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In-plane ordering

Note that our approach could be applied also to cases possessing out-of-plane orientational ordering. For example,
for LC molecules, represented by the unit director field n, which are tilted with respect to the local surface normal
v, the in-plane ordering is determined by a vector order parameter field [1] m = n− (v · n)v. In this case, m is the
relevant vector field addressed by the Gauss-Bonnet and Poincaré-Hopff theorem.

Furthermore, there are numerous examples in which in-plane orientational ordering exists in biological membranes.
Below, we summarise a few examples.

In-plane membrane ordering in the membranes due to the lipid tilt, chirality and other mechanisms was considered
first by Helfrich, Lubensky and Prost in the late nineteen-eighties [2, 3].

The in-plane ordering in the curved biological or lipid membranes is coupled to local membrane curvature and
driven by the anisotropic shape of membrane components (proteins or lipids). The in-plane orientational ordering of
anisotropic membrane proteins favours anisotropic membrane curvature, i.e. non-zero local curvature deviator (see
for example [4–9]. Coupling between the in-plane orientational ordering and the membrane local curvature may lead
to the formation of highly curved anisotropic membrane regions like nanotubular membrane protrusions or membrane
necks, connecting a parent cell to a daughter vesicle [4, 9–12]. A possible physiological role of topological defect in
the highly curved regions of membrane neck with high in-plane ordering has recently been discussed by Jesenek et al.
[13, 14].

Anisotropic membrane proteins can be embedded in the membrane or attached to the membrane surface. Typical
anisotropic proteins (attached to the membrane surface) are banana-like shaped BAR-domain proteins which may,
due to their in-plane ordering [15–17], stabilise thin membrane protrusions [18].

The anisotropic shape of lipid molecules may lead to their in-plane (nematic) ordering in highly curved membrane
regions. Recently, it was pointed out [19] that the concept of the anisotropic shape of lipid molecules and their in-plane
ordering may better explain the Lα - inverted hexagonal HII phase transition and the stability of the HII-phase at
higher temperatures than the concept of isotropic lipid shapes. A similar idea was also expressed earlier [20], but
was not applied to any model calculations. The in-plane orientational ordering in (hexatic) membranes has been
theoretically considered also by Nelson and Peliti [21], David et al. [22], and Park and Lubensky [23].

Fournier and Galatola [24] studied theoretically the effect of surfactant polar head on the membrane in-plane
ordering. In accordance, experiments and theoretical considerations [10] showed that anisotropic dimeric detergents or
detergents with dimeric headgroup induce the growth of highly curved tubular membrane protrusions (and the release
of tubular daughter vesicles), which is not possible with isotropic detergents that induce only spherical membrane
protrusions (and release spherical daughter vesicles).
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Intrinsic and extrinsic elastic contributions

Below, we present the minimal model with which we demonstrate the key difference between the intrinsic and
the extrinsic elastic contributions in describing orientational ordering on curved surfaces. Afterwards, we illustrate
the typical impact of the extrinsic curvature contribution on nematic structures within nematic ellipsoidal shells,
considering the tensor order parameter Q (Eq. (2)) and the free energy contributions introduced in Eq. (5) and Eq.
(6).

Minimal model

In general, an elastic free energy penalty of an elastic medium living within a 2D curved surface consists of the
so-called intrinsic and extrinsic contributions [25–27]. To illustrate their role, we consider the simplest possible elastic
free energy term

fe = k |∇sn|2 . (S1)

Here, n is a unit vector field lying within a surface, k is a positive elastic constant, and ∇s stands for the surface
gradient [28]. The latter is related to the conventional 3D gradient operator via ∇s = (I− v ⊗ v)∇. We express n in
the surface principal curvature direction frame {e1,e2} as

n = e1 cos θ + e2 sin θ. (S2)

where θ is the angle between the unit vector field n and the first principal curvature direction e1. The local surface
curvature C, seen by the molecule aligned along n, can be expressed by the Euler relation as: C = C1 cos2 θ+C2 sin2 θ.
It follows

∇sn = cos θ∇se1 − sin θe1 ⊗∇sθ + sin θ∇se2 + cos θe2 ⊗∇sθ. (S3)

Taking into account [28]

∇se1 = κq1e2⊗e1 + κq2e2⊗e2 − C1v ⊗ e1, (S4)

∇se2 = −κq1e1⊗e1 − κq2e1⊗e2 − C2v ⊗ e2, (S5)

where κq1 (κq2) are geodesic curvatures along e1 (e2), we obtain

|∇sn|2 = |∇sθ + A|2 + n ·C2n. (S6)

The quantity

A =κq1e1 + κq2e2 (S7)

is the so called spin connection and it holds [26, 29] K = |∇ ×A|.
The first contribution in Eq. (S6) is referred to as the intrinsic term. It enforces the spatially non-homogeneous

orientation of n if K 6= 0, which introduces a geometric frustration into the system. It derives from the incompatibility
of parallel and straight directions on surfaces with Gaussian curvature. Note that using the covariant derivative ap-
proach in expressing elastic free energy contributions yields only intrinsic-type contributions. The covariant derivative
is defined via parallel transport. While parallel transported n experiences minimal distortions, it holds [28]

∇sn = − (v⊗∇sv) n. (S8)

If n is parallel transported along a closed path, then the difference in orientation of n before and after such trans-
port reveals a geometric frustration. Taking into account Eq. (S3) on the left side of Eq. (S8) and considering
∇sv =C1e1 ⊗ e1 + C2e2 ⊗ e2 one obtains ∇sθ= −A. Therefore, the intrinsic term in Eq. (S6) is minimised if n is
parallel transported. Such a configuration represents a local ground state, exhibiting minimal possible elastic free
energy distortions.

The second term in Eq. (S6) is referred to as the extrinsic contribution. Its influence is reminiscent of an external
orientational field enforcing its orientation to n. Expressing the term in the principal curvature frame yields

n ·C2n =C2
1 cos2 θ + C2

2 sin2 θ. (S9)
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One sees that for k > 0 this term is minimised if n is aligned along the principal direction exhibiting lower curvature.
The energy term (Eq. (S9)) is closely related to the energy term fH , commonly used to study biological membranes

[30], thin plates [31, 32] with anisotropic properties, and the orientational ordering of anisotropic components in
biological membranes [7, 11, 33]

fH =
K1

2
(TrM)

2
+K2DetM, (S10)

where K1 and K2 are (positive) constants. The mismatch tensor is defined as M = RCmR−1 −C, where the tensor
Cm describes the intrinsic curvature of the inclusion. The rotational matrix R describes the rotation of the system
by angle θ, which is the angle of rotation of the membrane element relative to the first principal direction e1. In the
case of non-curved rod-like molecule the energy term (Eq. (S10)) is minimised if the molecule is aligned along the
principal direction exhibiting lower curvature, which is also true for the energy term in Eq. (S9).

Therefore, the intrinsic elastic component is associated with variations of n living in 2D curved space. On the
other hand, the extrinsic elastic component tells how n is embedded in 3D space. The difference between these
contributions is well visible in an infinitely long cylinder of radius R. The intrinsic elastic penalty equals to zero for
n, pointing either along the symmetry axis or at right angles with it. To show this, we use parametrisation defined in
Eq. (S2), where e1 is aligned along the symmetry axis. It holds κq1=κq2= A = ∇sθ = 0 for both orientations, and
consequently the intrinsic term equals zero (see Eq. (S6)). On the contrary, the extrinsic term is different for these
orientations due to different values of principal curvatures; namely, C1 = 0 and C2 = 1/R. Consequently, it forces n
to align along e1.

Impact of extrinsic term

In the core of the paper, we calculated TDs in oblate and prolate shells in the presence of different number of NPs
in the absence of extrinsic term. The positions of NPs are depicted in Figure S1 on cases of spherical shells, where
we superimpose n and spatial variations in λ.

Figure S1. Nematic ordering on spherical shells. The panels (a), (b), (c) and (d) show cases with no, one,
two and three nanoparticles, which are denoted by “NP”. Each NP effectively acts as a topological defect, bearing
m = 1. Superimposed are λ/λ0 and the vector field n spatial variations. Configurations were calculated for a/b = 1,

a/ξ = 3.5, ke = 0.

The impact of the orientation of n on the extrinsic free energy contribution is depicted in Figures S2. In Figure
S2a, we plot ge = fe/(keλ

2
0) as the function of zenith angle v for prolate and oblate shells for either n along e1

(meridians, full lines) or n along e2 (parallels, thin lines). The plots which show extreme cases and variation for
the arbitrary orientation of n are presented in Figure S2b (a prolate shell) and Figure S2c (an oblate shell). The
extrinsic contribution effectively acts as an external field which for ke > 0 favours the orientation of n along lines,
exhibiting minimal curvature. One sees that in both geometries the extrinsic field is absent at v = 0 and v = π, where
C1 = C2. In between, the field is different from zero. In prolate shells, it prefers an alignment along meridians and is
in general significant for all values of v ∈ [0, π] for a large enough value of ke. On the contrary, in oblate geometries it
enforces the alignment along parallels. In this case, the extrinsic field tends to be localised at the equatorial region,
which progressively narrows on increasing the ratio b/a. Of our interest is the impact of a relatively strong extrinsic
field (e.g., ke/ki = 1) on the number and position of TDs in ETCC limit structures. In prolate shells, structures are
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qualitatively similar, because the extrinsic field does not introduce any additional frustrations. However, in oblate
structures the extrinsic field can strongly modify patterns, because it tends to expel TDs from the equatorial region.
This is depicted in Figures S3. The corresponding textures for ke = 0 are plotted in the column (b) of Figure 3.

Figure S2. Spatial variations of extrinsic free energy term contribution on a prolate and oblate shell.
(a) The extrinsic contribution to the free energy ge = fe/(keλ

2
0) as the function of v, where thin lines represent a

prolate shell (a/b = 2) and thick lines an oblate shell (a/b = 1/2). Full lines correspond to the alignment of n along
e1 (meridians) while dashed lines correspond to the alignment of n along e2 (parallels). Plots ge(v, θ) for (b)

a/b = 2 and (c) a/b = 1/2. Here, θ describes the angle between n and e1.

Electrostatic analogy

Here, we sketch key steps in developing electrostatic analogy which enables us to estimate the threshold condition
to form pairs {defect,antidefects}. Furthermore, we schematically visualise the depinning process for two qualitatively
different geometries.

Critical condition

We first consider a flat liquid crystalline film in the Cartesian coordinates (x, y), and the free energy, which is
given by Eq. (6). We neglect spatial variations in λ, set ke = 0, and express the director field using Eq. (S2),

where unit vectors ei point along the Cartesian coordinates. If follows f = f0 + kλ2
0 |∇sθ|2 where f0 is a constant.

The corresponding Euler Lagrange equation reads ∇2
sθ = 0. Singular solutions, corresponding to topological defects
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Figure S3. Impact of extrinsic term on order parameter profiles is the (u, v) plane on oblate
ellipsoidal shells. (a) b/a = 1.5, (b) b/a = 1.5, (c) b/a = 2.0, (d) b/a = 2.0. Black ellipses indicate shell shapes.

Nanoparticles are labelled by NP. Nematic ordering was calculated for: a/ξ = 3.5, k = ke.

localised at (xi, yi), can be expressed as

θi = miArcTan

(
y − yi
x− xi

)
+ c. (S11)

Here, c is a constant and mi is the winding number. We consider a pair consisting of {defect,antidefect}={m1 =
m,m2 = −m} placed at (x1 = −ρ/2, y1 = 0) and (x2 = ρ/2, y2 = 0), respectively. The orientational pattern of
the resulting structure is determined by θ = θ1 + θ1. The spatial integral of the corresponding free energy yields the
interaction potential

wint = 2πm2kF ln(ρ/ρc) (S12)

between TDs separated for a distance ρ. Here kF = kλ2
0 and ρc ∼ ξ is the cut-off radius estimating a typical defect’s

core size. In our model notations it roughly holds

kF/(αλ
2
0) ∼ ξ2. (S13)

The magnitude of the corresponding attractive force per unit length is then fint = 2πm2kF/ρ. We define the elastic
electric field via fint ≡ mEe. Therefore, a topological defect bearing topological charge m creates an elastic field of
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strength

Ee =
2πkFm

ρ
. (S14)

Next, we estimate energies needed to form a pair {m = 1
2 ,m = − 1

2} of TDs at line K = 0 which then ”fall” on
relevant capacitor plates. We express the total free energy cost for this process as

∆F = ∆Fcond + ∆Fwork + ∆Fgain. (S15)

Here, ∆Fcond describes the free energy costs to form a pair {1/2,−1/2} of TDs, ∆Fwork corresponds to the work
needed to separate the newly born pair, and ∆Fgain describes the free energy gain due to the ”fall” of TDs within the
capacitor’s elastic electric field.

We suppose that E(∆meff) is strong enough to trigger off TDs at an arbitrary point along the line where K = 0.
The corresponding penalty is roughly given by the condensation free energy cost

∆Fcond ≈ αλ2
0πξ

2. (S16)

The work needed to pull apart the new-born defects with charges m = ± 1
2 from the initial separation ξ to the final

separation ρ2 − ρ1 overcoming their mutual attraction is equal to

∆Fwork ≈
ρ2t−ρ1∫
2ξ

|m|Ee(m)dρ =
1

2
πkF ln

(
ρ2 − ρ1

2ξ

)
. (S17)

Finally, the energetic gain is estimated by

∆Fgain ≈ −
ρ2∫
ρ1

|m|Ee(∆meff)dρ = −πkF∆m
(+)
eff ln

(
ρ2

ρ1

)
. (S18)

The critical condition to form a stable pair is estimated by ∆F = 0, yielding Eq. (13).

Depinning event

We next schematically illustrate events above and below the critical depinning threshold for two qualitatively
different geometries, emphasising the role of the effective topological charge. We consider (i) dumb-bell and (ii) sphero-
cylindrical shells. In the latter case we also introduce a NP acting as a ”virtual” TD bearing a virtual topological
charge ∆mv = 1. Examples of a ”real” and ”virtual” charge are schematically depicted in Figure S4a and Figure
S4b, respectively.

Figure S4. Schematic presentation of (a) ”real” and (b) ”virtual” topological defect, bearing m = 1.

We first consider configurational changes in geometry, depicted in Fig. 1c. Let us assume that the structure
is mirror symmetric (the up and down parts of the dumb-bell are the same) and that it possesses four m = 1/2
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defects as predicted by Poincaré-Hopff and Gauss Bonnet theorem. For a better visualisation of estimates let us
assume that the dumb-bell structure consists of nearly two spherical parts connected by a narrow neck. Note that
for a closed sphere surface ζ it holds ∆mK(ζ) = − 1

2π

∫ ∫
ζ
Kd2r = −2. We focus, henceforth, to the upper part

of the dumb-bell and consider patches ∆ζ+ and ∆ζ defined in Fig. 1c. Below the depinning threshold the two
m = 1/2 are assembled in the region exhibiting positive Gaussian curvature because this region effectively acts as a
smeared negative curvature topological charge. The resulting configuration is depicted in Figure S5a. The effective
topological charge in the upper ∆ζ patch equals to ∆meff(∆ζ ) = ∆m+∆mv+∆mK ∼ 1+0−2 = −1, where the used
approximation is ∆mK(∆ζ ) ∼ −2. Furthermore, according to the Poincaré-Hopff and Gauss Bonnet theorem it holds
∆mK(∆ζ )+∆mK(∆ζ+) = −1, consequently ∆mK(∆ζ+) ∼ 1 and ∆meff(∆ζ+) = ∆m+∆mv +∆mK ∼ 0+0+1 = 1.
The upper dumb-bell part is therefore roughly equivalent to the capacitor shown in Figure 1d, where the plates at
ρ = ρ1 and ρ = ρ2 bear charges ∆meff(∆ζ+) ∼ 1 and ∆meff(∆ζ−) ∼ −1, respectively. If two pairs {defect,antidefect}
are created, then the capacitor plates are partially discharged, as shown in Figure S5b. The complete discharging of
the capacitor, corresponding to the ETCC limit structure, requires a formation of four pairs {defect,antidefect}.

Figure S5. Schematic illustration of equilibrium configurations above (b,d) and below (a,c) depinning
threshold. We consider dumb-bell (a,b) and sphero-cylindrical (c,d) shells. Nanoparticles act as ”virtual”

topological defects bearing a virtual topological charge ∆mv = 1.

Next, we treat a qualitatively different case, similar to the one depicted in Figure S1b. For illustration purpose
we consider a sphero-cylinder, see Figure S5c, where one NP enforcing m = 1 is present. Below the depinning
threshold such configuration possesses two m = 1/2 defects to fulfil Eq. (10). As in the case above, we limit to
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the upper part of the structure, assuming that the lower part is mirror symmetrical. To make the derivation more
transparent we set that the spherical patch is represented by ∆ζ− and the cylindrical part by ∆ζ+. Consequently, it
holds ∆mK(∆ζ+) = 0, ∆mK(∆ζ ) = −1 (due to Eq. (9)), and m = 1/2 defect is attracted to the ∆ζ− patch. The

effective topological charge within patches ∆ζ− (∆ζ+) equals ∆m
(−)
eff = ∆m + ∆mv + ∆mK = 1/2 + 0 − 1 = −1/2

(∆m
(+)
eff = ∆m+ ∆mv + ∆mK ∼ 0 + 1/2 + 0 = 1/2 ). Here, we assumed that a half of the central NP bearing m = 1

contributes to each half of the sphero-cylinder. To cancel ∆meff in the patches, two pairs {defect,antidefect}={m =
1/2,m = −1/2} must be formed. The two antidefects are needed to screen the central ”virtual” charge enforced by
NP. On the other hand, defects are moved toward poles. The corresponding structure is ”neutral”, i.e. represents the
ETCC limit structure shown in Figure S5d.
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[11] Kralj-Iglič, V., Babnik, B., Gauger, D. R., May, S. & Iglič, A. Quadrupolar ordering of phospholipid molecules in narrow
necks of phospholipid vesicles. J. Stat. Phys 125, 727–752 (2006).

[12] Ramakrishnan, N., Ipsen, J. H. & Kumar, P. S. Role of disclinations in determining the morphology of deformable fluid
interfaces. Soft Matter 8, 3058–3061 (2012).
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