thickness which is different from the sample thickness h 
shown in Fig. 1c. On increasing z above z = zw − Δh, biaxial states are 
entered, and at (3), the negative uniaxial order (resulting in cylindrically 
symmetric oblate mesoscopic molecular shape) is realized along the x- 
axis, described by γ = π/3. Finally, on further increasing z (5), positive 
uniaxial order is reached between z = zw + Δh and z = h, for which γ =
2π/3. Topology implies that in between uniaxial configurations 1, 3, and 
5, other zones exhibiting maximal biaxiality are reached (labelled with 2 
and 4 on Fig. 7). Therefore, the finite structure of the TWD shown in 
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Fig. 7b consists of a negatively uniaxial sheet placed at zw, which is 
further enclosed between two parallel sheets exhibiting maximal biax
iality. Note that uniaxial order at the confining plates located at z =
0 and z = h is assumed to be realized by strong enough uniaxial orien
tational anchoring conditions (enforcing β2(0) = β2(h) = 0). To allow for 
the 90◦ reorientation of smectic layers on crossing the wall, the smectic 
order must be locally melted. Therefore, we request η(zw) = 0. The 
resulting structure is singular both in the nematic director field and 
smectic phase field representation, which are used to describe bulk 
equilibrium nematic and SmA order, respectively. Consequently, we 
refer to this structure as the Total Wall Defect (TWD).

To study the essential features of the TWD numerically, we used the 
minimal model that still contains the key ingredients of the phenomena 
of our interest. We expressed the free energy of our model in terms of 
characteristic liquid crystal lengths (see Eqs. (13)). Furthermore, we 
used approximations which are correct deep in the SmA phase, in other 
words at the room temperature for the 8CB, for which the system’s order 
can be described using only two variational parameters (instead of the 
usual description in terms of Q and ψ that requires seven independent 
parameters).

In the order reconstruction mechanism, the Q frame remains fixed, 
and the resulting configurational changes take place solely in the 2D 
nematic amplitude order parameter space. We use the Lyuksyutov 
constraint [22,23] (see Methods), according to which s0 is spatially 
constant. This approximation relies on the weakly 1st order character of 
the I-N phase transition. Consequently, the cubic term in the nematic 
condensation free energy contribution is expected to be relatively small 
with respect to quadratic and quartic contributions deep in the nematic 
phase. If one neglects the cubic term one can minimize the condensation 
free energy contribution also by biaxial states. Consequently, in our 
geometrical setup the nematic amplitude field states could be described 
by the amplitude variational angle γ = γ(z) only (see Eq. (7a) in 
Methods). Furthermore, we express the smectic order parameter as 
following: 

ψ(z< zw) = η(z)eiq2x, ψ(z> zw) = η(z)eiq1z. (2) 

Here we allow the smectic layer spacing above (d1 = 2π/q1) and below 
the wall (d2 = 2π/q2) to be different (Fig. 1c).

The TWD structure is finally determined by the following variational 
parameters: γ(z) that describes the nematic biaxiality and η(z) which 
represents the smectic amplitude of translational order. The corre
sponding bulk free energy density reads (see Methods) 

f
Ls2

0
/
d2

0
=

d2
0

ξ2
b
g(n)c + g(n)e +

1
q2

0λ2

(
d2

0

ξ2
s
g(s)c + g(s)e

)

, (3) 

g(n)c =
1 − cos(3γ)

27
, (3a) 

g(n)e =
2
3

(
∂γ
∂z̃

)2

, (3b) 

g(s)c = − r η̃2
+

η̃4

2
, (3c) 

g(s)e =

(
∂η̃
∂z̃

)2

+ 4π2ε2η̃2
, (3d) 

where η̃ =
η
η0
∈ [0,1] is the scaled smectic order parameter, r is the 

dimensionless temperature and z̃ = z
d0
∈ [0, 1] is the dimensionless 

spatial coordinate. L is the representative nematic elastic constant and s0 
the nematic amplitude (section Method – Eq. (11b)). The LC material 
properties are written in terms of material dependent lengths d0 = 2π/q0, 
the smectic natural 8CB period, ξb,ξs and λ. Here ξb stands for the biaxial 
nematic order parameter correlation length, ξs for the smectic order 

parameter correlation length and λ for the smectic penetration length. 
These last three lengths depend on temperature and are directly related 
to the material constants as shown in the section Methods (Eq. (13)) [21,
24]. It is known that deep in the smectic phase, which corresponds to 
8CB at room temperature, ξs and λ values are very close to d0 [6]. Deep in 
the smectic phase, ξb is also on the nanometer range. We have thus 
considered in the following all lengths to be equal to d0 which equals 
3.14 nm.

The nematic condensation term g(n)c enforces the nematic uniaxial 
order (and thus penalizes the biaxiality). The nematic elastic term g(n)e 
favours spatially homogeneous nematic order. The smectic condensa
tion term g(s)c enforces smectic order for r > 0. The smectic elastic penalty 
g(s)e consists of two different contributions; the 1st term favours spatially 
homogeneous smectic order parameter, while the second term penalizes 
dilatation or compression of smectic layers with respect to equilibrium. 
The resulting stress is thus described by the dimensionless stress 

ε(z< zw) = 1 −
q2

q0
(4a) 

and 

ε(z> zw) = 1 −
q1

q0
. (4b) 

We determined the variational parameters γ(z)and η(z) by numeri
cally solving the Euler-Lagrange equations associated with the minimi
zation of the overall free energy. The solution obeys the following 
boundary conditions: γ(z = 0) = 0, γ(z = zw) = π

3, γ(z = h) = 2π/3, 
η̃(z= 0) = η̃(z= h) = 1, η̃(z= zw) = 0. For simplicity, we assumed that 
both confining surfaces enforce the equilibrium value of η (i.e., γ = 0and 
η̃ = 1).

In the simulations we consider conditions which mimic experimental 
measurements focusing on the region containing the TWD. We measure 
all characteristic lengths in units of bulk smectic layer width, which we 
set to d0=3.14 nm (q0 = 2.003 nm-1). We impose the cell height to h

d0
=

57 to match typical experimental case, i.e. h ∼180 nm. We assume that 
the layers above zw are not dilated or compressed due to the “adaptable” 
LC-air limiting interface at z = h. In the region below zw, we impose only 
a small compressibility free energy penalty, since the experimental 
measurements suggest that ε(z < zw) ≤ 0.0005. We have thus chosen ε(z 
< zw) = 0.0005.

The structure shown in Fig. 4a was obtained by minimizing the free 
energy of the system with respect to zw . We show both the variations of 
the smectic parameter η and of the biaxial parameter γ as a function of z. 
The variation of the integrated free energy density is also shown on 
varying the position of TDW. It exhibits the minimum when zw is placed 
roughly at the centre of the cell.

We first discuss the wall defect core structure. The core size of TWD, 
where LC structure essentially departs from bulk LC behaviour, extends 
roughly over the distance Δh ≈ 10 associated with around 10 smectic 
layers, corresponding to roughly 30 nm. The length scales over which 
the amplitudes of nematic and smectic order are perturbed are compa
rable. They correspond to 10 smectic layers but also to ten times ξb.Right 
at the TWD centre (z = zw), the smectic order parameter is melted (η = 0) 

and the nematic order parameter is negatively uniaxial 
(

γ = π
3

)
. In the 

inset, we plot the degree of biaxiality which reveals where the two walls 
exhibiting maximal biaxiality are placed. The simulations suggest that 
they are placed symmetrically, few smectic layers above and below zw.

We next focus on the position of TWD. The free energy curve in 
Fig. 4b shows that the energy minimum corresponds to a TDW at the 
centre of the cell. However, the zoom on the almost flat part of the curve 
shows that a localization of TDW at around 10do, as experimentally 
observed, only requires a moderate increase of the free energy, i.e. only 
0.12 % of ΔF0. We consequently expect easy modifications of the TDW 
position with respect to a localization in the centre and a position of the 
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wall defect that may strongly depend on the details at its lateral 
boundaries. We have thus calculated the structure shown in Fig. 4c that 
was obtained by imposing numerically zw = 10do, as suggested experi
mentally. Comparison of configurations shown in Fig. 4a and c reveals 
that the resulting TWD core structures are essentially the same.

3. Discussion

We studied experimentally and theoretically wall defect-like 
configuration within smectic flattened hemicylinders (SFHs). Our com
bined Optical Microscopy and X-ray synchrotron measurements suggest 
that the defect of width ∼ 400 nm is placed at zw ∼20–30 nm above the 
PVA substrate. The smectic layers below (z < zw) and above (z > zw) the 
wall are running in perpendicular directions, i.e., along the y-axis and z- 
axis of our laboratory coordinate system. Both layer spacings are very 
close from each other and very close to the natural 8CB period of 3.14 
nm. Recently, the smectic layer structure has been calculated for similar 
thicknesses and boundary conditions [21]. With our model we have 
analysed the corresponding biaxiality parameters to reveal that a Total 
Wall Defect (TWD) is formed. The wall structure resolves contradicting 
imposed orientational order of smectic layers above and below the wall 
via order reconstruction (OR)-type mechanism on a distance that is of 
the order of 10ξb, ξbbeing the biaxial nematic order parameter correla
tion length. So far OR walls have been reported only in nematic LCs in 
confining geometries [8–10] with imposed contradicting boundary 
conditions on a distance comparable to ξb or in strong external electric 
fields [25,26], whose characteristic field coherence length is comparable 
to ξb.The latter realization is similar to the OR-based mechanism that we 
report in the present paper. Namely, SmA layers locally act like an 
external ordering field, which tends to align LC molecules along a local 
layer normal. On crossing TWD at z = zw, this effective ordering field 
exhibits on average a 90◦ change on a distance that is a few ξbif ξb is 
taken as equal to λ. In the centre of the TWD core, the smectic order 
vanishes, and the nematic order parameter is negatively uniaxial. Two 
walls exhibiting maximal biaxiality and relatively weak smectic order 
are placed symmetrically, a few smectic layers above and below zw. We 
measured with unprecedented precision the average layer spacing below 
and above the wall and we found their values to be very similar. Our 
modelling with this very similar layer spacing above and below the wall 
predicts a localization of the TWD in the middle of the smectic film. 
However, our modelling also shows that only small free energy varia
tions are required to localize the TDW close to the substrate, which is in 
agreement with our observations. This shows that the observed TDW 
localization might be imposed by the edges of the SFHs which are not 
considered in our model. We will focus on this issue in the near future.

Note that it is established that the OR solution is very robust [8]. 
Namely, in severe confinements, where the nematic order needs to 
reorient perpendicularly on the scale comparable to the biaxial corre
lation length, the solution of the classical bend-like reorientation of the 
order does not exist [8]. Therefore, if the perpendicular boundary con
dition on the scale comparable to ξbis imposed and if Q is allowed to 
enter biaxial states, only the OR solution exists deep in the nematic 
phase (which is fulfilled in our study where the system exhibits SmA 
order). We stress that strong elastic distortions within cores of common 
nematic line [10,11,22] and point defects [22] are commonly mediated 
via the OR mechanism. Our study illustrates that OR can also occur in 
smectic wall defects that join perpendicular layers due to the severe 
frustration on orientational LC order induced by the abrupt change in 
smectic translational order.

Understanding structural details of smectic oily streaks is useful for 
various applications in which LC medium is exploited for the trapping of 
different nanoparticles (NPs) to the desired regions where they could 
assemble into different patterns. Namely, cores of TDs efficiently trap 
NPs of appropriate size and surface treatment [27–29]. It has been 
shown that nanospheres of a 5 nm diameter form flat hexagonal 
monolayers in the TDW strictly oriented by the smectic layers below the 

Fig. 4. Key features of nematic and SmA order on crossing the wall defect. At 
the wall centre, the smectic order is melted and the nematic order exhibits 
negative uniaxiality. In all cases we impose ξb = ξs = d0, r = 0.1, ε(z < zw) =
0.0005, ε(z > zw) = 0, h/d0 = 57, d0 = 3 nm, λ = d0. a) zw ∼ h /2. b) the excess 

free energy penalty ΔF =

∫h

0

(
f (n)e +f (s)e

)
dz in units of ΔF0 = Ls2

0/d0 (see Eq. (3)). 

c) zw
d0

= 10. In a) the wall position is determined via the free energy 
minimization.
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TDW [30,31]. To understand the interactions responsible for this 
orientation promising to control the optical properties of assemblies of 
nanoparticles, the knowledge of the TDW is a prerequisite. The under
standing of how it varies in the presence of nanoparticles will the focus 
of our further investigations.

4. Materials and methods 1: experimental measurements

4.1. Sample preparation

Smectic films of average thickness 180 nm have been prepared by 
depositing smectic 4-n-octyl-4′-cyanobiphenyl (8CB) on rubbed 
polyvinyl-alcohol (PVA). The PVA of thickness around 10 nm has been 
prepared by spin coating a droplet (100 μL) of a 0.5 wt % aqueous so
lution of PVA from Sigma Aldrich with acceleration 400 rpm s-1, speed 
3000 rpm during 30 s on previously accurately cleaned glass slides 
(thickness 130 µm). Spin-coating has been used for the deposition of 
8CB. 8CB from Sigma-Aldrich has been dissolved in toluene (0.2M ). A 
droplet of 50 μL has then been deposited on the PVA once PVA has been 
rubbed with a rubbing machine and has been spincoated with a speed 
3000 rpm, an acceleration between 500 rpm s-1 and 1000 rpm s-1 during 
30 s.

4.2. X-ray diffraction measurements

At SOLEIL Synchrotron there is no DOI associated with the data. The 
data are consequently available upon request. X-ray diffraction mea
surements were carried out at the SIXS beamline of the SOLEIL syn
chrotron facility. The photon energy was fixed at 18.44 keV and the X- 
ray beam size was set at 300 µm × 100 µm. The scattering signal was 
collected on a 2D EIGER 1 M hybrid pixel detector (DECTRIS), which is 
located 1700 mm away from the sample. The experimental reflection 
and transmission set-ups are shown in Fig. 5. In a reflection set-up 
(Fig. 5a), the stripes observed by optical microscopy (Fig. 2c) are ori
ented almost parallel to the incident beam (Fig. 5a). The beam probes an 
area of width 300 µm and length of 18 mm, equal to the sample length. 
The scattered ring of Fig. 5a / Fig. 3a displays the scattered intensity as a 
function of the wave vector transfer, q orientation in the ring, α (Fig. 5a) 
which is also the orientation of the normal to the smectic layers (Fig. 2b). 
Intensity and q values as a function of α were determined from a fit of the 
diffraction data to a Gaussian function. To fulfill the Bragg condition and 
to ensure a broad coverage of α range, we have measured the scattering 
ring for various incident angles ω (Fig. 5a), i.e. ω = 0.15◦ and ω = 0.6◦. 

Indeed, ω = 0.6◦ is the Bragg angle for 8CB smectic layers: ωB =

arcsin
(

λ0
2d0

)

≈ 0.6∘ (where λ0 is the X-ray wavelength, λ0 = 0.067nm). 

The overall ring intensity is thus in Bragg condition for ω = ωB, but α 

values smaller than arcsin
(

d0
λ0

sin(ω)

)

≈ 29∘ are not reachable due to 

shadowing effects. Multiple scattering effects appearing at low qz values 
even further limit the minimum α value to around 40◦ For ω = 0.15◦, α 
values as small as 15◦ can be attained, but Bragg conditions are only 
obtained for α < 70◦. Combination of the ring intensities obtained with ω 
= 0.15◦ and with ω = 0.6◦ thus allows us to obtain the q curve of Fig. 3b 
and the curve of integrated intensity of Fig. 6 in Bragg condition. To 
explore the entire structure of the ring including the structure around α 
= 90◦ that comes from the top of the scattered ring, data with a displaced 
detector have been collected. This means that we both localized the dead 
area of the detector (in pink in Figs. 3a and 6) around the top of the ring 
(Fig. 3a) but also elsewhere than around the top of the ring (see Fig. 6).

In the transmission geometry (Fig. 5b), the sample is rotated by 90 ◦
around the Oy axis and the observed stripes become perpendicular to the 
incident beam. A local area of 300 µm × 100 µm is probed. The scattered 
signal shows two bracket-like scattering features associated with the 
sublayer of the smectic layers perpendicular to the rubbed direction and 
perpendicular to the substrate. Through a rotation around the axis Ox 
shown in Fig. 6b, the scattering as a function ofα can be probed up to α≈
12◦ As a result, the almost complete q curve in Bragg condition as a 
function ofα is shown in Fig. 3b The scattered ring being symmetric like 
the SFHs, only values between 0◦ and 90◦ are shown.

5. Materials and Methods 2: Theoretical modelling

5.1. Order parameter

The orientational order is described by the traceless and symmetric 
nematic tensor order parameter [20,32] 

Q =
∑3

i=1
siei ⊗ ei, (5) 

where si are Q eigenvalues (amplitude fields), and ei its normalised ei
genvectors (phase fields). Note, that in general the amplitude phase space 
is two-dimensional due to the constraint TrQ =

∑3
i=1 si = 0.

In the case of uniaxial order, where two eigenvalues are equal, and Q 
is commonly expressed as [5] 

Q = s(n ⊗ n − I /3). (6) 

In this case n represents the principal Q eigenvector e1, and the 

Fig. 5. X-ray diffraction set-ups with images of the measured signals on the EIGER 1 M detector: (a) Grazing incidence reflection set-up, showing the LC scattering 
ring. (b) Transmission set-up, showing two bracket-like scattering features perpendicular to the stripes.
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corresponding eigenvalue reads s = 3
2 n.Qn.

A convenient parametrisation of eigenvalues is given by 2D amplitude 
phase space [20,22] expressed by an angle γ and “radius” (effective 
amplitude) s0: 

s1 =
2s0

3
cosγ, s2 = −

2s0

3
cos
(

γ −
π
3

)
, s3 = −

2s0

3
cos
(

γ +
π
3

)
, (7a) 

s0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2

TrQ2

√

. (7b) 

Possible uniaxial and biaxial nematic states on varying s0 and γ are 
depicted in Fig. 7c with respect to a fixed Q eigen-frame {e1,e2,e3}. The 
melted isotropic state refers to the centre of the frame (i.e., s0 = 0). 
Configurations determined by γ = 0, γ = − 2π

3 , and γ = 2π
3 correspond to 

positive uniaxial states (i.e., s > 0 in Eq. (6)), wheren = e1, n = e2, and n 

= e3, respectively. Values γ = π, γ = π/3, and γ = − π/3 refer to negative 
uniaxial states (s < 0), and n = e1, n = e2, and n = e3, respectively. The 
degree of biaxiality attains its maximum (β2 = 1) for γ =±π/6,γ =±π/2, 
and γ = ±5π/6.

For the latter analysis let us consider the case where the Q eigen 
frame (Eq. (5)) is allowed to rotate for an angle φ in the (y,z) plane of the 
Cartezian system, which is determined by unit vectors {ex,ey,ez}, where 

e1 = cosφ ey + sinφ ez, e2 = ex, e3 = − sinφ ey + cosφ ez. (8) 

Using parametrization given by Eqs. (7) and Eq. (8), representative 
qualitatively different nematic uniaxial and biaxial structures, where 
eigenvectors are allowed to rotate in (y,z) plane, could be expressed 
using only the pair of angles {φ, γ} and s0, which quantifies effective 
amplitude of nematic order. For example, using Q parametrization given 
by Eqs. (7)-(8), the structural transformation in Fig. 1a is realised only 
by varying φ (i.e., in the case of equal nematic elastic constants it holds 
φ = π

2
z
h). Furthermore, the imposed frustration could be resolved via 

order reconstruction, where φ = 0, see Fig. 7. In this case γ monoto
nously increases from γ(z = 0) to γ(z = h) = 3π

2 , enabling continuous 
transformation between positive uniaxial states n(z = 0) = ey and n(z =
h) = ez.

The SmA translational order is commonly described by the complex 
order parameter field [5,33] 

ψ = ηeiϕ, (9) 

where η and ϕ represent the translational amplitude and symmetry- 
breaking field, respectively. This order parameter field approximately 
describes the mass density spatial variation ρ = ρ0(1 + ψ + ψ*), where 
ρ0 is a constant. In bulk equilibrium η is spatially homogeneous, 

ϕ(r) = q0n. r, (10) 

where the smectic layers are stacked along the symmetry breaking di
rection n with the periodicity q0 = 2π/d0. Here d0 determines the 
equilibrium smectic layer spacing.

5.2. Free energy

In terms of nematic and smectic order parameters, we write the free 
energy density as the sum f = f (n)c + f (n)e + f (s)c + f (s)e + fcp of nematic 

Fig. 7. a) Schematic geometric presentation of nematic order changes in the OR transformation when system’s orientational order is forced to change on a relatively 
short distance Δh ∼ ξb. The centre of the OR deformation is placed at z = zw. States labelled by (1,5) exhibiting positive uniaxial order, (3) negative uniaxial order, 
and (2,4) display maximal biaxiality. b) Spatial variation of the biaxiality parameter β2. c) The OR transformation shown in the amplitude order parameter space in 
the Lyuksyutov approximation. 1: γ=0, positive uniaxiality; 2: γ = π/6, maximal biaxiality; 3: γ = π/3, negative uniaxiality; 4: γ = π/2, maximal biaxiality; 5: γ = 2π/ 
3, positive uniaxiality.

Fig. 6. Intensity as a function of α, extracted from the combination of the ring 
obtained at ω = 0.15◦ and at ω = 0.6◦. Two rings with different localization of 
the dead zone (in pink) have been used to allow for a broad observation of the 
scattered ring, including the top zone around α = 90◦.
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condensation
(
f (n)c
)
, smectic condensation

(
f (s)c
)
, nematic elastic 

(
f (n)e
)
,

smectic elastic 
(
f (s)e
)
, and the term fcp describing the coupling between 

the smectic and nematic order parameter. We express them as follows 
[5,20,33] 

f (n)c = an
(
T − T∗

n
)
TrQ2 − bnTrQ3 + cn

(
TrQ2)2

, (11a) 

f (n)e = L|∇Q|
2
, (11b) 

f (s)c = as
(
T − T∗

s
)
|ψ|2 + bs|ψ|4, (11c) 

f (s)e = C‖|(iq0e − ∇)ψ|2 + C⊥|(e ×∇)ψ |2, (11d) 

fcp = − D∇ψ∗.Q∇ψ . (11e) 

The Landau expansion coefficients an,bn,cn,as, bsare assumed to be 
positive and temperature-independent, constants T∗

n and T∗
s are related 

(and are comparable) to the critical temperatures below which the 
orientational and translational order condensate, respectively. The 
nematic elastic LC properties are described by the representative 
nematic bare (i.e. temperature independent) elastic constant L, corre
sponding to the approximation of equal Frank elastic constant K (i.e., K11 

= K22 = K33 = K24 ≡ K ∼ Ls2) in the Frank-Oseen uniaxial model [6]. 
The smectic elasticity is described by the compressibility (C‖) and 
smectic bend (C⊥) elastic constants, which are positive in the SmA 
phase. They enforce stacking of layers along the principal eigenvector e 
of the nematic order parameter Q with the layer spacing d0 =

2π
q0
. The 

positive coupling constant D quantifies the coupling strength between 
the orientational and translational LC order.

5.3. Lyuksyutov constraint

Key qualitative features of an order-reconstruction transformation 
could be relatively simply illustrated by exploiting the Lyuksyutov 
approximation (i.e., constraint). This approximation exploits the weakly 
first order character of the I-N phase transition. It assumes that i) 
amplitude of nematic ordering is dominantly influenced by the nematic 
condensation contribution f (n)c , and that ii) the cubic term (which is 
responsible for the 1st order character) plays a secondary role. Conse
quently, f (n)c ≈ an

(
T − T∗

n
)
TrQ2 + cnTr

(
Q2)2

, which is minimized for 

TrQ2 =
an
(
T∗

n − T
)

2cn
=

2s2
0

3
. (12) 

In the Lyuksyutov approximation we consider Eq. (12) as a constraint 
for TrQ2. Consequently, γ is the only free variational parameter in the 
amplitude order parameter space. This approximation is sensible deep in 
the nematic phase.

5.4. Scaled free energy density

In the following, we parametrize nematic and smectic order pa
rameters using Eqs. (8)-(10), and we adopt the Lyuksyutov constraint 
(Eq. (12)). For sake of simplicity, we neglect the anisotropy of smectic 
elastic constants, i.e., C ––– C‖ ~ C⊥. We also discard the coupling term. 
Consequently, our system exhibits a 2nd order nematic-smectic phase 
transition, taking place at the critical temperature TNA = T∗

s . We intro
duce the scaled smectic order parameter [33] ψ̃=η̃eiϕ, ̃η = η

η0
. Here η0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
asTNA/(2bs)

√
stands for the saturated smectic amplitude (i.e., η̃ ≤ 1). 

We furthermore introduce the reduced temperature r = T− TNA
TNA

and 
several material dependent characteristic lengths. These are the nematic 
biaxial length [5,34] ξb, smectic order parameter correlation length ξs 
and smectic penetration length λ [5,33] We express them at relatively 
low temperatures, and define them as 

ξb =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2L/(3bns0)

√
, ξs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C/(asTNA)

√
, λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ls2
0
/(

Cη2
0q2

0
)√

. (13) 

With this in mind we express the free energy densities as 

f (n)c
Ls2

0
=

4
27ξ2

b
(1 − cos(3γ)), (14a) 

f (n)e
Ls2

0
=

8
3

(
1
4
|∇γ|2 + sin2(γ − π /3)|∇φ|2

)

, (14b) 

f (s)c
Cη2

0
=

1
ξ2

s

(

− r η̃2
+

η̃4

2

)

, (14c) 

f (s)e
Cη2

0
= |(iq0e − ∇)ψ̃ |2 + |(e ×∇)ψ̃ |2. (14d) 

Note that within the Lyuksyutov constraint the nematic condensa
tion term penalizes only biaxial states with respect to uniaxial ones (i.e., 
melting of nematic order is not allowed).

5.5. Classical nematic OR transformation

A detailed one dimensional nematic OR structural transformation 
mediating enforced mutually perpendicular uniaxial order at z = zw −

Δh/2 and z = zw + Δh/2 along the z-direction of the Cartesian co
ordinates {ex,ez,ez} is shown in Fig. 7. We impose n(zw − Δh

2 ) =e1 and n 
(zw − Δh

2 ) =e3 on a distance Δh ∼ ξb, where {e1,e2,e3}¼ {ex,ey,ez}. In 
between Q enters biaxial states and the crosses state with negative 
uniaxial order along e2 at zw. The structural transformation is realized by 
the exchange of Q eigenvalues and the Q eigenvector frame remains 
fixed. In Fig. 7a we show the mesoscopic geometrical changes on 
crossing the OR wall at zw. The related variations in the degree of 
biaxiality β2 are plotted in Fig. 7b Variations in two-dimensional 
amplitude order parameter space (see Eqs. (7)) are shown in Fig. 7c.

5.6. TWD stability conditions

Below we present some rough estimates concerning the TDW exis
tence and stability. The OR mechanism is activated when large enough 
frustration in orientational order is imposed on the scale comparable to a 
nematic order parameter on a relatively short length scale. In our case 
we impose mutually perpendicular essentially uniaxial orientations over 
few smectic layer thicknesses. The corresponding elastic penalty in this 
deformation is approximately given by L|∇Q|

2
∼ Lq2/ξ2

d , where q esti
mates a relevant effective amplitude of orientational order and ξd is the 
length scale across this deformation is realised. This elastic penalty 
competes with the cubic condensation term bnTrQ3 ∼ bnq3 (which resist 
the system to enter biaxial states) in the condensation free energy if local 
melting is relatively costly (i.e., the system is deep in the nematic phase). 
By equating these competing free energy contributions, it follows 
ξd ∼

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L/(bnq)

√
, i.e., ξd ∼ ξb (see Eq. (13)). Note that such a frustration 

could be sustained only if strong enough anchoring stabilizes the con
flicting boundary conditions. To estimate the required anchoring 
strength, we estimate the free energy cost of structures where the 
boundary conditions are not (F = F1) and strictly (F = F2) obeyed. In the 
1st case the system exhibits a spatially homogeneous structure, and the 
resulting free energy penalty arises due to anchoring condition viola
tion. It roughly holds F1 ∼ Aξbw, where w stands for the representative 
anchoring strength and A is the surface area. In the second case only the 
elastic free energy penalty is present, i.e. F2 ∼

ALq2

ξb
. From the condition 

F1 ∼ F2 it follows ξb ∼ de, where de ∼ Lq2/w stands for the surface 
extrapolation length. For ξb ∼ 10 nm and Lq2 ∼ 10− 11 J/m we obtain 
w ∼ 10− 3 J/m2.

Finally, we estimate the effective anchoring strength of the defect 
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wall. For this purpose we focus on the smectic layer just above (or 
below) the melted wall region which favor parallel alignment of n and 
the local smectic layer normal v. The smectic layers enforce θ = ArcCos 
(n.v) → 0 via the smectic-bend free energy compression density term, 
whose quadratic expansion in θ reads f (s)e,⊥ ∼ C⊥q2

0η2θ2 = θ2K
λ2 , where K ∼

Lq2 is the representative Frank elastic constant. The corresponding free 
energy per surface area of one smectic layer reads f (s)e,⊥d0 ∼ wθ2, where w 
= d0K

λ2 stands for the effective anchoring strength. For d0 ∼ λ it follows 
w ∼ 10− 2 J/m2.
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