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Numerical Study of Membrane Configurations
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We studied biological membranes of spherical topology within the framework of the spontaneous curvature model. Both Monte
Carlo simulations and the numerical minimization of the curvature energy were used to obtain the shapes of the vesicles. The
shapes of the vesicles and their energy were calculated for different values of the reduced volume. The vesicles which exhibit in-
plane ordering were also studied. Minimal models have been developed in order to study the orientational ordering in colloids
coated with a thin sheet of nematic liquid crystal (nematic shells). The topological defects are always present on the surfaces with
the topology of a sphere. The location of the topological defects depends strongly on the curvature of the surface. We studied the
nematic ordering and the formation of topological defects on vesicles obtained by the minimization of the spontaneous curvature
energy.

1. Introduction

Human red blood cells are one of themost intriguing systems
in nature.The shapes of the red blood cells have been studied
by many theoretical methods. The spontaneous curvature
model, developed by Deuling and Helfrich [1], described
the stomatocyte and discocyte shapes of the red blood cells
for the first time. The shapes were calculated by solving
the Euler-Lagrange equations numerically. The results of the
theoretical calculations were in a very good agreement with
experimental observations.

The biological membrane forms a wall, which surrounds
the cell and intercellular organelles [2]. It takes part in trans-
port of nutrients, encapsulation of larger particles or viruses
[3, 4], cell-to-cell communication, waste control, and many
other biological processes. It is a complex system composed
of lipids, carbohydrates, proteins, and many other biolog-
ically active components [5]. Lipids which form a bilayer
[6] are the main building blocks of biological membranes.

The membrane shape changes due to the thermal motion of
the molecules which form the bilayer [7]. The thickness of
the lipid bilayer is of the order of 3–5 nm. The size of the
vesicles formed by the bilayer is of the order of hundreds of
micrometres. Therefore, it is fully justified to use the elastic
continuum approach in the theoretical description of the
membrane surface.

The vesicles which exhibit in-plane ordering are of par-
ticular interest. An example of such a vesicle is a colloidal
particle coated with a thin sheet of nematic liquid crystal,
called nematic shell [8, 9]. For such systems, minimal models
were developed, which capture the main phenomena related
to their orientational order. Liquid crystal molecules are
oriented within the tangent plane of the shell. On nematic
shells with the topology of a sphere, topological defects are
always present [10]. At the origin of topological defects,
orientational order is melted. The location of topological
defects is strongly curvature dependent [9, 11–14]. On a
spherical surface, the equilibrium configuration typically has
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four topological defects located in vertices of a tetrahedron in
order tomaximize theirmutual separation, whichwas proved
by theoretical calculations [15] and confirmed experimentally
[16].

The paper is organized as follows. In Section 2, we intro-
duce the theoretical models and briefly discuss the numerical
procedures used to calculate the equilibrium vesicle shapes
and the nematic ordering on those vesicles. In Section 3,
we present the results of the numerical calculations. The
vesicles calculated by two different methods are compared.
The shapes of the vesicles obtained in the framework of
the spontaneous curvature model are used to calculate the
nematic ordering on a vesicle.The summary and conclusions
are presented in Section 4.

2. Models and Methods

The vesicle shapes have been studied within the framework
of Helfrich spontaneous curvature model [17]. We have used
both Monte Carlo simulations and numerical functional
minimization procedures to calculate the shapes of the
vesicles. The results obtained in both methods are compared
in the following section.The nematic ordering on vesicles has
been studied within the two-dimensional Landau-de Gennes
tensorial formalism.The equilibrium textureswere calculated
in Monte Carlo simulations.

Many models were formulated in order to study the
shape transformations of biological membranes. The model
developed by Helfrich [17] is one of the most often used and
the most successful. In this model, the lipid bilayer forms
a homogeneous two-dimensional fluid. It is approximated
by a mathematical surface and the energy of the membrane
depends on themean andGaussian curvatures of that surface.
The local bending energy density of the membrane can be
written as [1, 17–20]

𝑓𝑏 =
𝜅

2
(𝐶1 + 𝐶2 − 𝐶0)

2
+ 𝜅𝐶1𝐶2, (1)

where 𝜅 and 𝜅 are bending constants, 𝐶1 and 𝐶2 are principal
curvatures of a vesicle surface, and 𝐶0 is the spontaneous
curvature. Equation (1) is a limiting case of a more general
model for bending energy, which also includes different
membrane components andwas described in [21, 22]. Overall
bending energy 𝐹tot is calculated by integrating (1) over the
entire surface of a vesicle:

𝐹tot = ∫
𝑆

𝑓𝑏𝑑𝑆, (2)

where 𝑑𝑆 is an infinitesimal element of the vesicle area 𝑆. The
Gauss-Bonnet theorem states that the last term on the right-
hand side of (1), integrated over the entire surface of a vesicle,
is constant for closed surfaces of fixed topology. That term
only contributes a constant to the bending energy and is not
taken into account in our calculations, because our surface
has a fixed topology. The bending elasticity modulus 𝜅 was
experimentally measured in [23] (see also [24] and references
therein). Similar models were proposed by Canham [25] and
Evans [18].
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Figure 1: Vesicle profile representation on 𝑟-𝑧 plane.

2.1. Minimization Procedure. We assumed that the vesicle
surface is the surface of revolution, with rotational symmetry
about the 𝑧-axis. To describe such vesicles, we only need to
define a vesicle profile on a plane (Figure 1). The curve that
defines the vesicle profile is then rotated around the 𝑧-axis
by an angle 𝜑 = 2𝜋. The surface of the vesicle is constructed
in this manner. To describe the vesicle profile on the 𝑟 − 𝑧
plane, we introduce the arc length 𝑠 of the profile curve and an
angle 𝜃(𝑠). 𝜃(𝑠) is the angle of the tangent to the profile curve
with the plane that is perpendicular to the axis of rotation 𝑧
(Figure 1). If the function 𝜃(𝑠) is known, the vesicle profile can
be calculated by the following parametric equations:

𝑧 (𝑠) = ∫
𝑠

0

sin 𝜃 (𝑠󸀠) 𝑑𝑠󸀠,

𝑟 (𝑠) = ∫
𝑠

0

cos 𝜃 (𝑠󸀠) 𝑑𝑠󸀠,
(3)

where 𝑟(𝑠) and 𝑧(𝑠) are the coordinates of the vesicle profile
in the 𝑟 − 𝑧 plane. We can expand the function 𝜃(𝑠) in the
Fourier series [26]:

𝜃 (𝑠) =
𝜃0
𝐿 𝑠
𝑠 +
𝑁

∑
𝑛=1

𝑎𝑛 sin(
𝑛𝜋

𝐿 𝑠
𝑠) , (4)

where 𝐿 𝑠 is the profile length, 𝑁 is the number of Fourier
modes, and 𝑎𝑛 are the Fourier amplitudes, which are calcu-
lated when the bending energy 𝐹tot is minimized. For closed
shapes, we apply the following boundary conditions: 𝜃(0) = 0,
𝜃(𝐿 𝑠) = 𝜋, and 𝑟(0) = 𝑟(𝐿 𝑠) = 0, which means that 𝜃0 =
𝜋 in (4). The bending energy 𝐹tot is a function of Fourier
amplitudes 𝑎𝑛 and the profile length 𝐿 𝑠; therefore we need
to do the numerical minimization of the function of many
variables in order to calculate vesicle shapes [26–28]. In the
minimization process, constraints on the surface area and the
volume of the vesicle are imposed in order to set a fixed value
of the reduced volume V. The reduced volume V is defined as
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the ratio of the vesicle volume to the volume of the sphere
with the same surface area as a given vesicle.

2.2. Monte Carlo Simulations. The fluid vesicle is represented
by a set of 𝑁 vertices that are linked by tethers (i.e.,
bonds) of variable length 𝑙 so as to form a closed, randomly
triangulated, self-avoiding surface [29, 30]. The lengths of
the tethers can vary between a minimal value, 𝑙min, and
a maximal value, 𝑙max. The self-avoidance of the surface
is implemented by ensuring that no vertex can penetrate
through the triangulated surface and that no bond can cut
through another bond. In our simulations, we use 𝑙max/𝑙min =
1.7.

The randomly triangulated network acquires its lateral
fluidity from a bond flip mechanism [29, 30]. A single bond
flip involves the four vertices of two neighbouring triangles.
The tether connecting the two vertices in a diagonal direction
is cut and reestablished between the other two, previously
unconnected, vertices.

The microstates of the vesicle are sampled according to
theMetropolis algorithm, with the energy for a givenmicros-
tate

𝐸 = 𝐹tot − Δ𝑝𝑉, (5)

where the first contribution is the elastic bending energy of
the vesicle (see (2)) and the second contribution accounts
for the energy change with the change of the volume of the
vesicle, 𝑉, due to the pressure difference, Δ𝑝, inside and
outside of the vesicle. Our vesicle consists of a symmetric
membrane (including the absence of amismatch between the
lateral areas of the two individual membrane leaflets), so we
do not need to include the spontaneous curvature (𝐶0 = 0).
The bending energy 𝐹tot of the discretized vesicle (i.e., of the
triangulated network) is calculated as described by Gompper
and Kroll [29, 30]; for a recent review, see [31].

The evolution of the system is reported in Monte Carlo
sweeps (mcs). One mcs consists of individual attempts to
displace each of the 𝑁 vertices by a random increment
in the sphere with the radius 𝛿, centered at the vertex,
followed by 𝑅𝑏𝑁 attempts to flip a randomly chosen bond.
We denote 𝑅𝑏 as the bond-flip ratio, which defines howmany
attempts to flip a bond are made per one attempt to move
a vertex in one mcs. Note that the bond-flip ratio is related
to the lateral diffusion coefficient within the membrane, that
is, to the membrane viscosity [32, 33]. The diffusion also
introduces a real time scale in the simulations and allows for
the simulation of the dynamics of the modelled system (not
considered in this work). In our simulations, we have chosen
𝑅𝑏 = 3 and 𝛿/𝑙min = 0.15.

The investigated vesicle consists of 𝑁 = 1447 vertices,
which are connected with 3(𝑁 − 2) = 4335 bonds to form
𝑁𝑡 = 2(𝑁 − 2) = 2890 triangles. The vesicle, if spherical,
has a radius of approximately 13. During simulations, the
coordination number for each vertex (i.e., the number of its
nearest neighbours,𝑍) is allowed to vary between 4 and 8. For
the bending stiffness of the vesicle, we use 𝜅 = 10𝑘𝐵𝑇, where
𝑘𝐵 is the Boltzmann constant and 𝑇 the absolute energy. In

the following, we use 𝑙min as the unit of length and 𝑘𝐵𝑇 as the
unit of energy.

2.3. Nematic Shells. We study the nematic ordering on
smooth, closed, axial-symmetric surfaces, which we have
calculated within the spontaneous curvature model. We use
theminimalmodel, developed to study nematic shells [8, 34],
which considers effects related to in-plane ordering within
vesicles. To describe the orientational ordering of molecules,
which are bound to lie on the local tangent plane on a surface,
we introduce the surface order tensor Q. On the surface, we
introduce a local orthonormal basis (e1, e2) in which we can
representQ as [11, 35]

Q = 𝑞0 (e1 ⊗ e1 − e2 ⊗ e2) + 𝑞𝑚 (e1 ⊗ e2 + e2 ⊗ e1) , (6)

where 𝑞0 and 𝑞𝑚 are scalar functions in the chosen coordinate
system. The tensorQ can also be written in a diagonal form:

Q = 𝜆 (n ⊗ n − n⊥ ⊗ n⊥) , (7)

where 𝜆 and −𝜆 are eigenvalues of eigenvectors n and n⊥.
Value 𝜆 is a measure for the orientational order and is bound
to lie on an interval 𝜆 ∈ [0, 1/2]. The value 𝜆 = 1/2
corresponds to the maximal degree of orientational order,
while the value𝜆 = 0 corresponds to an isotropic statewith no
orientational order at all. The points on the vesicle exhibiting
𝜆 = 0 usually fingerprint topological defects, since at the
core of topological defects the nematic director is not defined.
The key characteristic property of a topological defect is its
topological charge [35, 36]. According to the theorem of
Poincaré [37], the net topological charge is determined by a
surface topology and it equals 2 for a sphere and all surfaces
obtained by smoothly deforming a sphere, which are also the
surfaces of our interest.

If we know the values of 𝑞0 and 𝑞𝑚 at a given point, we
can calculate the direction of molecules and the orientational
order at that point. The orientational ordering is calculated
with the minimization of free energy. In the simplest form,
the dimensionless free energy density is [35]

𝑓 = (
𝑅

𝜉0
)
2

(𝑡Tr Q̃2 + 1
4
(Tr Q̃2)

2

) +
1

2

󵄨󵄨󵄨󵄨󵄨∇̃𝑠Q̃
󵄨󵄨󵄨󵄨󵄨
2

, (8)

where 𝑅 is the characteristic length of a vesicle and 𝜉0 the
nematic coherence length which is the shortest length in
the system, typically in the nanoscopic range. An ordered
phase can occur when the reduced temperature 𝑡 is negative,
which means that the system is below critical temperature.
The operator ∇̃𝑠 represents the surface gradient. The tilde
notation is used because we have scaled the tensor Q and all
the distances in order to get a dimensionless expression.

Vesicles of any shape can be coated with a thin layer
of nematic liquid crystal to get the previously described
nematic shells. In order to calculate the total free energy, we
integrate (8) over the whole surface of a vesicle. We use the
Monte Carlo method to minimize the free energy. We are
randomly changing values of 𝑞0 and 𝑞𝑚 at random points on
the surface, until we reach the equilibrium configuration.The
tilde notation is used, because we scaled 𝑞0 and 𝑞𝑚 in order
to get a dimensionless expression for energy (see (8)).



4 Advances in Condensed Matter Physics

v 0.20 0.50

v 0.60 0.65

v 0.70 0.90

7

6

5

4

3

2

1

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F

�

Prolates
Stomatocytes
Oblates

Figure 2: Bending energy of closed vesicles in units 𝐹 = 𝐹tot/(8𝜋𝜅)
as a function of reduced volume V. Shapes were calculated within the
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3. Results and Discussion

Theresult ofminimizing the bending energy𝐹tot, given by (2),
is presented in Figure 2.Three classes of vesicle shapes in their
ground states (i.e., in states with the minimal 𝐹tot) are shown
along with their energies for different values of the reduced
volume V. We have obtained stomatocyte, oblate, and prolate
shapes, each of them being the equilibrium shapes on some
range of the reduced volume. Similar results were obtained in
[38, 39].

In Figure 3, we compare the shapes obtained with two
different methods described in Sections 2.1 and 2.2. The
method described in Section 2.1 allows us to set the value for
the reduced volume V, so we are able to calculate the whole
spectrum of shapes for different reduced volumes as shown
in Figure 2. In Monte Carlo simulations, we are changing
the parameter Δ𝑝. Once we obtain the equilibrium state
for a given Δ𝑝, we can also calculate the average reduced
volume ⟨V⟩ for that state in order to compare the thermal
equilibrium and ground state calculations. As can be seen in
Figure 3, the thermal equilibrium states obtained by Monte
Carlo simulations are in good agreement with the ground
state shapes calculated with the minimization of the bending
energy.

We can see in Figure 2 that the ground state oblate shapes
exist only in a small region of the values for V.The fluctuations
which are taken into account in Monte Carlo simulations
alter the phase diagram presented in Figure 2. The regions
of stability of different shapes are changed. For the values
of parameters investigated in the Monte Carlo simulations,
we did not observe stable oblate shapes. We cannot exclude
the possibility that the stable oblate shapes can be obtained
in Monte Carlo simulations, but we can speculate that the
region of stability of oblate vesicles is small. The Monte
Carlo evolution of the vesicle from an initial quasispherical

state towards an equilibrium stomatocyte state is shown in
Figure 4. As can be seen, the vesicle spends a relatively long
“time” in a metastable oblate discocyte state before it reaches
the equilibrium state.

Near the boundary between prolate and stomatocyte
equilibrium states, calculated with the Monte Carlo method,
the fluctuations of the vesicle increase (as can be seen in
the increased standard deviation of the reduced volume).
Due to thermal fluctuations (i.e., the stochastic nature of the
Monte Carlo method), the boundary between the prolate
and stomatocyte vesicles cannot be determined with a high
accuracy. For example, in Figure 3, the equilibrium state for
Δ𝑝 = −0.073 is a prolate shape, while we can obtain stom-
atocyte equilibrium states already forΔ𝑝 = −0.071 (Figure 4).

We have investigated the equilibrium configuration of the
nematic liquid crystal on a prolate vesicle with the reduced
volume V = 0.70, which was calculated in the spontaneous
curvature model. The nematic ordering on a vesicle is shown
in Figure 5.The topological defects are the points where 𝜆 = 0
(dark red color). We have observed four topological defects,
each with the charge 1/2, which means that the theorem of
Poincaré [37] is satisfied. We can see that the topological
defects occur in the regions of the shell with the highest
curvature. Their position is strongly curvature driven, as
previously described in [11, 14]. The regions of the vesicle
with lower curvature have a higher degree of orientational
order; therefore it is not energetically favourable for the
defects to occur in those places. We can find many complex
configurations of topological defects on different vesicles.

4. Conclusions

We have studied the vesicles of spherical topology within
the framework of the spontaneous curvature model. The
shapes of the vesicles were calculated both by Monte Carlo
simulations and by the minimization of the curvature energy
functional. The vesicles shapes calculated by both methods
are in very good agreement. In Monte Carlo simulations, the
calculations were performed for a fixed value of the pressure
difference. Therefore, we were not able to obtain the vesicles
of the given reduced volume, V, with sufficient precision.
We were able to obtain only metastable oblate shapes. We
observed in the simulations that a vesicle spent a relatively
long time in ametastable oblate state before it reached a stable
stomatocyte state. The minimization of the curvature energy
indicates that the oblate shapes are stable in a very narrow
range of the reduced volume. It may be possible that the
region of stability of the oblate shapes has changed due to the
fluctuations or even that the oblate shapes have become only
metastable.

The nematic ordering on a prolate vesicle was also stud-
ied.The shape of the vesicle was calculated in the spontaneous
curvature model. The net topological charge on the surfaces
with the topology of a sphere equals 2. The equilibrium
configurationswith four topological defects, eachwith charge
1/2, were also calculated. We were able to control the
positions of the topological defects on a vesicle by changing
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Figure 3: First row: snapshots of equilibrium configurations obtained by Monte Carlo simulations as described in Section 2.2. Second row:
ground state shapes calculated with the minimization process as described in Section 2. Pressure differences are in units 𝑘

𝐵
𝑇/𝑙3min. All the

shapes were calculated for 𝐶0 = 0. Parameters for first row pictures are as follows: (a) Δ𝑝 = −0.01 (with ⟨V⟩ = 0.949 ± 0.008), (b) Δ𝑝 = −0.05
(with ⟨V⟩ = 0.769 ± 0.003), (c) Δ𝑝 = −0.073 (with ⟨V⟩ = 0.66 ± 0.01), and (d) Δ𝑝 = −0.1 (with ⟨V⟩ = 0.172 ± 0.006). Shapes in the second row
were calculated for the following reduced volumes: (a) V = 0.95, (b) V = 0.77, (c) V = 0.66, and (d) V = 0.17.
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Figure 4: Monte Carlo evolution of the vesicle with pressure difference Δ𝑝 = −0.071 from an initial quasispherical state towards an
equilibrium stomatocyte state. The reduced volume of the vesicle is shown as a function of the Monte Carlo time (measured in mcs). The
average reduced volume in the equilibrium stomatocyte state is ⟨V⟩ = 0.185 ± 0.007, while in the metastable oblate discocyte state it is
⟨V⟩ = 0.50 ± 0.02. The snapshots of the initial quasispherical, discocyte, and stomatocyte states are shown for the appropriate values of the
reduced volume.

the curvature of the vesicle. The tendency of the topological
defects to accumulate in the regions of high curvature may
be important for fission processes [40]. The vesicles with
the nonzero spontaneous curvature have very often the
shapes composed of beads connected by small necks. The
accumulation of the topological defects in those necks may

lead to breaking the necks and dividing a large vesicle into a
few smaller vesicles.

In the future research, one could calculate the nematic
ordering on oblate and stomatocyte vesicles. It would be
possible to use theMonte Carlo simulations in order to calcu-
late the vesicle shapes for different value of the spontaneous
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Figure 5: Vector field of molecules and contour plot of 𝜆/𝜆𝑐 ratio, where the condensation value 𝜆𝑐 stands for the highest possible value of
𝜆 at given 𝑡 < 0 reduced temperature. The calculations were performed for 𝑅/𝜉0 = 40 and 𝑡 = −0.03. The vesicle shape is prolate with the
reduced volume V = 0.70, calculated in the spontaneous curvature model for 𝐶0 = 0. A schematic representation of the vector field and the
contour plot on a vesicle is on the right side.

curvature𝐶0 and compare them to the shapes calculated with
theminimization procedure.Thenematic ordering could also
be studied on those vesicles. It would be instructive to see
whether on any of those vesicles pairs of defects with opposite
topological charges could be generated.
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vol. 2, pp. 151–217, 1886.

[38] U. Seifert, K. Berndl, and R. Lipowsky, “Shape transformations
of vesicles: phase diagram for spontaneous-curvature and
bilayer-coupling models,” Physical Review A, vol. 44, no. 2, pp.
1182–1202, 1991.

[39] A.H. Bahrami,M. Raatz, J. Agudo-Canalejo et al., “Wrapping of
nanoparticles bymembranes,”Advances in Colloid and Interface
Science, vol. 208, pp. 214–224, 2014.
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