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Abstract: Within a modified Langevin Poisson–Boltzmann model of electric double layers, we derived
an analytical expression for osmotic pressure between two charged surfaces. The orientational
ordering of the water dipoles as well as the space dependencies of electric potentials, electric fields,
and osmotic pressure between two charged spheres were taken into account in the model. Thus,
we were able to capture the interaction between the parent cell and connected daughter vesicle or
the interactions between neighbouring beads in necklace-like membrane protrusions. The predicted
repulsion between them can facilitate the topological antidefect-driven fission of membrane daughter
vesicles and the fission of beads of undulated membrane protrusions.

Keywords: fission of vesicles; electric double layer; osmotic pressure; orientational ordering of water
dipoles; topological defects

1. Introduction

The main building block of biological membranes is the lipid bilayer, with embedded
inclusions such as proteins [1]. Isotropic and anisotropic membrane proteins may induce
local changes in the membrane curvature [2,3], which may result in global changes in the
cell shape [4–10]. The non-homogeneous lateral distribution and the phase separation of
membrane inclusions (nanodomains) are the driving forces for transformations of the cell
shape [4–7,10–15]. The biological and lipid membranes also possess certain degrees of
in-plane orientational ordering [2,5,6,8,16–19], including nematic type of ordering [20–22],
which is important for the stability of different membrane shapes. The focus of this article
is the role of electric double-layer electrostatics interaction in membrane fission driven by
topological antidefects in thin membrane necks.

Topological defects (TDs) appear in biological membranes if they exhibit in-plane
membrane orders (e.g., due to anisotropic membrane constituents [2,5,23], collectively tilted
flexible hydrocarbon chains [2,20,21,24], or embedded or attached anisotropic membrane
constituents [2,5,6]). Their number and positions are in general robustly governed by the
topology and geometry [2,3,18,23,25].

Membranes that exhibit in-plane orders are in the first approximation treated as effec-
tively two-dimensional (2D) curved and ordered manifolds. A vast majority of theoretical
and numerical studies of TDs in such environments have been realised in 2D models and
nematic liquid crystalline (LC) shells [25–29]. TDs in such systems are characterised by the
winding number m, which quantifies the total rotation of the relevant orientational field
divided by 2π, encircling the core of the defect counter clockwise, and is a discrete and
conserved quantity. TDs bearing positive or negative signs of m are commonly referred
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to as defects or antidefects, respectively. The total value, mtot of m, on closed surfaces
is determined by the Gauss–Bonnet theorem. For the spherical topology of manifolds,
mtot = 2 holds. Therefore, the surface curvature efficiently stabilises TDs, where patches
exhibiting positive (negative) Gaussian curvature attract defects (antidefects) [26,27,30].
Topological defects and antidefects may play important roles in determining the cell mem-
brane shape and membrane fission, as discussed in the following section.

2. Topological Defects/Antidefects and Membrane Fission

In the case of artificial lipid and biological membranes, topological defects often occur
in thin membrane necks due to a strong negative Gaussian curvature in the neck region.

As an example, Figure 1a shows a non-axisymmetric vesicle shape [11] that may
possess a nematic LC order in the necks of undulated protrusions [22,31]. In panels
(b–d) of Figure 1, nematic orientational ordering profiles in the neck regions of necklace-
like buds/endovesicles, are presented. The colour plot represents the degree of nematic
ordering, while the nematic director field (i.e., the orientation of molecules) is denoted
by thin lines. In our visualisation, the light yellow colour represents a high degree of
orientational order. At the core of topological defects/antidefects, the nematic order
is lost [25,32,33]. Therefore, topological defects/antidefects are located at the surface
patches with the lowest degree of orientational ordering, which are marked by dark red
in Figure 1. The approximate positions of topological antidefects in thin membrane necks
are schematically shown in panels (b–d) of Figure 1 and marked by small squares. The
orientational ordering profiles in the vicinity of topological antidefects are magnified [19].

Note that topological defects/antidefects are a source of large local elastic penalties.
Consequently, at the cores of TDs, the ordering field is essentially melted [34–37] (i.e., the
degree of nematic ordering is relatively weak). In Figure 1b,d, two antidefects are located
within each neck on a relatively small surface area. For this reason, the local interactions
between the neighbouring molecules within the neck regions (there, the concentration
of antidefects is relatively high) are weakened, which might result in the neck rupture,
leading to the fission process [34,38,39]. This process is shown in Figure 1c,e, where two
distinct closed membrane shapes (vesicles) are formed. Panel (d) in Figure 1 shows the
budding of the parent vesicle and the formation of the single smaller daughter vesicle,
which can be detached from the parent vesicle due to neck rupture driven by topological
antidefects in the neck. Note that there is no need for antidefects after the fission process
because no neck with strong negative Gaussian curvature (i.e., a large curvature deviator)
exists [22,26].

Note that, in addition to the fission, TDs in membranes could play important roles in
several other mechanisms. For example, they could provide attractive sites for appropriate
nanoparticles, nanovesicles, or extracellular vesicles [4]. Moreover, regions hosting TDs
might be exploited for cross-membrane transport because intermolecular binding in the
corresponding region is weaker. Furthermore, pioneering studies reveal that dynamical
vortices (i.e., topological defects in a velocity field) within membrane plasma might play a
role in mitosis [40,41]. TDs might present a region of entry for nanoparticles (NPs) in lipid
membranes. In general, the biological interaction mechanism of NPs and nanovesicles with
cell membranes containing topological defects is not well understood [42].

Structures rich in TDs could be also stabilised or induced by appropriate NPs or
extracellular vesicles [4], and other types of membrane nanovesicles. NPs introduce TDs in
qualitatively two different ways depending on the strength of their interaction with the
surrounding medium possessing orientational ordering. In the case of sufficiently weak
interactions [43,44], they tend to assemble within cores of TDs. Consequently, they partially
relieve free energy penalties introduced by TDs due to the Defect Core Replacement (DCR)
mechanism [44]. Namely, cores of TDs are in general energetically expansive. If cores of
TDs are partially replaced by volume of NPs, the relatively high-energy penalty of TDs is
reduced. For strong enough interactions, NPs could effectively act as TDs because the NPs’
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shapes introduce curvature into the system. Due to the topological charge conservation law,
additional TDs are formed in the enclosing medium possessing orientational ordering [45].
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ity of topological antidefects are magnified. The figure also shows an example of the vesicle budding 
(panel (d)) and the formation of the detached daughter vesicle (panel (e)) driven by the formation 
of topological antidefects in the neck prior to the fission process. The shape and orientational order-
ing profile were calculated as described in [22]. Panels (a–c) are adapted from [11,22]. 
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vesicles. Hence, in the future, one of the major goal of the research connected to cell membrane 
physics will be to gain a deeper understanding into the mechanisms of interactions of NPs, 
nanovesicles, and extracellular vesicles with the cell membrane mediated by topological de-
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Regarding membrane budding and fission, it is shown in this paper that, in addition to 
topological defects, the electrostatic forces may facilitate membrane fission. Therefore, in the 
following, we describe the possible role of electrostatic interactions in the membrane fission. 

Figure 1. Typical vesicle shapes calculated by MC simulations [11] for the two-component membrane
composed of highly curved isotropic flexible nanodomains (marked in red) and the nanodomains
with zero intrinsic curvature (marked in blue) are presented in panel (a). Membrane nanodomains
with high intrinsic curvature (red) are accumulated in undulated membrane protrusions. Panels
(b,c) show the orientational ordering profiles in the necks of undulated membrane buds/protrusions.
Topological antidefects are accumulated in the necks. Consequently, the shape with three prominent
thin necks (b) is transformed into two distinct closed membrane shapes (c) as a result of the rupture
of one neck. The positions of antidefects in panels (b,c) are marked by small squares. Orientational
ordering profiles with the superimposed nematic director fields in the vicinity of topological an-
tidefects are magnified. The figure also shows an example of the vesicle budding (panel (d)) and
the formation of the detached daughter vesicle (panel (e)) driven by the formation of topological
antidefects in the neck prior to the fission process. The shape and orientational ordering profile were
calculated as described in [22]. Panels (a–c) are adapted from [11,22].

It can therefore be assumed that membrane topological defects could be favourable
points for their interactions with nanoparticles, extracellular vesicles, and membrane
nanovesicles. Hence, in the future, one of the major goal of the research connected to cell
membrane physics will be to gain a deeper understanding into the mechanisms of interac-
tions of NPs, nanovesicles, and extracellular vesicles with the cell membrane mediated by
topological defects in the membrane regions that possess an orientational order.

Regarding membrane budding and fission, it is shown in this paper that, in addition
to topological defects, the electrostatic forces may facilitate membrane fission. There-
fore, in the following, we describe the possible role of electrostatic interactions in the
membrane fission.

3. Electrostatic Interaction between Charged Membrane Surfaces

Electrostatic interactions between the charged surface and electrolyte solution result in
the formation of an electric double layer (EDL) near the charged surface [46–55]. In an EDL,
the ions with electric charges of the opposite sign than the charged surface (counterions)
are accumulated close to the charged surface and the ions with a charge of the same sign
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as the surface (co-ions) are depleted from this region [46–48,56–59]. Figure 2 presents the
electrolyte solution between two charged surfaces with surface charge densities of opposite
signs, where EDLs are created at both charged surfaces. Due to the non-homogeneous
distribution of ions in EDLs, the electric field strength is screened at larger distances from
the charged surface. The water dipoles are strongly oriented in a strong electric field of the
EDL near the charged surface (Figure 2) [2,55,60–68].
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Figure 2. A schematic figure of the electrolyte solution between two charged surfaces at the distance
H. The surface charge densities of both surfaces are negative, σ1 < 0 and σ2 < 0.

In the past, the first theoretical description of EDL was introduced by Helmholtz [69,70],
who assumed that a single layer of counterions forms at the charged surface. Later, the
spatial distribution of point-like ions in the vicinity of charged surface have been de-
scribed by the Boltzmann distribution function [46,47]. The finite size of ions in theo-
retical description of EDL was firstly incorporated by Stern [56] with the so-called dis-
tance of closest approach and later developed further by Bikerman, Freise, Eigen, and
Wicke [48,57–59]. Their work was further improved by numerous theoretical studies and
simulations [2,49–51,53,62,64,66,68,71–92]. The physical properties of the EDL are crucial
in understanding the interactions between charged membrane surfaces in contact with
electrolyte solutions [2,55,93–103].

3.1. Modified Langevin Poisson–Boltzmann Model

In the following, we describe the theoretical consideration of electrostatic interactions
between charged surfaces, where the orientational degree of freedom of water dipoles
is taken into account. Among others, we derive within the modified Langevin Poisson–
Boltzmann model [55,104,105] an analytical expression for the osmotic pressure between
two charged surfaces (Figure 2), which can be then used for the calculation of net osmotic
pressure between two membrane surfaces.

We start with a short description of the modified Langevin Poisson–Boltzmann (LPB)
model of an electric double layer [55,104,105], which presents the generalisation of classic
Poisson–Boltzmann (PB) theory for point-like ions by taking into account the orientational
ordering of water molecules in EDL (see also Figure 2). In the modified LPB model, the
orientational ordering of water dipoles is considered close to the saturation regime or in
the saturation regime, which leads to the prediction that the relative permittivity close
to the charged surface is considerably reduced [55]. The modified LPB model also takes
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into account the electronic polarisation of the water [55,105]. The space dependency of the
relative permittivity within the modified LPB model is given by the following [55,100,105]:

εr(r) = n2 +
nw p0

ε0

(
2 + n2

3

)(
L(γp0E(r)β)

E(r)

)
, (1)

which then appears in the modified LPB equation for electric potential φ [55,100,105]:

∇ · [ε0εr(r)∇] = −ρ(r), (2)

where
ρ(r) = e0 n+(r)− e0 n−(r) = −2e0n0 sin h(e0φ(r)β) (3)

is the macroscopic (net) volume charge density of the electrolyte solution and

n+(r) = n0e−e0φ(r)β , n−(r) = n0ee0φ(r)β (4)

are the number of densities of monovalent cations and anions, respectively. Here, n
is the refractive index of water, n0 is the bulk number density of ions, nw is the bulk
number density of water, and p0 is the magnitude of the dipole moment of water molecule.
L(u) = coth(u)− 1/u is the Langevin function; γ =

(
2 + n2)/2, E(r) is the magnitude

(absolute value) of the electric field strength; and β = 1/kT, where kT is the thermal
energy. In the limit of vanishing electric field strength, the above expression for the relative
permittivity yields the Onsager limit expression [2,55,60,100]:

εr,b = n2 +

(
2 + n2

3

)2 nw p2
0β

2ε0
. (5)

at room temperature T = 298 K, p0 = 3.1 Debye (the Debye is 3.336 × 10−30 C/m), and
nw/NA = 55 mol/l, Equation (5) gives εr,b = 78.5 for the bulk solution. The value p0 = 3.1 D
is smaller than the corresponding value in previous similar models of electric double layers
considering also orientational ordering of water dipoles. For example, in the model of
Abrashkin et al. [106], where the cavity field and electronic polarisability of the water
molecules are not taken into account, the value of p0 = 4.86 D. The model [106] also
incorrectly predicts the increase in the relative permittivity of the electrolyte solution in
the direction towards the charged surface, which is in contradiction to the experimen-
tal results and defies common principles in physics [65,101,104,105]. On the contrary,
Equations (1)–(3) of the described modified LPB model predicts the decrease in relative
permittivity in the electrolyte solution near the charged surface [2,55,100], in agreement
with the experimental observations [107,108].

As an example of application of modified LPB model, Figure 3 shows the electric
potential distribution in the vicinity of two negatively charged spheres presented in the
plane passing through the centres of both spheres (see also Figure 4). The spheres have
uniformly distributed electric charges over the surface and are immersed in electrolyte
solutions of monovalent ions. Figure 3 also shows the dependence of the magnitude of an
electric field along the line starting at the midpoint between the two surfaces (z = 0 point in
Figure 4) in the direction perpendicular to the line that connects the centres of both spheres.
If the radii of both spheres are equal, the electric field at the midpoint is zero (Figure 3a,b),
while in the case of different radii of the spheres, the electric field at the midpoint is different
from zero (Figure 3c). The electrostatic repulsion between two charged spherical vesicles
may additionally facilitate the fission of vesicles in the process, as presented in Figure 1d,e.
The method of calculation of osmotic pressure between two charged spherical vesicles as a
function of the distance between them is presented in the next section.
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Figure 3. Distribution of the electric potential and the magnitude of the electric field strength along the line passing 
through the midpoint between the surface of both spheres perpendicular to the line connecting the centres of the sphere 
(see Figure 4). The calculation were performed by solving the modified LPB eqution (Equations (1)–(3)) for two spheres 
with equal surface charge densities 𝜎 = −0.25 As/m2. The radii of the spheres are 𝑅௣ = 𝑅 = 1 nm (a), 𝑅௣ = 𝑅 = 2 nm (b), 
and 𝑅௣ = 2 nm and 𝑅 = 1 nm (c) (see also Figure 4). The values of other parameters are 𝐻 =  1 nm (see Figure 4), 𝑝଴ = 3.1 Debye, 𝑛଴/𝑁஺ = 0.15 mol/L, 𝑛௪/𝑁஺ = 55 mol/L, and 𝑇 = 298 K. 

Figure 3. Distribution of the electric potential and the magnitude of the electric field strength along the line passing through
the midpoint between the surface of both spheres perpendicular to the line connecting the centres of the sphere (see
Figure 4). The calculation were performed by solving the modified LPB eqution (Equations (1)–(3)) for two spheres with
equal surface charge densities σ = −0.25 As/m2. The radii of the spheres are Rp = R = 1 nm (a), Rp = R = 2 nm (b), and
Rp = 2 nm and R = 1 nm (c) (see also Figure 4). The values of other parameters are H = 1 nm (see Figure 4), p0 = 3.1 Debye,
n0/NA = 0.15 mol/L, nw/NA = 55 mol/L, and T = 298 K.
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Figure 4. Schematic figure of two electrically charged spheres (vesicles) at the distance H with the
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3.2. Osmotic Pressure between Two Charged Surfaces within a Modified Langevin
Poisson–Boltzmann Model

In the following, we derive, within the modified LPB theory, the expression for osmotic
pressure between two charged planar surfaces (see Figure 2). First, we rearrange the
modified LPB equation (Equation (2)) in planar geometry in the following form [55,100,104]:

− d
dx

[
ε0n2 dφ

dx

]
− n0w p0

(
2 + n2

3

)
d

dx
L(γp0E(x)β) + 2e0n0sinh(e0φβ) = 0, (6)

where we took into account Equation (1) for relative permittivity. Equation (6) is first
multiplied by φ′ = dφ/dx and then integrated to obtain [55,100]

−1
2

ε0n2E(x)2 + 2n0kT cosh(−e0φβ)− nw p0

(
2 + n2

3

)
E(x)L(γp0E(x)β)++

(
2 + n2

3

)
nw

γβ
ln
[

sinh(γp0E(x)β)

γp0E(x)β

]
= K, (7)

where the constant K in Equation (7) is the local pressure between the charged surfaces. Equation (7)
is equivalent to the contact theorem. In order to obtain the net force per unit area between the charged
surfaces [94], in the second step, we subtract the bulk values (outside the space between the charged
surfaces) from the local osmotic pressure between the charged surfaces to obtain the expression for
the osmotic pressure difference in the form Π = Πinner −Πbulk [55,100]:

Π = −1
2

ε0n2E(x)2 + 2n0kT(cosh(−e0φ(x)β)− 1)−−nw p0

(
2 + n2

3

)
E(x)L(γp0E(x)β) +

(
2 + n2

3

)
nw

γβ
ln
[

sinh(γp0E(x)β)

γp0E(x)β

]
, (8)

where Πbulk = 2n0kT. The osmotic pressure is constant everywhere in the solution between the
charged plates (see also Figure 2). If both surfaces have equal surface charge densities (σ1 = σ2), the
electric field strength in the middle (x = H/2 in Figure 4) is zero (Figure 3); therefore, Equation (8)
simplifies to the following form [55]:

Π = 2n0kT(cosh(−e0φ(x = H/2)β)− 1). (9)

Since at the midplane the electric field is zero and no force due to electric field acts on the ions,
the entropic contribution to osmotic pressure is the most important (see also [94]).

Figure 5 shows the calculated osmotic pressure between two negatively charged spherical
vesicles of the same radius as a function as the distance between them (H) (see also Figure 4), where
Equation (9) for planar geometry was used to estimate the value of osmotic pressure. Note that, if
the radii of the charged spheres are not equal, the electric field at the midpoint between the surfaces
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of the spheres is not zero (see Figure 3c). In this case, Equation (9) does not apply to estimating the
osmotic pressure at the midpoint between the surfaces of the two spheres/vesicles and one should
use the more general Equation (8).
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Figure 5. The calculated osmotic pressure between two negatively charged spherical vesicles of the
same radius (Rp = R = 10 nm) and same surface charge density as a function of the distance between
their surfaces (H, see Figure 4). The values of the model parameters are n0/NA = 0.15 mol/L,
nw/NA = 55 mol/L, and p0 = 3.1 Debye.

Figure 6 shows the calculated (net) osmotic pressure between the two charged spheres/vesicles
in the electrolyte solution. The radius of the larger sphere/vesicles Rp = 10 nm, while the radius of
the smaller sphere/vesicle R (see Figure 4) varies between 1 nm and 10 nm. The radius 5 nm roughly
corresponds to the dimension of the micelle, while radii smaller than 5 nm may correspond to charged
organic or anorganic nanoparticles. The distance between the surfaces of the two neighbouring
spheres/vesicles is fixed. It can bee seen in Figure 6 that the reduction in the radius of the smaller
sphere/vesicle (R) from 10 nm to 5 nm (i.e., from the size of the vesicle to the size of the micelle) brings
a rather small decrease in the osmotic pressure. The decrease in the size of the smaller sphere/vesicle
becomes more pronounced only when the size is decreased down to the size of small nanoparticles.
As we can see in Figure 5, the variation in the surface charge density of the spheres/vesicles has a
stronger influence on the net osmotic pressure between the two neighbouring spheres/vesicles than
the variation in the radii of the spheres/vesicles (Figure 6).
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Figure 6. The calculated (net) osmotic pressure between two negatively charged neighbouring
spheres/vesicles embedded in a electrolyte solution as a function of the radius of the smaller
sphere/vesicle (R). The radius of the larger sphere/vesicle Rp = 10 nm (see also Figure 4). The
distance between the spheres/vesicles is H = 1 nm for all values of R. Both spheres have equal
surface charge densities (σ = −0.25 As/m2). The value of the osmotic pressure for R = 10 nm
corresponds to the case where both spheres/vesicles have the same radius (Figure 5). The values of
other model parameters are the same as in Figure 5. Note that Equation (8) has limited validity for
small values of R.

4. Conclusions
The degree of orientational order of the membrane constituents is strongly dependent on the

membrane curvature and is influenced by both mechanical and geometrical/topological constraints.
In the past, it was proposed that the orientational order of anisotropic membrane constituents may
generate topological defects in the membrane regions of high anisotropic curvature at the points of
frustration in ordered domains of membrane constituents.

It is shown in this work that the curvature induced topological antidefects may appear in
the membrane necks as the membrane regions with the lowest degree of orientational ordering.
Topological antidefects in the membrane necks connecting the beads of necklace-like membrane
protrusions may induce fission of the protrusion into separated daughter vesicles as a result of the
rupture of the necks, as shown in Figure 1c. The same mechanism may explain the fission of daughter
vesicles, as shown in Figure 1e. As the main result of this work, we showed that the fission can be
additionally facilitated by electric double-layer repulsion between the parent membrane and the
membrane bud/vesicle, as shown in Figure 5.

Author Contributions: Conceptualisation, A.I. and E.G.; methodology, all authors; software, E.G.,
L.M. and S.K.; numerical calculations, E.G. and L.M.; electrostatic theory presentation, A.I., E.G. and
V.K.-I.; writing, all authors; editing, all authors; visualisation, E.G. and L.M.; funding acquisition,
V.K.-I. and A.I. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the Slovenian Research Agency (ARRS) for financial sup-
port, grants No. P2-0232 and No. J3-2533. The project also received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 801338
(VES4US project).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Membranes 2021, 11, 812 10 of 13

References
1. Singer, S.J.; Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720–731. [CrossRef]

[PubMed]
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105. Drab, M.; Gongadze, E.; Kralj-Iglič, V.; Iglič, A. Electric double layer and orientational ordering of water dipoles in narrow
channels within a modified Langevin Poisson-Boltzmann model. Entropy 2020, 22, 1054. [CrossRef]

106. Abrashkin, A.; Andelman, D.; Orland, H. Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces. Phys.
Rev. Lett. 2007, 99, 077801. [CrossRef] [PubMed]

107. Teschke, O.; Ceotto, G.; de Souza, E.F. Interfacial aqueous solutions dielectric constant measurements using atomic force
microscopy. Chem. Phys. Lett. 2000, 326, 328. [CrossRef]

108. De Souza, E.F.; Ceotto, G.; Teschke, O. Dielectric constant measurements of interfacial aqueous solutions using atomic force
microscopy. J. Mol. Catal. A Chem. 2001, 167, 235. [CrossRef]

http://doi.org/10.1209/epl/i2004-10250-2
http://doi.org/10.1063/1.2972980
http://doi.org/10.1007/s00232-010-9278-x
http://www.ncbi.nlm.nih.gov/pubmed/20623113
http://doi.org/10.3390/ijms140815312
http://doi.org/10.1063/1.4794784
http://www.ncbi.nlm.nih.gov/pubmed/23534649
http://doi.org/10.1021/acs.langmuir.7b04199
http://doi.org/10.1016/j.jcis.2020.06.079
http://www.ncbi.nlm.nih.gov/pubmed/32623117
http://doi.org/10.4149/gpb_2011_02_130
http://doi.org/10.3390/e22091054
http://doi.org/10.1103/PhysRevLett.99.077801
http://www.ncbi.nlm.nih.gov/pubmed/17930925
http://doi.org/10.1016/S0009-2614(00)00780-6
http://doi.org/10.1016/S1381-1169(00)00511-2

	Introduction 
	Topological Defects/Antidefects and Membrane Fission 
	Electrostatic Interaction between Charged Membrane Surfaces 
	Modified Langevin Poisson–Boltzmann Model 
	Osmotic Pressure between Two Charged Surfaces within a Modified Langevin Poisson–Boltzmann Model 

	Conclusions 
	References

