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c SMARTEH Research and Development of Electronic Controlling and Regulating Systems, Trg tigrovcev 1, SI-5220 Tolmin, Slovenia
d Laboratory of Clinical Biophysics, Faculty of Health Studies, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 12 May  2013
Received in revised form 17 July 2013
Accepted 18 July 2013
Available online 2 August 2013

Keywords:
Water molecules
Permittivity
Orientational ordering
Attractive forces
Electric double layer

a  b  s  t  r  a  c  t

The  electrolyte-charged  surface  interface  is  described  within  the  Langevin–Poisson–Boltzmann  (LPB)
and  Langevin–Bikerman  models.  It is  shown  that  in  the  saturation  regime  close  to  the  charged  surface,
water  dipole  ordering  and  depletion  of  water  molecules  may  result  in  a  strong  local  decrease  of  per-
mittivity.  Analytical  expressions  for the  space  dependence  of  relative  permittivity  are  derived  for  both
models.  The  differential  capacitance  as a function  of the surface  potential  is calculated  within  the modi-
fied  Langevin–Bikerman  model  and compared  to the  prediction  of the classical  Gouy–Chapman  theory.
As  an  example  of  the application  of the  models  described,  a  zwitterionic  lipid surface  with  non-zero
dipole  moments  in  contact  with  an electrolyte  solution  of  monovalent  salt  ions  and  water  dipoles is
studied  within  the  LPB  model.  An analytical  expression  for  the  osmotic  pressure  of the  electrolyte  solu-
tion  between  the  zwitterionic  lipid  surface  and  a charged  particle  (macroion)  is derived.  Some  of  the
predictions  of  the  described  electric  double  layer  mean-field  theoretical  considerations  are evaluated
using  the results  of  a molecular  dynamics  simulation.  At the  end  a theoretical  description  of  the possible
origin  of  the  attractive  interactions  between  like-charged  surfaces  mediated  by charged  macroions  with
distinctive  internal  charge  distribution  is  given.
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1. Introduction

In the complex interface between a charged surface and a sur-
rounding electrolyte (Fig. 1), the electric double layer (EDL) plays
a crucial role [1–11]. It causes the ions and water molecules to
rearrange near the charged surface and thus to screen the electric
potential [12–16]. Due to electrostatic forces between the charged
surface and the ions in the electrolyte solution, the counterions
(ions with a charge of the sign opposite to the charged surface) are
accumulated close to the surface and the co-ions (ions with a charge
of the same sign as the surface) are depleted from the surface.

Study of the EDL was begun in 1879 by Hermann von Helmholtz
who treated the double layer as a simple capacitor, assuming that
the surface charge density is neutralized by the counterions located
at a distance equal to their hydrated radius. Gouy [17] and Chapman
[18] considered the thermal motion of ions and pictured a dif-
fuse double layer composed of counterions and co-ions. Within the
so-called Poisson–Boltzmann (PB) theory [6,12,13,17–20], the ions
in electrolyte solution are treated as dimensionless, the surfaces
are considered as uniformly charged and uniform permittivity of
the electrolyte solution is assumed. The Stern model [21] was  the
first attempt to incorporate the finite size of ions in EDL theory by
combining the Helmholtz [22] and Gouy–Chapman [17,18] models
[12,23,24]. Later Bikerman introduced the first complete modified
Poisson–Boltzmann (MPB) model which took into consideration
the finite size of molecules in the electrolyte solution [25]. This
approach was continued by Grimley and Mott [26,27], Freise [28]
and Wicke and Eigen [29–31]. Also more recently, the finite size of

Fig. 1. Schematic figure of an electrolyte solution confined between negatively and
positively charged surfaces characterized by surface charge densities �1 at x = 0 and
�2 at x = H. The water dipoles in the vicinity of both charged surfaces are partially
oriented towards the surfaces.

the molecules was incorporated into EDL theory using lattice statis-
tics models [3,32,33], by functional density approaches [34–36] and
by a modified PB theory where the ions and solvent molecules were
treated as hard spheres [14,15,37].

Most of the EDL models published to date are based on the
concept that the relative permittivity is constant throughout the
whole system [2,12,17,18,38,39]. The dipole moment vectors of
water molecules at the charged metal surface are predominantly
oriented in an orthogonal direction with respect to the charged
surface. This results in a strong local decrease of permittivity
[4,5,7,9,14–16,37,40–43], whereas all orientations of water dipoles
further away from the charged surface are equally probable.

Considering simultaneously the orientational ordering of water
and the finite size of molecules, Outhwaite and co-workers devel-
oped a modified PB (MPB) theory of the electrical double layer
composed of a mixture of hard spheres with point dipoles and
finite sized ions [14,15,37]. Later, Szalai et al. [44] published a mean
spherical approximation-based theory [45] that can reproduce sim-
ulation results for the electric field dependence of the dielectric
permittivity of a dipolar fluid in the saturation regime. The prob-
lem was also considered within lattice statistics [16,42,46]. It was
shown that due to accumulation of counterions near the charged
metal surface, the permittivity in this region is additionally reduced
[46].

The Gouy–Chapman (GC) mean-field theory and its
Poisson–Boltzmann (PB) equation may  be used to estimate
the interactions between like-charged surfaces in an electrolyte
solution [12,13,47]. For a monovalent salt, it predicts repulsion
between like-charged surfaces [58] in agreement with the experi-
mental results and computer simulations. Therefore at first glance,
an attractive interaction between two like-charged surfaces would
seem impossible. However, the presence of ions with internal
charge distribution (mediators) in the intermediate solution
between the like-charged surfaces may  change the repulsive
interaction into an attractive one – not predicted by the mean-field
GC approach. The mediators can be charged particles with a
quadrupolar internal charge distribution [49–51]. This attraction
is currently the subject of much interest because it is observed
in a number of biologically relevant processes such as condensa-
tion of DNA [52], or the interactions between like-charged lipid
membranes that occur during membrane adhesion [53] and fusion
[54,55]. Electrostatic attraction between like-charged surfaces is
also possible due to direct ion–ion correlations [56,57] in the limit
of a high surface charge density and high ion charges [58].

In this review we  present a lattice statistics approach to
the theory of the EDL. First, we upgrade the description of
GC theory and its PB equation by considering the orientational
ordering of water molecules near a highly charged surface, the
electronic polarizability and the cavity field of water molecules
within the Langevin–Poisson–Boltzmann (LPB) model for point-
like molecules in electrolyte solution. It is shown that the dielectric
permittivity of an electrolyte close to a charged surface is decreased
due to the increased orientational ordering of water dipoles.
An expression for the osmotic pressure difference between the
charged surfaces (Fig. 1) is also derived. The next section is devoted
to the effects of ion size of the EDL within the Langevin–Bikerman
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Fig. 2. A schematic figure of the charge distribution of a single water molecule
within a triangular atomic model. In the model a single water molecule is con-
sidered as a sphere with permittivity n2 and a point-like rigid (permanent)
dipole/quadrupole at the centre of the sphere. Here n is the optical refractive index
of  water.

Adapted from [59].

(LB) model. It is shown that the dielectric permittivity close to the
charged surface is additionally decreased due to the finite size of
ions and dipoles in the electrolyte solution. We  also shed light on
the effect of finite-sized ions and water molecules on the osmotic
pressure between charged surfaces in contact with the interme-
diate electrolyte solution. In the last part of this section we show
that unlike the unphysical prediction of the GC model, the calcu-
lated differential capacitance within the MLB  model, after reaching
its maximum, decreases with increasing surface potential in accor-
dance with experimental observations. In the next section the LPB
model is generalized to describe the zwitterionic lipid layer in
contact with an electrolyte solution where some of the model pre-
dictions are critically evaluated using the molecular dynamics (MD)
simulation. The end of this section is dedicated to study of the
interaction of positively and negatively charged macroions with
the zwitterionic lipid layer. At the end of the article, we discuss the
possible origins of attractive interactions between two like-charged
surfaces immersed in a solution of macroions with spatially dis-
tributed internal charge. The final section rounds off the work by
drawing final inferences, and pointing to future work and possible
applications of the models described.

2. Energy of a single water molecule within a triangular
atomic model

In the triangular atomic model of water, electronic polarization
is taken into account by assuming that the point-like and rigid (per-
manent) dipole/quadrupole is embedded in the centre of a sphere
with a volume equal to the average volume of a water molecule in
an electrolyte solution, as shown schematically in Fig. 2. The per-
mittivity of the sphere is taken to be n2, where n = 1.33 is the optical
refractive index of water [46,59,60]. The energy of a single water
molecule can be written as (see Fig. 3):

W(x) = −2q�c

(
x − d

2
cos ω

)
+ q�c

(
x − d

2
cos ω + a cos(ω + ϕ)

)
+ q�c

(
x − d

2
cos ω + a cos(ω − ϕ)

)
, (1)

where +q and −q are point charges, �c is the local (cavity) elec-
tric potential, d and a are the distances and ω and ϕ the angles as
denoted in Figs. 2 and 3.

Fig. 3. Geometrical parameters of the triangular atomic model of a water molecule.

Adapted from [59].

For small d and a, we  can expand the energy W(x) in Eq. (1) into
a Taylor series up to the quadratic terms [59]:

W(x) = p cos ω|�′
c(x)| + qr2sin2˚sin2ω|�′′

c (x)|, (2)

where d = a cos ϕ, a sin ϕ = r sin ˚,  p = 2 q d is the magnitude of the
internal dipole, q r2 characterizes the internal quadrupole, while ω
is the angle between the gradient of the electric potential �′

c(x) and
the vector of the water dipole moment.

Fig. 4 shows the dependence of the average cosine 〈 cos(ω)〉B (Eq.
(11)) and the magnitude of the electric field strength E(x) as a func-
tion of the distance from the charged surface at x = 0. The spatial
dependence of E(x) is determined within the Langevin–Bikerman
model from the spatial dependence of the electric potential calcu-
lated from the Gongadze–Iglič  (GI) equation (Eq. (43)), as described
later in Section 4 of this review. It can be seen that the magnitude
of 〈 cos(ω)〉B increases with decreasing distance from the charged
surface and increasing magnitude of the surface charge density �.
This is because the magnitude of the electric field E(x) is strongly
increased in the vicinity of the charged surface (Fig. 4). The tendency
to increasing E(x) in the direction towards the charged surface is
more pronounced for larger magnitudes of �.

3. Point-like molecules in an electrolyte solution

3.1. Modified Langevin–Poisson–Boltzmann equation

In this section we  describe the modified
Langevin–Poisson–Boltzmann (MLPB) model of the EDL [42,61]
considering molecules of the electrolyte solution as point-like par-
ticles. For reasons of simplicity we  neglect the internal quadrupole
energy term (i.e. the second term in Eq. (2)) so that the energy of a
single water molecule in the local field W(ω) is given by:

W(ω)  = pEc cos ω, (3)

where Ec is the magnitude of the local cavity electric field �′
c(x).

If the short range interactions between water molecules are
neglected, the local electric field strength at the centre of the single
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Fig. 4. Average orientation of water molecules described by 〈 cos(ω)〉B (upper panel)
and the magnitude of the electric field strength E(x) (lower panel) as a function of
the distance from the charged plate (x) calculated within the LB model using the GI
for two  values of the surface charge density �: e0/nm2 = −0.16 As/m2 (full lines) and
2  e0/nm2 = −0.32 As/m2 (dashed lines). Values of parameters: bulk concentration
of  salt n0/NA = 0.5 mol/l, dipole moment of water p0 = 3.1 D, optical refractive index
n  = 1.33, bulk concentration of water now/NA = 55 mol/l.

water molecule sphere (cavity) with dielectric permittivity n2 at
the location of the permanent (rigid) point-like dipole is [60]:

Ec = 3εr

2 εr + n2
E, (4)

where E is the magnitude of the external field. The water molecules
are embedded in a medium with permittivity εr. Eq. (4) is further
simplified to the form (strictly valid for εr � n2 only): Ec = (3/2)E.
The energy of the point-like dipole p in the local cavity field of
magnitude Ec may  then be rewritten as:

Wi = �poE cos(ω), (5)

where p0 is the magnitude of the external dipole moment
pe = (3/(2 + n2)) p [46,60] and � is given by [46]:

� = 3
2

(
2 + n2

3

)
. (6)

In the LPB and MLPB models described in this section, the dielec-
tric permittivity is consistently related to the orientational ordering
of water molecules, while the finite volume of ions and water, i.e.
the excluded volume effect, is not taken into account. The volume

density of water (nw(x)) is therefore constant over the whole elec-
trolyte solution [3,42], while the number densities of counterions
(n+(x)) and coions (n−(x) are described by the Boltzmann distribu-
tion functions [3,17,18]:

n+(x) = n0 e−e0�ˇ, (7)

n−(x) = n0 ee0�ˇ, (8)

nw(x) = n0w, (9)

where n0w is the constant (bulk) number density of water and n0
the bulk number density of counterions and coions of electrolyte
solution, and  ̌ = 1/kT,  where kT is the thermal energy. The polar-
ization in the vicinity of a negatively charged surface (see Fig. 1) is
then given by [42]:

P(x) = n0w

(
2 + n2

3

)
p0〈 cos(ω)〉B

= −n0w

(
2 + n2

3

)
p0 L(�p0Eˇ), (10)

where L(u) is Langevin function and 〈 cos(ω)〉B is (see [60]):

〈 cos(ω)〉B =
∫ �

0
cos ωP(x, ω)2� sin ωdω∫ �

0
P(x, ω)2� sin ωdω

= −L(�p0Eˇ). (11)

Combining the definition of the relative (effective) permittivity
εr(x) = n2 + |P|/ε0E and Eq. (10) gives [42,61]:

εr(x) = n2 + |P|
ε0E

= n2 + n0w p0

ε0

(
2 + n2

3

)
L(�p0E(x)ˇ)

E(x)
, (12)

Using Eq. (12) for the space-dependent relative permittivity εr(x),
we can rewrite the MLPB equation in the form [42,61]:

d
dx

[
ε0 εr(x)

d�

dx

]
= 2 e0 n0 sinh(e0�ˇ), (13)

where the macroscopic (net) volume charge density of coions and
counterions in the form:

	free(x) = −e0 n+(x) − e0 n−(x) = −2 e0 n0 sinh(e0�ˇ), (14)

was taken into account. The boundary conditions are [42,61] (see
also Fig. 1):

d�

dx
(x = 0) = − �1

ε0 εr(x = 0)
,  (15)

d�

dx
(x = H) = + �2

ε0 εr(x = H)
. (16)

Fig. 5 shows the spatial dependence of the electric potential �(x)
and relative permittivity εr in planar geometry for two values of
the bulk number density of counterions and coions n0. A consider-
able decrease of relative permittivity can be observed in the close
vicinity of the charged surface.

In the limit of a vanishing electric field strength (E(x) → 0) every-
where in the solution, Eq. (12) for the relative permittivity εr,b(x)
gives the classical Onsager expression [62]:

εr,b
∼= n2 +

(
2 + n2

3

)2
n0wp0

2ˇ

2 ε0
. (17)

At room temperature (298 K), p0 = 3.1 Debye (the Debye is
3.336 × 10−30 C/m) and n0w/NA = 55 mol/l, Eq. (17) gives εr,b = 78.5
for bulk solution. The value p0 = 3.1 Debye is considerably
smaller than the corresponding value in previous similar models
(p0 = 4.79 D) [42,63,64] which did not take into account the cavity
field and electronic polarizability of water molecules.
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Fig. 5. Electric potential �(x) (upper panel) and relative permittivity εr(x) (lower
panel) as a function of the distance from a negatively charged surface x = 0 (see
Fig. 1) and large H calculated within the MLPB model for two values of the bulk
concentration of counterions and coions n0/NA: 0.1 mol/l and 0.01 mol/l. The model
parameters are: �1 = −0.3 As/m2, T = 298 K, p0 = 3.1 Debye, concentration of water
n0w/NA = 55 mol/l, where NA is the Avogadro number. The MLPB Eq. (13) was solved
numerically as described in [42,46]).

3.2. Langevin–Poisson–Boltzmann equation

Neglecting the influence of the cavity field, the MLPB equation
(Eq. (13)) [61] transforms into LPB equations [42] valid in the limit
of � → 1 and n → 1 to obtain [16,42]:

d
dx

[
ε0 εr(x)

d�

dx

]
= 2 e0 n0 sinh(e0�ˇ), (18)

where the space dependent relative permittivity εr(x) is [16,42]:

εr(x) = 1 + n0w p0

ε0

L(p0Eˇ)
E

. (19)

Eq. (18) differs from Eq. (13) in the expression for εr(x) which is not
the same in the two cases. In the limit of vanishing electric field
strength (E → 0), Eq. (19) predicts:

εr,b
∼= 1 + n0wp0

2ˇ

3 ε0
. (20)

At room temperature (298 K), p0 = 4.79 D and n0w/NA = 55 mol/l
Eq. (20) gives εr,b = 78.5 for bulk solution. The value of the dipole
moment p0 = 4.79 D [42,63,64] is considerably larger than the cor-
responding value in the above described MLPB model (p0 = 3.1 D)
which takes into account the cavity field and electronic polariz-
ability of water molecules [46,61].

3.3. Limiting Poisson–Boltzmann equation

Assuming a constant bulk value of the permittivity everywhere
in the electrolyte solution, including the close vicinity of charged
surfaces, the LPB equation transforms into the PB equation [17,18]:

ε0 εr,b
d2�

dx2
= 2 e0 n0 sinh(e0�ˇ). (21)

3.4. Osmotic pressure

In the following we  derive an expression for the osmotic pres-
sure difference between the charged surfaces as presented in Fig. 1.
To this end Eq. (13) of the MLPB is first integrated (see also [47])
and then in the second step the corresponding bulk value of the
pressure is subtracted from the local pressure to get the osmotic
pressure ˘ .  Prior to its integration, Eq. (13) is rearranged in the
form (see also [42]):

− d
dx

[
ε0n2 d�

dx

]
+ 2e0 n0 sinh e0�ˇ

− n0w p0

(
2 + n2

3

)
d
dx

(L(�p0Eˇ)) = 0. (22)

Eq. (22) is multiplied by �′ ≡ d�/dx and integrated [47] to the get
the first integral equivalent to the contact theorem:

1
2

ε0 n2E(x)2 + 2n0 kT (cosh(−e0�(x)ˇ))

−E(x)

(
2 + n2

3

)
n0w p0 L(�p0E(x)ˇ)

+
(

2 + n2

3

)
n0w

� ˇ
ln

(
sinh(�p0E(x)ˇ)

�p0E(x)ˇ

)
= const, (23)

where const is the local pressure between the charged surfaces (as
defined in Fig. 1). In the derivation of Eq. (23) the relations∫

�′′�′ dx =
∫

1
2

d(�′)2=1
2

(�′)2,

∫
dL
dx

�′ dx =L �′ −
∫
L d�′,

are used. Here �′′ ≡ d2�/dx2 and d� = �′ dx. By subtracting the cor-
responding bulk values from the local pressure we obtain the
expression for the osmotic pressure difference within the MLPB
model [65]:

˘MLPB = − 1
2

ε0 n2E(x)2 + 2 n0 kT (cosh(−e0�(x)ˇ) − 1)

− E(x)

(
2 + n2

3

)
n0wp0 L(�p0E(x)ˇ)

+
(

2 + n2

3

)
n0w

� ˇ
ln

(
sinh(�p0E(x)ˇ)

�p0E(x)ˇ

)
. (24)

Substituting the spatial number density distributions for cations
and anions of the electrolyte solution:

n+(x) = n0 exp(−e0�(x)ˇ), n−(x) = n0 exp(e0�(x)ˇ), (25)

Eq. (24) reads:

˘MLPB = − 1
2

ε0n2E(x)2 + kT(n+(x) + n−(x) − 2n0)

− E(x)

(
2 + n2

3

)
n0w p0 L(�p0E(x)ˇ)

+
(

2 + n2

3

)
n0w

� ˇ
ln

(
sinh(�p0E(x)ˇ)

�p0E(x)ˇ

)
. (26)

For small �p0E(x)  ̌ we can expand the 3rd and 4th terms in Eq. (26)
into Taylor series to get:

˘MLPB ≈ − 1
2

ε0

(
n2 +

(
2 + n2

3

)2
n0wp0

2ˇ

2 ε0

)
E(x)2

+ kT(n+(x) + n−(x) − 2n0). (27)

Using the Onsager expression for bulk relative permittivity (Eq.
(17)), Eq. (27) can be rewritten in the usual PB form for the osmotic
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pressure within the EDL theory [58]:

˘PB = − 1
2

ε0 εr,b E(x)2 + kT (n+(x) + n−(x) − 2n0)

= − 1
2

ε0 εr,b E(x)2 + 2 n0 kT(cosh(e0 �(x)ˇ) − 1).  (28)

Following a procedure similar to that in the case of derivation
of Eq. (24), one can also derive the corresponding expression for
osmotic pressure by integrating Eq. (18) of the LPB (see also [47])
to get:

˘LPB = −1
2

ε0 n2E(x)2 + kT(n+(x) + n−(x) − 2n0)

−E(x)n0w p0 L(p0E(x)ˇ) + n0w

ˇ
ln

(
sinh(p0E(x)ˇ)

p0E(x)ˇ

)
.

(29)

One can also derive Eq. (29) directly from Eq. (24) in the limit of
� → 1 and n → 1. For small p0E(x)  ̌ we can expand the 3rd and 4th
terms in Eq. (29) into Taylor series to get:

˘LPB ≈ − 1
2

ε0

(
1 + n0wp0

2ˇ

3 ε0

)
E(x)2 + kT(n+(x) + n−(x) − 2n0).

(30)
Taking into account Eq. (20), the above Eq. (30) attains the PB form
of the equation for osmotic pressure, i.e. the form of Eq. (28).

The osmotic pressure is constant everywhere in the solution
between the charged plates. In the case of like charged surfaces
where �1 at x = 0 and �2 at x = H (Fig. 1) are both negative or posi-
tive and equal (�1 = �2), the electric field strength at x = H/2 is zero,
therefore the expression for osmotic pressure within the PB (Eq.
(28)), LPB (Eq. (29)) and MLPB model (Eq. (26)) simplifies to:

˘i(x = H/2) = 2 n0

ˇ
(cosh(e0 �i(x = H/2) ˇ) − 1),

i
 

=
 

PB,
 

LPB,
 

MLPB.
 

(31)

where
 

�PB(x
 

=
 

H/2),
 

�LPB(x
 

=
 

H/2)
 

and
 

�MLPB(x
 

=
 

H/2)
 

are
 

calculated
from the PB, LPB and MLPB equations, respectively.

Fig. 6 shows the osmotic pressure between negatively and pos-
itively charged surfaces (upper panel) and between two  negatively
charged surfaces (lower panel) (see also Fig. 1) as a function of
the decreasing distance (H) between them, calculated within the
MLPB model (Eq. (24)). The decrease of the osmotic pressure ˘(H)
is more pronounced for smaller values of the bulk concentration of
salt. The predicted values of the osmotic pressure within the MLPB
model differ from the corresponding values within the standard PB
model only at very small distances H, where within the MLPB model
the influence of the space variation of permittivity at both charged
surfaces (see Eq. (12)) on the osmotic pressure is not negligible.

4. Finite-sized molecules in an electrolyte solution

Unlike in the LPB model, in this section the finite volume of the
molecules is taken into account.

4.1. Gongadze–Iglič equation

Since in bulk solution the number densities of water molecules
(n0w), counterions (n0) and co-ions (n0) are constant, their number
densities can be expressed in a simple way by calculating the corre-
sponding probabilities that a single lattice site in the bulk solution
is occupied by one of the three kinds of particles in the electrolyte
solution (counterions, co-ions and water molecules) [16,20,24].
However, in the vicinity of a charged surface the number densities
of ions and water molecules are influenced by the charged surface

Fig. 6. Osmotic pressure between negatively and positively charged surfaces (upper
panel) and between two negatively charged surfaces (lower panel) as a function of
the distance between the two surfaces (H) (see Fig. 1), calculated within the MLPB
model (Eq. (24)) for two values of the bulk salt concentration n0/NA = 0.01 mol/l
(dashed lines) and n0/NA = 0.1 mol/l (full lines). Other model parameters are:
�1 = −0.2 As/m2, �2 = 0.2 As/m2, T = 298 K, concentration of water n0w/NA = 55 mol/l
and dipole moment of water p0 = 3.1 Debye, where NA is the Avogadro number.

(see also Fig. 1), so the probabilities that a single lattice site is occu-
pied by a particle of one of the three kinds should be corrected
by the corresponding Boltzmann factors, leading to ion and water
dipole distribution functions in the form [46]:

n+(x) = ns
n0e−e0�ˇ

n0ee0�ˇ + n0e−e0�ˇ + n0w 〈e−� po E  ̌ cos(ω)〉ω

, (32)

n−(x) = ns
n0ee0�ˇ

n0ee0�ˇ + n0e−e0�ˇ + n0w 〈e−� po E  ̌ cos(ω)〉ω

, (33)

nw(x) = ns
n0w〈e−� po E  ̌ cos(ω)〉ω

n0ee0�ˇ + n0e−e0�ˇ + n0w 〈e−� po E  ̌ cos(ω)〉ω

, (34)

where ns is the number density of lattice sites defined as 2n0 + n0w

and

〈e−� po E  ̌ cos(ω)〉ω =
2�
∫ 0

�
d(cos ω)e−�poE  ̌ cos(ω)

4�
= sinh(�p0Eˇ)

�p0Eˇ
,

(35)

is the dipole Boltzmann factor after rotational averaging over all
possible angles ω. Eqs. (32)–(34) can be rewritten as [46]:

n+(x) = n0 e−e0�ˇ ns

D(�, E)
, (36)

n−(x) = n0 ee0�ˇ ns

D(�, E)
, (37)

nw(x) = n0wns

D(�, E)
sinh(�p0Eˇ)

�p0Eˇ
. (38)
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where D(�, E) = 2n0 cosh(e0�ˇ) + (n0w/�p0Eˇ)  sinh(�p0Eˇ). Com-
bining Eq. (10)

P(x) = −nw(x)

(
2 + n2

3

)
p0 L(�p0Eˇ), (39)

and Eq. (38) gives the polarization in the form:

P(x) = −
(

2 + n2

3

)
p0 n0wns

D(�, E)
L(�p0Eˇ)

�p0Eˇ
sinh(�p0Eˇ). (40)

Using the definition of the function F(u): F(u) = L(u)(sinh u/u), Eq.
(40) transforms into:

P = − p0 n0w ns

(
2 + n2

3

)
F(�p0Eˇ)
D(�, E)

. (41)

Combining εr(x) = n2 + |P|/ε0E and Eq. (41) yields the relative (effec-
tive) permittivity [46]:

εr(x) = n2 + n0w ns
p0

ε0

(
2 + n2

3

)
F(�p0Eˇ)
D(�, E) E

. (42)

Using the above expression for εr(x), we can then write the Poisson
equation into the Gongadze-Iglič (GI) equation in the form [16,46]:

d
dx

[
ε0εr(x)

d�

dx

]
= 2 e0 nsn0

sinh(e0�ˇ)
D(�, E)

, (43)

where the macroscopic (net) volume charge density of co-ions and
counterions 	free(x) (Eqs. (36) and (37)) [46] was taken into account:

	free(x) = e0 n+(x) − e0 n−(x) = −2 e0 nsn0
sinh(e0�ˇ)
D(�, E)

. (44)

The boundary conditions are (see also Fig. 1):

d�

dx
(x = 0) = − �1

ε0 εr(x = 0)
, (45)

d�

dx
(x = H) = + �2

ε0 εr(x = H)
, (46)

where εr(x) is defined by Eq. (42).
In the limit of vanishing electric field strength (E → 0) and zero

potential (� → 0), the above derived expression for relative per-
mittivity (Eq. (42)) gives the well-known Onsager expression for
permittivity [62]:

εr,b
∼= n2 +

(
2 + n2

3

)2
n0wp0

2ˇ

2 ε0
. (47)

It is worth noting that using Eq. (42) the value of the dipole moment
p0 = 3.1 D predicts a bulk permittivity of εr = 78.5.

In Fig. 7 we show the number density of counter ions n+(x)
and water dipoles nw(x) as a function of the distance from a
negatively planar charged surface x. The predicted depletion of
water molecules near the charged surface is due to accumula-
tion of counterions close to to the charged surface in accordance
with the excluded volume principle taken into account in the
Langevin–Bikerman model.

In Fig. 8 we demonstrate the spatial dependences of the electric
potential �(x) and relative permittivity εr(x). The decrease of rela-
tive permittivity εr(x) towards the charged surface is a consequence
of the increased orientational ordering of water dipoles (satura-
tion effect) close to the charged surface (Fig. 4) and the increased
depletion of water molecules near the charged surface due to accu-
mulation of counterions (see Fig. 7). The decrease of εr(x) near the
charged surface is more pronounced for larger magnitudes of the
surface charge density (�) (Fig. 9) due to stronger water ordering
at larger |�|, as presented in Fig. 4.
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Fig. 7. The relative number density of counterions (n+/ns) (upper panel) and water
dipoles (nw/ns) (lower panel) (calculated using Eqs. (36) and (38)) as a func-
tion of the distance from a planar charged surface x calculated for two  values of
the bulk concentration of counterions and coions n0/NA: 0.1 mol/l (full lines) and
0.01  mol/l (dashed lines). Values of parameters assumed: � = −0.2 As/m2, dipole
moment of water p0 = 3.1 D, optical refractive index n = 1.33, bulk concentration of
water now/NA = 55 mol/l, where NA is the Avogadro number. The GI equation (43)
was solved numerically as described in [46]).
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(see  Fig. 1) and at large H calculated for two values of the bulk concentration of
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The values of model parameters are the same as given at Fig. 7. The GI equation (43)
was solved numerically as described in [46]).
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face  charge density � = −0.2 As/m2 (full lines), � = −0.3 As/m2 (dashed lines) and
�  = −0.4 As/m2 (dashed-dotted lines) at the bulk concentration of counterions and
coions n0/NA = 0.15 mol/l and p0 = 4.79 D. The values of other model parameters are
the same as given at Fig. 7. The LB equation (48) was  solved numerically as described
in [46]).

Comparing the decrease of relative permittivity at the charged
surface εr(x ≈ 0) shows that at same (and large enough) � in the
MLB  model (Fig. 9) εr(x ≈ 0) attains a much lower value than in the
MLPB model Fig. 5. The observed difference in the predictions of the
MLB  and MLPB models is the consequence of the depletion of the
number density of water molecules in the vicinity of the negatively
charged surface (n+(x ≈ 0)) (see Fig. 7), which is then reflected in a
substantial decrease of the magnitude of polarization (see Eq. (39))
and therefore also in a decrease of εr(x ≈ 0).

To estimate experimentally the spatial dependence of the
dielectric permittivity (εr(x)), an appropriate theoretical model and
model parameters should be adopted [66,67]. This means that the
experimentally obtained value of εr(x) depends substantially on
the type of theoretical model selected. To this end it is debatable
whether the thickness of the oriented water layer near the charged
surface is around or below 1 nanometre or a few tens of nanome-
tres (see for example [67] and references therein). Teschke et al.
[67] used atomic force microscopy and an appropriate theoretical
analysis in order to determine the permittivity of an electrolyte
solution at a negatively charged mica surface, i.e. at x = 0. The
value εr(x = 0) ≤ 10 was obtained for different kinds of electrolyte
solutions in contact with the mica surface [67]. The measured per-
mittivity εr(x) increased with distance from the mica surface to
reach a bulk value of ∼80 at about 10 nm from the mica sur-
face [66,67]. The estimated value εr(x = 0) ∼ 10 [67] is larger than
the corresponding values predicted within the LPB and LB mod-
els calculated for � � −0.1 to − 0.2 As/m2 as assumed by Teschke
et al. [67]. Also the theoretically predicted (by the GI model) thick-
ness of the region of oriented water molecules (coinciding with
the region of spatial variation of εr) is considerably thinner than
the experimental value determined by Teschke et al. [67]. A value
of εr(x = 0) around 10 can be predicted by the GI equation, but
only for |�| > 0.2 As/m2. It is possible that the |�| value adopted in

[67] is too small, since it may  be influenced by different factors
such as, for example, adhesion of ions to the charged surface [5].
However, it is also possible that the simplifications adopted in the
theoretical models discussed, such as for example neglecting direct
interactions between water dipoles, are the partial origin of these
discrepancies. Interestingly, the smaller value of εr(x = 0) (around
10) can be predicted within the theoretical approach presented by
taking into account the quadrupole moment of water molecules
[59] (see also Fig. 2).

4.2. Langevin–Bikerman equation

The above described GI equation (Eq. (43)) [46] may  be
written in the limit of � → 1 and n → 1 [16,42] to obtain the
Langevin–Bikerman equation [42,64]:

d
dx

[
ε0 εr(x)

d�

dx

]
= 2 e0 nsn0

sinh(e0�ˇ)
H(�, E)

, (48)

where the macroscopic (net) volume charge density of co-ions and
counterions 	free(x) in the form:

	free(x) = −2 e0 nsn0
sinh(e0�ˇ)
H(�, E)

, (49)

is taken into account, while the relative permittivity εr(x) is
[16,63,64]:

εr(x) = 1 + n0wns
p0

ε0

F(p0Eˇ)
E H(�, E)

, (50)

where

H(�, E) = 2n0 cosh(e0�ˇ) + n0w

p0Eˇ
sinh(p0Eˇ). (51)

The corresponding number densities of counterions, coions and
water molecules are [16,64]:

n+(x) = n0 e−e0�ˇ ns

H(�, E)
, (52)

n−(x) = n0 ee0�ˇ ns

H(�, E)
, (53)

nw(x) = n0wns

H(�, E)
1

p0Eˇ
sinh(p0Eˇ). (54)

In the limit of vanishing electric field strength (E → 0) and vanishing
electric potential (� → 0) Eq. (50) transforms into:

εr,b
∼= 1 + n0wp0

2ˇ

3 ε0
. (55)

Comparison between the space dependence of the relative permit-
tivity within the GI equation and within its limiting LB equation for
� → 1 and n → 1 shows that consideration of the cavity field and
electronic polarizability of water molecules makes the reduction of
the permittivity of the electrolyte solution near the charged sur-
face stronger in the case of the GI equation. More importantly, in
the LB equation the value p0 = 4.79 D [63,64,68] (similarly as in the
LPB model [16,42]) should be used in order to get εr(x → ∞) =78.5.

4.3. Bikerman equation

In the limit of p0 → 0 the particle distribution functions (Eqs.
(52), (53) and (54)) transform into the Bikerman distribution func-
tions [3,25–28,31,69,70]:

n+(x) = n0ns

n0w

e−e0�ˇ

1 + (2n0/n0w) cosh(e0�ˇ)
, (56)



Author's personal copy

50 E. Gongadze et al. / Electrochimica Acta 126 (2014) 42–60

n−(x) = n0ns

n0w

ee0�ˇ

1 + (2n0/n0w) cosh(e0�ˇ)
, (57)

nw(x) = ns

1 + (2n0/n0w) cosh(e0�ˇ)
, (58)

while Eq. (48) transforms into the Bikerman equation
[3,25–28,31,69,70]:

ε0 εr,b
d2�

dx2
= 2 e0 nsn0

sinh(e0�ˇ)
H(�, E)

, (59)

where we transformed ε0 → εr,b ε0 with εr,b = 78.5, while 	free(x) is
defined by Eq. (49). Eq. (56) predicts a Fermi–Dirac-like distribution
for counterions if the lattice constant a is large enough. For higher
values of the surface charge density (|�|), the counter-ion density
saturates near the charged surface to its close packing value, while
the well-known GC model [12,17,18] predicts unreasonably high
values beyond the close-packing values (see also [3,25,70]).

4.4. Limiting Poisson–Boltzmann equation

In the limit of very dilute solution everywhere in the electrolyte
solution:∑
j=+,−

nj(x) � nw(x), (60)

and by taking into account the approximation n0w � ns, we can
neglect the second term in the denominator of Eqs. (56) and (57),
so the particle distribution functions (Eqs. (56) and (57)) trans-
form into Boltzmann distribution functions within the GC model
[2,4,12,17,18,58]:

n+(x) = n0 e−e0�ˇ, (61)

n−(x) = n0 ee0�ˇ, (62)

while the number density of water molecules (Eq. (58)) becomes
constant [3,70]:

nw(x) = n0w. (63)

The Bikerman equation (Eq. (59)) transforms into the
Poisson–Boltzmann equation (Eq. (21)) within GC model
[12,17,18]:

ε0 εr,b
d2�

dx2
= 2 e0 n0 sinh(e0�ˇ). (64)

4.5. Osmotic pressure

Following a similar procedure (presented in Section 3.4) in the
derivation of Eqs. (24) and (29), we multiply the LB equation (Eq.
(48)) by �′ and then integrate it [11,47,63] to get an expression for
the osmotic pressure in the form:

˘LB = −1
2

ε0 E(x)2 − ns

ˇ
ln
(

ns

H(�, E)

)
− nw(x) p0 E(x)L(p0E(x)ˇ).

(65)

where H(�, E) is defined by Eq. (51) and the number density of
water nw(x) by Eq. (54).

For small p0E(x)  ̌ and e0�  ̌ we can expand the 2nd and 3rd terms
in Eq. (65) into Taylor series to get:

˘LB ≈ −1
2

ε0

(
1 + n0wp0

2ˇ

3 ε0

)
E(x)2 + 2 n0

ˇ
(cosh(e0�(x)ˇ) − 1).

(66)

Fig. 10. Electric potential �(x = H/2) (upper panel) and osmotic pressure ˘  ̌ (lower
panel) between two negatively charged surfaces, calculated within the PB model
(Eq. (31)) (saltires) and the LB model (Eq. (70)) (empty circles) as a function of
the distance between charged surfaces (H) (see Fig. 1) for a bulk salt concentration
n0/NA = 0.1 mol/l. Other model parameters are: �1 = −0.3 As/m2, T = 298 K, concen-
tration of water n0w/NA = 55 mol/l and dipole moment of water p0 = 4.79 Debye,
where NA is the Avogadro number.

Taking into account Eq. (55) above, Eq. (66) attains the PB form of
the equation for osmotic pressure:

˘PB = − 1
2

ε0 εr,b E(x)2 + 2  n0

ˇ
(cosh(e0 �(x)ˇ) − 1).  (67)

In thermodynamic equilibrium the value of the osmotic pressure
is equal everywhere in the space between the two charged surfaces
(Fig. 1). In the case of like-charged surfaces where �1 (at x = 0) and
�2 (at x = H) are both negative or positive and equal (�1 = �2), the
electric field strength at x = H/2 is zero, therefore the expression for
osmotic pressure within the LB model (Eq. (65)) in the special case
of �1 = �2 simplifies to:

˘LB(x = H/2)

= ns

ˇ
ln
(

n0w

ns

(
2

n0

n0w
cosh(e0�LB(x = H/2) ˇ) + 1

))
, (68)

where �LB(x = H/2) is calculated from LB equation. Adopting
the approximation (ns/ˇ)  ln(n0w/ns) = (ns/ˇ)  ln((ns − 2n0)/ns) =
(ns/ˇ) ln(1 − 2n0/ns) � −2n0/  ̌ Eq. (68) transforms into:

˘LB(x = H/2)

= − 2 n0

ˇ
+ ns

ˇ
ln
(

2
n0

n0w
cosh(e0 �LB(x = H/2) ˇ) + 1

)
. (69)

For 2 (n0/n0w) cosh(e0 �LB(x = H/2) ˇ) � 1 Eq. (68) can be further
simplified to get:

˘LB(x = H/2) = 2n0

ˇ
(cosh(e0 �LB(x = H/2)ˇ)  − 1).  (70)

In order to shed light on the influence of water polarization and
the finite size of molecules on the osmotic pressure in an electrolyte
solution confined by two  charged surfaces, we compared it within
the PB model and the LB model calculated at x = H/2 using Eqs. (31)
and (70), respectively (Fig. 10). Since in Eqs. (31) and (70) the elec-
tric potential at x = H/2 is the only input data, Fig. 10 shows the
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Fig. 11. Differential capacitance as a function of the surface potential �0 using
Gouy–Chapman Eq. (72) (PB), LPB, MLPB, Bikerman, LB and GI model.

corresponding values of �(x = H/2) in the PB and LB models. We
can see that the osmotic pressure within the like-charged surfaces
as a function of the decreasing separation between the surfaces
(H) increases more in the LB than in the PB model. The difference
between the predictions of the two models is much more signifi-
cant for small separations H < 2 nm,  where the influence of water
ordering and the excluded volume effect in the LB model becomes
important.

5. Differential capacitance

To ascertain whether the described LB mean-field approach
which includes the orientational ordering of water, the cavity field,
the electronic polarizability of water and the finite size of molecules
has improved the agreement between theory and experiments
with respect to the classical GC model and the Bikerman model,
one should compare the measured and predicted values of electric
potential and differential capacitance of the EDL in both models.
Using the GI equation, the predicted values of the electric potential
at higher surface charge densities � are substantially more nega-
tive than the corresponding values within the GC model using the
PB equation or Bikerman equation (see also [71,72] and references
therein).

Within the GC model, we can estimate the electric potential �0 at
the surface (of an electrode for example) by applying the Grahame
equation [5]:

� =
√

8 n0 ε0εr

ˇ
· sinh

(
e0  ̌ �0

2

)
, (71)

where �0 is the surface potential, i.e. �(x = 0). The corresponding
GC differential capacitance is [5,72]:

CGC = d�

d�0
=
√

2 e2
0  ̌ n0 ε0εr · cosh

(
e0  ̌ �0

2

)
. (72)

The GC model provides relatively good predictions for monovalent
salts at concentrations below 0.2 mol/l in aqueous solutions and
magnitudes of the surface potentials between 50 and 80 mV [5].

As can be seen in Fig. 11, the GC differential capacitance CGC
monotonously increases as a function of the increasing surface
potential �0. On the contrary, the differential capacitances calcu-
lated by the Bikerman, LB and GI equations start to decrease after
reaching a maximal value, as shown in Fig. 11. At high �0 val-
ues the calculated LB and GI differential capacitances drop to very
small values of the order of magnitude of 10 F/m2 and smaller, in
accordance with the experimental results [71,72] (see also Refs.
[5–7,20]). Comparison of the differential capacitance (Cdiff) calcu-
lated using the LB and GI equations shows that the GI equation
predicts lower differential capacitances in the region of �0 values
larger than 100 mV  (Fig. 11). In the same region of �0 the values of

Fig. 12. Negative charges of dipolar (zwitterionic) lipid headgroups are described
by  a surface charge density �1 at x = 0. The positive charges of the headgroups of the
dipolar lipids protrude into the electrolyte solution. Here D is the distance between
the  charges within a single dipolar lipid headgroup and ω describes the orientational
angle of the dipole within a single headgroup. The positive charge of an interacting
nanoparticle (macroion) is described by a surface charge density �2.

Cdiff calculated using the Bikerman equation are much higher than
LB and GI Cdiff, and exceed the experimental values (see [71,72] and
references therein).

The calculated dependences of Cdiff(�0) in Fig. 11 are presented
only for positive values of �0. The corresponding Cdiff(�0) curves for
negative values of �0 are the mirror images of the Cdiff(�0) curves
given in Fig. 11 (with respect to the vertical (�0 = 0) axis). The Bik-
erman, LB and GI Cdiff(�0) curves therefore have a so-called camel
(or saddle-like) shape, as also observed experimentally [71,72], in
Monte-Carlo simulations [73] and in molecular dynamic simula-
tions [74].

Obviously, the GI equation can also be applied at higher sur-
face charge densities (i.e. high voltage), where the classical PB
equation within the GC model completely fails, as the differential
capacitance CGC (unlike the experimental results [72]) strongly and
monotonously increases with increasing �0, while in this region
of �0 the Bikerman equation predicts too high values of Cdiff (see
Fig. 11). To conclude, the GI differential capacitance decreases with
increasing �0 > 0 (after first reaching its maximum) and at large �0
attains the smallest values of all the models (Fig. 11), similar to that
obtained experimentally.

Note that the predicted values of GI differential capacitance at
high values of |�0| are also smaller than the corresponding val-
ues of Cdiff predicted by the empirical formula for ε(x) given in [7].
Moreover, if the GI equation is modified by taking into account the
distance of closest approach for ions (see also [9,16,75]), the pre-
dicted values of Cdiff would even closely approach the experimental
values.

6. Dipolar surface in contact with an electrolyte solution
within the modified Langevin–Poisson–Boltzmann model

6.1. Modified Langevin–Poisson–Boltzmann for a dipolar surface

In this section one of the flat surfaces that confines the elec-
trolyte solution (as shown in Fig. 1) is replaced by a flat lipid layer
composed of lipid molecules with zwitterionic dipolar headgroups
(Fig. 12). Zwitterionic dipolar headgroups composed of a positively
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charged trimethylammonium group and a negatively charged car-
boxyl group (at neutral pH) are described by two charges at a fixed
distance D (Fig. 12). The negative charges of the phosphate groups of
the dipolar (zwitterionic) lipids are described by a negative surface
charge density �1 at x = 0; the positive surface charge is distributed
in the plane at x = H as in previous sections and described by sur-
face charge density �2 > 0. The positively charged surface can, for
example, be the surface of a charged nanoparticle (macroion) [65].

The corresponding Poisson’s equation in planar geometry can
be then written in the form [61]:

d
dx

[
ε0εr(x)

d�

dx

]
= 2 e0 n0 sinh(e0�ˇ) − 	Zw(x), (73)

where 	Zw(x) is the macroscopic (net) volume charge density of the
positive charges of the dipolar (zwitterionic) headgroups:

	Zw(0 < x ≤ D) = |�1|P(x)
D

and 	Zw(x > D) = 0, (74)

P(x) is the probability density function indicating the probability
that the positive charge of a dipolar lipid headgroup is located at
the distance x from the negatively charged surface at x = 0. Here the
probability P(x) is defined as [61]:

P(x) = 

 ̨ exp(−e0�(x)ˇ)

 ̨ exp(−e0�(x)ˇ) + 1
,  (75)

where 
 is determined from the normalization condition

1
D

∫ D

0

P(x) dx = 1. (76)

The parameter  ̨ is equal to the ratio between the average volume
of the positively charged parts of dipolar (zwitterionic) headgroups
and the average volume of the salt solution in the headgroup region.
The boundary conditions are (see also [16,61]):

d�

dx
(x = 0) = − �1

ε0 εr(x = 0)
, (77)

� (x = D−) = � (x = D+), (78)

d�

dx
(x = D−) = d�

dx
(x = D+), (79)

d�

dx
(x = H) = + �2

ε0 εr(x = H)
. (80)

Fig. 13 shows the electric potential � and relative permittivity εr

as a function of the distance from the negatively charged carboxyl
groups at x = 0 (see Fig. 12). It can be seen in Fig. 13 that the rel-
ative permittivity εr(x) is considerably decreased within the lipid
headgroup region. At the negatively charged plane of the carboxyl
groups the value of εr(x) drops to 53 mV.  The effect of the negatively
charged plane of the carboxyl groups is already very weak at the
distance x = D. Far away from the x = 0 surface the value of εr(x) is
78.5 mV.

6.2. Comparison with MD  simulations

In recent years molecular dynamics (MD) simulations have
given an insight into the interactions between the lipid membrane
and the surrounding electrolyte [76–78]. The basis of the MD simu-
lation method is the force field, which determines the behaviour of
the studied system. AMBER, CHARMM and GROMOS, for example,
are independent descriptions that are widely used for simulations
of biological macromolecules. We  constructed an MD  model of the
DPPC planar lipid bilayer in 450 mM KCl using the NAMD program
and the all molecule performance CHARMM 36 force field. The
model consists of 256 lipid units and 20174 water molecules. The

Fig. 13. Calculated electric potential �(x) (upper panel)and relative permittivity
εr(x) (lower panel) as a function of the distance from the charged planar surface
of  negatively charged carboxyl groups at x = 0 (see Fig. 12) for large H. The model
parameters are: �1 = −0.3 As/m2, T = 298 K, p0 = 3.1 Debye, D = 0.42 nm bulk concen-
tration of salt n0/NA = 0.1 mol/l, concentration of water n0w/NA = 55 mol/l, where NA

is the Avogadro number. The MLPB Eq. (73) was solved numerically as described in
[61]).

solvent was  modelled by 153 K+ and 153 Cl− ions [79,80]. Chemi-
cal bonds between hydrogen and heavy atoms were constrained to
their equilibrium value. Long-range electrostatic forces were taken
into account using a fast implementation of the particle mesh Ewald
(PME) method [81,82]. The model was examined at constant pres-
sure (1.013 × 105 Pa) and constant temperature (323 K) employing
Langevin dynamics and the Langevin piston method. The equations
of motion were integrated using the multiple time-step algorithm.
A time step of 2.0 fs was employed. Short- and long-range forces
were calculated every first and second time steps, respectively. The
model was equilibrated and followed for 30 ns. The last 15 ns of the
simulation were used for extraction of the dipole orientation angle.
From the positions of the P and N atoms the dipole was determined
for all 256 lipids in each of 1500 simulation frames and exported
to Matlab2012b. The distribution of the vector amplitude corre-
sponding to distance D between the charges was  extracted, as well
as the distribution of the angle ω between the dipole and the nor-
mal  vector to the planar lipid bilayer plane (Fig. 12). To obtain the
probability density P(x), the projection of each headgroup dipole
on the normal vector to the planar lipid bilayer plane was calcu-
lated. The average distance between P and N atoms (0.42 nm) was
used as a parameter D in the MLPB model (Eq. (73)).

A comparison between the probability density P(x) calculated
within the MLPB model (Eq. (75)) and P(x) obtained in the MD
simulations is presented in Fig. 14. Fig. 14 shows the space depen-
dence of P(x) calculated by using Eq. (75) for different values of the
parameter ˛. As can be seen in Fig. 14, the MLPB model predicts
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Fig. 14. Probability density P(x) that the positive charge of the lipid dipolar head-
group (see also Fig. 12) is located at distance x from the negatively charged surface
calculated by the MLPB model (A,C,D,E) and obtained from MD simulations (B)
for �1 = −0.27 As/m2 and very large H. The values of MLPB model parameters are:
T  = 323 K, p0 = 3.1 Debye, D = 0.42 nm,  bulk concentration of salt n0/NA = 0.1 mol/l and
the concentration of water n0w/NA = 55 mol/l, where NA is the Avogadro number.

Adapted from [61].

saturation of the probability density function P(x), corresponding
to close packing of the lipid headgroups in accordance with the
results of the MD  simulations.

It can therefore be concluded that taking into account the
finite volume of the lipid headgroups leads to a better agreement
between the predicted P(x) dependences within the MLPB model
and the MD  simulations [61]. In the limit of ˛→ ∞ (when all lattice
sites are occupied by headgroups) the probability density func-
tion P(x) becomes constant as expected. On the other hand, in
the limit of small values of  ̨ (i.e. negligible volume of the head-
groups) the probability density P(x), calculated using Eq. (75),
approaches the probability density P(x) determined by equation
P(x) = 
 exp(−e0�(x)ˇ) (see also [61]). Fig. 15 shows the num-
ber densities of co-ions (n−(x)) and counter-ions (n+(x)) of the
electrolyte solution in the vicinity and within the lipid headgroup
region calculated within the MLPB model. For comparison, the spa-
tial dependences of K+, Na+ and Cl− determined within the MD
simulation are also presented in the same figure. Ion number den-
sity profiles of the DPPC planar lipid bilayer in 450 mM KCl were
calculated using the presented MD  model, while ion number den-
sity profiles of the DOPC planar lipid bilayer in 1 M NaCl were kindly
provided by Vacha et al. [83–85]. On comparison of n−(x) and the
spatially dependent number density of the Cl− ion, qualitatively
good agreement between the MLPB and both MD predictions can be
observed in the region x > D and partially also in the region 0 ≤ x < D.

The depletion of negatively charged coions and Cl− near the neg-
atively charged surface at x = 0 appears in both the MD model and in
the MLPB model. The peaks in the number density of coions (n−(x))
and in the spatially dependent number density of Cl− are predicted
within the MD  and MLPB models (Fig. 15). The peak in the number
density of coions (n−(x)) obtained by the MLPB model is located at
a distance D, close to the positive charges of the lipid dipolar head-
groups, which is obviously due to the consideration that molecules
of electrolyte solution are point-like particles. Both MD  simulations
showed a peak in the number density of Cl− ions in the electrolyte
solution nearby, but outside the region of the lipid headgroups.
Regarding the number density of counter-ions (n+(x)) and the spa-
tial dependence of Na+ and K+, a difference in the predictions of
the MD model and MLPB model can be observed in the vicinity of
the phosphate groups at both sides of the x = 0 plane (Fig. 15, lower
panel). Unlike the predictions of the MLPB model, which shows
strong accumulation of positively charged counter-ions, the results

Fig. 15. The calculated number densities of coions (n−) and counterions (n+) in
the  electrolyte solution within the MLPB model (dashed lines) and MD simulations
(full lines). Upper panel: �1 = −0.27 As/m2, n0/NA = 0.45 mol/l, T = 323 K. The values
of  other parameters within the MLPB model are the same as in Fig. 13. Lower panel:
�1 = −0.23 As/m2, n0/NA = 1 mol/l, T = 310 K.

The MD results in the lower panel are adapted from [83].

of MD simulations exhibit a decrease of the number density of Na+

and K+. The number density of K+ ions [83] is maximal in the elec-
trolyte solution. It continuously decreases in the vicinity of the pos-
itive charges of the lipid dipolar headgroups. It exhibits a local peak
at the distance x ≈ −0.2 nm which is already in the tail (hydropho-
bic) region. In the case of Na+ a strong maximum in number density
appears at x ≈ 0.2 nm,  i.e. in the region of the lipid headgroups
(Fig. 15). Non-hydrated Na+ ions are smaller than K+ ions and there-
fore also accompanied by a larger ionic surface charge. This could
be the reason that they probably penetrate rather deeply into the
headgroup region and accumulate near the negative charges of the
phosphate groups, while the larger (non-hydrated) K+ ions prefer
to be located in the electrolyte solution. The difference in the num-
ber densities of Na+ and K+ in the MD model as shown in Fig. 15
(see also [83–85]) is not predicted in the MLPB model. In order
to introduce this difference in Na+ and K+ number densities into
the MLPB model, a different distance of closest approach for dif-
ferent cation species could be introduced in the MLPB model (see
also [16]). The observed differences in the predictions of the MD
and MLPB models in the vicinity of the x = 0 charged plane partially
spring from the fact that within the MLPB model the counterions
are treated as point-like particles. Consideration of the finite-size
of ions (described within the LB model in Section 4 of this review)
would lead to better agreement between the predictions of the MD
simulation and the results of theoretical modelling, i.e. lower val-
ues of (n+(x = 0)) (see also Fig. 7). In addition, within the MD  models
Na+ and K+ ions may  penetrate into the region of the hydrocarbon
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Fig. 16. Average lipid dipolar headgroup (zwitterionic) orientation angle 〈ω〉 (for
definition see also Fig. 12) (upper panel) and osmotic pressure ˘ˇ (lower panel)
between the dipolar headgroups and the positively charged surface of macroions
as a function of the distance between the plane of the lipid phosphate groups and
the surface of the macroion (H) for two values of parameter ˛: 0.5 (full line) and
5 (dotted line). The values of model parameters are: T = 298 K, �1 = −0.3 As/m2, the
dipole moment of water p0 = 3.1 Debye, bulk concentration of salt n0/NA = 0.1 mol/l
and concentration of water n0w/NA = 55 mol/l.

Adapted from [65].

tails of lipid molecules x < 0, a feature which is not possible within
the MLPB model since in the latter case the model boundary condi-
tions prevent cations (as well as anions) from penetrating into the
tail region of the lipid molecules x < 0. The predicted maxima and
minima in the spatially dependent number densities of ions in the
MD are broader and more shallow than those predicted in the MLPB
model. This difference may spring from the thermal fluctuations of
the lipid bilayer which are considered in MD simulations but not in
the MLPB mean-field model. Far away from the charged planar sur-
face, the number density of counter-ions equals the number density
concentration of co-ions in the MD and MLPB models.

6.3. Average lipid dipolar headgroup orientation angle and
osmotic pressure

Fig. 16 shows the influence of the approaching positively
charged surface of a macroion to the surface of a zwitterionic
(dipolar) lipid layer on the average orientation of the lipid head-
group orientation angle (< ω >). As expected the value of 〈ω〉
increases with decreasing H due to electrostatic repulsion between
the positively charged parts of the lipid headgroups and the pos-
itively charged macroion. Accordingly also the osmotic pressure
between the headgroups and the positively charged macroion
increases with decreasing H.

Fig. 17. (A) Average lipid dipolar (zwitterionic) headgroup orientation angle 〈ω〉 (for
definition see also Fig. 12) and (B) osmotic pressure between the dipolar headgroups
and negatively charged surface of macroion as a function of the distance between the
plane of the lipid phosphate groups and the surface of macroion (H) for two values of
parameter ˛: 0.5 (full line) and 5 (dotted line). The values of model parameters are:
T = 298 K, �1 = −0.30 As/m2, the dipole moment of water p0 = 3.1 Debye, bulk con-
centration of salt n0/NA = 0.1 mol/l and concentration of water n0w/NA = 55 mol/l.

Fig. 17 shows the influence of the approach of the negatively 
charged surface of a macroion on the average orientation of the lipid 
dipolar headgroup angle (〈ω〉). Unlike the previous case presented 
in Fig. 14, the value of 〈ω〉 decreases with decreasing H due to elec-
trostatic attraction between the positively charged parts of the lipid 
headgroups and the negatively charged surface of the macroion. 
Accordingly the osmotic pressure between the headgroups and 
the negatively charged macroion surface is also decreased with 
decreasing H.

7. Attraction between like-charged surfaces mediated by
macroions with internal charge distribution

In biological systems charged membrane surfaces are sur-
rounded by charged macromolecules, such as DNA and various
proteins. Experiments with giant phospholipid vesicles indicated
that certain charged plasma proteins [49,86] may induce the
coalescence of like-charged lipid vesicles. In this section a mean-
field theory is presented to explain the experimentally observed
macroion-mediated attraction between like-charged lipid vesicles
and other like-charged biological surfaces [87].

As shown in previous sections of this review, classical mean-
field EDL theories always predict electrostatic repulsion between
like-charged surfaces separated by a solution of dimensionless
or finite-sized ions with a single point charge (Figs. 6 and 16)
[4,11,47,58,88]. On the other hand, it was shown that the
attraction between like-charged biological surfaces may be
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Fig. 18. Schematic illustration of two negatively charged planar lipid bilayer sur-
faces with surface charge density � separated by a solution containing spherical
macroions (counterions) with spatially distributed positive charge. Large spheroidal
multivalent macroions are modelled as spheres having average diameter a. The
space charge distribution of the macroion is described by two effective poly-ions
of  charge e = Ze0 located at different well-separated positions (i.e. at a distance l ≤ a)
[49]. The main axis of the macroion coincides with the line connecting the two
poly-ions. In this particular study charges within a macroion are separated by a
fixed  distance l = a, where a is the diameter of the macroions.

explained by inter-ionic correlations, i.e. particle-particle correla-
tions [57,89–92]. Additionally, other non-electrostatic forces can
also contribute to the attraction between biological surfaces, such
as van der Waals attraction forces [47], or forces of entropic nature
such as oscillatory forces [4,93] or depletion forces [94–96] which
become increasingly important in the strong coupling regime.
Orientational ordering (intra-ionic correlation) of macroions with
internal charge distribution may  also lead to attractive forces
between like-charged surfaces [49–51,97].

In this section a generalization of the mean-field theory of the
EDL is presented by explicitly taking into account the internal
space charge distribution [98] of multivalent spheroidal macroions
(Fig. 18). Using mean-field density functional theory it is then
shown that the orientational ordering of spheroidal macroions with
internal charge distribution may  give rise to attraction between
neighbouring like-charged biological surfaces [49,99]. To assess the
limitations of the described mean field theory its predictions are
tested using Monte Carlo simulations.

7.1. Spheroidal macroions

In this model we describe two like-charged flat surfaces, each of
area A, separated by a distance H. The charge distribution of both
membrane surfaces is described by uniform surface charge density
� at x = 0 and x = H (Fig. 18). The space between the charged sur-
faces is filled with a solution of charged macromolecules of a single
species (counterions). Charged macromolecules are treated in the
most simple way as spheroidal macroions (Fig. 18) freely moving
in the solution [49,99]. The spheroidal macroion is described as a
sphere of diameter a (globular protein) within which two equal
positive point charges, each of valency Z (e = Ze0), are separated by
distance l = a (Fig. 18). The distance of closest approach of the spher-
ical macroions to the charged surfaces is taken into account, while
the direct particle-particle hard core interactions are completely
ignored.

The charged spheroidal macroions are subject to positional and
orientational degrees of freedom. For each macroion the centre of
charge distribution (also its geometric centre) is located at x and
n(x) is the corresponding number density of the macroions. The
two point charges are located at geometrically opposite points on
the surface of the sphere such that, when projected on to the x−axis,
their positions are at x + s and x − s respectively, as shown in Fig. 18.

Taking into account that the two point charges of the macroions
are indistinguishable, all possible orientations of the macroion can
be described by values of s in the interval 0 < s < l/2 (see Fig. 18).

Therefore, the orientation of the spherical macroion is specified by
the conditional probability p(s|x) which must satisfy the relation
[58,99]:

2
l

∫ l/2

0

p(s|x) ds = 1, (81)

where p(s|x) = 0 for any x and |s| > l/2.
The equilibrium configuration of the system can be determined

by minimizing the free energy. The free energy of the system per
unit area is [49]:

F

A
= kT

∫ H

0

dx [ε0 εr,b �′(x)2 + [n(x) ln(n(x) v0) − n]

+ n(x)〈p(s|x) ln p(s|x)〉], (82)

where the first term is the electrostatic contribution to the free
energy. The prime denotes the first derivative of the electric poten-
tial � with respect to x. The second term is the contribution due
to configurational entropy [3,13,16], where v0 is the volume of a
single lattice site. The third term denotes the contribution of ori-
entational ordering of the macroions. The centres of the macroions
are allowed to be distributed in the region l/2 ≤ x ≤ H − l/2, i.e. the
distance of closest approach is taken into account to ensure that
the spheroidal macroions are confined within the region defined
by the charged walls. The average of an arbitrary function g(x) is
defined as:

〈g(x)〉 = 2
l

∫ l/2

0

g(x, s)ds. (83)

In the following, the limits of integration in the free energy
expression are extended to infinity in both directions:

F

A
= kT

∫ ∞

−∞
dx[ε0εr,b �′(x)2 + [n(x) ln(n(x) v0) − n]

+ n(x) 〈p(s|x) ln p(s|x)〉], (84)

where the values of n(x) and �′(x) are assumed to be zero outside
the space between the two charged surfaces.

The equilibrium state of the system is determined by the min-
imum of the total free energy F, subject to the constraints that (a)
the orientational probability of the spheroidal charged macroions
integrated over all possible projections (Eq. (81)) is equal to one,
and that (b) the total number of charged macroions is conserved
[3,49]. To solve this variational problem, a functional

∫ ∞
−∞ Fdx is

constructed:∫ ∞

−∞
Fdx  = F

A k T
+
∫ ∞

−∞
�(x) n(x)

(
2
l

∫ l/2

0

p(s|x)ds − 1

)
dx

+ �

∫ ∞

−∞
n(x) dx, (85)

where �(x) and � are the local and global Lagrange multipliers,
respectively.

Taking into account Eq. (84), we can rewrite Eq. (85) in the form:

∫ ∞

−∞
Fdx  =

∫ ∞

−∞
dx [ε0 εr,b �′(x)2/k T + n(x) ln(n(x) v0)

− n(x) + n(x)〈p(s|x) ln p(s|x)]〉]

+
∫ ∞

−∞
dx n(x)�(x)[〈p(s|x)〉 − 1] + �

∫ ∞

−∞
n(x) dx. (86)
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Fig. 19. The normalized free energy F/AkT as a function of the distance between
two  negatively charged surfaces H calculated for four different extensions between
charges l within the charged macroions. Other model parameters are Z = 1,
�  = −0.033 As/m2 and lB = 0.7 nm (adapted from [49]). The hard core interaction
between the macroions and charged walls is taken into account by means of the
distance of closest approach (l/2), while the hard core interaction between charged
macroions is not considered.

In equilibrium, the first variation of the functional
∫ ∞

−∞ Fdx

should be zero which, after some rearrangements, yields the equa-
tion for the number density [49]:

n(x) = e−�

v0
〈e−Ze0ˇ�(x+s)−Ze0ˇ�(x−s)〉 (87)

and the volume charge density [49]:

	(x) = 2Ze0

v0
〈e−Ze0ˇ�(x)−Ze0ˇ�(x+2s)−�〉. (88)

The averaging is performed over s. The derived expression Eq. (88)
for the volume charge density 	(x) and the Poisson equation yield
the integro-differential equation for the reduced electric potential
in the form [49]:

�′′(x) = − 2 Ze0

ε0εr,b v0
〈 e−Ze0ˇ�(x)−Ze0ˇ�(x+2 s)−�〉. (89)

The boundary conditions for Eq. (89) at the two charged surfaces
x = 0 and x = H are:

�′(x = 0) = − �

ε0 εr,b
, �′(x = H) = �

ε0 εr,b
. (90)

In this theoretical model, the finite size of the charged macroions
is taken into account only by considering the distance of closest
approach of the centre of the macroions to the charged surface (l/2).
Eq. (89) was solved numerically as described in [49]. The solution
of the integro-differential Eq. (89) yields the equilibrium poten-
tial �(x), and the corresponding equilibrium distribution n(x) and
probability density p(s|x). When the charged macroions are uni-
formly distributed between the charged surfaces, the free energy is
independent of the distance between the charged surfaces and can
therefore be taken as a reference value in determining the values of
the equilibrium free energy [3,49]. Fig. 19 shows the electrostatic
free energy (Eq. (84)) as a function of the distance between the
two negatively charged surfaces for different distances between the
charges within a single macroion (see also Fig. 18). For small sur-
face charge density |�| and small separation between the charges
within the charged macroion, the interaction was found to be repul-
sive for all distances between the charged surfaces [49]. However,
large enough |�| and l yield non-monotonous behaviour of the free
energy f with a minimum representing the equilibrium distance
between the charged membrane surfaces (Fig. 19).

Fig. 20. Profile of the volume charge density due to positively charged divalent
macroions (Z = 1) between two  negatively charged surfaces. Lines represent the solu-
tions of the integro-differential Eq. (89), points represent results of the Monte Carlo
simulations. Model parameters: l = 2 nm,  � = −0.07 As/m2. The hard core interaction
between the macroions and charged walls is taken into account by means of the
distance of closest approach (l/2), while the hard core interaction between charged
macroions is not considered.

Adapted from [49].

We  now discuss a comparison of the results obtained from the
above presented theoretical analysis and Monte Carlo (MC) simu-
lations. The results of solving the integro-differential Eq. (89) and
the results of Monte-Carlo simulation were shown to be in excel-
lent agreement [49,99]. Monte Carlo simulations are widely used to
describe solutions of point-like ions [58,100,101], finite-sized ions
[102–104], or ions with internal charge distribution [49–51,99] in
contact with charged surface(s). In the MC  simulation presented
in this section, the standard MC  Metropolis algorithm [105] with
Lekner periodic boundary conditions [106] in directions parallel
to the charged walls was  used [49,99]. In each MC  step, a spheri-
cal macroion is chosen at random to be rotated around its centre or
linearly displaced [105] as described in [49,99]. Computation of the
potential in a periodic system with 2-D symmetry is performed by
the Leckner–Sperb method [101,106,107], which is an alternative
to the Ewald summation [108].

Fig. 20 shows the results obtained from solutions of the integro-
differential equation and MC  simulations for the volume charge
density 	(x) in an aqueous solution of divalent charged spherical
macroions (Z = 1) confined between two negatively charged pla-
nar surfaces separated by a distance H. The excellent agreement
between the calculated volume charge density profiles (curves) and
the results of Monte Carlo simulations (points) is evident [49,99].
For a value of H which is comparable to the separation of charges
within a single charged macroion (l), i.e. for H = 2.5 nm (squares), the
charge density profile in the solution exhibits a single peak at each
side, indicating that the macroions (on the average) orient to form
electrostatic bridging between the two  charged planar surfaces. On
the other hand, for somewhat larger distances (H = 4 nm) between
the charged surfaces, we see a peak in the middle (triangles), which
corresponds to partial overlapping of the ordered macroions in the
middle of the space between the two like-charged surfaces (see
Fig. 21). The charges on the macroions of both layers contribute to
	(x) at x = H/2, so a central peak in the volume charge density 	(x)
is formed. For even larger distances (H = 8 nm), the profile exhibits
twin-peaks close to the two charged surfaces due to orientational
ordering of the macroions, with one charge close to the charged
surface.

The concept of a free energy decrease due to orientational order-
ing we  previously used in determination of the equilibrium shapes
of phospholipid bilayers (Refs. [109–111]), where it was  shown
that the in-plane orientational ordering of anisotropic membrane
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Fig. 21. Schematic representation of spherical divalent macroion positions and ori-
entations at distance H � 4 nm,  where the diameter of the macroion is l = 2 nm.  At
the  distance H = 4 nm,  a peak in the density distribution of charges appears in the
middle between the surfaces, as seen in Fig. 20.

constituents can decrease the free energy of a phospholipid vesicle
by stabilizing shapes with larger area regions having unequal prin-
cipal membrane curvatures. The in-plane ordering of membrane
components was later generalized to three-dimensional order-
ing of ions in the EDL [49,51,97]. The results presented in this
section show that internal degrees of freedom (orientational and
positional ordering of constrained charges), coupled with fixed
distance imposed on pairs of charges within the macroions, may
contribute to the decrease of the free energy of the system of spher-
ical macroions confined between two charged surfaces. As shown
in Fig. 19 the effect may  be strong enough to cause an attractive
interaction between the like-charged surfaces. This attractive inter-
action completely vanishes when the two charges within a single
macroion are brought towards the centre of the ion, as happens in
the standard GC theory, to which our equations reduce when the
parameter l approaches zero [49].

Fig. 19 shows that the interaction between the charged surfaces
changes from attractive to repulsive as the distance between the
charges in a single charged macroion (l) decreases at a fixed �. This
result indicates that the attraction between the like-charged sur-
faces presented in Fig. 19 originates from the imposed inter-charge
interaction expressed by the fixed distance between the charges
within a single macroion (Fig. 18), i.e. from intra-particle charge
interactions.

7.2. Spheroidal and rod-like macroions

Another interesting feature of the problem of macroions as
mediators of attractive interactions between like-charged surfaces
is a comparison between the orientational ordering of spheri-
cal and rod-like macroions near charged surfaces and/or between
charged surfaces. The origin of the bridging attraction in the sys-
tem of spherical charged macroions with quadrupolar internal
charge distribution (Fig. 19) [49,99] is identical to that in the
system of rod-like charged macroions [50,51,97]; namely, the ener-
getically favourable orientational ordering of the quadrupoles in
the spatially varying electric field. A comparison of the orienta-
tional ordering of rod-like macroions, spherical macroions without
hard core interactions between the macroions (overlapping of the
macroions is allowed) and spherical macroions with hard core
interactions between macroions (overlapping of the macroions is
not allowed) is presented in Fig. 22. The volume charge distri-
bution of rod-like and spherical positively charged quadrupolar
macroions, confined in the space between two like-charged sur-
faces with separation H > 2l, was  calculated using MC simulations
for different values of the valency of the macroions (Z) and different
values of the surface charge density (�) of the negatively charged
surfaces (Fig. 22).

The calculated volume charge distribution 	(x) and the aver-
age order parameter S (Fig. 22) show distinctive differences in the
average orientation of rod-like and spherical macroions near the
charged surfaces for a distance between the two  charged surfaces
H = 10 nm.  It can be seen in Fig. 22 that for low values of the surface
charge density (|�|) and small valency of the macroions (Z), the
rod-like macroions are not oriented in a direction orthogonal to
the charged plates, but predominantly in a direction parallel to the
charged surfaces, i.e. they are predominantly attached to the two
charged planar surfaces (see also Fig. 23). Accordingly, the distribu-
tion peak of the volume charge density of the rod-like macroions
is located at x = 0 (the other one at x = H). On the other hand, for
higher values of (|�|) and Z both kinds of spherical macroions are
predominantly oriented orthogonally to the charged surface and

Fig. 22. Volume charge distribution between two charged surfaces for three different kinds of macroions: rod-like macroions (blue), spherical macroions without a hard
core  interaction between the macroions (green), and spherical macroions with a hard core interaction between the macroions effect (red), predicted by MC simulation for
H  = 10 nm,  l = 2 nm and different valency of the macroions (Z) and different surface charge density (�). Because of symmetry, only half of the space between the two charged
surfaces is plotted. H = 10 nm,  l = 2 nm.  The nematic order parameter S is defined as S = 〈(3 cos 2(ϑ) − 1)/2〉, where the angle ϑ describes the orientation of the axis connecting
the  two charges of the nanoparticle with respect to the x axis. S = 0 means that the nanoparticles are not oriented, while S = 1 corresponds to the nanoparticles being fully
oriented with respect to the x-axis. The hard core interaction between the macroions and charged walls is taken into account by means of the distance of closest approach
(l/2).
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Fig. 23. Schematic figure representing the different orientational ordering of rod-
like and spherical macroions at large and small distance between two like-charged
surfaces. Due to their stronger average orientation in the orthogonal direction spher-
ical  macroions are better mediators of attractive interactions between like-charged
surfaces than rod-like macroions.

therefore exhibit two peaks in their volume charge distribution.
The excluded volume effect (i.e. hard core interactions between
spherical macroions) is important only in the third case for Z = 2
and � = −0.02 As/m2, i.e. in the stronger coupling regime. In the
third (extreme right) panel of Fig. 22 it can also be seen that consid-
ering hard core interactions between the macroions results in the
appearance of the third peak in the volume charge distribution of
the spherical macroions as the consequence of the exclusion vol-
ume effect. Namely, in this case the spherical macroions close to the
charged surface completely fill the space in the first row (satura-
tion) and the rest of them are forced to find the energetically most
favourable location further away from the charged surface. Never-
theless, the average order parameter of the spherical macroions is
the same if we take into account the hard core interactions between
macroions or not.

The average orientation of macroions in the solution between
two like-charged surfaces may  have a strong influence on
the system’s free energy and consequently also on the attrac-
tive/repulsive interaction between like-charged surfaces as indi-
cated in [49–51,99]. Stronger orientation of the macroions in the
orthogonal direction with respect to the charged surface con-
tributes to stronger attraction between the like-charged surfaces.
Based on the results presented in [10,49,112], Fig. 23 shows
schematically the difference in orientational ordering between
rod-like and spherical macroions for different distances between
the two like-charged surfaces (H). For small H (l < H < 2l) some of
the rod-like macroions are oriented orthogonally to the charged
surfaces and some in a direction parallel to the charged sur-
faces (Fig. 23). On the other hand, for larger H (H > 2l) all
rod-like macroions are oriented in a direction parallel to the
charged surfaces (Fig. 23). In accordance with our observation, a
rod-like macroion-mediated attractive interaction between two
like-charged surfaces was predicted in the range l < H < 2l, but not
in the range H > 2l [50].

On the other hand, at high enough (|�|) and Z spherical
macroions are mostly oriented orthogonally even for higher sur-
face separations H > 2l (Fig. 23) leading to the conclusion that
spherical macroions are better mediators of attractive interactions
between like-charged surfaces than rod-like macroions (see also
[49–51,99]).

To conclude, it is shown in this section that the density func-
tional theory described (which does not include direct interactions
between macroions) and the Monte Carlo simulation (which in con-
trast does include direct interactions between macroions) show
remarkably good agreement between their predictions (Fig. 20).
We  may  thus conclude that the bridging effect arising from the ori-
entational ordering of macroions with internal charge distribution
may  explain the observed attractive interaction between like-
charged surfaces [49–51,99]. Direct interaction between charged
macroions may  give rise to additional effects.

8. Conclusions

The results presented in this review provide an interesting per-
spective on the importance of modelling the relative permittivity
in understanding EDL phenomena. A key feature that contributes to
better agreement between theory and experiment is the inclusion
of space-dependent permittivity, which is in general a function of
the electric potential and electric field. Analytical expressions for
its space dependence are derived within both models, i.e. within
the LPB and LB models. Importantly, the EDL models presented in
this work take into account the excluded-volume effect, orienta-
tional ordering of water in the saturation regime, the electronic
polarizability of water and the concept of the cavity field. All these
enable us to understand the mechanisms responsible for the spatial
dependence of permittivity.

As an example of the application of the EDL models described,
we calculated the differential capacitance of a charged surface in
contact with an electrolyte solution as a function of the surface
potential within the MLB  model. Unlike the prediction of classi-
cal GC theory where the differential capacitance is a monotonous
increasing function of the surface potential, in the MLB  model, after
reaching its maximal value, the differential capacitance decreases
with increasing surface potential in accordance with experimen-
tal results. As another possible application we  presented a model
of a zwitterionic lipid surface in contact with an electrolyte solu-
tion of monovalent salt ions and water dipoles. It was shown that
the permittivity in the zwitterionic headgroup region is decreased,
while the corresponding electric potential becomes strongly
negative.

The osmotic pressure of an electrolyte solution between a
zwitterionic lipid surface and a charged particle (macroion) was
also considered theoretically. It was indicated that in the close
vicinity of the positively charged macroion the zwitterionic lipid
headgroups are less extended in the direction orthogonal to the
membrane surface, which coincides with the increase of osmotic
pressure between the lipid surface and the macroion. In the case
of a negatively charged macroion the effect is the opposite, i.e.
the zwitterionic lipid headgroups are more extended, while the
osmotic pressure between the lipid surface and the macroion is
decreased.

Using the LPB and LB model equations described predicts
that the attractive interaction between like-charged surfaces with
an intermediate solution of monovalent ions is always repul-
sive. Therefore we hypothesized that the charged particles with
a quadrupolar internal charge distribution may act as media-
tors, resulting in attraction between the like-charged surfaces. The
above hypothesis was proved within the density functional theory
(which is a mean field approach) and also by using Monte Carlo
(MC) simulations. A remarkably a good agreement between the
predictions of both methods was demonstrated.

Nowadays, numerical simulations provide a new window into
the theoretical description of different physical phenomena where
analytical solutions do not exist. The sophistication of the GC model
and its PB equation allowed us to include additional properties of
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the EDL, in an attempt to better characterize its complex behaviour;
this would not be possible without the use of numerical simulations
which were crucial in the validation of the models with high surface
charge density regimes. Some of the predictions of the EDL mean-
field theoretical considerations were also evaluated by molecular
dynamics (MD) simulation and Monte Carlo (MC) simulations.

But finally there still remains the question of which important
physical properties of the EDL are not yet considered in existing
theoretical models of the EDL. This formidable task and further
refinement and understanding of EDL behaviour remain the long-
term goal.
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Attraction between negatively charged surfaces mediated by spherical coun-
terions with quadrupolar charge distribution, Journal of Chemical Physics 129
(2008) 105101.

[50] Y. Kim, J. Yi, P. Pincus, Attractions between like-charged surfaces
with dumbbell-shaped counterions, Physical Review Letters 101 (2008)
208305.
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V.  Kralj-Iglič, N.P. Ulrih, A. Iglič, Interaction between charged or dipolar lipid
headgroups and charged nanoparticles mediated by water dipoles and ions,
International Journal of Molecular Sciences 14 (8) (2013) 15312–15329.

[66] O. Teschke, G. Ceotto, E. de Souza, Interfacial aqueous solutions dielectric con-
stant measurements using atomic force microscopy, Chemical Physics Letters
326 (2000) 328–334.

[67] O. Teschke, G. Ceotto, E. de Souza, Interfacial water dielectric-permittivity-
profile measurements using atomic force microscopy, Physical Review E 64
(2001) 011605.

[68] E. Gongadze, D. Kabaso, S. Bauer, T. Slivnik, P. Schmuki, U. van Rienen, A. Iglič,
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