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ORIGINAL PAPER
Assembling of Topological Defects at Neck-Shaped
Membrane Parts
Pavlo Kurioz, Luka Mesarec, Ale�s Igli�c, and Samo Kralj*
The impact of intrinsic and extrinsic curvature on the distribution of
topological defects (TDs) in neck-like regions of biological membranes is
studied quantitatively. Biological membranes are modeled effectively at the
mesoscopic level as two-dimensional films described in terms of the tensor
nematic order parameter field and curvature fields. It is demonstrated that
antidefects robustly form at the neck area and can promote a membrane
fission. The assembling of antidefects near the catenoid’s equatorial ring,
where catenoids roughly mimic neck shapes are analyzed in more detail. It
is demonstrated that for sufficiently strong curvatures, the effective
topological charge Δmeff within a strongly curved region equals zero, and
the resulting structures are topologically neutral. Consequently, the total
charge of antidefects within the region equals Δm¼�ΔmV�ΔmK. In most
cases, the positions of antidefects are strongly influenced by the extrinsic
curvature.
1. Introduction

Numerous membrane processes require the formation of
structures possessing local neck-like regions with in-plane
ordering of anisotropic membrane components in the curvature
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field of the membrane.[1–5] The dynamic
evolution and static properties of these
structures could be strongly influenced by
topological defects (TDs),[6,7] which inevi-
tably form if some kind of in-plane
ordering is present[1,8] in membranes with
a spherical topology. TDs introduce local-
ized inhomogeneities in ordering that
could weaken the local membrane struc-
ture. At the center of TDs, the in-plane
order is ill-defined, and consequently, it is
essentially melted. These “weaker” ordered
regions could nucleate diverse membrane
processes in general.[4,8]

Membrane parts exhibiting neck-like
shapes could be formed due to different
mechanisms. For example, they could be
triggered by local clustering of multicom-
ponent proteins coats and rafts.[2] These
membrane parts impose an inherent
curvature preference, which might cause
budding of closed membranes.[2,3,9,10] Curvature generation in
cellular membranes plays an important role in many different
biological functions, such as trafficking, fission, fusion, and
three-dimensional (3D) organization (e.g., caveolae).[9,11] An
example of protein-induced membrane bending is clathrin-
mediated endocytosis, in which a multicomponent protein
bends the membrane into a budded state.[9] On the other hand,
the dynamin family proteins play an important role in the
membrane fission process in mammalian endocytosis.[12]

Budding of membranes is crucial for the vesiculation process,
which is important for membrane trafficking, i.e., themovement
of proteins, pathogens and other macromolecules. Furthermore,
amphiphilic compounds may induce either membrane exvagi-
nations (echinocytosis, spiculation), including budding and
release of small exovesicles in human erythrocytes, or they could
induce pronouncedmembrane invaginations (stomatocytosis).[3]

Budding processes might also be driven by accumulation and
orientational ordering of anisotropic membrane components in
the neck between the bud and the parent membrane.[1,2] The
effects of the membrane curvature on the orientation of
anisotropic (deviatoric) membrane inclusions were studied in
ref. [1]. The results showed that the free energy of anisotropic
inclusions sharply decreased when the neck becomes narrow.
Some anisotropic membrane inclusions may therefore stabilize
the shape where the cell and the exovesicle are connected by a
narrow neck. Furthermore, the budding process may occur due
to a local change in the area difference between the outer and
inner lipid layer[13] or by a constriction force that pinches the
membrane into a budded shape.[10] In addition, the formation of
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Figure 1. Schematic representation of a catenoid surface. A catenoid is a
negatively curved (the sum of the interior angles of the geodesic triangle
equals αþ βþ γ < π) minimal surface (H¼ 0). The unit vectors e1 and e2
define the principal directions; v indicates a surface unit normal vector.
The blue planes P1, P2 visualize the planes of principal curvatures in the
meridional and equatorial directions. The intersection of the planes with
the surface (red lines) forms the principal curvatures: C1 ¼ 1

R1
, C2 ¼ 1

R2
,

where R1 and R2 are principal curvature radii.
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neck-like membrane structures is an integral part of fusion and
fission in cellular membranes.[9,14]

Local neck structures are well modeled by catenoid geome-
tries in several cases.[14] These geometric shapes exhibit zero
mean curvature and negative Gaussian curvature, representing
minimal surfaces. The relationship between Gaussian curvature,
spontaneous curvature, and neck geometry was studied in
ref. [14]. The Helfrich model[15] for lipid bilayers was used to
determine the spontaneous curvature field stabilizing a catenoid-
likemembrane neck. They found that the spontaneous curvature
field depends on the Gaussian curvature and that the catenoid-
shaped neck has an energy barrier at a critical neck radius, which
corresponds to the switch in the sign of the spontaneous
curvature.[14] Furthermore, narrow and highly curved fusion
pores may be facilitated by accumulation of anisotropic
membrane components with orientational ordering. [1,2]

The research indicated that topological defects in the region
of the fusion pore may disrupt the fusion of the vesicle with the
membrane.[16] On the other hand, the fusion pore may also
become completely opened in the process of full fusion of the
vesicle with the membrane.[16]

Membrane fission, which enables separation of membrane
compartments into smaller volumes, is essential for cellular life.
Membrane fission is required for many cellular functions, e.g.,
mitochondrial division,[17,18] cytokinesis,[19,20] viral egress,[21]

and generation of the endoplasmic reticulum network.[22,23] The
processes of membrane budding, fission, and fusion are
essential mechanisms for membrane traffic, i.e., the transport
of nutrients and waste.[24,25] In the trafficking process,
membrane-bound transport vesicles are the carriers of the
cargo. This transport can take place within the cell (between
different organelles) or across the cell membrane.[26] Movement
of cargo from the plasmamembrane into the cell is referred to as
endocytosis, whereas movement of cargo out of the cell is called
exocytosis.[26] In these processes, transport vesicles bud off from
one membrane and can fuse with other membranes.[26] It was
established that a substantial increase of the membrane
spontaneous curvature is a key requirement for the membrane
fission. Spontaneous curvature can be increased by perturba-
tions that generate a difference in area between membrane
leaflets.[27] In cells, an increase in the membrane spontaneous
curvature required to drive the fission process could arise from
protein–lipid interactions.[28] Membrane fission might be
facilitated by proteins with specific structural features, including
helical scaffolds, constricting rings, and hydrophobic membrane
insertions.[29–31]

In contrast, a recent study reported a membrane fission
mechanism that is independent of protein structure.[28] This
mechanism takes into account random collisions among
crowded proteins, which generate substantial pressure that
can dramatically increase the membrane curvature. Such
pressure can stretch, bend, and ultimately disrupt the
membrane surface, leading to fission.[28] Membrane fission
can also be explained by the effect of the area-difference elasticity
and by the effects of coupling local lipid composition to the
Gaussian curvature.[25,32,33] A better understanding of the
mechanisms of membrane budding and vesiculation is
important for cancer research.[34] Nanovesicles that are pinched
off from cancer cells constitute cell-to-cell communication
Phys. Status Solidi A 2019, 1800722 1800722 (2
systems. It has been indicated that nanovesicles can induce
metastases from the primary tumor in this way. Therefore, they
can be considered potentially relevant biomarkers for the
prognosis, diagnosis, and treatment of cancer.[34]

In this paper, we analyze the assembling of TDs at neck
regions where they could, for example, trigger membrane
fission. In the main part of the study, we approximate the neck
shape by catenoid geometry.[35] In particular, we study the impact
of both the intrinsic and extrinsic curvature[36,37] as well as the
presence of specific impurities for assembling TDs in order to
demonstrate the rich variety of possible TD configurations.
However, in all cases, TDs remain localized relatively close to the
region and exhibit minimal negative Gaussian curvature. We use
simplemesoscopic modeling where we restrict the cases to those
exhibiting nematic-type ordering.
2. Theoretical Background

We model membranes as thin two-dimensional (2D) films
exhibiting an in-plane nematic liquid crystal order.[7,8] We
describe the membrane structure in terms of the curvature field
and nematic order parameter field, and the details are given in
ref. [38]. Here, we summarize only the key assumptions of the
modeling.
2.1. Variational Fields

Curvature of a local membrane surface patch, which corre-
sponds to a point at the mesoscopic scale, is characterized by the
curvature tensor field[1,15,34]
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 10)
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C ¼ C1e1 � e1 þ C2e2 � e2 ð1Þ

The unit vectors {e1, e2} point along the surface principal
directions with principal curvatures {C1, C2}, where v¼ e1� e2 is
the local surface normal. These quantities are illustrated in
Figure 1 for a case of catenoid geometry. The invariants of C are
the Gaussian curvature K¼C1C2 and the mean curvature
H ¼ 1

2 ðC1 þ C2Þ. Alternatively, the invariants of C can also be
curvature deviator D and mean curvature H, where D2¼
H2�K.[1,34] The local nematic orientational order is described by
the traceless and symmetric tensor order parameter field[39]

Q ¼ q1ðe1 � e1 � e2 � e2Þ þ q2ðe1 � e2 þ e2 � e1Þ ð2Þ

where q1 and q2 are scalars. The nematic order parameter, which
corresponds to the positive eigenvalue of Q, is given by[39]

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

q
ð3Þ

The corresponding unit eigenvector n defines the local
nematic order and is commonly referred to as the nematic
director field. Note that at the origin of defects n is not uniquely
defined and consequently λ¼ 0.
2.2. Effective Topological Charge Cancellation Mechanism

The position and assembling of TDs can be estimated well by the
effective charge cancellation mechanism (ETCC) for several
Figure 2. Equilibrium nematic ordering configurations calculated for differen
value of the spontaneous curvature of themembrane: (a) C0¼ 0, (b) C0¼ 2 an
were set to: v¼ 0.70, R/ξ¼ 14, kð1Þe ¼ kð2Þe ¼ 0, ki << κ. The order parameter
equilibrium value of the order parameter in the limit R ! 1. Spherical shape
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cases.[38] ETCC embodies a well-known fact[40,41] that Gaussian
curvature acts like a smeared topological charge, i.e., patches
exhibiting K> 0 (K< 0) attract TDs with a positive (negative)
winding number m.[7]

The ETCC mechanism reveals the preferred assembling
tendency of TDs on surfaces exhibiting spatially varying K. One
allocates to a surface patchΔζ its spatially averaged characteristic
Gaussian curvature K

K ¼ 1
Δζ

∬
Δζ

Kd2r ð4Þ

and its effective topological charge

Δmef f ¼ Δmþ ΔmV þ ΔmK ð5Þ

Here, Δm determines the total topological charge of the
existing “real” TDs. Note that one commonly refers to TDs with
m> 0 and m< 0 as defects and antidefects, respectively. ΔmV

describes the “virtual” topological charge introduced by some
“impurity” in the system that produced the same nematic
director profile as a defect with a topological charge m¼ΔmV.
The spread topological charge is defined as[38,40,41]

ΔmK ¼ � 1
2π

Z

Δζ

Kd2r ð6Þ

The ETCCmechanism claims that each surface patch tends to
be topologically neutral, i.e., Δmeff tends to be zero. This can be
t closed membrane shapes. Different shapes were obtained by varying the
d (c) C0¼ 4, where C0 is measured in units 1/R. For (a)–(c), the parameters
correlation length ξ estimates the core size of TDs, and λ0 determines the
s in (d) were formed as a result of decomposition of the membrane in (c).

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 10)
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realized by redistribution of existing TDs or by creation of
additional pairs {defect, antidefect}, and the details are given in
ref. [38].

Note that the ETCC mechanism reveals the tendency of a
system. Topologically neutral configurations could be relatively
easily realized if they can be reached through redistribution of
existing TDs. In cases that additional TDs are needed, then local
regions exhibiting strong enough elastic distortions must be
present to form nuclear pairs (defect, antidefect).
2.3. Free Energy Functional

We express the free energy as the sum f ¼ f H þ f C þ f ðintÞe þ
f ðextÞe of Helfrich bending (fH), nematic condensation (fc),
intrinsic elastic f ðintÞe

� �
, and extrinsic elastic f ðextÞe

� �
contribu-

tions, where

f H ¼ κ

2
ðC1 þ C2 � C0Þ2 ð7aÞ

f c ¼ �aTrðQ2Þ þ b TrðQ2Þ
� �2

ð7bÞ
Figure 3. The degree of nematic ordering and superimposed nematic direc

Phys. Status Solidi A 2019, 1800722 1800722 (4
f ðintÞe ¼ kiTrðrs
QÞ2 ð7cÞ

f ðextÞe ¼ kð1Þe TrðQCÞ2 þ kð2Þe TrðC2Q2Þ ð7dÞ

The parameters entering Equation (7) are the following. κ is
the membrane bending modulus and C0 the spontaneous
curvature of the membrane surface.[15] a and b are positive
material constants in nematic phase, ki is the intrinsic elastic
modulus, rs stands for the surface gradient operator,[39] and
fkð1Þe ; kð2Þe g are extrinsic elastic constants.[35] Note that the
contribution Tr QC2

� �
/ C2

1 � C2
2 equals zero for the catenoid

geometry, for which it holds C1¼�C2. Therefore, in our study,
only the contribution weighted by kð2Þe is relevant.

In our simulations, we first consider the case where both
tensor fields C andQ are variational parameters. In this case, we
neglect the impact of extrinsic curvature and we treat pure
systems (i.e., without “impurities” carrying ΔmV 6¼ 0). We study
closed axisymmetric shapes exhibiting inversion symmetry. In
the Cartesian coordinates (ex, ey, ez), the position vector of a
generic point on an axisymmetric surface is determined by[5,38]

r ¼ ρðsÞcosðuÞex þ ρðsÞsinðuÞey þ zðsÞez ð8Þ
tor field in the (u, s)-plane for the shapes presented in Figure 2.

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 10)
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Figure 4. Equilibrium nematic ordering configurations calculated for different closed membrane shapes. Different shapes were obtained by varying the
value of the spontaneous curvature of themembrane: (a) C0¼ 0, (b) C0¼ 2 and (c) C0¼ 4, where C0 is measured in units 1/R. For (a)–(c), the parameters
were set to v¼ 0.85, R/ξ¼ 14, kð1Þe ¼ kð2Þe ¼ 0, ki << κ. Spherical shapes in (d) were formed as a result of decomposition of the membrane in (c).
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Here ρ(s) and z(s) are variational parameters defining the
profile curve in the (x, z)-plane, s stands for the arc length of the
profile curve, and u is the azimuthal angle. Equilibrium
configurations are obtained by minimizing the total free energy
Figure 5. The degree of nematic ordering and superimposed nematic direc

Phys. Status Solidi A 2019, 1800722 1800722 (5
(Equation (7)) for fixed values of membrane surface and volume,
and the details are given in refs. [38,42,43].

Next, we confine our interest to the impact of extrinsic
curvature and “impurities.” In these simulations, we study the
tor field in the (u, s)-plane for the shapes presented in Figure 4.

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 10)
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degree of ordering for a given catenoid geometry. Therefore, only
Q is a variational parameter while the curvature field is imposed.
The catenoid shapes are defined by ρ(s)¼R1 cosh(s/R1) and z
(s)¼ s. An additional important length entering the modeling is
the order parameter correlation length, which we define as
ξ¼ (a/ki)

1/2. It estimates the linear core size of defects well.
3. Results and Discussion

Our aim is to understand which parameters are the key
parameters influencing the assembling of TDs at neck-like
membrane structures and how they act. For this purpose, we first
analyze the conditions under which topological defect-driven
membrane fission is expected to occur. In the simulations, we let
both curvature field and orientational field serve as variational
parameters. In this analysis, we took only the intrinsic curvature
term into account.

One “natural” parameter that can robustly trigger neck
formation is the reduced volume v¼V/V0. Here, V stands for the
volume of the shape, and V0¼ 4πR3/3 is the volume of a
spherical surface of the same surface area A and radius
R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ð4πÞp
.[44] All lengths in our model are scaled with

respect to R, which represents a typical linear dimension of the
Figure 6. 2D Plots of the order parameter (left panel) and the director field (
kð2Þe =ki ¼ 0:0, (c and d) kð2Þe =ki ¼ �2:4, R1/ξ¼ 0.5. The locations of TDs are

Phys. Status Solidi A 2019, 1800722 1800722 (6
shape. Our model is applicable for membrane shapes with
different length scales. The typical diameter of lipid vesicles is
30–50 nm for small unilamellar vesicles (SUVs), 100–200 nm for
large unilamellar vesicles (LUVs), and up to 100mm for giant
unilamellar vesicles (GUVs),[45] whereas the typical diameter of
cells ranges from 0.1 to 25mm. For example, in experiments with
giant phospholipid vesicle of typical diameter�10mm, a tubular
bud with a diameter of �1mm was formed. This bud detached
itself from the mother vesicle and decomposed into separate
spherical vesicles with �1-mm diameters. Before the separation,
these vesicles were connected by thin necks with diameters of
�50 nm.[46] On the other hand, the typical diameter of a spherical
bud at the top of an echinocyte spicule is �50 nm with a neck
diameter �25 nm.[47] Our dimensionless model can be used for
systems of any length scale. Nevertheless, the effects of
orientational ordering were most profound at smaller length
scales, i.e., at higher curvatures. In our simulations, we assume
that a closed membrane shape undergoes a shape transforma-
tion from a prolate shape (Figure 2a) to the shape with a thin
neck (Figure 2c). The neck region of the closed membrane shape
resembles a catenoid surface (Figure 2b and c). This
transformation is enabled by increasing the value of the
spontaneous curvature of the membrane C0 (see Equation (7)
a). The structural change happens relatively abruptly at the
right panel) with decreases in the extrinsic elastic constant kð2Þe : (a and b)
marked with blue circles in (b) and (d).

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 10)
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critical value of C0. Note that the spontaneous curvature is
correlated to the curvature preferred by the membrane. In our
simulations, C0 is scaled with respect to R. Therefore, increasing
C0 can be interpreted as increasing the size of the closed
membrane shape at the constant value of the nonscaled C0. With
increasing C0, we therefore simulate membrane growth.

In Figure 3, ordering amplitude and director field are shown
in the (u, s) plane where the positions of topological defects are
clearly visible. Here, s stands for the arc length of the profile
curve of the shape. The profile curve of the length LS is rotated
around the z-axis by an angle of u¼ 2π to obtain the closed
axisymmetric membrane shape of spherical topology. According
to the Gauss–Bonnet and Poincar�e–Hopf theorems,[48] topologi-
cal defects are unavoidably formed on closed surfaces with
spherical topology, where the total topological charge is given by
mtot¼ 2.[7] Prolate shape (Figure 2a and 3a) hosts four m¼ 1/2
topological defects, which are attracted toward the poles, where
Gaussian curvature has the highest value. Because of their
mutual repulsion, topological defects are not located exactly at
the poles. On increasing the spontaneous curvature C0 of the
membrane, the neck becomes thinner (Figure 2b). Gaussian
curvature is negative at the neck and positive on the rest of the
Figure 7. Nematic textures on catenoidal shells with variations in the extrinsic
profiles in plane (u, s) are depicted in Figure 6.

Phys. Status Solidi A 2019, 1800722 1800722 (7
membrane surface, which triggers the formation of two new
defect-antidefect pairs (Figure 2b and 3b). Note that in this case,
the surface patches of the structure are only partially neutralized
(i.e., complete neutralization would require eight m¼ 1/2 defects
in the spherical part and four m¼�1/2 antidefects in the neck).
The shape in Figure 2b therefore hosts six defects and two
antidefects. After increasing C0, the neck becomes even thinner
(Figure 2c). The catenoid-like neck region now separates two,
almost spherical parts of the membrane (Figure 2c) if the total
free energy of the resulting two-object structure is lower. Fission
could be enabled in practice by the presence of TDs. Due to
relatively strong orientational fluctuations, the effective interac-
tion between the neighboringmolecules is sufficiently weakened
to trigger the decay.

In the example above, we set v¼ 0.7. Figure 4 and 5 present a
similar process where v¼ 0.85. In this case, the up-down mirror
symmetry is broken with varying C0. Furthermore, in this case,
the intermediate defect structures are different.

We next analyze the various defect structures at the neck area
in more detail with varying material (i.e., values of elastic
moduli) properties and geometrical details. For this purpose, we
mimic the neck-like shape formed by catenoids. Therefore, we
curvature strength. The corresponding order parameter and director field

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 10)
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Figure 8. Calculated order parameter and the director field profiles in (u, s) plane of
the catenoid in the presence of a fixed “impurity” with varying kð2Þe . The order
parameter and director field variations are shown in the left and right columns,
respectively. The fixed circular NP of the radius r¼ ξ is placed at (uNP¼ 0, sNP¼ 0).
The NP effectively acts as a TD bearing mV¼ 1. Textures are obtained for (a ad b):
kð2Þe ¼ 0, (c and d): kð2Þe ¼ �1, (e and f): kð2Þe ¼ �2, (g and h): kð2Þe ¼ �2:4, R1/ξ¼ 0.5.
The locations of TDs are marked with blue circles, and the nanoparticle is marked
with the red circle.
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prescribe the shape of the films and focus solely on the
impact of elastic properties on distribution of TDs in the
neck area. Note that according to the ETCCmechanism,
the defects bearing a negative topological charge will
accumulate at the neck area. However, their exact
positioning there can generally be strongly influenced
by the relative strength of extrinsic and extrinsic elastic
terms. We refer to the narrowest region of a catenoid as
the equatorial ring of radius R1 (see Figure 1). In
simulations, we vary R1 and the ratio μ ¼ kð2Þe =ki. We
also demonstrate the impact of “impurities” on the
patterns of TDs. For this purpose, we insert circular
objects of the radius r¼ ξ, which locally enforce either
ΔmV¼ 1 or ΔmV¼�1 (see Equation (5)). Such
conditions could be realized, e.g., by introducing an
appropriately surface-treated nanoparticle.[49]

In all cases, we consider catenoids possessing small
enough R1 (i.e., comparable to ξ), so that TDs are
generated. Note that for R1>> ξ, there are no defects.
For thin enough equatorial rings, TDs that are created
via {defect, antidefect}¼ {m¼ 1/2, m¼�1/2} pair
formation appear. The antidefects are attracted to the
equatorial ring where negative Gaussian curvature
exhibits a minimum. The defects are expelled outside
catenoids, which is enabled in our simulations by
the imposed free boundary condition. Furthermore, for
catenoids, it holds ΔmK(Δζ)¼ 2[35] (see Equation (4)),
where the surface patch Δζ determines the catenoid’s
part exhibiting a relatively strong curvature. In Figure 6
and 7, we demonstrate the impact of μ on the
distribution of TDs in the absence of “impurities.”
In all cases, four m¼�1/2 are present. Consequently,
the structures are topologically neutral (i.e., Δmeff¼ 0).
For μ¼ 0, the effective extrinsic ordering field is absent.
TDs are assembled at the equatorial ring where the
Gaussian curvature exhibits the minimal value. On
increasing μ, the relative importance of the extrinsic
curvature term increases. The resulting extrinsic
ordering field is strongest at the equatorial ring and
then monotonously decreases when increasing the
distance from the ring. For a large enough value of kð2Þe ,
TDs are expelled from the ring, as shown in Figure 6(c
and d) and 7(c and d).

In Figure 8, we analyze the case where a fixed
“impurity” enforcing ΔmV¼ 1 is placed within the ring.
In this case, six m¼�1/2 TDs exist, which correspond
to topologically neutral structures. After increasing μ,
the defects redistribute. However, even for relatively
large values of kð2Þe , two m¼�1/2 antidefects remain
localized on the ring because they are strongly pinned to
the “impurity.”

Finally, in Figure 9, we consider a case where fixed
“impurity” enforces ΔmV¼�1. In this case, two
m¼�1/2 antidefects are introduced, and the resulting
structures are therefore topologically neutral. Note that on
increasing kð2Þe , the pattern of TDs does not display
qualitative changes.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 9. Calculated order parameter and the director field profiles in (u, s) plane of
the catenoid in the presence of an “impurity” imposingmV¼�1 on variations in kð2Þe .
The order parameter and director field variations are shown in the left and right
columns, respectively. The fixed circular NP of the radius is placed at (uNP¼ 0,
sNP¼ 0). The NP effectively acts as a TD bearing mV¼�1. Textures are obtained for
(a and b): kð2Þe ¼ 0, (c and d): kð2Þe ¼ �1, (e and f): kð2Þe ¼ �2, (g and h): kð2Þe ¼ �2:4,
R1/ξ¼ 0.5. The locations of TDs are marked with blue circles, and the nanoparticle is
marked with the red circle.
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4. Conclusions

We quantitatively studied the patterns of TDs in thin
nematic films with regions exhibiting neck-like shape.
Such systems, among others, roughly mimic biological
membranes exhibiting in-plane ordering. These mem-
branes are often present either due to the anisotropic
structure of membrane constituents or due to attached
anisotropic nano-objects. In the modeling, we used a
Helfrich-Landau-de Gennes type mesoscopic approach
in terms of the curvature tensor field and nematic
tensor order parameter field. We confined our studies to
structures exhibiting axially symmetric shapes, for
which we calculated nematic configurations that break
this symmetry. We focused on number and positional
assembling of TDs in orientational ordering.

We first demonstrated that in structures possessing
neck-like areas, antidefects are likely to be assembled.
These antidefects might trigger a membrane fission
process by effectively weakening intermolecular inter-
actions at the neck area.We then restricted our attention
to the neck area and analyzed how material properties,
such as intrinsic or extrinsic curvature and “impurities,”
affect the number and positions of antidefects. For this
purpose, we approximated the neck shape with catenoid
geometry. Furthermore, we limited our studies to cases
where “impurities” effectively act as local topological
defects, which are characterized either by a virtual
topological charge ΔmV¼ 1 or ΔmV¼�1. Our simu-
lations reveal that for strong-enough neck curvatures,
which are expected in a typical fission process, several
antidefects are robustly present within or near the
equatorial ring of a neck. Specifically, variations of key
model control parameters only affected the local spatial
distribution of antidefects, which, however, remained
localized within the equatorial area.

Note that in-planemembrane order could exhibit also
other symmetries described, e.g., by vector or hexagonal
order parameter field.[40,41] For example, the vector
(hexagonal) order parameter field allows minimal
topological charges m¼�1 (m¼�1/6). In the case of
an approximately spherical surface patch, one would
need two (12) topological defects to form a topologically
neutral patch. However, our analysis is at least
qualitatively appropriate for such cases because key
features rely on topology. The topology is insensitive to
microscopic details, and several universal features
emerge as a result.
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