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Preface 

This is the first volume (second Russian edition) of a course on 
general physics (the second, third and fourth volumes were 
published in 1985 (Molecular Physics), 1986 (Electricity and 
Magnetism) and 1988 (Optics) respectively; the fifth volume 
(Atomic Physics) is under preparation). 

The task of a course on physics can be summed up as 
follows. Firstly, it should contain the basic principles and laws 
of physics and their mathematical formulation, introduce the 
basic physical phenomena, methods of their investigation and 
experimental studies, a proper form of expression for physical 
ideas, a quantitative formulation and solution of physical 
problems, estimates of the order of physical quantities, and 
a clear idea about the limits of applicability of physical models 
and theories. Secondly, it should inculcate in the studies a skill 
in experimental work, indicate the main methods of exact 
measurement of physical quantities and simple ways of ana
lyzing the experimental results and basic physical instruments. 
Thirdly, it should provide an insight into the philosophical and 
methodological problems of modern physics and describe the 
various stages of evolution .(5f science. Finally, it should point 
out the true role of physics in the scientific and technical 
progress and arouse the student's curiosity, interest and ability 
to solve scientific, engineering and other applied problems. 

These problems can be solved only through a proper 
combination of experimental and theoretical instruction. Ex
perimental skill is acquired in laboratories with the help of 
appropriate practical guides for laboratory work. This book 
provides the theoretical background. Of course, it also con
tains a description and analysis of physical phenomena, 
measurement of physical quantities, experimental methods of 
investigation, and other allied problems, but only from the 
point of view of theoretical understanding. 

The curriculum of physics education in colleges at present 
aims at strengthening the basic· level of knowledge. Physics is 
a leading discipline among fundamental sciences. Hence this 
book contains a detailed material on the measurement and 
determination of physical quantities, the role of abstractions, 
and the methods of physical investigation. Kinematics is 
treated not as a mathematical theory, but from a physical 
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point of view. This allows the introduction of relativistic 
concepts of space and time, as well as Lorentz transformations, 
right at the beginning of the book. Consequently, the concepts 
of space and time, motion and material are linked inseparably 
in kinematics. The physical content of Newton's laws is 
described in detail, different methods of substantiation of 
mechanics are reviewed critically, and the connection between 
the conservation laws and symmetry of space and time is 
established in a comprehensible form. 

A modern specialist should not only acquire the basic skills, 
but also learn to effectively apply the results of physical studies 
to accelerate the pace of scientific progress. In this connection, 
we have also considered in this book problems like motion in 
noninertial reference frames, inertial navigational systems, 
gyroscopic phenomena, motion of the artificial Earth's sat
ellites, dynamics of bodies of variable mass, motion in 
electromagnetic fields, relation between mass and energy. 

The same methodological approach has been used in writing 
all the volumes of this course. Each chapter contains a resume 
of the basic ideas, and each section contains a formulation of 
the crux of the problems discussed in it. Examples have been 
chosen in such a way that they illustrate the methods of 
solving the most important problems. Problems for inde
pendent work-out are included at the end of each chapter and 
answers are also provided. Brief formulations of the most 
important statements and formulas are provided throughout 
the book, and questions fqf testing the level of understanding 
of the material are also gi.ven in each section. The material is 
supplemented by a large number of diagrams. The appendices 
contain the necessary material for reference. 

The author is grateful to Prof. S. P. Kapitza and to the staff 
of the department chaired by him for a careful review of the 
manuscript and for valuable comments. 

A. N. Matveev 
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Chapter 1 
Introduction 

Basic idea: 
Physical models are mathematical, but mathematics is not what 
they are based on. The quantitative relations between physical 
quantities are clarified through measurements, observations and 
experimental investigations. Mathematics only serves as the 
language in which these relations are expressed. There is no 
other language for constructing physical theories. 

Sec. 1. PROBLEMS AND EXPERIMENTAL METHODS IN PHYSICS 

The model nature of physica-l 
concepts is analyzed and exper
imental methods in physics arc 
described. 

PROBLEMS OF PHYSICS. When faced with physical objects, 
phenomena, situatitms and the connections between them in life, 
everyone creates in his consciousness a model consisting 
of the images of these objectS/'Phenomena, situations and the 
connections between them. He also establishes certain rules for 
handling this information. Models were first formed right from 
the origin of human consciousness itself. Hence it is not 
surprising that some of the elements of these models (like the 
concepts of space and time) have made such deep inroads into 
our consciousness that some philosophers have called them 
"forms of consciousness" instead of calling them reflections of 
the external world in our consciousness. While studying physics 
as a science, we must always keep in mind that physics is based on 
the concept of models. 

The task of physics is to create in our consciousness such 
a picture of the physical world that faithfully reflects the 
properties of the world and that ensures the same relations 
between the clements of the model as exist between the clements 
of the outer world. 

ABSTRACTION AND LIMITEDNESS OF MODELS. The rela
tions between phenomena and objects are so diverse in the real 
world that it is impossible in principle to comprehend all of 
them either in practice or in theory. This is due to the 
inexhaustibility of the properties of matter. Hence in order to 
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construct a model, we need to consider only those properties and 
connections that are significant for the phenomena being simula
ted. Only such a restriction makes it possible to create a model 
that can be grasped by our imagination. The rejection of all 
that is not significant for a given phenomenon is one of the 
most important elements of physical investigation. For exam
ple, while considering the laws governing planetary motion 
around the Sun, we need not take into account the pressure of 
solar rays or the solar wind on the planets. However, the solar 
wind is significant when the behaviour of comet tails is being 
investigated. On many occasions a scientific study has come to 
naught because the investigators tried to take into account 
factors that were of no consequence. 

Considering just the significant factors involves an abstrac
tion from the real situation and the creation of a model within 
the framework of the abstractions. 

Physical models are only approximate and their validity can 
only be guaranteed for the range of applicability of th~: 
abstractions used to construct the model. Beyond this range. a 
model may become inapplicable or even meani11t!lcss. 

Therefore, it is important during an investigation to under
stand at each stage why the model being used is applicable in the 
particular situation. It must be emphasized here that the same 
physical object may be represented by different models under 
different conditions. For example, the motion of the Earth 
around the Sun can be considered in terms of a point-mass 
model, the point having Jbe Earth's mass concentrated at its 
centre. The same model can also be used as the first 
approximation for the Earth when satellite trajectories are 
considered around the Earth at large distances. However, the 
model is not applicable to generate a more accurate description 
of a satellite trajectory since the Earth is not a perfect sphere and 
its mass is not uniformly distributed over its volume. Because of 
this, the force of gravity acting on the satellite cannot be 
approximated by the gravitational force exerted by a point mass 
at the centre of the Earth. Moreover, the model of a gravitating 
point mass permits satellite trajectories to pass through points 
within one radius of the Earth, which is impossible, since the 
satellite would collide with the Earth's surface. 

EXPERIMENTAL METHODS IN PHYSICS. At birth, human 
beings possess neither any elements of the models of the world 
surrounding them nor any rules for operating with the models. 
We acquire these elements and rules as we grow up. An 
individual human being makes them elements of his consci
ousness in the course of his personal activity and during the 
process of learning. 

Our physical model of the world is continuously being 
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broadened and extended as a result of scientific activity. This is 
only possible through experiment and observation. Hence 
physics is an experimental discipline. Its models must adequately 
reflect the properties that are discovered by observation and 
experiment. On the other hand, the limits of applicability of a 
model are also set by experiment. 

Consequel'ltly, the experimental method in physics can be 
described as follows. On the basis of experiment and observa
tion, a model is created and used to predict phenomena that are 
in turn verified by experiments and observations. In the light of 
these experiments and observations, appropriate corrections are 
made to the model which is then used to make fresh predictions, 
and so on. 

There are two cases in which significant advances are made in physics. 
In the first case, the predictions of a model are not confirmed by 
experiment, while in the second case, a new set of physical phenomena is 
discovered for which there are no models at all. In the first case, the 
model has to be refined or replaced by a new one. If the replacement of 
the model is accompanied by a radical change in the basic concepts, a 
revolution is said to have occurred in physics. In the second case, a new 
branch 9f physics is opened. 

The creation of the special theory of relativity, which led to a complete 
reconsideration of the basic concepts in the Newtonian model of space 
and time, is an example of the first kind. The creation of quantum 
mechanics as a new.branch of physics is an example of the second kind. 
In both these case~ we are talking not of the rejection of the existing 
models, but simply of the establishment of the limits of their applicability 
and the creation of new models wl;l:h can be applied in cases where the old 
models cannot. 

The experimental method in physics requires a unique 
interpretation of all ideas, concepts and other elements of a 
physical model. The model must not contain elements which 
cannot be uniquely interpreted through relations either with the 
objects, processes, situations, etc. in the real world or with other 
elements of the model which have already been established. 

This is most significant in the study of physics. It must be 
ensured that each element of the model under consideration has 
a well-defined meaning and a clearly formulated relation with 
the appropriate element of the real physical world. 

It is only under this condition that physical concepts have any 
real meaning reflecting the objective laws of the material world 
and the objective properties of physical bodies and processes. 
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Sec. 2. PHYSICAL QUANTITIES AND THEIR MEASUREMENT 

The idea of measurement as a 
quantilativt: comparison of the 
common in the diverse is dis
cu.;sed. 

Measurement of physical prop
erties is the procedure of 
assignment of certain numbers 
to these properties in such a way 
that a comparison of properties 
is reduced to a comparison of 
numbers. Each physical quan
tity can be expressed only in its 
own units. Hence the number of 
units is equal to the number of 
physical quantities. However, 
using the relations between 
physical quantities, we can 
express one quantity in terms of 
another and thus restrict the 
number of physical quantities 
whose units can be used to 
express all the remaining 
quantities. 

DIFFERENCE AND COMPARISON. The first step to knowledge 
lies in establishing the difference between physical objects. This 
enables us to identify the objects of investigation. The next 
problem is that of comparison. However, a comparison is only 
possible among like quantities. Hence we must find out common 
features in diverse objects. The common and the diverse appear 
here in their dialectical unity. A comparison of different objects 
is only possible on the basis of something that is common in all of 
them. For example, all objects occupy a certain volume in space, 
and hence a comparison can be made between different objects 
on the basis of this criterion. 

COMPARISON AND MEASUREMENT. The meaning of the 
statement "a melon is bigger than an apple" is intuitively quite 
clear: the volume occupied by an apple is a fraction of the volume 
occupied by a melon. Such a comparison is qualitative in nature. 
For example, even if it is known that the particular melon is 
bigger than another apple, no information can be drawn from 
here as to which of the two apples is bigger. 

Thus it becomes imperative to express the result of compari
son between the melon and each of the apples in such a form that 
information can be obtained about the result of comparison 
between the apples. This is made possible by measurement as a 
result of which the property under consideration is expressed in 
terms of a number. 

MEASUREMENT. J.a was mentioned above that measurement 
involves a comparison of identical properties or qualities in 
different objects, phenomena or processes. For example, the 
most general property of objects is their extent (size), while the 
most general characteristic of processes is their duration. Let us 
consider one of these properties, viz. the extent of an object. For 
the sake of simplicity, we shall consider this property only in one 
dimension, i.e. we shall only consider length. The objects whose 
lengths we measure are called lines. 

The measurement of physical properties is the procedure of 
assigning certain numbers to these properties in such a way that 
the comparison of properties can be reduced to a comparison of 
these numbers. 

In the problem under consideration, each line is assigned 
a certain number which uniquely characterizes its length
Conversely, each number must make it possible to choose from 
among all the existing lines only those whose length is uniquely 
determined by this number. The property which can be 
characterized in this way is called a physical quantity and the 
procedure which is used for determining the number 
characterizing a physical quantity is called measurement. 
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The measurement of a length is reduced to the comparison of 
lengths with a certain length which is taken as a unit. The 
procedure of comparison and the determination of the corre
sponding number is the essence of measurement, and may turn 
out to be quite complicated. In this definition, the length of a line 
is given by the formula I = m/0 , where m is a dimensionless 
number indicating the number of times the unit length lies within 
the length being measured. The quantity denoted by the symbol 
/ 0 is the unit of length which is often given a name, for example, 
a centimetre, a metre, etc. 

UNITS OF PHYSICAL QUANTITIES. Thus, in order to 
measure a physical property, we must choose a unit for the 
quantity, i.e. the physical property which can be assigned the 
number I. For example, to measure the extent of a body, we 
choose a body (ruler scale) whose length is taken as unity and is 
denoted by the number I. Measurement is then reduced to 
a comparison of the property being measured with the property 
taken as unity. The properties, qualities, etc. which are used in 
physics are called physical quantities. In this respect, the task of 
measurement is reduced to finding numerical value of a physical 
quantity. 

NUMBER OF UNITS OF PHYSICAL QUANTITIES. Many 
physical quantities ate used in physics. Each of these can only be 
expressed in its own particular units. Hence the number of units of 
physical quantities il equal to the number of physical quantities 
themselves. Such a large number of different units is very 
inconvenient and can be redo~. As a matter of fact, physical 
quantities are not independent of one another, but are rather 
related through the laws studied in physics. These laws can be 
used to express one physicp/ quantity in terms of another, and 
restrict the number of units of physical quantities in terms of which 
all the remaining physical quantities can be described. These units 
are called base units and the aggregate of units is called a system of 
units. 

Sec. 3. ON THE DEFINITION OF CONCEPTS 
AND QUANTITIES IN PHYSICS 

The· nee.::ssity of defining phys
IL'a! quantities in two ways is 
.:mphasi;cd. 

2-354 

TWO CATEGORIES OF CONCEPTS USED IN PHYSICS. The 
first category of concepts with which physics deals could be 
called the category of physical concepts. This category includes 
concepts like force, velocity, acceleration, capacitance and 
viscosity. People who have not specially studied physics have 
very vague ideas about these concepts. Physicists, on the other 
hand, have a clear understanding of these concepts, usually 
backed by a quantitative definition, i.e. by their definition as 



18 l. Introduction 

physical quantities. However, a physicist cannot confine him
self to these concepts in his work. He also needs concepts 
which are not restricted to physics but are more general in 
nature. This category of concepts could be termed the category 
of general concepts. This category includes concepts like 
existence, annihilation, verity, causality, determinism and 
objectivity. The impressions a physicist might have about these 
concepts do not differ in practice from those possessed by 
nonphysicists. They may be vague or clear, depending on the 
circumstances. Many of these concepts are considered in 
philosophy. However, general concepts by themselves are still 
inadequate, and must be assigned a concrete form so that they 
can be applied in physics. The physical analysis of most of 
these concepts has enriched our knowledge and the creation of 
physical theories. 

TWO WAYS OF DEFINING PHYSICAL QUANTITIES. Each 
physical concept must have a clear and unique definition. This 
statement requires a further clarification of the term "defini
tion" itself. What does the "definition" of a physical quantity 
mean? It means that we must indicate the property which 
makes this physical quantity specific, and also indicate the 
common factor that makes it an element of the general 
physical relation between phenomena. A physical quantity is 
mathematically defined as a relation between other physical 
quantities. this is the first way in which a physical quantity can 
be defined. For example., if we assume the definition of velocity 
to be known, we can define acceleration as the rate of change 
of velocity. In this case, acceleration can be expressed in the 
form a = dvfdt, which is just the definition of the quantity a. 
To .emphasize that a certain formula is a definition, the 
equality sign"=" is sometimes replaced by the identity symbol 
''="e . 

Obviously, not all physical quantities can be defined in this 
manner. As we go over from one set of quantities to another, 
we encounter quantities which must be defined in some new 
way. For example, acceleration is expressed in terms of 
velocity and the change in velocity (with time). Hence we must 
define velocity and time intervals. Velocity is expressed in 
terms of path length and time intervals which were also used in 
the definition of acceleration. These must be determined by 
a different method, without indicating their relation with 
known physical quantities. (It should be emphasized that we 
are now referring to space and time not as philosophical 
concepts, but as metres and seconds, and to the measurement 
of lengths and time intervals as physical quantities.) This 
method is called operational: we indicate a physical object 
whose property is taken as unity, and define a measuring 
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procedure which can be used to compare the properties of the 
object being measured and the unit object. For example, when 
we measure length, we must indicate the standard taken as the 
unit length and the procedure for measuring other lengths in 
terms of this standard. Similarly, to measure a time interval, we 
must indicate the time interval which is taken as unity. This 
question will be considered in greater detail at a later stage. 

These two methods of defining physical quantities exist side 
by side and complement each other. 

ON GENERAL CONCEPTS. Most of the concepts now 
termed general do not have any special definitions in physics. 
It is assumed that no additional explanation is required for the 
meaning of the words in terms of which these concepts are 
described. Sometimes, references can be made to philosophical 
literature where these concepts are clarified. However, it has 
become clear with the passage of time that physics as a science 
cannot do without an analysis and interpretation of these 
concepts. Gnosiological, methodological and philosophical 
questions in physics have been considered in many works. 
These questions cannot be by-passed while studying physics, 
and their elaboration is stimulated by the development of 
physical concepts. For example, considerable progress has 
been made towards the understanding of causality and deter
minism with the development of quantum mechanics. The 
development of the • theory of relativity has led to a better 
understanding of the relation be~ween matter, space and time. 
These and other similar examplls show that the interpretation 
and application of general concepts in physics are closely 
related to the progress of physics as a discipline. Many 
advancements in the evolution of physics have been linked to 
some extent with the progress in the interpretation of the 
general concepts. 

Sec. 4. SYSTEMS OF UNITS OF PHYSICAL QUANTITIES 

The arbitrariness in the choice 
0.r a system of units is cmpha
~ized and th.c Intcrna tiona I 
. ystem of Umts (SI) is intro
duced. 

BASE AND DERIVED UNITS. We noted above that the number 
of different units must be equal to the number of different 
physical quantities. However, some physical quantities are 
described in terms of some other physical quantities. This 
allows us to decrease the number of base units which are 
defined without any reference to other units. 

DIMENSIONS OF A PHYSICAL QUANTITY. As mentioned 
above, a physical quantity is usually (though not always) 
defined so that it can be represented by a formula of the type 

a=maea. (4.1) 
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Here, the symbol ea stands for a unit quantity, i.e. a physical 
quantity of the same type as the quantity a being measured 
and with numerical value set equal to unity. Thus, the symbol 
ea describes the nature of the quantity being measured, as well 
as the scale of measurement. The number m a is a dimensionless 
number showing the number of units ea comprising the 
quantity a being measured. Moreover, it follows from formula 
(4.1) that the summation of two quantities a1 and a2 involves 
the addition of two numbers m a1 and m a 2: 

(4.2) 

It should be noted that this formula expresses the summation rule 
for physical quantities if they possess the property of additivity in the 
particular situation under which their summation is carried out. For 
example, a conductor can be characterized by its resistance R or 
conductance y = 1/R. When two conductors are connected in series, 
their resistances are added, and when connected in parallel, their 
conductances are added. In both these cases, (4.2) is satisfied. 

The nature of the quantity being measured is determined by 
its dimensions. Usually, the dimensions of a physical quantity 
are indicated by the same letters enclosed in brackets. For 
example, if the quantity a under consideration is length, its 
dimensions will be length, denoted by L. This is mathemati
cally expressed by the equality [a] = L. The dimensions of the 
unit are the same, i.e. [eJ = L. For example, when we state 
that a quantity has the d;inensions of length, we simply describe 
the nature of the quantity without saying anything about the 
scale of the unit used for measuring this quantity. This could be, 
say, a metre, or a centimetre, or some other length taken as 
unity. All these units have the same dimensions L. 

Let us consider two other physical quantities which are 
described by formulas . 

b = mbeb and c = mcec. (4.3) 

Suppose that the quantities a, b and c are related by a 
physical law. 

It must be borne in mind that the law is established in the 
form of a relation not between the physical quantities a, b and 
c, but between the numbers m a• mb and me, through which 
these quantities are measured. For example, let us suppose that 
this law has the form 

(4.4) 

Here, the numbers A, m a• m b and m c are also dimensionless, 
while p and q are the powers to which the numbers m a and m b 

are raised. Using (4.2) and (4.3), we can write this relation 
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formally as follows: 
c aP bq 
-=A-,;-. 
ea ea eZ 

or 

c = (A _2__) aP bq. 
e:ez 
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(4.4a) 

(4.4b) 

By definition, the numerical values of the quantities ea, eb 
and e, are equal to l. Hence the quantity within the 
parentheses on the right-hand side of (4.4b) is numerically 
equal to A, but is dimensional. Denoting it by A', we can write 
the physical law (4.4b) in the form 

c =A' aPbq. (4.4c) 

Physical laws are usually described in this form rather than 
in the nondimensional form (4.4). 

The following two rules are used to determine the 
dimensions of a complex expression: 

[~]- - 1 [ah] =[a] [b]. a -[a]' 
(4.5) 

Hence the dimensions of the quantity A' in (4.4c) can be given 
by the expression , 
[A'] - [2]- [ ] [e,] - [c] 

-A e!eZ - A [ea] p, [eb] q- [a] P[b]q' (4.6) 

where we have considered the fact that A is a dimensionless 
number. This ensures that the left- and right-hand sides of 
Eq. (4.4c) have the same dimensions. 

Mathematical equalities can be established only between 
quantities that have the same dimensions. The dimensions of 
physical quantities usually vary with the system of units. A 
reliable and rapid way of avoiding gross errors in computa
tional formulas is to verify that the left- and right-hand sides of 
the equalities have the same dimensions, as well as the various 
terms in a sum or a difference since addition and subtraction is 
only possible between physical quantities with the same 
dimensions. Hence if the dimensions of the left- and right-hand 
sides of the equalities do not coincide or if two quantities with 
different dimensions are added or subtracted in a formula, it 
can confidently be stated that an error has been committed. 
The error is detected most easily if a dimensionless number is 
added to, or subtracted from, a dimensional quantity. 
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SELECTION OF BASE UNITS. The choice of physical 
quantities whose units are taken as the base units is a matter of 
convention. In principle, it is impossible to say why one 
physical quantity is preferred over another. 

From a practical point of view, however, not all the units are 
equally suitable as base units. As a matter of fact, the base unit 
must be defined by a direct indication of the material object 
and the physical procedures leading to this unit. This raises 
questions concerning the invariance of the material object, 
reproducibility of the procedures, convenience of operation, 
etc. When these things are taken into consideration, the 
arbitrariness in the choice of base units is considerably 
reduced. Hence it is not surprising that the units of length, 
mass and time are invariably chosen together with other units 
as base units in many systems of units. 

NUMBER OF BASE UNITS. The maximum number of base 
units is equal to the number of all measurable physical 
quantities, so that each physical quantity has its own unit. For 
example, quantities like velocity v, length I and time t have 
their own particular units. The dimensions of the units are the 
same as those of the physical quantity being measured. In the 
present case, these dimensions are the dimensions of velocity 
[v] = V. length [I] = Land time [t] = T. 

A study of uniform motion leads to the establishment of the 
following laW! 

I= Avt, (4.7) 
/II' 

where A is a dimensional constant. Its numerical value 
depends on the choice of the units for velocity, length or time, 
while its dimensions are given by the formula 

(4.8) 

For a given choice of the system of units, Eq. (4.7) is a universal 
relation between I, v and t, while the constant A is a universal 
constant. In view of this, we can choose any two quantities 
(say, L and T) as base ones, and select the dimensions and 
magnitude of the third unit (i.e. V) in such a way that A 
becomes a dimensionless constant equal to unity. For this 
purpose, we should choose unit velocity such that a unit 
distance is traversed in a unit time, while the dimensions of the 
velocity should be chosen in such a way that the quantity A in 
(4.8) is dimensionless, i.e. 

(4.9) 

As a result, Eq. (4.7) assumes the form I= vt, while the unit 
of velocity is no longer a base unit, but becomes a derived unit 
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with dimensions LT- 1• This leaves only two units, viz. length 
and time, as the base units. 

Let us further reduce the number of units. For this purpose, 
we use the fundamental law concerning the constancy of the 
velocity of light, which will be described in detail at a later 
stage. A ray of light propagating with a velocity c will cover a 
·distance 

I= ct (4.10) 

in time t. In this relation, the velocity of light c is a universal 
dimensional constant which is independent of both the system 
of coordinates and the velocity of the source or the observer. 
As before, we choose, say, time as the base unit. The other unit 
is then a derived unit and is defined such that c becomes a 
dimensionless quantity equal to unity. For this purpose, the 
dimensions of length and time must be the same, i.e. [/] = T. 

If we choose 1 s as the unit of time, a length I can be 
measured as the number of seconds it takes light to traverse it. 
For example, the length of a writing-table is about 
0.5 X 10-S S (corresponding to a distance of about 1.5 m), 
while the Earth's equator is 0.13 s long. Sometimes, though 
not always, it is convenient to use such units. In astronomy, 
the measurement of distance in light years is a very clear and 
widely used example of this kind. It is the same system of units 
that was consideted above, the only difference being that one 
year is now chosen as the unit of time. 

ARBITRARINESS IN THIJI'CHOICE OF THE SYSTEM OF 
UNITS. We have thus shown that the choice of base units and 
their number cannot be dictated by any basic or general 
philosophical considerations. 

From the point of view of principle, all systems of units are 
identical. They differ only in expedience and convenience both 
as regards their application and in meeting the above
mentioned requirements imposed on base units. 

THE INTERNATIONAL SYSTEM OF UNITS (SI). After about 
one hundred years of discussion, the scientific and engineering 
communities throughout the world arrived at the International 
System of Units (SI) as the most expedient one. An agreement 
was reached by various international organizations and rati
fied by the member countries. This system was also adopted by 
the USSR. 

The following units are chosen as SI base units: length-metre, 
time--second, mass--kilogram, electric current-ampere, tem
perature -kelvin, luminous intensity-- candela. The definition of 
the first three units is vital in mechanics. 

SECOND; THE UNIT OF TIME. For a very long time, the unit 
oftime was defined in terms ofthe visible motion of the stars and 
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The choice of system of units is a 
matter of convention. There are 
no basic arguments favouring 
one system of units over anoth
er. However, from a practical 
point of view, not all systems of 
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sive factors for a practical choice 
of a system of units are the 
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ducibility, practical convenience 
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selected as units. 

The International System of 
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tities generally vary. 
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the Sun in the sky due to the rotation of the Earth about its axis 
and its motion around the Sun. More and more accurate studies 
of these motions gradually refined the unit of time. A solar day is 
the interval of time between two successive passages of the Sun 
across the meridional plane which is imagined to pass through 
the axis of rotation of the Earth and the point of observation. A 
sidereal day is the interval of time between two successive 
passages of a fixed star through the meridian. The Earth moves 
around the Sun in an elliptic orbit and at the same time rotates 
about its axis in the same direction as it rotates around the Sun. 
This axis is not perpendicular to the plane of its orbit. In view of 
these and many other factors, the solar day is about four minutes 
shorter than the sidereal day. The duration of both solar and 
sidereal days varies during the year. Hence the tropical year, 
defined as the time elapsed between two successive passages of 
the Sun through the vernal equinox, was chosen as the standard 
of time. However, the duration of a tropical year also varies with 
time. Hence in 1956 the International Commission on Weights 
and Measures fixed the tropical year as the standard and gave 
the following definition of the second: 

1 
1 second = of the tropical year 1900. 

31,556,925.9747 

The Commission also indicated the starting and terminating 
moments of this year, which we shall not describe here. This 
definition of a second provjded a fairly constant and reliable unit 
of time. The unit oftime (second) can be measured with a relative 
error not exceeding w-s by means of the existing experimental 
techniques. 

However, it became clear by the beginning of the sixties that 
atomic processes are more suitable for defining the unit of time. 
Atoms emit light whose frequency can be determined very 
accurately. The XIII General Conference on Weights and 
Measures decided in 1967 to adopt a certain radiation under 
definite circumstances as the means for finding the standard of 
time. The frequency of this radiation was assigned such a 
numerical value that the value of a second determined with its 
help was in fairly good agreement with the existing standard. 

A second is defined as the duration of9, 192.631,770 periods of 
the radiation corresponding to the quantum transition between 
the levels F = 4, mF = 0 and r = 3, m,. = 0 in the hyperfinc 
structure of the ground state 2S12 of the 133 Cs atom. 

Using the methods worked out irt radiophysics and optics, it is 
possible to measure very accurately the number of oscillations of 
the normal radiation emitted by cesium atoms in this interval of 
time. This enables us to graduate secondary time standards (say, 
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a clock) which in turn can be used to measure intervals of tim~ 
directly in seconds, hours, etc. 

METRE, THE UNIT OF LENGTH. Initially, small lengths were 
measured in terms of the body. We see traces of this in units like 
the pace, cubit and foot which are still in use today. There was a 
huge multitude of such units in history, but they could not come 
up to the requirements of practice. Hence it was found necessary 
to create a single and stable scale. The decisive step towards the 
creation of a unified system was taken after the French 
revolution. The Earth's meridian was chosen as the physical 
object forming the basis for the definition of the unit of length. 
The unit of length was called a metre and was described as 
exactly 10- 7 of a quarter the meridian circle. Accordingly, a 
platinum bar was specially prepared to serve as the standard 
metre. The metric system of weights and measures was 
introduced in France in 1799 and gradually extended to other 
countries. The use of nonmetric units was banned in France in 
1840. Following the developments in measurement techniques, 
it was found that the standard metre was not sufficiently precise 
(as compared to its definition) and that a platinum-tipped 
measure of length was not effective. Besides, the invariability of 
the material of the standard was admitted to be inadequate. 
Hence the standard with platinum tips was replaced by a 
platinum-iridium bar (containing 90% platinum and 10% 
iridium) with two tfl.arks engraved on it. After this, the metre was 
defined in terms of the standard without any mention of the 
length of the Earth's meridianJ(according to the measurements 
carried out in the sixties, for example, one quarter of the Earth's 
meridian was found to be 10,001,954.5 m long). However, even 
the new standard changed in length due to recrystallization 
processes in the alloy. For example, it is believed that the 
Standard became 0.5 X 10- 6 m shorter between )899 and 1957. 
Hence an incessant search was made to find a more reliable 
standard of length. The standard adopted at present is based on 
the constancy of the velocity of light in vacuum outside a 
gravitational field. This value is assumed to be 299,792,458 mfs. 
In 1975 the General Conference on Weights and Measures 
adopted this value of the velocity oflight as a universal constant. 
As a result, the following definition was given to the unit of 
length: 

A metre is the distance traversed by a plane electromagnetic 
wave in vacuum during 1/299,792,458 of a second. 

KILOGRAM, THE UNIT OF MASS. This is the only base unit 
which is related to a material prototype. The prototype is chosen 
so that it should be easily reproducible and well preserved. 

At first, it was assumed that the prototype was to have a mass 
equal to the mass of I dm3 of water having its highest density 
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(at a temperature of 3.98°C) under a pressure of 1 atmo
sphere (101.325 Pa). However, the prototype was found to be 
28 X 10- 6 kg heavier than 1 dm3 of water under these conditions. 

At present, the international prototype of I kg is a cylinder of 
an alloy of platinum (90%) and iridium (10%), 39 mm in 
diameter and 39 mm long, which is carefully preserved at th~ 
International Bureau of Weights and Measures at Sevres near 
Paris. 

It has been established that the prototype of mass ensures a 
constant value of the mass 1 kg with a relative error not 
exceeding 1 0- 8 over several thousand years. 

OUT-OF-SYSTEM UNITS. The Committee on Standards, 
Measures and Measuring Instruments under the USSR Council 
of Ministers approved and adopted on November 18, 1961 the 
State All-Union Standard 9867-61 on the International System 
of Units, which came into effect on January 1, 1963. The 
abbreviation SI was adopted for the system. During a transition 
period, use of systems of units other than SI and individual units 
not pertaining to any system (out-of-system units) was allowed. 
The USSR State Committee on Standards introduced the State 
All-Union Standard 8.417-81 from January 1, 1982 for the 
"Units of Physical Quantities". This was aimed at the total 
implementatiqn of the International System of Units in the 
USSR. Most of the out-of-system units will become obsolete, 
although the deadline of use for all such units has not yet been 
set. Some out-of-system units, however, may be used for an 
unlimited period of timt¥' together with the SI units. These 
include the following units which have been retained in mechan
ics (the corresponding symbols are indicated in parentheses): ton 
(t), minute (min), hour (h), day (D), litre (1), hectare (ha). The 

·unit electron volt (eV) is allowed for measuring energy. For 
measuring astronomical distances, astronomical units (a. u.), a 
light year and a parsec are allowed. Plane angles can be 
measured in degrees ("), minutes (') and seconds ("). 

PREFIXES FOR FRACTIONAL AND MULTIPLE UNITS. In 
addition to the SI base units, multiple and fractional units can 
also be used. These units are obtained by multiplying the base 
units by 10n, where n is a positive or negative integer. The 
multiple and fractional units are named by adding prefixes to the 
SI base units according to the table on p. 27. 

The use of these prefixes simplifies both the notation and 
pronunciation of the quantities. For example, it is simpler to 
write 10- 9 m as 1 nm and call it a nanometre. Two prefixes 
cannot be used simultaneously. For example, it is not permissi
ble to write 10- 9 m as w- 6 :X 10- 3 = 1 11mm and call it a 
micromillimetre, since prefixes can be assigned only to SI units, 
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Power Prefix 

name symbol 

1018 hexa H 
10" peta p 
1012 tera T 
109 giga G 
106 mega M 
103 kilo k 
102 hecto h 
10 deka da 
10_, deci d 
10-2 centi c 
10-3 milli m 
to- 6 micro 11 
10-9 nano n 
w-12 pi co p 
10-1s femto f 
10-18 atto a 

and a millimetre is not an SI unit. In general, fractional and 
multiple units are not SI units. 

DIMENSIONAL ANALYSIS. Equalities are possible only be
tween quantit~s of similar dimensions. If we know the physical 
quantities involved in a process, dimensional analysis can be 
used in many cases to ;stablish the nature of functional 
dependence between them. For example, suppose that we have 
to establish the functional dependence of distance on time in the 
case of a uniformly accelerated motion. It is logical to assume 
that the distance will be expressed by a formula of the type 
I= Aa"t"', where I is the distance, a is the acceleration, tis the 
time, A is a dimensionless constant and n, m are unknown 
numbers. Since [I]= L, [a]= LT- 2 , [t] = Tand [A]= I, we 
obtain L = L"Tm - 2n. Consequently, n = I, m - 2n = 0 and 
m = 2, i.e. I= Aat2 • The numerical value of A cannot be 
determined by dimensional analysis, but this is not important 
from the point of view of functional dependence. 

Many problems can be solved by dimensional analysis. 
However, we must take into account that dimensional constants 
may exist. For a more detailed account of this subject, the reader 
is referred to the literature on dimensional analysis. 



Chapter 2 
Kinematics of a Point 
and a Rigid Body 

Basic idea: 
Kinematics describes specific mechanical motions without going 
into the cause and the realizability of such motions in nature. 
Kinematics concerns itself only with the physical substantiation 
and mathematical rigour within the framework of the accepted 
models. 

Sec. 5. COORDINATE SYSTEMS 

The experimental content of 
geornetrical qatemcnts is dis
cussed. Irnportani coordinate 
system~ and coordinate trans
formations arc described. 

SPACE AND GEOMETRY. All bodies have a length, occupy 
a certain position and are arranged in a definite manner with 
respect to one aJJ.other. As a result of practical experience, these 
general properties of bodies were imprinted on the consciousness 
of human beings as the cq~cept of space. The mathematical 
formulation of these properties assumed the form of geometrical 
concepts and relations between them. Geometry was formulated 
as a science some two and a half thousand years ago by Euclid. 

The concept of space, which arose in our consciousness as 
a reflection of the properties of bodies, later acquired a relative 
independence in the minds of some philosophers who 
interpreted it as an entity capable of existence without bodies. 
Thus, geometry became a discipline concerning the properties 
of space capable of existing independently of bodies rather 
than a branch of science dealing with the properties of bodies. 
Another group of philosophers did not accept the isolation of 
the concept of space from the properties of bodies. These two 
conflicting opinions have existed throughout the development 
of science. 

There is no need for us to follow the whole long and winding 
road along which these conflicting views were developed. 
Suffice it to say that Newton's views on space reflect a 
synthesis of both viewpoints. According to Newton, space can 
exist independently of bodies as absolute space which in 
essence remains fixed and unchanged irrespective of all 
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external factors. However, there also exists a relative space 
which is a part of the bounded space associated in our 
consciousness with certain bodies. 

The next important step towards an understanding of the 
relation between space and bodies was taken by the creators of 
non-Euclidean geometry. N. I. Lobachevski explained the 
problem as follows: "Strictly speaking, we only comprehend 
motion in space for without motion sensory perception is not 
possible. All other concepts, for example, geometry, are 
artificially derived by our mind from the properties of motion. 
Hence space does not exist on its own." 

The statement that space and matter are inseparably linked 
was subsequently developed in the theory of relativity. 
Philosophically, the development of these ideas culminated in 
the teachings of dialectical materialism on space and time. 
According to dialectical materialism, space and time are forms 
of existence of matter, and hence cannot be conceived without 
matter. 

GEOMETRY AND EXPERIMENT. Geometrical concepts are 
abstractions of real relations between bodies. Hence geometry 
is an experimental science. The "building blocks" in geometry 
are idealized forms of the properties of bodies in the real world, 
such as a point. line, surface or volume. These forms are used 
to create the geometrical model of the real world. It was 
believed for a rong time that there was no need to think about 
a relation between geollletry and the real world, since 
Euclidean geometry was tift only conceivable model of the real 
world. Later, it was shown that there is an infinite number of 
other models (non-Euclidean geometries) which do not have 
any intrinsic contradictions. Hence the question as to which 
model or geometry correctly reflects the real world can be 
answered only experimentally by comparing all the conclu-. 
sions drawn from the model with the situation prevailing in 
the real world. 

For example, Euclidean geometry states that the sum of the 
angles of a triangle is equal to 1t. In principle, this statement 
can and must be verified experimentally. Indeed, a straight line 
is defined as the shortest distance between two points. Hence, 
by taking three points associated with an object, we can in 
principle construct a triangle with vertices at these three 
points. The question that arises now concerns the invariance 
(rigidity) of the scale of measurement as we go from one point 
to another, and the invariance of the body with which the 
three points under consideration are associated. This question 
can also be answered experimentally, and not just by a par
ticular experiment, but by experimental knowledge. For exam
ple, the measurement of length is a comparison of the length of 



30 

The concept of space is a 
reflection in human consci
ousness of the properties of 
bodies to have a length, to 
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system by any type of motion 
in space. 
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an object with the length of another object taken as the 
standard. But is there any reason to doubt the invariance of 
the length of the body taken as the standard? Indeed, there 
is a very definite reason for doubting it. As a matter of fact, 
measurement is a comparison of two bodies, both arranged in 
an identical manner. Hence each individual act of measure
ment of a body by means of the body taken as the standard is 
at the same time an act of measurement of this standard with 
respect to the first body. 

Having adopted the length of a body as unity and measured 
the lengths of all the other bodies with respect to this length, 
we can draw a conclusion about the unit of length itself. 
Indeed, let us assume that at a certain instant of time the 
lengths of all the bodies have changed, say, increasing by 10%. 
In other words, the numbers denoting the lengths of these 
bodies have increased by 10%. By definition, the length of the 
body taken as the standard has remained equal to unity. 
However, we can look at this event from a different point of 
view. All the bodies can be adopted as the scale of 
measurement in turn. Each time we arrive at the conclusion 
that. the lengths of all the other bodies have remained 
unchanged with the exception of the body which was first 
adopted as the standard, and whose length has now decreased 
by 10%. The oomplete set of results shows that the event under 
consideration~involves not a 10% increase in the length of all 
the bodies, but rather a 10% decrease in the length of the body 
taken as the standard'-"· This example shows that it is 
meaningful to question the invariance of the standard. 

The question concerning the invariance of perfectly rigid 
bodies is also important. The invariance of the scales or 
standards for physical quantities is gradually being attained, 
and their suitability is being verified by using all the experience 
at the disposal of man. In accordance with the results of these 
investigations, the standards that were once chosen as the base 
units have gradually been changed. For a long time, it was 
assumed that the length of the Earth's meridian is constant. 
This quantity was therefore chosen as the base for the standard 
of length. However, we now believe that a more suitable 
quantity from the point of view of in variance and constancy is 
the distance traversed by light in a vacuum within a fixed 
period of time in the absence of a gravitational field. This is the 
kind of definition used to select the SI base unit of length. 

Let us now return to the verification of the verity of 
Euclidean geometry. According to what has been mentioned 
above, we can state that it is indeed possible to construct a 
triangle whose sides are uniquely defined. Further, all the 
angles of the triangle can be measured using a suitable 
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technique. The sum of these results will be either equal to 7t or 
not. If the sum is not equal to 7t, it can confidently be stated 
that Euclidean geometry is unsuitable as a model of the real 
world, and some other model is called for. The Pythagorean 
theorem can be verified in a similar manner. Experimentally, it 
involves the construction of a right triangle and the meas
urement of its hypotenuse and legs. 

An analysis of many physical phenomena does yield a 
conclusion concerning the limits of applicability of Euclidean 
geometry, namely: Euclidean geometry provides a fairly 
accurate description of the geometry of the real world, starting 
from distances of the order of one-tenth of the size of the 
nucleus, i.e. from distances of about 10- 16 m, to distances 
close to the "size of the Universe", i.e. about 1026 m ~ 1010 

light years. At such large distances (of the order of 10 billion 
light years), however, the non-Euclidean properties of space 
must start manifesting themselves if the predietions of the 
theory of relativity are correct. There is every reason to believe 
that Euclidean geometry remains valid at distances below 
10- 16 m, although the lower limit of its applicability has not 
yet been established. 

However, the statement that Euclidean geometry is applicable 
near the Earth's surface is valid only with the reservation "to a 
very high degree of accuracy". The statement is not absolutely 
true. The general theory of relativity states that geometry in a 
gravitational field is not Euclidean. 

It has recently been verified to a vlry high precision that on the scale 
of solar system the geometry of space is non-Euclidean by measuring 
experimentally the way radio waves are bent in the gravitational field of 
the Sun and from the delay in the radiosignals. 

POINT MASS. The concept of a point mass is the most 
important abstraction for constructing the models of mechanical 
systems. A point mass is defined as a physical object which is 
mathematically a point in the geometrical sense which has a 
certain mass. The phrase "in the geometrical sense" means that 
a point mass does not have any internal geometrical structure, 
shape or size. 

Whether or not a concrete object can be treated as a point 
mass depends on the conditions of the problem and the 
questions which have to be answered. 1he same body can be 
considered a point mass under some conditions, while it is 
impossible to do so under some other conditions. For example, 
the Earth can be treated as a point mass when its motion 
around the Sun is being considered. However, it cannot be 
considered a point mass when we are dealing with the Earth's 
satellites. A point mass used for simulating a body can be 
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ascribed certain physical (but not geometrical!) properties of the 
body. For example, it can be assumed that a point mass has an 
intrinsic angular momentum, charge, etc. This can be done 
when the corresponding physical properties of the body can be 
assumed under the conditions of the problem to be localized at 
a point mass. 

BODY. The model of a body in mechanics does not take into 
consideration its atomic and molecular structure. It is assumed 
that the mass of the body is uniformly "smeared" over its 
volume with a certain density p. A volume element d V contains 
a mass dm = p d V. The volume elements are assumed to be 
different and define different points of the body in the limit 
dV-+ 0. This allows us to refer to a body as a set of point 
masses for the sake of brevity and to use such a concept for 
simplification in mathematical calculations. It must, however, 
be borne in mind that point masses have nothing in common with 
the real atoms and molecules, and are simply auxiliary entities. 
Experience shows us that in some bodies, their different parts 
have a freedom of movement relative to one another (for 
example, liquids, free-flowing dry substances). For some other 
bodies, however, the different parts preserve their relative 
position, and hence their shape remains unchanged. Such 
bodies are called solids, or rigid bodies. The relative invariance 
of the mutual arrangement of the different parts of a solid 
ensures that•its extent in space is relatively constant. As a 
result, the comparison of .the extents of solids acquires a clear 
physical meaning, and it.tobecomes possible to define the length 
of a solid and the operation of measurement, and to give a 
quantitative measure of the relative in variance of the length of 
a solid with respect to a body taken as a standard or a unit 
scale. However, even if·the ratio of the lengths of two bodies is 
constant, we cannot. for the time being, obtain a quantitative 
characteristic for the important concept of a "perfectly riqid 
body". We must study the mutual relation between different 
bodies and analyze their stability. After this, we can select 
those bodies which turn out to be the most stable and 
invariable, and use them as standards for measurements. It was 
mentioned above that the use of a standard of measurement 
can lead to information about its invariance and thus help in 
its refinement. 

Thus, man's activities over many centuries have shown wh:tt 
materials, processes· and conditions can be used to define an 
invariable length and to choose length for measuring the 
extents of bodies. 'This choice was historical in nature and varied 
over time, since new experience drawn from practice led to new 
conclusions concerning the relative invariance of the objects of 
the material world surrounding us. 



? 
What is the meaning of the 
statement on the geometrical 
properties of space? What is the 
meaning of the question 
11•hether a certain geometry is 
authentic or false? 
What is a perfectly rigid body 
and what role does it play in the 
derelopment of geometrical 
concepts? 
What is the idea behind the 
concept of invariance of a scale 
taken as a unit when this 
Property ofinmriance is valid by 
definition? 
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DISTANCE BETWEEN POINTS. Having chosen the unit of 
length, we can measure one-dimensional extents, i.e. the length 
of a line passing through two points of a body. Any two points 
of a body can be joined by an infinite number of lines, and the 
length of each line can be measured. An analysis of all these 
lengths shows that the largest among these cannot be defined, 
but there is the smallest length. 1he smallest length is called the 
distance between the two points. and the corresponding line is 
called a straight line. 

It is possible to measure the distance not only between two 
point masses belonging to the same object, but also between 
two points that are isolated in space. For this purpose, it is 
sufficient to choose in the simplest case a long solid standard 
metre and arrange it in such a way that the two point masses 
coincide with certain divisions on the standard metre. The 
distance between the two divisions will then be equal to the 
distance between the two point masses. Point masses are 
situated in space. Hence we sometimes refer to spatial points 
and to the distance between them. 1his. however, does not mean 
that spatial points can be labelled in some way so that they can 
be tracked in the same way as point masses. A spatial point can 
be defined only with respect to a body. Hence any statement 
concerning a spatial point is only meaningful if its position is 
specified relative to a.hody. In turn, the position of a spatial 
point relative to a body is characterized by the position of an 
imaginary point mass located a~the spatial point. Hence in 
order to describe a space, we must indicate a reference body 
relative to which the position of spatial points is defined. 

PERFECTLY RIGID BODY. Generally speaking, any object 
can be chosen as the reference body. However, the concept of a 
perfectly rigid body was of prime importance in the develop
ment of Euclidean geometry. A perfectly rigid body is the one 
the distance between any of whose points remains unchanged. 
We have already discussed the invariance of the scale used for 
measuring distances. 

The geometrical images and concepts of Euclidean geometry 
are inseparably linked with the images and concepts formed in 
our consciousness by the ideas of perfectly rigid bodies and 
their motion. Consequently, it is desirable to choose a perfectly 
rigid body as a reference body. This, however, is not always 
possible. Nevertheless, a perfectly rigid body can always be 
chosen as a reference body in classical mechanics and in the 
special theory of relativity. This is what we shall do 
throughout this course. 

REFERENCE FRAME. 1he set of all spatial points and the 
body relative to which the position of the spatial points is 
determined is called a reference frame. If a reference frame is 
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given, the position of a point in space is characterized by the 
spatial point with which the point mass coincides. Thus the 
space acquires an "independent" existence, a point mass may 
move from one spatial point to another, and so on. Our task is 
to indicate the manner in which the position of spatial points 
can be described in a reference frame. This is done by 
introducing a coordinate system. 

COORDINATE SYSTEMS. The concepts of distance, line, 
straight line, angle, etc. are defined in a given reference frame. 
The problem of establishing relations between them is of 
experimental nature. Some of the relations seem so obvious 
that there is a temptation to assign them the status of 
self-evident propositions which do not require any proof. Such 
assumptions are called axioms. The building of the entire 
geometrical structure from the axioms forming the basis of 
geometry requires simple logical thinking and is not directly 
associated with experiment. Different systems of axioms lead 
to different kinds of geometry, which are all valid by 
themselves without any reference to the real world. Each such 
geometry is a model of the relations which could generally 
exist in the real world. Only experiment can determine which of 
the feasible geometries is the model of the real physical world. 

Since it bas experimentally been established that Euclidean 
geometry is valid with a very high degree of accuracy over a 
very wide lange of distances in the real physical world, we shall 
assume that the axioms of Euclidean geometry are valid for all 
the reference frames .tl.roughout this book. 

In order to describe the motion of a point mass or of a rigid 
body, we must agree how to specify the position of a point. It 
was mentioned above that the "address" of point mass is 
determined by the "address" of the imaginary point in the 
reference frame with which the point mass coincides. Hence 
our task is to assign "addresses" to all the points in a reference 
frame in such a way that each point has its own individual 
"address", and each "address" leads to just one point. For 
this purpose, we introduce a coordinate system. 1he 
introduction of a coordinate system is tantamount to an agree
ment as to how to assign "addresses" to different points in the 
reference frame. For example, it is agreed that the "addresses" 
of all the points on the Earth's surface are given in the form of 
numbers having the dimensions of degrees, and called latitude 
and longitude. Each point on the Earth's surface lies at the 
intersection of a meridian and a parallel, and its "address" is 
specified by two numbers corresponding to the meridian and 
parallel. The assignment of a number to each meridian and 
parallel is arbitrary, and the only important point is to ensure 
unambiguity in the assignment of the number: each meridian 
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must be ascribed a definite number and each number must 
correspond to a definite meridian. For example, instead of 
characterizing longitude by the angle between the plane of a 
meridian and the plane of another meridian taken as the 
starting point, we could characterize it by the distance along 
the equator from the point where the equator intersects the 
reference meridian and the point where the equator intersects 

J--l----------1r---:-X the meridional plane passing through the point under 
0 )( 

Fig. I. Rectangular Cartesian 
coordinate system in a plane. 
The two numbers characterizing the 
position of a point are the distances 
x and y from the origin to the 
projections of the point on the 
coordinate axes. 

0 

Fig. 2. Polar coordinate system. 
The two numbers characterizing the 
position of a point in a plane are the 
distance p from the origin to the 
point and the angle cp between the 
rdy drawn from the origin and the 
line segment connecting the origin 
and the point. 

z 

consideration. In this case, we would have to state that a 
certain point lies with so many kilometres of longitude and so 
many degrees of latitude. Of course, there is in principle no 
advantage or drawback to the different methods of introducing a 
particular coordinate system. However, in practice, different 
coordinate systems have varying significance. Quite often, each 
success in solving a problem depends on the correct choice of 
the coordinate system. 

DIMENSIONALITY OF SPACE. It can be seen from the 
above example that the position of each point is characterized 
by two numbers, regardless of what these numbers are. The 
only significant point is that the method for specifying the 
numbers must ensure a continuity and unambiguity in the 
"addresses". It is also important that there are two such 
numbers. This is so because we are considering the surface of 
the Earth. The posiyon of a point on a surface is defined by 
two numbers. In other words, we say that a surface has two 
dimensions. .... 

The space in which we live is three-dimensional. This means 
that the position of any point in space is characterized by three 
numbers. The choice of the numbers depends on the 
coordinate system used for defining the positions of points in 
space. 

The procedure for assigning numbers to a spatial point is called the 
arithmetization of a space. If the space is arithmetized, there is no need 
to remember the reference body or the coordinate system since all the 
information about them is contained in the arithmetization. In this 
case, it is not necessary (in many cases, it is not even permissible) to 

y associate a reference frame with an imaginary perfectly rigid body. 

Fig. 3. Rectangular Cartesian 
coordinate system in space. 
The three numbers characterizing 
the position of a point are the 
distances x, y and z from the origin 
to its projections on the coordinate 
axes. 

]• 

Geometry is based entirely on the arithmetized specification of a space 
and the square of its infinitesimal linear element. However, such a 
general approach is not necessary for this book. Within the framework 
of the special theory of relativity and classical mechanics, the geometry 
is Euclidean and the reference frames can conveniently be associated 
with imaginary perfectly rigid bodies. This is because the spatial 
relations in Euclidean geometry are simply a generalized formulation 
of the relations between the geometrical characteristics of perfectly 
rigid bodies, their motion and mutual arrangement. 

IMPORTANT COORDINATE SYSTEMS. Only a few of the 
infinitely large number of possible coordinate systems are 
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simple, important and frequently used in practice. Detailed 
information on these coordinate systems can be found in other 

', textbooks. The following systems should be memorized: 
' (1) in a plane: 

','O(p, rp, z) (Ia) the rectangular Cartesian coordinate system (Fig. I) in 
I which the two numbers (x, y) characterizing the position of a 
I point are the distances x and y; 

·I (l b) the polar coordinate system (Fig. 2) in which the two 
I numbers (p, cp) characterizing the position of a point are the 
I distance p and the angle cp; 

y (2) in space: 
(2a) the rectangular Cartesian coordinate system (Fig. 3) in 

which the three numbers (x, y, z) characterizing the position of 
a point are the distances x, y and z. 

It should be remarked that it is possible to have two 
rectangular Cartesian coordinate systems in space, which cannot 

Fig. 4. Cylindrical coordinate be made to coincide by any translation or rotation. These are 
system. called the right-handed and left-handed Cartesian coordinate 
The three number' characterizing 
the position of a point are the 
distances p dnd ~ from the origin 
and The angle ljJ between the seg
ment p and the X-axis. 

z 

systems, and their axes are differently oriented. 
If, looking at the XY-plane in the positive direction of the 

Z-axis, a clockwise rotation of the X -axis is the shortest way to 
make it coincide with the Y-axis, the system is right-handed. If, 
on the other hand, an anticlockwise rotation of the X-axis is 
the shortest way}o make it coincide with the Y-axis, the system 
is left-handed. 

Figure 3 shows a right-handed coordinate system. The 
dashed line shows the Z-difection in a left-handed coordinate 
system, the X- and Y-directions remaining unchanged. It can 

(r, VJ• 8) easily be seen that a right-handed system cannot be made to 
coincide with a left-handed system by any translation or 
rotation. 

We must always bear in mind the coordinate system being 
used, since a transition from the right-handed to the left-hand
ed system involves a sign reversal in some formulas. In most 
cases, as well as in this book, the right-handed system is used. 

Y (2b) The cylindrical coordinate system (Fig. 4) in which the 
three numbers (p, cp, z) characterizing the position of a point 
are the distance p, the angle cp and the distance z. 

(2c) The spherical coordinate system (Fig. 5) in which the 
Fig. 5. Spherical coordinate three numbers (r, cp, 8) characterizing the position of a point 
system. are the distance r, and the angles cp and 8. 

X 

The three numbers characterizing 
the position of a point are the 
distance r from the origin and the 
angles ljJ and 8. 

The numbers defining the position of a point in a coordinate 
system are called the coordinates of the point. For the sake of 
convenience, the coordinates of a point are often described by 
the same letter but by different subscripts, say, x 1 , x 2 , x 3 • 

These numbers denote the following coordinates: x 1 = x, 
x 2 = y, x3 = z (in the Cartesian system); x 1 = p, x 2 = cp. 
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ra arc described. 
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X3 = Z (in the cylindrical system) and XI = r, X2 = <p, X3 = 0 (in 
the spherical system). 

COORDINATE TRANSFORMATIONS. The formulas con
necting the coordinates of a point in one system with its 
coordinates in another system are called coordinate transfor
mations. We shall describe here the transformation formulas 
between cylindrical, spherical and Cartesian coordinates. 
These formulas can be obtained by visual inspection from 
Figs. 4 and 5. 

Transformation from cylindrical coordinates to rectangular 
Cartesian coordinates: 

x = p cos <p, y = p sin <p, ::: = .,. (5.l) 

Transformation from spherical to Cartesian coordinates: 

x = rsin Ocos <p, 

y = rsin Osin <p, 

::: = rcose. 

(5.2) 

Transformation formulas are of great practical importance 
for going over from one Cartesian coordinate system to 
another when their origins and the directions of their axes do 
not coincide. However, it is more convenient to analyze this 
situation using vector concepts. 

}i' 

DEFINITION OF A VECTOR. Many physical quantltles are 
characterized by just one number. These include, for example, 
temperature, which is expressed in degrees of a particular scale, 
and mass, which is expressed in kilograms. Such quantities are 
called scalars. In order to characterize other physical quanti
ties, however, it is necessary to specify several numbers. For 
example;· velocity has both magnitude and direction. For 
example, it can easily be seen in Fig. 5 that a direction in space 
is completely defined by two numbers, viz. the angles <p and e. 
Hence velocity is described by three numbers in all. Such 
quantities are called vectors. 

While considering vector quantities, we must clearly demar
cate two aspects of the problem: firstly, the definition and 
properties of vectors as mathematical quantities; secondly, an 
analysis of the properties of a physical quantity and whether it 
can be represented by a vector. 

The mathematical definitions of a vector and vector opera
tions are not associated with the point of application of the 
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Fig. 6. Addition of vectors. 
The vector addition rule is a natural 
generalization of the obvious rule 
for displacement addition. 

A-
~aA 

(a<O) (a >0) 
(b) 

Fig. 7. Commutativity of vector 
addition (a) and multiplication 
of a vector by a scalar (b). 

The sum of two vectors does not 
depend on the order of addends. 
When a vector is multiplied by a 
negative scalar, its direction is 
reversed. 
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vector, since they are described solely in terms of the three 
numbers defining the vector. The point of application is only 
significant for a geometrical interpretation of the vector. It is 
clear that in the mathematical definition of a vector, the point of 
its application is arbitrary and is identified with a specific point 
only for the sake of convenience or visual interpretation. 

A vector is depicted by an arrow whose length is propor
tional to the quantity being represented by it, and the arrow 
points in the direction of the vector. In this book, vectors will 
be denoted by blue letters, for example, vector A, while their 
absolute numerical value, called the magnitude of the vector, 
will be represented either by a blue Jetter enclosed within two 
vertical bars: I A I or by the Jetter of an ordinary type: A. 

ADDlTION OF VECTORS AND MULTIPLICATION OF A 
VECTOR BY A SCALAR. Displacement is one of the most 
important concepts associated with a vector. The displacement 
of a point mass from ~n M 1 to position M 2 (Fig. 6a) is 
described by vector M 1M 2 , which is represented by the 
segment joining points M 1 and M 2 , and directed from M 1 to 
M 2 • If the point then moves from M 2 to M 3 , this sequence of 
two displacements, i.e. the sum of ~isplacements, is 

equivalent to a single displacement M 1M 3 , which can be 
written in the form of the vector displacement equation -M1M2 + M2M3 = M1M3. (6.1) 
This formula expresses the addition rule for vectors. Some
times, it is called the par~Ji{elogram law, since the sum of the 
vectors is equal to the diagonal of the parallelogram whose 
sides are formed by the two vectors being added. By definition, 
the addition formula is applicable to any two vectors. Figure 6b 
shows the addition of two arbitrary vectors A and B. 

From the example on the addition of displacements, it is 
clear that the sum of vectors does not depend on the order in 
which the displacements take place, i.e. on the order in which 
vectors are added (Fig. 7a): 

A+B=B+A. (6.2) 

This rule can be extended to the addition of all types of 
vectors. 

Multiplication of a vector by a scalar boils down to the 
multiplication of the magnitude of the vector by the scalar 
without changing the vector's direction if the number is 
positive, but reversing the vector's direction if the number is 
negative (Fig. 7b). 

SCALAR PRODUCT. The scalar product A · B of two vectors 
A and B is the scalar which is the product of the magnitudes of 



A XB =o 
fig. 8. Vector product A x B = 

[). 

This vector is normal to the plane in 
which the vectors to be multiplied 
lie. 

The vector addition rule is 
a definition whose expedience is 
proved by the properties of 
a number of simple physical 
quantities. 
In order to present a physical 
quantity in the form of a vector, 
it is essential that it be the 
vector sum of its components, 
and the vector projections 
corresponding to the compo
nents be transformed upon 
a transition from one coordi
nate system to another in 
accordance with the transfor
mation rules for the projections 
of mathematical vectors. In 
other words, the projections of 
the components must be trans
formed as the projections of the 
radius vector under the trans
formation (6.20). 
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the vectors and the cosine of the angle between them: 

/"'-;, 
A· B = I A II B I cos (A, B). 
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(6.3) 

It can easily be verified that the following rules are valid for the 
scalar products of vectors: 

A·B = B·A, 

A· (B + C) = A· B + A· C, 

A · aB = a A · B = a (A · B), 

where a is an arbitrary number. 

(6.4) 

VECTOR PRODUCT. The vector product A x B of two 
vectors A and B is the vector D = A x B which is defined in 
the following way (Fig. 8): 

(I) it is perpendicular to the plane containing vectors A and 
B being multiplied, and is directed towards the side in which 
a right-handed screw would move if rotated in the direction 
vector A must be turned to meet vector B through the shortest 
path. In other words, vectors A, B and A x B are oriented in 
the same way as the positive X-, Y- and Z-directions in 
a right-handed coordinate system; 

(2) the magnitUde of the vector product is equal to the 
product of the mfignitudes of the vectors being multiplied and 
the sine of the angle between them: 

·./"""--.. 
I D I =I A x B I =I A II B I sirt{A, B). (6.5) 

Here it is important that the angle between vectors A and B is 
measured from the first factor A to the second factor B along 
the smallest arc, i.e. the angle between A and B is less than or 
equal to 1t so that the sine in (6.5) cannot be negative. It follows 
from (6.5) that the magnitude of the vector product is equal to 
the area of the parallelogram formed by the vectors being 
multiplied (see Fig. 8). 

The following properties of the vector product can easily be 
verified: 

A X B = -B X A, 

A X (B + C) = A X B + A X c, 
A x aB = aA x B = a (A x B). 

(6.6) 

REPRESENTATION OF VECTORS IN TERMS OF A UNIT 
VECTOR. The direction of a vector can be indicated in terms of 
a dimensionless unit vector. Any vector A can be represented 



40 

0 

Fig. 9. Radius vector. 
The position of any point in space 
relative to point 0 taken as the 
reference point is completely 
characterized by its radius vector. 

A direction in space is deter
mined by two numbers. 
By definition, the radius vector 
emanates from the origin of 
coordinates. Other vectors, 
generally, originate at other 
points. The relation between 
the positions of a point relative 
to different origins can easily be 
established in terms of radius 
vectors. 
The relation is expressed 
through the magnitudes of 
quantities in different coordi
nate systems with the help of 
the coordinate transformations 
and has a more complicated 
form. 
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in the following form: 
A 

A =!All AI= niAI = nA, (6.7) 

where n = A/1 A I is a dimensionless unit vector that gives the 
direction of vector A. 

ADVANTAGES OF VECTOR NOTATION. The concept of a 
vector and all the operations associated with it are introduced 
independently of any coordinate system. This makes it possible 
to use physical quantities without resorting to their expression 
in any particular coordinate system. Certain relations between 
physical quantities are more simply expressed in vector form 
than in coordinate form. These are significant advantages of 
vector notation which ensure its wide application. On the 
other hand, it is often more convenient to carry out numerical 
computations in coordinate form in which all the quantities 
are purely algebraic entities. 

Hence it is important that we should be able to write all 
vector expressions and operations in coordinate form. Above 
all, we should know how to do this in Cartesian coordinates. 

RADIUS VECTOR. It is convenient to describe the position 
of spatial points in terms of their radius vectors. The radius 
vector of a point is the vector which begins at the origin of the 
coordinate system and terminates at the point under considera
tion (Fig. 9). lf the position of a point is specified in terms of a 
radius vector, there is no need to use any coordinate system. 
The positions of points ~n be described by radius vectors in 
incoordinate form. 

VECTOR PROJECTIONS IN THE CARTESIAN COORDI
NATE SYSTEM. Suppose that a point 0 is taken as the 
reference point. We choose a Cartesian coordinate system with 
its origin at 0. The position of any point can be characterized 
either by its radius vector r or by the three numbers (x, y, z) 
which are the Cartesian coordinates of the point. Let us 
establish a relation between r and the numbers x, y, z. We first 
introduce dimensionless unit vectors in the positive X-, Y.. and 
Z-directions and denote these unit vectors by ix, iY and iz. 
Taking into consideration the addition vector rule (6.1) and 
formula (6.7), we can see from Fig lOa that the radius vector r 
can be represented as the sum of three vectors ixx, iyy and izz, 
which are also directed along the coordinate axes: 

r = ixx + iyy + izz. (6.8) 

The numbers x, y and z are called the projections of the radius 
vector r. They coincide with the coordinates of the point 
characterized by r. 

In fact, any vector can be represented as the sum of vectors 



Fig. 10. The projection of a 
radius vector in a spatial Car
tesian coordinate system (a) 
and of an arbitrary vector A in 
the same system in a plane (b). 
The projections of a vector on 
coordinate axes are algebraic quan- . 

• tities, their sign being determined by 
the sign of the cosine of the angle 
between the directions of the vector 
and the unit vector of the corre
sponding axis. The projections of 
the radius vector are coordinates of 
the point characterized by it. 
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directed along the coordinate axes (Fig. lOb): 

A= ixAx + i,A, + i.A.. (6.9a) 

The numbers A ... A, and A. are the projections of vector A 
onto the X-, Y- and Z-axes. To be able to find the projections 
of a vector and to express all vector operations in coordinate 
form, we must know certain relations between the unit vectors 
ix, i, and i •. 

Equation (6.9a) can also be written in the form 

A = Ax + A, + A., (6.9b) 

where vectors A .. = i .. A ... A, = i1 A1 and A. = i.A. are called 
the components of vector A in the X-, Y- and Z-directions. 

RELATION BETWEEN VECTORS i,, i1 AND i •. Since these 
vectors are unit vectors and are orthogonal, we obtain 
j2 = i2 = j2 = 1 
X )' Z ' 

(6.10) 
ix · i1 = 0, ix · i. = 0, i_v · iz = 0. 
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By the definition of the vector product, we arrive at 

(6.11) 

COMPUTATION OF VECTOR PROJECTIONS. The scalar 
multiplication of both sides of Eq. (6.9) successively by i_., iY 
and iz and a comparison of the result with (6.10) lead to 

A_.=A·i_., Ay=A·iy, Az=A·iz. (6.12) 

It can easily be seen that the projections of the vectors on 
the axes of a rectangular Cartesian coordinate system are 
nothing but the projections of the vectors on the axes, 
calculated using the sign rule. For example, 

Ax= A ·i_. = lA lli_.lcos (A,'t:.) = lA lcos(:(,'t), 

where (A-:i":) is the angle between vector A and the positive 
X -direction. This proves the above statement. A similar 
situation prevails for the other projections. 

EXPRESSION OF VECTOR OPERATIONS IN COORDINATE 
FORM. In order to obtain these expressions, we must represent 
ve~;tors in the form (6.9a) and use the formulas obtained earlier 
for unit vectors. Suppose that we are given 

A= i_.A .. + iYAY + iZAZ, 
• (6.13) 

B = i_.B .. + iyBy + iZBZ. 
. , 

Adding vectors A and B, we obtain 

C =A+ B = i..(A_. + B_.) + iy(Ay +By)+ i.(Az +Hz). (6.14) 

Thus, the projection of the sum of two vectors is equal to the 
sum of the projections of the components: 

C_.=A .. +Bx, 

C)'= AY +BY, 

C= =A=+ B=. 

(6.14a) 

Similarly, it can be seen that the multiplication of a vector 
by a scalar boils down to the multiplication of each of its 
projections by the scalar. For a scalar product, we obtain the 
following expression from (6.10): 

A·B = AXBX + AYBV + A=B=. (6.15) 

Directly computing the vector product by means of (6.11), we 
obtain: 



Fig. II. Coordinate transforma
tions. 
Vector a characterizes the position 
of the origin of the primed coordinate 
system relative to the unprimed 
system, while the cosines of the 
angles between the unit vectors of 
the two systems determine their 
mutual orientation in space. 
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A X B = iJAJ.B=- A=By) 

+ i,.(A=B,- A,BJ + i=(AxBy- AYBJ. (6.16) 

TRANSFORMATION OF CARTESIAN COORDINATES. 
Using vector notation, we can find the formulas for a 
coordinate transformation from one Cartesian system to 
another. In the general case, neither the origins of coordinates 
nor the axes of the two systems coincide (Fig. II). The position 
of the origin of Jhe K' coordinate system relative to the origin 
of the K system is described by vector a. It can be seen from 
Fig. II that the radius vcgtors r and r', which define the 
position of a point in the }( and K' systems, are related thus: 

r=a+r'. (6.17) 

If we express r and r' in terms of their components along the 
coordinate axes, we can write 

(6.18) 

In order to determine the relation between the coordinates 
of a point, we must form the scalar product of both sides of 
this equation and the corresponding unit vector. For example, 
the scalar product of both sides of (6.18) and ix will lead to the 
x-coordinate. Thus we get 

X= a ·ix + i~·ixx' + i~·i.f + i~·ixz', 
or, which is the same, 

~ ............ ............. 
x =ax+ cos(i~. ix)x' + cos(i~, ix)Y' + cos(i~. ix)z'. (6.18a) 

Thus, in order to effect a transformation, we must know the 
angles between the coordinate axes and the mutual arrange
ment of the origins of coordinates. 

The expression for the y- and z-coordinates are obtained in 
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a similar manner. In order to derive the inverse transforma
tions for x', y' and z', we must form the scalar product with the 
unit vectors i~, i; and i; respectively. For example, the scalar 
product of both sides of ( 6.18) and i~ is 

ix · i~x + ~ · i~y + i, · i~z = a· i~ + x', 

or 
' ' (~) (~} (~) X = -ax + COS lx, lx X + COS ~y, lx Y + COS 1,, lx Z- (6.19) 

Here, a~ = a· i~ is the x-projection of vector a in the K' 
coordinate system. This vector points towards the origin of the 
K' coordinate system. If we change its direction so that it 
originates at the point 0' in the K' system and terminates at 
the point 0 in the K system, the sign of the first term on the 
right-hand side of (6.19) will be reversed and this relation will 
become the same as (6.18a). If the origins of the two coord.inate 
systems coincide, vector a becomes equal to zero. 

In order to simplify the transformations, we introduce the 
notation 

x= xl, y = x2, z = x3 ; 

x' == x'l, y' = x2, z' = .xJ; 

I= el, ).= e2, lz = e· 
X 3• 

"I I '' I "I I 

lx=e~. fy=e2 , l.=e3 ; 

cos("e;:,';;,) =·a.m. (m = 1, 2, 3; n = 1, 2, 3). Using this nota
tion, we can write the transformations (6.18a) for a= 0 as .... 
x 1 = a 1 1 x'1 + !11 2 .Y 2 + a 1 3 x] , 

.Y2 = a21x'1 + a22x1 + a13x], 

.\3 = U31x'1 + a32Xz + a33x'3 · 

(6.20} 

These transformations are carried out by a rotation of the 
rectangular Cartesian coordinate systems having a common 
origin. 

Let us consider the application of (6.20) to the two-dimen
sional case (x3 = 0, x3 = 0) shown in Fig. 12: 

/'-
all =cos(e1, ~)=cos<p, 

a. 12 = cos ( 0;-) = - sin <p, 

a 21 = cos(Ot) =sin <p, 
~ a 22 = cos (e2 , e2 ) = cos <p. 

Hence the transformations in (6.20) assume the form 

X 1 = COS <p " X11 - Sin <p " Xz , 

x2 = sin <p • x'1 + cos <p • x2. 
(6.21) 



Fig. 12. Rotation of a coordinate 
system. 
If the origins coincide in the two
dimensional case, the mutual 
orientation of the coordinate axes is 
completely characterized by the 
angle of rotation between the X,
and X; -axes. 
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TRANSFORMATION OF VECTOR PROJECTIONS. It has 
already been mentioned above that not every quantity char
acterized by three numbers is a vector. 

A quantity described by three numbers is a vector only if 
upon a transition from one coordinate system to another the 
vector components behave like the projections of the radius 
vector under the .-transformations (6.20). 

PHYSICAL VECTOR. It is not easy to say whether a 
physical quantit/having a numerical value and a direction can 
be represented as a vector_ .. In the first place, it must be 
emphasized that the propert'ies of a physical vector are not 
always identical to those of a mathematical vector. For example, 
the point of application is quite significant for many physical 
vectors and cannot be moved anywhere. For example, the 
vector of a force acting on a point mass must be applied to the 
point. This does not impose any restriction on the representa
tion of a physical quantity by a vector since, by definition, the 
point of application of a mathematical vector is arbitrary and 
may be located wherever needed by the physical requirements. 
However, this means that in order to completely characterize a 
physical vector, we must not only indicate its projections, but 
also the point of its application. 

In order to represent a physical quantity in the form of a 
vector, it is essential that it must be the vector sum of its 
components, and that the vector projections corresponding to 
these components be transformed from one coordinate system 
to another in accordance with the rules for transforming the 
projections of mathematical vectors, i.e- like the projections of 
the radius vector under the transformations (6.20). 

Thus, the representation of a physical quantity in terms of a 
vector depends on its physical properties and not on whether a 
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directed segment of a straight line can formally be projected 
onto the coordinate axes. Consequently, the definition of a 
physical vector does not include the addition rule at all, but just 
the rule for forming a physical vector from its own components as 
vectors, and the rule for transforming vector projections from one 
coordinate system to another. 

In classical physics, we consider three-dimensional vectors 
whose components point along the axes of a spatial Cartesian 
coordinate system since time is independent of the coordinate 
system. Hence in the definition of a vector, the transformation 
of vector projections means a transformation in accordance 
with (6.20). A direct inspection shows that a three-dimensional 
displacement of a point satisfies this definition, i.e. displace
ment is a vector. Since the transformations (6.20) are indepen
dent of intervals At of time, the velocity of a point and the 
difference between its velocities over an interval At of time are 
also vectors. Hence the acceleration of a point is also a vector. 
The vector properties of other quantities in classical physics 
can be analyzed in a similar manner. 

In relativistic physics, the analysis of the vector properties of 
quantities cannot be confined to three spatial dimensions since 
in this case time depends on the coordinate system and 
appears in the transformations on an equal footing with the 
spatial coordinates. In other words, when defining vectors, we 
must consider trlmsformations of the type (6.20), but for four 
independent projections of the radius vector. This means that 
the vectors must be chaPilcterized in this case by four 
projections, i.e. in relativistic theory we consider four-dimen
sional vectors rather than three-dimensional ones. These 
vectors are defined in the same way as the three-dimensional 
vectors in classical physics, but on the basis of relativistic 
transformations of the spatial coordinates and time (see 
Sec. 13). 

CONCEPT OF TIME. The world around us is continuously 
changing. Processes take place in a definite sequence, and each 
process has a certain duration. The world is in a perpetual 
state of evolution. These general properties of the changing 
and growing world are reflected in human consciousness as the 
concept of time. 

By the time we mean the property of processes to haw a 
certain duration, to follow one another in a certain sequence 
and to develop in steps and stages. 

Thus, time cannot be separated from matter and its motion, 
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concept of time. 

7. Time 47 

and is a form of matter. Just as there is no sense in speaking of 
space as an entity, it is meaningless to speak of time as such. 
The concept of passage of time without any relation to processe.\· 
is devoid of meaning. 

Only the investigation of the processes and the relations 
between them provide a physical meaning to the concept of 
time. 

PERIODIC PROCESSES. Among the vast multitude of pro
cesses occurring in nature, those that repeat, attract the most 
attention. These include the cycles of day and night, the 
seasons, the movement of stars in the sky, the heartbeat and 
breathing. Their study and comparison lead to the idea of 
duration, while a comparison of their durations leads to the 
idea of their measurement. 

Analyzing all kinds of processes, we can single out those 
processes that have the most stable durations, and so we can 
choose a process which serves as the standard. The situation is 
identical to the one described in Sec. 5 for length, and hence 
there is no need to repeat the arguments we put forth there. 

A periodic process used as a standard is the one that regulates 
clocks. It is obvious that all clocks must have the same speed in 
various reference frames. 

Let us discuss tl;le physical meaning of this requirement. 
Suppose that a physical process can carry information from 

one point to another. Such a process is called a signal. A signal 
can be in the form of a flash of light or a bullet fired from one 
point at another. There is no n&d to know by what law signals 
propagate, and it is sufficient to know that the transmission, 
propagation and reception of the signals take place under 
invariable, and hence identical, conditions. 

Let us transmit signals from one point to another at regular 
intervals of time measured by means of a clock located at the 
first point. If the signals arrive at the other point after the same 
intervals of time according to a clock located there, it can be 
stated that the clocks at the two points are at the same speed. 

This verification can be made in principle for all possible 
pairs of points. The following condition is satisfied in this case: 
if the speed of a clock at point A is the same as that at point B, 
and if the speed of the clock at point B is the same as that at 
point C, then the speed of the clocks at points A and C will 
also be the same. Of course, we need not confine ourselves to 
just one type of signal. That clocks at different points in the 
reference frame operate at the same speed must be verified 
using every kind of signal at the disposal of the experimenter. 

In principle, these experiments may yield two results, viz. the 
clocks at different points in the reference frame all work at the 
same speed or the clocks at different points work at different 
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speeds. Both these results, which were fictitious in principle, 
have experimentally been shown to be possible. For example, 
let us consider an intra-atomic process as a standard process 
(clocks) since it is independent of pressure, temperature effects, 
etc. We shall try to verify whether the process occurs at the 
same speed using the method described above. Suppose that at 
the beginning of the process, a signal is sent from a point 
above the Earth's surface to a point on the surface, where the 
same process is occurring. We assume that the signal arrives at 
the second point at the instant the process begins there. The 
next signal is sent from the first point at the instant the process 
at the first point ends. The law governing the signal's 
propagation from the first point to the second is of no 
consequence. The only important thing is that the propagation 
should occur in exactly the same way for both signals, in other 
words, that the conditions of transmission, propagation and 
reception of signals must be the same for any sequence of 
signals. Experiment shows that the second signal will arrive at 
the Earth not at the instant the process at the second point 
ends, but somewhat earlier. 

These experiments have indeed been carried out recently 
and will be described in greater detail at a later stage. Here, it 
is important j).lst to note that the situation is possible in 
principle, namely, when . the rates of physical processes are 
different at difft:rent points in the reference frame. This possible 
experimental situation is expressed in the form of a statement 
that time is not the same .Itt each point in the reference frame, 
and that the rate at which time passes is different at different 
points. Strictly speaking, this situation will always prevail in a 
reference frame fixed to the Earth. But the difference between 
the speeds of clocks at different points near the Earth's surface 
is quite insignificant. For example, if the difference between the 
heights of two points above the Earth's surface is about 10 m, 
the duration of a process at the points will differ by about 
10- 15 of the entire duration. Such an absolutely tiny difference 
was first established experimentally in 1960. If such smalf 
disparities are neglected, we can state with a high degree of 
precision that a unified time exists in the reference frame fixed 
to the Earth. 

Henceforth, we shall consider only such reference frames in 
which a unique time can be introduced if not in the absolute 
sense, then at least with a high degree of accuracy. It should be 
observed that the impossibility of introducing a ~nique time 
near the Earth's surface is due in principle to the gravitational 
field. However, this field is not strong, and we can speak of a 
unique time to a very close approximation. 

However, gravitation is not the only factor hindering the 
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introduction of a unique time. Let us suppose, for example, 
that the reference frame is rotating relative to fixed stars or is 
moving with an acceleration relative to them. In this reference 
frame too, we cannot introduce a unique time. Such reference 
frames are called noninertial. A unique time can be introduced 
in these frames only with a· certain error. This will be used in 
Chap. 7. 

Thus, all reference frames can he divided into two classes. In 
one class of frames, time is unique and Euclidean geometry is 
applicable. In the other, there is no unique time and the 
geometry is non-Euclidean. 

How can we in practice determine the class to which a 
particular reference frame belongs? A direct investigation of 
the properties of space and time seems to be the most natural 
approach. But this method is ineffective since in most cases the 
difference between the quantitative characteristics of space and 
time for the two classes of frames is much smaller than the 
error involved in measuring the properties themselves. Hence 
the two types of reference frame in kinematics are practically 
indistinguishable. The difference between the two classes 
becomes significant only in dynamics. The first class contains 
reference frames in which no gravitational forces are present and 
Newton's first law of motion is applicable. Hence these frames 
are termed inerti<JI frames. Reference frames in which gravita
tional forces act and Newton's first law is not obeyed are called 
noninertial frames. ll 

A large number of experiments and observations have 
shown that all inertial frames move without any perceptible 
acceleration and rotation relative to fixed stars. Their motion 
relative to one another is also without any acceleration and 
rotation. Hence in many cases the most convenient way of 
verify!ng whether a frame is inertial is to establish that its 
motion relative to fixed stars is free from acceleration and 
rotation. 

Another reference frame which is convenient in many 
respects and is equivalent to fixed stars has been developed in 
recent decades. This is the reference frame associated with 
relict radiation. According to modern concepts, the Universe 
was formed about 10-15 billion years ago by an explosion of a 
superdense state of matter. This explosion generated matter 
and electromagnetic radiation. For a certain period of time, 
the matter and radiation could be transformed into each other. 
However, this interaction came to a stop after some time, and 
the electromagnetic radiation that remained continued to exist 
independently. As a result of the expansion of the Universe, the 
temperature of the radiation dropped to its present value of 
about 2. 7 K. This radiation is isotropic. The reference frame in 
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which relict radiation is isotropic is assumed to be at rest 
relative to the radiation. In principle, this reference frame is 
equivalent to the one of fixed stars. The movement of any 
other frame relative to this one can be determined from the 
anisotropy of the relict radiation in the frame. 

SYNCHRONIZATION OF CLOCKS. The duration of a physi
cal process at a point is measured by means of clock located at 
the same point. The measurement of a duration of time boils 
down to the determination of the beginning and end of the 
measuring process on the scale of another process which is 
taken as the standard. This is done by reading the clock at the 
beginning and end of the process, although it is not related in 
any way to the location of the clock (process) at the point 
where measurements are made. The results of measurements 
enable us to compare the durations of processes at different 
points under the condition that each process occurs at the 
same point from beginning to end. But what about a physical 
process which begins at one point and ends at another? What 
do we mean by the duration of this process? How to measure 
the duration of this process? Obviously, it cannot be measured 
by a single clock. We can only record the beginning and 
end of the process by means of the clocks located at the different 
points. However, these readings will not be any good since no 
reference point for time has been fixed for the different clocks 
or, in other~ words, the clocks have not been synchronized. 

A simple method to be adopted to synchronize clocks would 
be to adjust the hands dt all the clocks "simultaneously" to the 
same reading. However, this statement has no meaning either 
since it is not clear as to what we mean by "simultaneously". 
Hence we must define the synchronization of clocks in terms of 
the physical procedures with which this synchronization is 
associated rather than in terms of some other known concepts. 
In the first place, we must establish a physical relation between 
the clocks at the points where they are located, i.e. we must 
again turn to signals. However, in this case, not only must the 
signals be propagated under invariable physical conditions, 
but the law governing their propagation assumes significance. 
However, the law governing the propagation of a signal is not 
known and cannot be established without synchronized clocks. 

From a logical and historical point of view, the synchro
nization of clocks and the study of the laws governing the 
propagation of various physical signals were developed simul
taneously, both development processes often completing and 
refining each other. The very large value of the velocity of light 
played an extremely important role in the development. 
As a matter of fact, light was from the very beginning a natural 
signal to be used to synchronize clocks, and its velocity was 
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considered to be almost infinite in comparison with all other 
known velocities. This gave rise to the idea of synchronizing 
clocks using a signal which propagates at an infinite velocity. 
The idea is realized as follows: the hands of the clocks at all 
points are fixed at the same position. Then signals are emitted 
from a certain point in all directions, and each clock is started 
at the instant the signal passes through the point the clock is 
located. This synchronization has a very important property: if 
clock A is synchronized with clock B, and clock B is 
synchronized with clock C, then clock A is synchronized with 
clock C whatever the arrangement of the clocks A, B and C. 

Light signals can be used for signals that propagate at an 
infinite velocity. Naturally, this will be only an approximate 
synchronization with an error appoximately equal to the time 
it takes for the light to propagate between the two most distant 
points in the region under consideration. For example, this 
synchronization is satisfactory for most situations in everyday 
life. It was also satisfactory for quite a long time for scientific 
investigations in laboratories. In particular, it enabled a study 
of mechanical motion at low velocities and led to the concept 
of constant velocity. After this, it became possible to synchro
nize clocks using a signal that propagates at a finite velocity. 
Essentially, this is done using the definition of constant 
velocity, namely, Lbat if we transmit a signal at a constant 
velocity v from a point the clock shows a time t0 , the clock 
must show a time t = t0 + s;,· when the signal arrives at a 
point a distances from its starting point. It can easily be seen 
that this synchronization will agree with the synchronization 
achieved using a signal that propagates at an infinite velocity. 

An increase in the accuracy of measurement of the time 
intervals and an extension of the region over which measure
ments are carried out not only showed that velocity of light is 
finite but that the velocity can be measured. Then light was 
considered a signal carrier that has a finite velocity of 
propagation. So now when clocks are synchronized using a 
light signal, the formula t = t0 + s/c is involved, where cis the 
velocity of light. 

When the synchronization is achieved using a signal that 
propagates at a constant velocity v, we must know the value of 
v and whether it is indeed constant. In particular, this question 
was also posed for the velocity of light. Investigations were 
carried out to find whether the velocity of light depends on the 
direction of propagation, the velocity of the light source, the 
velocity of the receiver or other physical factors. These 
investigations led to the following fundamental result: 

In inertial reference frames, the velocity of light is indepen
dent of the velocities of the source and receiver, and has the 
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same value for all directions in space, namely, equal to the 
universal constant c. 

This universal constant, viz. the velocity of light in vacuum, 
is taken to be c = 2,997,924,58 x 108 m/s (exactly). We shall 
describe later and in detail how this value was arrived at. For 
the present, we shall confine ourselves to the result as it 
concerns the synchronization of clocks. According to the 
synchronization rule. any two clocks located at two points a 
distance s apart are synchronized if the difference between the 
readings of the clocks at the instant a light signal arrives at one 
point and the instant it departs from the other point is sic. The 
phy~ic;tl meaning of this statement is not so much that two 
clocks .:an be synchronized in this way. but that such a 
synchronization is possible and is noncontradictory for all 
pairs of points in the reference frame. 

In practice, synchronization is done as follows. At some 
point, taken as the starting point, the clock is set at 0. A light 
signal is emitted from this point in the form of a spherical 
wave. When the wave front arrives at a point a distance r from 
the starting point, the clock located at this point must show a 
time rfc. 

Thus, when we state that an event occurred at a point at an 
instant t, we mean that the hands of the clock located at this 
point show.a time t at the instant. Of course, it is not necessary 
to have a clock at each point. This is simply a brief version of 
the statement that if a. clock synchronized according to the 
above process were to Be located at that point, it would show a 
time t. 

We now possess all the prerequisites for analyzing the 
motion in reference frames in which the positions of points and 
the times of occurrences of events can be described by 
coordinates and time whose exact meaning was explained in 
preceding sections. 

Sec. 8. DISPLACEMENT, VELOCITY AND ACCELERATION 
OF A POINT 

Basic physical quantities arc METHODS OF DESCRIBING MOTION. At this stage, we are 
defined for the kinematics or a neither interested in the agency responsible for the motion of a 
point. point mass nor in finding out why a particle moves in a certain 

way and not otherwise nor in the causes of its motion. Our 
task is just to describe its motion. To describe the motion of a 
point mass means to indicate its position at any instant of 
time. A moving particle continuously passes through a 
sequence of points in the reference frame, forming a trajectory. 

Since the position of points in a reference frame can be 



8. Displacement, Velocity, Acceleration of a Point 53 

characterized in different ways, its motion can be described 
accordingly. 

COORDINATE FORM OF MOTION. Let us choose a coor
dinate system in which the position of a point is characterized 
by three coordinates. Let us denote these coordinates by x 1, x 2 

and x3 in the general case. As we mentioned in Se/::. 5, this 
means that x 1 = x, x 2 = y, x3 = z (see Fig. 3) fo'r a Cartesian 
coordinate system; x1 = p, x 2 = cp, x3 = z (see Fig. 4) for a 
cylindrical coordinate system; xl = r, x2 = cp, x3 = e (see 
Fig. 5) for a spherical coordinate system. When a point moves, 
these coordinates vary with time or, in other words, are 
functions of time. To describe the motion of a point means to 
give these functions: 

x 1 = x 1(t), x 2 = x 2 (t), x 3 = x3(t). (8.1) 

It should he recalled that a functioll describes a rule by 
which each value of ·variable is assigned a numerical value of 
another 4uantity. The rule is tentatively described by a certain 
letter, for example, y = f(x). Here, f stands for the function by 
which each value of the variable xis assigned a definite value 
of the quantity y. However, in order to avoid the introduction 
of too many letters, the same functional dependence is 
frequently written in the form y = y(x). The symbol y on the 
right-hand side of this equality is analogous to f, while the 
symbol y on the left-hand side indicates the numerical value of 
the quantity y corresponding to this situation. This method of 
describing functional dependences is more economical and is 
widely used. The same notation was employed to write 
formulas (8.1 ). 

Let us consider some examples in which motion is described 
by using this method. Suppose that a point begins to move at 
an instant t = 0 away from the initial position along a straight 
line in such a way that its distance s from the initial point 
along its trajectory is proportional to time: s =At, A being the 
proportionality constant. The formulas describing this motion 
depend on the coordinate system that is chosen and on the 
way the system is oriented. Let us consider the Cartesian 
coordinate system whose origin· coincides with the initial · 
position of the point and one of the axes, say, the y-axis, is 
directed along the trajectory. In this case, (8.1) becomes · 

x 1 = x = 0, x 2 = y = At, x 3 = z = 0. (8.2a) 

If, however, the coordinate axes are oriented such that the 
trajectory of the particle lies in the XY-plane and coincides 
with the bisector of the angle between positive X- and 
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Y-directions, (8.1) can be written as: 

At 
X 1 =X= J2' 

At 
Xz=y= J2' 
x 3 = z = 0. 

(8.2b) 

For a spherical coordinate system oriented as in Fig. 5 
relative to the Cartesian axes, which, in turn, are oriented 
relative to the trajectory under consideration in the same way 
as indicated by (8.2b), (8.1) assumes the following form: 

x 1 =r=At, 

1t 

Xz = q> = 4' 

1t 
x3 = e =-

2 

(8.2c) 

If the origin of the coordinate system is not chosen to 
coincide with the initial position of the point, all formulas 
become more complicated, especially in the spherical coordi
nate system. We leave it to the reader to verify this. 

Suppose th!t a point moves uniformly in a circle of radius R. 
We assume its position at an instant of time t = 0 to be the 
reference point. The distallce s traversed by the point along its 
circular trajectory is proportional to the time, i.e. s = At, 
where A is the proportionality constant. We orient the 
Cartesian coordinate system so that the circle lies in the 
XY-plane, the origin of the coordinate system coincides with 
the centre of the circle, and the Z-axis is directed so that the 
motion appears to be anticlockwise to an observer watching it 
from the positive Z-direction. Moreover, we assume that the 
positive X -direction passes through the reference point from 
which the motion of the particle started. In this case, (8.1) 
assumes the following form for the motion in a circle: 

x 1 =X= R cos ( ;). 

x 2 = y = R sin ( ;). (8.3a) 

x3 = z = 0. 

In a spherical coordinate system, (8.1) is transformed as 
follows to describe the same motion: 
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x 1 = r = R, 

At 
x2 = q> = Ji• 

. 1t 
x 3 = 9 = -. 

2 
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(8.3b) 

I 

For a cylindrical coordinate system oriented as in Fig. 4 
relative to the Cartesian axes, which in turn are oriented 
relative to the trajectory under consideration in the same way 
as indicated by (8.3a), (8.1) assumes the following form: 

Xt = p = R, 

At 
x2 = q> = Ji• 
x 3 = z = 0. 

(8.3c) 

All these formulas become much more complicated if the 
origin of coordinates does not coincide with the centre of the 
circle or if the coordinate axes are oriented in some other 
manner. 

VECTOR NOTATION OF MOTION. The position of a point 
can be described using a radius vector r relative to a point 
taken as the origin. It was mentioned in Sec. 5 that this method 
of describing the position of a point does not presuppose the 
introduction of any coordinate system, but only assumes the 
presence of a reference body. The radius vector r is considered 
to be a directly specified quantity. As a point moves, its radius 
vector continuously varies, its tip following the trajectory. The 
motion is described in a coordinate-free form as follows: 

r = r(t). (8.4) 

Formulas of this type describe the vector function of a scalar 
argument. The vector function of a scalar argument is a rule 
according to which each numerical value of the argument (t in 
the present case) has a corresponding vector (r in the present 
case). In (8.4), this rule is denoted by r on the right-hand side, 
while the vector obtained from the rule is denoted by r on the 
left-hand side. As in (8.1), no confusion is caused by such a 
utilization of the same symbol in two different senses. 

Formulas (8.2a)-(8.2c), which have different f~rms, describe 
the same motion. In order to present this motion in the form 
(8.4), let us use t to denote a dimensionless unit vector in the 
direction of motion and consider that the radius vector starts 
from the initial point of the trajectory. The motion is then 
described by a formula which is independent of the coordinate 
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system: 

r =rAt. (8.5) 

It should be emphasized once again that (8.4) is not an 
abbreviation for three scalar equalities of the type (8.1 ); it is 
rather a starting form which, if necessary, can be split into 
three scalar equalities, but exists irrespective of whether such a 
notation is possible or not. . 

DESCRIPTION OF MOTION WITH THE HELP OF TRA
JECTORY PARAMETERS. If a point's trajectory is given, the 
problem reduces to the specification of the equation of motion 
along the trajectory. An arbitrary point along the trajectory is 
then taken as the starting point, and any other point can be 
characterized by the distances from the initial point along the 
trajectory. In this case, the motion is described by the 
following formula: 

s = s(t). (8.6) 

For example, the equation of motion in a circle, described by 
(8.3a), has the form 

s =At. (8.7) 

The known parameters in this case are the circle and the 
starting point of the motion. The positive values of s corre
spond to thte direction of motion of the point in the circle. 

DISPLACEMENT VECTOR. The displacement vector 
Ar = r(t + At) - r(t) is JlUmerically equal to the distance 
between the terminal ana initial points and is directed from the 
initial point to the terminal point (Fig. 13). This vector joins 
the points on the trajectory where a point mass is situated at 
the instants t and t + At. 

VELOCITY. The average velocity vector v.v for motion 
between two point~ is defined as the vector coinciding in 
direction with the displacement and equal in magnitude to the 
displacement vector divided by the time taken for the dis
placement (see Fig. 13): 

Ar IArl Ar 
v (t t + At) = - - = -. (8.8) 

av ' IL\rl At At 

The parentheses after vav indicate the interval of time over 
which the velocity is averaged. As At tends to zero, the average 
velocity tends to its limiting value which is termed the 
instantaneous velocity v: 

Ar dr 
v(t) = lim -- = - = r. (8.9) 

At-0 At dt 



Fig. 13. Displacement, velocity 
and acceleration. 
In a motion between two points of 
the trajectory, the average velocity 
coincides in direction with the dis
placement vector. Generally, it is not 
directed tangentially to the trajectory 
either at the initial or at the terminal 
point. Point 0 is the origin. 
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In the Cartesian coordinate system, we have 

r(t) = i_..x(t) + iyy(t) + i,.z(t), 

dr . dx . dy . dz 
v =- = l - + l - + l -. 

dt "' dt y dt z dt 
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(8.10) 

Consequently, the projections of the velocity are given by 
the formulas 

dx 
v =--

X df' 

Jr 
z:-" = cit' 

d.:: 
l' =-·= dt. (8.11) 

If the motion is described in terms of trajectory parameters, 
the trajectory and the time dependence of the path are 
specified. The path length is measured from the point on the 
trajectory taken as the starting point. Each point on the 
trajectory is characterized by its own value of s. Hence its 
radius vector is a function of s, and the trajectory may be 
defined by the equation 

r = r(s). (8.12) 

Consequently, r(t) in (8.9) can be considered a compound 
function r[s(t)], and its derivatives can be found by differ
entiating a compound function: 

dr dr ds 
v =-=- -. (8.13) 

dt ds dt 

The quantity As is the distance between two points along the 
trajectory, while I Arl is the distance between' them along a 
straight line. It is obvious that as the two points approach each 
other, the difference between these two quantities decreases. In 
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view of this, we can write 

dr . ~r . ~r I ~r I 
hm - hm ----= r, 

ds A• ~ o ~s As~ o I ~r I ~s 

where 1 is a unit vector tangential to the trajectory. Moreover, 
by definition, ds/dt = v is the projection of the velocity on the 
direction of the tangent. Hence (8.13) assumes the form 

v = rv. (8.14) 

It follows hence that the velocity is directed along the tangent 
to the trajectory. 

In our discussion of velocity, the statement that a point mass can 
occupy two infinitesimally close points in space at two infinitesimally 
close instants of time was assumed to be objective. The validity of this 
statement is obvious for a point mass in Newtonian mechanics and is 
simply a corollary of the definition of a point mass which must exist 
continuously in time and space in an invariant form. When macro
scopic objects are modelled as point masses, it is not difficult to describe 
the geometrical and physical meaning of its coordinates at each instant 
of time. However, the situation is quite different if the motion of 
atomic and subatomic particles is to be simulated. At first glance, it 
would seem natural to model them as point masses in view of their 
small size. However, this is not correct. The absolute geometrical size of 
an object is not important when modelling it as a point mass; what is 
important is whether its physical properties can be modelled. An 
experimental investigation of the laws of motion of atomic and 
subatomic particles shows that their motion cannot be described on 
the basis of the statement thjt each particle has definite coordinates at 
each instant of time. Hence the concept of instantaneous velocity is 
meaningless for these particles, and hence the concept of a particle's 
motion along a trajectory loses its meaning as do the other concepts 
used to describe the motion of a point mass in Newtonian mechanics. 

The laws of motion of atomic and subatomic particles are studied in 
quantum mechanics, where these particles are modelled using quan
tum-mechanical laws rather than the classical ones. 

ACCELERATION. Acceleration is the rate of change of 
velocity. Suppose that the velocity at instants t and t + ~t is 
respectively equal to v(t) and v(t + M). This means that the 
velocity has changed by ~v = v(t + M) - v(t) over a time 
interval ~t. The average acceleration a.v during this interval is 
(see Fig. 13) 

~v 
a.v(t, t + ~t) = M . (8.15) 

We shall use the same initial point to represent vector v(t) at 
different instants of time. The tip of vector v (t) describes a 
curve called the hodograph of motion (Fig. 14). Indefinitely 
decreasing the time interval ~t over which the average velocity 
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Fig. 14. Hodograph of motion. 
lt is a curve described by the tip of 
the velocity vector drawn from the 
fixed origin (point 0). 

Velocity is always directed 
tangentially to the trajectory. 
Acceleration may form any 
angle with velocity, i.e. may be 
inclined at any angle to the 
trajectory. 
The normal component of 
acceleration does not change 
the magnitude of velocity, but 
only changes its direction. 
A change in the magnitude of 
velocity is due only to the 
tangential component of ac
celeration. 
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is measured, we obtain acceleration in the limit, i.e. 

L\v dv 
a= lim ·- (8.16) 

Ll.l- 0 L\t dt 

Since v = dr/dt and r = ixx + iyy + i.z, the accele/ation can 
be represented in the form a = d 2rjdt2, or 

. d 2x . d 2y . d 2z 
a= lx dt2 + ly dt2 + '· dt2. (8.17) 

Consequently, the projections of acceleration in the Cartesian 
coordinate system are given by 

(8.18) 

Next, we must consider the orientation of acceleration 
relative to velocity and the trajectory. It is obvious that 
acceleration is always tangential to the hodograph of motion 
and may be inclined at any angle to velocity. This means that 
acceleration may be directed at any angle to the tangenfto the 
trajectory. In order to find the factors on which the direction of 
acceleration depends, we compute the acceleration on the basis 
of (8.14): 

dv d dt dv 
a=-=-(t )=-v+t-. 

dt dt dt dt 
(8.19) 

The unit tangential vector t is completely defined by a point 
on the trajectory, while the point on the trajectory is uniquely 
characterized by its distance s from the initial point. Hence 
vector t is a function of s, i.e. t = t (s), while s is a function of 
time. Hence we can write dt/dt =(dt/ds)(ds/dt). Vector t is 
invariant in magnitude. Consequently, dt/ds is perpendicular 
to t. This can be verified by simply differentiating tlie equation 
t 2 = l, which indicates the invariance of the magnitude of 
vector t: [d(t 2)/ds] = 2(t dt/ds). But if the scalar product of 
two vectors is zero, and neither vector is itself zero, the vectors 
must be perpendicular. Thus t and dt/ds are indeed perpendic
ular. Vector t is directed along the tangent to the trajectory. 
Hence vector dt/ds is perpendicular to the tangent or, in other 
words, dt/ds is directed along the normal which is called the 
principal normal. The unit vector in the direction of the 
principal normal is denoted by n. The magnitude of vector 
dt/ds is 1/R, where R is the radius of curvature of the 
trajectory. The planes in which vectors t and n lie are called 
osculating planes. 
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Fig. 15. Decomposition of the 
total acceleration vector a into 
the tangential a, and normal a. 
accelerations. 
Point 0 is the centre of curvature of 
the trajectory, r is the unit tangen
tial vector, and n is the unit vector 
in the direction of the principal 
normal. 

? 
What methods do you know to 
describe a motion? 
What are the advantages of the 
vector notation and the vector 
form to describe a motion? 
What is the instantaneous 
velocity and how is it oriented 
relative to the trajectory? 
What are the directions of the 
normal and tangential accelera
tions relative to the trajectory 
and how is their absolute 
magnitude determined? 
Why do we state that the 
angular velocity is a vector? 
Is a [mite angular displacement 
a vector? 
What is the angular acceleration 
vector? What is its direction if 
the direction of the angular 
velocity does not change? 
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The point a distance R from the trajectory in the direction of 
the principal normal n is called the centre of curvature of the 
trajectory. Thus, we can write 
dr n 

ds R 
(8.20) 

Since dsfdt ~- v is the magnitude of velocity, we can rewrite 
(8.19) in its f~al form using (8.20), i.e. 

r1 dr 
a=n--+-r-. 

R dt 

li' I (8.21) 

Total acceleration is the resultant of two perpendicular 
vectors, viz. the acceleration r(dv/dt) =a, which is directed 
along the trajectory and is called the tangential acceleration, 
and the acceleration n v2 I R = a. which is directed perpendicu
lar to the trajectory along the principal normal, i.e. towards 
the centre of curvature of the trajectory (Fig. 15), and is called 
the normal acceleration. Squaring both sides of (8.21) and 
considering that n · -r = 0, we obtain the magnitude of the total 
acceleration: 

a=P =J(~Y +(::r (8.22) 

When a point moves in a circle, the normal acceleration is 
called centripetal since the centres of curvature at all the points 
are the same, namely, the centre of the circle. 

Example !U. A cat is chasing a mouse (Fig. 16) which is 
running along a straight line at a constant velocity u = const. 



Fig. 16. Cat catches mouse. 
As long as the cat catches the mouse, 
the velocity vector v of the cat is 
directed to the mouse. 
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I 

The velocity of the cat has a constant value v >"luI and is 
directed towards the mouse. At the initial moment of time, the 
velocities of the cat and the mouse are perpendicular, and the 
distance between them is equal to /. Find how long it will take 
the cat to catch the mouse. 

Let r and 9 denote the distance between the cat and the 
mouse and the angle between their velocities (measured from 
the direction of the eat's velocity). Using v ret = - v + u to 
denote the relative velocity of the two animals in the polar 
coordinate system centred on the cat, we obtain 
f = - v + ucos 9, re = - usin 9. (8.23) 

Hence 

f(ucos 9 + ll)- reusin9 = u2 - v2 

or 
d 
d/r(ucos9 + v)] = u2 - v2 • 

(8.24) 

(8.25) 

Integrating both sides of this equation between 0 and t and 
considering that r(O) = I and 9(0) = 1t/2, we obtain 
r(ucos 9 + v)- vi= (u2 - v2)t. (8.26) 

The cat catches the mouse when r = 0. Hence the time it takes 
to do so is vlf(v2 - u2). · 

Example 1:!.2. A stone is thrown at a velocity u from the 
origin of coordinates at an angle a to the horizontal X-axis. 
Neglecting the resistance of the air, find the angle a 0 at which 
the stone hits the point (x0 , y 0 ) (Fig. 17). 

The radius vector of the stone at an instant t is 
g 12 

r =Ut +-, 
2 

(8.27) 

where vectorg is the acceleration due to gravity and is always 
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Fig. 17. Safety parabola. 
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y 

X 

directed downwards. If the ¥-direction IS upwards, we can 
rewrite (8.27) in coordinate form as 

x = utcos a, 
. g/2 

y = ut sm a - T. (8.28) 

Eliminating t, we can write the equation for the trajectory as 
gx2 

y = x tan a - 2u2 cos2 a. (8.29) 

For y = Yo and x = x 0 , this equation gives 

{ [ 2g( gx2)]1'2} u2 
tan Uo = 1 ± 1 - u2 Yo + 2u~ YXo. (8.30) 

Real values of d.0 corresponding to the possible trajectories can 
only be obtained if the rad,icand is positive, i.e. if 

2g( gx~) 
1 ~ u2 Yo + 2u2 , 

or 

u2( g2x2) Yo~- l-~ . 
2g u 

(8.31) 

Thus, a stone thrown at the initial velocity u can only reach 
points lying below the parabola 

u2 ( g2x2) 
y=- l--

2g u4 ' 
(8.32) 

which is called the safety parabola. The points lying beyond 
the region enclosed by the parabola cannot be reached by the 
stone. 

It is sufficient to confine ourselves to the region x 0 ~ 0, 
y0 ~ 0. It follows from (8.32) that u2/(gx0) ~ 1. Together with 
(8.30), this means that at least one value of a0 is equal to or 
greater than rt/4. A point lying on the safety parabola can only 
be reached for one value of a0 ~ rt/4, while the points lying 
below the parabola are attainable for two values, say, a01 and 
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a02 (see Fig. 17). The distances at which the corresponding 
trajectories intersect the horizontal plane are respectively 
R 1 = u2 sin 2a01/g and R2 = u2 sin 2a02/g. 

It is obvious that the points of intersection of the parabolas 
are reached at different instants of time. 

! 

Sec 9. KINEMATICS OF A RIGID BODY 
The basic physical quantities in 
the kinematics of a rigid body 
are defined. 

DEGREES OF FREEDOM. In order to describe the motion of a 
point mass, we must specify the three functions characterizing 
the time dependence of its coordinates. In order to describe a 
system of N point masses moving independently, we must 
specify 3N functions characterizing the time depeqdences of 
their coordinates. The number of independent functions (or 
parameters, as they are often called) describing the motion of a 
system of point masses is called the degree of freedom of the 
system. A point mass has three degrees of freedom, while a 
system of two independent point masses has six degrees of 
freedom. 

If, however, two point masses are rigidly connected through 
a rod of constant length /, the six coordinates of the two points 
are no longer independent since they satisfy the equation 
P = (x 2 - x1 ) 2 + (y2 - y 1 ) 2 + (z2 - zY in which (x1 , y 1 , zd 
and (x2 , y 2 , z2 ) are the Cartesian coordinates of the points. 
From this equation, we can express one of the six coordinates 
in terms of the length I and the remaining five coordinates. 
Thus, we are left with only five independent parameters to 
describe the motion of two rigidly connected point masses. 
Hence this system has five degrees of freedom. 

DEGREES OF FREEDOM OF A RIGID BODY. The position 
of a rigid body can be fixed in space by specifying any three of 
its points so long as they do not lie on the same straight line. 
These three points are defined by nine coordinates which are 
related by three equations that reflect the invariance of the 
distances between different points of the rigid body. Hence the 
position of a rigid body is characterized by six independent 
parameters or, in other words, the rigid body has six degrees of 
freedom. These six independent parameters can be specified in 
different ways depending on the circumstances. 

DECOMPOSITION OF THE MOTION OF A RIGID BODY 
INTO COMPONENTS. It is convenient to use three indepen
dent parameters to describe the motion of any point of a rigid 
body. This point is taken as the origin of the rectangular 
Cartesian coordinate system whose axes move parallel to
themselves, i.e. without rotating, as the origin moves. The 
position of the rigid body relative to the axes is characterized 
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Fig. 18. The Euler angles char
acterize the mutual arrangement 
of two rectangular Cartesian 
coordinate systems. 
The 0' X' Y' -plane intersects the 
OXY-plane along the line OTJ. 

The position of a system with 
six degrees of freedom is 
completely defined by means of 
six numbers called coordinates. 
These numbers are arbitrary, 
only their independence must 
be verified. One possible choice 
of coordinates is the Euler 
angles that have a number of 
advantages. 
The angular velocity is a vector 
since it is determined in terms 
of a fundamental infinitesimal 
angular displacement which is a 
vector. The average angular 
velocity in the case of a 
rotation by a finite angle is not 
a vector, although it may 
possess both a magnitude and a 
direction. 
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by the remaining three independent parameters. The kinemat
ics of a point was considered in Sec. 8. Hence in order to 
describe the kinematics of a rigid body, we simply have to 
describe the motion of the rigid body fixed at the origin of the 
coordinate a~es. This description is carried out in terms of the 
Euler angles:. 

EULER ANGLES. We associate a coordinate system 
(X', Y', Z') with a rigid body, the system being characterized by 
the unit vectors i~, i~ lnd i~. The origin of this coordinate 
system, as well as the origin of the coordinate system (X, Y. Z) 
in which the body is moving, coincide with the point at which 
the rigid body is fastened (Fig. 18). The position of the rigid 
body is completely defined by the position of the X'-, Y'- and 
Z' -axes relative to the X-, Y- and Z-axes. 

The O'X'Y'- and OXY-planes intersect along the line OTJ, 
which is called the nodal line. The positive direction along this 
line is defined by the vector t = i. x i~. The Euler angles are 
defined as the angles 

cp = L 11ox' (O ~ cp ~ 21t), 

'V = LXOTJ (0 ~ 'V ~ 21t), (9.1) 

9 = LZOZ' (0 ~ 9 ~ 1t). 

The angles cp, 'V and 9 are respectively called the angles of 
intrinsic rotation, precession and nutation (see Sec. 26). 

It can be seen from the definition of these angles that they 
are independent variables and characterize the position of a 
rigid body fastened at one point. Any motion of a body 
fastened at a point can be described by specifying three 
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Fig. 19. Motion of a point in a 
circle. 
The position of a point in a circle is 
completely characterized by the path 
length s traversed by it from point A 
taken as the reference point. The 
centre of the circle is the centre of 
curvature of the trajectory. 

Any motion of a rigid body can 
be represented as a combina
tion of the motion of a point 
and the rotation of the body at 
an instantaneous velocity pass
ing through the point. 
The axis of rotation whose 
points have a zero translational 
velocity is called the instanta
neous axis of rotation. The 
velocity of all the points of a 
body at a given instant of time 
is represented as the velocity of 
rotational motion about the 
instantaneous axis. 
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functions: 

cp = cp(t), v = v(t), e = O(t). (9.2) 

TRANSLATIONAL MOTION. The translational motion of a 
rigid body occurs when all the points of the bo.dy move along 
similar trajectories. This means that all the poin,ts o/ the body 
have the same velocity at each instant of time. Any straight line 
joining two points on the body moves parallel to itself. In the 
case of translational motion, the Euler angles are constant. 
Hence this motion is described by specifying the motion of any 
point of the body. In other words, a body moving by 
translation has three degrees of freedom. In the kinematic 
sense, this motion is identical to the motion of a point mass. 

PLANE MOTION. In plane motion, the trajectories of all 
points lie in parallel planes. In this case, the motion o] a body is 
described by the motion of one of its sections in any of the 
parallel planes, while the position of the section is defined by that 
of any two of its points. The position of two points in a plane is 
described by four parameters (coordinates). These parameters 
are connected by one relation because the distance between the 
two points is constant. This leaves only three independent 
parameters, and hence the plane motion is characterized by 
three degrees of freedom. 

ROTATIONAL MOTION. In the case of rotational motion, at 
least two points of the body remain fixed all the time. The 
straight line passing through these two points is called the axis 
of rotation. All the points of a rigid body lying on the axis of 
rotation are fixed, while all the remaining points move in 
circles in planes perpendicular to the axis. The centres of these 
circles lie on the axis of rotation. 

Thus, the rotational motion of a rigid body is a plane motion. 
ANGULAR VELOCITY VECTOR. Let us consider the motion 

of any point of a rigid body in a circle (Fig. 19) whose radius is 
R. Taking point A as the reference point for measuring 
distance along the trajectory, we can write s =·Rep. The 
velocity is given by v = ds/dt = R dcp/dt. The rate of variation 
of the angle cp, i.e. dcp/dt = ro, is called the angular velocity. It 
has the same value for all the points of a rigid body and is 
called the angular velocity of rotation of the body. If this 
velocity is constant, it is called the cyclic frequency ro of 
rotation of the rigid body about an axis. The cyclic frequency 
is related to the period Tof rotation of the rigid body about an 
axis thus: ro = 2x/T. The rotation of a rigid body is described 
by its angular velocity. All these properties of rotation of a 
rigid body are combined by the concept of the angular velocity 
vector c.o of rotation. It is equal in magnitude to the scalar 
quantity dcpfdt and is directed along the axis of rotation in 
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0 

Fig. 20. Angular velocity of 
a rigid body. 
The velocity is parallel to the axis of 
rotation and is related with the 
direction of rotation through the 
right-hand screw rule. 

? 
!#tat determines the number of 
degrees of freedom of a me
chanical system? 
How many degrees of freedom 
has u rigid body in different 
cases of motion? 
Give the geometrical definition 
of the Euler angles. 
Prove that it is possible to 
present the velocity of plane 
motion of a rigid body as the 
sum of its rotational and trans
lational velocities. 
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such a way that the linear velocity v of the points of the rigid 
body (Fig. 20) is expressed by the formula 

v = w x r. (9.3) 

The origin of the radius vectors r of the points of the rigid 
body is assumed to lie on the axis of rotation. We have to 
prove that the quantity w defined in this way is indeed a 
vector. 

FUNDAMENTAL ANGULAR DISPLACEMENT VECTOR. 
The points of a rotating rigid body are displaced in time dt 
about the axis of rotation by an angle dcp = w dt (see Fig. 19). 

The fundamental angular displacement dcp is characterized by 
both its magnitude and the plane in which it takes place. In order 
to fix the plane, we must treat dcp as a vector perpendicular to 
the plane. The direction of the vector is determined from the 
right-hand screw rule, viz. if the screw is turned in the 
cp-direction, the longitudinal motion of the screw will coincide 
with the vector dcp. However, in order to verify that the 
quantity dcp defined in this way is indeed a vector, we must 
prove that it possesses vector properties. 

Let dcp 1 and dcp 2 be two angular displacements (Fig. 21). We 
shall prove that these two quantities are added like vectors. If 
we describe a sphere of unit radius about point 0, these angles 
will have two infinitesimal arcs dJ 1 and di 2 corresponding to 
them on the. surface of the sphere. The infinitesimal arc dJ 3 

constitutes the third side of a triangle. We can treat this 
infinitesimal triangle on the surface of the sphere as a plane. 
The vectors dcp 1, dcp 2 an-:l dcp 3 are perpendicular to the sides of 
the triangle and lie in its plane. Obviously, the following vector 
equality is satisfied in this case: 

dcp3 = dcp1 + dcp2 (9.4) 
Q.E.D. These vectors can be decomposed into components 
along the coordinate axes. In view of (9.4), these components 
behave like vector components, and hence the fundamental 
angular displacement is indeed a vector. 

It should be noted that only fundamental infinitesimal 
angular displacements possess the properties of vectors. Dis
placements by finite angles are not vectors since if the displace
ments are represented by segments of straight lines directed 
perpendicular to the plane in which displacement occurs, the 
segments cannot be added using the parallelogram law (9.4). 

An infinitesimal angular displacement dcp of a point mass 
takes place in an infinitesimal time dt. Hence the angular 
velocity 

dcp 
(1) = ·-

dt 
(9.5) 



Fig. 21. Proving the vector na
ture of fundamental angular 
displacements. 

Fig. 22. As a body moves away 
from the axis of rotation, the 
total acceleration remains con
stant in direction, but increases 
in magnitude. 
The axis or rotation (point 0) is 
perpendicular to the plane or the 
figure. 

• 
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is a vector in view of the fact that d<p is a vector, while dt is a 
scalar. The directions of wand d<p coincide and are determined 
by the right-hand screw rule. 

Consequently, the linear velocity of the points of a rotating 
rigid body is indeed expressed by (9.3). 

ANGULAR ACCELERATION. The time derivative dw/dt of 
the angular velocity is called the angular acceleration. It is 
used to describe the acceleration of the points of a rigid body. 
The magnitudes of the linear velocity, normal and tangential 
accelerations of the points of a rigid body are respectively 
equal to v = R d<p/dt = Rw, a. = v2 I R = ro2 R and - a, = 
dv/dt = Rdwfdt. Hence the total acceleration of the points 
is expressed by the formula 

a = J a~ + a: = R J ro4 + c.i>2 , 

where c.i> = dro/dt is the angular acceleration. 
It can be seen from these formulas that the vectors of the 

total acceleration of the points of a rigid body lying on the 
same radius that is perpendicular to the axis of rotation are 
::--arallel and increase in proportion to the distance from the 
axis of rotation (Fig. 22). As can be seen from Fig. 22, the angle 
a characterizing the direction of acceleration relative to the 
radius is defined by the relation tan a = a,/a. = c.i>/ro2 and is 
thus independent of R. 

INSTANTANEOUS AXIS OF ROTATION. In plane motion, 
the position of a rigid body is completely defined by the 
position of a segment of a line rigidly fastened to the points 
on one of the sections. Let us study the displacement of the 
seg.-nent over a certain interval of time from position A0 B0 to 
position AB (Fig. 23). This displacement can be decomposed 
into two parts: (I) the translation from A0 B0 to A' B', during 
which the straight line moves parallel to itself, and (2) the 
rotation of the body through an angle a about an axis passing 
through point 0' and perpendicular to the plane in which the 
body moves. The decomposition of the displacement is not 
unique: for example, we could translate the straight line from 



Fig. 23. Decomposition of dis
placement into translation and 
rotation. 
The decomposition is ambiguous 
and can be made by an infinite 
number of ways, but the angle of 
rotation remains the same in all 

·cases. 

li-1lat is the instantaneous axis of 
rotation? Give examples of the 
instantaneous axis of rotation in 
the simplest cases of motion. 
Describe a method for finding 
the instantaneous axis of rota
tion. 
Give the proof of Euler's theo
rem. 
What are the velocities constitut
ing the velocity of the points of a 
rigid body in the case of an 
arbitrary motion? 
~f a body has a translational 
motion, where is the instanta
neous axis of rotation situated? 

2. Kinematics of a Point and Rigid Body 

A 0 B0 to A" B" and then rotate the body through an angle a 
about an axis passing through 0". 

Thus, the decomposition of a displacement into translation and 
rotation is ambiguous, but the angle of rotation a is always the 
same. Over a time interval dt, all the points of the body are 
translated by dl and simultaneously rotated by da about 
0' through an angle a. Hence the velocity of all the points 
of the body is composed of two parts: (I) the translational part 
v0 = dljdt, and (2) the rotational part v' = ro x r, where 
ro = da/dt, and the origin of the radius vector r is point 0' 
through which the axis of rotation of the body passes. Since 
this point is one of the points of the rigid body, it has a 
translational velocity v0 . Consequently, 

v = v0 + ro x r. (9.6) 

Since the decomposition of a displacement into translation 
and rotation is not unique, the decomposition of a velocity 
into translational and rotational velocities is also not unique. 
This is illustrated in Fig. 24 in the form of a symbolic equality: 
the motion on the left-hand side is composed of a translation 
at a velocity u and a rotation about the 0-axis, while the 
motion on the right-hand side is composed of a translation at 
a velocity u' less than u and a rotation about the 0' -axis. 

Varying tbe translational velocity of a body, we are at the 
same time varying the position of the axis of its rotation. It can 
be stated that any axis P.fj:tpendicular to the plane of motion is 
an axis of rotation. ' 

Moreover, the translational velocity of a body will depend 
on the axis chosen as the axis of rotation. The axis of rotation 
for which the translational velocity is zero is called the 
instantaneous axis of rotation. 

The velocity of all the points of a rigid body at any instant of 
time can be represented as the velocity of rotational motion 
about the instantaneous axis. 

The velocities of all the points of a rigid body that lie on the 
instantaneous axis are zero. If the body is finite in size, the 
instantaneous axis may lie outside the body, but its definition 
and properties remain the same. 

Figure 25 shows the construction for finding an axis such 
that the plane motion of a rigid body around it can be 
represented as a pure rotation. Point 0 through which this axis 
passes is the point of intersection of perpendiculars to AA' 
and BB'. This is clear from the fact that the triangle ABO and 
A'B'O are congruent since a side OBis equal to OB' and OA is 
equal to OA' because they are drawn from a point on the right 
bisector to the ends of the segment, while a side AB is equal to 



Fig. 24. Decomposition of the 
velocity of points of a rigid 
body into translational and ro
tational velocities. 
The decomposition is ambiguous. In 
the two cases connected through the 
equality sign, the total velocity of 
any point along AB, which is equal 
to the sum of the translational and 
rotational velocities, is the same. 
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Fig. 25. Construction for finding 
an axis such that the dis
placement of a rigid body in a 
plane can be represented as a 
pure rotation about this axis. 
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A' B' because they represent different postttons of the same 
segment. For an infinitesimal displacement, this construction 
gives point 0 through which the instantaneous axis of rotation 
passes. mth the passage of time, the position of the instanta
neous axis varies relative to the body and the system of 
coordinates in which the motion of the body is considered. 

Let us illustrate this by considering the example of a wheel 
rolling along a straight line. Its instantaneous axis of rotation 
is a straight line parallel to the axle of the wheel and passing 
through the point where the wheel touches the ground 
(Fig. 26). This axis keeps on changing its position relative to 
the ground and is displaced in time t to a point whose distance 
from the starting point is vt, v being the velocity of the wheel's 
axle. At different instants of time, the instantaneous axis passes 
through different points of the wheel along the rim. The 
instantaneous axis is an imaginary axis which does not have a 
material analogue, and hence there is no physical meaning to the 
term "the velocity of the instantaneous axis". 

A physical meaning lies instead in the fact that the points of 
the wheel on the instantaneous axis are at re~t at each 
particular instant of time, and the motion of the wheel boils 
down to a rotation about the axis. 

All this refers to the plane motion of a body. Let us now 
consider a body which is fastened at one point, and find out if 
the instantaneous motion of the body can be described as the 
rotation about an axis passing through the point at which the 
body is fastened. This question is answered by Euler's theorem 
which states: 

A rigid body having only one fixed point can be transferred 
from one position to another by a single rotation through a 
certain angle about a fixed axis passing through the fixed 
point. 

Euler's theorem is valid for both infinitesimal and finite 
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Fig. 26. The instantaneous axis 
of rotation of a wheel rolling 
over the ground is the straight 
line parallel to the axle of the 
wheel and passing through the 
point of contact between the 
wheel and the ground. 
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displacements. In order to prove this, we circumscribe a sphere 
of unit radius about the fixed point in a rigid body and draw 
an arc AB on the sphere. The position of the arc specifies the 
position of the body. As the body moves, the position of the 
arc changes in space so that it always remains on the surface of 
the sphere oC unit radius. Euler's theorem then reduces to a 
statement that the arc AB can be transferred to any other 
position by rotating the sphere about an axis passing through 
its centre. Let us consider .two positions AB and A' B' of the arc 
on the sphere (Fig. 27). "#te join A to A' and B to B' along arcs 
of the sphere's great circles. We then draw great-circle arcs 
perpendicular to the previous arcs through their centres until 
they intersect at 0'. It can be seen from the construction that 
the spherical triangle AO' B is equal to the spherical triangle 
A'O' B'. Hence they can be made to coincide by rotating 
through an axis passing through 0' and the centre of the 
sphere. This proves Euler's theorem. 

It follows directly from Euler's theorem that the motion of a 
rigid body fastened at a point is considered at each instant of 
time as a rotation about an instantaneous axis passing through 
the point at which the body is fastened. The position of the 
instantaneous axis varies with time relative both to the body 
and to the stationary coordinate system in which the body is 
fastened at one point. The velocity of a point of the body can 
be represented in the form 

V=C.O;Xr, (9.7) 

where c.o; is the instantaneous angular velocity, and r is the 
radius vector relative to the fixed point. Since the angular 
velocity c.o; is a vector, we can represent it as the sum of two 



Fig. 27. To the proof of Euler's 
theorem. 
The arc A. 8 of the sphere can be 
made coincident with the arc A' 8' 
by a single rotation about an axis 
passing through the centre of the 
sphere and point 0'. 

Fig. 28. Decomposition of the 
instantaneous angular velocity 
vector ro; of rotation of a rigid 
body into the components ro. 
and ro'. 
The direction of the angular velocity 
0\, is constant relative to the stationary 
coordinate system, while the direction 
of the angular velocity m' is constant 
relative to the body, but varies relative 
to the stationary coordinate system. 
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vectors (Fig. 28), one directed along a line QA' which is fixed 
relative to the body, and the other directed along a line OB 
which is stationary in the coordinate system in which the 
motion of the body is being considered, i.e. 

O>; = 0>0 + r.o', v = O>o x r + r.o' x r. (9.8) 

Having represented the velocity of a body in this form, we 
can state that its motion is composed of two parts: a rotation 
at an angular velocity r.o' about an axis whose position does 
not change relative to the body, and a rotation at an angular 
velocity O>o relative to an axis whose direction does not change 
in space. During the course of motion, the angular velocity f% 
changes only in magnitude, but its direction remains unaltered, 
while the angular velocity r.o' changes both in magnitude and 
direction. 

Example 9.1. A rigorous mathematical description of a 
kinematic problem does not indicate its physical reality. It may 
so happen that a mathematically rigorous solution of a 
kinematic problem is devoid of any physical meaning. Let us 
clarify this point. · 

A ladder of length I stands vertically by a vertical wall 
(Y-axis). At t = 0, its lower end begins to slide along the floor 
(X-axis) at a velocity u. What is the trajectory described by the 
midpoint of the ladder, and what is the velocity at which it 
moves? 

The solution seems to be obvious. Denoting the coordinates 
of the ends of the ladder by x and y, we have x 2 + y 2 = /2 • 

Since the coordinates of the midpoint of the ladder are 
x 1 = x/2 and y 1 = y/2, we get xf + yf = 12/4, i.e. the midpoint 

. of the ladder describes an arc of a circle, and the velocity of the 
centre is v = [(dx1/dt)2 + (dy1 /dt)2J1' 2 = ul/[2jP- u2 t 2]. 

When the ladder is lying on the floor, ut = I and v = oo, which 
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is physically meaningless, although the problem has been 
solved correctly in the kinematic sense. The reason behind the 
error will be discussed in Example 34.3. 
Example 9.2. A wheel of radius a rolls along a horizontal 
plane without slipping. The centre of the wheel moves at a 
velocity u. Find the magnitude of the velocity of a point on the 
rim of the wheel if the line joining it to the centre of the wheel 
forms an angle a with the vertical. 

Let us first solve the problem without using the concept of 
an instantaneous centre of rotation. Since the wheel rolls 
without slipping at a velocity u, the time taken by the wheel to 
complete one revolution is T = 21ta/u, and hence the angular 
velocity of rotation of the wheel is given by the formula 
m = 21t/T = uja. The motion of any point of the wheel, which is 
a rigid body, is the result of the translational motion of its 
centre at the velocity u and its rotational motion about an axis 
passing through the centre of the wheel and perpendicular to 
its plane. The magnitude of the velocity of rotational motion is 
ma = u, the velocity being directed along the tangent to the 
rim. This means that the velocity of a point on the rim of the 
wheel is composed of the velocity u directed horizontally and 
the velocity tangential to the rim, also equal to u in magnitude. 
The angle between these velocities is a since the velocities are 
perpendicular to the vertical and the straight line joining the 
point on the rim to the centre of the wheel (angles between 
mutually perpendicular sides). Hence the magnitude of the 
velocity of the point on t\te rim is equal to the length of the 
diagonal of the parallelogram whose sides are equal to u and 
form an angle a. Consequently, v = 2ucos(a/2). 

The same problem can be solved by using an instantaneous 
centre of rotation. For a wheel rolling without slipping, the 
instantaneous fixed point is the point of contact between the 
rim and the surface on which the wheel rolls. Hence this point 
is the instantaneous centre of rotation. The motion is plane, 
and therefore we can use the concept of the centre of rotation 
instead of the axis of rotation, and assume that the axis of 
rotation is perpendicular to the plane of motion. It can 
immediately be seen that the angle between the vertical and 
the straight line joining the instantaneous centre of rotation to 
the point on the rim is a/2. From the triangle formed by the 
instantaneous centre of rotation, the point on the rim and the 
upper tip of the vertical diameter of the wheel, we can 
determine the distance between the instantaneous point 
of rotation and the point on the rim. This distance is 
R = 2acos(a/2) and is equal to the radius of rotation of the 
wheel about the instantaneous centre of rotation at an angular 
velocity m = ufa. Consequently, the required magnitude of 
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velocity is v = wR = 2ucos(a/2), which is the same as the 
result obtained above. 

For points that do not lie on the rim of the wheel, the 
calculations are carried out in exactly the same way, although 
the formulas become more cumbersome since the 1adius of 
rotation about the instantaneous centre is not the oase of an 
isosceles triangle in this case. The sides of the triangle can be 
obtained by using methods of geometry. 

2.1. The radius vectors of three consecutive vertices of a regular hexagon 
are r1 = 0, r2 and r3 respectively. Find the radius vectors of the 
remaining vertices. 

2.2. Find the angles between two nonzero vectors A and B which satisfy 
the conditions: 
(a) 3A +58= 0; (b) IAI = IBI = lA + Bl; (c) A·(A x B)= 0, IBI = 
21Ai; (d)(A X B) X A= B X (B X A). 

2.3. Points A, Band C lie on the surface of a sphere of unit radius with its 
centre at 0. The angles BOC, COA and AOB are respectively denoted 
by a, ~ and y. Find the angle between the planes OAB and OAC. 

2.4. Let r(t) be the radius vector of a moving point, ro = r/r. Prove that 
t 0 = (r x t) x r/r3• 

2.5. A stone must fly over two walls of height h1 and h2 (h2 > h1) from the 
side of the lower wall. The distance between the upper points of the 
two walls near which the stone's trajectory lies is /. Find the minimum 
initial velocity of the stone. 

2.6. A rod of length I slides so that its ends move along lines which are at 
right angles to each other. What is the shape of the curve described by 
a point on the rod at a distance a/ (a< I) from one of its ends? 

2.7. A stone is thrown from a point on the ground at a distance I from an 
obstacle of height h at the lowest admissible velocity. At what distance 
from the obstacle will the stone fall to the ground on the other side? 

2.8. A cannonball is fired at a velocity u at a target lying in the same 
horizontal plane as the cannon. Errors committed when the can
nonball is fired amount to E radians in the inclination of the barrel, 
and 2& radians in the direction at the target in the horizontal plane. At 
what distance from the target will the ball land? · 

2.9. Lumps of mud fly from the car's wheel of radius a, the car moving at a 
velocity u (u2 ;;?; ga). Find the maximum height attained by the lumps. 

2.10. A stone is thrown at a velocity u and at an angle a to the Earth's 
surface. Taking the point from which the stone is cast as the origin of a 
polar coordinate system (r, 9), where r is the distance between the 
origin 0 and the stone, and 9 is the angle between the radius vector of 
the stone and the Earth's surface, find the equation for the trajectory of 
the stone. 

2.11. A rod of length I slides with its ends moving along lines which are at 
right angles to each other. At a certain instant of time, the velocity of 
one end on the rod is v, while the angle between the rod and the line on 
which the other end is moving is 9. What is the distance between the 
first end of the rod and the point having the lowest velocity? What is 
the value of this velocity? 
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2.12. A cylinder of radius (r2 - r 1)/2 is placed in the space between two 
circular coaxial cylinders of radii r1 and r2 (r2 > r 1). The inner and 
outer cylinders rotate about their axis at angular velocities w 1 and w2 

respectively. Assuming that the surface of contact between the middle 
cylinder and the coaxial cylinders does not slip, find the angular 
velocity of the middle cylinder about its axis and the angular velocity 
of the points on its axis about the axis of the coaxial cylinders. 

2.13. A rigid body which is fixed at one point to the origin of a Cartesian 
coordinate system is moved to a new position by successive rotations 
around the X -axis by n/2 and around the Y..axis by n/2. How should 
the axis of rotation be oriented and through what angle must the body 
be rotated about the axis so that the same position is attained by a 
single rotation? 

2.14. A rigid body is turned through an angle <p about an axis passing 
through the origin of coordinates. The unit vector n is directed along 
the axis of rotation. The directions of rotation and of vector n are 
related by the right-hand screw rule. Find the radius vector of a point 
of the body after a rotation if the radius vector of the point before the 
rotation was r-

2.15. A particle moves in a plane with a constant radial acceleration a 
directed away from the centre, and a normal acceleration 21!{1), where v 
is the particle's velocity and w is a positive constant. Taking the 
direotion of acceleration at the origin of coordinates as the polar axis, 
derive the equation for the trajectory of the particle. 

2.16. Two wheels of radius r0 each are mounted on an axle of length /. The 
wheels on the :axle can rotate independently. They roll along a 
horizontal surface without slipping, and their centres have velocities v 1 

and v 2 respectively. Find the magnitudes of the angular velocities of 
the wheels. 

2.17. A ball of radius (r2 - r 1)/2 is.tr)laced between two concentric spheres of 
radii r 1 and r2 (r2 > r 1). The concentric spheres rotate at angular 
velocities w 1 and w 2 respectively, while the ball rolls between the 
spheres without slipping. What is the trajectory described by the centre 
of the ball and what is its angular velocity? 

2.18. An object on the Earth is observed from an aeroplane flying 
horizontally along a straight line at a constant velocity v. Two 
observations of the object are made from the aeroplane at a time 
interval t. The object is known to be situated in a vertical plane 
passing "through the trajectory of flight of the aeroplane, and is 
stationary relative to the Earth. The angles between the vertical and 
the direction of the telescope are a 1 and a 2 respectively for the two 
observations. Find the height at which the aeroplane is flying. 

2.19. A linear segment AB moves in a plane. At a certain instant of time, the 
directions of the velocities of the ends of the segment form angles a and 
~ respectively with the straight line AB. The magnitude of the velocity 
of point A is v. Find the magnitude of the velocity of point B. 

2.20. A ring of radius R2 moves at an angular velocity w and without 
slipping around a stationary ring of radius R 1 • The centres of the rings 
lie on opposite sides of the point of their contact. Find the velocity of 
displacement of the point of contact around the stationary ring. 

2.21. Solve Problem 2.20 for the case when the centres of the rings lie on the 
same side of the point of their contact and R2 < R1 • 
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2.22. A cylinder of radius R rotates without slipping between two parallel 
boards moving in the same direction perpendicular to the generators 
of the cylinder at velocities v1 and v2 (v2 > vd along their long sides. 
Find the angular velocity of the cylinder and the velocity of its axis. 

ANSWERS 2.1. r = 2r3 - 2r2 , r5 = 2r3 - 3r2 , r6 = r3 - 2r2 • 2.2.. (a) k (b) 27t/3; 
(c) 2n/3; (d) 0 or n. 2.3. arccos [(cos a - cos p cos y)/(sin p sin y)]. 
2.5. [g(h 1 + h2 + 1)] 112• 2.6. The arc of an ellipse with semiaxes a/ 
and (I -a)/. 2.7. lh/j/2 + h2• 2.8. 2u2&jg. 2.9. a+ a2g/(2u2) + u2f(2g). 
2.10. r = 2u2 cosa·sin(a- 9)/(gcos2 9). 2.11. /cos2 9, vsin9. 
2.12. (ro2r2 - ro 1r 1)/(r2 - r1), (ro1r 1 + ro2r2)/(r1 + r2). 2.13. i,. + i - i •. 
2n/3. 2.14. rcoscp+nxrcoscp+n(n·')(l-cosq>). 2.15. r= 
a(l -cos cp)/ro2. 2.16. [(v1 - v2 ) 2/P + v 1 /r~] 1 '2, [(v 1 - v2 ) 2/P + 
vVr~]'12 • 2.17. Circle (r1ro1 + r2ro2)/(r1 + r2). 2.18. vt/(tan a2 -

tana 1). 2.19. vcosafcosp. 2.20. roR~,..R2/(R1 + R2 ). 2.2!· roR1R2 / 

(R 1 - R2). 2.22. (v2 - v1)/(2R), (v1 + v2J/2. 



Chapter 3 
Coordinate Transformations 

Basic idea: 
The transformation of coordinates belonging to 
the same inertial reference frame is a purely mathematical 
question, while the transformation of coordinates belonging 
to different inertial reference frames is a problem falling in 
the purview of physics. This problem can be solved only 
by means of experiments. 

Sec. 10. RELATIVITY PRINCIPLE 

The dilTercnce between a geo
metrical coordinate transfor
mation and a coordinate trans
formation due to the motion of 
the reference frames is ana
lyzed. 

GEOMETRICAL COORDINATE TRANSFORMATIONS. The 
coordinate transformations considered in Sees. 5 and 6 involve 
points in the same reference frame. They are derived from the 
definition of s:oordinate systems as a result of geometrical 
constructions. These transformations do not include time. 
They are purely geometr~l coordinate transformations, and 
their physical significance does not extend beyond a change in 
the values of physical quantities. 

PHYSICAL COORDINATE TRANSFORMATIONS. Different 
bodies for which different reference frames exist may be in 
motion relative to one another. Each reference frame has its 
own coordinate system, and time is measured at different 
points of the system using clocks which are at rest at the points 
and are synchronized as described in Sec. 7. Let us find the 
connection between the coordinates and time in various 
reference frames if the frames are in relative motion. This 
problem cannot be solved merely from geometrical consid
erations. It is essentially a physical problem which is trans
formed into a geometrical problem only when the relative 
velocity of various reference frames is zero so that there is no 
physical difference between the reference frames, and they can 
be treated as a single reference frame . 
. INERTIAL REFERENCE FRAMES AND THE RELATIVITY 
PRINCIPLE. The simplest motion of a rigid body is a uniform 
translation in a straight line. Correspondingly, the simplest 
relative motion of a reference frame is its uniform translation 



Galileo Galilei (1564-1642) 
Italian scientist, the founder of 
modern mechanics. He formu
lated the relativity principle 
and established the laws of 
inertia, of free fall, of composition 
of motions, and so on. He 
constructed the first telescope 
and made a number of astro
nomical discoveries. He was an 
active supporter of the helio
centric system and had to face 
an inquisition court in 1633 for 
his convictions. 

I . 
The relativity principle states 
that physical laws are identical 
for all inertial reference frames. 
The inertial nature of the 
reference frames and the vali
dity of the relativity principle in 
them are due to the properties 
of space and time. There exists 
an infinite number of inertial 
reference frames. All these 
frames have a uniform motion 
in a staight line relative to one 
another. 
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in a straight line. One reference frame is conditionally called 
stationary, while the other is called moving. We introduce a 
Cartesian coordinate system in each reference frame. We 
denote the coordinates in the stationary K system by (x, y, z), 
and in the moving K' system by (x', y', z'). We assume that each 
quantity in the moving coordinate system is deno¢<1 by the 
same letter as in the stationary coordinate system but primed. 
The axes of the coordinate systems are directed as indicated in 
Fig. 29. Instead of stating "the reference body to which the K' 
coordinate system is attached moves at a velocity v ", we shall 
use the simplified form "the K' coordinate system moves at a 
velocityv relative to the K coordinate system". This does not 
cause confusion since each coordinate system has a meaning 
only when the reference body to which it is attached is 
indicated. We shall use similar expressions when speaking of 
time measurements in various coordinate systems or of 
synchronization of clocks, etc. since all the operations are 
carried out in appropriate reference systems. 

The first question of prime importance that arises in this 
connection can be stated as follows. The measurement of 
coordinates and time was considered in Sees. 5 and 7 by 
assuming the validity of Euclidean geometry, a unified time 
and the possibility of synchronization of clocks described 
therein. It was mentioned that the existence of such frames had 
been confirmed by the experiment. We must now indicate how 
to find such reference frames. This can only be done by 
studying the course of various physical processes in reference 
frames moving relative to one another. 

It follows from the results of a multitude of experiments that 
in all reference frames moving uniformly in a straight line 
relative to fixed stars, and hence relative to one another, all 
mechanical phenomena occur identically. 

It is assumed that gravitational fields are negligibly small. 
Such reference frames are called inertial reference frames 
because Newton's law of inertia is obeyed in thein, namely, 
that a body unattached by other bodies moves uniformly in a 
straight line relative to the reference frame. 

The hypothesis (first put forth by Galilco) that mechanical 
phenomena occur identically in all inertial frames is called 
Galileo's relativity principle. Later, as a result of investigations 
of other phenomena, including electromagnetic phenomena, 
the validity of this hypothesis was extended to all phenomena. 
In such a general form, it is called the relativity principle in the 
special theory of relativity, or simply the relativity principle. 

At present, this principle has experimentally been verified to 
a very high degree of accuracy for mechanical and electro
magnetic phenomena. In spite of this, the relativity principle 
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remains a postulate. i.e. a basic assumption which is beyond 
the scope of experimental verification. This is due to two 
reasons. 

Firstly, within the range of investigated physical phenom
ena, a statement can experimeatally be verified only to the 
accuracy permitted by contempocary measurement techniques. 
A statement, however, is absolute in nature, i.e. whatever the 
accuracy of the experiment, the results will always be in 
agreement with the statement. Clearly, this cannot experi
mentally be verified, no matter how developed a science, 
experiments can only be carried out with a finite accuracy. 
Secondly, there are some physical phenomena that have not 
yet been discovered. The statement that all phenomena which 
will be discovered in future will obey the relativity principle is 
beyond the realms of experimental verification. Hence the 
relativity principle is a postulate and will always remain so. 
But this does not lower its significance in any way. All 
scientific concepts, laws and theories are worked out for a 
certain class of physical phenomena and are only valid within 
certain limits. Transgressing the limits of their applicability 
does not render these concepts, laws, or theories invalid. It 
simply indicates the limits and conditions within which they 
can be applied, as well as their accuracy. Progress in science 
simply means an extension of the range of applicability of the 
existing theori~s. 

li-

Sec. 11. GALILEAN TRANSFORMATIONS 
The role of the invariants of 
transformations in physics is 
discussed and the invariants of 
Galilean transformations an: 
analyzed. 

GALILEAN TRANSFORMATIONS. A moving coordinate sys
tem (see Fig. 29) occupies a single position relative to the 
stationary coordinate system at all instants of time. If the 
origins of both coordinate systems coincide at t = 0, the origin 
of the moving system will be a distance x = vt from the 
stationary system at the instant t. Galilean transformations 
assume that at each instant of time the same relation exists 
between the coordinates and time of the systems (x, y, z) and 
(x', y', z'), which would exist between theni if the systems were 
at rest relative to each other. In other words, coordinate 
transformations can be reduced to geometrical transforma
tions that were considered earlier, while the time remains the 
same in the two systems: 

x' = x - vt, y' = y, :::' = z, t' = t. (ll.l) 

These formulas are called Galilean transformations. 
It is obvious that we could have chosen the K' system as the 



Fig. 29. Relative motion of the 
K' and K coordinate systems. 
By spatial rotation of the coordinate 
systems and by displacing the origin, 
one can always attain the situation 
that the X- and X'-axes of these 
systems coincide, and the motion 
occurs along the X -axis. With such 
a mutual arrangement of the systems, 
the coordinate transformations have 
the simplest form. 

I . 
Invariants of transformations 
reflect essential features of the 
objects under investigation, the 
features which do not depend 
on the choice of a coordinate 
system and so actually reflect 
the properties of the objects. 

? 
1-W!at is the difference between 
physical and purely geometrical 
coordinate transformations? 
If there exist various reference 
frames, under what conditions 
will the transformation of the 
coordinates fixed to a reference 
frame become a geometrical 
transformation? 

11. Galilean Transformations 79 

y Y' 

v 

K K' 

! 

X X' 

stationary system. In this coordinate system, K system moves 
at a velocity v in the negative x'-direction, i.e. at a negative 
velocity. Hence the transformation formulas would. be ob
tained in this case from (11.1) by replacing primed quantities 
by unprimed ones, and v by - v. These relations have the 
following form: 

x = x' + vt', y = y', z = ;;', t = t'. (11.2) 

It is worth noting that these formulas were derived from (i l.l) 
by applying the relativity principle to the transformations 
(ll.l) and not by computation, i.e. not by solving (11.1) for the 
unprimed quantities. Of course, the same formulas (11.2) can 
be obtained from (11.1) simply by solving them as a system of 
equations in unprimed quantities. The fact that both results 
are the same means that (11.1) and (11.2) do not contradict the 
relativity principle . 

INVARIANTS OF TRANSFORMATIONS. The numerical val
ues of various geometrical and physical quantities generally 
change as a result of a coordinate transformation. For 
example, the position of a point is characterized by three 
numbers (x1 , y 1 , z1). These numbers change when a different 
coordinate system is used. Obviously, the numbers dei>end not 
on any objective property of the point, but simply on the 
geometrical position of the point relative to a particular 
coordinate system. 

If the value of a quantity does not change as a result of a 
coordinate transformation, then the quantity has an objective 
value which is independent of the choice of the coordinate 
system. Such quantities reflect the properties of the very 
phenomena and objects under investigation, and not the 
relations of these phenomena or objects to the coordinate 
system in which they are being considered. Quantities whose 
numerical values are not changed by a coordinate transformation 
are called invariants of transformations. They are of prime 
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importance to physics. Hence we must study the invariants of 
Galilean transformations. 

INVARIANCE OF LENGTH. Let us consider a rod whose 
ends have coordinates (xi, Yi, zi) and (xi, yi, zi) in a 
K' coordinate system. This means that the length of the rod in 
this system is 

I= j(x]. - x'd2 + (y]. - y'd2 + (z]. - z't)2 • 

The rod has a translational motion in a K coordinate system, 
and all its points have a velocity v. By definition, the length of 
the moving rod is the distance between the coordinates of its ends 
at a certain instant of time. Thus, in order to measure the length 
of the moving rod, we must simultaneously fix the position of 
its ends for the same reading of the clocks located at the ends 
in a stationary coordinate system. Suppose that the ends of the 
moving rod are marked in the stationary coordinate system at 
an instant t0 and have the coordinates (x1 , y1 , z1) and 
(x2 , y2 , z2). According to the transformation formulas (ll.l), 
the coordinates and time in the moving and stationary systems 
are connected through the following relations: 

x'1 = x1 - vt0 , 

Yl = Yt· 
zl. = z1 , 

t1 =to, 

Hence 

x2-x't=X2-xl, 

y].- Yt = Y2- Yt· 
z].- z'1 = z2 - z1 • 

x'2 = x 2 - vt0 , 

y]. = Y2• 

z'2 = Z2, 

t]. = t0 • 

Consequently, we obtain 

I= j(x'2 - x'd2 + (y'2 - y't)2 + (z'2 - z't)2 

= J<x2- x1)2 + (y2- Yt)2 + (z2- Zt)2 =f. 

(11.3) 

(11.4) 

This means that the rod has the same length in bo~h 
coordinate systems. We can therefore state that length is an 
invariant of Galilean transformations. 

UNIVERSALITY OF THE CONCEPT OF SIMULTANEITY. 
Let us consider the last row in (11.3). These equalities show 
that when the ends of the moving rod are described in the 
stationary coordinate system, the clocks have the same 
readings at the points in the moving coordinate system which 
coincides with the ends of the rod. This is a consequence of the 
transformation formula for time from one coordinate system 
to another, i.e. the relation t' = t. Accordingly, the events that 
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occur simultaneously in one coordinate system are also si
multaneous in the other system. In other words, a statement that 
two events are simultaneous is universal in nature and indepen
dent of the coordinate system. 

INVARIANCE OF TIME INTERVAL. The invarianct;of time 
intervals is proved in terms of the transformation •formula 
t' = t. Suppose that two events occurred at instants t'1 and t2 in 
the moving coordinate system. The time interval between these 
two events is 

At'= t2- t't· (11.5) 

In accordance with (11.2), these events occurred in the 
stationary coordinate system at the instants t1 = tl. and t 2 = t2 
respectively, and hence the time interval between them is 

(11.6) 

Thus, it can be stated that a time interval is an invariant of 
Galilean transformations. 

VELOCITY SUMMATION. Suppose that the coordinates of a 
point mass moving in the K' coordinate system are given as a 
function of time: 
x' = x' (t'), y' = y' (t'), z' = z' (t'), 

while the velocity projections are 
dx' 

u~ = dt' 
' dy' 

Uy = dt'' 
dz' 

u. = dt'" 

(11.7) 

( 11.8) 

The coordinates of the point mass vary with time in the 
stationary coordinate system in accordance with (11.2) as 
follows: 

x (t) = x' (t') + vt', 

y (t) = y' (t'), 
z (t) = z' (t'), 

(11.9) 

t = t'. 

The velocity projections of tire point mass in the stationary 
system are 

dx dx' dt' dx' dt' , 
u =-=- + v-=-+ v- = Ux + v, 

X df dt dt df' dt' 

dy dy' dy' ' 
U =-=-=-=U 

y dt dt dt' Y' 
(11.1 0) 

dz dz' dz' , 
uz = dt = dt = dt' = u •. 
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These relations are the formulas for velocity summation in 
classical nonrelativistic mechanics. 

INVARIANCE OF ACCELERATION. Differentiating (11.1 0) 
and substituting dt = dt', we obtain 
d 2x d2x' d2y d 2y' d2z d 2z' 

dt2 dt' 2 ' dt2 dt' 2 ' dt 2 dt' 2 • 
(ll.ll) 

These formulas show that acceleration is an invariant of 
Galilean transformations. 

Sec. 12. CONSTANCY OF THE VELOCITY OF LIGHT 
Various stages in the develop
ment of our ideas concerning 
the velocity of light and re
sulting in the statement that it 
is constant are described. 

EXPERIMENTAL VERIFICATION OF THE VALIDITY OF 
GALILEAN TRANSFORMATIONS. The validity of Galilean 
transformations can be verified by comparing their corollaries 
with experimental results. The most important conclusion that 
can be drawn from Galilean transformations is the summation 
formulas (11.10). It was the verification of these formulas that 
revealed their approximate nature. The higher the velocity, the 
more serious the deviations from these formulas. The dis
crepancies are especially significant at velocities close to the 
velocity of light. They were first discovered during investiga
tions of the velocity of light whose behaviour was not just 
strange frotJJ. the point of view of classical concepts, it was 
inexplicable. Hence it is important first to consider the velocity 
of light. ~ 

EVOLUTION OF VIEWS ABOUT THE VELOCITY OF 
LIGHT. Ancient thinkers had two different ideas about the 
nature of light. Plato (427-347 B. C.) adhered to the theory that 
certain optic rays emanate from the eye and "feel" the object 
around us. Democritus (460-370 B. C.) supported the theory 
that atoms flow from the object to the eye, a theory Aristotle 
(384-322 B. C.) also supported. However, both theories practi
cally merged into one after Euclid (circa 300 B. C.) had 
provided a geometrical description of optics and established 
the concept that light rays propagate in straight lines and 
formulated the laws of reflection. Atomistic ideas acquired 
predominance, and it was assumed that light propagates at a 
very high velocity, or even instantaneously. This conviction 
was based on an analogy with the flight of an arrow from a 
bow: the greater the velocity of the arrow, the closer its 
trajectory to a straight line. 

Galileo, the founder of classical physics, believed that light 
has a finite velocity. However, he did not have any real idea 
about its magnitude and tried to measure it by using 
unsuitable methods. Descartes (1596-1650) hypothesized that 
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light is a form of pressure transmitted through a medium at an 
infinite velocity. Thus, Descartes clearly suggested that the 

Jupiter transmission of light would only be possible through a 
~ medium. Grimaldi (1618-1663) and Hooke (1635-1703) pro-

>- posed the wave theory of light, according to which 1~· ht is a ....... ' ' wave motion in a homogeneous medium. However, the real 
\ founder of the wave theory was Huygens (1629-1695) who 

\ presented his ideas to the Paris Academy of Sciences in 1678. 
\ Newton (1643-1727) was reluctant to deliver his opinion about 

the nature of light and did not want to "invent a hypothesis". 
However, he obviously believed in the corpuscular theory of 
light, although he did not insist on its unconditional accep
tance. In 1675, Newton wrote that in his opinion, light should 
not be defined as an ether or its oscillatory . motion, 
but as something propagating from a luminous body. This 

Fig. 30. Determining the 
locity of light by Roemer. 

ve- "something" may be a group of peripatetic properties or, still 
better, an aggregate of extremely small and fast corpuscles. 

r,• 

DETERMINATION OF THE VELOCITY OF LIGHT BY 
ROEMER. The velocity of light was first measured by Roemer 
in 1676. Observations of eclipses of Jupiter's satellites showed 
that the apparent period of their revolution decreases when the 
Earth approaches Jupiter in the course of its yearly movement, 
and increases when the Earth moves away from Jupiter. 
Roemer interpreted this effect to be related to the finite 
velocity of light and calculated it from the results of 
measurements. Figure 30 shows the position of a satellite of 
Jupiter just after the eclipse. Since the orbital period of Jupiter 
around the Sun is much longer than the orbital period of the 
Earth, we can assume for the calculations that Jupiter is 
stationary relative to the Earth. Suppose that a satellite of 
Jupiter emerges from its shadow at an instant t 1 . This event 
will be observed on the Earth at the instant 

(12.1) 

where s 1 is the distance from the Earth to the point where the 
satellite appears when it is observed, and c is the velocity of 
light. After the satellite has completed one revolution around 
Jupiter, it will emerge from the shadow at the instant t2 • This 
event will be observed on the Earth at the instant 

(12.2) 

Thus, according to the observations carried out on the Earth's 
surface, the period of revolution of the satellite is 

(12.3) 
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Fig. 31. Aberration of light. 
While watching a star located at 
right angles to the Earth's velocity, 
the axis of the telescope must form 
an angle a with the true direction 
towards the star because of the 
aberration of light. 

3. Coordinate Transformations 

where T,. = t2 - t 1 is the true period of revolution of the 
satellite. Thus, the observed period of revolution of the satellite 
differs from the true period due to the difference s2 - s 1 in the 
distance between the Earth and Jupiter. Making a large 
number of measurements of this period both as the Earth 
approaches and moves away from Jupiter, the average value 
will be equal to the true period since the terms (s2 - s 1)/c will 
have opposite signs in the two cases and cancel out upon 
averaging. 

Knowing the value of 7; •• we can determine the velocity of 
light from (12.3): 

c= 
J;,bs - 7;. 

(12.4) 

The values of s2 and s1 are known from astronomical 
observations because the motions of Jupiter and the Earth 
have been studied thoroughly. The motion of Jupiter can easily 
be taken into consideration in calculations. Roemer obtained a 
value of c = 214,300 kmjs for the velocity of light from such 
calculations. 

This was the first reliable measurement of the velocity of 
light, which was quite accurate for that time. 

ABERRATION OF LIGHT (Bradley, 1727). When the weather 
is calm, raindrops fall vertically to the ground. However, they 
form inclined tracks on the glassplane of a moving train. This 
is due to the superposition of the vertical velocity of the drops 
and the horizontal ve)iecity of the train. A similar effect, called 
aberration, is also observed for light. As a result of the 
aberration of light, the apparent direction of a star differs from 
the true direction by an angle a, which is called the aberration 
angle (Fig. 31 ). It can be seen from the figure that 

V.t 
tan a=-, 

c 
(12.5) 

where v.1 is the component of the Earth's velocity per
pendicular to the direction of the star, and c is the velocity of 
light. 

The aberration caused by the velocity of the Earth's motion 
around the Sun is called the annual aberration of light. The 
maximum annual aberration, which is the same for all stars, 
is equal tO Umax = arctan(v.ljc) = 20".47, since V.t/C ~ J0- 4 . 

The linear velocity of points on the Earth's surface due to its 
revolution around its own axis is responsible for the diurnal 
aberration of light. It is proportional to the cosine of the 
geographical latitude of the point of observation, and varies 
from 0".13 at the equator to 0".00 at the poles. 

In order to observe aberration, we must know how to orient 
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the telescope along a fixed direction in space. We cannot use 
the light from the stars since the light emitted by all stars 
undergoes the same kind of aberration. The orientation of the 
telescope in a fixed direction is calculated from the laws 
governing the Earth's revolution around the Sun and aJ>out its 
own axis. Bradley was able to measure the value· of a. Given 
the value of v J., he calculated the velocity of light and 
confirmed the results obtained by Roemer to within the same 
accuracy. 

VARIOUS INTERPRETATIONS OF THE VELOCITY OF 
LIGHT. After the velocity of light had been measured, it was 
then possible to ask whether it depended on other factors. At 
that time, the answer depended on what views one held 
concerning the nature of light. • 

If light moved like a wave in a homogeneous medium, its 
velocity relative to the medium would be a constant which 
should depend on the properties of the medium. But the 
velocity of light relative to the source and the observer would 
be a variable quantity which sh&uld depend on the velocity of 
the source and the observer relative to the medium and would 
be given by (ll.IO) for the velocity summation. 

If light were a flow of particles emitted by the source at a 
very high velocity, naturally the particle's velocity relative to 
the source would be a constant value, while the velocity 
relative to the observer would be the vector sum of the 
particle's velocity and the observer's velocity relative to the 
source, again calculated by (ll.IO). 

ABSOLUTE ETHER AND ABSOLUTE VELOCITY. Newton's 
reputation guaranteed the success of the corpuscular theory of 
light. Although Huygens' wave theory did have some support· 
ers, it was pushed into background for more than a century. 
However, new discoveries in optics at the beginning of the 19th 
century completely altered the pattern. In 1801, Young for
mulated the interference principle and used it to explain the 
colour of thin films. The ideas put forth by Young, however, 
were qualitative and were not widely recognized. The final 
blow to the corpuscular theory was dealt by Fresnel in 1818 
when he explained diffraction on the basis of the wave theory. 
Until Fresnel, every attempt to explain it by using the 
corpuscular theory had proved fruitless. The basic idea 
underlying Fresnel's work was a combination of Huygens' 
principle of elementary waves and Young's interference prin
ciple. For many years after this, the corpuscular theory was 
completely rejected, and the concept oflight as a wave process 
in a medium was universally accepted. This medium, which 
fills the entire Universe, was called absolute ether. The theory 
of light was reduced to a theory of oscillations in ether. The 
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role of ether was subsequently extended, and it made re
sponsible for other phenomena as well (gravitation, magne
tism, electricity). Many famous scientists helped create the 
theory of absolute ether in the last century. However, these 
investigations are only of historic importance now, and there is 
no need to dwell upon them here. We have mentioned the term 
"absolute ether" simply to explain the concept of absolute 
velocity and the methods for determining it. 

Absolute ether and absolute velocity were exceptionally important 
concepts in a general picture of the Universe in prerelativistic times. 

Ether was supposed to fill the entire space in which bodies 
move, and remains stationary in space. The velocity of light 
relative to ether was supposed to be a constant whose value 
depended on the properties of ether. Bodies moved relative to 
the stationary ether. Obviously, the motion of bodies relative 
to ether was absolute and differed from the motion of bodies 
relative to one another. Indeed, if a body A moved relative to a 
body B at a velocity , the velocity could be varied by applying 
a force to either A or B. However, the motion of the body A 
relative to ether could only be changed by applying a force to 
the latter and not to any other body. The velocity of a body 
relative to ether was called "absolute". The absolute velocity of 
a body was supposed to be independent of the motions of 
other bodies. It was assumed that it would be a meaningful 
value even if no other bodies existed. The only question that 
arose was how to me~ure this absolute velocity. 

MEASUREMENTS OF "ABSOLUTE" VELOCITY. Since the 
velocity of light relative to ether is constant, it is variable 
relative to other bodies moving in the ether and depends on 
their velocity relative to ether. By measuring the velocity of a 
body relative to light or, which is the same, the velocity of light 
relative to a body, we can determine its velocity relative to 
ether (the velocity of light relative to ether is assumed to be 
known). The situation here is analogous to the one in which an 
oarsman in a boat can determine his velocity relative to water 
by measuriQg the velocity of the boat relative to the waves and 
knowing the velocity of the waves relative to stationary water. 

The first attempts to determine the absolute velocity of the 
Earth by using this method were made by Michelson and 
Morley in 1881 and 1887. 

THE MICHELSON'-MORLEY EXPERIMENT. The idea be
hind the experiment was to compare the propagation of light 
along two paths, one in the direction of the body's motion in 
ether and the other perpendicular to this direction. A diagram 
of the experiment is represented in Fig. 32. 

A ray of monochromatic light, i.e. light with a single 



Fig. 32. Diagram of the Michel
son-Morley experiment in a 
reference frame fixed to ether. 
The figure shows the successive 
positions of the interferometer relative 
to ether. 
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frequency, from a source A falls upon a translucent plate B set 
at 45o to the path of the ray. The ray is split by the plate into 
two. Since these two rays are generated by the same incident 
ray, the waves in them are not independent and are in phase. 
By analogy with ripples on water surface, we can state that the 
oscillations of both waves are perfectly synchronized where the 
ray is split. We can also imagine a case when both waves 
oscillate with the same period, but one wave oscillates slightly 
behind the other. In other words, there is a constant phase 
difference between the two waves, and if the oscillation at one 
point is described by the function sin rot, the oscillation at 
another point is given by the function sin (rot + cp), where 
cp = const is the phase difference between the two waves. Such 
waves are called coherent. Thus, we can state that the ray is 
divided at B into two coherent rays, one of which is reflected 
by the plate and is incident on a mirror D, while another 
passes through the plate and is incident on a mirror F. The rays 
are reflected by the mirrors D and F, and return to the plate B. 
The ray partially reflected by the mirror D and passing 
through the translucent plate B encounters, in an interfer
ometer E, the ray reflected by the mirror F and tpe plate B. 
Thus, two coherent rays which have traversed different paths 
after splitting meet in the interferometer. Obviously, if the 
paths are traversed by the rays in the same period of time, the 
phase difference between the waves at the point where they 
meet will have the same value cp as at the point where they 
parted. For example, suppose that the phase difference was 
cp = 0 where they were split, i.e. the oscillations in both rays 
are in phase. In this case, the rays will meet in the interfer
ometer in the same phase and hence interfere constructively, 
i.e. the crest of one wave coincides with that of the other wave. 
If, however, the rays take different times to traverse their paths, 
a phase difference will appear between the oscillations at the 
point where the rays meet. For example, it may happen that 
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the crest of one wave coincides with the trough of another 
wave and so they will cancel each other out. 

A change in intensity as a function of the phase difference of 
the components of light oscillations is called interference. 
Observing interference, we can draw conclusions concerning 
the phase difference between the coherent waves arriving at the 
interferometer and thus calculate the time one wave lags 
relative to the other. This is what was done by Michelson and 
Morley. The optical part of the experiment and the construc
tion of the Michelson interferometer are described in Optics*. 

CALCULATION OF THE PATH DIFFERENCE BETWEEN 
RAYS. Suppose that the instrument is moving in the direction 
of BF = /1 at a velocity v relative to ether (see Fig. 32). The 
velocity of light relative to ether is denoted by c. As the ray is 
moving from B to F, the directions of the velocity of light and 
the velocity of the instrument coincide. Consequently, the 
velocity of light relative to the instrument should be c - v, and 
the time taken by the ray to traverse the distance from B to F 
would be 

t'tf} = - 11-. (12.6) 
c-v 

This is what would arise if an "ether wind" is blowing past the 
instrument a~ a velocity c - v. The time during which the path 
from F to B is traversed after reflection is 

tYJ =-11_ 
c+v 

(12.7) 

since the light moves against an advancing instrument, and the 
velocities are added. Thus, the total time spent in traversing a 
path up to the mirror F and back is 

. 21 I 
t<H = t'tf} + tVJ = 1 . (12.8) 
II c I - vzjc2 

Superscript (I) indicates the time intervals during which different 
paths are traversed if the instrument is oriented relative to the velocity 
direction as shown in Fig. 32. If the velocity direction coincides with 
the arm BD, superscript (2) is employed. 

In order to determine the time required for light to traverse 
the path BD' B', we consider that for a ray to fall on D after 
reflection by B, the velocity of light must be decomposed into 
two components, viz. a velocity v in the direction of motion of 
the instrument and c .L, the perpendicular component directed 

* A. N. Matveev, Optics, Mir Publishers, Moscow, 1988. 



If two shots are fired at an 
interval of, say, I s in a moving 
train, an observer standing on 
the track on which the train is 
moving towards him will hear 
these shots as fired at an 
interval of less than I s. To an 
observer from which the train is 
moving away, the shots will 
appear to have been fired at an 
interval of more than I s. 
If there is no wind accom
panying rainfall, the umbrella 
must be held in a vertical 
position to protect from rain. If, 
however, we have to run, we 
must incline the umbrella in the 
direction of motion. 
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from B to D. Hence we can write 
c2 = ci + v2. 

The ray will traverse a path BD = 12 in the time 

thlf> = !.3_ = 12 = ~ l 
c.L Jc2- v2 c Jl- v2/c2 
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(12.9) 

f 
(12.10) 

When the ray moves in the opposite direction, its velocity is 
again c.L, and hence the time required to traverse the path DB 
remains the same. Hence the total time required for light to 
traverse a distance to the mirror D and back is 

t~> = 212 (12.11) 
c J1 - v2/c2 

The orbital velocity of the Earth around the Sun is about 
30 km/s. The linear velocity of its rotation is about 60 times 
slower (approximately 500 m/s) and may be neglected in 
comparison with its orbital velocity. Hence if an instrument is 
situated on the Earth, the quantity (v/c)2 is of the order of 
10- 8• Since (v/c)2 is negligibly small, we can expand the 
expressions (12.8) and (12.11) into a series in this quantity. 
Truncating the expansion to the first terms, we obtain 

t<'> ~ 2/, (t + v2), 
II C c2 

U> 2/2 ( 1 v2
) t ~- I+-- . 

.l c 2 c2 

(12.12) 

Consequently, the time difference between the rays in 
traversing their paths is 

At<'>= tj11>(11)- t~>(/2) = ~;:(/1 - t) + ~(/1 -/2).. (12.13) 

Let us now turn the instrument by 90° so that BD is 
collinear with the velocity, while BF is perpendicular to it. The 
path difference between the rays in this case is calculated in the 
same way as before, but /1 is now replaced by /2 , and vice 
versa. 

Since /1 is perpendicular to the velocity in the second case, 
while /2 is parallel to it, we obtain 

Atl2l = t< 2> (I ) - t< 2> (I ) - - ~ v2 (t - ~) - ~ (/ - I) 
1_ I II 2 - C C2 2 2 C 2 I • 

(12.14) 

Thus, the total change in the time difference for the rays 
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In the Michelson-Morley ex
periment, the "arms" could not 
have the same length since this 
would require the measurement 
of a distance of a few metres 
with an accuracy of up to a 
millionth fraction of a metre. At 
that time, such precise measure
ments were impossible. 
If the ballistic hypothesis were 
true, a variation of the bright
ness of a double star would be 
measured by observing its 
motion. Indeed, there are many 
variable stars, but the law of 
variation of their brightness is 
not in conformity with the 
ballistic hypothesis. 

3. Coordinate Transformations 

upon a rotation of the instrument by 90° is 

I +I v2 
!J.t = !J.t(2) - !J.t(l) = - _1 __ 2-. 

c c2 
(12.15) 

RESULTS OF THE MICHELSON-MORLEY EXPERIMENT. 
The actual motion of the instrument relative to the hypotheti
cal ether is unknown. Hence the instrument cannot be oriented 
such that one of its arms lies in the direction of motion. The 
instrument was therefore slowly rotated during the experiment. 
Irrespective of the direction of motion of the instrument· 
relative to ether, each arm would twice be collinear with the 
direction of motion when the instrument is rotated by 360° 
and twice be perpendicular to the direction if the axis about 
which the instrument is rotated is perpendicular to the body's 
velocity. Of course, we can imagine a situation in which the 
axis of rotation of the instrument coincides with the direction 
of its motion in ether. In this case, there would be no change in 
the difference between the paths traversed by the rays. However, 
the experiment can be carried out in such a way that the 
direction of the axis of rotation would be varied and a change 
in the path difference would be ensured. Interference fringes 
would be observed in the interferometer in this case. If the path 
difference be.tween the rays were varied as the instrument 
rotated, the position of the interference fringes would change 
in the field of view. The change in the path difference with time 
could then be calculated bY measuring the displacement of the 
interference fringes, and·'the velocity of the instrument relative 
to ether could be determined. 

Such an experiment was carried out in 1881 by Michelson 
and later, in 1887, by Michelson and Morley with a higher 
degree of accuracy. In order to increase the effective distance, 
Michelson and Morley used multiple reflections of a ray from 
the mirrors and increased the value of /1 + 12 to over 
10 metres. The wavelengths of visible light range from 
0.4 X w- 6 m to 0.75 X 10- 6 m. The magnitude of delay, 
expressed by (12.15), assumes the following form when 
expressed in terms of wavelength: 

( 12.16) 

Here, we have used the value v2/c2 ~ 10- 8 for the velocity of 
the Earth around the Sun. The relative displacement of the 
interference fringes is 
!J.J.... (11 + /2) x w-8 

")... ")... 
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In Morley's experiments which were carried out in 1887, the 
effective distance 11 + 12 was 11 m. Hence the expected 
displacement was Af../f.. ~ 1/5 for /.. = 0.5 x w- 6 m. This is 
much larger than the values which can be observed without 
difficulty. Actually, a displacement corresponding to( a velocity 
of just 3 km/s of the instrument relative to the hypothetical 
ether could have been measured. However, no effect was 
observed. It turned out that the velocity of light in every 
direction is the same, and there is no ether wind. The 
experiment was repeated in 1905 with an even higher accuracy, 
but still yielded a negative result. The experiment was 
subsequently repeated by many researchers and has so far 
inevitably led to the conclusion that the velocity of light is the 
same in every direction, and there is no ether .wind. The 
accuracy of the experiments was considerably increased with 
the advent of lasers. At present, it has been proved that the 
velocity of the ether wind, if one exists, would not exceed 
10 m/s. 

INTERPRETATION OF THE MICHELSON-MORLEY EX
PERIMENT BASED ON THE CONCEPT OF ETHER. Two 
solutions were proposed to explain the situation described 
above by means of the ether concept: 

1. It was suggested that in the vicinity of a massive object 
like the Earth the ether moves with the object, i.e. is entrained 
by its motion. Naturally, no "ether wind" would be observed 
in the vicinity of the object. 

2. It was also suggested that the size of an object moving in 
the ether is not constant, but varies in such a way that the 
expected path difference (12.15) is not realized. 

The suggestion about the entrainment of the ether has to be 
rejected because it is in contradiction with other observed 
facts. In particular, it is not in accord with the phenomenon of 
aberration of light. The second suggestion, which was put forth 
by Lorentz and Fitzgerald, successfully explains the absence of 
a delay. A comparison of (12.8) and (12.11) shows that for 
11 = 12 =I, the time spent in traversing the path along the 
motion will be equal to the time taken by the ray to traverse 
the path perpendicular to the direction of motion if the length 
of the arm in the direction of motion shortens and becomes 

(12.17) 

If we assume that bodies contract in the direction of motion in 
accordance with ( 12.17), it becomes obvious that the Michel
son-Morley experiment would yield negative results. 

However, this explanation is not convincing since it gives a 
logically unsatisfactory idea about the velocity of light. The 
velocity of light is assumed to be constant relative to ether and , 
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? 
How did ancient thinkers arrive 
at the idea that the velocity of 
light is very high? Were their 
arguments correct in the light of 
the concepts of modern physics? 
Describe an experimental set
up that could be used to measure 
the velocity of sound by Roe
mer's method. 
!Mzat is the effect of taking into 
account the velocity of Jupiter's 
motion in the calculation of the 
velocity of light by Roemer's 
method? 

3. Coordinate Transformations 

variable relative to bodies that are in motion relative to ether. 
However, measurements of this velocity relative to bodies 
always give the same result. In short, the veloctty of light 
relative to bodies is variable, but the results of its measure
ments are always the same. Obviously, it is meaningless to 
state that the velocity of light is variable in this case and so it 
must be rejected. Instead, we have to agree that the velocity of 
light is constant. In this case, the results of the Michelson
Morley experiment can be explained in a natural way. 

However, the following remark should be made. Strictly 
speaking, the Michelson-Morley experiment and the analog
ous experiments that were carried out subsequently do not 
lead to the conclusion that the velocity of light is constant. 
They simply indicate that the average velocity of light in 
opposite directions is identical in a given inertial coordinate 
system, and it is impossible to conclude that the velocity of 
light is constant in all directions. 

However, if the homogeneity and isotropy of space and the 
homogeneity of time in inertial reference frames are assumed to have 
been proved, there can be no doubt that the velocity of light is 
constant in all directions. 

BALLISTIC HYPOTHESIS. There is yet another way of 
explaining thf result of the Michelson-Morley experiment: we 
can reject the ether concept entirely and treat light as a flow of 
material particles. In other words, we revert to Newton's point 
of view. It is natural to afsume that the velocity of the particles 
relative to the source is constant and is added to the velocity of 
the source according to the parallelogram law. 

Since the velocity of light relative to the source is assumed to 
be the same in all directions in the ballistic hypothesis, one 
would not expect any path difference in the Michelson-Morley 
experiment. Hence the ballistic hypothesis explains the result 
of this experiment in a natural way, thus avoiding the 
assumption that the velocity of light is constant, which is 
incomprehensible to a Galilean transformation. In spite of this, 
the ballistic hypothesis was found to be groundless. 

FLAW IN THE BALLISTIC HYPOTHESIS. De Sitter men
tioned in 1913 that the ballistic hypothesis could be verified by 
observing double stars. A double star is a system of two close 
stars moving around a common centre of mass. If one of the 
stars is much larger than the other, then the smaller star can be 
assumed to move around the larger star which is at rest. A 
large number of double stars are known. The velocity of the 
stars can be measured from the Doppler effect, whence the 
orbital elements can be determined. It turns out that the 
components of double stars revolve in elliptical orbits in 



Fig. 33. Proving the flaw in the 
ballistic hypothesis. 
If the ballistic hypothesis were true, 
it would be possible to observe a 
star both in the upper and the lower 
position simultaneously at a 
considerably large distance. This, 
however, is not the case in actual 
practice. 
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accordance with Kepler's laws. In other words, gravitational 
forces exist between them, decreasing in inverse proportion to 
the square of the distance between the components. 

No peculiarity has been observed in the motion of the 
components of double stars. However, the motion of the stars 
would have been quite strange, had the ballistic hypothesis 
been valid. 

Suppose that a double star is being viewed from a large 
distance s. For the sake of simplicity, we shall assume that the 
lighter star moves in a circular orbit at a velocity v around the 
heavier star which is assumed to be stationary (Fig. 33). The 
orbital period is taken as T. A ray of light, emitted when the 
star is at point B (upper point in Fig. 33) and moves away from 
the observer, will propagate in the direction of the observer at 
a velocity c- v. If t 1 is the instant of time at which the ray is 
emitted from the star, the instant at which it reaches the eye of 
the observer will be 

s 
Tt = tl + --, 

c-v 
(12.18) 

where sis the distance between the star and the observer. After 
half an orbital period T/2, a ray of light, emitted when the star 
will move from point A (lower point in Fig. 33), win propagate 
towards the observer at a velocity c + v. Consequently, the ray 
emitted by the star at A will reach the observer's eye at the 
instant 

T s 
T2 =t1 +-+--. 

2 c+v 
(12.19) 

If the distance s is large, this ray may overtake the ray emitted 
at B in view of its higher velocity. This will happen at a 
distance s for which T2 = T1 • This distance can easily be 
calculated from (12.18) and (12.19). For very large distances s, 
the ray emitted at A may overtake the ray emitted at Bin the 
previous revolution, and so on. In this case, an observer 
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? 
How is the aberration of li'ght 
from a star observed if the true 
direction towards the star is not 
known? 
K11y would it be expedient to 
call the velocity relative to ether 
"absolute" if absolute ether 
existed? 
K11y cannot the results of the 
Michelson-Morley experiment 
be interpreted with the help of 
the Fitzgerald-lorentz contrac
tion? 

3. Coordinate Transformations 

watching the star from a large distance will see the star at 
several points simultaneously on its orbit. 

Thus, if the ballistic hypothesis were true, astronomers 
watching double stars would see a very intricate picture. In 
actual practice, this does not happen. 

What is actually observed can be explained by assuming 
that the double stars move according to Kepler's laws, and 
that the velocity of light is constant and cannot be added to 
the velocity of the source as required by the ballistic hypoth
esis. Thus the ballistic hypothesis is refuted. 

In view of the flaw in the ballistic hypothesis, it should be 
admitted that the velocity of light must be independent of the 
velocity of the source. It follows from the results of the 
Michelson-Morley experiment that it is also independent of 
the velocity of the observer. Hence we can conclude that the 
velocity of light is a constant quantity which does not depend 
on the velocity of the source or the observer. . 

INCOMPATIBILITY BETWEEN THE CONSTANCY OF THE 
VELOCITY OF LIGHT AND CONVENTIONAL CONCEPTS. 
The constancy of the velocity of light is in sharp contradiction 
with the accepted notions based on everyday experience, as 
well as with formulas (11.10) for velocity summation, which are 
derived from Galilean transformations. Thus, it can be stated 
that the Galilean transformations (11.2) contradict the experi
mentally o~erved fact that the velocity of light is a constant 
quantity. However, this contradiction becomes noticeable only 
at very high velocities.,11-· 

Imagine a train moving at a velocity of 100 km/h relative to 
the railway bed. If a person walks towards the engine along a 
carriage at a velocity of 5 km/h relative to the train, his 
velocity relative to the railway bed is I 05 kmfh. This result is 
quite obvious and is in complete accord with the accepted 
notions about space and time which are expressed in the 
present case by the formula for velocity summation in classical 
mechanics. This formula has experimentally been verified 
many times. 

Let us now consider a rocket travelling at a velocity of 
100,000 km/s relative to the Earth. Suppose that an object in 
the rocket is moving in the same direction as the rocket at a 
velocity of 100,000 km/s relative to the rocket. What will be 
the velocity of the object relative to the Earth? If we measured 
this velocity, it would come to 164,000 km/s. Although such an 
experiment has actually not been carried out, many other 
similar experiments have shown that formulas (11.10) for 
velocity summation are not correct. For velocities much 
smaller than the velocity of light, this error is not noticeable 
since the deviations from (11.10) are extremely small. The 



Fig. 34. Diagram of Fizeau's 
experiment. 

? 
JWzat is the astronomical evi
dence against the validity of the 
ballistic hypothesis? 
How was the result of Fizeau's 
experiment interpreted at the 
time when it was carried out? 
JWzy is the statement that the 
velocity of light is constant still 
a postulate in spite of the fact 
that so many experimental 
confirmations of the statement 
exist? 
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inaccuracy of (11.1 0) was first experimentally revealed in the 
middle of the last century, although the scientists of the time 
did not realize a significance of this result. 

THE IDEA BEHIND FIZEAU'S EXPERIMENT. Long before 
the concept emerged that the velocity of light is constant and it 
was realized that the Galilean transformations are approxi
mate, an experiment was known in physics which indicated a 
strange rule for velocity summation comparable with the 
velocity of light. This experiment was first carried out by 
Fizeau in 1851. 

Fizeau's experiment involved the measurement of the ve
locity of light in a moving medium, say, water. Let u' = c/n be 
the velocity of light in the medium with a refractive index n. If 
the medium in which light is propagating is itself moving at a 
velocity v, the velocity of light relative to an observer at rest 
must be u' ± v depending on whether the velocities of light and 
the medium are in the same or opposite directions. In his 
experiment Fizeau compared the velocity of light in the 
direction of motion of the medium and against the motion. 

A diagram of Fizeau's experiment is shown in Fig. 34. A mo
nochromatic ray from the source A is incident on the 
translucent plate B and is then divided into two coherent rays. 
The ray which is reflected from the plate traverses the path 
BKDEB (K, D and E are mirrors), while the transmitted ray 
traverses the path BEDKB, i.e. moves in a direction opposite 
to that of the first ray. Returning to the plate B, the first ray is 
partially reflected and enters the interferometer F. The second 
ray is partially transmitted upon returning to the plate B and 
also falls on the interferometer F. Both rays traverse the same 
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path and pass through the liquid flowing through the tube 
over the segments BF and KD. If the liquid is at rest, the paths 
of both rays are identical and will traverse this distance in the 
same time in both directions. 

If, however, the liquid is in motion, the paths of the rays are 
not equivalent: one of them moves along the flow in the 
indicated segments, while the other ray moves against the flow 
in the corresponding segments. This results in a path differ
ence, and one of the rays is delayed relative to the other. The 
path difference can be determined from the interference 
pattern, and thus the velocity of light can be calculated in the 
segments with the liquid since the velocity of light on the 
remaining segments and the pathlength of all the segments are 
known. 

CALCULATION OF THE PATH DIFFERENCE BETWEEN 
RAYS. We introduce the following notation: lis the total length 
of the segments in which light passes through the liquid, t0 is the 
time during which light passes through the entire path except 
the segments containing the liquid, u< + > is the velocity of light 
in the flow direction, and u<- >is the velocity of light against the 
flow direction. These velocities can be represented as 
u<+> = u' + kv, u<-> = u'- kv, (12.20) 

where k is a coefficient which must be experimentally de
termined. Jf k = l, the classical formulas (ll.lO) for velocity 
summation are valid. If, however, k =F l, there must be 
deviations from the formulas. It should be noted that we are 
dealing with very higft velocities in this experiment since the 
refractive index of water is about 1.3 for visible light, and hence 
the velocity of light in water is about 230,000 km/s. 

The time during which the first and second rays traverse the 
entire path is 

I I 
11 = 10 + -,-k-, t2 = t0 + -,-k-. (12.21) 

u + v u - v 

Hence the path difference in terms of time can be written in 
the form 

(12.22) 

Measuring the path difference from the displacement of 
interference fringes and knowing the values of I, v and u', we 
can determine k from this formula. 

RESULT OF FIZEAU'S EXPERIMENT. The following value 
was obtained for the coefficient k in Fizeau's experiment: 

1 
k = 1 - 2• (12.23) 

n 
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where n is the refractive index of the liquid. Thus, the velocity 
of the liquid and the velocity. of light in the liquid are not 
added in accordance with the classical formulas for velocity 
summation. From a layman's point of view, this result is as 
astonishing as the statement that the velocity of light in 
vacuum is constant. However, Fizeau's result did npt cause 
any surprise at the time since Fresnel had shown· mu~h earlier 
that when matter moves in ether, it only partially entrains 
ether. The amount of entrainment exactly corresponds to the 
result of Fizeau's experiment. 

It became clear only after the creation of the theory of 
relativity that Fizeau's experiment provided the first experi
mental evidence that the classical law for velocity summation 
and the Galilean transformations was incorrect. 

CONSTANCY OF THE VELOCITY OF LIGHT AS A POSTU
LATE. The statement that the velocity of light is constant in 
vacuum, i.e. the independence of the velocity of light of the 
velocity of the source or the observer, is the natural conse
quence of many experimental facts. We have only described 
such experiments and ideas which were chronologically the 
first. Later on, this statement was subjected to many experi
mental verifications. However, the main confirmation that the 
statement is true arises from the agreement of all experimental 
results with all the corollaries of the statement. There are many 
such confirmations since the whole of the modern physics of 
high velocities and high energies is based on the postulate that 
the velocity of light is constant. 

In spite of all this, the statement that the velocity of light is 
constant remains a postulate or an assumption beyond the 
reach of direct experimental verification. This is due to a finite 
accuracy of experimental verifications, which is caused by the 
postulative nature of the relativity principle. 

Sec. 13. LORENTZ TRANSFORMATIONS 
Lorentz transformations arc 
derived from the relativity prin
ciple and the postulate that the 
velocity of light is constant. 

7 .154 

POSTULATES. Since the results obtained from Galilean trans
formations contradict experimental evidence at high velocities, 
and the constancy of the velocity of light does not follow from 
them, they do not correctly reflect the relation between the 
coordinates and time in two inertial coordinate systems 
moving relative to each other. We must find other transforma
tions which correctly explain the experimental results and, 
among other things, lead to the concept that the velocity of 
light is constant. These transformations are called the Lorentz 
transformations. They can be derived from the two principles 
which were substantiated in previous sections: 



98 

Hendrik Antoon Wrentz 
( 1853-1928) 
Dutch physicist, the founder of 
the classical electron theory. He 
worked out the equations of 
electrodynamics for moving me
dia and derived coordinate 
transformations which proved 
to be a significant step towards 
the creation of the theory of 
relativity. 

3. Coordinate Transformations 

(l) the relativity principle; 
(2) the principle of the constancy of the velocity of light. 
Although both these principles have been verified in many 

experiments, they are of postulative nature and are hence 
called sometimes the relativity postulate and the postulate that 
the velocity of light is constant. 

The theory governing space-time relations, which is based 
on the Lorentz transformations, is called the (special) theory of 
relativity. It was created mainly on the basis of the works of 
Einstein (1879-1955), Poincare (1854-1912) and Lorentz 
( 1853-1928). A significant contribution was made by Min
kowski ( 1864-1909) in developing a geometrical interpretation 
of the theory. 

LINEARITY OF COORDINATE TRANSFORMATIONS. Us
ing purely geometrical transformations to get a spatial rota
tion and displacement of the origin of coordinates within each 
reference body, we can always orient moving coordinate 
systems to the position shown in Fig. 29. Since the velocities 
are not added in accordance with the classical formulas (ll.l 0), 
it can be expected that time in one coordinate system is not 
only expressed in terms of time in the other coordinate system, 
but also depends on coordinates. Hence the transformations 
have the following general form: 

x' = <1> 1 (x, y, z, t), y' = <1> 2 (x, y, z, t), 

z' = <1>3 (x, y, z, t), 
(13.1) 

where the right-hand sides contain certain functions <l>i whose 
form remains to be fo{i'nd. 

The general form of these functions is determined by the 
properties of space and time. While considering the geomet
rica! relations in a chosen coordinate system and while 
carrying out measurements in this system, we assumed that 
each point is identical to any other point. This means that the 
origin of the coordinate system can be moved to any point, 
and all geometrical relations between any geometrical objects 
remain identical to those obtained with the origin at any other 
point. 

This property is called the homogeneity of space, i.e. the 
property of invariance of the characteristics of space upon a 
transition from one point to another. 

Similarly, we can align the axes of the coordinate system 
arbitrarily at all points in space. The relations between 
geometrical objects also remain unchanged in this case. 

This means that the properties of space are the same in all 
directions. This property is called the isotropy of space. 

The homogeneity and isotropy of space are its principal 
properties in inertial coordinate systems. 
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Time also has the important property of homogeneity. 
Physically, this can be explained as follows. Suppose that a 
certain physical situation arises at a certain instant of time. 
The evolution ofthis event will occur at subsequent instants of 
time. Suppose that the same physical situatioq arises at 
another instant of time. If this event evolves. relative to this 
instant of time in exactly the same way as it did in the previous 
situation relative to the initial instant of time, it can be stated 
that time is homogeneous. In other words, 

the homogeneity of time is the identity of evolution and 
variation of a given physical situation irrespective of the 
instant at which it arose. 

It follows from the homogeneity of space and time that the 
transformations (13.1) must be linear. In order to prove this, let 
us consider an infinitesimal variation dx', i.e. the difference 
between the x -coordinates of two infinitely close points. In a 
K coordinate system, this difference will correspond to the 
infinitesimal differences dx, dy, dz in coordinates and dt in 
time. The total variation dx' associated with the variations of 
the quantities x, y, z and t can be calculated from (13.1) via a 
total differential, whose expression is known from . mathe
matics: 

, oct> 1 oct> 1 oct> 1 oct> 1 
dx = -dx + -dy + -dz + -dt. 

ax oy az at 
(13.2) 

In view of the homogeneity of space and time, these relations 
must be the same for all points in space at all instants of time. 
This means that the quantities oct>Jiox, oci> 1 /oy, oci> 1 /oz and 
oct>Jiot must be independent of coordinates and time, i.e. they 
must be constant. Hence the function ci>1 has the following 
form: 

(13.3) 

where A 1 , A 2 , A 3 , A4 and A 5 are constants. Hence the 
function ct> 1 (x. y, z, t) is a linear function of its arguments. 
Similarly, we can prove that the other functions ci> 2 , ci> 3 and cJ>4 

in the transformations ( 13.1) will also be linear functions of 
their arguments due to the homogeneity of space and time. 

The linearity of transformations also follows from the fact that 
if the acceleration of a point mass is zero in one inertial 
coordinate system, it will be zero in any other inertial coordinate 
system. This is a corollary of the definition of inertial systems. 

TRANSFORMATIONS FOR y AND z. The origin of each 
system is defined by the equalities x = y = z = 0 and x' = 
y' = z' = 0. We shall assume that the origins coincide at the 
instant t = 0. Then the free term A 5 in the linear transforma
tions like (13.3) must be zero, and the transformations for y 
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and z can be written in the form 

y' = a1x +a].)!+ a3z + a4 t, 

z' = h1x + b].)l + b3z + b4 t. 
(13.4) 

The alignment of the coordinate axes is shown in Fig. 29. 
The Y' -axis is parallel to the Y-axis, and the Z' -axis to the 
Z-axis. Since the X'-axis always coincides with the X-axis, the 
condition y = 0 always leads to the equality y' = 0, while the 
condition z = 0 leads to the equality z' = 0. In other words, we 
must have 
0 = a1x + a3z + a4 t, 

0 = b1x + b].)l + b4 t 
( 13.5) 

for all values of x, y, z and t. This is only possible under the 
condition 

(13.6) 

Hence the transformations for y and z assume the following 
simple form: 

y' = ay, z' = az, (13.7) 

where the coefficients in the transformations must be identical: 
y 3 = b3 = a because the Y- and Z-axes are equivalent relative 
to the direction of motion. The coefficient a in ( 13. 7) indicates 
the factor b)& which the length of a scale in the K' coordinate 
system is larger than that in the K coordinate system. 

We can write (13.7) 9J· an alternative form: 

I 1 
y=-y', z=-z'. (13.8) 

a a 

The quantity 1/a indicates the factor by which the length of a 
scale in the K system is larger than that in the K' system. 
According to the relativity principle, both coordinate systems 
are equivalent, and hence the scale length must vary when 
going from one system to another in the same way as it does 
when going in the reverse direction. Hence the equality lja =a 
must be obeyed in ( 13. 7) and ( 13.8), which means that a = 1 
(the other mathematically possible solution a = -1 is unac
ceptable since we chose the orientations of the axes so that the 
positive Y- and Z-directions coincide with the Y'- and 
Z'-directions). As a result, the transformations for y- and 
z-coordinates assume the form 

_ll = y, =' = =· (13.9) 

TRANSFORMATIONS FOR x AND t. Since the y- and 
z-variables are separately transformed, the x- and t-variables 
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can only be connected through a linear transformation with 
each other. The origin of a moving coordinate system has the 
coordinate x = vt in the stationary coordinate system and the 
coordinate x' = 0 in the moving system. Hence in view of 
linear transformations, we must have 

f 
x' = a(x - vt), (13.10) 

where u is the proportionality factor which has to be 
determined. 

Similar arguments can be used if we take the moving 
coordinate system to be at rest. In this case, the origin of the 
K system has the coordinate x' = - vt' in the K' system since 
the K system moves in the K' system in tpe negative 
X-directions. The origin of the K system is characterized by 
the equality x = 0 in the K' system. Hence, if we assume the K' 
system to be at rest, we arrive at the following transformation 
instead of (13.10): 

x = a'(x' + vt'), (13.11) 

where u' is the proportionality factor. We shall prove that in 
accordance with the relativity principle, u = u'. · 

Suppose that a rod is at rest in a K' system and has a length 
I in the system. This means that the coordinates of the ends of 
the rod in the system differ by /: 

x~-x'1 =l. (13.12) 

The rod moves at a velocity v in another K system. Its length 
will then be the distance between two points of the stationary 
system with which the ends of the moving rod coincide at the 
same instant of time. Let us mark the ends at the instant t0 • "In 
accordance with ( 13.1 0), we obtain the following expressions 
for the x'1- and x~-coordinates of the ends at this instant of 
time: 

x'1 = a(x1 - vt0 ), x~ = a(x2 - vt0 ). (13.13) 

Consequently, the length of the moving rod in the stationary 
K system is 

Let us now assume that the same rod is at rest in the K' 
system and has a length I in it. Consequently, the coordinates 
of the ends of the rod differ in the system by I. i.e. 

x 2 - x 1 =I. (13.15) 

In the K' system, taken as the stationary system, the rod moves 
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at a velocity v. In order to measure its length relative to the 
K' system, we must mark the ends of the rod at a certain 
instant t0 in the system. In accordance with (13.11 ), we have 

X1 = a'(x'l + Vlo), X2 = a'(x~ + Vlo). (13.16) 

Consequently, the length of the moving rod in the K' system 
which assumed to be stationary is 

I 

a' 
(13.17) 

According to the relativity principle, both systems are 
equivalent, and the length of the same rod moving in these 
systems at the same velocity must be the same. Hence we must 
have /fa= /fa' in (13.14) and (13.17), i.e. a= a', Q.E.D. 

Let us now make use of the postulate that the velocity of 
light is constant. Suppose that when the origins of the two 
systems coincide, at which time clocks at the two origins show 
the time t = t' = 0, a light signal is emitted from the origins. 
The propagation of light in the K' and K coordinate systems is 
described by the equalities 
x' = ct', x = ct, (13.18) 

where we have taken into account that the velocity of light in 
both systems has the same value c. These equalities describe 
the position of the light signal propagating in the X- and 
X'-directions at any instant of time in each coordinate system. 
Substituting (13.18) into,t(13.10) and (13.11) and considering 
that a = a', we obtain 

ct' = at(c- v), ct = at'(c + v). (13.19) 

Multiplying both sides of these equalities by each other and 
cancelling out t't, we obtain 

(13.20) 

We obtain from (13.11) and (13.10) that 

X X (I ) vt' = - - x' = - - a(x - vt) = avt + x - - a , 
a a a 

(13.21) 

whence, from ( 13.20), we gel 

(13.22) 



I . 
It is insufficient to obtain 
Lorentz transformations only 
by means of the principles of 
relativity and the constancy of 
the velocity of light. The homo
geneity and isotropy of space 
and the homogeneity of time 
must also be taken into con
sideration. 
Lorentz transformations can 
also be achieved on the basis of 
other requirements, say, the re
quirement of the invariancc 
of Maxwell's equations rela
tive to linear transformations of 
spatial coordinates and time. 
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LORENTZ TRANSFORMATIONS. The transformations 
( 13. 9), ( 13.1 0) and ( 13.22) connect together the coordinates of 
two systems moving relative to each other at a velocity v. They 
are called Lorentz transformations. Let us give these trans
formations all together: 

~'-"" -..:., 

{ 

(13.23) 

In accordance with the relativity principle, the inverse 
transformations have the same form, the only exception being 
that the sign of the velocity must be reversed: 

x' + vt' , , t' + (v/c2 )x' • 
X"= y = y z = 7 t = (13.24) 
. Jl-v2jc2' ' -· j1-v2jc2 . 

It is possible to get (13.24) from (13.23) without using the 
relativity principle. For this purpose, we must consider (13.23) 
as a system of equations in unprimed quantities and then solve 
the system. As a result, we obtain the expressions (13.24). We 
leave it for the reader to derive them by way of an exercise. 

GALILEAN TRANSFORMATIONS AS LIMITING CASE OF 
LORENTZ TRANSFORMATIONS. At limiting velocities that 
are much lower than the velocity of light, quantities of the 
order of v/c « 1 in Lorentz transformations can be neglected in 
comparison with the unity. In other words, all quantities vjc in 
Lorentz transformations can be put equal to zero. These 
transformations then assume the form of Galilean trans
formations (11.1). At lower velocities, the difference between 
Galilean and Lorentz transformations is insignificant, and 
hence the error in Galilean transformations remained unno-

. ticed for a long time. 
FOUR-DIMENSIONAL VECTORS. Four-dimensional vec

tors are defined in terms of the Lorentz transformations (13.23) 
which can be written in a form analogous to (6.20) with the 
help of the notation: x 1 = x, x 2 = y, x 3 = z and x4 = ict: 

I iv/c 
x'1 = x 1 + O·x2 + O·x3 + x4 , 

J1 - v2jc2 Jl - v2fc2 

x~ = O·x1 + l·x2 + O·x3 + O·x4 , 

(13.25) 
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Consequently, the projections of the four-dimensional vector 
{A 1 , A2 , A3 , A4 } must be transformed in accordance with the 
formula 

4 

A~= L a2YAY, (13.26) 
y=l 

where the a21 coefficients are defined by the transformation 
matrices (13.25): 

a«Y = 

0 0 
I iv/c 

J!- v2jc2 

0 

0 0 

0 

J!- v2/c2 

0 

0 
-ivfc I 

0 0 J! - v2jc2 Jt - v2/c2 

(13.27) 

It can easily be proved through direct substitution that the 
four-dimensional velocity is characterized by the following 
projections: 

Ux. Uy 

ul = Jt- l//c2' u2 = jl- u2/c2' 
u. ic ( 13.28) 

u3 = ' u4 =. ' J! - u2/c2 ·" J! - ul/c2 

where ux, uY and u, are the projections of the three-dimensional 
velocity, and u2 = u; + u: + u~. In this book, we shall not use 
the four-dimensional notation to present the special theory of 
relativity. This example has been included only to show how 
the definition of a physical vector given in Sec. 6 can be used 
to analyze the vector nature of physical quantities in four
dimensional space-time. 

If a set of four quantities forms a four-dimensional vector, 
they can be transformed from one coordinate system to 
another in accordance with (13.26), where the a21 coefticients· 
are defined by the matrix (13.27). It can easily be verified by 
direct inspection that the a21 coefficients satisfy the following 
important relations: 

4 {0 for y # p, 
L a«Y all(J = o«(J = - . 

2 = 1 I for y - p, 
(13.29) 
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Coordinate transformations with a,.1 coefficients satisfying 
the relations ( 13.29) are called orthogonal transformations. 
The most important property of such transformations is that 
they do not change the value of the square of the four
dimensional vector which is defined as the sum of the squares 
of the projections of the vector: f 

(13.30) 

In order to prove the statement, we express the square of the 
four-dimensional vector in a K' system in terms of its 
projections in another K system: 

4 

L, A~2 = L, a~1 A 1 a~PAP 
«= 1 a:,y.p. 

(13.31) 

This means that the square of the four-dimensional vector is 
an invariant of the transformations (13.26): 

L,A~ = inv. (13.32) 

Let us consider an example in which four-dimensional 
vectors can be used to solve some problems. In mechanics, 
considerable importance is attached to the energy-momentum 
vector of a particle whose projections are obtained as follows: 

( i£) 
(pt, P2• P3• P4) = Px• Py• P.,--;; , (13.33) 

where Px• pY, Pz are the projections of the three-dimensional 
momenta, i = J -1 is the imaginary unit, and E is the total 
energy of the particle. 

Using (13.33), we obtain the following formulas from (13.26): 

p~ = Py• p~ = p., 

(13.34) 
E- V'P E'= X 

Jl- v2jc2 

For the four-dimensional energy-momentum vector (13.33), 
the relation (13.32) assumes the form 

(13.35) 
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3. Coordinate Transformations 

The value of this invariant can conveniently be calculated for a 
particle at rest, when p = 0, and E = E0 is the energy of the 
particle with zero momentum. It will be shown later that 
E0 = m0 c2 , where m0 is the rest mass of the particle. From 
(13.32) we obtain 

· E~ 2 2 mv = - 2 = - m0 c . 
c 

( 13.36) 

Equation (13.35) then assumes the form p2 - E2 jc2 = -m~c2 • 
This leads to the following important formula connecting the 
total energy of the particle with its momentum: 

E = cjp2 + m~c2• (13.37) 

Thus, equations (13.34) and (13.37) are corollaries of the 
statement that the set of quantities (13.33) forms a four
dimensional vector without any additional assumptions being 
made about these quantities. 

3.1. An aeroplane flies north a distance I for a time / 1 , and flies for a time /2 

on its return because of a north-easterly wind. Find the velocity of the 
aeroplane when there is no wind, and the velocity of the wind. 

3.2. An aeroplane flying at a velocity v has a range I of flight when there is 
no wind. Wha( will its range be if it flies in a head wind of velocity u 
directed at an angle <p to the plane of the trajectory relative to the 
Earth? ('ll 

3.1. 1(1/tf + l/d)112/.j2, /(1/12 - l/1 1)/.ji. 3.2. l(v2 - u2 )j 
[v(v2 - u2 sin2 <p) 1' 2]. 



Chapter 4 
Corollaries of Lorentz Transformat~OI}S 

Basic idea: 
The experimental verification of the results of Lorentz 
transformations serves as the verification of the basic principles 
of the special theory of relativity. 

Sec. 14. RELATIVITY OF SIMULTANEITY 
The relativity of simultaneity 
and the invariance of an inter
val arc discussed. 

DEFINITION. Two events occurring at different points x1 and x 2 

of a coordinate system are said to be simultaneous if they occur 
at the same instants of time according to the clock belonging to 
the coordinate system. The instants at which these events occur at 
each point are registered by two clocks located at each point. We 
shall assume that two events occur simultaneously at points x 1 

and x2 in a stationary coordinate system at the instant t0 • 

The same events occur at points x'1 and x~ in a moving 
coordinate system at the instants t'1 and t~, where t'1 and t~ are 
the readings on two clocks in the moving coordinate system 
located at points x'1 and x~. The primed and unprimed 
quantities are related via the Lorentz transformations (13.23): 

(14.1) 

Since the events occur at points along the X -axis, the y- and 
z-coordinates are zero in both systems. It can be seen from 
( 14.1) that these events do not occur simultaneously (i.e. 
t~ # t'1 ) in the moving coordinate system and are separated by 
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Albert Einstein ( 1879-1955) 
One of the founders of modern 
physics, Einstein was born in 
Germany. He lived in Switzerland 
from 1893, in Germany from 
1914, and migrated to the USA 
in 1933. He was one of the 
founders of the special theory 
of relativity and also created 
the general theory of relativity. 
He wrote a number of fundamen
tal articles on the quantum theory 
of light (introduced the concept 
of photon, the photoelectric effect, 
predicted induced radiation~ He 
developed the molecular-statistical 
theory of Brownian movement 
and quantum statistics. 

4. Corollaries of Lorentz Transformations 

a time interval given by 

, , , (vjc2)(x1 - x 2) 
!it = I 2 - I 1 = · Jl - v2jc2 

(14.2) 

Thus, events that occur simultaneously in one coordinate 
system are not simultaneous in another system. 

The concept of simultaneity is therefore not absolute in the 
sense that it depends on the coordinate system. To impart 
meaning to the statement that two or more events are 
simultaneous, we must indicate the coordinate system to which 
the statement refers. 

The problem concerning the relativity of simultaneity and 
the physical meaning of the Lorentz transformations was 
solved by Einstein. 

The relativity of simultaneity can also be demonstrated as 
follows. The readings on two clocks located at different points 
along the X-axis in a stationary coordinate system (Fig. 35) 
are compared with the readings on two clocks located at 
different points along the X'-axis in a coordinate system 
moving at a velocity v. Figure 35 shows the time at different 
points in the moving coordinate system corresponding to the 
instant t = 0 in the stationary coordinate system. 

RELATIVITY OF SIMULTANEITY AND CAUSALITY. It can 
be seen from,(l4.2) that for x1 > x 2 , the inequality t~ > t'1 is 
satisfied in the coordinate system moving in the positive 
X-direction (v > 0), while t~ < t'1 in the coordinate system 
moving in the opposite d'frection (v < 0). Thus the consequence 
in which events occur in different coordinate systems is 
different. One might ask whether it is possible for a cause to 
precede its effect in one system, while in another system, on the 
contrary, for an effect to precede its cause. It is obvious that 
such a situation could not be admissible in a theory which 
recognizes the objective role of the cause-and-effect sequence 
in the world: a cause and its effect cannot be interchanged 
simply by looking at the events from a different point of view. 

In order to make the cause-and-effect sequence objective 
and independent of the coordinate system in which it is 
considered, it is essential that no action which establishes a 
physical connection between two events occurring at different 
points in space can take place at velocities exceeding that of 
light. 

In order to prove this, let us consider two events taking 
. place in a stationary coordinate system. Suppose that an event 
occurring at point x 1 at an instant t 1 is responsible for an 
event occurring at point x 2 > x 1 at' an instant t2 > t 1 . The 
velocity at which the "influence" of the action at point x 1 is 
perceived at point x 2 is denoted by vinr· Obviously, we have 



Fig. 35. Relativity of simultaneity. 

In the stationary coordinate system, 
the clocks located at different points 
where some events are simultaneous 
show that the events are completed 
at the same time. In the moving 
coordinate system, the clocks show 
that some events are completed at 
different times, i.e. the events are 
not simultaneous there. 

14. Relativity of Simultaneity 

eeeJ-e&~ 
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from the definition of velocity 
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(14.3) 

These events occur at two points x~ · and x~ in a moving 
coordinate system at instants t'1 and t~. According to ( 13.22), 
we have 

, _, _t2 -t1 -(vjc2 )(x2 -xd_ t2 -t1 ( _..':._.) 
t 2 t 1 - - l 2 Vmr ' 

jl- v2 jt2 Jl- v2 jc2 c 
(14.4) 

where the difference x 2 - x1 has been eliminated from the last 
equation using (14.3). Equation (14.4) shows that if 

v 
l- 2vinf < 0, 

c 
(14.5) 

then an effect would precede its cause in the moving 
coordinate system, which is impossible. Hence we must always 
have l - (vv;nr/c2) > 0, or 

c 
V;nr <-c. (14.6) 

v 
Since the Lorentz transformations allow values of v which 

can approach c but do not exceed it (otherwise the trans
formations are no longer real), (14.6) can be written as: 

(14.7) 

Thus, a physical effect due to an event at one point cannot 
propagate to another point at a velocity exceeding that of light. 
Under this condition, the causality of events is absolute in 
nature: there is no coordinate system in which a cause and its 
effect can be interchanged. 

INTERVAL INVARIANCE. The significance of transforma
tion invariants for a theory was emphasized in Sec. 11. The 
invariants of Galilean transformations are the linear dimen
sions of a body and the interval of time between events. This is 
why the concepts of length and time interval play such an 
important role in classical physics. 
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The theory of relativity does 
not prove the causality prin
ciple. The theory is based on 
the assumption that the causal
ity principle holds and must be 
valid in all coordinate systems. 
This imposes a restriction on 
the velocity at which physical 
action can be transmitted. If the 
interval between events is 
spatially similar, we can choose 
a coordinate system in which 
the events occur simultaneously 
at different points in space. 
If the interval between events is 
time similar, we can choose a 
coordinate system in which the 
events occur successively at the 
same point in space. 

4. Corollaries of Lorentz Transformations 

However, neither length nor the time interval between 
events are invariants of Lorentz transformations. This means 
that they depend on the coordinate system. We shall consider 
this question in greater detail in later sections. For the present, 
we shall simply mention this fact in order to analyze an 
important invariant of a Lorentz transformation, viz. the 
space-time interval, or just interval. 

Suppose that two events occur at points (x 1 , y 1 , z1) and 
(x 2, y 2, z 2) at instants 11 and 12 respectively. The interval 
between these events or, in brief, the interval between points 
(x 1 , y 1 , z1, 11) and (x2 , Y2· z2 , 12) is the quantity s whose 
square is given by the formula 

S 2 = (Xz - x1f + {yz - Yt)2 

+ (zz- zl)2- c2(12- 11)2. (14.8) 

This quantity has the same value in all coordinate systems and 
is thus an invariant of Lorentz transformations. In order to 
verify this, let us transform (14.8) in the K' coordinate system 
using (13.24). This gives 

.1"2 r, =y2-y'I, 

z 2 - = 1 = z~~- z'l ' 

t' - 1' + (v/c2) (x' - x' ) 
1 1 _2 I 2 I 
2- I- · J1- v•jc2 

Substituting these expressions into (14.8), we obtain 

s2 = (x2- x.)z + (y2- Yt)2 

+ (z2- zl)2- c2(t2- !1)2 

= (x2 - x'1 )2 + (r2 - .v'1 )2 

+ (z~ - z'd2 - cz (t~ - t'Y = s'2. (14.9) 

This proves that the square of the interval is an invariant: 
s2 = s' 2 = inv. 

If the points under consideration are infinitesimally close to 
each other, Eq. (14.9) proves the invariance of the square of the 
differential of the interval: 

(14.10) 

SPATIALLY SIMILAR AND TIME-SIMILAR INTERVALS. 
Let us denote the spatial distance between two events by I, and 



14. Relativity of Simultaneity Ill 

the interval of time between them by t. The square 
s2 = f2 - c2t 2 of the interval between these events is an 
invariant. 

Suppose that two events cannot causally be related in a 
coordinate system. For such events, I> ct and hence .1·2 > 0. It 
follows from the invariance of the interval that thepe events 
cannot causally be related in any other coordinate system. The 
converse is also true: if two events are causally related in a 
coordinate system (I< ct and .1·2 < 0). they are causally related 
in all other coordinate systems. 

The interval for which 

(14.11) 

is called a spatially similar interval, while the interval _for which 

(14.12) 

is called a time-similar interval. 
The interval for which 

s2 = 0 (14.13) 

is called the zero interval. Such an interval occurs between 
events that are connected via a signal that propagates at the 
velocity of light. 

If the interval between two events is spatially similar, we can 
choose a coordinate system in which the events occur at 
different points in space at the same instant of time 
(s2 = P > 0 and t = 0), ~d there is no coordinate system in 
which these events could occur at the same point (in this case, 
we would have I= 0, i.e. s2 = -c:2t2 < 0, which contradicts 
the condition s2 > 0). 

If the interval between two events is time similar, we can 
choose a coordinate system in which the events can occur in 
succession at the same point in space (I= 0 and s2 = 
-c2 t2 < 0), and there is no coordinate system in which these 
events could occur simultaneously (in this case, we would have 
t = 0, i.e. s2 = 12 > 0, which contradicts the condition s2 < 0). 

Thus, for events that are causally related, we can always 
choose a coordinate system in which these events occur at the 
same point in space at successive instants ~f time. 

Spatial similarity, time similarity or the fact that a zero 
interval occurs between two events are independent of the 
coordinate system. This is just the property of in variance of the 
events themselves. 

Example 14.1. Find a coordinate system in which two events 
separated by a spatially similar interval take place simulta
neously at different points, while two events separated by a 
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time-similar interval occur successively at the same point in 
space. 

If the events occur at point x 1 = 0 at t 1 = 0 and at point x 2 

at t = t 2 , and if the interval between them is spatially similar 
(s2 = x~ - c2 t 2 > 0), the spatial separation between the events 
in a coordinate system in which the events occur simulta-
neously will be given by x~ = Js2 • The velocity of this 
coordinate system is obtained from the Lorentz transforma
tions. Assuming that the origins coincide at the instant of 
occurrence of the first event (i.e. assuming that x'1 = 0 and 
t'1 = 0), we can write the following expression for the second 
event: 

, t2 - x 2 v/.c2 

t2 = 0 = . 
ji- v2/c2 

(14.14) 

This gives v = t 2c2 jx2 • 

If the two events are separated by a time-similar interval 
(s2 = x~- c2 t2 < 0), the time interval between the events in a 
coordinate system in which they occur successively at the same 
point in space is t~ = J -s2 jc. In order to determine the 
coordinate system, we can write 

( 14.15) 

which gives v = x 2/t 2 • 

Sec. 15. LENGTH OF A MOVING BODY 

The relativistic contraction of 
the length of a moving body 
and its reality are discussed. 

DEFINITION OF THE LENGTH OF A MOVING BODY. The 
length of a moving rod is the distance between the points in a 
stationary coordinate system, which coincide with the ends of 
the moving rod at a certain instant of time indicated by the 
clock located in the stationary coordinate system. Thus, the 
ends of the moving rod are recorded at the same instant of 
time in the stationary coordinate system. Two clocks in the 
moving coordinate system, which are located at the ends of the 
rod when the ends are recorded, will show different times, as 
can be seen from Fig. 35. In other words, the ends of the rod 
are not simultaneously recorded in the moving coordinate 
system. This means that the length of the rod is not an invariant 
of the Lorentz transformations and has different Pa!ues in 
different coordinate systems. 

FORMULA FOR THE REDUCTION IN THE LENGTH OF A 
MOVING BODY. Let a rod of length I be at rest along the 
X' -axis in the K' coordinate system. It should be noted that 
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when we speak of a body of a certain length, we always mean 
the length of the body at rest. We denote the coordinates of the 
ends of the rod by X 11 and x;. Then, by definition, x; - X 11 = I. 
The quantity I is unprimed in this relation because it 
corresponds to the length of the rod in the coordin~e system 
in which it is at rest. In other words, I correspontls to the 
length of the stationary rod. 

Let us mark the position of the ends of the rod moving at a 
velocity v in a K coordinate system at the instant t0 • Using the 
Lorentz transformation formulas, we can write 

I xi - vto 
XI=--;~=== 

j1- v2/c 2 ' 

( 15.1) 

whence 

1 I X2- X1 f 
I= x 2 -x1 = = , (15.2) 

Jt - v2/c2 Jt - v2/c2 

where I'= (x2 - x 1) is the length of the moving rod. Writing 
(15.2) in the form 

( 15.3) 

we note that the length of the moving rod in the direction of 
motion of the coordinate <Jystem is smaller than the length of the 
stationary rod. Naturally, if this argument is repeated by 
assuming that the K 1 coordinate system is the stationary 
system, we obtain (15.3) again for the reduction in the length of 
the moving rod in accordance with the requirements of the 
relativity principle. 

If the rod is perpendicular to the direction of motion, i.e. if it 
lies along the Y~- or Z'-axis, equations (13.23) show that the 
length of the rod remains unchanged. Thus, the size of a body 
does not change in a direction perpendicular to the direction of 
motion. 

CHANGE IN THE SHAPE OF A MOVING BODY. Since the 
length of a body is reduced in the direction of motion in 
accordance with (15.3), although its dimensions in the perpen
dicular direction remain unchanged, the shape of a moving 
body changes, and the body is "flattened" in the direction of 
motion. 

Let us clarify the physical meaning of this change in the 
shape of a moving body. If the moving body is observed with 
an ordinary optical instrument, in, say, visible light, it will not 
appear to be flattened as predicted by the Lorentz trans
formations. 

The change in the shape of a moving body has the following 
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The contraction of moving 
bodies and the deformation of 
their shape are real phenomena 
since they lead to observable 
physical consequences. 
While considering the acceler
ated motion of bodies in the 
theory of relativity, we cannot 
use the concept of their perfect 
rigidity. 

4. Corollaries of Lorentz Transformations 

physical meaning. The coordinates of all the points on the 
surface of the moving body are marked in a stationary 
coordinate system at a certain instant of time. Thus, an 
instantaneous "mould" of the moving body is obtained at a 
certain instant of time. The shape of the "mould" which is at 
rest in the stationary coordinate system is taken as the shape 
of the moving object. The "mould" would not have the same 
shape as the body if the latter were at rest. In fact, the "mould" 
is found to be flatter than its original at rest. 

In this sense, the effect of flattening of moving bodies is a 
real effect. 

The situation is quite different if the shape of the moving 
body is visually observed. Two factors are responsible for this 
changed situation: firstly, rays from different parts of the body 
arrive at the observer at different instants of time; secondly, 
aberration takes place changing the apparent direction from 
which the rays arrive at the observer. It has been shown by 
calculation that as a result of these circumstances, the shape of 
the body being visually observed does not coincide with the 
shape obtained as a result of the Lorentz transformations. 

ESTIMATION OF THE MAGNITUDE OF CONTRACTION. 
The velocity of any body is usually much smaller than the 
velocity oflight, i.e. vfc « I. Hence (15.3) can be represented in 
alternative form with an error not exceeding the first-order 
terms in v2fc,2 : 

r~t(I-~;:). ( 15.4) 

Consequently, the relative magnitude of the reduced length is 
AI 1'-1 lv2 

-=-= --- (15.5) 
I I 2 c2 • 

For velocities of the order of tens of kilometres per second, 
v2fc2 ~ 10- 8 , and hence the relative decrease in length is less 
than 10- 8 . Such a small change is not easily observed. For 
example, a body whose length is I m will contract by less than 
10- 6 em. The Earth's diameter is slightly more than 
12,000 km. The Earth revolves around the Sun at a velocity 
v = 30 km/s, and this reduced its diameter by just about 6 em 
in the reference frame fixed to the Sun. On the other hand, this 
reduction is significant at higher velocities. For example, if a 
body has a velocity of about 0.85c, its length is reduced by half. 
If a body has a velocity close to the velocity of light, its length 
becomes very small. 

ON THE REALITY OF CONTRACTION OF A MOVING 
BODY. The following question may be asked in connection 
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Fig. 36. Diagram of the experi
ment demonstrating how scales 
are contracted. 
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with what has been stated above about the shape of a moving 
body and the shape observed in light rays: Is the contraction of 
the body real, and if so, what does it mean? One can answer as 
follows: The change in the shape of the moving body is real 
since its physical consequences can actually be o.bserved. In 
order to verify this, let us consider the followihg physical 
situation. 

Three stationary sources of light (for example, lasers) A, B 
and C are situated on the same straight line at a distance a 
apart (Fig. 36). These sources can simultaneously emit short 
pulses of light in a direction perpendicular to the straight line 
on which they are situated. These pulses are recorded on a 
photographic plate D. A body (say, a ruler) can move between 
the light sources and the plane of the photographic plate in a 
direction parallel to AC. If the ruler intercepts the light pulse 
from a source to the photographic plate, the light ray will not 
be recorded on the plate. 
Case 1. Suppose that a stationary ruler has a length 
L < 2a (L > a). In this case, it can obstruct either one of the 
three sources A, B or C, or two of them, viz. A and B or B and 
C, depending on its position between the light sources.and the 
photographic plate. It may so happen that it may screen the 
source B, while the sout'ces A and C remain unobstructed. If all 
the three sources of light flash simultaneously for different 
positions of the ruler, the following combinations of spots will 
be observed on the photographic plate: (a) all the three spots 
are recorded (the ruler does not lie inside the segment AC); 
(b) any two of the three spots are recorded (the ruler obstructs 
one of the sources), this also includes the case when the source B 
is covered by the screen and hence only A and C are recorded; 
(c) either of the spots from A or C is observed, while the other 
two are obstructed by the ruler. The situation in which A and 
C are covered, while B is recorded, is not possible in practice. 
Case 2. Let us consider a longer ruler for w!J.ich L > 2a. 
Moving this ruler between the light sources and the photo
graphic plate and recording the spots on the plate when all the 
three sources flash at the same time, we may observe the 
following combinations of spots: (a) all the three spots are 
recorded (in this case, the ruler does not lie inside the segment 
AC); (b) two spots (from A, B or B, C) are observed (the ruler 
screens one of the extreme sources). The situation in which A 
and Care observed, while B is covered, is not possible, i.e. it is 
impossible to obtain a photograph in which spots from A and 
C are observed, but there is no spot from B; note that such a 
situation would be possible if the ruler were smaller (as in 
Case I); (c) only one spot from A or Cis recorded, while the 
remaining two are covered by the ruler. The situation in which 
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A and C are covered and B leaves a spot on the photographic 
plate is impossible; (d) no ray is recorded on the photographic 
plate. In this case, all the three sources are covered by the ruler. 
Note that such a situation would be impossible if the ruler 
were smaller (as in Case 1). 

Case 3. Let us now move the same ruler (L > 2a long) 
between the light sources and the photographic plate parallel 
to AC at such a velocity v that LJ! - v2fc 2 < 2a and record 
the flashes from the sources on the photographic plate. In this 
case, we obtain all the possible combinations of spots as in 
Case I when a smaller ruler was used. Among other combi
nations, we also encounter the situation in which two spots 
from A and C are recorded, while there is no spot from B, a 
situation which was impossible in Case 2. On the other hand, 
we shall never observe a photograph in which one of the three 
spots is not recorded, a situation which was possible in Case 2. 
Hence we conclude that this case is analogous to Case 1, i.e. 
the length of the moving ruler is smaller than 2a. This means 
that there is as much meaning in the statement that the length 
of the moving ruler has been reduced to below 2a as in the 
statement that the length of the stationary ruler in the first case 
is smaller than 2a. Consequently, the contraction of moving 
bodies is real and not a virtual phenomenon. It leads to 
tangible results whose reality is beyond doubt, as can be seen 
in the examp1es considered above. 

Let us now analyze the same phenomena in a reference 
frame associated with thcfmoving ruler (case L > 2a). In such a 
reference frame, the light sources and the photographic plate 
move in the negative direction at a velocity - v. In view of 
contraction, the distance between the sources A and C will be 
2aJI - v2/c 2, i.e. the sources will be separated by a distance 
much smaller than the length L of the stalionary ruler. In spite 
of this, pulses from the sources A and C can by-pass the ruler 
and leave spots on the photographic plate. This is due to the 
relativity of simultaneity. Flashes from sources which are 
simultaneous in a reference frame in which they are at rest will 
not be simultaneous in a reference frame in which they are 
moving. Hence the flashes from the sources A, B and C do not 
occur simultaneously in the reference frame associated with the 
ruler. In the situation under consideration, the flash from the 
source C occurs earlier by an interval !lt' = (2avfc2 )/JI - v2 jc2• 

During this time, the light sources cover a distance !lt'v, and 
hence the second spot will be recorded at a distance 

2av2 2a 
-~== + 2aJl- v2jc2 = (15.6) 
cz Jt - v2fcz Jt - vzjc2 
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from the first spot. Here, we have considered that the distance 
between the moving sources is 2aJ!- v2fc2• At an appro
priate velocity, when 

2a 
--:=== > L, I (15.7) 
J! - vz;cz 

the pulse of light from the source A will also by-pass the ruler 
L and leave a spot on the photographic plate. Hence, in order 
to explain the observed phenomenon in the reference frame 
associated with the moving ruler, we must take into account 
both the contraction of the moving body and the relativity of 
simultaneity. 

ON CONTRACTION AND PERFECT RIGIDITY QF A BODY. 
Let us consider two stationary isolated point masses x 1 and x 2 

(x 2 > x 1) which are not connected to each other. The distance 
between the point masses is I= x 2 - x 1• Let us assume that 
the point masses are accelerated for a certain period according 
to the same law in the positive x-direction. This means that the 
velocities of the two point masses will be equal at each instant 
of time, and hence the paths covered by them from the starting 
point will also be the same. This leads to the conclusion that 
the distanc6"" between the moving point masses will remain 
equal to I during the course of their acceleration. However, the 
situation will be different from the point of view of observers 
moving with an acceleration and stationary relative to the 
point masses. If they could somehow measure the distance 
(say, using a light signal), they would observe that the distance 
between the point masses had increased as a result of the 
acceleration. Let us suppose that the acceleration is discon
tinued when the point masses attain a velocity v in a stationary 
reference frame, and that the point masses move uniformly at 
this constant velocity v. In this case, if the observers stationary 
relative to the point masses measured the distance between 
them, they would conclude that the distance between them had 
increased to I 1 J! - v2/c 2• However, this result can easily be 
explained. For a stationary observer, both point masses are 
synchronously accelerated and have the same velocity and 
acceleration at each instant of time. For the observers sta
tionary relative to the point masses, however, the motion will 
not be synchronous due to the relativity of simultaneity. In the 
present case, they will find that the acceleration of the point 
mass x 2 precedes that of the point mass x 1 , and hence the 
point mass x 2 moves farther than the point mass x 1• 

Let us now suppose that the point masses are connected 
through a weightless spring and are identically accelerated in a 
stationary reference frame. It is clear from what has been 
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stated above that to the observers stationary relative to the 
point masses x 1 and x 2 the spring will be stretched during the 
acceleration, and the potential energy of deformation will be 
accumulated in the spring. This energy is supplied by the 
engines which power the acceleration of the point masses. If 
the point masses are connected by a petfectly rigid rod, an 
infinite amount of energy is required to create an infinitesimal 
deformation. Obviously, it is impossible to describe the 
acceleration of both point masses through the same law. This 
leads to the conclusion that when the acceleration of bodies is 
being considered, we cannot assume that they are perfectly rigid. 

Example 15.1. A rod of length I lies at an angle a' to the 
X'~axis in a K' coordinate system moving at a velocity v. Find 
the length r of the rod and the angle a which it forms with the 
X -axis in a stationary coordinate system. 

Denoting the coordinates of the ends of the rod in the 
K' system by (x'1, y'1) and (x~, y~). we can write 

lx = x~- x'1 = /cos a', 

IY = y~ - y'1 = I sin a'. 
(15.8) 

The coordinates (x1, y 1) and (x2, y 2) corresponding to the 
points where the two ends of the moving rod are at the same 
instant in the K system satisfy the following relations in 
accordance with Lorentz transformations: 

(15.9) 

By definition, the length I' of the moving rod is 
j(x2 - x 1) 2 + (y2 - y1) 2 . As a result, we can write the follow
ing expressions for I' in the stationary coordinate system: 

I'= )12 cos2 a' (I - ~2) + P sin2 a', 

Y2- y 1 tan a' 
tan a= = , 

x2- xl Jl- ~2 

(15.10) 
v 

~ = -. 
c 

Sec. 16. PACE OF MOVING CLOCKS. INTRINSIC TIME 
The sl ,,wing down of the pace 
of moving clocks and the twin 
paradox arc discussed. 

SLOWING DOWN OF THE PACE OF MOVING CLOCKS. 
Suppose that two events occur successively at point .x'0 in a 
moving K' coordinate system at the instants 1'1 and 1'2• The 
events occur at different points in a stationary K coordinate 
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system at the instants t 1 and t2 • The time interval between the 
events in the moving coordinate system is 11t' = t~ - t'1, while 
the time interval in the stationary coordinate system is 
11t = t2 - t1. 

On the basis of the Lorentz transformations, we/ can write 

t'1 + (v/c2)x~ t~ + (v/c2)x~ · 
t1 = . t2 = . (16.1) 

j1 - v2fc 2 j1 - v2/c2 

Consequently, we obtain 

t2 - t11 11t1 

11t = t 2 - t 1 = ----r===:o==:o 
j1 - v2/c2 j1 - v2fc 2 

(16.2) 

Thus, the time interval 

(16.3) 

between the events measured by the moving clocks will be less 
than the time interval/1t between the same events measured by 
the stationary clocks. This means that the pace of moving clocks 
is slower than that of stationary clocks. 

It may appear"'ihat this is in contradiction with the relativity 
principle since the moving clocks can be assumed to be 
stationary. However, any contradiction is only apparent. The 
time recorded at the same moving point is compared in (16.3) 
with the times at different stationary points. Hence, in order to 
apply the relativity principle, we must compare the times at the 
different points of a moving coordinate system with the time at 
the same point in a stationary coordinate system. 

Let us make this comparison. Suppose that two events 
occurred successively at a certain point in a K coordinate 
system, say, point x 0 along the X -axis, at the instants t 1 and t 2• 

The time interval between these two events is 11t = ·t 2 - t 1. In a 
K 1 coordinate system, which is assumed to be stationary, these 
events occurred at different points at the instants 111 and t~. In 
accordance with (13.23), we have 

I t 1 - (vfc2)xo I t2 - (vfc2)xo 
t1 = t2 = 0 (16.4) 

j1 - v2fc 2 ' Jl - v2fc 2 

Consequently, 

t - t 11t 
l1t' = t~ - tl1 = 2 1 (16.5) 

Jl - v2/c2 Jl - v2/c2. 

However, 11t1 is now the time interval between the events in the 
stationary coordinate system, while 11t is the time interval 



120 4. Corollaries of Lorentz Transformations 

between the same events in the moving coordinate system. 
Thus, formula (16.5) has the same meaning as formula (16.2), 
and there is no contradiction with the relativity principle. 

INTRINSIC TIME. Time measured with a clock associated 
with a moving point is called the intrinsic time of the point. 
For an infinitesimal time interval in (16.3), we can write 

(16.6) 

where d-r is the differential of the intrinsic time of the moving 
point, and dt is the differential of time in the inertial 
coordinate system in which the point has a velocity v at that 
instant. It should be noted_ that d-r is the change in the reading of 
the same clock associated with the moving point, while dt is the 
difference between the readings of different clocks situated at 
adjacent points in the stationary coordinate system. 

It was shown in Sec. 14 (formula (14.10)) that the differential 
of the interval is an invariant. Since dx2 + dy2 + dz2 = dr2 is 
the square of the differential of the distance between two 
adjacent points in space, we can transform (14.10) for the 
square of the differential of the interval as follows: 

ds J I (dr)2 J-v2 
--:- = c dt I ~ - - = c dt I - -. 
z c2 dt c2 

(16.7) 

For the events between,liWhich the interval is calculated, we 
have taken two consecutive positions of the moving point and 
have considered that (dr/dt)2 = v2 is the square of its velocity. 
The imaginary unit i = J-=l in this formula arises because 
ds2 = dr2 - c2 dt2 = (- I) (c2 dt2 - d/). A comparison of 
(16.6) and (16.7) shows that the differential d-r of the intrinsic 
time can be expressed in terms of the differential of the interval 
as follows: 

ds 
d-r=-. 

ic 
(16.8) 

It can be seen from ( 14.1 0) that the differential of the interval is 
an invariant. Since the velocity of light is constant, we can 
conclude from (16.8) that the intrinsic time is an invariant of 
Lorentz transformations. 

This is quite natural since intrinsic time is determined from 
the reading of the clock associated with the moving point, and 
the coordinate system in which the reading is taken is 
immaterial. 
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Fig. 37. Diagram of the creation 
and decay of a muon. 
Experiments on the decay of this 
particle confirmed the time-dilatation 
formula obtained from the theory of 
relativity. 

Lorentz transformations are 
valid only for inertial reference 
frames. Therefore, the daily rate 
of a Lime pace cannot be 
analyzed in the reference frame 
fixed to the Earth's surface 
while flying around the Earth 
eastwards or westwards. 
Acceleration does not affect the 
daily rate of a time pace. 
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EXPERIMENTAL CONFIRMATION OF TIME DILATA
TION. Many experimental confirmations of time dilatation are 
known at present. One of the first confirmations was obtained 
during studies of muon decay. Most of the known elementary 
particles have very short lifetimes (10- 6 s or less), after which 
an elementary particle decays and is transformed Into some 
other particles. 

The pi-meson (n-meson) is an elementary particle. There are 
three kinds of pi-mesons, viz. positive (7t +-mesons), negative 
(1t- -mesons) and neutral (n°-mesons). Positive pi-mesons 
decay into positive muons and neutrinos: 

(16.9) 

The neutrino is a neutral particle which weakly int1nacts with 
matter. After a certain interval of time, muons decay into 
positrons and two neutrinos: 

(16.10) 

The positron is a particle with a mass equal to that of an 
electron but with a positive charge. The creation and decay of 
a muon are shown in Fig. 37. 

There are differ~t ways of recording charged particles and 
of determining their velocities. This enables us to find the mean 
lifetime of a particle. If the time dilatation effect takes place, 
the mean lifetime of a muon must be the longer, the higher its 
velocity v: 

.(0) 
p+ 

·~~+ = . Jt - v2fc 2 
(16.11) 

where 1:~0~ is the mean lifetime determined by a clock 
associated with the muon, i.e. the intrinsic lifetime, and •,.+ is 
the mean lifetime shown by a clock in the laboratory reference 
frame. In the absence of time dilatation, the dependence of the 
mean pathlength I on .velocity is · 

I= 1:<01 v p+ • (16.12) 

i.e. the pathlength is a linear function of velocity. In the case of 
time dilatation, we have 

I= •<OI v 
p+J ' I - vz;cz 

(16.13) 

which means that the pathlength is larger than in the absence 
of time dilatation and is not a linear function of velocity. 

The study involved atmospheric muons created by cosmic 
rays. In this case, it was impossible to record the generation 
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and decay of an individual muon, nor was it necessary to do 
so. The decay of a muon following the scheme in (16.10) is 
a random event, and the probability of the muon's decay 
over a path dx is dx/1. Consequently, the number density N of 
muons decreases over the path dx by dN = -N dxfl. 
Hence N decreases thus: N(x) = N(O)exp ( -x/1), so that 
I= x/ln [N(O)/N(x)]. 

The problem therefore reduces to the measurement of the 
number density of muons at two points along their path. Of 
course, in this case, we must measure only muons with one 
particular momentum (velocity), but this can be done using 
methods developed in the physics of cosmic rays. As muons 
pass through the atmosphere, their number density decreases 
due to both their spontaneous decay and to absorption by 
atoms in the atmosphere. This muon absorption rate has been 
studied thoroughly and can be taken into account. Hence 
measuring the decrease in the number density of muons as 
they pass through the atmosphere, we can determine the mean 
path I traversed by a muon before it decays. Carrying out the 
measurements for muons with different momenta (velocities), 
we obtain the dependence of I on velocity v. This allows us to 
determine which of the two formulas (16.12) or (16.13) is 
confirmed experimentally. The studies showed that (16.13) 
holds with an intrinsic lifetime of t~0J = 2 J.l.S for the muon. 

Time dilatation plays a significant role in the operation of 
modern accelerators where it is frequently required to direct 
particles from their sou&e to a distant target with which the 
particle is to interact. This would be impossible if there were 
no time dilatation since the time spent by the particles in 
covering such distances is tens and even hundreds of times 
longer than their intrinsic lifetimes. For example, the intrinsic 
lifetime of a 1t+ -meson is t~0J ~ 2.5 x 10- 8 s. After this, it 
decays into a muon and a neutrino. A 1t+ -meson can only 
cover a distance of I~ 2.5 x 10- 8 x 3 x 108 ~ 7.5 m during 
its lifetime even at the velocity of light. But the 7t+ -meson 
targets are often situated some tens of metres away from the 
source, and still 7t +-mesons safely reach such distant targets. 
For example, if a 7t+ -meson moves at a velocity differing from 
that of light only in the sixth decimal place (i.e. if 
vfc ~ 1-2 x 10- 6 ), its mean lifetime is t,+ ~ 2.5 x 10- 8/ 

J!- (1-2 x 10- 6) 2 ~ 1.25 x 10- 5 s. During this time, it can 
cover a distance of over I km and so reach the target much 
farther away than 7.5 m, the distance corresponding to its 
intrinsic lifetime. 

An experiment was performed in 1972 on time dilatation by 
means of atomic clocks which can measure time with a very 
high precision. The basic idea of the experiment was to use 



Fig. 38. Experiment for verifying 
time dilatation in flight around 
the Earth. 
After a round-the-world flight, the 
clock mounted on an aeroplane flying 
eastwards is found to be slower than 
the clock on the Earth, while 
the clock on an aeroplane flying 
westwards is faster. 
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three identical atomic clocks, leaving one unmoved and 
sending the other two by jet aeroplanes around the world, one 
westwards and the other eastwards. The readings of the clocks 
were compared after they had been returned to the starting 
point. 1 

Let us consider the pace of all the clocks in a refer~nce frame 
fixed to the Earth's centre. This reference frame is inertial, and 
we can use the formulas derived for time dilatation in this case. 
For the sake of simplicity, we shall assume that the round-the
world flight is accomplished at a single latitude. We denote the 
linear velocity of the points on the Earth's surface at the 
latitude by v, and the velocity of the aeroplane relative to the 
Earth's surface by u'. Since the Earth revolves from west to 
east, the velocity of the clock travelling westwanis will be 
v - u' relative to the stationary reference frame, while the 
velocity of the clock travelling eastwards will be v + u' 
(Fig. 38). It should be noted that both clocks move in the same 
direction from east to west in the stationary reference frame 
since v > u'. 

Let us denote the time shown by the clock in the stationary 
reference frame by t, the intrinsic time shown by the stationary 
clock on the Earth's surface by t 0 , the time shown by the clock 
travelling westwards by t(+J and the time shown by the clock 
travelling eastwards by t(-J· Obviously, the clock which is 
stationary on the Earth's surface travels at a velocity v relative 
to the reference frame fixed to the Earth's centre and 
consequently is slower than the clock associated with the 
Earth's centre in accordance with (16.6): 

(16.14) 

The clock travelling westwards has a lower velocity relative 
to the stationary reference frame and hence is slower to a 
smaller extent. Hence it is faster than the clock which is at rest 
on the Earth's surface. On the other hand, the clock travelling 
eastwards has a higher velocity relative to the stationary 
reference frame and hence is more slower than the clock which 
is at rest on the Earth's surface. Hence, after returning from its 
round-the-world flight, the clock which travelled westwards 
must be faster than the clock which remained stationary on the 
Earth's surface, while the clock which travelled eastwards must 
be slower than the stationary clock. By analogy with (16.14), 
we can write the following expressions for the clocks travelling 
westwards and eastwards respectively: 

dt(+J = dt j1 - (v- u')2 jc2 , 

(16.15) 
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Knowing the velocity of the aeroplane and other data, we 
can easily calculate the expected difference in the readings of 
the clocks from ( 16.14) and ( 16.15). However, this is not the 
only difference recorded by the clocks. As a matter of fact, it 
follows from the general theory of relativity that the gravita
tional field also affects the pace of the clocks: clocks are slowed 
down because of the gravitational field. A clock lifted above 
the Earth to a certain height by an aeroplane will slow down 
less than a clock left on the Earth's surface. Hence it runs faster 
than the clock on the Earth's surface. This difference in the 
times shown by the two clocks is of the same order of 
magnitude as the difference due to the velocities of the clocks 
and must be taken into consideration. 

Calculations carried out for a set of experimental conditions 
show that the clock travelling westwards must advance by 
275 x 10- 9 s, and the clock travelling eastwards must slow 
down by 4 x 10- 9 s relative to the clock left behind on the 
Earth's surface. The result of the experiment is found to be in 
good agreement with the predictions of the theory and 
confirms the effect of slowing down of clocks in motion. 

Other experiments were also carried out with a view to 
compare the pace of clocks on the Earth and in an aeroplane 
without flying round the globe. One clock was carried in an 
aeroplane a\ a height of about I 0 km for 15 hours, while an 
identical clock was allowed to remain on the Earth during this 
period. The beginning and the end of a measuring time interval 
were registered telemefrically with the help of laser pulses 
having a duration of about 10- 10 s. The increase in the time 
difference registered by the clocks was recorded. The predic
tions of the theory were confirmed in these experiments with a 
very high degree of accuracy. For example, under typical experi
mental conditions (five independent experiments were carried 
out), the theory predicted a difference of ( + 47.1 ± 0.25) x 
10- 9 s in the time intervals recorded by the clocks in the 
aeroplane and on the Earth, and the experimental value of this 
quantity was found to be ( + 47 ± 1.5) x 10- 9 s. It should be 
noted that the theoretical value + 47.1 X 10- 9 S is due to 
both the gravitational dilatation of time ( + 52.8 X 10- 9 S) and 
the relative increase in the pace Of the clocks (- 5.7 X 10- 9 S). 

It can be seen that the predictions of the theory are confirmed 
reliably and with a high degree of accuracy. 

PACE OF CLOCKS MOVING WITH AN ACCELERATION. In 
the experiment involving the flight round the globe, it was 
assumed without reservations that formula (16.6) is applicable 
not only to clocks moving in a uniform straight line, but also 
to clocks being accelerated. However, the formula was derived 
only for motion in a straight line, and its generalization to 
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accelerated motion requires additional substantiation. A theo
retical proof of this generalization is hard to obtain since the 
special theory of relativity does not consider accelerated motion. 

However, there are experimental indications that formu
la (16.6) is also applicable to accelerated motion. 1\ charged 
particle is accelerated in a magnetic field by a Lon!ntz force. 
The magnitude of the particle's velocity remains unchanged in 
this case since the magnetic field exerts a force only in a 
direction perpendicular to the velocity and does not perform 
any work. Experiments on the measurement of lifetime of 
particles with a view to verify the time dilatation effect can be 
repeated in a magnetic field when the particles are accelerated, 
but the magnitude of their velocity remains unchanged. This 
enables us to verify the effect under conditior).s of ac~eleration. 
It can be concluded on the basis of the available experimental 
results that formula (16.6) is also applicable to accelerated 
motion, at least to circular motion. 

In one experiment, 11-mesons having an energy of 1.27 BeV 
were made to move in ll"circle of diameter 5 m by a very strong 
magnetic field. The velocity of the 11-mesons was very close to 
the velocity of light, and their acceleration was 4 x 1016mjs2 • 

Assuming that time dilatation is independent of acceleration, 
the lifetime of the mesons must increase by a factor of about 12 
as compared to their intrinsic lifetime of 2.2 X 10- 6 (i.e. in the 
reference frame where the 11-mesons are at rest). The measured 
value of the lifetime was (26.37 ± 0.05) x 10- 6 s, while the 
calculated value was 26.69 X 10- 6 s. This shows that 
acceleration does not affect the pace of clocks. 

TWIN PARADOX. Suppose that a rocket flies from a point in 
an inertial reference frame at the instant t = 0 and returns to 
the same point after completing its flight. The path s covered 
by the rocket is a known function of time s = s(t), and the 
velocity at each instant of time is v(t) = ds/dt. At the instant 
marking the return of the rocket, the clock in the .stationary 
reference frame shows the time t, while the clock associated 

t 

with the rocket shows the time t = J dt J 1 - v2 jc 2• Hence if 
0 

one of the new-born twins were to travel on the rocket and the 
other were to remain in the inertial reference frame, the former 
would be younger after the rocket had returned to the Earth. 
There is nothing paradoxical about this. The apparent paradox 
arises because of an incorrect line of reasoning which goes as 
follows. Since the motion is relative, it might be stated that the 
second twin sets out on a journey, while the first one on the 
rocket does not move. In this case, the second twin should be 
younger than the first twin when they meet. Which of the twins 
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is actually younger? This is the essence of the twin paradox. 
Ihe reasoning which leads do this paradox is incorrect because 
the reference frames associated with the twins are not equivalent 
since one of them is an inertial reference frame, while the other 
associated with the rocket is not an inertial reference frame. 
Formula (16.6) is only valid for inertial reference frames. Hence 
the twin travelling on the rocket will be younger than the one 
left behind in the inertial reference frame. As was clearly 
demonstrated in the example on round-the-Earth flight, for
mula ( 16.6) is not applicable to noninertial reference frames. In 
the reference frame fixed to the Earth's surface, the passage of 
time in an aeroplane flying eastwards is slowed down, while in 
an aeroplane flying westwards it is speeded up. Hence there is 
no twin paradox, all the arguments and calculations must be 
carried out in an inertial reference frame. Let us consider a 
simple example. Suppose that a rocket is fired at the instant 
t = 0 at a velocity v = const (instantaneous velocity: it does 
not affect the reading of the clock associated with the rocket in 
any way) in the positive X-direction of an inertial K reference 
frame (laboratory reference frame). After an interval of time 't 1, 

the velocity of the rocket is instantaneously reversed, and the 
rocket returns to the Earth. The calculations in the laboratory 
reference frame are obvious: the rocket's total flight time is 
• = 2• 1, an~ the clock associated with the rocket shows the 
time •' = 2• 1 J1 - v2 jc2 at the instant it returns. 

The calculations in tge reference frame associated with the 
rocket are much more 'complicated and cannot be carried out 
with the help of Lorentz transformations. Hence we shall not 
present them here. 

Example 16.1. Find the height h above the Earth's surface at 
which muons generated at a height of 30 km and moving 
Vertically at a velocity V = (1-8 X l0- 4)c decay on the 
average. What is the distance h1~1 between the Earth and a 
muon at the instant it is born in the reference frame associated 
with the muon? 

The lifetime of the muon •~ = 't 1 ~l /Jl - v2 jc2 = 0.55 x 
10- 4 s and the path traversed by it is I~ •~ v ~ •1~l c/ 
J!-v2 jc2 = 3 x 108 x 0.55 x 10- 4 m= 1.65 x 104 m= 
16.5 km. Consequently, h = 16.5 km and h'~l = 1700 m. 
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Sec. 17. COMPOSITION OF VELOCITIES 
AND TRANSFORMATION OF Ac;CELERATIONS 

Formulas for the composition 
of velocities and transformation 
of accelerations arc derived and 
their corollaries are discussed. 

FORMULA FOR COMPOSITION OF VELOCITIES. Suppose 
that the motion of a point mass is given by the functions 

x' = x'(t'), y' = y'(t'), z' = z'(t') f (17.1) 

in a moving coordinate system and by the functions 

x = x(t), y = y(t), z = z(t) (17.2) 

in a stationary coordinate system. The functions defined in 
(17.2) are derived from those in (17.1) by means of (13.24). We 
must establish the connection between the projections of the 
velocities of the point mass in the moving and stationary 
coordinate systems. These projections are respectively repre
sented as 

dx' dy' dz' 
u' - u' - ""'= dt' ,· (17.3) ""J< - d(' -,. - dt' ' ..., 

dx dy dz 
U:x= dt' Uy= dt' Uz= dt" (17.4) 

From (13.24), we obtain 

dx' + v dt' 
dx = dy = dy' dz = dz', 

j1- v2 jc2 ' ' 

dt' + (vjc 2 ) dx' , I + vu~/c2 
dt = = dt ---r==;;==;;= 

j1 - v2/c 2 j1 - v2 jc2 

(17.5) 

Substituting the values of the differentials from (17.5) into 
(17.4) and comparing with (17.3), we obtain 

~ + v 
ux = 1 + v~/c2 ' 

j1- v2/c2 riy 
u = ' 

Y · 1 + v~/c2 
(17.6) 

Ji- v 2jc2 u~ 
u = . 

z l + vu~/c2 

These are the formulas for the composition of velocities in the 
theory of relativity. In accordance with the relativity principle, 
the formulas for the inverse transformations are obtained, as 
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usual, by interchanging the primed and unprimed quantities 
and by replacing v by - v. 

It follows from ( 17.6) that the velocity of light is constant, 
and the composition of velocities never leads to velocities 
exceeding the velocity of light. Let us prove this statement. 
Suppose that u;. = u; = 0 and u; = c. In this case, we get from 
(17.6) 

c+v 
ux = 1 + cvfc2 = c, uY = 0, u. = 0. (17.7) 

Of course, this result is natural since the transformation 
relations themselves were obtained in their final form by 
requiring that the velocity of light be constant. 

ABERRATION. Suppose that a ray of light propagates along 
the Y'-axis in a K' coordinate system, i.e. 

u~=O, u~=c, u~=O. (17.8) 

In a stationary coordinate system, we obtain 

ux = v, uY = Jl- v2/c2c, u. = 0. (17.9} 

Consequently, the ray of light forms an angle~ with the Y-axis 
in the stationary coordinate system. This angle is 

ux v 1 0) 
tan~=-7- . (17.1 

uY cJI-v2jc2 

For vfc « I, equatiol)l; (17.10) becomes identical to formu
la (12.5) which comes from the classical theory: 

Vj_ 
tan~=-. 

c 
(17.11) 

However, this relation now has a different meaning. In the 
classical theory, it was necessary to distinguish between the 
situations involving a moving source and a stationary observer 
from those involving a moving observer and a stationary 
source. In the theory of relativity, there is just one case 
involving the relative motion of the source and the observer. 

INTERPRETATION OF FIZEAU'S EXPERIMENT. The result 
( 12.23) of Fizeau's experiment follows naturally from the 
formula for the composition of velocities in the theory of 
relativity. 

The velocity of light in a stationary medium with refractive 
index n is cfn. If the medium moves along the x' -axis, we 
obtain the following expressions for the velocity of light in the 
moving coordinate system: 

' c Ux =-
n 

u;. = 0, u~ = 0. (17.12) 



9 354 

17. Composition of Velocities 129 

Hence in accordance with (17.6), we obtain the projections of 
the velocity of light in the coordinate system relative to which 
the medium moves at a velocity ± v: 

(c/n) ± v 
u" = , uy = 0, uz = 0. 

1 ± vf(cn) I 
(17.13) 

The plus sign corresponds to the case when the direction in 
which light propagates in the medium and the direction along 
which the medium moves coincide, while the minus sign 
corresponds to the case when these directions are oppo
site. 

Since the quantity vfc « l is small, we can transform (17.13) 
as follows: 

u" ~ (~ ± v) (I + ~) ~ ~ + : 2 ± v = ~ ± (I - :; ) v, 

(17.14) 

where the terms of the first and higher orders in vfc have been 
neglected. This expression is identical to formula (I2.23). 
Hence the result of Fizeau's experiment is an experimental 
confirmation of the formula for the composition of velocities in 
the theory of relativity. 

TRANSFORMATION OF ACCELERATIONS. Suppose that a 
point mass undergoes in a primed coordinate system an 
acceleration whose projections are given by a~. a~ and a~. while 
its velocity is zero at that instant of time. Thus, the velocity of 
the point mass in a K' coordinate system is described by the 
following formulas: 

du~ , 
d(=ax, 

du~ , 
-=a dt' Y• 

du~ , 
-=a dt' z• 

(17.15) 
u~ = u; = u~ = 0. 

Let us determine the velocity of the point mass in the 
unprimed coordinate system. The velocity is obtained from 
(I7.6): 

u" = v, uY = 0, uz = 0. 

The acceleration in the K coordinate system is 

duY 
aY = dt' 

(17.16) 

(17.17) 

The quantities dt, du", duY and duz are determined using (17.5) 
and (17.6), while the quantities u~, u; and u~ can be set equal to 
zero only after the differentials have been evaluated. For 
example, we have the following expression for du": 
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du = du~ (u~ + v) (vfc2) du~ 
x I + vu~/c2 (I + vu~/c2 )2 

du~ ( vu~ vu~ v2) 
= (I + vu~/c2 )2 1 + --;;z-~ - c2 

I - v2fc2 
(I , I 2)2 du~. + VUx C 

Given (17.15), we obtain 

a =dux= (t - v2)3/2 du~ = (t - v2)3/2 a' 
x dt c2 dt' c2 x ' 

(17.18) 

where in accordance with (17.15) we have set u~ = 0. 
The differentials du, and duz are calculated in a similar 

manner. Thus, we obtain the following transformation for
mulas for acceleration: 

(17.19) 

;J' 
The point mass moves at a velocity v in the K system. Hence 
(17.19) has the following meaning. A moving point mass can be 
assigned an inertial coordinate system in which it is at rest at a 
given instant of time. Such a coordinate system is called the 
body axes system. If the point mass moves with an acceleration 
in this system, it will also move with an acceleration in any 
other system. However, this acceleration will be different but 
always smaller. The projection of the acceleration on the 
direction of velocity is reduced in proportion to the factor 
(I - v2fc2 ) 3' 2, where v is the velocity of the body axes 
coordinate system. The transverse component of acceleration 
perpendicular to the velocity of the particle varies to a smaller 
extent, its decrease being proportional to the factor I - v2fc2• 

Example 17.1. Two protons move towards each other in a 
laboratory coordinate system at velocities v and - v. Find the 
relative velocity u' of the protons in the coordinate system 
associated with one of them and express the factor 
y' = 1/Jl- u'2/c2 in terms of the factory= t;Jt- v2fc 2 • 

In the coordinate system associated with the proton moving 
in the positive X -direction of the laboratory system, we obtain 
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the following relation from the velocity composition formula: 

u- v -2v 
u' = = (17.20) 

I - uv/c2 I + v2 fc 2 ' 

where we have used the relation u = - v. Hence we obtain 

y' = 2y2 - 1. I (17.21) 

Example 17.2. It was mentioned in Sec. 15 that the shape 
and geometrical size of a moving body apparent to a visual 
observation may differ from the shape and geometrical size 
determined from the Lorentz transformations. Let us analyze 
this topic for a thin rod moving along its length. 

In order to ascribe a clear physical meaning to the idea of 
the visually observed length of the rod, we shall assume that a 
long stationary ruler is placed along the X-axis in a stationary 
coordinate system. A rod of length I at rest moves along the 
ruler at a velocity v in the positive X-direction. In order to 
measure the length of the rod in the stationary coordinate 
system, we must note at a certain instant of time the readings 
of the points on the stationary ruler, which coincide with the 
ends of the rod at this instant of time. By definition, the 
distance between these points is the length of the moving rod 
given in accordance with (15.3) by l' =I J1 - v2 fc 2 • 

Let us now observe the moving rod from a sufficiently large 
distance. The observation is carried out by a telescope through 
which the moving rod and the stationary ruler can si
multaneously be seen. It is logical to define the observed length 
of the moving rod as the distance between its end points on the 
stationary ruler at the instant they are observed through the 
telescope. For the sake of definiteness, it can be assumed that a 
snapshot is taken in which the moving rod covers a part of the 
stationary ruler. The length of the covered part of the 
stationary ruler is the visually observed length of the moving 
rod, whose value has to be determined. Let us denote the angle 
between the positive X-direction and the direction· of motion 
of photons from the moving rod to the telescope by a. 

In order to solve this problem, we note that the photons 
which form an image of the rod on the photographic plate at a 
certain instant of time were not simultaneously emitted by 
different parts of the rod. The difference between the instants at 
which photons are emitted from the leading and trailing ends 
of the moving rod is L' cos a/c, where L' is the required 
visually observed length of the moving rod. Hence a photo
graphic plate does not record the ends of the moving rod 
simultaneously, there is a time difference t2 - t 1 = L' cos afc. 

If the coordinates of the ends of the rod in a coordinate 
system in which it is a.t rest are denoted by x'1 and x2, then 
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x2 - x'1 = I will be the proper length of the rod. We denote the 
coordinates of the ends of the rod in a stationary coordinate 
system by x 1 and x 2 , so that x 2 - x 1 = L'. From the Lorentz 
transformations 

(17.22) 

we obtain 
, , (x2 -x1)-v(t2 -t1) 

x2- Xt = . 
ji- v2/c 2 

(17.23) 

Since x2- xl. =I, x 2 - x 1 = L' and t2 - t 1 = L' cos ajc, we 
can write (17.23) in the form 

L'- vL' cos ajc 
I= . ji -l12/c2 

Hence 

L' = IJI- v2jc2 
I - (v/c) cos a 

(17.24) 

(17.25) 

4.1. Two point masses, which are at rest on the X-axis of a stationary 
coordinate system and It distance 100 m apart, are simultaneously 
accelerated in the same way in the positive X -direction. The accel
eration is simultaneously discontinued when the points acquire a 
velocity v = (1-2 X w- 4 )c. What will be the distance between the 
points in the coordinate system in which they are at rest? 

4.2. A proton covers a distance I = 1.5 x 108 km between the Sun and the 
Earth at a velocity v = 4c/5. What will this distance appear to be in the 
reference system associated with the proton? How much time will be 
required to cover the distance in the reference system associated with 
the Earth and the proton? 

4.3. Two projectors emit narrow beams of light in opposite directions. At 
what velocity must the projectors move in a direction perpendicular to 
the light rays so that the beams are at right angles to each other? 

4.4. Two particles moving one after the other at a velocity v = 3c/5 strike a 
target with a time interval of 10- 7 s. Find the distance between the 
particles in the laboratory reference frame and in the reference frame 
associated with the particles. 

4.5. Two clocks A' and B' are located at points (x'1 , 0, 0) and (x~. 0, 0) in a 
K' coordinate system (x; - x'1 = 1), while two more clocks A and Bare 
located at points (x1, 0, 0) and (x2 , 0, 0) in a K coordinate system 
(x 2 - x 1 = 1). The K' system moves relative to the K system in the 
positive X -direction at a velocity \'. When two points coincide 
spatially, the clocks B' and A show the same time (say, t' = t = 0). 
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What will be the time shown when the clocks A and A' and the clocks 
B and B' coincide spatially? 

4.6. A rocket moves in a straight line with a uniform acceleration a 
measured by the passengers with the help of an accelerometer on 
board. How far will the rocket move in the laboratory referl'nce frame 
before it attains a velocity v? . f 

4.7. Two scales with identical proper length I move towards each other at 
the same velocities v along the X-axis. What will be the length of one 
scale in the coordinate system associated with the other scale? 

4.8. A train is moving at a velocity v relative to the railway track. A bird is 
flying alongside at the same velocity v relative to the train. An 
aeroplane is also flying in the same direction at a velocity v relative to 
the bird. What will the velocity of the aeroplane be relative to the 
railway track? \ 

4.1. 5000 m. 4.2. l = 0.9 x 108 km, tE = 625c, tP = 375c. 4.3. cj.,fi. 
4.4. 18m, 22.5 m. 4.5. tA. = ljl - v2/c2 /v, t~. = 1/v, t8 = 1/v, 

t~. = tJi- v2 fc 2 fv. 4.6. c2 (1/jl- v2 fc 2 - I)/a. 4.7./(1- v2/c2 )/(1 + 
v2/c2 ). 4.11. c{l- [(I- vfc)/(1 + v/c)] 3}/{1 +[(I- vfc)/(1 + v/c)] 3}. 



Chapter 5 
Dynamics of a Point Mass 

Basic idea: 
The main idea of Newtonian dynamics is that external 
agencies described by the force concept are responsible 
for the acceleration and not the velocity or the time derivative 
of the acceleration. Hence Newton's second law of motion 
is not a definition of force, although it is the only possible 
way of determining a force in many specific cases. 

Ses. 18. FORCES 
Different manifestations of 
force are described, which neces
sitate their introduction into 
classical mechanics indepen
dently of acceleration. 

ORIGIN OF THE CONCEPT OF FORCE. For about 2000 years 
before Galileo, the task of a theory of motion was to explain 
why an object has a given velocity. In Aristotelian dynamics, it 
was assumed that each object is assigned a particular place: 
lighter objects occupt'higher positions, while heavier objects 
occupy lower positions. All objects tend to move to their 
respective positions, and hence the upward motion of light 
objects and the downward motion of heavy objects do not 
require any explanation, as it is the natural motion of objects. 
The motion of stars and celestial bodies in the sky was also 
assumed to be natural. Motions that are not natural (for 
example, ·a billiard ball rolling along a table) are forced 
motions, and there must be a reason behind each occurrence. 

What caused a ball to roll along a table was called a force by 
Aristotle. A force is imparted to the ball from the medium 
surrounding it. If Aristotle's law of motion were to be 
expressed in mathematical form, the force would be pro
portional to the velocity of the ball. Later, doubts began to be 
gradually raised as to whether the force is transferred to the 
ball from the surrounding medium. Kuzanskii (1401-=1464) 
suggested that the force is imparted to the ball at the instant of 
impact, after which it remains in the ball and maintains its 
velocity. This eliminated the need for a surrounding medium. 
Afterwards, Galileo clearly showed that it is not the mainte
nance of the velocity that should be explained, but rather the 
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variation in the. velocity. He associated the concept of force 
with acceleration rather than with velocity. A body preserves 
its velocity due to the law of inertia according to which the 
body tends to maintain its uniform motion in a straight line. 
According to Galileo, this law should be considered a fun
damental law which cannot be reduced to a simpler form. 

In Newtonian dynamics, it is not the velocity but the change in 
velocity, i.e. the acceleration, which must be caused. 1he cause 
behind the change in velocity is called force. The problem is to 
quantitatively formulate t~ relation between force and accel
eration. This can be done using Newton's laws of motion. 

INTERACTIONS. Forces do not exist without objects. They 
are produced by objects. Hence one might say that objects act 
on one another through forces, i.e. they interact. The force is a 
quantitative vector measure of the interaction intensity. 

MEASUREMENT OF FORCE. Forces not only change the 
velocity of an object, they also deform it. The simplest and the 
most visual example of a deformed object is a compressed or 
stretched spring which can conveniently be used as a standard 
measure of force. The standard unit of force can be defined in 
terms of a spring compressed or stretched to a certain extent. 
Two forces are said to have the same magnitude but opposite 
directions if they do not accelerate the object to which they are 
applied. This can be used to compare forces directed along the 
same straight line and leads to the conclusion that forces not 
only have numerical values, they also have directions. On the 
other hand, the standard can be used to construct a scale of 
forces. Figure 39 shows the composition of forces acting in 
different directions. Once again, the absence of acceleration in 
the object to which forces are applied indicates that the sum of 

F, 
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these forces is zero. It can be seen in Fig. 39 that the forces are 
composed according to the parallelogram law, i.e. as vectors. 
1his also proves that force is a vector, and a procedure for 
measuring forces is established independently of the measurement 
of acceleration. 

Sec. 19. NEWTON'S LAWS 

The number of independent 
Newton's laws is discussed. 

The physical meaning of New
ton's second law of motion is 
that the external conditions are 
defined by the acceleration and 
not by the velocity or the time 
derivative of the acceleration. 
In classical mechanics, the 
external conditions are de
scribed using the concept of 
force. 

? 
What is the subjective differ
ence between action and 
reaction? 
How are forces related to the 
deformations they produce? 

HOW MANY OF NEWTON'S LAWS OF MOTION ARE INDE
PENDENT IN NATURE? It is well known that according to 
Newton's first law of motion, a body far removed from other 
bodies continues to be in the state of rest or uniform motion in 
a straight line, while the second law expresses the acceleration 
of a body subjected to the action of a force: 

dv 
m-- = F 

dt ' 
(19.1) 

where m is the mass of the body, and dv/dt is the acceleration. 
It follows from (19.1) that in the absence of a force (F = 0), 
v = canst. In other words, if no force acts on a body or if the 
resultant of the forces applied to a body is zero, the body will 
be either at rest or moving uniformly in a straight line. Hence 
it has been suggested that the first law is not independent and 
is just a corollary of the second law, while Eq. (19.1), which 
expresses this law, is just the definition of force, i.e. the 
convention needed to i•roduce the quantity F (called a force) 
into the theory using (19.1). This point of view is refuted in this 
book for the following reasons. 

We described at length in Sees. 5 and 7 that even a purely 
kinematic consideration of the motion of bodies in a reference 
frame is only possible if the scales and clocks behave in the 
manner prescribed in these sections. If, for example, we could 
not synchronize the clocks and so introduce a unified time 
base into the reference frame, as explained in Sec. 7, then not 
only the law of dynamics (19.1), but all the mathematical 
relations presented in Chapter 2 would be meaningless. This 
naturally gives rise to questions about how to verify the 
constructions described in Sees. 5 and 7 for a given reference 
frame. Only after such a verification can we state that the 
physical quantities are clear and meaningful. 1his applies not 
only to dynamic quantities, but also to kinematic ones. For 
example, even a simple concept of uniform motion becomes 
meaningless if we cannot synchronize clocks in the manner 
described in Sec. 7. 

In principle, we can verify the suitability of a reference frame 
by carefully studying the behaviour of the scales and clocks in 
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the system. Such a verification must cover all space and must 
be quite precise. Only then can we write down Eq. (19.1) and 
derive the first law of motion from it. However, it is practically 
impossible to carry out such a verification, and in the absence 
of a verification, we cannot indicate the significance of (19.1). 

In order to overcome this difficulty, we c.an Jhoose a 
reference frame using Newton's first law: we must take a test 
object and place it quite far from every other object. If the 
observations of the mt>tion of the test object reveal that it is 
moving uniformly in a straight line or is at rest, the reference 
frame is suitable for the kinematic and dynamic descriptions of 
the motion in accordance with the rules applied. This verifi
cation is equivalent to the one mentioned above. Once a 
verification has been carried out, we can write the law of 
motion in the form (19.1). • 

Hence Newton's first law of motion is an independent law 
which expresses a criterion for the suitability of a reference 
frame when considering motions in both dynamic and kinematic 
senses. The law is not only independent, it is also the first in the 
series because only with this law can we speak of the exact 
physical meaning and content of the second and third laws. 

However, it is unacceptable to treat Eq. (19.1) as a definition 
of force not only because it expresses analytically a physical 
idea about the nature of the relation between the external 
conditions and the dynamic variables of the motion of a point 
mass, but also because the action of forces in mechanics is 
manifested in acceleration of bodies as well as, say, in their 
deformation when the acceleration is not considered at all. 
However, it must be emphasized that we are dealing with 
classical mechanics and not with physics in general. For 
example, it is meaningless to speak of forces in quantum 
mechanics since in this case we cannot describe the motion by 
using the concepts of velocities, accelerations, trajectories and 
point masses in the classical sense. 

The unacceptability of the interpretation of Newton's sec
ond law of motion as definition of force also stems from an 
analysis of the connection between Newtonian mechanics and 
Aristotelian mechanics. Newtonian mechanics retains the 
concepts of natural and forced motton, but only the uniform 
motion in a straight line (the first law) is accepted as natural 
motion. Whereas Aristotle's law states that velocity is pro
portional to force, Newton's second law of motion states that 
acceleration is proportional to force. This means that external 
conditions determine the acceleration and not the velocity of 
an object. If the second law is just a definition of force, then 
why can we not describe force in such a way that the motion is 
defined in accordance with Aristotle's law or in such a way 



138 

F 

Fig. 40. Showing the depen
dence of acceleration on force. 
The force is measured in terms of 
the ex tension of the spring. 
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that the force is proportional to the third time derivative of 
coordinates? The fact that this is not possible confirms that 
Newton's second Jaw of motion cannot be treated as definition 
of force. 

MASS. The simplest standard of force can be obtained from 
a spring graduated for different values of force in the manner 
described above. Thus, it is possible to apply different forces of 
known values to a body. The unit of force is an independent 
quantity which materializes in a spring stretched or com
pressed to a certain extent. The second measurable quantity is 
the acceleration of different bodies acted upon by a force. The 
experimental set-up for studying the dependence of accel
eration on force is shown in Fig. 40. The results of such 
experiments show that the direction of acceleration coincides 
with that of the applied force. The same force imparts different 
accelerations to different bodies, and different forces impart 
different accelerations to the same body. However, the ratio of 
force to acceleration is always equal to the same quantity, i.e. 

F 
- = const = m. 
a 

(19.2) 

The relation F/a = const is valid only for quite small 
velocities. If the velocity of a body is increased, this ratio 
begins to Vjlry, increasing with velocity. This means that the 
inertial properties of bodies are manifested more strongly with 
increasing velocity. This question will be considered in greater 
detail in the next sectfon. 

Writing Eq. (19.2) in vector form considering that the 
direction of acceleration coincides with that of the applied 
force, we arrive at (19.1), i.e. the expression for Newton's 
second law of motion. However, this equation can also be 
written conveniently. in an alternative form: 

dp 
-=F 
dt ' 

p = mv. 

(l9.3a) 

(19.3b) 

The product of mass and velocity, p = mv, is called mo
mentum. The force F on the right-hand side of (19.3a) is the 
sum of all forces acting on a body. 

Although Eq. (19.3a) is obtained from (19.1) by a simple 
change of notation, it cannot be stated that it does not contain 
anything new. In the first place, Eq. (19.3a) contains a new 
physical quantity, viz. momentum, which is defined by (19.3b). 
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At low velocities, when the velocity and acceleration are 
directly measurable quantities, momentum is just an auxiliary 
quantity which can be determined from (19.3b). At very high 
velocities, however, momentum becomes the basic quantity 
which is measured in experiments, whereas a partic¥:'s velocity 
becomes practically constant and equal to the velocity of light. 
Hence at low velgcities, Eqs. (19.1) and (19.3a) differ only in 
formal notation, while at high velocities, they differ in physical 
content. We shall show in more detail in the next section that 
Eq. (19.3a) and not (19.1) represents the extension of the 
equation of motion to relativistic velocities. 

The property of a body which determines the value of the 
ratio of force to acceleration in (19.2) is called the inertia of the 
body. This quantity is called the inertial mass, or simply mass. 
In Newtonian mechanics, inertial mass has no meaning 
except as a property characterizing the inertia of a body. 

At relativistic velocities, the inertial properties of bodies are 
conserved, but their manifestation becomes more complex. The 
direction of force generally does not coincide with that of 
acceleration, and relations like (19.2) become meaningless. 
However, such relations continue to be meaningful for the 
components of force and the components of acceleration in a 
particular direction. It characterizes the inertial properties of a 
body in this direction, but does not have a constant value and 
changes with the angle between this direction and the direction 
of motion. Hence we cannot extend the concept of mass as a 
scalar quantity to the relativistic case using Eq. (19.2). The 
relation (19.3b), in which mass appears as the proportionality 
factor between the momentum and velocity of a point mass, is 
more suitable for this purpose. 

ON NEWTON'S SECOND LAW OF MOTION. Newton's 
second law of motion (19.1) can be treated as a law rather than 
a definition of force only if there exists an independent 
definition of force. One independent definition of force as the 
force of a deformed spring was considered in the preceding 
section. However, this is not enough for treating (19.1) as a law 
since such a definition of force is only valid for bodies at rest. 
Hence we must carry out experiments with moving deformed 
springs and with bodies accelerated by them to make sure that 
lEU) is independent of velocity. This has been confirmed 
experimentally, and hence (19.1) represents a law rather than a 
definition of force. 1he physical meaning of this law lies not in 
that the force has a specific expression, but in that the force 
defines the second time derivative.Y of coordinates (dv/dt = 
d2r/dt2). 1he invariance of acceleration relative to Galilean 
transformations leads to the invariance Q{.force. 

In relativistic dynamics, however, (19.3a) is the equation of 
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Newton's second law of motion 
cannot be formulated until the 
first law and the concepts 
associated with an inertial 
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motion, which is invariant to the Lorentz transformations by 
definition, while the force F is not invariant. The situation 
becomes quite complicated, but it need not be analyzed in 
detail in order to say whether the relativistic equation is a law 
of motion or a definition of force. We might say, in view of the 
relativistic invariance of the equation and the relativity 
principle, that if this relation is an equation of motion and not 
a definition of force in the coordinate system in which the 
nonrelativistic approximation is valid, then it will be an 
equation of motion in all other coordinate systems as well. 

ON NEWTON'S THIRD LAW OF MOTION. According to 
Newton's third law of motion, an interaction between two 
bodies involves the action of each body on the other by a force 
equal in magnitude and opposite in direction. Thus, different 
bodies are the sources of "action" and "reaction" forces. 
Similarly, the bodies to which these forces are applied are also 
different. Each of the interacting bodies is a source of "action" 
on the other body, and an object of "reaction" whose source is 
the other body. Hence the difference between the forces of 
"action" and "reaction" is only subjective and depends on the 
point of view. 1he nature of"action" and "reaction" is essentially 
the same. 

The law of action and reaction is demonstrated in a visual 
form when tpe interaction between bodies takes place through 
other bodies, say, through a string or a spring. Figure 41 shows 
an experimental set-up which can be used to demonstrate the 
validity of Newton's thifd law of motion. In the case shown in 
Fig. 41a, the spring is compressed to a certain position under 
the action of external forces F t and F 2 applied to bodies mt 
and m2 respectively. After the forces compressing the spring 
are withdrawn, the bodies mt and m2 are set in an accelerated 
motion. Thus, each body is subjected to the action of a force 
which can be calculated from the acceleration acquired by the 
body. It is shown experimentally that the relation mtat = m2a2 

is always satisfied, where at ani a2 are the accelerations of the 
bodies mt and m2 • This means that Ft = F2• In the case shown 
in Fig. 4lb, one of the interacting bodies is connected to an 
electric motor. During the rotation of the motor, a string is 
wound on its shaft, and the other end of the string is rigidly 
attached to the second body. When the string is being wound 
on the shaft, the two bodies move towards each other with the 
accelerations at and a2, and the relation mta1 = m2a2, i.e. 
F 1 = F 2 , is always satisfied. 

However, in such a simple form, the law of action and 
reaction is not always satisfied. Let us consider the interaction 
between two positive charges q1 and q2 moving at velocities v1 

and v2 respectively and subjected to the action of forces F1 and 



Fig. 41. When two bodies inter
act, one of them acts on the 
other with a force that is equal 
and opposite to the force exerted 
by the seeond body on it (New
ton's third law). 

Fig. 42. Electrostatic interaction 
of moving charges. 
In this case, Newton's third law is 
not satisfied since electric charges 
do not constitute an isolated system. 
Fields also participate in this in
teraction. 
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0 0 
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F2 from the other charge (Fig. 42). Each of these forces can be 
represented as a sum of two components. The first component 
is the force of electrostatic interaction according to Coulomb's 
law. This force acts along the line joining the two charges, is 
equal to q1q2/(47tE0r2) and satisfies Newton's third law of 
motion, i.e. can be represented in the form F1c = - F2c· But 
besides the electrostatic interaction, a magnetic interaction 
also exists between the charges, as each moving charge 
produces a magnetic field with magnetic induction B at the 
point of location of the other charge. The field acts on a charge 
q moving at a velocity v with a Lorentz force given by 

Fm = qv X B. (19.4) 

The field 8 produced by a moving charge can be deter
mined. For the present, there is no need to know the exact value 
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of induction. It is important to note that in Fig. 42 the field H1 

produced by the charge q1 at the point of location of the 
charge q2 is perpendicular to the plane of the figure and points 
towards the reader, while the field B2 produced by the charge 
q2 at the point of location of the charge q1 is perpendicular to 
the plane of the figure and points away from the reader. The 
Lorentz force (19.4) is perpendicular to the velocity v and to 
the magnetic field B. It can be seen from Fig. 42 that the 
Lorentz forces F 1m and F2m acting on the charges q1 and q2 

are not collinear and hence cannot satisfy the law of action and 
reaction. The total force exerted by the first charge on the 
second ("action") is F2c + F2m = F2, while the total force 
exerted by the second charge on the first ("reaction") is 
F 1c + F 1m = F1• Obviously, these forces are not equal and are 
not directed opposite to each other: 

F 1 -1= -F2 , (19.5) 

i.e. Newton's third law is not satisfied in this case. 
It should be noted that for charged particles moving at 

velocities much lower than the velocity of light (vjc « I), the 
forces of magnetic origin are much smaller than the electric 
forc'!s. Since the departure from the law of action and reaction 
is due to magnetic forces, this departure is quite small at not 
too high velocities and can be neglected. 

In order to aualyze this question, we must bear in mind that 
Newton's third law of motion has a more profound meaning 
than a simple equality of t!w forces of action and reaction. Let 
us consider the interaction of carriages shown in Fig. 41 and 
write down the equation of motion (l9.3b) for each of the 
interacting bodies: 

dp1 dp2 
--F --F (196) dt - I• dt - Z• • 

where p 1 = m1v1 and p2 = m2v2• The velocity v1 or v2 has a 
plus sign if its direction coincides with the positive x-direction. 
According to this convention, the velocity v2 of the carriage 
m2 in Fig. 4la will be positive, while the velocity v1 of the 
carriage m1 will be negative. In Fig. 4lb, the signs of the 
velocities v1 and v2 will be reversed. The signs of the forces F 1 

and F 2 in (19.6) are also determined by whether the vector of 
a given force coincides with the positive x-direction or has the 
opposite direction. In accordance with Newton's third law of 
motion, we must have F 1 + F 2 = 0. Hence, the termwise 
addition of (19.6) gives 

(19.7) 
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whence 

Pt + P2 = const. (19.8) 

Thus, when two bodies interact, the sum of their monienta is 
constant. Newton~ third law of motion can also be formulated 
as th~ requirement for the sum of the momentlj of the 
interacting bodies to be conserved in the absence of any 
external forces. This is where th~: third law of motion has 
a more profound physical meaning. 

Let us now return to the interaction between moving 
charges (see Fig. 42). We have shown above that the forces 
with which the electrons act on one another are not equal and 
opposite. Hence, it follows from (19.7) that the sum of the 
momenta of the interacting electrons does not remain constant 
and keeps on changing, i.e. Newton's third law of Ihotion is 
not satisfied in this case. 

Let us, however, consider the interaction pattern in greater 
detail. The interaction involves not only charges q1 and q2, but 
also the electric field E and the magnetic field B. It can be 
asked whether these fields have a momentum. The answer to 
this question is in the affirmative. It is shown in electro
dynamics that this momentum is distributed over entire space 
in which the electromagnetic field exists, and the momentum 
density (i.e. the momentum per unit volume) for the field in 
vacuum is E x B/(c2 J.L0 ), where J.lo = 47t x i (\ · 7 H/m is the 
magnetic constant. It is borne out by computations that when 
the sum of the momenta of the interacting electrons changes, 
the momentum of the electromagnetic field produced by the 
electrons also changes by the same amount simultaneously, 
but in the opposite direction. In other words, the total momen
tum of interacting moving electrons and of the electromagnetic 
field produced by them remains wnstant upon interaction. In 
such a formulation, the validity of Newton's third law of 
motion is restored for describing a given interaction. 

It will be shown in Sec. 26 that the forces for which 
Newton's third law of motion is valid do not satisfy relativistic 
requirements and hence cannot exist in nature. Real forces 
satisfy Newton's third law of motion only in the nonrelativistic 
case, but this law was formulated just for this case. Hence the 
statement about the violation of Newton's third law of motion 
is significant only for determining the limits of applicability of 
Newtonian mechanics. 

That is why the formulation of Newton's third law of motion as 
the requirement of conservation of the total momentum of 
interacting bodies and fields is physically more meaningful than 
the formulation which requires the equality of the forces of action 
and reaction. 
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Fig. 43. Diagram of forces and 
accelerations in Example 19.1. 
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It can be shown that Newton's third law of motion cannot 
be satisfied in the relativistic case without considering the 
electromagnetic interactions. Suppose that two bodies interact 
in a coordinate system in such a way that the equality of action 
and reaction is observed, and the bodies are simultaneously set 
into motion upon being imparted equal and opposite accel
erations. The two bodies will not simultaneously be set into 
motion in another coordinate system, and hence there will be 
an interval of time during which one of the bodies is being 
accelerated, while the other is at rest. It is clear that Newton's 
third law of motion in its simplest form will not be satisfied 
during this interval. Thus, the violation of Newton's third law 
in its simplest form is a consequence of the general relativistic 
properties of space and time. 

Example 19. I. A body of mass m1 can slide without friction 
along the inclined plane of a beam of mass m2 • The angle of 
inclination of the beaJD with the horizontal is a. The beam 
moves without friction along a horizontal plane (Fig. 43). Find 
the acceleration of the body and the beam. 

Let us denote the acceleration of the body along the inclined 
plane relative to the beam by a 1 , and the acceleration of the 
beam in the horizontal direction by a2 • The body is subjected 
to the supporting force N 1 and the weight m1g. The beam is 
subjected to the supporting force N 2 and the weight m2g. 

Newton's equations of motion for the beam in projections 
on the horizontal and vertical directions are written in the 
form 
m2a2 = N 1 sin a, 
0 = m2g - N 2 + N 1 cos a. 

(19.9) 

The corresponding equations for the body can be written as 
follows: 
m1 (a1 cos a- a2 ) = N 1 sin a, 
m1a1 sin a= m1g- N1 cos a. 

(19.10) 

There are four unknown quantities in (19.9) and (19.10). The 
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Fig. 44. Diagram of forces and 
accelerations in Example 19.2. 
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accelerations can be determined as follows: 

(m1 + m2 )g sin a m1g sin a cos a 
a 1 = . 2 , a2 = . 2 • (19.11) 

m1 SID a + m2 m1 SID a + m2 

Example 19.2. A weightless unstretchable stril'g passes 
across a pulley, and loads of masses m1 and m2 ~re attached to 
its ends. There is no friction between the pulley and the string. 
The pulley moves vertically upwards with an acceleration a0 • 

Find the acceleration of the loads (Fig. 44). 
Since the string is unstretchable, the accelerations of the 

loads of masses m1 and m2 relative to the pulley are equal in 
magnitude but opposite in sign. While the acceleration of the 
load of mass m1 is a0 + a, that of the load of mass m2 is a0 - a. 
The same tension T acts on the loads from the string. Hence 
the equations of motion for the loads have the form 

m1(a0 +a)= T- m1g, m2 (a0 - a)= T- m2g, (19.12) 

whence we get 
(m2 - m1)(a0 +g) 

a = ---==----=-----'---- (19.13) 

Example 19.3. A ring slides without friction along an 
undeformable rod rotating at a constant angular velocity 0> 
about the vertical axis passing through the rod at right angles 
to its length. If r is the distance along the rod from the axis of 
rotation to the ring, find r(t). 

It is convenient to carry out the calculations in the polar 
coordinate system, the origin of the system coinciding with the 
point on the rod through which the axis of rotation passes. 
The plane of the polar coordinate system is assumed to 
coincide with the plane in which the rod moves. The radial 
acceleration in the polar coordinate system is f- ID2r, where 
the dots indicate the time derivatives. There are no forces in 
the radial direction. Hence Newton's equation for .the radial 
motion of the ring of mass m has the form 

m(f- 0>2r) = 0, (19.14) 

whence 
(19.15) 

where A1 and A 2 are constants determined by the initial 
conditions. For example, if t = 0, r = 0 and ; = u, then 
A1 = - A 2 = u/(20>), and hence 

r = ~(e"''- e-"'') =~sinh O>t. 
2ID 0> 

(19.16) 
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Sec. 20. RELATIVISTIC EQUATION OF MOTION 

The relativislic equation of 
motion is derived and its cor
ollaries arc analy7.ed. 

8 

Fig. 45. Motion of a charged 
particle in a cyclotron. 

INERTIA IN THE DIRECTION OF VELOCITY AND PER
PENDICULAR TO THE VELOCITY. If we continue the ex
periments with the carriages shown in Fig. 41 and keep on 
increasing the velocities of the carriages, it will be seen that the 
ratio Ffa is not constant as indicated by (19.2), but varies with 
velocity. However, very high velocities are required for ob
serving this phenomenon. It is easier to perform such exper
iments on charged elementary particles moving in electro
magnetic fields (say, in accelerators). The force acting on a 
charged particle moving at a velocity v is calculated in 
accordance with the formula 

F = q(E + v X B). (20.1) 

Suppose that a charged particle, say, a proton, moves in a 
circular orbit in an alternating magnetic field B as in a 
cyclotron (Fig. 45). Over a certain region in the path of the 
proton, an electric field E is produced, whose magnitude is 
known and which varies in such a way that the proton gets 
accelerated upon passing through the region. Outside the 
accelerating region, the proton moves in a circle of known 
radius r under the action of the force F. = ev x B. Specifying 
the magnetic induction B, determining the protons velocity 
from the time taken b~t to traverse the circular trajectory in 
the accelerator, and taking into account the formula for 
centripetal acceleration v2 fr = a. during the circular motion of 
the proton, we can find the ratio F.fa. = evBrfv2• Experiments 
give the dependence 

(20.2) 

When the proton passes through the accelerating region, its 
velocity increases under the action of the force F. = eE. The 
change in the velocity during each cycle, i.e. the proton's 
acceleration a., can be measured. Of course, it is not a simple 
task to make such measurements since the proton passes 
through the accelerating region under different phases of the 
accelerating field, i.e. for different values of E the radius of its 
orbit also keeps on changing. However, there is no need to 
discuss these problems at length here. It is obvious that these 
factors can be taken into account, and the electron's acceler
ation a, due to the force F, can be calculated. These results can 
be used to determine the ratio F,fa •. Experiments give the 
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Fig. 46. Dependence of F fa on 
vfc for normal and tangential 
components of force. 

A relativistic mass as well as a 
nonrelativistic mass charac
terize the inertia of a point 
mass, the only difference being 
that in the relativistic case, the 
inertia of the point mass 
depends on velocity, while in 
the nonrelativistic case, this 
dependence can be neglected. 
In the relativistic case, the 
directions·of acceleration and 
force do not coincide. 
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dependence 

F, const 
a, (l-v2/c2)3/2' 

(20.3) 

For low velocities, i.e. for vfc « 1, (20.2) and (20.}) must be 
transformed into (19.2). Hence the constant quantity in these 
formulas is a particle's mass m0 , which is a measure of the 
inertia of the particle at rest and is called the rest mass. 
Equations (20.2) and (20.3) can be written in the following final 
form: 

(20.4) 

These dependences are graphically shown in Fig. 46. The 
acceleration a, is the tangential acceleration, and the force F, is 
collinear with the tangent to the particle's trajectory. The 
acceleration an and the force .Fn are normal to the velocity 
direction. Equations (20.4) show that the inertia of a particle in 
the direction of its velocity is different from the inertia normal to 
the velocity. 

RELATIVISTIC EQUATION OF MOTION. Suppose that a 
particle moves along a trajectory. As in Sec. 8, we denote the 
unit vectors normal and tangential to the trajectory by n and -r 
(see Fig. 15). The total force F acting on the particle can be 
decomposed into normal and tangential components (Fig. 47): 

F = Fn + F,. (20.5) 

Each component of the force produces an acceleration in the 
appropriate direction, determined by the inertia of a body in 
the direction. Since the normal acceleration is v2/R (see (8.21), 
where R is the radius of curvature of the trajectory, and vis the 
particle's velocity) and the tangential acceleration is dv/dt, 
equations (20.4) for normal and tangential components of the 
force can be written as follows: 

(20.6) 

Adding these expressions termwise and taking into account 
(20.5), we obtain an equation of motion for a particle under the 
action of the resultant force F: 

m0 v2 m0 dv 
n -+• -=F Jl - v2 fc 2 R (1 - v2/c2 ) 312 dt · 

(20.7) 
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Fig. 47. In the relativistic case, 
the directions of force and accel
eration generally do not coincide 
because of a difference in the 
inertia of a particle along its 
velocity and perpendicular to it. 
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The left-hand side of this equation can be simplified. Con
sidering that v(dt/ds) = dt/dt = (dt/ds) (dsfdt) and represent
ing (8.20) in the form 

n dt 
v-=-

R dt' 
(20.8) 

we can replace the quantity nv2/R in (20.7) by v dtfdt. In this 
case, the equation acqujres the form 

m0 dt m0 dvF 
--r:====''=:<=::;;:- v - + t - = (20. 9) 
Jl - v2jc2 dt (1 - v2/c 2)312 dt 

By direct differentiation, we verify the equality 

d ( v ) l dv 
dt Jl - v2jc2 = (1 - v2fc2)3t2 dt, 

which can be used to transform the left-hand side of (20.9) as 
follows: 

m0 dt m0 dv 
---;:.=~== v- + t -
Jl - v2fc2 dt (1 - v2/c2)312 dt 

m0 v dt d ( m0 v ) 
= Jl - v2jc2 dt + t dt Jl - v2jc2 

d ( m0v ) d ( m0vt ) 
= dt Jl - v2fc2 = dt Jl - v2fc 2 ' 

where vt = v is the particle's velocity. Thus, we arrive at the 
relativistic equation of motion of the particle 
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(20.10) 

which is a generalization of Newton's equation 1of motion 
(19.1). It can be represented in a more convehient form 
analogous to ( l9.3a): 

dp 
-=F dt • 

p = mv, (20.11) 

The quantity m is called the relativistic mass, or simply mass, 
m0 is the rest mass, and p is the relativistic momentum, or 
simply momentum. 

Usually, it is not necessary to specifically mention that the 
momentum is "relativistic", or that the mass is "relativistic", since 
when the velocities are very high, i.e. relativistic, we can use only 
relativistic expressions for momenta and masses. For low velocities, 
these expressions are automatically transformed into nonrelativistic 
ones. 

Like nonrelativistic mass, relativistic mass characterizes the 
inertia of a point mass, the only difference being that in the 
relativistic case, the inertia of the point mass depends on 
velocity, while in the nonrelativistic case, this dependence can 
be neglected. 

NONALIGNMENT OF FORCE AND ACCELERATION IN 
THE RELATIVISTIC CASE. Since the inertia of a body in the 
direction of motion is different from its value in the per
pendicular direction, the total force vector is not collinear with 
the total acceleration vector, i.e. with the vector of the velocity 
change caused by the force as shown in Fig. 47. It can be seen 
from (20.11) that the momentum change vector coincides with 
the force vector in direction. This is why the difference between 
Newton's equations (19.1) and (19.3a) is formal in the nonrela
tivistic case and can be seen as a difference between notations. 

In the relativistic case, however, the equation of motion for a 
point mass can be written only in the form (20.11). In principle, 
it can be written in the form (19.1) with mass m = 

m0/J1 - v2 jc2, but then an additional term appears besides the 
force F on the right-hand side of the equation (see Eq. (47.11)). 
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Sec. 21. MOTION OF A SYSTEM OF POINT MASSES 

The concepts and physical 
quantities characterizing the 
motion of a system of point 
masses are defined and the re
levant equations are derived. 

SYSTEM OF POINT MASSES. A system of point masses is an 
aggregate of a finite number of such point masses. Con
sequently, these point masses can be enumerated. An example 
of such a system is a gas contained in a certain volume if its 
molecules can be taken as point masses according to the 
conditions of the problem. The Sun and the planets consti
tuting the solar system can be considered a system of point 
masses in all problems where the internal structure and the size 
of the Sun and the planets are not significant. The mutual 
arrangement of the points in such a system usually changes 
with time. 

Each point in the system is under the action of two types of 
force: forces whose origin lies beyond the system, called the 
external forces, and forces exerted on the point by other points 
in the system, called the internal forces. Usually, internal forces 
are assumed to obey Newton's third law of motion. We shall 
enumerate the points using the subscripts, say, i, j, ... , each of 
which runs through the values I, 2, 3, ... , n where n is the 
number of points in the system. We shall denote the physical 
quantities pertaining to the ith point b~the same subscript as 
the point. For example; lj, P; and vi denote the radius vector, 
momentum and velocity of the ith point. 

ANGULAR MOMENTUM OF A POINT MASS. Suppose that 
the position of a point ll)aSS is characterized by a radius vector 
r about point 0 taken as the origin. The angular momentum 
(moment of momentum) of the point mass about 0 is defined 
as the vector (Fig. 48) 

L = r x p. (21.1) 

This definition is valid both for relativistic and nonrelativistic 
momentum. In both cases, the direction of the momentum p 
coincides with that of the velocity of the point mass. 

MOMENT OF FORCE ACTING ON A POINT MASS. The 
moment of force acting on a point mass about point 0 (see 
Fig. 48) is the vector 

M = r x F. (21.2) 

As in the other cases, Fin this formula is the resultant of all 
the forces acting on the point mass. 

MOMENTAL EQUATION FOR A POINT MASS. Let us 
differentiate the moment of momentum (21.1) with respect to 
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Fig. 48. Defining the angular 
momentum and the moment of 
force. 
The angular momentum vector is 
perpendicular to the plane containing 
the radius vector and the momentum 
of the particle, while the moment of 
force vector is perpendicular to the 
plane containing the radius vector 
and the force. Point 0 is the origin 
of the radius vectors. 

The momenta! equation for a 
point mass is not an in
dependent law of motion, it 
follows directly from Newton's 
laws of motion. 
The momenta! equation for a 
system of point masses is an 
independent law of motion and 
does not follow from Newton's 
laws of motion without addi
tional assumptions. 
In the relativistic case, the 
concept of the centre of mass is 
inapplicable since it is not an 
invariant of the Lorentz trans
formations. However, the con
cept of the centre-of-mass 
system has an exact meaning 
and proves to be very useful 
and important in mechanics. 
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time: 

dL dr dp 
-=-xp+rx-. 
dt dt dt 

(21.3) 

Note that dr fdt = v is the velocity whose directioJj coincides 
with the momentum p, and the vector product· of two parallel 
vectors is zero. Hence the first term on the right-hand side of 
(21.3) is zero, while the second term represents the moment of 
force (21.2) in view of the fact that dpfdt = F according to 
(20.11). Consequently, Eq. (21.3) is transformed into the 
momental equation 

dL 
-=M, 
dt 

(21.4) 

which is important for the analysis of the motion of point 
masses and bodies. 

The momenta/ equation for a point mass is not an independent 
law of motion and follows directly from Newton's laws of motion. 

MOMENTUM OF A SYSTEM OF POINT MASSES. This 
concept is characteristic of the system as a whole. The 
momentum of a system of point masses is the sum of the 
momenta of the point masses constituting the system: 

(21.5) 
i= 1 

where pi is the momentum of the point mass denoted by the 
subscript i, and n is the number of point masses in the system. 
Henceforth, we shall omit the indices on the summation 
symbol since the indices over which the summation is carried 
out are usually known even without a specific mention. 

ANGULAR MOMENTUM OF A SYSTEM OF POINT 
MASSES. The angular momentum of a system of point masses 
about point 0 taken as the origin is the sum of the angular 
momenta of the point masses constituting the system about 
point 0: 

L = IL i = Ir i x pi, (21.6) 

whereL i =r; x Pi is the angular momentum of the point mass 
with the subscript i about the point 0, defined by (21.1). 

FORCE ACTING ON A SYSTEM OF POINT MASSES. This 
force is defined as the sum of all the forces acting on the point 
masses constituting the system, including the mutual forces of 
interaction of the point masses: 

(21.7a) 
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where 

F; = Fi + L Fji 

i"#i 

(2l.7b) 

is the force acting on the point mass with the subscript i. This 
force is composed of the external force fi acting on the point 

mass and the internal force L F Jf acting on the point mass 
j j "# i 

00------,J-. -------;~100 due to interactions with other point masses in the system. The 
index j =F i on the summation symbol indicates that the 
summation must be carried out over all values of j except the 
value j = i since a point mass cannot act on itself. There is no 
need to make use of this notation if we observe that Fu = 0. 

Fig. 49. Moment of the internal 
forces applied to points i and 
j is zero in accordance with 
Newton's third law. 

1 . 
How are the momentum of 
the system of point masses 
and the force acting on it 
determined? 
Is it possible to prove that the 
moment of internal forcf!S in a 
system of point masses is zero 
only on the basis of Newton's 
laws of motion? »1tat additional 
requirement should be taken to 
Newton's laws of motion to 
prove this? 

Using Newton's third law of motion, we can considerably 
simplify the expression (21.7a) for the force acting on a system 
of point masses. Substituting (21.7b) into (21.7a), we obtain 

F = LFi + LLFw 
i i j 

The double sum in this formula can be represented m the 
following form: 

1 
~~Fi; = 2~~(Fi; + F;i) = 0. 
' J ' J • 

(21.7c) 

This is so because, in accordance with Newton's third law of 
motion, Fi; + Fii = 0 (Fig. 49). Consequently, we 
obtain ' 

F = LF; = LFi, (21.7d) 
i i 

i.e. the force acting on a system of point masses is equal to the 
sum of the external forces acting on the point masses in the 
system. Hence f; in (21.7a) indicates the external forces only. 

MOMENT OF FORCE ACTING ON A SYSTEM OF POINT 
MASSES. This quantity is defined in the same manner as other 
quantities pertaining to the system. The moment of a force 
acting on a system of point masses about point 0 is the sum of 
the moments of forces applied to the point masses in the 
system about point 0: 

(21.8) 

where M; is defined by (21.2). The force F; in (21.8) is the 
resultant of forces applied to the point i, including the internal 
forces. In other words, this force is defined by (21.7b). 

Formula (21.8) can considerably be simplified under certain 
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assumptions. Substituting (21.7b) into (21.8), we obtain 

(21.9) 
i j 

The first sum expresses the moment of external foJces, while 
the double sum represents the moment of internal forces. The 
latter sum can be calculated as follows: 

I 
~~r; x Fi; = 2~~(r; x Fi; + ri x F;i) 

I J I J 

I 
= 2~L(_r;- r) x Fj;· 

I J 

(21.10a) 

Here, we have taken into account Newton's third law of 
motion Fii + Fi; = 0. Assuming that the moment· of internal 
forces is zero, i. e. 

1 
2~~(r;- ri) x Fi; = 0, (21.l0b) 

I J 

we find that the expression (21.9)for the moment of forces acting 
on a system contains only the moment of external forces. This 
assumption is physically justified. In the case of central forces, 
for example, vectors Fi; are collinear with vectors r; - ri so 
that each term in (21.10b) and hence the total sum of these 
terms are zero. Of course, the requirement that each term in 
the sum be zero is more rigorous than the requirement 
concerning the entire sum being zero. In Newtonian mechanics, 
the requirement that the moment of internal forces in a system of 
point masses be zero is treated as a postulate supplementing 
Newton's laws of motion. Only under this condition can we 
assume that the moment of forces (21.8) can be reduced to the 
moment of external forces. 

It was mentioned in Sec. 19 that the interacting forces 
between two moving charges are noncentral. Charged particles 
constituting bodies are always in motion, and 'hence their 
interaction is noncentral. Therefore, strictly speaking, the 
momenta) equation of classical mechanics is not valid for a 
system of charged point masses in the basic sense of this term. 
In practice, however, the momental equation is found to be 
valid in most cases with a very high degree of accuracy. This is 
so because the magnitude of the noncentral part in each 
mutual interaction has a relativistic order of smallness relative 
to the magnitude of central interaction, and the sum (21.l Ob) of 
relativistically small terms vanishes on account of the sta
tistical nature of these interactions. 

In some cases, however, the moment of internal forces is 
clearly nonzero. As an example, we can consider a charged 
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dielectric cylinder on whose surface coils of wires are tightly 
wound to form a solenoid. When an electric current varying in 
time is passed through the solenoid, the moment of internal 
forces arising in the charged dielectric cylinder-solenoid system 
tends to rotate the system about the cylinder's axis. 

A rational interpretation of this phenomenon requires that 
the electromagnetic field should be taken into account, like in 
the case when Newton's third Jaw of motion is not obeyed 
during the interaction of moving charges. Hence it can be 
concluded that the electromagnetic field has not only energy 
and momentum but also an angular momentum. 

EQUATION OF MOTION FOR A SYSTEM OF POINT 
MASSES. Differentiating (21.5) with respect to time and con
sidering from (20.11) that the equation of motion for the ith 
point has the form dpJdt = F;, we obtain 

dp dpi dp 
d(=Ld(=LF;, dt=F, (21.11) 

where 

F ;= LFi. (21.12) 

The quantity F is equal to the sum of the external forces 
since all the internal forces cancel each other in the sum (21.12) 
(see (21.7d)). Equation (21.11) has the same form as (20.11) for a 
point mass, but a different meaning since the physical carriers 
of the momentum p are distributed over the entire space 
occupied by the systcMl of point masses. The points of 
application of the external forces constituting F are also dis
tributed in a similar manner. An interpretation of (21.11) close 
to that of (20.11) is only possible in the nonrelativistic case. 

CENTRE OF MASS. In the nonrelativistic case, i.e. for 
motion at low velocities, we can introduce the concept of 
centre of mass. To begin with, let us consider the expression for 
the momentum of a system of point masses in the non
relativistic case: 

dr. d 
p = Lmo;V; = Lmo; d; = dtLmo;l"; 

= m~(.!.. Lm0;r;), (21.13) 
dt m 

where m = L m0 ; represents the mass of the system as the sum 
of the rest masses of the points constituting the system. 

The radius vector 

(21.14) 



? 
W!y is the concept of the centre 
of mass inapplicable in the 
relativistic case and what does 
the concept of the centre
of-mass system mean? 
W!at should be the state of 
motion of a point to fulfill the 
momenta/ equation relative to 
which it is written? 
Can you prove that the mo
menta/ equation is valid rel
ative to the centre of mass, 
although the motion of the latter 
is compiex? 
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defines an imaginary point called the centre of mass of the 
system. The quantity dR/dt = V is the velocity of motion of 
the imaginary point. If we take (21.14) into consideration, the 
momentum of the system (21.13) can be written in the form 

dR I 
p = mdt = mV, (21.15) 

i.e. as the product of the mass of the system and the velocity of 
its centre of mass, exactly in the same way as the momentum of 
a point mass. The motion of the centre of mass can be 
observed in the same way as of a point mass. 

Together with (21.14) and (21.15), equation (21.11) describing 
the motion of the system assumes the form 

dV 
m·- =F. 

dt 
(21.16) 

In this form, the equation of motion is equivalent to the 
equation of motion of a point mass whose mass is concen
trated at the centre of mass, and all the external forces acting 
on the points of the system are applied to its centre of mass. 
The point representing the centre of mass (21.14) has a definite 
position relative to the point masses of the system. If the 
system is not a rigid body, the mutual arrangement of its 
points changes with the passage of time. Consequently, the 
position of the centre of mass also changes relative to the 
points of the system, but at each particular instant of time the 
centre of mass occupies a definite position. The expression 
"definite position" means that if we "glance" at the system of 
points from a different coordinate system at this instant, the 
position of the centre of mass relative to the points of the 
system remains unchanged. This can be proved as follows: it 
can be seen from the definition (21.14) of the centre of mass 
that if point 0 from which the radius vector R is measured is 
made to coincide with the centre of mass, R will obviously be 
zero. Hence if the radius vectors r i of the individual points of 
the system are measured relative to the centre of mass, we 
obtain from (21.14) 

Imoli = 0. (21.17) 

It should be recalled that the origin of the radius vectors r i in 
Eq. (21.14) lies at an arbitrary point relative to which the 
position of the centre of mass of the system is given by the 
radius vector R. 

Let us now imagine that the centre of mass has to be 
determined from (21.14) by using some other reference point 
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for radius vectors, i.e. some other coordinate system. One can 
ask if the same point serves as the centre of mass in this case. 
Let us determine the position of the centre of mass by taking 
the reference point at 0', whose position relative to point 0 is 

m, characterized by the radius vector p (Fig. 50). The quantities 
corresponding to the reference point 0' will be designated by 
primed letters. In order to determine the position of the centre 
of mass relative to point 0', we can rewrite (21.14) as 

0' 
Fig. 50. Proving the invariance 
of the centre of mass of a system 
of point masses in the non 
relativistic case. 

, 

? 
The angular momentum and the 
moment of force are determined 
about a point. Is the state of 
motion of the point arbitrary? 
J!W!at is the difference between 
the expressions for the angular 
momentum and the moment of 
force in the relativistic and 
nonrelativistic cases? 
Under what conditions is the 
momenta/ equation valid? 
How do the angular mo
mentum and the moment of force 
depend on the position of the 
point about which they are 
calculated? 

I 
R' =- l;m0;ri. (21.18) 

m 

Considering that ri = r; - p and substituting this expression 
into (21.18), we obtain 

I 1 
R'=-l;m0;r;--pl;m0;= R- p, 

m m 
(21.19) 

where m = L:mo;· Formula (21.19) shows that the radius vector 
R' drawn from 0' terminates at the same point as the radius 
vector R originating from point 0. This proves that the 
position of the centre of mass is independent of the coordinate 
system in which it is determined. 

INAPPLICABILITY OF THE CONCEPT OF THE CENTRE 
OF MASS IN THE RELATIVISTIC CASE. The situation is quite 
different in the relativistic case. The expressions for momentum 
cannot be\ransformed in the manner indicated in (21.13) since 
the rest masses m0 ; are now replaced by the relativistic masses 
which depend on tim~since the velocities vary with time. One 
could try to determine the centre of mass with the help of 
(21.14) by substituting the relativistic masses for the rest 
masses m0 ; and assuming that m is the sum of the relativistic 
masses. This would naturally lead to a radius vector termi
nating at a certain point. This point could be called the centre 
of mass. However, there is no physical meaning of this point. 
If we tried to find the position of the centre of mass at a certain 
instant in another coordinate system, we would obtain a point 
having a different position relative to the points in the system. 
Consequently, the concept of the centre of mass in the relativistic 
case is not an invariant concept independent of the choice of a 
coordinate system and is therefore inapplicable. There is no 
sense in writing the equation of motion of this point and to 
observe its motion. However, the concept of the "centre
of-mass system" is generally accepted. Many relativistic con
cepts are considerably simplified in this system. The centre-of 
mass system is a coordinate system in which the sum of the 
momenta of the particles is zero. It is always possible to find 
such a coordinate system. We shall do this later when 
considering the collisions. This system is characterized by its 
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Fig. 51. Diagram of impulsive 
forces, tensions and velocities in 
Example 21.1. 
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velocity and not by the position of its origin. If the momenta of 
particles in this coordinate system are denoted by P;, we must 
get 

LPi = 0. I (21.20) 

This condition can only lead to the velocity of the coordinate 
system and not to its position. Hence it can be stated that the 
centre-of-mass system exists in the relativistic case, although 
there is no centre of mass. 

MOMENTAL EQUATION FOR A SYSTEM OF POINT 
MASSES. Differentiating (21.6) with respect to time, we obtain 
the momenta! equation for a system of point masses: 

dL = "dri X p. + "r. X dpi 
dt £... dt I £... I dt 

= L vi x pi+ L ri x Fi = 0 + L Mi = M, 

dL 
-=M dt , (21.21) 

where we have considered that the velocity vectors for a 
particle are parallel to the momentum vectors and have taken 
into account (21.8) for the moment of the force acting on the 
system. It should be recalled that M is the moment of the 
external forces applied to the system, as was explained in detail 
for the case of (21 .8). 

However, unlike Eq. (21.4)for a point mass, Eq. (21.21) cannot 
be considered a simple corollary of Newton's laws of motion. 
Over and above Newton's laws, this equation also requires that 
internal forces should be central. It should also be noted that 
(21.16) and (21.21) do not form a closed system of equations for 
a system of point masses. A system of N point masses has 3N 
degrees of freedom, while the number of equations given by 
(2I.16) and (21.21) is just six. Hence 3N- 6 more conditions or 
equations must be specified for a complete solution of the 
problem. 

Example 21.1. Two point masses m 1 and m2 are fastened on 
a horizontal table with the help of an absolutely unstretchable 
string OAB (Fig. 51) rigidly fixed at point 0. A large force F is 
applied to the point mass m2 for a very short time Ot, 
imparting an impulse F = F Ot in the direction of the force F. 
Find the instantaneous velocities imparted to the points at the 
instant of impact. Frictional forces should be neglected. 

The imj>act at_ the point mass m2 produces impulsive 
tensions T1 and T2 in the absolutely unstretchable string. 
Obviously, the velocity u1 of the point mass m 1 can be directed 
only at right angles to OA (see. Fig. 51). The velocity of the 
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point mass m2 is composed of the velocity u1 and the velocity 
u2 of the point mass m2 relative to the point mass m1 • After the 
impact, the momentum conservation law for the closed system 
can be written in the form of the relations 

T2 sin a = m 1 u 1 , T1 - T2 cos a = 0, 
F- T2 sin a = m2 (u1 + u2 cos a), (21.22) 
T2 cos a= m2u2 sin a. 

There are four equations in four unknowns u1 , u2 , T1 and T2 . 

Solving them, we get 

F sin2 a 

(21.23) 
m1F cos u 

U2 = · 2 • m2 (m 1 + m2 sm a) 

Example 21.2. In the relativistic case, a transition to the 
centre-of-mass system simplifies the solution of many problems 
of dynamics of a system of point masses. Suppose that the 
energy and momentum of each point of the system are 
specified. It is required to find the centre-of-mass system and to 
express in this system the energy of the system of point masses 
in terms of its value in the laboratory coordinate system. 

As usuat, we use the subscript i to enumerate the points of 
the system. Let us determine the momentum of the system of 
point masses: ,,.. 

(21.24) 

and the energy of the system: 

(21.25) 

In the relativistic case, the concept of centre of mass does not 
exist, but the centre-of-mass system does exist and is char
acterized by the condition p = 0. 

The energy- and momentum transformations expressed by 
(13.34) are linear transformations. Hence their validity for the 
energy and momentum of a point mass leads to their 
applicability to the energy and momentum of a system of point 
masses described by the linear relations (21.24) and (21.25). 
This means that the energy and momentum in (13.34) signify 
the energy and momentum of both a point mass and a system 
of point masses. It is expedient to write these transformations 
in an incoordinate vector form. Let us denote the momentum 
component in the direction of the velocity by p11 , and the 



PROBLEMS 

Problems 159 

momentum component in a plane perpendicular to the di
rection of the velocity by p .L. The transformations (13.34) then 
assume the form 

, Pu- vEfc2 

Pn = JI - vz;cz, I (21.26a) 

The energy and momentum of a system of point masses are 
denoted by E and p in the laboratory coordinate system, and 
by E' and p' in the centre-of-mass system. By definition of the 
centre-of-mass system, p' = 0. The first two equations in 
(21.26a) assume the form 

, p 11 - vE/c2 
p - -0 p'J._ =p.L = 0. (21.26b) 
II- J!- v2fc2 - ' 

This means that the velocity v is collinear with p and 

(21.27) 

Thus, the centre-of-mass system is a coordinate system which 
moves relative to the laboratory coordinate system at a 
velocity v determined by (21.27). Considering (see Chap. 6) that 
p = const and E = const for an isolated system of point 
masses, we conclude from (21.27) that the centre-of-mass 
system is an inertial system. 

In order to determine the expression for energy in the 
centre-of-mass system, we make use of the invariant (13.35): 

£'2 £2 
p'2-- = p2 (21.28) c2 c2 •. 

Considering that p' = 0, we obtain from (21.28) 
E'2 = £2 _ p2c2. (21.29) 

It follows from (21.27) that p2 = E2v2jc\ and hence (21.29) 
assumes the form 
E'2 = £2(1- v2fc2). (21.30) 

Finally, we arrive at the expression 

E' = EJ1- v2 fc 2 • • (21.31) 

5.1. A ring can slide without friction along an undeformable rod. The rod 
rotates at an angular velocity co in the vertical plane about a 
horizontal axis passing through one of its ends at right angles to the 
rod. The distance between the ring and the axis of rotation is denoted 
by r. Assuming that the ring is in a state of rest at the point r = 0 at the 
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instant 1 = 0 and that the rod points vertically downwards from the 
axis of rotation, find r(l). 

5.2. The flat base of a right circular cylinder of radius r0 is rigidly fastened 
to a horizontal table. A thin weightless unstretchable thread of length 
21 is rigidly fastened to the cylinder's surface at its base and is tightly 
wound on the cylinder near the base at a height /. (The thickness of the 
thread is neglected.) A mass m fixed to the other end of the thread can 
move in a horizontal plane so that the thread is always under tension. 
At the initial moment 1 = 0, a velocity u is imparted to the mass in a 
direction perpendicular to the part of the thread unwound on the 
cylinder so that the thread is unwound during the motion of the mass. 
In what time will the thread be completely unwound from the cylinder 
and what will be the time dependence of the tension of the thread? 

5.3. A man puts a shot of mass m from shoulder height with his hand 
pointing vertically upwards. By applying a certain force, a man whose 
height up to the shoulder is 1.5 m and whose hand is 0.75 m long can 
throw the shot to a height of 4 m above the Earth's surface. To what 
height will the shot be thrown on the Moon's surface under the same 
conditions? The free fall acceleration on the Moon is about one-sixth 
that on the Earth. 

5.4. A point mass begins to slide without friction from the top of a rigidly 
fastened sphere along its surface. The position of the sliding point can 
be characterized by the angle 9 between the vertical and the radius 
vector joining the point to the centre of the sphere. For what value of 9 
will the point mass lose contact with the sphere's surface and begin to 
fall freely under the action of gravity? 

5.5. Two point VJasses m1 and m2 are connected through a weightless 
unstretchable thread passing through a ring of mass m3 • The masses 
m 1 and m2 are in close proximity on the surface of a table, while the 
ring is suspended by threlds down the edge of the table. The threads 
are perpendicular to the edge, and there is no friction. Find the 
acceleration of the ring. 

5.6. A perfectly rigid straight pipe OA of length I rotates in a horizontal 
plane about a vertical axis passing through point 0 at a constant 
angular velocity co. A ball starts rolling from point 0 without friction 
along the pipe at an initial velocity u. Find the angle between the 
directions of the pipe and of the ball at the instant when the ball rolls 
off the pipe. 

5.7. Two point masses m1 and m2 are connected through a perfectly rigid 
weightless rod and lie on an absolutely smooth horizontal surface. An 
impulsive force F is applied to the point mass m 1 (see Example 21.1) at 
an angle a to the line joining the points where the masses m1 and m2 

are located. Find the magnitudes of the velocities of the masses m1 and 
m2 immediately after the impact. 

5.1. (g/(2oo2))(coshool- cos col). 5.2. 3P/(2r0u), mu2/JP + 2r0 ul. 
5.3. 16.5 m. 5.4. arccos (2/3). 5.5. m3(m 1 + m2)g/ 

[4m 1m2 + m3(m 1 + m2)]. 5.6. arctan (lcofJu 2 + Poo2). 

5.7. {[Fcos af(m1 + m2W + [Fsin afma2 } 112, Fcosaf(m 1 + m2). 



Chapter 6 
Conservation Laws 

I 

Basic idea: 
Conservation laws hold for isolated systems and can mathemati
cally be reduced to the first integrals of the equations of 
motion in mechanics. On the whole, the conservation laws for 
isolated systems express the fundamental properties of space 
and time, viz. the homogeneity and isotropy of space and the 
homogeneity of time. 

Sec. 22. SIGNIFICANCE AND ESSENCE 
OF CON~ERV ATION LAWS 

It is shown that the conserva
tion laws in mechanics can be 
reduced to integrals of the 
equations of motion. 

II 354 

ESSENCE OF CONSERVATION LAWS. In principle, the laws of 
motion can provide answers to all questions concerning the 
motion of point masses and bodies. With enough skill and 
patience, one can determine the position of point masses at 
any instant of time, which means that the problem is com
pletely solved. The possibilities of solving such equations have 
considerably been increased after the appearance of com
puters. For example, many problems associated with the 
motion of artificial satellites of the Earth and interplanetary 
flight of rockets could have been correctly formulated long ago 
in the form of equations, but it was only after the advent of 
computers that these equations could be solved with. a view to 
obtain the necessary information. However, even at present, 
there are problems that can be formulated in terms of 
equations, but cannot be solved even with the help of 
computers. Hence the investigation of general properties of 
solutions of equations without obtaining the solution in 
concrete form continued to be important. 

For example, suppose that we are interested in the motion of 
a body, but cannot solve the equation of its motion, and hence 
are unaware not only of its whereabouts at a particular instant 
of time, but also whether the body will remain near the Earth's 
surface during its motion or leave the Earth and set out on an 
interplanetary voyage. If, without solving the equations of 
motion, we can establish that the body will move near the 
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Conservation laws in mechan
ics are reduced to the first 
integrals of the equations of 
motion. However, their physi
cal nature is based on the 
fundamental properties of 
space and time. Therefore the 
significance of the conservation 
laws is far beyond the scope of 
mechanics, they are funda
mental laws of physics. 

? 
I 

Is it possihle on the basis of the 
conservation laws to say how 
a motion will occur? 
Is it possihle on the basis of the 
conservation laws to judge 
whether a given motion of 
a point is, in principle, possih/e 
or impossible? 

6. Conservation Laws 

Earth and predict that it will not depart from the Earth's 
surface under any condition by more than, say, 10 km, it will 
mean a considerable progress. If on top of this we can establish 
that the velocity of the body will be zero at a height of 10 km 
and indicate the direction of the body's velocity on the Earth's 
surface at this height, then we essentially know everything 
about this motion for certain purposes, and there is no need to 
solve the equation of motion. 

Conservation laws allow us to consider the general properties 
of motion without solving the equations of motion and without 
a detailed information about the evolution of the process. The 
analysis of the general properties of motion is carried out 
within the framework of the solutions of equations of motion 
and cannot contain more information than in the equations of 
motion. Hence the conservation laws do not contain more 
information than the equations of motion. However, the 
required information is contained in the equations of motion 
in such an implicit form that it is not easy to perceive it 
directly. Conservation laws allow this latent information to be 
presented in an observable form in which it can conveniently 
be used. An important feature of this information is its general 

. nature: it can be applied to any specinc motion irrespective of 
its detailed characteristics. 

The general nature of conservation laws makes it possible to 
use them not bnly when the equations of motion are known 
and their solution is not known, but also when the equations 
of motion are unknownPThis often helps reveal the same 
important features of motion without knowing the law 
according to which the forces act. 

EQUATIONS OF MOTION AND CONSERVATION LAWS. 
Equations of motion are equations describing the change of 
physical quantities in space and time. We can imagine the 
motion as an infinite sequence of physical situations. Actually, 
we are not interested in any particular situation at any specific 
instant of time which is not associated with motion, but just in 
the sequence of situations through which the motion is 
accomplished. While considering the sequence of situations, we 
are interested not only in their contrasting features, but also in 
their common features and in quantities that are conserved in 
the processes. Conservation laws provide an answer as to 1-l'hich 
quantities remain constant in a sequence of physical situations 
descrihed by the equations of motion. Clearly, the physical 
theory must formulate this constancy as the constancy of 
numerical values of the corresponding physical quantities or, 
as they are sometimes called, in the form of conservation laws. 

MATHEMATICAL MEANING OF THE MECHANICAL 
CONSERVATION LAWS. Let us consider as an example 
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Newton's one-dimensional equation of motion, which can be 
written in the form of two equations: 

dvx 
m0 - = Fx, (22.la) 

dt 
dx f 
- = vx. (22.lb) 
dt 

The problem is completely solved if the position of a moving 
point mass is known at any instant of time. Hence to solve this 
problem, we must first integrate (22.la) and obtain vx, after 
which we can consider vx to be a known quantity and integrate 
(22.1 b) to determine x(t). 

For a very wide range of forces, the first integration can be 
carried out . in the general form, and the resulf can be 
represented as the constancy of the numerical value of a 
certain combination of physical quantities. This is nothing but 
the conservation law. Thus, the conservation laws in mechanics 
can mathematically be reduced to the first integrals of the 
equations of motion. 

However, the significance of the quantities being conserved 
extends beyond the scope of mechanics and plays an important 
role in other fields. The physical quantities being conserved are 
fundamental, and their conservation laws are fundamental 
laws of physics and not just a result of mathematical ma
nipulation of the equations of mechanical motion. 

Sec. 23. MOMENTUM CONSERVATION LAW 

The concept of an isolated 
system is introduced and the 
physical meaning of the mo
mentum conservation law valid 
for such a system is discussed. 

II' 

ISOLATED SYSTEM. A system of point masses or a point mass 
is called isolated if it is not subjected to any external forces. 
There can be no isolated systems in the Universe in the 
absolute sense of the term since all bodies are mutually 
connected, say, through gravitational forces. However, under 
certain conditions, we can treat bodies as isolated to a 
considerable extent. For example, a body in a certain region of 
space far from massive celestial bodies behaves like an isolated 
system. In other cases, the motion of a system in certain 
directions can be treated as the motion of an isolated system, 
although the system is certainly not isolated on the whole. 

MOMENTUM CONSERVATION LAW FOR AN ISOLATED 
SYSTEM. There are no external forces in an isolated system. 
Hence we can put the force F = 0 in the equation of motion 
(21.11 ), which then assumes the form 

dp 
- = 0. (23.1) 
dt 
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? 
In what case can the mo
mentum conservation law be 
applied to a nonisolated system? 
A frictional force acts on a 
system of billiard balls moving 
along a table, and hence the 
system is not isolated from 
horizontal motions. Can the 
momentum conservation law be 
applied to the colliding balls? 
Why? 
Can we consider a system of 
interacting electric charges to be 
an isolated system in general? 
ffllat should we take into 
account in this case? 

6. Conservation Laws 

Integrating this equation, we get 

p = const, (23.2) 

Px = const, Py = const, Pz = const. 

This equality expresses the momentum conservation law: 
The momentum of an isolated system does not change 

during any process taking place in the system. 
For a point mass, the momentum conservation law means 

that 'it moves in a straight line at a constant velocity in the 
absence of external forces. For a system of point masses, the 
momentum conservation law in the nonrelativistic case means 
that the centre of mass of the system moves uniformly in a 
straight line. 

The momentum conservation law (23.2) is valid in both 
relativistic and nonrelativistic cases. In the relativistic case, 
however, it cannot be interpreted as a uniform motion of the 
centre of mass in a straight line since there is no centre of mass 
in this case (see Sec. 21). However, there is a centre-of-mass 
system in which the momentum conservation Jaw reduces to 
the equality p = 0 and indicates that the system remains a 
centre-of-mass system for any process taking place in it. 

CONSERVATION LAWS FOR INDIVIDUAL PROJECTIONS 
OF MOMENTUM. It may so happen that a system of point 
masses or a point mllf!> is not isolated, but the external forces 
act only in certain 'directions and are absent in the other 
directions. Then by an appropriate choice of the coordinate 
system, we can ensure that one or two projections of external 
forces vanish. Suppose, for example, that there is no force in 
the directions parallel to the XY..plane, i.e. Fx = 0, FY = 0 and 
Fz "# 0. Then the equation of motion (20.11) in terms of the 
components of quantities along the coordinate axes has the 
following form: 

dpx dpy 
-=0 -=0 
dt , dt ' 

dpz 
-=F dt z• 

Integrating the first two equations, we obtain 

(23.3) 

Px = const, Py = const. (23.4) 

This means that the momentum of the system in the directions 
parallel to the X Y..plane preserves its value, and the system 
behaves as an isolated system in these directions. For example, 
the gravitational forces near the Earth's surface act in the 
vertical direction, and there are no components along the 
horizontal. Hence a system of bodies can be treated as an 
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Fig. 52. Determining the bullet's 
velocity with the help of a ballis
tic pendulum. 
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isolated system for horizontal motion as far as the grav
itational forces are concerned. 

APPLICATION OF THE MOMENTUM CONSERVATION 
LAW. Examples of the application of the momentum con
servation law to solve specific problems will be cmy;idered in 
the next chapters. Here, we shall analyze an example of the 
ballistic pendulum which is a small body of mass m1 suspended 
on a long thread (Fig. 52). The size of the body is such that 
when a bullet of mass m2 travelling at a velocity v hits the body 
and is stuck in it, the ball is deflected. What will be the velocity 
u of the body with the bullet stuck in it? If we try to analyze 
the penetration of the bullet into the body, find the time 
dependence of the forces emerging in this case and then solve 
the equation of motion, it will require a lot of etfurts. Even 
then the results would not be reliable since many assumptions 
will have to be made in order to obtain them and it is quite 
difficult to substantiate these assumptions rigorously. 

If the body is quite small and can be replaced by a point 
mass, we can use the momentum conservation law for two 
interacting point masses without going into the details of the 
manner in which the bullet penetrates the body. In- other 
words, we can write m2v = (m 1 + m2 )u (see Fig. 52). The 
easiest way to determine the velocity u is to measure the height 
to which the body and the bullet in it rise and to substitute 
this value into the equation (m 1 + m2 )u2/2 = (m 1 + m2 )gh 
expressing the energy conservation law. This gives v = 
J2gh(m 1 + m2)/m2 • However, such an approach is incor
rect for a body of finite size, although it is widely used. The 
correct approach to this problem will be described in Sec. 34. 

Sec. 24. ANGULAR MOMENTUM CONSERVATION LAW 

The formulation and the condi
tions of applicability of the an
gular momentum conservation 
law are discussed. 

FORMULATION OF THE LAW. Like the momentom conser
vation law, this law is also valid for isolated systems only. For 
such systems, the moment M of external forces is zero, and the 
momenta! equation (21.21) assumes the form 

dL=O 
dt . (24.1) 

Integrating this equation, we obtain 

L = const, .(24.2) 

Lx = const, Ly = const, L: = const. 
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L 

Fig. 53. An increase in the 
angular and linear velocities of 
a point mass in accordance with 
the angular momentum conser
vation law is due to a decrease 
in the distance of a rotating 
point mass from the axis of 
rotation under the action of 
a force applied to it. 

? 
In what case can the angular 
momentum conservation law be 
applied to a noniso/ated 
system? 
What is the property of space 
that specifies the validity of the 
angular momentum conservation 
law? 
What physical circumstances 
spec({): whether the an{Jular 
momentum conserllation law can 
he applied tv a noniso/ated 
system? 

6. Conservation Laws 

This equation expresses the angular momentum conservation 
law: 

The angular momentum of an isolated system does not 
change during any process taking place in the system. 

CONSERVATION LAWS FOR INDIVIDUAL PROJECTIONS 
OF ANGULAR MOMENTUM. It may so happen that a system 
is not completely isolated, but the projection of the moment of 
force is zero, e. g. along the Z-direction. In this case, the 
momenta! equation (21.21) for the projections can be written in 
the following form: 

dL.. dLY 
dt = M x• dt = MY' (24.3) 

Consequently, the system can be considered isolated only with 
respect to the z-projection of the angular momentum: 

L. = const. (24.4) 

Hence like the momentum conservation law, the angular 
momentum conservation law can be applied not only to 
completely isolated systems, but also to partially isolated ones. 

Example 24.1. A thread is passed through a rigidly fastened 
tube. A body of mass m is suspended at the end of the thread 
and can r9tate in a circle with the axis of rotation coinciding 
with the axis of the tube (Fig. 53). Suppose that at the initial 
instant of' time the body rotates in a circle of radius r1 at a 
velocity v1 . A force F is then applied to the thread, and as a 
result the body of m318s m begins to move along a spiral with a 
decreasing radius and at a varying velocity. At the end of the 
process, the body moves in a circle of given radius r 2. Find the 
velocity v2 of the body. 

It is difficult to solve this problem using the equations of 
motion. As the body moves along the spiral, the force acting 
along the radius is directed at an angle to the velocity which 
consequently increases. Using the relevant data, we can 
calculate the change in the velocity and find the velocity v2 . 

However, it is much easier to solve the problem using the 
angular momentum conservation law. The force acting on the 
mass m is always directed along the radius, and hence its 
moment (21.2) is zero. Consequently, the angular momentum is 
conserved. In the present case, the angular momentum L is 
parallel to the axis of rotation and is r 1mv 1 at the initial 
instant. It must have the same value, i.e. r 1mv1 = r 2mv2 at the 
final instant. This gives the required velocity to the body 
v2 = rlvljr2. 
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Sec. 25. ENERGY CONSERVATION LAW 

The energy conservation law is 
ftlrmulatcd and related con
c·.:pts arc discussed. 

Fig. 54. Computing the work 
done by a force during one
dimensional motion. 

WORK DONE BY A FORCE. If the absolute value of velocity 
changes under the action of a force, work is said to be done by 
the force. The work of force is considered positjve if the 
velocity increases, while the work of force ·is considered 
negative if the velocity decreases. 

Let us find the relation between the work and change in 
velocity. We shall first consider the one-dimensional case when 
the force acts in the X -direction and the motion is in the same 
direction. For example, suppose that a point mass m0 is 
displaced under the action of the force of compression or 
extension of a spring fastened at the origin of the coordinate 
system, viz. point 0 (Fig. 54). The equation of motion of the 
point has the form 

dvx 
modt = Fx. (25.1) 

Multiplying both sides of this equation by vx and considering 
that vxCdvxfdt) = (l/2) (dv;/dt), we get 

~ (mov;) = F v . (25.2) 
dt 2 X X 

We replace vx on the right-hand side of this equation by dx/dt 
and multiply both sides by dt. This gives 

(m0 v;) 
d - 2- = Fxdx. (25.3) 

In this form, the equation has a clear meaning: as the point 
is displaced by dx, the force performs the work F x dx; 
consequently, the quantity m0 v;;2 characterizing the motion of 
the point and, in particular, the magnitude of its velocity, also 
changes. The quantity m0 v;;2 is called the kinetic energy of the 
point. If the point moves from position x 1 to Xi and its 
velocity changes from vxl to vx2• the integration of (25.3) gives 
vx = •xz ( m v2 ) x, J d ~ = J Fxdx. 
v.,::;v.x 1 2 X:t 

(25.4) 

Considering that 

"· = v,, ( m v2 ) m v2 m v2 J d ~ =~-~. 
v,= v,, 2 2 2 

we finally obtain 

2 2 x, 
moVx2- lllollx! = r· F dx. 

2 2 x1 X 

(25.5) 



168 6. Conservation Laws 

The change in the kinetic energy of a point ma.ss as a result of 
its motion from one position to another is equal to the work done 
by the force during this displacement. 

The integral on the right-hand side of (25.5) is the limit of 
the sum of elementary works done during elementary displace
ments. The entire interval between points x1 and x 2 is divided 
into subintervals L\xi (x2 - x 1 = LL\xJ on each of which the 
force has a certain value F xi (irrespective of the point on each 
of these subintervals where the value of the force Fxi is taken). 
The elementary work done over each of the subintervals L\xi is 
L\Ai = Fxil\xi, and the total work done for the entire displace
ment from x 1 to x 2 will be 

(25.6) 

Making the length of each of the subintervals L\xi tend to zero 
and their number to infinity, we obtain the work done by the 
force in displacing the point from x 1 to x 2 : 

x2 

A = lim L F xi [\xi = J F X dx. (25. 7) 
Axi-oi x 1 

It can be seen from (25.5) that the kinetic energy of a point 
mass changes if the forces are not zero. Thus, the kinetic 
energy is not conserved if a force is applied to the point mass. 
It remains•constant only in the absence of a force since for 
F x = 0 we obtain from (25.5) 
m0 v;2 m0 v;1 •"' 
- 2- = - 2- = const. (25.8) 

But in the absence of force this kinetic energy conservation law 
of a point mass is trivial since under these conditions the 
momentum conservation law itself establishes the constancy of 
velocity, and hence of its square as well. 

If the displacement of a point mass does not coincide in 
direction with the force, work is done by the component of 
force along the displacement. Work is equal to the absolute 
value of force multiplied by the cosine of the angle between the 
force and the displacement. Since the elementary displacement 
of a point mass is dl and the force F is also a vector, the 
elementary work can be represented in the form of the scalar 
product: /".... 
dA = Fdlcos(F, dl) = F·dl. (25.9) 

Suppose that a point mass moves not in a straight line, as in 
(25.1), but along an arbitrary trajectory (Fig. 55). In this case, 
the work done by the force in displacing the point from 
position 1 to position 2 is also expressed as the limit of the sum 
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AI 2 of elementary works (25.9) over the entire path. We divide the 8 '\;' trnjocto•y ;nto •ub;nt.,.va], AI; Hko tho ono •hown ;n F;& 55. 
F The elementary work o~ach of these subintervals is 

F ' AA;= F;·At; = F; A/;cos(F;, AI;). 
/ F The sum of all the elementary works is appro!'im<Jtely equal 

to the work done in displacing the point from position 1 to 
1 position 2. Making the length of each of the subintervals AI; 

Fig. 55. Computing the work 
done by a force during motion 
along an arbitrary trajectory. 

I . 
By definition, a line integral is 
the same as an integral of a 
variable. We should only divide 
the iqtegration path into sub
intervals, calculate the value of 
the integrand for each subin
terval and then the sum of the 
values for all the subintervals of 
the curve, and find the limit of 
the sum as the value of each 
subinterval tends to zero and 
their number to infinity. 

tend to zero and their number to infinity, we obtain the work 
done by the force in moving a point mass along an arbitrary 
trajectory: 

(2) 

A= lim LF;·dl; = J F·dJ. (25.10) 
A1;~o i OJ 

L 

The integral on the right-hand side of (25.10) is called the line 
integral along the curve L joining points 1 and 2. In terms of 
the notation of the integration limits, the letter L indicates a 
specific line joining points 1 and 2. This sign is usually omitted 
since we know the particular line along which the integration 
is carried out. The sequence of points (I) below and (2) above 
the symbol indicates the direction in which the point mass 
moves along this curve (in the present case, from point 1 to point 
2). Of course, we can move along the same curve from point 2 
to point /, but in this case, the integration limits should be 
reversed in (25.10). If we reverse the direction of motion along 
the curve, only the sign of the integral changes. This is evident 
because the direction of all the elementary displacements dL is 
reversed, while the force remains the same at each point, and 
hence the signs of all the elementary works F·dt are reversed. 

While considering the general case, we must replace (25.1) by 
a more general equation of motion: 

dv 
mo dt = F. (25.11) 

Subsequent computations are carried out in the same way as 
in the case of (25.1 ). Forming a scalar product of both sides of 
(25.11) and the velocity v = dr/dt, and considering that 

dv d(v·v) d(v2
) 

v. dt = dt 2 = dt 2 , (25.12) 

we obtain an equation analogous to (25.3): 

d( m;v2
) = F"dr. (25.13) . 

Vector dr has the same meaning as vector dt. We used dt in 
(25.10) to emphasize that the integral is determined only by the 
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line along which the integration is carried out and by the 
forces acting on the points of the line, and is independent of the 
position of the point relative to which the radius vector is 
measured. 

Integrating both sides of (25.13) along the trajectory of a 
point mass between its positions 1 and 2, we obtain 

(25.14) 

The same remarks can be made concerning this equation as 
those made in connection with (25.8) if we consider that the 
trajectory of a moving point is a straight line in the absence of 
forces. 

It can be stated that (25.14) expresses the law of energy 
conservation if we take into consideration not just the mechanical 
forms of energy, but all other possible forms as well, i.e. if we 
extend the analysis of the problem beyond mechanics. As a 
matter of fact, the right-hand side of this equation contains a 
quantity having the dimensions of energy. However, it may not 
be possible to find the physical meaning of this quantity within 
the framework of mechanics since it has a different, nonme
chanical, origin. For example, if the force is frictional, the 
integral on the right-hand side of (25.14) expresses in certain 
units the degree of heating of the medium offering resistance to 
a body. A considerable apl.ount of effort was required to find 
the form of energy called heat. 

In many cases, however, the properties of forces are such 
that the right-hand side of (25.14) has a clear meaning within 
the framework of mechanics. Only such cases are of interest in 
mechanics and will be considered here. 

POTENTIAL FORCES. Depending on their properties, forces 
can be divided into two categories. For forces of one type, the 
work of displacement between two points is independent of the 
path along which the displacement takes place, while for forces 
of the other type, the work depends on the path along which 
the displacement takes place. 

By way of an example, let us consider the force of dry 
friction which acts against the velocity, but is independent of it 
within certain limits. Clearly, the work of the force is propor
tional to the length of the trajectory, and hence depends on the 
trajectory along which the body moves from one point to 
another. 

Another well-known example is that of the work done in 
displacing a load from one point to another in the Earth's 
gravitational field. This work depends only on the difference 
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Fig. 56. Proving the equivalence 
of the path independence of 
work and the equality to zero 
of work in any closed path. 

The equation of motion is 
always solved by means of two 
quadratures in the case of 
unidimensional motion when 
we know the force which 
depends only on coordinates. 
Any force which depends only 
on coordinates is a potential 
force in the unidimensional 
case. 

25. Energy Conservation Law 171 

between the heights of the points and is independent of the 
specific shape of the trajectory, its length, etc. 

A force whose work depends only on the initial and final 
points of the trajectory and which is independent of the shape 
of the trajectory is called a potential force. Gravitatiqnal forces 
belong to this category. . I 

Instead of the expression "potential forces", the term "poten
tial fields" is frequently employed. The field of a force is the 
region in space over which the force under consideration acts. 
The term "force" is often omitted from the expression "force 
field". 

MATHEMATICAL CRITERION FOR THE POTENTIAL NA
TURE OF A FIELD. A field is called a potential field if the work 
done in this field, i.e. the integral 
(2) 

J F·dl, (25.15) 
(I) 

depends only on the positions of points 1 and 2 and is 
independent of the path connecting the points. We can give a 
different mathematical expression for this definition: let us join 
points 1 and 2 by two different curves L 1 and L 2 (Fig. 56). 
According to the definition of the potential field, we can write 
(2) (2) 

J F·dl= J F·dl. (25.16) 
(I) (I) 
L 1 L2 

Here, the integration paths between points 1 and 2 are 
different. If we move along the path L 2 from point 2 to point 1, 
the sign of the integral will be reversed: 
(2) (I) 

J F·dl =- J F·dl. (25.17) 
(I) (2) 

L2 oL2 

It should be noted that the direction of the path along which 
the integration is carried out has no relation whatsoever with 
the direction of motion of point masses. The evaluation of an 
integral is a purely mathematical operation. For example, the 
direction of the integration path coincides with the actual 
direction of motion of the point mass on the right-hand side of 
(25.14). However, nothing can stop us from putting a minus 
sign in front of the integral and evaluating it along the path in 
the reverse direction. 

Using (25.17), we can rewrite (25.16) in the form 
(2) {I) 

J F·dl+ J F·dl=O. (25.18) 
(I) (2) 
Lt L2 
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The left-hand side is the sum of two integrals: the displacement 
in the first integral takes place from point 1 to point 2 along 
the path L 1, while the second integral indicates a return to the 
initial point along the path L 2 • As a result, we obtain an 
integral along a closed contour, and (25.18) assumes the form 

§F·di = 0. (25.19) 

The circle on the integral sign means that .the integration is 
carried out over a closed contour. There is no need to specify 
this closed contour since it is obvious even otherwise. If it is 
necessary to distinguish between the contours, this can be done 
by using appropriate symbols under the integral. The initial 
definition of the potential field involved arbitrary paths 
connecting arbitrary points. Hence we can choose an arbitrary 
contour for the closed contour in (25.19). 

The statement contained in Eq. (25.19) can be expressed in 
the following form. 

( l) A potential field is that in which the work done by the field 
forces over any closed contour is zero. 

Alternatively, we can present this statement in the form of a 
criterion. 

(2) The necessary and sufficient condition for a field to be a 
potential field is that the work done by the field forces over any 
closed contour be zero. 

WORK Ito! A POTENTIAL FIELD. We shall now use a 
mathematical theorem whose statement will be given without 
a proof: if Fx• F, and F ;;Jlre the projections of a potential force, 
there is a function EP(x. y, z) such that these projections can be 
expressed through the formulas 

i)£P 
F =--

x ox ' 
i)£P 

F.= --iJ . 
- z 

(25.20) 

The derivatives iJEPfiJx, etc. are called partial derivatives and 
can be determined in the same way as normal derivatives of 
functions of single arguments assuming that all the remaining 
arguments of the functions are constants and have no connec
tion with differentiation with respect to the given argument. 
For example, while evaluating iJEP/iJx, we differentiate the 
function EP with respect to x, assuming that y and z are 
constants. 

Using the function EP, we can calculate the work of the force 
on the right-hand side of (25.14). For this purpose, we first 
write the elementary work by considering that the projections 
of the displacement d) on the coordinate axes are dx, dy and dz 
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Fig. 57. Computing the work 
done by a force in a potential 
field. 
Components of the quantities are 
shown for X- and Y-axes only. 
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(Fig. 57): 

F·dl= F"d/x + Fyd/Y + Fzd/z = Fxdx + Fydy + Fzdz. 
(25.21) 

Expressing the projections of the force 
(25.20), we obtain 

I fJEP oEP iJEP 
F·d = --dx--dy--dz. ax ay az 

in accordance with 
I 

(25.22) 

It is well known from the theory of functions of a single 
variable that df = (offox)dx is the differential of the function, 
which expresses the increment of the function upon a change of 
the argument x by dx. Hence, by analogy, we consider the 
quantity (iJEP/ox)dx as the increment of EP upon a change of 
the argument x by dx, assuming that the other ·arguments 
remain constant. For a displacement by d/, the total increment 
of EP is obtained as the sum of the increments (oEP/ox) dx, 
(oEP/oy) dy and (oEP/oz) dz, caused by the respective displace
ments along the X-, Y.. and Z-axes: 

oEP oEP oEP 
dEP = a; dx + ay dy + a; dz. (25.23) 

This increment is called the total differential, and the expres
sion (25.22) for the elementary work assumes the form 

F·dl= -dEP. (25.24) 

Integrating, we obtain the work done over the displacement 
from point 1 to point 2: 
(2) (2) 

J F·dl=- J dEP = -(EP2 - EP1), (25.25) 
(I) (I) 

where EP 1 and EP2 are the values of the function EP at points I 
and 2. Formula (25.25) clearly shows that the work in this case 
depends only on the initial and final points of the trajectory 
and is independent of the shape of the trajectory: 

Taking (25.25) into consideration, we obtain instead of 
(25.14) 

(25.26) 

Thus, the kinetic energy has changed between points 1 and 2 
by the same amount as the quantity EP (with opposite sign) as 
a result of a displacement between the same points. We can 
write (25.26) in a more convenient form: 

(25.27) 
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? 
What is the meaning of the line 
integral expressing the work 
done over the displacement 
between two points? 
What does the integral depend 
on in the general case? 
What are potential.fim·es? 
What criteria for the potential 
nature of forces do you knoll'? 
What is the connection between 
forces and a potential energy? 
Is it possible to write the energy 
conservation law for forces 
which are not potential within 
the .framell'ork of mechanics? 
What nonmechanical forms of 
energy do you know? 
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This means that the sum of the kinetic energy and the quantity 
EP remains constant as a result of motion (any two points on 
the trajectory can be chosen as points 1 and 2 in (25.27)). 
Hence we can write 

(25.28) 

The quantity EP is called the potential energy of a point 
mass, while Eq. (25.28) expresses the energy conservation law. It 
should be emphasized that this equation expresses not only the 
energy conservation law, but also the energ_v conversion law 
since it describes the mutual conversion of kinetic and potential 
energies. 

NORMALIZATION OF POTENTIAL ENERGY. So far, we 
have described the potential energy as a function whose partial 
derivatives with respect to coordinates with minus sign must 
be equal to the respective projections of the force as in (25.20). 
If instead of the potential energy EP we take a different 
quantity E~ = EP + A, i.e. a quantity differing by a constant 
amount A throughout the space, the forces remain unchanged 
as a result of such a replacement. For example, we can write 

, aE~ • o(EP +A) aEP 
F_.= --a =- a =--a =F_., 

X X . X 
(25.29) 

:ti' 

where we have considered' that the derivative of a constant is 
zero, i.e. oAf ox = 0. Thus, the potential energy has been defined 
only to within an additive constant. 

Considering a point in space, we can state that the potential 
energy at the point is equal to any preassigned value. It follows 
from here that 

a physical meaning cannot be assigned to the value of the 
potential energy itself; it can only be assigned to the difference 
between the potential energies at two points. 

Using the arbitrariness in the choice of the potential energy, 
we can put it equal to any preassigned value at a point in 
space. Its value will then be uniquely determined at all other 
points in space. This procedure of assigning a unique value to 
the potential energy is called normalization. 

As an example, let us consider the force of gravity near the 
Earth's surface. We direct the Z-axis along the vertical and 
take the origin at the Earth's surface. Then the projections of 
the force acting on a body of mass m will be Fz = - mg and 
F_. = F, = 0. Consequently, in accordance with (25.20), the 
potential energy is given by the expression E0 (z) = mgz + A, 
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Fig. 58. Proving the potential 
nature of the force of gravity. 

? 
What does the normalization of 
the potential energy mean and 
what is it caused by? Which 
normalizations do you know? 
What is the interaction energy? 
What is a carrier of the potential 
energy? 
What is the total energy of a 
body in the relath•istic case? 
What is the expression for the 
kinetic energy in the relativistic 
case? 
What is the rest energy and how 
do we experimentally prove that 
it is an energy? 
Why cannot we call the mass
energy relation the formula for 
converting mass into energy but 
call it the formula for relating 
these quantities? 
What experimental proof of the 
mass-energy relation do you 
know? 

25. Energy Conservation Law 175 

where A is a constant. If we assume that EP = 0 at the Earth's 
surface (z = 0), then the constant A will be zero and 
EP(z) = mgz. This is the expression for the potential energy 
whose value is normalized to zero at the Earth's surface. 
Likewise, it can be assumed that the potential enerfy at the 
Earth's surface is A0 . In this case, A = A0 -and EP(z) = 
mgz + A0 . In this case, the potential energy is said to be 
normalized to the value A0 at the Earth's surface. 

INTERACTION ENERGY. The potential energy of a body is 
due to the interaction of the body with other bodies, in the 
present case with the Earth. If there is no interaction, there is 
no potential energy. Let us remove the body away from the 
Earth's surface. The force of gravity can be assumed to be 
constant only approximately when the distance of ihe body 
from the Earth's surface changes within certain small limits. If 
the body is removed from the Earth at large distances, we must 
take into account that the force of gravity decreases in inverse 
proportion to the square of the distance of the body from the 
Earth's centre. Let us make the origin of coordinates (point 0) 
coincide with the Earth's centre. The force of gravity will be 
directed along the radius r. The components of the force 
perpendicular to the radius r will be zero, and the magnitude 
of the force will only depend on the distance from the Earth's 
centre. It can easily be verified that such a force is of potential 
nature. For this purpose, we calculate the elementary work 
done over a displacement by d J (Fig. 58). The force acting on a 
body of mass m will be 

Mm r 
F = - G-- (25.30) ,.z r' 
where M is the Earth's mass, G is the gravitational constant, 
and r/r is the unit vector along the radius from the Earth's 
centre. The minus sign indicates that the force is directed 
towards the Earth's centre. The elementary work done over a 
displacement by di will be (see Fig. 58) · 

Mm r Mm Mm 
F·d]= -G--·d]= -G-dlcosa = -G-2 dr, 

rz r ,.z r 
(25.31) 

where the vector r/r is a unit vector, and d/cos a is the 
projection of the displacement on the direction of the radius, 
its magnitude being dr along the radius. Thus, the elementary 
work is defined only by the displacement along the radius and 
is independent of the displacement perpendicular to the radius. 
This means that there is no gravitational force in the plane 
perpendicular to the radius. The elementary work in (25.31) 
depends only on the variable rand its differential dr. Hence the 
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work done over the displacement of the body from an 
arbitrary point at a distance r 1 to a point at a distance r 2 can 
be determined by integrating the function of one variable: 

<2l '2 dr ( I I ) J F·dl= -GMm J 2 = -GMm --- . (25.32) 
o l 't r r I r 2 

It can be seen even at this stage that the gravitational force 
is of potential nature since the work done between points 1 
and 2 depends only on the distances r1 and r2 , and not on the 
path by which these points are connected. Obviously, the work 
done over a closed contour is also zero since if we return from 
point 2 to point I by a different path, the work will have the 
same value (25.32) but the opposite sign, and hence the total 
work over the closed path 1-2-1 is zero, as indeed it should be 
in the case of potential forces. This proves the potential nature 
of the gravitational force. 

Comparing (25.32) with the general formula (25.25), we can 
find the potential energy EP of a point mass m: 

Mm 
EP(r) = - G - + A . (25.33) 

r 

Let us consider the normalization of energy. It is desirable 
to choose the normalization condition so that it takes into 
account thti physical characteristics of the interaction. In this 
case, the numerical value of the potential energy may acquire a 
more clear physical meaning and does not remain a purely 
formal number, as ha( so far been the case. Such a physical 
consideration does exist indeed. As a matter of fact, if a body is 
removed to infinity from the Earth's surface, there will be no 
interaction between the body and the Earth. This means that 
the existence of the body at infinity will not have any effect on 
the phenomena taking place at any finite distance from the 
Earth's surface. The same is true for the phenomena taking 
place at any finite distance from a body of mass m. Hence it 
can be logically concluded that in this case, the potential 
energy EP associated with the interaction between the body 
and the Earth as the former is removed from the Earth's 
surface must also be zero. This leads to the normalization 
condition 

(25.34) 

which is not an arbitrary requirement but takes into considera
tion the essence of physical processes taking place during 
interaction. It follows from the normalization condition (25.34) 
that the constant A = 0 in (25.33), and the potential energy of a 
point mass m in the Earth's gravitational field is 
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Mm 
Ep(r) =-G-. 

r 
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(25.35a) 

It should be observed that under the normalization condi
tion (25.34), the formula for the potential energy of a p'rticle at 
a point B can be written in the form · 

ao 

Ep(B) = J F(r)· d r, (25.35b) 
(B) 

where the work is calculated along any path starting at point B 
and terminating at infinity where the force F vanishes and the 
interaction ceases. 

APPLICATIONS. Many applications of the energy conserva
tion law will be considered in the following chapters.· For the 
present, it is sufficient to consider the effectiveness of using the 
energy conservation law in the well-known examples of sledges 
sliding down humps of complex shapes. If we are given a hump 
from whose top a sledge starts to slide down and it is required 
to determine the velocity of the sledge at any point on the 
hump (with or without friction), the solution of the problem 
with the help of equations of motion may turn out to be 
tiresome. The problem is considerably simplified if we make 
use of the energy conservation law (Fig. 59). 

The energy conservation law can be used to carry out a 
rather simple analysis of the general peculiarities of motion 
without a detailed knowledge of the equations of motion if we 
know the law of change of potential, i.e. potential energy. Let 
us apply this method to the one-dimensional case. In this case, 
any force which depends only on the coordinates (and does not 
depend on velocity and time) is a potential force by definition. 
The determination of potential is reduced to the evaluation of 
the integral of a known force, which can always be carried out. 
Hence we can assume that the law of change of potential 
energy is known. Suppose that the potential energy changes as 
shown in Fig. 60. 

Let us consider the motion of a particle whose total energy 
is E. The particle may be situated either in the region between 
points x1 and x 2 , or to the right of point x 3 . Indeed, in 
accordance with the energy conservation law, the kinetic 
energy of a particle is equal to the difference between its total 
energy and the potential energy, i.e. to E- EP, and can have 
only positive values. Hence only regions in which the total 
energy is higher than the potential energy are permissible 
regions for motion. For example, the motion in the region 
between x 2 and x 3 is not possible since the kinetic energy of 
the particle in the region would be negative. 

Let us now consider the motion in the permissible region, 
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Fig. 59. Illustrating the energy 
conservation law: vf = v~ = 
2g(h- y). 

Fig. 60. A particle can move 
only in a region where its total 
energy is equal to or higher 
than the potential energy. This 
region is called a potential well. 

6. Conservation Laws 

X 

say, x 1 x2 . Suppose that the particle is at point x. Its kinetic 
energy is then E - EP, and it can move to the right or to the 
left. If it moves to the left, its potential energy increases and 
hence its kinetic energy decreases (since the total energy 
remains constant), i.e. the velocity of the particle decreases. 
This means that the particle at point x is subjected to the force 
directed to the right. This is also obvious from the formula 
expressing the force in terms of the potential energy: 

iJEP 
F = - ~ (25.36) 

X OX • 
• 

At point x, the potential energy decreases with increasing x, 
and hence iJEPfiJx is n~gative while F x = - iJEpfiJx is positive. 
In other words, the force is directed to the nght, viz. in the 
positive X -direction. The particle will continue to move to the 
left until its velocity is zero, i.e. until its total energy is 
transformed into its potential energy. This will happen at point 
x 1 . However, the particle cannot remain at rest at this point 
since it is subjected to the force directed to the right. Under the 
action of this force the particle will move to the right at an 
increasing velocity, attaining the maximum value at point x' 
where the potential energy of the particle is minimum. On the 
segment (x', x2), the particle will be subjected to the force 
directed to the left, and the particle's velocity will be zero at 
point x 2 • The particle will then start to move to the left, and so 
on. On the entire segment (x1 , x2 ), there exists only one point 
where the particle may be at rest. This is the point x where the 
potential energy is minimum, which is the condition for stable 
equilibrium. 

The particle situated to the right of point x 3 can move from 
x 3 to infinity (if to the right of x 3 the potential energy does not 
rise above E at any point). The motion between points x 2 and 
x 3 is impossible. The region between x 1 and x 2 in which the 
particle is trapped is called a potential well, while the region 
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between x 2 and x3 which cannot be passed by the particle is 
called a potential barrier. In classical mechanics, a potential 
barrier is an unsurmountable obstacle for a moving particle. In 
quantum mechanics, the particle may pass through t}le poten
tial barrier under certain conditions. This pben~enon is 
known as the tunnel effect and plays an important role in the 
microcosm. This effect is considered in greater detail in 
quantum mechanics. 

TOTAL ENERGY AND REST ENERGY. All the arguments 
put forth in the previous section concerning the work of forces, 
the potential nature of forces and the potential energy also 
remain valid for motimis at high velocities since in the 
considerations it is unimportant at which velocity .a particle 
moves. The only difference is that the nonrelativistic equation 
of motion (25.11) must now be replaced by the relativistic 
equation of motion (20.10): 

d ( m0 v ) 
dt Jl - vz;cz = F. (25.37) 

As in the nonrelativistic case (25.11), the multiplication of both 
sides of (25.37) by the velocity v gives 

d ( m0 v ) 
v·dt Jl-v2jc2 =F·v. (25.38) 

(25.39) 

where v = dr/dt and both sides of the equation have been 
multiplied by dt. Let us compare Eq. (25.39) with Eq. (25.13) of 
the nonrelativistic theory. It can be seen that as a work is done 
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by a force, the quantity m0 c2/Jl - v2/c 2 changes instead of 
the kinetic energy. 

Suppose that a particle moves in the potential force field so 
that the force acting on it is given by the relations (25.20). 
Then, proceeding from (25.39) and repeating all the steps in the 
computations from (25.20) to (25.28), we obtain the following 
relation instead of (25.28): 

(25.40) 

This formula expresses the energy conservation law in the 
relativistic case. The potential energy EP has the same meaning 
as in the nonrelativistic case, while the quantity 

(25.41) 

is called the total energy of a body. If the body is at rest, i. e. 
v = 0, then in accordance with (25.41), it has an energy 

(25.42) 

which is called the rest energy of the body. 
The expression "the'total energy of a body" in the nonrela

tivistic case indicates the sum of its kinetic and potential 
energies, while in the relativistic case it is used not only for the 
quantity (25.41), but also for the sum of this quantity and the 
potential energy of the body. To avoid any confusion, one 
should be careful in order not to mix up two different 
meanings of the same term. 

We should also mention that the self-energy of the body 
which creates the force field acting on the body under 
consideration is not taken into account in (25.40). It is assumed 
to be stationary and has only the rest energy. 

KINETIC ENERGY. At low velocities, vfc « 1. Hence 
1/J1- v2fc 2 :'!:' 1 + (1/2)v2/c 2, and Eq. (25.41) can be written 
in the form 

(25.43) 

Thus, as a body gathers velocity, its rest energy m0 c2 is 
supplemented by the kinetic energy, their sum expressing the 
total energy of the moving body. Hence the kinetic energy Ek of 
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a body moving at an arbitrary velocity is given by the formula 

(25.44) 

I 
At low velocities, this relation can be transformed with the 
help of (25.43) into the classical expression m0 v2/2 for the 
kinetic energy. 

MASS-ENERGY RELATION. Taking into account (20.11) for 
the relativistic mass 

mo 
m = -----r===o=~ Jt - v2/c2 ' 

(25.45) 

we can represent (25.41) for the total energy in the following 
form: 

(25.46) 

A comparison of (25.46) and (25.42) shows that in both cases 
the energy is connected with the inertia of a body through the 
same formula. Hence two most important characteristics of the 
body, viz. energy and inertia (i.e. mass), are found to be 
mutually connected. The above derivation of the mass-energy 
relation shows that this relation is valid as a relation between 
the inertial mass of the body and its total energy, i.e. the sum 
of the kinetic and rest energies. But only experiment can show 
whether it is valid for other forms of energy, for example, the 
potential energy. The energy conservation law as expressed by 
Eq. (25.40) indicates that this relation is quite likely to be valid 
for the potential energy, i.e. that the potential energy has 
inertial properties. If Eq. (25.46) is found to be universal in 
11ature, i.e. applicable for arbitrary forms of energy, it will be 
one of the most fundamental laws of physics. Experiment 
shows that this is indeed true. Equation (25.46) is called the 
mass-energy relation and was established by Einstein. Some
times, this relation is referred to as the equivalence of mass and 
energy. It will be shown below that this expression is incorrect; 
we shall therefore not use this expression in this book. 

EXPERIMENTAL VERIFICATION OF THE MASS-ENERGY 
RELATION. It follows from the experiments considered in the 
derivation of the relativistic equation of motion (20.10) that the 
inertia of a body depends on its velocity in the manner 
described by the formula for the relativistic mass appearing in 
the equation. It was shown in Sec. 20 that such a dependence 
of mass on velocity also follows from the relativity principle 
and the Lorentz transformations. Hence all experimental data 
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which confirm the Lorentz transformations also confirm the 
relation (25.46). 

Only one question remains unanswered in these experi
ments: Is the rest energy m0 c2 indeed energy or just a quantity 
having the same dimensions as mass but not the same physical 
meaning? But what is the idea behind the question of whether 
the quantity m0 c2 having the dimensions of energy is indeed 
energy? Isn't it tautology? No, it is not tautology, and this 
question has a clear physical meaning. Can the rest energy 
m0 c2 be transformed into other forms of energy? If this is 
possible, the rest energy, like other forms of energy, is real; but 
if this is not possible, the rest energy is just an auxiliary 
quantity which does not have any physical meaning. Experi
ments show that the rest energy can indeed be transformed 
into other forms of energy and is therefore real. 

One of the many experiments which confirms this statement 
is the annihilation of elementary particles. An electron and a 
positron can be treated as identical particles differing only in 
the sign of their electric charge and magnetic moment. They 
have the same mass which can be measured, for example, from 
their motion in a magnetic field, and the total energy can then 
be determined as the sum of the kinetic energy and the rest 
energy. Since the magnetic field does not do any work, the 
potential energy can be neglected. When an electron and a 
positron co~ide, they annihilate each other and cease to exist 
as particles having a rest mass. In their place a y-quantum 
appears, i.e. a particlePwhose rest mass is zero and whose 
velocity is equal to the velocity of light. The energy of this 
quantum can be measured. It turns out that the energy of the 
y-quantum is equal to the sum of the energies of the electron 
and the positron, including their rest energies. Thus, the rest 
energy can indeed be transformed into quite different forms of 
energy. 

At the same time, these experiments explain the physical 
meaning of the mass-energy relation. It is stated sometimes 
that the relation (25.46) expresses the equivalence of mass and 
energy and the possibility of their mutual conversion. How
ever, such statements are erroneous. We can speak of a 
conversion of mass into energy only in the case when mass 
disappears, and the disappearance of inertiaf properties results 
in the appearance of energy that has not existed before. Such 
processes are not known to exist. 

In all processes, energy disappears in some form and 
appears in another form, its value remaining the same during 
such a conversion. Similarly, the form of existence of mass also 
changes, but its value is conserved. The relation (25.46) 
indicates that whatever the conversions of the forms of mass 
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and energy in nature, this mass-energy relation is alway' 
satisfied. 

INERTIAL NATURE OF POTENTIAL ENERGY. Let us apply 
the mass-energy relation to the potential energy. Since (25.40) 
proves the energy conservation law for the case of conversion 
of the total energy into the potential energy,_ the/problem 
reduces to proving the inertial nature of the potential energy. 
It can be seen from (25.35a) that the potential energy is 
negative in the case of attraction in a gravitational field. This is 
not just a property of the gravitational forces: indeed, any 
potential force of attraction is associated with a negative energy 
since a particle has to expend a part of its kinetic energy to 
overcome this attraction. The sum of the kinetic and potential 
energies must remain constant, and at infinite separation the 
particle's velocity decreases, while its potential energy becomes 
zero. Consequently, the potential energy must be lower, i.e. 
negative, at finite distances. 

If a particle moves in the gravitational force field at a finite 
distance from another, heavy, particle which can be assumed 
to be stationary, the sum of its total and potential energies 
E + EP must be less than its rest energy. Indeed, if 
E + EP > m0 c2, the energy conservation law allows the parti
cle to move to infinity, when EP-> 0. If, however, 
E + EP < m0c2, the particle cannot be removed to infinity 
since in this case E would become smaller than m0 c2 , which is 
impossible since the energy of a particle cannot be lower than 
its rest energy. Hence the gravitational force confines the 
particle to a finite region under the condition 

E + EP < m0 c2 

or 

(25.47) 

In other words, the sum of the potential and kinetic energies 
must he negative. This is the condition for the formation of 
bound states. 

We assumed the body creating the gravitational field to be 
stationary. This is true only if its mass is much larger than the 
mass of the moving body. Otherwise, we must take into 
account the motion of the other body as well. Note that all the 
arguments remain valid in this case without any significant 
change. 

If the motion of both particles is considered in the inertial 
coordinate system (and in no other system), the condition for 
the existence of bound states indicates that the sum of the 
kinetic and interaction energies of both particles must be 
negative. The interaction energy as the potential energy of one 
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body in the field of another has to be taken into account only 
once. For example, the energy (25.35a) is the potential energy 
of a body of mass min the gravitational field of another body 
of mass M. However, the same quantity can also be considered 
to be the potential energy of the body of mass M in the 
gravitational field of the body of mass m. This is the same 
quantity which is the interaction energy of the bodies of mass 
m and M, and need not be taken into account twice. Hence the 
condition for the existence of a bound state can be stated as: 
the sum of the kinetic energy and the interaction energy of 
particles in the bound state must be negative. The sum of the 
kinetic energy and the interaction energy is called the binding 
energy. Hence it can be assumed that the binding energy is 
negative in the bound state. 

BINDING ENERGY. It is well known that the nuclei of 
atoms consist of neutrons and protons. We still do not know 
the exact law according to which nuclear forces act, but we do 
know that these are forces of attraction since they confine the 
neutrons and protons within the nucleus. Hence the binding 
energy in the nucleus is negative. Let us denote it in the form 
!:t£nuc· The total energy of the nucleus is equal to the sum of 
the rest energies of protons, E0 P, and of neutrons, Eon• minus 
the binding energy: 

(25.48) 

If the mass-energy relation (25.46) is also applicable to the 
potential energy (its applicability to the rest energy and the 
kinetic energy has already been proved), the mass of the 
nucleus, M nuc• must be less than the sum of the rest masses of 
protons, M Op• and of neutrons, M on• since in this case it follows 
from (25.48) that 

fl£nuc 
flMnuc = --2-. 

c 
(25.49) 

The quantity flM nuc is called the mass defect of the nucleus. 
The rest masses of protons and neutrons can be measured in 
several ways and are precisely known. The mass of the nucleus 
can also be measured in experiments in which its inertial 
properties are manifested. The mass of the nucleus was indeed 
found to be smaller than the sum of the rest masses of the 
protons and neutrons constituting it. This means that the 
negative potential energy in the nucleus leads to a negative 
inertia in accordance with (25.46) or, in other words, the 
mass-energy relation is applicable to the potential energy. 

The binding energy of nuclei has been studied extensively. 
The most convenient way to characterize it is as the binding 
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Fig. 61. Dependence of the bind
ing energy on the mass number. 
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energy E per nucleon (so far as nuclear forces are concerned, a 
proton and a neutron behave as identical particles): 

A£nuc 
& = ~' (25.50) 

where A is the total number of protons and neuJons in the 
nucleus and is called the mass number. The dependence of E on 
A is shown in Fig. 61. 

It can be seen that the nucleons (protons and neutrons) are 
weakly bound in elements appearing at the beginning of the 
Periodic Table. The binding becomes stronger as we move to 
heavier nuclei. For nuclei with mass number A ~ 120, the 
binding energy attains its highest value of about 8.5 MeV. It 
should be recalled that an electron volt is the energy acquired 
by an electron or a proton upon passing· a potential difference 
of 1 V (1 eV = 1.6 x 10- 19 J). Beyond this, the binding energy 
decreases. For nuclei of elements at the end of the Periodic 
Table, the binding energy is so small that nuclei with mass 
number above 238 are unstable. Such elements are obtained 
only artificially, exist for relatively short periods of time and 
spontaneously transform into lighter nuclei. 

If the heavy nucleus of an element at the end of the Periodic 
Table is split into two nearly equal parts, we obtain two nuclei 
of elements lying closer to the middle of the Periodic Table. 
According to Fig. 61, the binding energy per nucleon for these 
nuclei is higher than for the parent nucleus, i.e. the nucleons 
are more strongly bound in these nuclei than in the parent 
nucleus. The sum of the rest masses of the nuclei obtained as a 
result of their fission is less than the rest mass of the parent 
nucleus. Hence the sum of the rest energies of the nuclei 
obtained as a result of their fission is less than the rest energy 
of the parent nucleus. The difference between the energies is 
liberated as the kinetic energy of the fission products and the 
radiation emitted during the fission. This is the atomic 
(nuclear) energy, which is used in atomic (nuclear) reactors and 
atomic bombs. 

If two light nuclei of elements at the beginning of the 
Periodic Table are combined into one, their fusion results in a 
nucleus lying closer to the middle of the Periodic Table. 
According to Fig. 61, the nucleons in the resulting nucleus are 
more strongly bound than in the parent nuclei. Arguments 
similar to those put forth in the previous case lead to the 
conclusion that the fusion of light nuclei must result in the 
liberation of energy which can be used for making hydrogen 
bombs. The ways of liberating this energy in a controlled 
manner for peaceful purposes are not known yet and are 
intensively studied at present. Most scientists believe that the 
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basic solution of this problem will be found by the end of the 
20 century, and it should be possible to harness this energy in 
the 21 century. 

The mass-energy relation was not only confirmed experi
mentally but also put to many important applications. At the 
same time, the phenomena mentioned above also prove the 
energy conservation law in the relativistic case. 

ENERGY CONSERVATION LAW FOR A SYSTEM OF 
POINT MASSES. All that has been stated in this section about 
the energy conservation law refers to a point mass. The 
situation is considerably complicated for a system of point 
masses. Above all, it leads to a temptation to formulate the 
energy conservation law for a system of point masses in the 
same way as for a single point mass, i.e. to replace the equation 
of motion (25.11) for a point mass by Eq. (21.16) for the motion 
of the centre of mass of a system of point masses. 
Multiplying both sides of(21.16) by the velocity of the centre of 
mass and transforming the relation thus obtained by analogy 
with (25.12) and (25.13), we obtain the following relation 
instead of (25.14): 

V2 v2 (2) 

m 2 -~= J F·dR, 
2 2 (1) 

(25.51) 

where V1 and V2 are the velocities of the centre of mass of the 
system at tht beginning and the end of the path, and the 
integral on the right-hand side is evaluated along the path of 
motion of the centre of Mass. Equation (25.51) is identical to 
(25.14), but it cannot be stated that it expresses the energy 
conservation law in the same sense as (25.14). As a matter of 
fact, (25.51) is not an equation for the physically existing 
quantities. The centre of mass is an imaginary point, and the 
force F under the integral in (25.51) is applied to the centre of 
mass, while in actual practice it is composed of the forces 
applied to point masses forming the system. Hence the 
right-hand side of (25.51) does not represent the work of forces 
applied to a body, nor does the left-hand side represent a 
change in the kinetic energy of the system. The left-hand side 
simply takes into account the change in the kinetic energy 
associated with the motion of the centre of mass. 

In order to obtain the energy conservation law for a system 
of point masses, we proceed from the equations of motion for 
each point of the system: 
m.dv. 
-'-'=F· dt ,, (25.52) 

where the subscript i indicates the quantities corresponding to 
the ith point mass. The force F; includes both the external and 



The homogeneity of space, the 
isotropy of space and the 
homogeneity of time form the 
basis of the momentum con
servation law, the angular 
momentum conservation law 
and the energy conservation 
law respectively. 

? 
What is the physical meaning of 
the concepts of the homogeneity 
of space, the isotropy of space 
and the homogeneity of time? 
What requirements are imposed 
hy the homogeneity of space 
and the isotropy of space on the 
properties of forces? 
IWwt property of the potential 
energy ~(a system is due to its 
heing isolated• 
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the internal forces acting on the ith point mass. Multiplying 
each equation in (25.52) by the displacement d ri = vi dt of the 
corresponding point mass, summing the left- and right-hand 
sides of these equations over all the points and then integrating 
the sums thus obtained from the initial instant of tiiif t 1 to the 
final instant t 2 , we arrive at the equality · 

I( 2 2) ' m;;i2- m;i1 = ~ f l-'~· v;dt, 
I !1 

i 

(25.53) 

which expresses the energy conservation law for a system of 
point masses in the same sense as (25.14). 

It is much more difficult to use the law (25.53) for specific 
cases of motion of a system of point masses than for·the case of 
a single point mass even if only potential forces are involved. 
In particular, this is due to the fact that the work of internal 
forces is not necessarily zero and cannot be evaluated in a 
general form. The simplest motion is that of a rigid body in 
fairly uniform external potential fields. In this case, the kinetic 
energy on the left-hand side of (25.53) is the sum of the kinetic 
energy of the motion of the centre of mass and the rotational 
energy of the rigid body (see Sec. 33); the work of internal 
forces on the right-hand side is zero, while the work of external 
forces is expressed by the integral along the path of motion of 
the centre of mass. The consideration of the nonuniformity of 
the potential field considerably complicates the evaluation of 
the integral on the right-hand side of (25.53). 

Example 25.1. Find the work done by the force 
F = y 2 i .. + x 2 iY during displacement from point x = 0, y = 0 
to point x = 2, y = l along a straight line L 1 given by y = 2x, 
and along a parabola L 2 given by y = 2x2 . 

By definition, 
1 

J F·dr = J (y 2 dx + x 2 dy) = J (4x 2 dx + 2x2 dx) o;= 2, 
L 1 L 1 0 

(25.54) 

1 

J F · dr = J ().· 2 dx + x 2 dy) = J (4x4 dx + x 24x dx) = 1.8, 
0 

(25.55) 

where the x-coordinate has been taken as the independent 
parameter for integration in both cases. 

Example 25.2. Two identical particles, each having an 
energy £, move towards each other in the laboratory coordi
nate system. The rest energy of the particles is £ 0 . Find the 
energy £' of one of the particles in the coordinate system 
associated with the other particle. 
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Let us use the results of Example 17 .I. Since y = E/ £ 0 and 
y' = E'j£0 , we obtain 

(25.56) 

For y » 1, we can put E' = 2E(EJE0 ). If, for example, two 
protons move towards each other with an energy of about 
30 GeV each, this is equivalent to the impingement of a proton 
with an energy of about 2000 GeV on a stationary proton. 

Sec. 26. CONSERVATION LAWS 
AND THE SYMMETRY OF 8PACE AND TIME 

It is shown that the conserva
tion laws are due to the 
homogeneity and isotropy of 
space and the homogeneity of 
time. 

MOMENTUM CONSERVATION LAW AND THE HOMOGE
NEITY OF SPACE. Momentum can be conserved not only in 
an isolated system, but also in ·a nonisolated system if the 
resultant of all the external forces is zero. In this case, F = 0 
and hence p = const in Eq. (21.11), i.e. the momentum of the 
system is conserved even though the system is not isolated. For 
example, a drop of rain falls at a constant velocity in air. It is 
a nonisolated system of point masses subjected to external 
forces, viz. tile force of gravity and the friction of air. The 
resultant of these two forces is zero, and the momentum of the 
drop remains constant. lt can be stated that the momentum 
conservation of a nonisolated system of point masses is due to 
the properties of the external forces acting on the system. For 
other external forces, the momentum of such a system is not 
conserved. Hence we cannot speak of any general law of 
momentum conservation or nonconservation for a nonisolated 
system. 

The situation is quite different in an isolated system. 
Momentum is always conserved in an isolated system. The 
statement concerning the momentum conservation of an isolated 
system is universal in nature and is therefore called a law. What 
is this law based on? While considering that in the absence of 
external forces we can put F = 0 in (21.11) and bring it to the 
form (23.1), it was assumed that the condition (21.7c) express
ing Newton's third law of motion is satisfied. Hence from 
a formally mathematical point of view it can be stated that the 
momentum conservation law for an isolated system of point 
masses is a corollary of Newton's third law of motion. It can 
be asked as to which basic factors are responsible for the 
validity of Newton's third law of motion. The answer to this 
question runs as follows: The validity of Newton's third law of 
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motion and the momentum conservation law for an isolated 
system of point masses are based on the homogeneity of space. 
By the homogeneity of space we mean the equivalence of all the 
points in space to one another. Ihis means that if we have an 
isolated physical system, the course of events in it will '}Ot depend 
on the region of space in which the system is localized. ~en 
applied to an isolated system of point masses, this means that if 
all the points of the system are displaced by or, there will be no 
change in the state of the system or in its intrinsic motion. Hence 
it follows that the total work done by internal forces upon 
a displacement of the system by or must be zero: 

or· L L Fij = 0. (26.1) 
i j 

In view of the arbitrary nature of or, we obtain the equality 

L L Fij = -21 ~) (Fij + Fji) = 0, (26.2) 
i i Lu ... ...J 

which coincides with (21.7c). Since the interaction between 
each pair is independent of each other, from (26.2) we arrive 
at Newton's third law of motion: 

Fii + Fii = 0. (26.3) 

This proves that 
the momentum conservation law for an isolated system of 

point masses emerges from the fundamental property of space 
in inertial systems, viz. its homogeneity. Hence it can be 
concluded that the relativity principle is also connected with 
the homogeneity of space. 

We can now return to the validity of Newton's third law of 
motion which was considered in Sec. 19. While deriving 
Eq. (26.3), it was assumed that point masses are the only 
carriers of momentum in a closed system, and that (orces act at 
a distance without any material intermediary. Such forces 
must satisfy Eq. (26.3) if the space is homogeneous. Forces with 
a finite velocity of propagation do not satisfy these conditions, 
and Newton's third law of motion in its existing form cannot 
be applied to them. When such forces are present, the theorem 
on the momentum conservation of a closed system remains 
valid, but besides the point masses in the closed system, we 
must also consider the field in which the point masses interact 
and take into account the momentum of this field as well. 

ANGULAR MOMENTUM CONSERVATION LAW AND THE 
ISOTROPY OF SPACE. The angular momentum conservation 
law for an isolated system follows from Eq. (24.1) whose 
derivation is based on the assumption that the moment of 
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internal forces of interaction of point masses of the system 
satisfies Eq. (21.10b), i.e. the moment of these forces is zero. 
From a purely mathematical point of view, it is this cir
cumstance that leads to the angular momentum conservation 
law for an isolated system of point masses. It was emphasized 
earlier that this relation does not follow from Newton's laws 
and is a requirement independent-of the laws. Consequently, 
the momenta! equation (21.21) for a system of point masses 
cannot be reduced completely to Newton's Jaws. It can be 
asked as to which basic factors are responsible for the validity 
of Eq. (2l.10b). The answer to this question runs as follows: 
(21.1 Ob) is valid due to the isotropy of space. By the isotropy of 
space we mean the equivalence of all the directions in space. This 
means that if we have an isolated physical system, the course of 
events in it will not depend on its orientation in space. When 
applied to an isolated system of point masses, this means that the 
angular displacement of the system by 8 cp (see Sec. 9) will not 
change its internal state and its intrinsic motion. Hence the total 
work done by internal forces upon an angular displacement must 
be zero. It can be seen from Eqs. (9.3) and (9.5) that the angular 
displacement by 8cp transfers a point mass characterized by the 
radius vector r; through 8 r; = 8 cp x r;. The fact that the total 
work done by i!lternalforces upon an angular displacement of the 
system by 8cp is zero can be expressed in the form 

• 

(26.4) 

j 

Consequently, we can write 

8r;· F1; + 8r1• Fii = (8cp x r;)· F1; + (8cp x r1)· Fii 
= 8cp·(r; x F1;) + 8cp·(r1 x F;) = 8cp·[(r;- r1) x F1;], 

(26.5) 

where we have taken into consideration both the well-known 
rule from vector analysis about the cyclic permutation of 
cofactors in a scalar triple product and Newton's third law of 
motion. Substituting (26.5) into (26.4), we obtain 

~II 8cp·[(r;- r1) x F1;] = 0. (26.6) 

j 

Since the angular displacement 8cp is arbitrary, we arrive at the 
following equality from (26.6): 

~II(r;-r1) x F1; = 0, (26.7) 
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which is identical to (21.10b). It can be stated that (21.10b) is a 
consequence of the isotropy of space. 

This means that 
the angular momentum conservation law for an isolated 

system of point masses is a consequence of the fumJamental 
property of space in inertial systems, viz. its isotro~. 

ENERGY CONSERVATION LAW AND THE HOMOGE
NEITY OF TIME. Let us denote the Cartesian coordinates of 
particles forming an isolated system by (x;, Y;. z;). the projec
tions of their velocities on the coordinate axes by (v;x, v;y, v;, ), 
and their masses by m;. The potential energy of the system is 
denoted by EP, and the forces acting on the particles are given, 
in accordance with (25.20), by formulas 

F;x = - oEP/ ox, F;y = - oEP/ oy, F;, = - oEp/·oz. 

Consequently, the equations of motion have the form 

m. dvix = - ~. m. dv;y = - oEP, m. dv;z = - oEP' (26.8) 
1 dt OX; 1 dt OY; 1 dt OZ; 

where i = I, 2, ... , n, n being the total number of particles. 
Multiplying both sides of(26.8) by the projections dx;, dy; and 
dz; of the displacement vector of a moving particle, we obtain 

d(m;Vfx) = _ ~dx. 
2 OX; 1 ' 

d(m;vr,) = - ~d . (26.9) 
2 oy; y1 , 

d(m;vr.) =- oEPdz. 
2 OZ; 1 ' 

where we have considered that (dv;x/dt) dx; = dv;x(dx;/dt) = 
d(vr .. :! 2) and that m; is constant. The summation of the left
and right-hand sides of (26.9) for all the particles gives 

LId( m;;rx) + d( m~r,) + d( m~~) J 
i 

(26.10) 

For further computations, we must take into consideration the 
homogeneity of time. By the homogeneity of time we mean the 
equivalence of various instants of time. This means that a 
physical situation has the same evolution irrespective of the 
specific instant of time at which it is realized. Hence the 
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homogeneity of time entails the absence of any explicit time 
dependence of the potential energy EP on an isolated system 
(iJEP I iJt = 0). Consequently, the right-hand side of (26.10) is 
the total differential 

and (2(i.l 0) can be written in the form 

where we have considered that 

2I d( mi;fx) + d( mi;fy) + d( mi;f•) J 
I 

= d ~mivf 
~ 2 . 

(26.11) 

(26.12) 

(26.13) 

Equation (26.12) leads to the energy conservation law for an 
isolated system of point masses: 

~mv?-
~ T + EP = const. (26.14) 

It can be seen that the decisive step in the derivation of the 
energy conservation law was to establish the universal nature 
of (26.11) for an isolated system on the basis of the homo
geneity of time. 

Consequently, 
the energy conservation law for an isolated system of point 

masses is due to the fundamental property of time in inertial 
systems, viz. its homogeneity. 

In typical situations of interacting particles in the relativistic 
case, ·we must take into consideration the conversion of 
particles, radiation and other relativistic effects. Hence we 
cannot formulate the energy conservation law in a simple form 
analogous to (26.14). 

UNIVERSALITY AND GENERAL NATURE OF CONSER· 
VATION LAWS. The conservation laws emerge from the 
fundamental properties of space and time, and hence they are 
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universal and general since space and time are the forms of 
existence of matter which cannot exist without space and time. 

In the history of physics, situations arose when an experi
ment seemed to indicate a violation of conservation laws. For 
example, in the study of beta decay in which an atomiF nucleus 
undergoes a radioactive transformation by emitting" an elec
tron, it was found that the energy and momentum conser
vation laws are not obeyed. This was indicated by very careful 
measurements of the energy and momentum of the electrons 
and nuclei. If the energy and momentum conservation laws 
were indeed violated in beta decay, this would have neces
sitated a serious reconsideration of our concepts of space and 
time, and of the very essence of the conservation laws which 
form the basis of physical concepts. Physicists would have 
been forced to take such a step only if quite a large number of 
physical phenomena indicated its necessity. Such an approach 
to the evolution of the physical theory was not adopted for 
explaining the seeming violation of the conservation laws in 
beta decay, and it was assumed that besides an electron, 
another unknown particle having the energy and momentum 
necessary for restoring the conservation laws is emitted by the 
nucleus. This particle was called a neutrino. It was many years 
later that the existence of this particle, which occupies a very 
important position in the family of elementary particles, was 
experimentally confirmed. Theoretically, this particle was 
discovered because the scientists were confident about the 
universal and general nature of the conservation laws. 

6.1. Evaluate the integral §xy2 dy, where L is a circle x 2 + y 2 = I 
L 

circumvented in the counterclockwise direction during integration. 
6.2. Find the work done by the force F = ixY2 + j,X2 in the semicircle 

y = ~ between points (0, -1) and (0, 1). 
6.3. Find the length of the helical line given parametrically by: x = sin t, 

y = cos t, z = t for 0 ~ t ~ 27t. 
6.4. A person of mass m1 stands in a stationary lift of mass m2 , balanced by 

a counterweight of mass m1 + m2 , and jumps in the lift with the same 
force which would have raised his centre of mass by h on the Earth's 
surface. What will be the displacement of his centre of mass rel
ative to the lift's floor? The masses of the ropes and pulleys in the 
mechanism as well as the friction should be neglected. 

6.5. Find an expression for the momentum of a particle in terms of its 
kinetic energy Ek and its rest mass. 

6.6. Express the velocity of a particle through its momentum and rest mass. 



194 6. Conservation Laws 

6.7. Find the velocity of a particle having charge e and rest mass m0 after 
passing through a potential difference U. 

6.8. What is the binding energy of the lithium nucleus which consists of 
three protons and four neutrons if its rest mass is known to be 
1.16445 x 10- 26 kg? The rest masses of a proton and a neutron are 
1.67265 X 10- 27 kg and 1.67495 X 10- 27 kg respectively. 

6.9. Two particles of rest masses m1 and m2 move towards each other at 
relativistic velocities along a straight line in a laboratory coordinate 
system. The total energies of the particles are £ 1 and £ 2 . Find the 
energy £'1 of the first particle in the coordinate system in which the 
second particle is at rest (E~ = m2 c2). 

6.10. A stationary particle of mass m1 splits into two particles of rest masses 
m2 and m3 . Find the energy of the particles and the magnitudes of 
their momenta which are directed opposite to each other. 

ANSWERS 6.1. 7t/4. 6.2. 4/3. 6.3. 27t.j2. 6.4. 2h(m 1 + m2)/(m 1 +2m2 ). 

6.5. [Ek(Ek + 2m0 c2)] 1' 2 /c. 6.6. cpfJp2 + m~c2 • 
6.7. c[eU(eU+2moc2 )] 1' 2 /(eU+moc2 ). 6.8. 0.0631 X w-IOJ= 
39.4 MeV. 6.9. {[(Ef/c2 - mfc2 )(EVc2 - m~ c2 )r 12 + E1 E 2 /c2 } /m2 . 

6.10. E2 = (mf c2 + m~ c2 - m~ c2 ) / (2m 1 ), £ 3 = (m~ c2 + m~ c2 - m~ c2)/ 

(2m!), P2 = P3 = (E~- m~ c4)/ c2 . 



Chapter 7 
Noninertial Reference Frames 

I 

Basic idea: 
Inertial forces exist in noninertial reference frames. They are 
real, have various manifestations and important 
applications. But the concept of inertial forces cannot 
be used in the analysis of motions in inertial reference 
frames since these forces do not exist in such frames .. 

Sec. 27. INERTIAL FORCES 
Conditions for the emergence 
of inertial forces arc analyzed 
and the question of their fea
sibility is discussed. 

DEFINITION OF NONINERTIAL REFERENCE FRAMES. A 
noninertial reference frame is a reference frame moving with an 
acceleration relative to an inertial reference frame. The ref
erence frame is associated with a reference body which, by 
definition, is assumed to be perfectly rigid. The accelerated 
motion of a rigid body includes the acceleration of both a 
translational and a rotational motion. Hence the simplest 
noninertial reference frames are the ones moving with an 
acceleration along a straight line as well as rotational systems. 

TIME AND SPACE IN NONINERTIAL REFERENCE 
FRAMES. In order to describe the motion in a reference frame, 
it is necessary to explain the meaning of the stat~ment that 
certain events occurred at certain instants of time at certain 
points. For this purpose, it is of prime importance that there 
should exist a unified time in a reference frame in the same 
sense as described in Sec. 7. In a noninertial reference frame, a 
unified time in the sense mentioned in Sec. 7 does not exist. 
Hence it is not clear how the duration of processes that begin 
at one point and end at another should be measured. The 
concept of duration of a process becomes meaningless for such 
processes since the clocks have different paces at different 
points. The problem of measurement and comparison of lengths 
also becomes more complicated. For example, it is difficult to 
describe the concept of the length of a moving body if the concept 
of simultaneity at different points is not introduced. 
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? 
Indicate the manifestations 
of inertial forces in noninertial 
reference frames. 
Describe how inertial 
navigation systems act. 
The position of a rocket relative 
to the starting point can be 
determined by an inertial 
navigation system without 
observing any phenomena or 
objects outside the rocket. 
Doesn't this contradict the 
relativity principle? mty? 

7. Noninertial Reference Frames 

These difficulties can be partially overcome if \Ve considc;· 
that an interval of proper time is independent of m:cclcration. 
Hence the analysis of space-time relations in an infinitelv small 
space-time region of a noninertial reference frame can he 
carried out by using the space-time relations in an inerti,tl 
reference frame which moves at the ~amc vdccity, but \vithet.L 
any acceleration, as a corresponding infinitely small region L)f 

the nonincrtial reference frame. Such an inertial reference 
frame is called an accompanying frame. This enables us to 
establish the dependence between physical quantities if they 
are determined by space-time relations in an infinitely small 
region. These dependences can be then extended to finite 
regions. This, however, is a complicated approach and will not 
be used here. 

We shall confine the analysis to the motion at a low veloc
ity when these difficulties do not arise and we can make use of 
Galilean transformations by assuming that the space-time re
lations in a noninertialframe are the same as if it were an inertial 
frame. 

INERTIAL FORCES. The only reason behind an accelerated 
motion of a body in inertial reference frames is the forces 
acting on it from other bodies. Force is always the result of 
interaction between bodies. 

In noninertial reference frames, a body can be accelerated by 
simply varying the state of motion of the reference frame. For 
example, let us consider a noninertial reference frame fixed to a 
car. As the velocity of th~car changes relative to the Earth's 
surface, all celestial bodies in this reference frame experience an 
acceleration. Obviously, these accelerations are not the result of 
any forces acting on the celestial bodies on the part of other 
bodies. Thus, in noninertial reference frames there exist ac
celerations which are not associated with the forces of the same 
nature as in inertial reference frames. Hence Newton's first law 
of motion becomes meaningless in such frames. So far as the 
interactions of bodies are concerned, Newton's third law of 
motion is generally satisfied in such systems. However, since 
accelerations of bodies in noninertial reference frames are 
caused not only by the "normal" forces of interaction between 
bodies, the manifestations of Newton's third law are distorted 
to such an extent that it becomes devoid of any clear physical 
meaning. 

In principle, the theory of motion in noninertial reference 
frames could also be constructed by making radical changes in 
the concepts developed for inertial reference frames. To wit, it 
could be assumed that accelerations of bodies are caused not 
only by forces, but also by some other factors which have 
nothing in common with forces. However, a different approach 
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was adopted historically. These other factors were considered 
to be forces which are related to accelerations in the same way 
as ordinary forces. Moreover, it is assumed that as in inertial 
rt!ference frames, accelerations in noninertial reference frames 
are caused only by forces, but in addition to the ordinary forces 
of interaction there also exist forces of a spec~a/ k/nd, called 
inertial forces. The formulation of Newton's second law of 
motion remains unchanged, but the inertial forces must also he 
considered in addition to the forces of interaction. The 
existence of inertial forces is due to the accelerated motion of a 
noninertial reference frame relative to an inertial reference 
frame. Inertial forces are chosen in such a way as to ensure in 
the noninertial reference frame the accelerations that actually 
exist in the frame, but are only partially accounted for by the 
forces of interaction. Hence Newton's second law o( motion in 
a noninertial reference frame can be written in the form 

ma' = F + Fin• (27.1) 

where a' is the acceleration in the noninertial reference frame, 
F denote "ordinary" forces of interaction, and Fin are inertial 
forces. · 

ON THE REALITY OF EXISTENCE OF INERTIAL FORCES. 
Are inertial forces real forces? Inertial forces are real forces in 
the same sense in which accelerations are real in noninertial 
reference frames since the inertial forces are introduced only to 
account for these accelerations. They are also real in a more 
profound sense: while considering physical phenomena in 
noninertial frames, we can indicate specific physical con
sequences of the action of inertial forces. For example, inertial 
forces may jerk the passengers in a train out of their seats, 
which is quite a real and tangible result. Hence inertial 
forces are as real as the fact that bodies move uniformly in a 
straight line in inertial reference frames if there are no "or
dinary" forces of interaction, a formulation used for Newton's 
first law of motion. 

Inertial forces have an important practical application. For 
example, inertial navigation systems can be used to determine 
the position of an aeroplane or a rocket to a very high degree 
of precision with the help of instruments which measure 
inertial forces, without making any measurements of the 
position of the aeroplane or the rocket relative to the Earth. 

DETERMINATION OF INERTIAL FORCES. In order to 
describe the motion of bodies in a noninertial reference frame 
with the help of Eq. (27.1), we must indicate the method of 
determining the inertial forces appearing on the right-hand 
side of this equation. Inertial forces characterize that part of 
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the acceleration of a body which emerges due to the acceler
ated motion of the coordinate system relative to an inertial 
frame. Let us write the equation of motion of a body in 
noninertial and inertial reference frames: 

rna'= F+ Fin• 
rna= F, 

(27.2) 
(27.3) 

where the "ordinary" forces of interaction F are identical in 
both reference frames, and a' and a are the accelerations in 
noninertial and inertial reference frames. 

From (27.2) and (27.3), we obtain the following expression 
for the inertial forces: 

Fin = m(a' - a). (27.4) 

Usually, the following terminology is used in noninertial 
reference frames. The acceleration a relative to an inertial 
reference frame is called absolute, while the acceleration a' 
relative to a noninertial reference frame is called relative. 
Formula (27.4) shows that the inertial forces cause a differ
ence between the relative and absolute accelerations. This means 
that the inertial forces exist only in noninertial reference frames. 
The introduction of these forces in the equations of motion, 
their application for explaining physical phenomena, etc. in 
noninertial reference frames are correct and logical. However, 
the use of the concept of inertial forces in the analysis of motion 
in inertial reference frame Its erroneous since such forces do not 
exist .in these frames. 

Sec. 28. NONINERTIAL REFERENCE FRAMES 
OF TRANSLATIONAL MOTION 
IN A STRAIGHT LINE 

Inertial forces in noninertia! 
reference frames having a trans· 
lational motion in a straight 
line arc described and their 
manifestations arc considered. 

EXPRESSION FOR INERTIAL FORCES. Suppose that a non
inertial system moves in a straight line along the X -axis of an 
inertial system (Fig. 62). Obviously, the coordinates of a point 
in these systems are connected through the relations 

x = x0 + x', y = y', z = z', t = t'. 

Consequently, 
dx dx0 dx' 
- = - + - v = v0 + v', 
dt dt dt , 

(28.1) 

(28.2) 

where v = dxfdt, v0 = dx0 /dt and v' = dx' /dt are called the 
absolute, transport and relative velocities respectively. 
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Fig. 62. A noninertial reference 
frame in a translational motion in 
a straight line. 

Fig. 63. Equilibrium of a pen
dulum in a noninertial reference 
frame. 

Fig. 64. Equilibrium of a pen
dulum under a uniform accelera
tion in an inertial reference frame. 

28. Noninertial Referem:e Frames of Translational Motion 199 

Going over to accelerations in (28.2), we obtain 

dv dv0 dv' 
dt = dt + dt' a = ao + a'' 

where 

dv 
a=

dt' 
dv0 

ao=
dt' 

dv' 
a'=-

dt 

(28.3) 

I 
(28.4) 

are called the absolute, transport and relative accelerations 
respectively. Consequently, in accordance with the definition 
(27.4), the expression for inertial forces in a noninertial 
reference frame moving in a straight line has the form 

F;0 = m(a' - a) = - ma0 , (28.5) 

or, in vector notation, 

(28.6) 

i.e. the inertial force is directed against the transport accel
eration of a noninertial reference frame. 

PENDULUM ON A CART. Let us consider the equilibrium 
state of a pendulum in a noninertial reference frame moving in 
the horizontal direction with a translational acceleration a0 

(Fig. 63). The forces acting on the pendulum are shown in the 
figure. The equation of motion of the pendulum has the form 

ma' = T + P + F;0 = T + P- ma 0 = 0, (28.7) 

i.e. a' = 0. It is also clear that tan a = a0 / g, where a is the 
angle between the pendulum suspension and the vertical. 

The acting forces and the equation of motion change in an 
inertial reference frame (Fig. 64). There is no inertial force in 
this case, and the only forces acting in the frame are the force T 
of the stretched string and the force of gravity P = mg. The 
equilibrium condition can be written in the form . 

ma = T + P = ma 0 . (28.8) 

It is also clear that tan a = a0 /g. 
A FALLING PENDULUM. A falling pendulum can be used 

for a very effective demonstration of phenomena in noninertial 
reference frames moving in a straight line. The pendulum is 
suspended from a massive frame which can fall freely by sliding 
down vertical ropes having a very low friction (Fig. 65a). 
When the frame is at rest, the pendulum performs natural 
oscillations. The frame can be brought into the state of free fall 
for any phase of the pendulum's oscillation. The motion of the 
pendulum during the free fall of the frame will depend on the 
phase in which the free fall began. If the deviation of the 
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Fig. 65. Diagram of forces act
ing on a falling pendulum in 
(b) a noninertial reference frame fixed 
to the pendulum; (c) an inertial 
reference frame in which the pendulum 
falls with the free fall acceleration. 
The equilibrium position of the pen
dulum is shown in (a). 
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pendulum from the equilibrium position is maximum when the 
free fall begins, it will remain at the same point relative to the 
frame. If, however, its deviation at the start of its free fall is not 
maximum, it•will have a certain velocity relative to the frame. 
During the fall of the frame, the magnitude of this velocity 
relative to the frame rem,i.l.ns unchanged, and only its direction 
changes. As a result, the pendulum rotates uniformly about the 
point of suspension. 

Let us consider this phenomenon in the noninertial reference 
frame fixed to the frame (Fig. 65b ). The equation of motion 
has the form 

ma'= T+ P+ F;n = T+ mg- mg= T. (28.9) 

This is the motion of a point mass rotating under the tension 
of the string in a circle whose centre lies at the point of 
suspension. The motion is circular with a linear velocity equal 
to the initial velocity. The tension of the string is the 
centripetal force which ensures the uniform motion of the 
pendulum in a circle and is mv'2 1 I, where I is the length of the 
suspension, and v' is the velocity at which the pendulum moves 
relative to the frame. 

There are no inertial forces in an inertial reference frame. 
The forces acting on the pendulum, which are shown in 
Fig. 65c, are just the tension of the string and the force of 
gravity. The equation of motion has the form 
ma= P+ T= mg+ ·r. (28.10) 



Measuring inertial 
forces, we can determine the 
absolute acceleration 
of a reference frame 
relative to fixed stars. 
The corresponding in
struments are called 
accelerometers. 
They are used in 
inertial navigation sys-
tems. 

? 
When and why must iner
tial forces be considered? 
What is the general 
method of determining iner
tial forces? 
What inertial forces exist in 
inertial reference frames 
in a translational motion? 
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In order to find the solution of this equation, let us represent 
the total acceleration of the pendulum as the sum of two 
accelerations: a= a1 + a2 . In this case, Eq. (28.10) can be 
decomposed into two equations: 

ma1 = T, ma2 = mg. 1 (28.11) 

The first equation is identical to (28.9) and describes the 
rotation about the point of suspension, while the second 
equation has the solution a2 = g, i.e. describes the free fall of 
the pendulum. 

In the examples considered above, the analysis of motion 
was equally simple and illustrative both in noninertial and 
inertial reference frames. This is due to the fact that the 
examples were chosen specially with a view to illvstrate the 
relations between noninertial and inertial reference frames. 
However, quite often the solution of a problem in a noninertial 
reference frame is found to be much simpler than in an inertial 
reference frame. For example, the analysis of a cylinder rolling 
down an inclined plane with a uniform acceleration in an 
arbitrary direction is much easier to obtain in the noninertial 
reference frame fixed to the inclined plane than in the inertial 
reference frame in which the plane moves with an acceleration. 

Measurement of inertial forces allows us to determine the 
absolute acceleration of a reference frame relative to fixed stars. 
The instruments used for this purpose are called accelero
meters. 

Example 28.1. Solve the problem considered in Example 
19.1 if the horizontal plane on which the beam is located 
moves upwards with an acceleration a0 . 

To solve the problem in an inertial reference frame, we must 
consider in (19.9) and (19.10) the change in the reaction force of 
the supports on account of an additional acceleration of the 
masses in the vertical direction. However, it is easier to solve 
the problem in a noninertial reference frame moving upwards 
with a uniform acceleration a0 . In this case, an "additional 
inertial force acts in the vertical direction, and the entire 
problem is reduced to a change in the force of gravity. The 
solutions for a 1· and a2 have the same form as (19.11), except 
that g is now replaced by g -> g + a0 . 

The problem can easily be solved for an arbitrary direction 
of the acceleration a 0 . In this case, we must take into account 
in (19.9) and (19.10) the action of inertial forces both in the 
vertical and horizontal directions. 
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Sec. 29. ZERO GRAVITY. THE EQUIVALENCE PRINCIPLE 

Physical conditions behind the 
emergence of zero gravity are 
discussed and the equivalence 
principle is formulah:d. 

ZERO GRAVITY. It was shown in the example concerning a 
falling pendulum that in a freely falling noninertial reference 
frame, the inertia/forces completely compensate for the action of 
the force of gravity, and the motion takes place as if there were 
neither inertial forces nor the forces of gravity. The state of zero 
gravity sets in. This situation is widely used for simulating 
weightlessness under terrestrial conditions, for example, to 
train cosmonauts. 

The state of zero gravity arises in a diving aeroplane if its 
acceleration towards the Earth is equal to the acceleration due 
to gravity at each instant of time. In order that the aeroplane 
may remain in the state of zero gravity for a long time, the 
entire operation is carried out through the "steep-climb" 
maneuver, which helps avoid large diving angles and a drastic 
increase in the yelocity of the aeroplane. Cosmonauts can thus 
experience zero gravity for a long time and ca:n work out the 
methods of moving inside the cabin and performing various 
operations. 

GRAVITATIONAL AND INERTIAL MASSES. The emergence 
of the state of zero gravity during free fall is due to a very 
important physical factor, viz. the equality of the inertial and 
gravitational Jnasses of a body. The inertial mass characterizes 
the inertial properties of a body, while the gravitational mass 
characterizes the force with which the body is attracted accord
ing to the law of univers!i gravitation. The gravitational mass 
has the same meaning as, say, an electric charge in an 
electrostatic interaction. Generally speaking, there are no 
indications that the inertial and gravitational masses of a body 
must be proportional or, which is the same, equal to each 
other (if two physical quantities are proportional to each other, 
they can be made equal to each other by a suitable choice of the 
units of these physical quantities). Let us prove that the inertial 
and gravitational masses of a body are proportional. The force 
exerted by the Earth whose gravitational mass is M1 on a body 
whose gravitational mass is m8 on the Earth's surtace is 

mM 
F = G~ (29.1) R2 ' 

where G is the gravitational constant, and R is the Earth's 
radius. If m is the inertial mass of the body, it will acquire an 
acceleration under the action of the force (29.1). This accel
eration is given by 

F M m m 
g =- = G~ ____! = const:..:..:!!. (29.2) 

m R2 m m 
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Physically, zero gravity 
is due to the propor-
tionality of inertial and gravi
tational masses which are 
physical quantities of dif
ferent nature. At present, the 
proportionality of iner-
tial and gravitational masses 
has been verified with 
a high degree of pre-
cision. 
The equivalence principle 
can strictly be applied 
only to small regions of 
space. 
The expression "red shift" 
has two meanings: 
(I) this is the Doppler ef
fect for a radiation 
source moving away (for 
example, the "red shift" 
in the spectrum of re
mote galaxies); 
(2) when a change in fre
quency is due to gravita
tional field. 
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Since the acceleration g for all bodies is the same at the Earth's 
surface, the ratio of their inertial and gravitational masses 
must be the same, i.e. the inertial and gravitational masses are 
proportional to each other. By an appropriate choice of the units 
of physical quantities, these two masses can be made equal to 
each other. We can then speak of mass in ge.nertl without 
indicating which of the two masses is meant. Owing to the 
circumstance that the inertial and gravitational masses are 
equal, the inertial and gravitational forces neutralize each 
other in the case of free fall and can be neglected. 

In view of the fact that the equality of inertial and 
gravitational masses is of great importance, it was verified very 
thoroughly in various experiments. At present, the equality of 
these masses is assumed to have been proved to wi tpin 10- 12 

of their value, i.e. j(m~- m)/mgl:::; 10- 12 . 

The equality of inertial and gravitational masses has another 
corollary: 

If a reference frame is in a uniformly accelerated motion in a 
straight line relative to an inertial reference frame (in which 
there is no gravitational field by definition), processes occur in 
it as if there were gravitational field in which the free fall 
acceleration is equal to the acceleration of the reference frame. 

This is obvious for phenomena occurring in mechanics. The 
generalization of this statement to all physical phenomena is 
called the equivalence principle. 

EQUIVALENCE PRINCIPLE. The equivalence principle states 
that the acceleration of a reference frame is indistinguish
able from the presence of a corresponding gravitational field. 

A specific gravitational field varies as we go from one point 
in space to another. Hence we cannot generally choose a 
reference frame which could move so that the action of its 
acceleration at each point in space is equivalent to the 
gravitational field at this point. However, if we have to 
consider a gravitational field in quite a small region in space, it 
can be assumed to be constant in this region tb the first 
approximation. Hence the equivalen.ce principle can always be 
applied in quite small regions of space, and certain conclusions 
can thus be drawn about the nature of processes occurring in 
this region. We shall illustrate this by considering red shift. 

RED SHIFT. Gravitational field has a considerable influence 
on light in that it changes the frequency of light. The inevi
tability of the variation of frequency of light in gravitational field 
is a consequence of the equivalence principle. 

Let us imagine the following experiment in the Earth's 
gravitational field. A ray of light of frequency m is emitted from 
a point in space and propagates in the vertical direction 
(Fig. 66). What will be the frequency of this light at a height h? 
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This question cannot be answered proceeding from general 
considerations since we are unaware of the action of gravity on 
frequency. We can make use of the equivalence principle to 
answer this question by considering that in the absence of 
gravitational field, the frequency of light does not changt 
during its propagation. 

We shall consider such an experiment in a reference frame 
h falling freely in a uniform gravitational field. There are no 

forces in this reference frame, and all the processes occurring in 
it take place in the same way as in an inertial reference frame. 
Hence the frequency of light does not change upon propa
gation, and a stationary person at a point at height h in this 
reference frame must receive the same frequency that was 
emitted at point 0 in the same reference frame. 

Fig. 66. Calculating red shift. Let us now analyze the same experiment in the laboratory 
reference frame fixed to the Earth, in which a noninertial 
reference frame falls freely. We shall assume that at the instant 
of emission of the ray at point 0, the velocity of this reference 
frame is zero (the acceleration, however, is not zero and is 
equal to the free fall acceleration). In time At = h/ c during 
which the ray of light propagates from point 0 to the point of 
observation at height h, the freely falling reference frame 
acquires a velocity v =gAt = gh/ c. Consequently, on account 
of the Doppler effect, an observer must receive in this reference 
frame a ray whose frequency is higher than that of the light 
emitted at point 0 by Aco = co(vfc). However, an analysis of 
the phenomena in the n~inertial reference frame showed that 
there was no change in frequency. Hence it can be concluded 
that during the propagation of light from point 0 to the point 
at height h, the frequency of the emitted light has decreased by 
Aco = - coghjc2 • For visible light, this means a shift of the 
frequency towards the red colour of the spectrum. Hence the 
effect of decrease in the frequency during the propagation of light 
against the force of gravity is called red shift. 

The magnitude of the red shift under terrestrial conditions is 
very small. For a difference of 10m in height, we obtain the 
following estimate for the red shift: 

Aco,..., 10 x 10 ,..., 10 _15 

CO - (3 X 108f - . (29.3) 

To note such a change in frequency is equivalent to observing 
a loss of one second in about 100 million years. However, the 
red shift, which is negligibly small under terrestrial conditions, 
was reliably detected in 1960 by using the Mossbauer effect 
according to which photons are emitted by a nucleus under 
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certain conditions practically without recoil. The question of 
recoil during emission will be considered in Sec. 41. The 
condition for the recoilless radiation is that the recoil 
momentum upon a photon emission is taken not by an 
individual atom, but rather by the entire crystal lattice. The 
essence of the Mossbauer effect lies in the feasiJ:>ilit1 of such 
conditions. Because of the recoilless radiation, the emission 
line is found to be extremely narrow, i.e. the frequency spread 
of the emitted photons covers a very narrow region. On the 
other hand, the absorption of a photon also will take place 
only when its frequency is almost exactly equal to the recoilless 
emission frequency. 

8 j Suppose that a substance A (Fig. 67) emits recoilless 
v photons of a certain frequency, and a similar substance B can 

absorb the photons of the same frequency under •the same 
conditions. A certain number of photons pass through the 
substance B without getting absorbed and falls on a sensitive 

Fig. 67. Experimental set-up for 
detecting the red shift under 
terrestrial conditions. 

? 
What physical factor is 
responsible for the emer
gence of zero gravity 
in the case of free fall? 
What is gravitational mass? 
What experiments demon
strate the proportionality of 
inertial and gravita-
tional masses? 
Formulate the equivalence 
principle. 
What is the gravitational red 
shift? Can you evaluate its mag
nitude in the simplest case 
by means of the equiva-
lence principle? 
What experimental proofs 
of the gravitation-
al red shift do you know? 

counter C which registers their number. 
Suppose that the frequency of the photons changed for some 

reason during their propagation from A to B. In this case, 
they cannot be absorbed by the substance B, and the number 
of photons incident on the counter C will increase. Thus, the 
slightest variation in the frequency of the photons can be 
detected during their propagation from A to B. The same 
set-up can also be used to measure the variation in the 
emission frequency of the photons. For this purpose, it is 
necessary to displace the substance B along the line of 
propagation of a ray at a velocity v such that the frequency of 
the photons incident on it again becomes equal to the 
resonance absorption frequency owing to the Doppler effect. 
At this instant, the absorption again increases considerably, 
and the intensity of radiation registered by the counter C 
drops. The effect is very clearly manifested, and the velocity v 
can be determined with a very high precision. Consequently, 
we can measure the variation in the frequency of the photons 
during their propagation from A to B. In the experiments 
which were performed in 1960 and repeated several times 
afterwards, the height of the source A above the detector B was 
15 m. The red shift was reliably measured, and the validity of 
formula (29.3) was confirmed. 

Red shift becomes noticeable in the radiation emitted by 
stars since the stars have a larger mass than the Earth. For 
example, the formula for the red shift is confirmed by the data 
on the emission of radiation of Sirius. 

The red shift caused by gravitational field should not be 
confused with the cosmological red shift due to the expansion of 
the Universe. 
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The gravitational red shift is a direct consequence of the 
time dilatation in gravitational fields. 

The passage of time at the Earth's surface is much slower 
than at a height. Consequently, one oscillation of the time 
standard at a height corresponds to more than one oscillation 
of the same time standard at the Earth's surface. This means 
that the frequency of light increases upon approaching the 
Earth's surface and decreases as we move away from the Earth. 

Sec. 30. NONINERTIAL ROTATING REFERENCE FRAMES 
It is shown that the transport 
acceleration leads to centrifugal 
inertial force• and a change in 
the transport acceleration from 
point to point is due to the 
emergence of Coriolis forces. 

CORIO LIS ACCELERATION. The analysis of noninertial ref
erence frames moving in a straight line showed that the 
relations between absolute, transport and relative velocities 
and the corresponding accelerations were identical (see (28.2) 
and (28.3)). The situation is more complicated in the case of 
rotating reference frames. This difference is due to the fact that 
different points of a rotating reference frame have different 
transport velocities. As before, the absolute velocity is the sum 
of the transport and relative velocities: 

v = v0 + v', (30.1) 

while the absolute acceleration cannot be represented in this 
form. 

As a point mass mofes from one point of· a rotating 
reference frame to another, its transport velocity changes. 
Hence, even if the relative velocity of the point mass does not 
change during motion, it must experience an acceleration which 
is different from the transport acceleration. As a result, the 
expression for the absolute acceleration in a rotating reference 
frame is not just the sum of the transport and relative 
accelerations, but contains an additional acceleration 3cor 
called the Coriolis acceleration: 

a = a0 + a' + acor . (30.2) 

EXPRESSION FOR CORIOLIS ACCELERATION. In order to 
find the physical nature of the Coriolis acceleration, let us 
consider the motion in the rotational plane. Primarily, we are 
interested in the motion of a point at a constant relative 
velocity along the radius (Fig. 68). Figure 68 shows the 
position of the point at two instants of time separated by an 
interval l'lt during which the radius turns by an angle /'la = 
ro l'lt. The velocity v, along the radius varies during this time 



Fig. 68. The Coriolis accelera
tion emerging due to different 
values of the transport velocity 
at different points of a non
inertial reference frame. 
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only in direction, while the velocity vn, which is perpendicular 
to the radius, varies in both direction and magnitude. The 
magnitude of the total variation of the velocity perpendicular 
to the radius is 

Avn = vn 2 - vn 1 cos a+ v, Aa 
= ror 2 - ror1 cos a+ v,Aa:::::: ro(r2 - r1 ) + v,roAt 
=roAr+ v,ro At, (30.3) 

where we have considered that cos a~ 1. 
Consequently, the magnitude of the Coriolis acceleration is 

. Avn dr 
aeo, = bm ~=ro-d + v,ro = 2v,ro. (30.4) 

41 _ 0 ut t 

It can easily be seen from a consideration of the directions of 
various quantities in Fig. 68 that this expression can be 
represented in vector form as follows: 

<lcor = 2ro X V' , (30.5) 

where v' is the relative velocity directed along the radius in the 
present case. 

If a point moves in a direction perpendicular to the radius, 
i.e. in a circle, the relative velocity v' = ror, while the angular 
velocity of rotation of the point in a stationary reference frame 
will be ro + ro', where ro is the angular velocity of the rotating 
reference frame. For the absolute acceleration, we obtain the 
following expression: 

a = (ro + ro') 2r = ro2r + ro' 2 r + 2roro'r. (30.6) 

The first term on the right-hand side is the transport accel-
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The Coriolis acceler
ation is due to a change 
in the transport veloc
ity when passing 
from one point in a ro
tating reference frame to 
another. 
The Coriolis force, as an 
inertial force, is direct-
ed opposite to the Coriolis 
acceleration and is applied 
to a body. 
The possibility of decom
posing angular velocity is due 
to the vector nature of 
angular velocity. 
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eration, while the second term represents the relative accel
eration. The last term 20>00'r = 2rov' is the Coriolis accel
eration. All the accelerations in (30.6) are directed along the 
radius towards the centre of rotation. Taking the direction into 
account, the Coriolis acceleration in (30.6) can be written as 

acor = 2ro X v' , (30.7) 

where v' is the relative velocity directed perpendicular to the 
radius in the present case. 

Any velocity can be represented as the sum of the com
ponents along the radius and perpendicular to it, both 
components obeying the same formula of the type (30.7). It 
follows hence that (30.7) is valid for the Coriolis acceleration 
irrespective of the direction of the relative velocity. 

If the velocity is directed parallel to the axis of rotation, no 
Coriolis acceleration emerges since adjacent points on the 
trajectory have the same transport velocity in this case. 

We can obtain an expression for the Coriolis acceleration by 
adopting a more formal approach, i.e. by directly computing 
the absolute acceleration. Representing the radius vector of a 
moving point in the form 

r = i~x' + i;y' + i~z' (30.8) 

and differendating with respect to t after taking into account 
the time dependence of i~, i~ and i~, we arrive at the expression 
for the absolute velocity. 

v = ro x r + v' = v0 + v', 

where ro x r = v0 is the transport velocity, and 

v' = v~i~ + v~i~ + v~i~ 

(30.9) 

(30.10) 

is the relative velocity. Hence we arrive at the expression for 
the absolute acceleration: 

dv dr dv' 
a = dt = ro x dt + dt = ro x (v0 + v') +a'+ ro x v'. (30.11) 

The angular velocity of rotation is assumed to be constant, and 
the following relation has been taken into consideration: 

dv' dv~ ., dv~ ., dv~ ., 
dt = dt 1" + dt 1' + dt 1% 

,di~ ,di~ ,di~ ' ' 
+ v"-d + v,-d + Vz-d =a + Ol x v . t t t . 

(30.12) 

Hence the absolute acceleration is 

a = ao + it' + acor' (30.13) 
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w where a0 = ro x v0 = ro x (ro x r) is the transport acceleration, 
dv' dv' dv' 

a' = ---=: i~ + _Y i~ + _z i ~ is the relative acceleration, and 
dt dt dt 

aeor = 2ro x v' is the Coriolis acceleration. It is expedient to 
F cr represent the transport acceleration in the form 1 

0 
Fig. 69. The oxntrifugal inertial 
force. 
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a0 = ro x (ro x r) = ro(ro · r) - rro 2 

= ro2 (d - r) = -ro2 R, (30.14) 

where d = r - R, and R is a vector perpendicular to the axis of 
rotation (Fig. 69). Thus, the transport acceleration is centripet
al (it should be recalled that the angular velocity of rotation is 
assumed to be constant). 

INERTIAL FORCES IN A ROTATING REFERENCE FRAME. 
The general formula (28.6) can be used to detennine the 
inertial forces in a rotating reference frame by taking into 
account the expression (30.13) for the absolute acceleration. 
This gives 

Fin= m(a'- a)= m( -a0 - acor) 

= mro2R - 2mro X v' = F cf + F Cor· 

The inertial force 

(30.15) 

(30.16) 

connected with the transport acceleration is called the centri
fugal inertial force. It is directed along the radius away from 
the axis of rotation. The inertial force 

Fcor = - 2mro x v' (30.17) 

connected with the Coriolis acceleration is called the Coriolis 
force. It is perpendicular to the plane containing the vectors of 
the angular and relative velocities. If these vectors have the 
same direction, the Coriolis acceleration is zero. 

EQUILIBRIUM OF A PENDULUM ON A ROTATING DISC. 
As an· example, let us consider the equilibrium position of a 
pendulum on a rotating disc (Fig. 70). In the noninertial 
reference frame, the pendulum is subjected to a centrifugal 
inertial force. There is no Coriolis force in the equilibrium 
position, and hence the relative velocity is zero (v' = 0). The 
equation of motion (Fig. 70a) has the form 

ma' = T+ mg +Fer= 0. (30.18) 

In the inertial reference frame, the equation of motion for a 
pendulum in equilibrium (Fig. 70b) has the form 

ma=T+mg. (30.19) 
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Fig. 70. Equilibrium of a pen
dulum in a rotating reference 
frame: 
(a) noninertial; (b) inertial. 

Fig. 71. The Coriolis force 
F cor applied to a body in a 
direction opposite to that of the 
Coriolis acceleration a cor. 
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It can be seen directly from Fig. 70 that tan a = ro 2r/g and 
a= ro2r (a is the angle between the vertical and the pendulum 
suspension). 

MOTION OF A BODY ALONG A ROTATING ROD. Suppose 
that a rigid rod rotates about an axis perpendicular to it and 
passing through one of its ends (Fig. 71). A body is fixed to the 
rod by a spring, and the force from the spring is proportional 
to the distance of the body from the axis of rotation (F = - kr). If 
k = mro2, the centrifugal inertial force Fer= mro2 r at any 
distance from the axis of rotation is balanced by the force of 
the spring. In this case, the body moves along the rod at a 
constant velocity v' (relative to the rod). The rod is slightly 
deformed (see Fig. 71). Let us consider the motion and forces 
in an inertial (stationl!JY) reference frame and a noninertial 
reference frame fixed to the rod. 

In the inertial reference frame, the body is subjected to the 
action of two forces (Fig. 71a): (1) the centripetal force 
Fep = mro2r from the spring directed towards the axis of 
rotation at each instant (this force ensures the motion of the 
body about the axis of rotation); (2) the force F def exerted by 
the deformed rod (for a very rigid rod, this deformation may be 
indefinitely small, but the force has a finite value), which 
imparts the Coriolis acceleration acor to the body (this is the 
usual force due to the deformation of the rod). 

In the noninertial reference frame fixed to the rotating rod, 
there are four forces which balance one another, and hence the 
body in this system moves uniformly without an acceleration 
(Fig. 7lb). These forces are: (I) the centrifugal inertial force 
Fer= mro2r directed along the rod away from the axis of 
rotation; (2) the centripetal force F cp = kr = mro2r from the 
spring directed along the rod towards the axis of rotation; 
(3) the Corio lis inertial force F Cor applied to the body. It 
should be emphasized that this force is applied to the body and 
not to the rod. The rod is deformed due to the usual 



Fig. 72. A reference frame fixed 
to the Earth's surface. 

? 
1-W!at inertial forces arise in a 
rotating noninertial reference 
frame? 
1-W!at are the factors responsible 

for the emergence of Coriolis 
forces? 
Is any work done by Corio/is 
forces? By centrifugal forces? 
1-W!ich two types of trajectory 
can be observed in the oscillations 
of the Foucault pendulum? How 
can this be realized? 
Can you indicate how the inertial 
forces manifest themselves in the 
motion of bodies near the Earth's 
surface? 

14° 
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interaction of deformed bodies and not because the Coriolis 
force is applied to it. The situation is analogous to that of a 
body lying on a table: the force of gravity acts on the body, 
while the table is subjected to the force exerted by the body 
due to its deformation but not the force of gravity. (4) The 
body is subjected to the force F def exerted by the rod due to its 
deformation. This force is equal to the Coriolis force, but acts 
in the opposite direction. 

NONINERTIAL REFERENCE FRAME FIXED TO THE 
·EARTH'S SURFACE. Since the Earth rotates, the reference 
frame fixed to its surface is a noninertial rotating reference 
frame. 

The angular velocity of rotation at any point on the surface 
can be conveniently decomposed into vertical and horizontal 
components (Fig. 72): w =W v +w h· At a latitude cp, these 
components are respectively equal to wv = co sin cp and 
coh = co cos cp. 

The centrifugal inertial force mw2 R cos cp, where R is the 
. Earth's radius, lies in the meridional plane. In the northern 
hemisphere, it is inclined southwards from the vertical by an 
angle cp, · while in the southern hemisphere, it is inclined 
northwards by the same angle. Thus, the vertical component of 
this force changes the force of gravity, while the horizontal 
component is directed tangentially to the Earth's surface along 
the meridian to the equator. 

The Coriolis force depends on the relative velocity of the 
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body. It is convenient to decompose this velocity into vertical 
and horizontal components: v' = v~ + v(,. The Coriolis force 
can then be represented in the form 

F Cor = -2m (wv + wh) X {v~ + vi,) 
= - 2mwv x vb. - 2mwh x v~ - 2mwh x vi,, (30.20) 

where we have considered that wv x v~ = 0. 
The vertical component v~ of the velocity is responsible for 

the component -2mwh x v~ of the Coriolis force in the 
horizontal plane perpendicular to the meridional plane. If the 
body moves upwards, the force is directed westwards, while if 
it moves downwards, the force is directed eastwards. 
Hence a body freely falling from a considerable height is 
deflected eastwards from the vertical pointing towards the 
Earth's centre. Obviously, this force deflecting the body 
from the vertical is 2mro cos <pv~ . 

The horizontal component vh of the velocity is responsible 
for two components of the Coriolis force. The component 
- 2mroh x vJ. depends on the horizontal component of the 
angular velocity of the Earth's rotation and is directed along 
the vertical. This force either presses the body against the Earth 
or, conversely, tends to detach it from the Earth's surface 
depending on the-directions of vectors wh and vJ.. This must be 
taken into c6nsideration while studying the motion of bodies 
at sufficiently large distances, for example, in the flight of 
ballistic missiles. ·'~~' 

The second component of the Corio lis force associated with 
the horizontal component vi. of the velocity is -2mwv x vj.. 
This is a horizontal force perpendicular to the velocity. If we 
look in the direction of velocity, it always points to the right in 
the northern hemisphere. The Coriolis force is responsible, for 
example, for the unequal wear of the rails of a two-track 
railway if trains run along each track in the same direction all 
the time. In this case, the Coriolis force applied to the centre of 
mass of a carriage creates a moment relative to the right rail, 
which must be balanced by increasing the reaction force from 
the right rail to the wheels. Hence the pressure of the right 
wheels on the rails is higher than that of the left wheels, and 
this results in a certain increase in the wear of the right rails as 
compared to the left rails. An important manifestation of the 
Coriolis force is a change in the plane of oscillations of a 
pendulum relative to the Earth's surface. 

FOUCAULT PENDULUM. Let us consider the oscillations of 
a pendulum by taking into account the action qf the horizontal 
component of the Coriolis force on it. The projection of a 
point mass of the pendulum on the horizontal plane moves 



Fig. 73. Curves described by the 
tip of the Foucault pendulum: 
(a) if it starts moving (from point 0) 
from a nonequilibrium position 
without an initial velocity; (b) if it 
moves from the equilibrium position 
at a certain initial velocity. 
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0 
along the curves shown in Fig. 73. The difference between the 
curves can be explained as follows. 

If the pendulum is deflected from its equilibrium position 
and released at a zero initial velocity relative to the observer 
moving with the Earth, it begins to move towards the centre of 
equilibrium. However, the Coriolis force deflects it to the right, 
and it does not pass through the central point. Consequently, 
the projection of a point mass of the pendulum moves along 
the curve shown in Fig. 73a. 

The pendulum can be set in motion in another way: a 
velocity can be imparted to it at the equilibrium position. In 
this case, the nature of its motion varies. As the pendulum 
moves away from the equilibrium position, the Coriolis force 
imparts to it an acceleration to the right. Hence when the 
pendulum is at the extreme position and its velocity along the 
radius from the centre is zero, it acquires the maximum 
velocity in the direction perpendicular to the radius. As a 
result, the trajectory of the pendulum to~ches a circle whose 
radius is equal to its maximum displacement from the 
equilibrium position. In this case, the projection of a point 
mass of the pendulum moves along the trajectory shown in 
Fig. 73b. 

The deviation in the direction of the swing of the pendulum 
over one oscillation is extremely small. The entire process can 
be seen as a rotation of the plane of the swing of the pendulum 
about the vertical. 

We can also analyze the oscillations of the Foucault 
pendulum in an inertial reference frame relative to fixed stars, 
the position of the plane of oscillations of the pendulum 
remaining unchanged relative to the stars. Due to the rotation 
of the Earth, the position of the plane in which the pendulum 
swings changes relative to its surface. This position is deter
mined by the Foucault pendulum. It is easy to imagine this 
variation at the poles. The situation is more complicated for an 
arbitrary point on the Earth's surface, although the two cases 
are identical except that the angular velocity of rotation is w v 

in the latter case. 
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The angular velocity of rotation of the plane in which the 
pendulum swings is equal to ~· Hence one revolution at the 
poles is completed in one day, while at a latitude cp this 
requires 1/sin cp of a day. The plane of oscillations of the 
Foucault pendulum does not change at the equator. 

CONSERVATION LAWS IN NONINERTIAL REFERENCE 
FRAMES. It was emphasized in Chap. 6 while considering the 
energy, momentum and angular momentum conservation laws 
that these laws in mechanics result from the equations of 
motion. 

The energy, momentum and angular momentum of a system 
of point masses retain their values for closed systems, i.e. for 
the case when there are no external forces and momentum of 
external forces. The energy, momentum and angular momen
tum of a system change in the presence of external forces. 

In noninertial reference frames, inertial forces appear in 
addition to the "ordinary" forces. These forces are always 
external forces with respect to the bodies under consideration. 
Consequently, there are no closed systems of bodies in these 
noninertial reference frames, and hence there are no energy, 
momentum and angular momentum conservation laws in the 
conventional sense. 

However, there are no obstacles against the inclusion of 
inertial forces in the forces of a system, after which the system . . 
can be treated as a closed one. Accordmg to Eq. (27.2), the 
inertial forces must be considered exactly in the same way as 
ordinary forces. In partfcular, while calculating a change in 
energy, we must take into account the work of inertial forces, 
the moment of inertial forces in the momenta! equation, etc. 

The nature of conservation laws in noninertial reference 
frames depends on the properties of inertial forces. In a 
noninertial reference frame rotating at a constant angular 
velocity, the inertial forces associated with the transport 
acceleration are central forces (to be more precise, axial forces 
directed in a straight line from the axis of rotation). It was 
shown above that the central forces are always potential forces. 
On the other hand, the Coriolis inertial force is perpendicular 
to the particle's velocity and hence does not perform any work. 
Consequently, the energy conservation law is valid in a 
noninertial reference frame rotating at a constant velocity if we 
consider, besides the usual potential energy, the potential 
energy associated with the inertial fotces as well. It can easily 
be seen that the energy conservation law can also be formulat
ed in a noninertial reference frame translating uniformly in a 
straight line if we take into account the work of inertial 
forces. 

While considering a change in momentum and angular 
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momentum, we must include the inertial forces and their 
moment in the equations of motion. To ensure the conser
vation of these quantities, it is necessary that the inertial forces 
satisfy the same requirements as those imposed on ordinary 
forces from the point of view of the conservatimi laws in 
inertial reference frames. · 

Example 30.1. Let us quantitatively consider the motion of a 
body near the Earth's surface in a noninertial reference frame 
fixed to this surface. We denote the acceleration due to gravity 
by g and neglect the air resistance. 

It was assumed in Eqs. (30.8)-(30.14) that the origin of the 
radius vector r is at rest in the "inertial reference frame. Let us 
take a point on the axis of rotation as such a point. Suppose 
that the origin of the noninertial reference frame on the Earth's 
surface is characterized by the radius vector r 0 , while the 
radius vector of the body near the Earth's surface is denoted 
by r' relative to this origin. We have 

r = r0 + r'. (30.21) 

The transport acceleration (30.14) is w x (w x ro) + w x (w x r') 
and Newton's equation of motion (27.2) assumes the following 
form if we take into account Eqs. (30.13) and (30.15): 

mr' = mg - 2mw X v' 

-mw x (w x r0)- mw x (w x r'). (30.22) 

For the Earth, w = 27t/86,164 = 7.29 x 10- 5 rad/s, and 
hence I w x (w x r0) I /g :s;; w2 rE/g = 3.45 x 10- 3, where rE = 
6.37 x 106 m is the Earth's radius. The last term on the 
right-hand side of (30.22) is even smaller than the last but one 
since r' « r E • Hence the last two terms in (30.22) can be 
neglected in comparison with the first, and the equation of 
motion can be written in the form 

r' = g - 2ro X v'. (30.23) 

For a small region near the Earth's surface in which the 
motion takes place, we can assume that g = const and is 
directed along the vertical. If necessary, the deviation from the 
vertical at different points on the Earth's surface and the 
variation of g with height and due to other factors can also be 
taken into account. 

The consideration of the Coriolis force in (30.23) introduces 
only a small correction to the motion, which does not take this 
force into account. Hence we can write to the first ap
proximation 

r' = g, e = u + gt, (30.24) 

where u is the velocity at t = 0. It should be recalled that 



216 7. Noninertial Reference Frames 

vector g points vertically downwards. Substituting r' = v' from 
(30.24) into (30.23}, we obtain the equation of motion by taking 
into account the correction for the Coriolis force: 

r' = g - 2W X ( U + gt). (30.25) 

For the initial conditions r' = r~ and f' = u for t = 0, the 
solution of this equation is determined from two quadratures: 

., ( gt2) 
r = u + gt - 2w x ut + T , (30.26) 

(30.27) 

The term w x ( ut2 + gt3 /3) gives the correction to the 
coordinates of the body, induced by the Coriolis forces. 

Let us calculate the deviation of a body from the vertical 
during a free fall. We direct the Z-axis along the vertical and 
the Y..axis eastwards. For t = 0, we have x = 0, y = 0, z = h, 
and (30.27) leads to the relations (see Fig. 65) 

1 gt 2 

x = 0, y = -wgt3 cos cp, z =h--. (30.28) 
3 2 

Consequently, at the point z = 0 where the body falls on the 
ground, the qeviation of the body from the base of the vertical 
is given by 

1 J8h 3 

y = 3WCOS cp g. (30.29) 

This deviation is very small. For example, y = 0.022 cos cp m 
for h =100m. 

When a body moves at a high velocity along a nearly 
horizontal trajectory (for example, the flight of a bullet}, we can 
neglect in (30.27) the term with gt3 /3 in comparison with the 
term containing ut2 • This gives 

2 

r' = r~ + ut + !_ + wt2 cos cpix X u - wt2 sin cpiz X ll (30.30) 
2 

The term wt2 cos cpix x u describes the deviation along the 
vertical caused by the Coriolis force, while the term wt2 sin cpiz xu 
describes the deviation in the horizontal plane. In the north
ern hemisphere, sin cp > 0 and the deviation occurs to the 
rightl of the velocity, while in the southern hemisphere, the 
deviation occurs to the left. 
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7.1. A bullet is fired at a target in the horizontal direction at a latitude 
IP = 60°. The initial velocity of the projectile is 1 km/s, and the 
distance from the target is 1 km. The target is situated precisely in the 
north-west direction. The air resistance is neglected. The correction for 
inertial forces was not taken into account in the calcuJatiois. By what 
distance will the bullet deviate from the target in the horizontal and 
vertical directions? 

7.2. A river flows at a velocity v' in the northern hemisphere. What will be 
the angle of inclination a of the water surface to the horizontal at 
a latitude qJ? 

7.3. A weightless unstretchable string passes over a pulley. Loads of mass 
m1 and m2 are attached to the ends of the string. There is no friction 
between the pulley and the string. The pulley moves in the horizontal 
direction with an acceleratiQn a. What will be the tension qf the string? 

7.4. Point masses m1, m2 and m3 interacting in accordance with Newton's 
law are placed at the vertices of an equilateral triangle with side /. 
What should be the angular velocity of rotation of the system and how 
should the axis of rotation be arranged so that the position of the 
masses relative to one another remains unchanged? 

7.1. 5.8 em and 2.4 em. 7.2. arctan (2rosinqJv'/g). 7.3. 2m 1m2jg2 + a 2/ 

(m 1 + m2). 7.4. [G(m 1 + m2 + m3)//3] 112, the axis of rotation passes 
through the centre of mass perpendicular to the plane of the triangle. 



Chapter 8 
Dynamics of a Rigid Body 

Basic idea: 
The equations of motion of the centre of mass and 
momental equations of a system of point masses form a closed 
system of equations of motion of a rigid body. 

Sec. 31. EQUATIONS OF MOTION 

It is shown that the equations 
of motion of the centre of mass 
and momenta! equations of a 
system of point masses form 
a closed system of equations 
describing the motion of a rigid 
body. 

SYSTEM OF EQUATIONS. In the sense in which a body was 
defined in Sel!. 5, a rigid body can be considered a system of 
point masses with a constant distance between them. Hence all 
the statements and equatiens of Sec. 21 concerning a system of 
point masses are also applicable to a rigid body. Equations 
(21.1 I) and (21.21), which are reproduced below 

dp 
dt = F, (31.1) 

dL 
dt = M, (31.2) 

do not generally form a closed system of equations since they 
represent only six scalar equations, while the number of 
degrees of freedom of a system of point masses is usually much 
larger. However, these equations form a closed system for a rigid 
body, i.e. the motion of the rigid body in given external force 
fields can be completely defined with the help of these equations 
without any additional conditions and equations. Only the initial 
conditions of motion must be known. 

PROOF OF THE CLOSURE OF A SYSTEM OF EQUATIONS 
FOR A RIGID BODY. Let us recall the basic definitions 
presented in Sec. 9 for the kinematics of a rigid body. The 
orientation of a rigid body in space is completely defined by 
the direction of the axes of a rectangular Cartesian coordinate 



The number of independent 
variables characterizing a sys
tem must be equal to the num
ber of its degrees of freedom. 
Hence six independent vari
ables are required to describe 
the motion of a perfectly rigid 
body. Then six independent 
equations of motion must be 
available to determine them. 
In general, the inertial proper
ties of a rigid body are charac
terized by six independent 
quantities, i.e. three axial and 
three centrifugal moments of 
inertia. 
If the axes of a coordinate sys
tem are directed along the 
principal axes of inertia of a 
body, there are no centrifugal 
moments of inertia. The axial 
moments of inertia are called 
the principal moments of iner
tia. 
Although strict mathematical 
rules exist for finding the prin
cipal axes, in many important 
cases, these axes can be deter
mined from symmetry consid
erations, without resorting to 
mathematical calculations. 
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system rigidly fixed to the body, i.e. by the direction of the unit 
vectors i~, i~ and i~ in this coordinate system. The position of 
each point in this system is fixed and is specified either by the 
radius vector r' relative to the origin or by the Cartesian 
coordinates (x', y', z') of the point. Since the system pf these 
coordinates is rigidly fixed to the body, the coordinatd of each 
point of 'the body have a fixed value in this system. The 
orientation of this coordinate system relative to the inertial 
coordinate system, in which the motion of the body is 
considered and in which the equations of motion (31.1) and 
(31.2) hold, is completely defined by three Euler angles <p, 
'I' and 9 (see Fig. 18). The position of the point with which the 
origin of the coordinate system (i~, i~, i~) is associated is given 
by the radius vector r 0 of this point relative to the inertial 
coordinate system, or by the Cartesian coordinates (x0 , y 0 , z0 ) 

of this point. Hence the position of a rigid body as a system 
with six degrees of freedom is defined by six quantities (<p, 'If, 9, 
x 0 , y 0 , z0 ). The velocity of each point of the body is composed 
of both the translational motion at a velocity v0 = drfdt of the 
point of the rigid body coinciding with the origin of coordi
nates (i~, i~, i~) and the rotational motion at an instantaneous 
angular velocity m about an axis passing through the origin. 
The combined velocity is thus given by (9.6): 

v=v0 +mxr'. (31.3) 

The angular velocity rtl is expressed in terms of the derivatives 
of the Euler angles. Consequently, the velocity of all the points 
of a rigid hotly is completely defined by the coordinates (<p, 'If, 
9, x 0 , y 0 , z0 ) and their derivatives since the position of points 
relative to the coordinate system (X', Y', Z') is fixed. This 
means that both p and L in (31.1) and (31.2) can be expressed 
in terms of these coordinates and their derivatives. On the 
other hand, F and Min (31.1) and (31.2) can also be expressed 
in terms of these coordinates if the external forces are 
independent of the velocity, or in terms of both the coordinates 
and their derivatives if the forces depend on the velocity. Thus, 
we obtain six equations (31.1) and (31.2) for six unknown 
coordinates (<p, 'If, 9, x 0 , y 0 , z0 ), i.e. the system is closed, and 
these equations can rightfully be called the equations of motion 
of the rigid body. It must only be remembered that by forces and 
moments of forces on the right-hand side of these equations, we 
mean not only the ordinary forces and the moments of ordinary 
forces, but also the constraint forces imposed on the rigid body 
and their moments. 

CHOICE OF A COORDINATE SYSTEM. The choice of point 
0' with which the coordinate system (i~, i~, i~) should be 
associated and the orientation of this system relative to a body 
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are arbitrary and only a matter of convenience. A convenient 
choice can lead to a considerable simplification of these 
equations. One such choice for point 0', viz. the centre of mass, 
was made in Sec. 21. In this case, (31.1) is transformed into 
(21.16): 

m(d;to) = F, (31.4) 

called the equation of motion of the centre of mass. This is 
analogous to the equation of motion of a point mass. 

It is assumed that F in (31.4) takes into account the 
constraint forces._ For example, if a body is subjected to an 
external force, but is fixed at the centre of mass, then F = 0. It 
should also be noted that the choice of point 0' as the centre of 
mass is not always convenient. We shall prove this in the 
following section. 

Sec. 32. MOMENTS OF INERTIA 
The inertial properties of a 
rigid body are quantitatively 
analyzed with the help of the 
inertia tensor. 

INERTIA TENSOR. In order to completely describe the motion 
of a rigid body, we must know not only the motion of one of 
its points, but also the motion of the body about this point. 
The most important copeept in this case is that of the inertia 
tensor. In order tq simplify the calculations, we consider the 
body to be an aggregate of point masses m; (see Sec. 5). 

Let us fix the body at point 0 (Fig. 74). The radius vector of 
point m; drawn from 0 is denoted by r;. Let ro be the 
instantaneous angular velocity of the body. Then in accord
ance with (9.7), the velocity of the ith point of the body will be 
v; = ro x r;. Hence the angular momentum of the body as a 
whole relative to point 0 will be 

L = I,r; x m;v; = I,m;r; x (ro x r;) 
= ro I,m;rf - I,m;r; (ro · r;), (32.1) 

where we have used the formula A x (8 x C) = B(A ·C) -
C (A · B) for the triple vector product. 

The vector equality (32.1) can be written in the form of three 
projections on the coordinate axes: 

Lx = roxi,m;rf- I,m;X;(r;·ro), 

L., = ro.,I,m;rf- I,mj}';(r;-ro), 
Lz = ffi2 Lm;rf- I,m;z;(r;·ro). 

(32.2) 

Considering that (r; · ro) = X; rox + Y; ro., + z; ffi2 , we obtain in-



Fig. 74. To the concept of the 
inertia tensor characterizing the 
inertial properties of a rigid 
body. 

? 
mrat are the axial and centri
fugal moments of inertia? 
Define the principal axes of the 
inertia tensor. mtat is the form 
of the inertia tensor if the axes of 
a rectangular coordinate system 
coincide with the principal axes 
of the inertia tensor? 
Are you able to determine the 
principal axes of the inertia ten
sor? 
lW!at are the central principal 
axes of the inertia tensor? 

32. Moments of Inertia 

stead of (32.2): 

L:x: = J :x::x: ro:x: + J :x:y ro1 + J :x:z ro., 
L1 = J1:x:ro:x: + J11 ro1 + J1.ro., 

L. = Jzxro:x: + J.1 ro1 + J •• ro., 

where 

J "" = I m;(rf - xf), 

J :x:y = - I m;XJ';. 

J "" = - I m;X;Z;. 
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(32.3a) 

I 

(32.3b) 

The remaining quantities J 11, J y:x:• J Y•' etc. are also represented 
in a similar form. It can directly be seen from (32.3b) that 
J "' = J '"' J :x:z = J zx• and so on. Hence only six of. the nine 
quantities J XJC' J :x:y• etc. are different. The quantities J XJC' J 11 and 
J •• are called the axial moments of inertia, while J:x:y = J1:x:, 
J:x:z = Jzx and J,. = J.1 are called the centrifugal moments of 
inertia. 

Thus, the angular momentum of a body has quite a complex 
dependence on the mass distribution in the body, and its 
direction is generally not the same as that of the an,gular 
velocity of rotation of the body. The aggregate of the 
quantities 

( 
JJCJC J:x:y JJCz) 
Jy:x: Jyy Jyz 
JZJC jzy J%% 

(32.4) 

is called the inertia tensor. The quantities J x:x:• J 11 and J •• are 
called the diagonal elements of the tensor, while the other 
quantities are called the nondiagonal (off-diagonal) elements. 
In the present case, the quantities arranged symmetrically with 
respect to the diagonal are equal. Such a tensor is called a 
symmetric tensor. 

PRINCIPAL AXES OF THE INERTIA TENSOR. Suppose that 
all the off-diagonal elements of a tensor are zero, and only the 
diagonal elements are not zero. Such a tensor has the form 

( J" Jy 0 ). (32.5) 
0 J. 

In such cases, the axes of the body coinciding with the 
coordinate axes are called the principal axes of inertia, while 
the quantities J" = J :x:x• J 1 = J 11 and J. = J •• are called the 
principal moments of inertia. The tensor is said to have been 
diagonalized in this case. Thus, if the axes of a coordinate 
system are directed along the principal axes of inertia of the 
body, the centrifugal moments of inertia will be zero. 
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Fig. 75. The geometrical mean
ing of the quantities appearing 
in the definition of the axial 
moment of inertia. 

8. Dynamics of a Rigid Body 

The process of finding the principal axes is reduced to the 
mathematical procedure of diagonalization of the tensor. We 
shall not consider this procedure here but only formulate the 
result: three mutually perpendicular principal axes can be 
passed through any point of a rigid body. The principal moments 
of inertia J "' J Y and J z will be different for different points of the 
body. If the principal axes pass through the centre of mass of the 
body, they are called the central principal axes. Thus, there is 
no sense in speaking of the principal moments of inertia of a 
body without mentioning the point through which the prin
cipal axes are drawn. In general, as we pass from one point to 
another, the principal axes change their direction, and the 
principal moments of inertia acquire different values. For 
example, there is no sense in drawing an axis through a body 
and calling it a principal axis. When we are speaking of the 
central principal axes or the central principal moments of 
inertia, there is no need to indicate the point in the rigid body 
to which these quantities pertain since it is known by definition 
that this point is the centre of mass of the body. 

Of special importance is the axial moment of inertia 
(Fig. 75) whose value is given by 

Jzz = Lm,{rf- zf) = LmiRf, (32.6) 

where Ri is 'the distance between point mi and the axis. In 
many cases, the axial moment allows us to completely describe 
the dynamics of a rotating rigid body. It is also called the 
moment of inertia of thC!l'body about an axis. 

DETERMINATION OF PRINCIPAL AXES. In many cases, 
the principal axes can be determined without any cumbersome 
mathematical manipulations like those required for diagonal
ization of the inertia tensor. For this purpose, it is sometimes 
sufficient to use the simple concepts of symmetry. 

Suppose that we have a plane plate of a vanishingly small 
thickness. The point through which the principal axes pass lies 
on the plate. We direct the Z-axis perpendicular to the plate. 
Obviously, the z-coordinates of all the points on the plate are 
zero, i.e. zi = 0. In this case, we obtain from (32.3b) Jzy = 0 and 
J,.. = 0. Consequently, any axis perpendicular to the plate will 
be a principal axis. The other two principal axes lie in the 
plane of the plate and are perpendicular to each other. Their 
direction depends on the shape of the plate. 

Let us consider the case of a circular plate (Fig. 76) of finite 
thickness. Point 0 lying in the midplane of the plate is the 
point relative to which the principal axes are to be determined. 
Obviously, one of the principal axes is perpendicular to the 
plane of the plate. It can be stated that another principal axis 
lies in the midplane and passes through the given point and the 
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Fig. 76. The principal axes of a 
circular plate, which pass through 
a point on the midplane not 
coinciding with the centre. 

? 
Can the principal axes of the 
inertia tensor be determined by 
means of symmetry considera
tions? How can this be done? 
I'W7at is the meaning of Huygens' 
theorem? 
Suppose that we have a system 
of parallel axes passing through 
various points lying in a body 
and outside it. About which of 
these axes has the axial moment 
of inertia the minimum value? 
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centre of the disc. In Fig. 76, this axis is taken as the Y-axis. 
Let us verify this. We have 

1 YY = L mi(rf - yf), 

J yz = - L mJiiZi, 

J yx = - L mJiiXi. I 
It can be seen that J yx = 0 and J 1, = 0 in view of the 

symmetry of the plate relative to the planes x = 0 and z = 0. 
Thus, the axis chosen in the manner described above is indeed 
a principal axis. The third principal axis is uniquely defined by 
the two axes found above since it is perpendicular to both of 
them. Let us verify that the Z-axis is indeed a principal axis. 
We have 

1 •• = L mi(rf - z[), 

1 zx = - L mizixi, 

J,>' = - L miziYi· 

The equalities J zx = 0 and J •>' = 0 emerge owing to the 
symmetry of the plate relative to the plane z = 0. 

If the circular plate has a considerable thickness, it is called 
a circular cylinder. Naturally, all the arguments concerning the 
principal axes of a plate are also applicable to the case of a 
cylinder. 

The principal axes relative to any point of a sphere can be 
found as follows. One of the principal axes passes through the 
centre of the sphere and the other two are oriented arbitrarily 
in a plane perpendicular to the first axis. The fact that these 
axes are the principal axes is proved by simple considerations 
of symmetry, from which it follows that the centrifugal 
moments J xy• J x• and others are zero ·in this case. 

The central principal axes passing through the centre of 
mass are also determined with the help of similar considera
tions. For a plate of vanishingly small thickness, one of the 
central principal axes is perpendicular to the plane. The 
position of the other two in the plane of the plate depends on 
its shape. For a circular disc, any two mutually perpendicular 
axes can serve as the central principal axes. For a cylinder, the 
centre of mass .lies in the middle of the height in the centre of 
the circular cross section. One of the central principal axes 
coincides with the cylinder's axis, while the other two are 

· arbitrarily oriented in the middle of the circular plane of the 
cylinder and are perpendicular to each other. In the case of a 
sphere, any three mutually perpendicular axes passing through 
the centre of the sphere are its central principal axes. 

COMPUTATION OF THE MOMENT OF INERTIA ABOUT 
AN AXIS. For this purpose, use is made of (32.6). However, it is 
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z more convenient to carry out integration by going over to the 
continuous distribution of masses. Suppose that the density of 
a body is given by p(x, y, z). Then a mass p d V will be enclosed 
in a volume element d V = dx dy dz. If we calculate the moment 
of inertia of the body about the Z-axis, (32.6) assumes the form 

J zz = J p(x, y, z)(y2 + x2) dx dy dz (32. 7) 

and the integration can be extended to the entire volume of the 
body. 

By way of an example, let us determine the moment of 
inertia of a uniform cylinder of radius R0 and height h about 

y an axis coinciding with the cylinder's axis. We direct the Z-axis 
of the coordinate system along the cylinder's axis and take the 
origin (point 0) on the axis in the middle of the cylinder's 
height (Fig. 77). The cylinder has a constant density, i.e. 
p = p0 = const. The integral (32. 7) can be written in the 
following form: 

Fig. 77. Choice of the coordi
nate system for computing one 
of the principal moments of 
inertia of a cylinder. 

h/2 

Jzz=Po J dzJ(y2 +x2)dxdy, (32.8) 
-h/2 s 

where S is the cross-sectional area of the cylinder. It is 
convenient to make the computations in the cylindrical 
coordinate system with the symmetry axis coinciding with the 
Z-axis. This gives 

x=rcosq>, y=rsinq>, x,~.+y.~.=,.~., dxdy=rdrdq>. 

Hence, instead of (3:f.8), we can write 

h/2 Ro 2" R1. 
Jzz =Po J dz J r3 dr J dq> = p0 h~21t. 

-h/2 0 0 4 
(32.9) 

Considering that the volume of the cylinder is 1tR5h, and hence 
m = xR5hp0 is the mass of the cylinder, we finally obtain 

I 2 
Jzz = 2mRo. (32.10) 

Other moments of inertia are determined in a similar manner. 
We leave it to the reader to calculate them. In particular, the 
moment of inertia of a homogeneous sphere about an axis 
passing through its centre is (2/5)mR5, where m is the mass of 
the sphere, and R0 is its radius. The moment of inertia of a thin 
disc about an axis passing through its centre and perpendic
ular to the plane of the disc is given by (32.1 0), while its 
moment of inertia about an axis passing through the centre of 
the disc and lying in its plane is (l/4)mR5. 

HUYGENS' THEOREM. In many cases, the computation of 



Fig. 78. The geometrical mean
ing of the vectors used to prove 
Huygens' theorem. 
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the moment of inertia about an axis is simplified by means of 
Huygens' theorem connecting the moments of inertia about two 
parallel axes one of which passes through the centre of mass of a 
body (Fig. 78). Let the axis A0 B0 be the axis passing through 
the centre of mass. We denote the radius vector of a point .mass 
m1 measured from this axis in a plane perpendicular to the axis· 
by R1, and the radius vector of the same point mass measured 
from the axis AB which is parallel to the axis A0 B0 but does 
not pass through the centre of mass by r1• Let us draw vector a 
from the axis A0B0 to the axis AB in this plane. Let J 0 be the 
moment of inertia about the axis passing through the centre of 
mass, and J be the moment of inertia about the axis AB which 
does not pass through the centre of mass. By the definition of 
the moments of inertia, we have 

(32.11) 

It can directly be seen from Fig. 78 that r1 = - a + R1, and 
hence rr = Rr + a2 - 2a · R1• This gives 

(32.12) 

Considering that L m1R1 = 0 by the definition of the axis 
passing through the centre of mass, and L m1 = m is the mass 
of the body, we can rewrite (32.12) in the form 

(n.t3) 

This formula expresses Huygens' theorem. Knowing the mo
ment of inertia of a body about an axis passing through its 
centre of mass, we can easily compute the moment of inertia 
about any other axis parallel to it. 
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For example, let us consider a cylinder whose moment of 
inertia about its axis is given by (32.10). The centre of mass of 
the cylinder lies on its axis, and hence (32.10) is the moment of 
inertia about the axis passing through its centre of mass. The 
moment of inertia of the cylinder about the axis AB lying on 
the surface of the cylinder parallel to its axis can be determined 
from (32.13): 

1 2 2 3 2 J = -mR0 + mR0 = -mR0 • (32.14) 
2 2 

If this moment of inertia were determined with the help of 
(32.7), the computations would have been a lot more compli
cated. 

The moment of inertia of a sphere about the axis AB 
tangential to its surface is also easily found with the help of 
(32.13): 

2 2 2 7 2 J = -mR0 + mR0 = -mR0 , (32.15) 
5 5 

where we have considered that the moment of inertia of the 
sphere about the axis passing through its centre of mass is 
(2/5)mR~. 

Sec. 33. KINETIC ENERGY OF A ROTATING RIGID BODY 
The formula for the kinetic 
energy of a rigid body rotating 
arbitrarily is derived, 

EXPRESSING THE INlRTIA TENSOR WITH THE HELP OF 
THE KRONECKER DELTA. It is convenient to perform calcu
lations by introducing the Kronecker delta, which is defined as 
follows: 

{ l for a= p, 
0 = 

u.P 0 for a #- p. (33.1) 

The components J ""' J "'' etc. of the inertia tensor can be 
denoted by J 11, J 12, etc., i.e. in the form Ju.fl· Formulas (32.3b) 
then acquire the form · 

J u = L m; (x;y-X;y - xM, 
i,}' 

J l2 = - L m;Xn X;l• 
i 

J 13 = - Lm;XnXi3• 
i 

(33.1) 

where d = XnXn + x12x12 + x13x13 = Ix11x11, and y is the 
y 
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The inertia tensor, in terms of 
which the kinetic energy of a 
rotating body is expressed, 
refers to the coordinate axes 
rigidly fixed to the body. 
The kinetic energy of a rolling 
cylinder is the sum of the 
kinetic energies of the transla
tion of the centre of mass and 
of rotation. Hence, while rolling 
down an inclined plane, the 
velocity of the centre of mass of 
the cylinder is lower than that 
of a cylinder slipping without 
rotation. 
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dummy index. The other components are expressed in a 
similar manner. 

Any projection A~ of the vector can be expressed in terms of 
other projections with the help of the symbol o .. y: 

I 3 

A~= :L o .. 7A7• (33.3) 
y=l 

This equality can be written in expanded form as follows: 

A .. = o<llA 1 + o~~.2A 2 + o .. 3A3• (33.4) 

From the symbols o<ll, o .. 2 and o .. 3, only the one in which a is 
equal to the other index will be different from zero. Suppose, 
for example, that a = 2. In this case, (33.4) gives 

A 2 = O·A 1 + l·A2 + O·A 3 = A 2• 

Using the Kronecker delta, we can represent the expression 
(33.2) for the inertia tensor in the following form which is more 
convenient for calculations: 

J ~fJ = L m1 (x17x17 0~~.p - x1~~.x1p). 
i,y 

(33.5) 

KINETIC ENERGY OF ROTATION. If the transport velocity 
v0 of a rigid body is zero, i.e. if the body rotates at an 
instantaneous velocity ro whose vector passes through a fixed 
point of the body, the velocity of its points will be 

v1 = ro x ri, 
and hence its kinetic energy will be 

1" 2 '" 2 Ek = 2L..m1vi = 2L..m1(ro x ri). 

Using the well-known formula from vector algebra, i.e . 

(A X B)·(C X D)= (A ·C)(B·D)- (A ·D)(B·C), 

we can write 

(ro x rl)2 = ro2r?- (ri·ro)2• 

(33.6) 

(33.7) 

(33.8) 

This expression assumes the following form m terms of 
coordinates: 

J .. p = L m1(x17x17o~11 - x1~x111). 
i,y 

(33.5) 

Substituting this formula into (33.7) and taking (33.5) into 
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account, we obtain the kinetic energy of rotation: 

(33.10) 

Here, J ..P is the inertia tensor referred to the coordinate axt:s 
rigidly fixed to the body and moving with it. The origin of the 
coordinate system is at rest, and w, are the projections of the 
instantaneous angular velocity of the body on the coordinate 
axes. 

If the axes of a moving coordinate system are directed along 
the principal axes of inertia of a body, only the diagonal 
components are left in the inertia tensor, i.e. 

JII.(J = J'Z.o<z.fJ· (33.11) 

For such a choice of the coordinate axes which are rigidly fixed 
to the body, the expression (33.10) for the kinetic energy is 
simplified: 

(33.12) 

If the instantaneous velocity of rotation coincides in di
rection wit~ one of the principal axes, say, the X-axis of the 
moving system, then obviously w2 = ro3 = 0, and (33.12) 
assumes a simpler form: 

>' 

(33.13) 

Generally speaking, the angular velocity vector w changes its 
direction during an arbitrary motion of a body and coincides 
in direction with one of the principal axes only over an instant 
of time. This formula is valid just for this particular instant <•f 
time. In the next instant, the angular velocity will no longer 
coincide with the principal axis, and (33.12) will again become 
an expression for the kinetic energy. 

If, in addition to a rotation, a body also undergoes a 
translation at a velocity v0, the velocity of its points is 
determined by (31.3). In this case, the expression for the kinetic 
energy becomes complicated. Substituting (31.3) into the 
expression for the kinetic energy, we obtain 

1~ 2 ~~ 2 
Ek = 2t....mivi = 21...m~v0 + ro x ri) 

= !(Lmi)v~ + !Lmi(ro x ri)2 + ~Lmi·2v0 ·(ro x rJ (33.14) 
2 2 2 
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The first term in this formula expresses the kinetic energy of 
the translation of the body as a whole at a velocity v 0 , the 
second term expresses the kinetic energy of rotation considered 
above, while the third takes into account the relatioq between 
the translational and rotational velocities. If the oligin of a 
moving coordinate system is taken at the centre of mass of the 
body, then Emiri = 0, and hence the last term vanishes. For 
such a choice of the coordinate system, v0 is the velocity of the 
centre of the body, and the formula for the kinetic energy 
becomes 

(33.15) 

All the remarks made about (33.10) are also valid for the 
corresponding quantity in (33.15). In particular, if the axes of a 
moving system are directed along the principal axes of the 
body, the kinetic energy is 

(33.16) 

Hence the kinetic energy, say of a cylinder rolling at a velocity 
v0 = roR0 , will be 

I 2 1 mR~(v0 )2 3 2 
Ek = lmvo + 2-2- Ro = 4mvo. (33.17) 

Sec. 34. PLANE MOTION. PENDULUMS 

The most important cases of 
plane motion are analyzed. 

PECULIARITIES OF THE DYNAMICS OF PLANE MOTION. It 
is known from the kinematics of plane motion described in 
Sec. 9 that in this case all points of a rigid body move in parallel 
planes. Hence it is sufficient to consider the motion of any cross 
section of the body in a plane. Formula (31.3) for the points of 
the body is considerably simplified since the angular velocity 
vector is always perpendicular to the plane, and hence always 
has the same direction. Therefore, if the Z-axis of the coordinate 
system fixed to the body is made perpendicular to the plane of 
motion, the angular velocity of rotation will always be directed 
along this axis, i.e. roz = ro and rox = ro7 = 0. In order to avoid 
the centrifugal moments of the inertia tensor, it is expedient to 
pass the axis of rotation through the centre of mass. In this case, 
we just have to take into consideration the angular momentum 
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Fig. 79. Rolling of a cylinder 
down an inclined plane (without 
sliding). 

8. Dynamics of a Rigid Body 

about the axis of rotation: 

Lz = L = Jzzroz = Jro, Jzz = J, roz = ro. (34.1) 

The subscript z on these quantities can be omitted since the 
Z-axis is the only axis of rotation. The forces acting on the 
body are parallel to the XY-plane, and the moments Mz of the 
forces are perpendicular to it. Thus, the equations of motion 
(31.1) and (31.2) for the plane motion acquire the form 

dp 
dt = F, (34.2) 

dro 
J-=M 

dt ' 

where M = M z• and p is the momentum. 

(34.3) 

Since the axis passes through the centre of mass of the body, 
(34.2) can be represented in the form (31.4) for the motion of 
the centre of mass in the plane of motion: 

dv 
m- = F. (34.4) 

dt 

For the ~~ and y-coordinates· of the centre of mass, this 
equation as~umes the form 

mx = Fx, mj = Fy. (34.5) 
>' 

In this case, the kinetic energy is expressed by (33.I6): 

1 I 
E = -mv2 + -Jro2• 

k 2 0 2 (34.6) 

ROLLING OF A CYLINDER DOWN AN INCLINED PLANE. 
We shall assume that the cylinder rolls without sliding. The 
forces acting on the cylinder are shown in Fig. 79. The force T 
is the frictional force which ensures the rolling of the cylinder 
without sliding. It is convenient to orient the X -axis along the 
inclined plane. Let us write the equation of motion for point 0 
through which the central principal axis of inertia of the disc 
passes. Equations (34.4) and (34.3) have the form 

dv0 
m- = mgsina- T, 

dt 

dro 
lo-= RoT, 

dt 
(34.7) 

where J 0 = (I /2)mR~. and the directions of rotation are chosen 
in such a way that ro is positive and increases as the cylinder 
rolls down. 
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Fig. 80. Maxwell's pendulum. 
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Substituting T from the second equation of (34.7) into the 
first one and considering that v0 = roR0 (R0 is the radius of the 
cylinder), we obtain 

dv0 . J 0 dv0 
m-=mgsma---, 

dt R 0 dt 

or 

3 dv0 . 
-m-= mgsma 
2 dt ' 

dv0 2 . 
- = -gsma. 
dt 3 

' 
(34.8) 

(34.9) 

(34.10) 

Thus, the centre of the cydinder moves with a· constant 
acceleration (2/3)g sin a. 

MAXWELL'S PENDULUM. Maxwell's pendulum is an annu
lar disc suspended on a string. The string is wound on the axle 
of the disc (Fig. 80). The equations of motion of the pendulum 
about the centre of mass have the form 

dv0 
m-=mg-T. 

dt ' 

dro 
Jo- =RoT. 

dt 
(34.11) 

where Tis the tension, J 0 is the moment of inertia of the entire 
system about the axle, and R0 is the radius of the axle of the 
disc on which the string is wound. 

So far as the forces and their moments are concerned, 
Maxwell's pendulum is analogous to a cylinder rolling down 
an inclined plane. 

Thus, the equations of motion for Maxwell's pendulum have 
the same form as those for a cylinder rolling down an inclined 
plane and are solved in the same manner. We obtain 

mg T= __ m_:g~-. 
I+ (mR~fJof 

(34.12) 
m + (JofR~)' 

Let us analyze the dynamics of the pendulum. The accel
eration of the disc is constant and always directed downwards. 
Its numerical value is the smaller, the larger the central 
moment of inertia J 0 . For a sufficiently large moment of inertia 
J 0 , the disc will have a very small acceleration. In the limit 
J 0 -+ oo, the acceleration of the disc dv0/dt-+O, and the tension 
T -+mg. Indeed, this must be so since the disc is simply hanging 
in the string without motion. As J 0 -+0, T-+ 0. In this case, the 
disc falls freely, and hence the string does not experience any 
tension. 

Equations (34.11) and the solutions (34.12) do not describe 



231 

mg 
Fig. 81. The physical pendulum. 
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the behaviour of the pendulum at the bottom dead centre 
where the string is thrown from one side of the cylinder to the 
other. The disc continues to rotate in the same direction, but 
the string is now wound on the cylinder instead of being 
unwound. Equations (34.11) and the solutions (34.12) are also 
valid for the winding of the string. During this process, the disc 
rises, its kinetic energy is transformed into the potential 
energy, and its velocity of ascent decreases. As the string is 
thrown over at the bottom dead centre, the direction of the 
velocity v0 is reversed. Hence the centre of mass of the disc 
experiences a large acceleration during this time. According to 
Newton's third law of motion, this results in a considerable 
tension of the string. If the string is not strong enough, it may 
be snapped. 

PHYSICAL PENDULUM. A physical pendulum is a rigid 
body suspended in the gravitational field from a horizontal 
axle (Fig. 81). The momenta! equation for a physical pendulum 
has the form · 

dro 
J- = -mglsina, 

dt 

da 
(I)=

dt' 
(34.13) 

where the minus sign means that the moment of forces is 
directed opposite to the increasing angle a, and J is the 
moment of i9ertia about the axis passing through the point of 
suspension. 

If the angle of deflectio.n is smal~ it can be assumed to a high 
degree of accuracy that -rina =a. We can then write (34.13) in 
the form 
d2a mgl 
- +- a = 0. (34.14) 

- dt2 J 

The solutions of this equation are the functions sin (mglfJ) 1' 2 t 
or cos (mgl/J) 112 t. The pendulum performs small oscillations 
whose' frequency and period are given by · 

ro = JmJ1. T= ~ = 21tJ ~( (34.15) 

Such oscillations are called harmonic. Their properties will be 
described in Chap. 13. Here, we shall confine ourselves to just 
a few remarks. 

Suppose that a physical pendulum consists of a point mass 
m suspended from a weightless rigid rod of length I and 
oscillating about point 0. Such a pendulum is called a 
mathematical pendulum. Noting that J = mP for this pen
dulum as for a rigid body, we obtain the period of oscillations 



In Maxwell's pendulum, the 
acceleration of a rotating disc is 
constant and always directed 
downwards. When the direc
tion of velocity is reversed at 
the lower dead centre, a 
considerable increase in tension 
occurs. 

? 
H-?ly is it expedient for plane 
motion to express the equation 
of motion and the momenta/ 
equation relative to a point 
through which the central 
principal axis passes perpen
dicular to the plane of motion? 
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of a mathematical pendulum from (34.15): 

T= 2xJml2 
= 2xJZ. 

mgl g 
(34.16) 

Let us denote the moment of inertia of a physical pendulum 
about an axis passing through its centre of· ma~s by J 0 . 

According to Huygens' theorem, J = J 0 + m/2 , and formula 
(34.15) for the period of oscillations of a physical pendulum 
becomes: 

JJ o + m/2 J J o I 
T = 2x = 2x - + -. 

mg/ mgl g 
(34.17) 

A comparison of (34.16) and (34.17) shows that a rp.athemat
ical pendulum whose length is equal to the distance between 
the point of suspension and the centre of mass of a physical 
pendulum has a smaller period than the physical pendulum. In 
order to make the period of oscillations of a mathematical 
pendulum equal to that of a physical pendulum, we must 
increase its length. The length of a mathematical pendulum 
whose period of oscillations is equal to that of a physical 
pendulum is called the reduced length of the corresponding 
physical pendulum. A comparison of (34.16) and (34.17) shows 
that the reduced length of a physical pendulum is /red = J /(ml). 
The point on a physical pendulum at a distance /red from the 
point of suspension along a straight line passing through the 
centre of gravity is called the centre of oscillations. If a physical 
pendulum and a mathematical pendulum with reduced length 
oscillate about the same axis, the centre of oscillations of the 
physical pendulum and a point mass on the mathematical 
pendulum oscillate synchronously if in the beginning they are 
deflected to the same extent and released simultaneously. 

The basic property of the centre of oscillations of a physical 
pendulum is that the period of oscillations does not change if 
the pendulum is suspended at an axis passing ttirough this 
centre. Thus, when the point of suspension is transferred to the 
centre of oscillations, the previous point of suspension he-. 
comes the new centre of oscillations, i.e. the point of 
suspension and the centre of oscillations are interchangeable. 
The proof follows directly from Huygens' theorem and the 
formula for the period of oscillations of a pendulum. 

If the amplitudes of oscillations of a physical pendulum are 
not very small, we cannot go over from (34.13) to (34.14). In 
this case, we must solve the nonlinear equation (34.13): 

dro mgl 
- = ii = -ksina, k = -. (34.18) 
dt J 
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While integrating, it is convenient to measure the distance 
from the position of maximum deflection a 0 , when the velocity 
of the pendulum is zero (li0 = 0). We have 
" . J iida = -4 sin ada. 
•o "o 

The integrands can be transformed as follows: 

d ( ·2) ( •2) ii da = iili dt = dt ~ dt = d ~ , 

sin ada = -dcos a. 

From (34.19) we obtain 

a2 = 2k(cosa- COSao). 

(34.19) 

(34.20) 

This equality expresses the energy conservation law for 
a pendulum. 

Writing (34.20) in the form 

da 
------;===== = .fii dt, J cos a - cos a 0 

(34.21) 

we can find the solution of the problem in implicit form by 
integration: , 

" 
J --;==d=a == = J2it 

Jcosa- cosa0 . 
0 

Using the formula cosa = I - 2sin 2 (a/2), we obtain 

" 
J -;=:==:;===:==da=~==== = 2.jk t. 

Jsin2 (a0/2)- sin2 (a/2) 
0 

(34.22) 

We introduce a new integration variable e with the help of the 
relation 

sine= ~in(a/2). (34.23) 
sm(a0/2) 

In this case, (34.22) assumes the form 
(J 

J de = .jkr. 
J!- sin2 (a0/2)sin2 e 

0 

(34.24) 

The integral on the left-hand side is called an elliptic integral. 
This integral has thoroughly been studied, and tables of values 



34. Plane Motion. Pendulums 235 

of this integral can be used to analyze the oscillations of 
a pendulum with any angle of deflection. However, for angles 
which are not too large, it is expedient to present this integral 
by an approximate formula which is convenient for analysis. If 
sin4 (a.0/2)« 1, the integrand in (34.24) can be expanded into 
a series. Confining ourselves to the first two terrps in the 
expansion, we can write · 

fJ f d9 

jl- sin2 (a0/2)sin2 9 
0 

(34.25) 

Thus, the relation between the period of oscillations and the 
angle of deflection of the pendulum can be represented in the 
form 

I . a ( sin2~) !i. ~+4sm2 2o ~--2- =...;kt, 

where sin ~ is defined by (34.23): 

sin ~ = ~in (a/2). 
sm(a0/2) 

(34.26) 

It can be seen from here that as the angle of deflection a varies 
from 0 to a 0 , i.e. covers a quarter of the period of oscillations 
T, the quantity ~ varies from 0 to rt/2. From (34.26), we obtain 

~ + ~sin2 a 0 (~ _ sin 2rt/2) = fk ! 
2 4 2 2 2 "'"' 4' 

whence 

T = fl ( 1 + ~ sin2 ~0). (34.27) 

Comparing this equation with (34.15) for the period of linear 
oscillations and taking into account the expression for k in 
(34.18), we can write it in the form 

( 1. 2 ao) T= T, 1 + -sm -
0 4 2 ' 

(34.28) 

where T0 = 2rt J J /(mgl) is the period of linear oscillations. 
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Fig. 82. The diagonal of a thin 
homogeneous plate is not the 
axis of its free rotation. Hence 
to keep the direction of the axis 
of rotation coinciding with the 
diagonal unchanged, a moment 
of force must be applied to the 
axis. This moment of force is 
produced by the constraints. 

8. Dynamics of a Rigid Body 
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Suppose, for example, that the maximum deflection 
a 0 = 60°. Since sin 30° = 1/2, the period of nonlinear oscil
lations of the pendulum in this case will differ from the period 
of linear oscillations by about 6%. It can be concluded from 
here that the linear approximation gives a fairly accurate 
description of the motion of a physical pendulum not only for 
very small angles of deflection, but for quite large angles as 
well. 

Let us now consider a ballistic pendulum, taking into 
account the finite size of the body into which the bullet is stuck 
(see Sec. 23, Fig. 52). When the bullet hits the pendulum, we 
should take into account not the momentum conservation law 
as in Sec. 23, but the angular momentum conservation law 
about the point of suspension of the pendulum, which can be 
written in the form m2/v = Jro, where I is the distance from the 
point of suspension to the line of flight of the bullet passing 
through the centre of mass of the pendulum, J is the moment 
of inertia of the pendulum with a bullet stuck in it about the 
axis of oscillation of die pendulum, and ro is the angular 
velocity of motion of the centre of mass of the pendulum imme
diately after having been hit by the bullet. As the centre of mass 
is raised to a height h in the extreme position of the pendu
lum, the energy conservation law has the form (m1 + m2 )gh = 
= Jro2/2 since the kinetic energy immediately after the 
impact of the bullet cannot be reduced to the kinetic energy of 
the centre of mass of the pendulum since it also includes the 
kinetic energy ofits rotation. Hence the velocity v of the bullet 
is connected with the height to which the centre of mass is 
raised through the relation v = j2gh[J(m1 + m2}Jl12j(mi). 
Assuming the entire mass of the body to be concentrated 
at a point, we find that J = (m1 + m2)P, and hence v = 
)2gh"(m 1 + m2)/m2, as was shown in Sec. 23. 

Example 34.1. A very thin homogeneous rectangular plate 
with sides 2a and 2b rotates at a constant angular velocity ro 
about its diagonal (Fig. 82). The mass of the plate is m. Find 
the moment of the forces which must be applied to the axis of 
rotation to ensure that its direction remains unchanged m 
space. 
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The centre of mass of the plate lies at the intersection of the 
diagonals, two of its central principal axes are parallel to the 
sides of the plate, while the third is perpendicular to the plane 
of the plate. We introduce a coordinate system rigidly fixed to 
the plate, take the origin at the centre of mass and Jlirect the 
X- and Y-axes parallel to the sides of length 2a and 2b. The 
Z-axis is directed at right angles to the plane of the plate. The 
principal moments of inertia about these axes are 

12 12 l 2 2 
J"" =3mb , 17, = 3ma , J .. = 3 m(a + b ). (34.29) 

The angular velocity of rotation can be represented in the form 

ro = ro(i" cos a - i, sin a), (34.30) 

where a = arctan (bfa), and the angular momentum 

L = J ""ro"i" + J ,,ro7i, + J zzrozi• 
1 

= 3mm(i"b2 cos a- i7a2 sin a) 

_ mroab(bi" - ai,) 

- 3ja2 + b2 

The moment of the forces acting on the system is 

dL oL 1 
- =- + ro x L = - -mro2(a2 - b2)sinacosai 
dr ar 3 z 

mro2ab(a2 - b2) . 

3(a2 + b2) lz. 

(34.31) 

(34.32) 

This moment of forces is exerted on the axis of rotation by the 
constraints which keep the direction of the axis of rotation 
unchanged in space. 

Example 34.2. A homogeneous rod AB of mass m and length 
2/ is suspended from point 0 by two unstretchable weightless 
strings of the same length (Fig. 83). The strings form an angle a 
with the rod. At a certain instant of time, the string OB is 
snapped. Find the tension Tofthe string OA immediately after 
the snapping of the string. 

At this moment of time, the acceleration of the centre of 
mass of the rod, viz. point C, is the sum of the acceleration of 
point A and the acceleration of point C relative to A. Since 
point A can move only in a circle, and its velocity at the 
moment of snapping of the string is zero, the radial accel
eration is zero. The projection of the acceleration of point A 
along the tangent is denoted by a, and the magnitude of the 
angular acceleration of the rod is ro at the same instant. Since 
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Fig. 83. At the instant of snap
ping of the string OB, the ac
celeration of the centre of mass 
of the rod, i.e. point C, is the 
sum of the acceleration of point 
A and the acceleration of point 
C relative to point A. 

8. Dynamics of a Rigid Body 
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the angular velocity is zero at the initial instant of time, the 
component a of the acceleration of the centre of mass is 
perpendicular to OA, while the component J ril is perpendicular 
to the rod. Consequently, the equations of motion have the form 

mgcos a= m(a + /c.Ocosa), 

mg sin a - T = mlc.O sin a, (34.33) 

. 1 2 
/Tsm a = - ml ril, 3 . 
where we h!IJte considered that the moment of inertia of the 
rod about the axis passing through its centre of mass and 
perpendicular to it is m~/3. Hence we obtain 

mgsina 
T= 1 + 3sin2 a· (34.34) 

· Example 34.3. Let us consider the problem concerning the 
sliding of a ladder, which was formulated in Example 9.1, to 
find that the result obtained there was meaningless from the 
physical point of view. For this purpose, we must consider the 
dynamics of the motion of the ladder, taking into account the 
force of gravity acting on it. 

Let us denote the angle between the X -axis along the 
positive direction of which the lower end of the ladder slides 
and the ladder by 8 (8 ~ rr./2). The remaining notation is the 
same as in Example 9.1. 

The ladder is subjected to the force of gravity applied to the 
centre of mass, the reaction of the walls and floor applied to 
the ends of the ladder and directed along the normals to the 
corresponding surfaces, and the force applied to the lower end 
of the ladder and ensuring its uniform motion. This force acts 
along the X-axis towards the origin and is equal in magnitude 
to the reaction of the vertical wall acting in the positive 
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X -direction. This follows from the fact that the lower end of 
the ladder and the centre of mass move at a constant velocity 
in the positive X-direction, and hence the X-projection of the 
total force acting on the ladder is zero. The momenta! 
equation about the lower end of the ladder taken as the origin 
of the inertial coordinate system has the form . I 
Jd28 mg/cos8 
-= - - F/sin8, (34.35) 
dt2 2 

where J = mf2 /3 is the moment of inertia of the ladder about 
the lower end, m is the mass of the ladder, and F is the reaction 
of the vertical wall. According to the conditions of the 
problem, u = -d(/cos8)/dt and du/dt = 0. Hence u = 
/sin8d8/dt and d28/dP = -cot 8u2/{Psin2 8). Hence we ob
tain from (34.35) 

mgcot8 1 - 2u2 

2 3g/sin3 e· 
(34.36) F= 

The upper end of the ladder remains in contact with the wall 
when F > 0, i.e. 2u2/(3g/sin3 8) < l. At the initial instant t = 0, 
the angle 8 = n/2. Consequently, the problem will have a 
physical meaning only if the following condition is satisfied: 

U < Umin = J3~1. (34.37) 

If the velocity u is equal to or larger than umin• the upper end of 
the ladder loses contact with the vertical wall at the very 
beginning, and the problem about its sliding down the wall is 
devoid of any physical meaning. If, however, u < umin• the 
contact of the ladder with the vertical wall continues after 
the onset of motion until the critical angle e.r = 
arcsin {[2u2/(3g/)] 1' 3 }, rt/2 < 8 < n, is reached. In the interval 
of angles from e = rt/2 toe= e.,. the kinematic description of 
the sliding of the ladder considered in Example 9.1 is valid. It is 
not difficult to recalculate this interval of angles into the 
interval of time from the instant the ladder begins to slide. The 
centre of mass of the ladder describes in this time interval an 
arc of a circle, and the velocities of various points of the ladder 
can be calculated in the same way as in Example 9.1 and 
Problems 2.6 and 2.11. Starting from the critical angle, the 
moiion is described by Eq. (34.35) with F = 0 under the initial 
conditions corresponding to the critical angle. 
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Sec. 35. MOTION OF A RIGID BODY FIXED AT A POINT. 
GYROSCOPES 

The most important properties 
of the motion of a rigid body 
fixed at a point are described. 

CHOICE OF THE COORDINATE SYSTEM. The analysis of the 
plane motion is simplified by the fact that the angular velocity 
vector preserves in this case a constant direction in space, 
which is perpendicular to the plane of motion and does not 
change its orientation relative to the body. When a rigid body 
moves about a fixed point, all these simplifying factors 
disappear, and the angular velocity vector generally changes 
its direction in space as well as its orientation relative to the 
body, i.e. the instantaneous axis of rotation changes its 
orientation. It is convenient to consider ·this motion in a 
coordinate system rigidly fixed to the body. The origin of 
coordinates should naturally be located at the point where the 
body is fixed and is always at rest. The equations of motion 
obtained under these conditions are called Euler's equations. 

EULER'S EQUATIONS. The equation of motion of the centre 
of mass of a body has the form 

dv0 d 
m- = m -(ro x r ) = F 

dt dt 0 ' 

(35.1) 

where r 0 is the radius vector of the centre of mass of the body, 
passing through the point where it is fixed. The constraints are 
included irf F. 

Leonhard Euler ( 1707_1783) The axes of the coordinate system (i~, i~, i~) fixed to the body 
Mathematician, mechanical engi- can conveniently be di~cted along the pnncipal axes of inertia. 
neer, physicist and astronomer. In this case, the inertia tensor is reduced to its three principal 
Of Swiss origin, he lived in values J 1 • J 2 and J 3 , while the angular momentum acquires a 
Russia from 1727 to 1741, and simple form L1 = 11ro1 , L2 = 12ro 2 and L3 = 13ro 3 , ro 1 • ro2 and 
from 1766 until his death. He ro3 being the projections of the angular velocity onto the 
was a member of the Petersburg coordinate axes of the system moving along with the body. In 
~cade~y ~f Sciences. He worked the momenta! equation (31.2), the derivative dL/dt is calculat
m Berlm from 1742 to 1766 a~d ed relative to the inertial coordinate system. This quantity has 
wAcadas also a mfScieJ?lber ofEtulhe Berhn to be calculated relative to the moving coordinate system fixed 

emy o ences. er wrote • 
over 800 papers on mathematics, to the body. . . . 
physics, theory of music, etc., Suppose that a v~tor A IS defined m terms of 1ts 
which considerably influenced components relative to the coordinate system (i~, i~, i~): 
the development of science. (35.2) 

With the passage of time, the projections A~. A' and A~ on the 
axes of the moving coordinate system change ~nd so does the 
orientation of the coordinate axes relative to the inertial 
coordinate system. Hence we can write 

dA dA' dA' dA' di' di' di' 
- = i' _x + i'--Y + i' _z + .2 A' + ......1. A'+ .2.A' (35.3) 
dt X dt y dt z dt dt X dt y df z • 
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The velocity of a point on the rotating body with radius vector 
r is given by dr 1 dt = ro x r. Similarly, by following the tip of 
the vector i~ drawn from the point to the axes of rotation, we 
obtain di~/dt = ro x i'. The derivatives of i~ and i~ have the 
same form. Thus, 

di' di' di' 
~A' + -.lA' +-=.A' 
dt X dt y dt z 

= ro x.i' A' + ro xi' A' + ro xi' A' 
X X Y 1. ' % Z 

= ro x (i' A' + i' A' + 1' A') = ro x A 
XX yy ZZ • 

Hence (35.3) may be written in the form 

dA i'iA 
-=-+ro x A, 
dt ot 

I 

(35.4) 

where oA/8t = i~(dA~/dt) + i~(dA~/dt) + i~(dA~/dt) is the de
rivative of A, obtained under the condition that the axes i~, i~ 
and i~ are stationary. This formula is valid for all vectors A. 
Applying it to the quantity L in (31.2), we can represent the 
momenta! equation in the following form: 

cL 
-+ro x L= M. 
iJt 

(35.5) 

Considering that Lx = J xrox, L, = J Y roY and L. = J .ro •• we can 
write (35.5) in terms of projections on the axes of the moving 
coordinate system: 

. (35.6a) 

It should be emphasized once again that all the quantities in 
this equation have been referred to the axes of the moving 
coordinate system rigidly fixed to the body. 1he primes have been 
omitted only in order to simplify the form of notation. 

These equations are called Euler's equations. In principle, 
they can always be used to determine the motion of a body 
fixed at one point, although the actual solution may be quite 
complicated and cumbersome. 
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Only the central principal axes 
of the inertia tensor with the 
maximum and minimum values 
of the moment of inertia are the 
axes of the stable free rotation 
of a rigid body. A rotation 
about the central principal axis 
with an intermediate moment 
of inertia is unstable. No forces 
tending to change the direction 
of the axis of rotation or shift it 
parallel to itself in the body 
emerge upon rotation about its 
free axes. 
The angular momentum of a 
rigid body fixed at a point does 
not coincide in direction with 
the angular velocity. They are 
related through the inertia 
tensor. 

8. Dynamics of a Rigid Body 

FREE AXES. In order to completely define the motion with the 
help of (35.6a) without taking into account (35.1), we must take 
the origin of coordinates in which (35.6a) are written at the 
centre of mass of the body and consider the moment of 
constraints be zero in this case. Suppose that there are no 
forces acting on the body, and hence the moments of forces 
M", M, and Mz are zero. We direct the axes of the coordinate 
system rigidly fixed to the body along the central principal 
axes. Consequently, J", .]1 and Jz in (35.6a) are the central 
principal moments of inertia of the body. They are generally 
not equal to one another. Let us find out the possible free 
motion of the body. 

It follows directly from (35.6a) that there can be no free 
rotation of the body during which the magnitude of the 
angular velocity and the orientation relative to the body are 
conserved, the angular velocity not coinciding in direction with 
any of the central principal axes with different moments of 
inertia. Let us suppose that such a situation is possible, i.e. 
ro_. = const #- 0, ror = const #- 0 and ro= = const #- 0. It then fol
lows from the equations that the following equations must be satisfied: 

(J z- J ,.)ro,.roz = 0, 

(J X- J z>(l)z(l):c = 0, 

(J y- J .. >9>:c(l)y = 0. 

(35.6b) 

These equations can simultaneously be satisfied only if two 
projections of the anga~lar velocity simultaneously vanish. This 
means that the direction of the angular velocity coincides with 
one of the central principal axes. Suppose, for example, that 
ro, = roz = 0. In this case, Eqs. (35.6b) will be satisfied. The 
angular velocity is directed along the X-axis, i.e. along a 
central principal axis. 

Thus, a rigid body can freely rotate only about its central 
principal axes. These axes are called free axes. In general, the 
moments of inertia about these axes are different. It can be 
proved that a rotation of a body is stable only about a central 
principal axis with the maximum or minimum moment of inertia. 
A rotation about a central principal axis with an intermediate 
moment of inertia is unstable. Small random deviations of the 
axis of rotation from this direction lead to the emergence of 
forces which tend to increase the deviation. This can be 
demonstrated with the help of the following experiment. A 
body in the form of a rectangular parallelepiped has as its 
central principal axes three mutually perpendicular axes which 
are parallel to its sides and pass through the geometrical 
centre. The parallelepiped has the maximum and minimum 
moments of inertia about the axes parallel to its longest and 



Fig. 84. The axis coinciding with 
the angular velocity vector is 
not free in the present case 
since the centrifugal forces of 
inertia in the reference frame 
fixed to the body tend to change 
the direction of this axis in 
space. 

f . 
Precession is the motion of the 
axis of a gyroscope under the 
action of the moment of 
external forces applied to it. 
Nutation is the motion of the 
axis of symmetry of a body 
about the total angular mo
mentum vector which remains 
stationary in space. 
The period of a gyroscopic 
pendulum characterizes the 
ability of its axis of rotation to 
retain the direction in space 
under the action of the moment 
of external forces. 
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shortest sides. If the body is rotated about one of these axes 
and thrown, its motion will be stable and the direction of the 
axis of rotation will be conserved. If, however, the body is 
rotated about the axis parallel to its intermediate side, the 
motion will not be stable and the body will tumble a.t randotn. 

In order to graphically demonstrate why the.freelaxes must 
coincide with the central principal axes, let us consider a body 
in the shape of a dumb-bell. Let us choose the axis of rotation 
in a direction which does not coincide with any of the central 
principal axes. For example, we choose the axis shown in 
Fig. 84. 

Obviously, the longitudinal axis of a rotating body tends to 
change its direction under the action of centrifugal forces in 
order to occupy the position shown ·by the dash~ lines in 
Fig. 84. In this position, the rotation is stable, and the 
direction of ro coincides with the central principal axis about 
which the body has the maximum moment of inertia. 

NUTATION. Let us consider a body which has an axial 
symmetry about a certain axis, i.e. which is a body of revolution 
(Fig. 85). Obviously, one of the central principal axes coincides 
with the axis of symmetry and the other two are perpendicular to 
this axis. We direct the X-axis along the axis of symmetry, and 
the Y- and Z-axes along the other two central principal axes. It 
follows from symmetry considerations that Jx = J 1 and JY = 
J. = J 2 . In this case, Eqs. (35.6a) acquire the form 

J drox = 0 
1 dt ' 

droY 
J2- + (Jl- J 2)ro.rox = 0, 

dt 
(35. 7) 

In the first place, it can be seen from these equations that a 
motion is possible with rox = ro1 = const and roY= ro. = 0, i.e. 
the body can rotate about the axis of symmetry at a constant 
angular velocity. However, this is not the only possible motion 
of the body. Let us write the second and third equations under 
the condition that rox = ro 1 = const in the form 

droY ;o" dro. 
dt + yro. = 0, dt - yroY = 0, (35.8) 

where 'Y = (J1 - J 2)ro 1 /J 2 . These equations have the solution 

roY = A cos yt, ro. = A sin yt. (35.9) 

The angular velocity vector wj_ = iyroy + i.w. lying in the 
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Fig. 85. Nutation. 
The axis of rotation, the angula1 
velocity vector (J) and the total angular 
momentum vector L lie in the same 
plane rotating about the latter with 
the velocity of nutation. 

? 
J.Wtat ure the free axes of rotation? 
Which of them are stable? 
J.Wtat is nutation? J.Wtat does the 
velocity of nutation depend on? 
Why is nutation impossible for a 
homogeneous sphere? 
Can you schematically draw a 
picture in which the total angular 
momentum, the instantaneous 
angular velocity and the axis of 
symmetry lie in the same plane 
rotating at the velocity of nutation 
about the total angular momen
tum vector? 
J.Wtat is gyroscopic precession? 
J.Wtat is the difference between 
precession and nutation? 
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l'Z-plane rotates about the origin at an angular velocity y. The 
total angular velocity is given by 

(35.10) 

This resultant vector moves about the X -axis, forming the 
surface of a cone with angle a ·during its rotation (tan a = 
ro.Lfro 1), i.e. the angular velocity of rotation of the body does not 
coincide in direction with the axis of symmetry of the body, viz. the 
X -axis. In turn, the axis of symmetry does not remain stationary 
in Space, and moves along the surface of a cone whose axis is 
stationary in space and coincides with the total angular 
momentum vector L. The angular velocity of the motion is also 
equal to y. Consequently, the total motion can be described as 
follows: the plane containing the instantaneous velocity vector ro 
and the axis of symmetry rotates at an angular velocity y about 
vector L, the relative a~ngement of vector ro and the axis of 
symmetry remaining unchanged. This motion of the axis of 
symmetry of a body about the total angular momentum vector L 
which remains stationary in space is called nutation, andy the 
velocity of nutation. In such a motion, vector ro rotates about the 
axis of symmetry at the same angular velocity y as ·described 
above. The amplitude of~utation depends on the initial condiiions 
responsible for nutation, but its frequency is determined only by the 
moments of inertia and the angular velocity of rotation about the 
axis of symmetry. A body can also rotate without nutation if its 
angular velocity exactly coincides with the axis of symmetry. 

A sphere is also a body of revolution. In this case, J" = J, = 
J •• and hence y = 0. This means that in the absence of external 
forces, the axis of rotation of a sphere always maintains a fixed 
position relative to the body, and there can be no nutation. This 
is due to the fact that any axis passing through the centre of the 
sphere is a central principal axis of the inertia tensor. Nutation is 
possible in a nonhomogeneous sphere. In particular, nutation is 
observed for the axis of rotation of the Earth, which proves that 
the Earth cannot be considered a homogeneous sphere. 

The moments of inertia of the Earth about the axes lying in the 



Fig. 86. The gimbal suspension 
allows an unimpeded variation 
of the orientation of a body and 
the suspension to which it is 
connected. 

? 
Under what conditions is it possible 
to assume that the angular 
momentwn vector of a gyroscope. 
the instantaneous angular velocity 
of rotation and the axis of symmetry 
coincide? 
Khat is the gimbal suspension? 
Khat applications of gyroscopes do 
you know? 
w.hat does the velocity of pre
cession depend on? 
Can you explain the behaviour of an 
egg-shaped top? w.hy does its axis 
change the angle of inclination to 
the horizontal? 
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equatorial plane can be assumed to be equal. In (35. 7) and (35.8), 
we can assume that the X-axis is directed along the axis of 
rotation ofthe Earth. When this factor is taken into account, the 
velocity of nutation 'Y is given, as in (35.8), by 'Y = (J 1 - J 2) m1/ J 2. 

Measurements ofthe moments of inertia of the Earth gi'fe the value 
(J 1 - J 2) / J 2 ~ 1/300. This means that the period of nutation of the 
Earth's axis must be about 300 days, i.e. the axis of rotation of the 
Earth completes one revolution in about 300 days over the surface of 
a cone about the axis of symmetry. This axis is found from geodesic 
measurements, while the axis of rotation is determined by observing 
the motion of the stars. It passes through the centre of the circles 
described by the stars in twenty-four hours. However, the observed 
motion of the stars is much more complicated. In the first place, it is 
irregular and is seriously affected by earthquakes aod seasonal 
. changes taking place on the Earth's surface. Strictly speaking, it is this 
kind of reasons that are responsible for the nutation of the Earth 
since otherwise the axis of rotation of the Earth would coincide with 
the axis of symmetry to overcome the energy losses associated with 
viscosity, and no nutation would be observed. The actual period of 
nutation is about 440 days, due apparently to the fact that the Earth 
is not absOlutely rigid. The maximum distance of a point on the 
Earth's surface through which the axis of rotation passes d~ not 
exceed 5 m (at the north pole) from the point lying on the axis of 
symmetry. 

GYROSCOPES. An axially symmetric body set into a very fast 
rotation about its axis of symmetry is called a gyroscope. Examples 
of gyroscopes are a spinning top, or a disc rotating at a high speed 
about an axis passing through its centre and perpendicular to its 
surface. The body of revolution shown in Fig. 85 is also a gyro
scope if its angular velocity ro1 is quite high. · 

PRECESSION OF A GYROSCOPE. Let us assume that a 
gyroscope is fixed at its centre of mass, but its axis can freely 
rotate in any direction. Such a fastening is possible with the 
help of the gimbal (or Cardan) suspension shown in Fig. 86, 
which ensures a free variation of the orientation of the 
gyroscope's axis in three mutually perpendicular directions. 
There is no need to show the gimbal suspension in the figure 
(Fig. 87). Suppose that a moment of external forces is applied 
to a gyroscope. The gyroscope rotates about its axis at a very 
high angular velocity OJ, and hence the possible nutation of its 
axis of rotation over the surface of a cone about the 
geometrical axis (see Fig. 85) is very small. The motion of the 
gyroscope's axis under the action of the moment of external 
forces can be neglected. 

Hence we shall assume that the axis of rotation always 
coincides with the axis of symmetry of a gyroscope and that 
the angular momentum L = Jm. The axis of rotation coincides 
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Fig. 87. Gyroscopic precession. 
It is assumed that the axis of a 
rapidly rotating gyroscope coincides 
with the angular velocity vector m 
and the angular momentum vector L. 
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with the central principal axis of the inertia tensor of the 
gyroscope and is chosen in such a way that it is stable during 
rotation. 

Stable free rotation takes place about this axis. The direction 
of the axis ofstable rotation remains fixed. For example, if we 
hold the base of a gimbal suspension and arbitrarily change its 
orientation, the joints will rotate in such a way that the 
direction of the axis of rotation remains unchanged in space. 
Hence if the gimbal is faltened to any object, say, a rocket, the 
orientation of the axis of rotation in space will remain constant 
relative to fixed stars. Knowing the position of the rocket 
relative to its axis of rotation, we can determine its orientation 
in space at any instant of time. This makes a gyroscope a very 
impoFtant navigational instrument in the flight of rockets. It is 
also the basic element of an autopilot, a device which 
automatically controls the flight of an aeroplane. Gyroscopes 
have many other important applications, some of which will be 
considered later in this book. 

Let us suppose that the point of suspension of a gyroscope 
does not coincide exactly with its centre of mass. In this case, a 
moment of forces acts on the gyroscope's axis during the 
accelerated motion of a gimbal under the action of the inertial 
forces. If the gimbal is situated on the Earth, the force of 
gravity also gives rise to a moment of forces applied to the 
gyroscope's axis. Under the action of the moment of forces, this 
axis begins to move and changes its direction in space. This 
motion caused by the moment of external forces is called the 
precession of a gyroscope. 

DIRECTION AND VELOCITY OF PRECESSION. The basic 
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Fig. 88. Vector L changes only 
in direction, its absolute magni
tude remaining unchanged. 
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property of a gyroscope which explains its behaviour under the 
action of forces is that the angular momentum vector 
L practically coincides with the angular velocity vector 
ro directed almost along the central principal axis of the 
gyroscope about which the rotation takes place. Strictly 
speaking, the vectors do not have the same direction.IHowever, 
the deviations from the common direction are very small and can 
be neglected. Hence we shall assume that the vector L = Jro 
always concides with the central principal axis of the gyro
scope. Such a coincidence is ensured by the gyroscopic forces 
whose origin will be discussed below. For the present, we 
simply note that these forces are Coriolis forces in nature. 

It is convenient to apply the momenta! equation 

dL 
-=M 
dt 

(35.11) 

. to a gyroscope since the variation of L directly determines the 
motion of the gyroscope's axis. Knowing M, we can always 
find the direction of motion of the axis from the relation 
dL = M dt. b1 Fig. 87, the gyroscope's axis is horizontal, and 
the force F produces a moment M = IF perpendicular to the 
plane of the figure. If the gyroscope were not in a state of rapid 
rotation, the force F would turn its axis to the right. However, 
the action of the force becomes quite different in the presence 
of rotation. Since dL = M dt, the tip of the axis begins to move 
in the horizontal plane. IfF remains constant (for example, if it 
is the force due to a load suspended from the gyroscope at a 
certain distance from the point of support), the motion of the 
tip takes place at a constant angular velocity n. The gyro
scope's axis rotates about the vertical axis passing through the 
point of support at the angular velocity of precession. As a 

. result of precession, the total velocity of rotation ro + n does 
not have the same direction as the gyroscope's axis. However, 
in view of the fact that (J) » n, this disparity is extremely small, 
and in spite of the precession, it can be assumed as before that 
the angular velocity of rapid rotation coincides with the 
gyroscope's axis and the angular momentum L. 

The angular velocity of rotation can easily be calculated. 
The precession of a gyroscope in the horizontal plane takes 
place as shown in Fig. 88. Point 0 represents the track of the 
axis of precession. Obviously, dL = M dt = L d'l'. Hence, by 
definition, we obtain the following expression for the angular 
velocity: 

d'l' M M 
!1=-=-=-. 

dt L Jro 
(35.12) 
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Fig. 89. The gyroscopic pen
dulum. 
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A peculiar feature of precession is that it has no "inertia", i.e. 
precession terminates as soon as the moment of external forces 
stops to act, as can be seen directly from (35.11). Hence 
precession does not behave like velocity, but like acceleration 
since the acceleration ceases to act as soon as the force is 
terminated. 

GYROSCOPIC PENDULUM. Let us consider the case when 
the axis of the gyroscope is fastened at a point and suspended 
at the end on a thread (Fig. 89, cf. Fig. 87). Moreover, in this 
case, the axis is not horizontal, but is inclined at ari angle 8 
to the vertical. It <;;an clearly be seen that M = mgl sin 8, 
dL= Lsin 8 d'ljl = mg/sin 'V dt, and hence Q = d'ljl/dt = mgl/L. 
Thus, the angular velocity does not depend on the angle at 
which the gyroscope's axis is inclined to the vertical. This is 
due to the fact that a change in the angle entails a simul
taneous change in the moment· of the force and the distance 
between the axis -<Jf rotation and the tip of vector L in the 
horizontal plane. The term "gyroscopic pendulum" reflects the 
independence of the velocity of precession of such a gyroscope 
of the angle of inclination of its axis. The period of revolution 
of this pendulum is T= 2rt/fl = 2rcJro/(mg{); for quite large 
values of the moment of inertia J and the angular velocity of 
rotation ro and small /, this period can be very large and runs 
into several minutes or even hours. A mathematical pendulum 
with such a large period would have an enormous length. Ihe 
length of a mathematical pendulum with the period of oscillations 
equal to the period of l}lecession of a gyroscopic pendulum is 
called the reduced length of the gyroscopic pendulum. Since the 
period of a mathematical pendulum with length /0 is T = 
2rt Jl:jg, the reduced length of the gyroscopic pendulum 
under consideration, L 0 = g[Jro/(mgl)], may indeed be very 
large for quite large Jro and small /. 

Modern gyroscopes maintain a fixed orientation in space 
with a very high precision. The rate of their departure from the 
fixed orientation is less than 10- 4 deg/h. It can be seen from 
Fig. 89 that the Euler angles <p, 'V and 9 are rightfully called the 
angles of proper rotation, precession and nutation. 

EGG-SHAPED TOP. If a top rests with its very sharp end on 
a platform, its axis precesses and moves along the surface of a 
cone as described above. This is a gyroscopic pendulum whose 
point of support lies below its centre of mass. 

If, however, the top rests on a fairly broad end so that it 
cannot be assumed to be touching the surface at only one 
point on the axis of rotation, the effect becomes quite 
complicated. If the top is egg-shaped and rests with its sharper 
end on the surface during rotation, its axis tends to assume a 

. vertical position. If it rotates with its broader end at the 
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surface, the axis first assumes a horizontal position and then a 
vertical position, but in such a way that the top continues to 
rotate with its sharper end touching the surface. 

Such a behaviour of the top is due to the frictional forces which 
produce a moment tending to orient the top's axis in the vertical 
plane. Suppose that a gyroscopic pendulum is acted upon by 
certain forces which tend to increase its velocity of precession, 
for example, a force F applied to the axis in the direction of its 

(a) precession (Fig. 90a). It can easily be seen that this force 
produces a moment M about the point of support of the top. 
This moment is directed upwards and tends to raise the top's 
axis. It can be concluded from similar considerations that the 
factors responsible for a decrease in the velocity of precession 

L tend to lower the axis. 
Let us apply these arguments to the motion of egg-shaped 

tops. Such a top is shown in Figs. 90b and c with its sharp and 
broad ends downwards. If the top touches the table not along 
its axis of rotation, it begins to roll over the table owing to the 
frictional forces acting at the point of contact between the top 
and the table. It can be seen from Fig. 90b that the oscillations 
are responsible for an additional motion of the axis of rotation 
in the same direction in which it moves on account of 

.-... <F..• .• ,.,.,"t'~"'''"~·'Y' •·:·"':·"~';'''" precession. In this case, the velocity of precession ·increases, 
,:-¥i~it1!J.i"l~tt.;'<: "'}·"··~·~:t-~;~r,~~: and hence the top's axis will be raised. For the situation shown 

· - ·.. · ) in Fig. 90c, the pattern of motion of the egg-shaped top 
[ /. changes. In this case, the centre ofmass'lies on.the other side of ---XJ the vertical passing through the point' of oscillation, while the 

// direction of rotation of the top (i.e. the direction of L) remains 
the same. The precession now changes in the' opposite 
direction. However, in this case, the oscillation~· lead to an 
additional motion of the axis against the direction of preces
sion, and hence the top's axis will be lowered. 

The same conclusions can also be drawn: by directly 
considering the moments of frictional forces about .the centre 
of mass of the top. In both cases shown in Figs. 906 and c, the 
frictional force acts perpendicular to the plane of the figure 
and is directed towards the reader. When the top rests with its 

Fig. 90. The rise and fall of the sharp end touching the table, its centre of mass lies on the right 
axis of an egg-shaped top. of the vertical passing through the point of contact between 

the top and the table. Hence the moment of frictional force 
about the centre of mass is directed in such a way that it tends 
to turn vector L towards the vertical. Consequently, the top 
tends to assume a vertical position with its sharp end 
downwards. When the broad end of the top touches the table, 
its centre of mass lies on the left of the vertical drawn from the 
point of contact between the top and the table. In this case, the 
moment of frictional force about the centre of mass is directed 
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Fig. 91. Motion of a powered 
gyroscope. 
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become compliant? 
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moment of external forces 
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of gyroscopic forces? 
J.Wiat is the nature of gyroscopic 

forces? 
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in such a way that it tends to turn vector L towards the 
horizontal. 

In practice, an egg-shaped top can have a stable motion only 
if its sharp end is in contact with the table. If the broad end is 
in contact with the table, the motion of the top is unstable and 
it quickly assumes a position in which its sharp end is in 
contact with the table. Expert demonstrators elegantly perform 
such experimrnts at their lectures. 

POWERED GYROSCOPE. When the gyroscope's axis is 
fastened at one end onl~it can move in any direction. Hence 
such a gyroscope is called a free gyroscope. If the gyroscope's 
axis is fixed at two points, its motion becomes restricted. 
Suppose, for example, that the axis is fastened in the way 
shown in Fig. 91: it can move freely in the horizontal plane but 
cannot move in the vertical plane. Such a gyroscope is called a 
powered gyroscope. The motion of a powered gyroscope differs 
radically from that of a free gyroscope for the same moment of 
forces. In order to analyze the motion of the axis of a powered 
gyroscope, we must take into accou~tt the moment of the 
reaction forces of a support at the points where the axis is 
fixed. 

If a force F is horizontal (see Fig. 91), it creates a moment M 
directed upwards. If the gyroscope were free, this moment 
would raise the right end of the gyroscope. However, this 
motion is obstructed by the points at which the axis is 
fastened. Reaction forces Fr1 and Fr2 of these points produce 
a moment Mr perpendicular to the plane of the figure. Under 
the action of this moment, the right end of the gyroscope's axis 
moves in the horizontal plane in the direction of the initial 
force F. Hence a powered gyroscope is compliant: its axis turns 



Fig. 92 Gyroscopic forces caused 
by Coriolis forces. 
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in the direction in which the external force tends to turn it. In a 
free gyroscope, however, the axis turns in a plane perpendicular 
to the applied force. 

GYROSCOPIC FORCES. We have considered above the 
motion of gyroscopes. Let us now discuss the nature of 
gyroscopic forces. These forces are of Coriolis type. 

Suppose that we have a rotating disc (Fig. 92) whose angular 
velocity of rotation is directed along the Z-axis. We shall 
assume that the disc is made of point masses m. Let us apply to 
the disc a moment of forces M in the positive X -direction. 
Under the action of this moment, the disc tends to start 
turning about the X-axis at an angular velocity Q'. Conse
quently, Corio lis forces f-"'cor = - 2m!l' x v' begin to act on the 
moving point masses of the disc. These forces produce a 
moment of forces along the Y..axis, causing the disc to rotate 
about this axis at an angular velocity n. As a result, the 
angular momentum vector L moves in the direction of vector 
M, i.e. the same precession takes place, which is performed by 
the gyroscope's axis under the action of the moment of 
external forces applied to it. Hence it can be stated that 
gyroscopic forces are Coriolis forces. 

In order to follow the emergence of gyroscopic forces in 
greater detail, let us derive their value by proceeding directly 
from the computation of Coriolis forces. Figure 93 shows the 
distribution of the velocities of the points of a moving disc 
from the positive Z-direction. At different points of the disc 
above the Y..axis the Coriolis forces are directed perpendicular 
to the plane of the figure towards the reader, while at points 
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Fig. 93. Computing the mo
ment of Coriolis forces. 
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below the Y-axis these forces are directed away from the 
reader. Further, considering that }~or= -2m!!' x v' and 
v' = ror, we can write the following expression for the Coriolis 
forces at point (r, cp): 

Fcor = 2mQ'v' sin <p = 2mQ'ror sin <p. (35.13) 
.~ 

Hence we obtain the following relation for the moment of the 
Corio lis force about th~ Y-axis for the point under considera
tion: 

M~ = 2mQ'ror2 sin2 <p. (35.14) 

Since the average value (sin 2 cp) = 1/2 over one cycle, we can 
write for (M~) 

(M~) = mr2Q'ro = LQ', (35.15) 

where we have considered that mr2 = J is the moment of 
inertia of a point mass about the axis of rotation, and L = Jro 
is the angular momentum of the moving point about the same 
axis. Summing over all points of the disc, we find that the 
expression (35.15) does not change, but (M~) now represents 
the total moment of the Coriolis forces acting on the disc 
about the Y-axis. In this case, the quantity L indicates the 
angular momentum of the disc. It can be seen from Fig. 92 that 
the Coriolis forces also produce the moments of forces about 
the X -axis, but the sum of these moments is zero, and hence 
they need not be taken into account. 

Under the action of the moment of forces (M~), the disc 
begins to rotate about the Y-axis. This rotation, like the one 
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considered above, produces a moment of Coriolis forces about 
the X -ax"is, its direction being opposite to the initially applied 
moment of forces. The angular velocity of rotation increases 
until the moment of Corio lis forces arising about the X -axis 
compensates for the initially applied moment. for this, the 
following relation must be satisfied in accordance with (35.15): 

M = Ln, (35.16) 

where M is the moment of external forces about the X-axis, 
and n is the angular velocity of rotation of the disc about the 
Y..axis. Thus, the moment of forces about the X -axis does not 
cause any rotation of the disc about this axis, but causes 
a rotation about the Y..axis. It can be seen from Fig. 92 that the 
tip of vector L moves in the direction of vector M. Considering 
that n = d9/dt and dL = L d9 (see Fig. 92), the relation (35.16) 
can be written in the form M = dL/dt or, if we take into 
account the spatial directions of the vectors shown in Fig. 92, 
in vector form 

dL 
-=M. 
dt 

(35.17) 

This is the momenta! equation which was used for a detailed 
analysis of the motion of a gyroscope. 

Thus, it can be stated that the precession of the gyroscope's 
axis is due to Coriolis forces. During a steady precession, the 
angular velocity of the gyroscope's axis is responsible for the 
emergence of a moment of Coriolis forces which is equal to the 
moment of external forces acting on the gyroscope but has the 
opposite direction and the two moments neutralize each other. 

Sec. 36. MOTION UNDER FRICTION 
The physical pattern of the 
emergence of frictional forces is 
analyzed and their influence on 
the motion of bodies is con· 
sidered. 

DRY FRICTION. If two bodies are in contact so that their 
surfaces exert a pressure on each other, and if a small force is 
tangentially applied to these surfaces, there will be no sliding of 
one surface over the other (Fig. 94). In order to start sliding, 
we must apply a force greater than some minimum value. 
Consequently, when two bodies are in contact and a pressure 
exists between their surfaces, forces inhibiting their sliding 
appear and cause static friction. Sliding begins only when the 
external tangential force exceeds some value. 7hus, static 
friction F., varies from zero to some maximum value Fr;t•• and is 
equal to the external force applied to the body. 

This force is directed against the external force and neutral
izes it. As a result, the bodies remain stationary, and there is no 
sliding of one surface over the other. 
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Fig. 94. Dry friction. 
It is characterized by static friction. 
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Fig. 95. Dependence of dry fric
tion on velocity. 
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The frictional force depends on pressure, the material of 
bodies and the state of the contact surfaces. The static friction 
is higher for rough surfaces than for polished surfaces. 

When the external tangential force exceeds the maximum 
static friction, one surface begins to slide over the other. In this 
case, the frictional force is directed against the velocity. For 
highly polished dry metallic surfaces at low velocities, the 
numerical value of the static friction is practically independent 
of velocity and is equal to the maximum static friction. Thus, 
the dependence of the frictional force on velocity has the form 
shown in Fig. 95a. For all the velocities v -1= 0, the frictional 
force has quite a definite magnitude and direction. For v = 0, 
its value is not unique and depends on the external force. 

However, the frictional force is independent of velocity only 
at velocities that are not too high. It does not hold for all types 
of bodies and all types of finished surfaces. In some cases, the 
velocity dependence of the force of friction between solid 
surfaces has the form shown in Fig. 95b: as the velocity 
increases to a certain value, the frictional force first decreases 
in comparison with the static friction (for the sake of 
simplicity, the "maximum static friction" is sometimes called 
the "static friction") and then increases. 

1he most peculiar feature of the frictional force considered 
abot•e is the existence of static friction: the frictional force does 
not vanish 'when the relative velocity of the contact surfaces 
becomes zero. Such a friction is called dry friction. For the case 
presented in Fig. 94, the frictional force is given by the formula 
Frr = k'mg, where k' is called the coefficient of friction. This 
coefficient is determined experimentally. 

The emergence of dry friction is due to the interaction of 
molecules, atoms and electrons near the contact surface, i.e. 
ultimately to the electromagnetic interaction. 

FLUID FRICTION. If two metallic contact surfaces are well 
lubricated, they begin to slide under the action of very weak 
forces (practically equal to zero). This is due to the fact that 
instead of two solid metallic surfaces, thin fluid films of oil are 
now in contact formed on the surfaces as a result of lubrica
tion. Such frictional forces for which there is no static friction are 
called fluid friction. For example, a metallic ball moves in a gas 
or a liquid even when a very weak force is applied to it. 
Frictional forces tending to inhibit the motion appear between 
the surface of the ball and the gas or the liquid. But as 
the velocity tends to zero, this frictional force also tends to 
zero. In other words, this is fluid friction. 

The dependence of fluid friction on velocity is shown in 
Fig. 96. At very low velocities, this force is directly propor
tional to velocity: F rr ;= - ~v. The proportionality factor 
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Fig. 96. Dependence of fluid 
friction on velocity. 
The forces acting opposite to the 
velocity are laid off along they-axis. 
A characteristic feature of this fric
tion is that the frictional force 
vanishes at the zero velocity. 
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Fig. 97. Stagnation. 

f • 
A characteristic feature of 
motion for fluid friction, which 
depends on velocity, is to attain 
a limiting velocity determined 
by the value of an applied force. 
There is no limiting velocity 
for dry friction. 
Stagnation may drastically 
distort the results of measuring 
physical quantities by means of 
instruments if their pointers 
experience dry friction at their 
axes of rotation. 
Skidding is due to sliding 
friction which is always direct
ed against velocity, but which 
does not depend significantly 
on its magnitude. 
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P depends on the properties of a liquid or a gas, geometrical 
characteristics of a body and the quality of its surface. 

When a rigid body moves in a liquid or a gas, it is subjected 
both to the frictional force directed along the tangent to the 
surface of the body at each point and to another tyqe of force 
acting in a direction opposite to its velocity. This-force is called 
drag, and its dependence on velocity may be rather complex 
indeed. 

WORK OF FRICTIONAL FORCES. The work done by static 
friction is zero since there is no displacement. When a solid 
surface slides over another, the frictional force is directed 
against the displacement. The work done by this force is 
negative. Consequently, the kinetic energy of the bodies in 
contact is transformed into their internal energy; and the 
bodies rubbing against each other get heated. Fluid friction 
also performs a negative work; in this case also, the kinetic 
energy of the moving bodies is transformed into their internal 
energy, and the velocity of the bodies decreases. 

Hence, in the case of motion under friction, the energy 
conservation law cannot be formulated as the constancy of the 
sum of the kinetic and potential energies. In the case of 
friction, this sum decreases, and the energy is transformed into 
the internal energy of the bodies in contact. 

It should not be concluded that friction mainly plays 
a negative role in motion of bodies. If there were no friction, 
our lifestyle would have been different. It can be stated that the 
existing technology is based on the presence of friction. 
Without friction, there would be no motion of automobiles, 
people would not be able to walk on flat surfaces, nor would it 
be safe to sit in a chair, and so on . 

STAGNATION. Let us imagine that a body moves with 
friction along a horizontal plane under the action of the forces 
shown in Fig. 97. In the equilibrium position of the body, the 
resultant of the forces exerted by the springs in the horizontal 
plane is zero. As the body is deviated from its equilibrium 
position, a force tending to return the body to its original 
position appears. However, if this force is smaller than the 
maximum static friction, it will not be able to move the body. 
Hence the equilibrium position of the body is not only its 
equilibrium position at point 0, but all the other positions 
within the interval AB over which the body can deviate from the 
equilibrium position. Although the forces are exerted by the 
springs on the body in all these positions, the body remains at 
rest. If the body is deviated beyond the interval AB and then 
released, it will be set in motion by the forces exerted by the 
springs. Depending on the magnitude of the initial deviation, the 
body will either perform an oscillatory motion or simply move 
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Fig. 98. Skidding. 
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in one direction, but come to rest after some time as a result of 
the energy losses due to friction. The body may come to rest in 
any position within the interval AB. Practically, the body will 
never stop in the equilibrium position. This phenomenon in 
which the body comes to rest and remains stationary at 
a position other than the equilibrium position while subjected to 
a nonzero force from the spring is called stagnation. 

Obviously, if the friction between the body and the 
horizontal plane were fluid friction, there would be no 
stagnation since in this case even the smallest force exerted by 
the spring would set the body in motion. Hence the only 
equilibrium position in which the body can be at rest is the 
equilibrium position where the resultant of the forces exerted 
by the springs is zero. 

Stagnation is of considerable importance in many cases. In 
measuring instruments, a measurable quantity or an effect 
produced by it is usually compared with the scale of the 
quantity or •he effect, the result being shown as the reading of 
the pointer. If the pointer experiences dry friction at its axis of 
rotation, it will never el§lllctly show the position corresponding 
to the equality of the measurable quantity to the scale. This 
will lead to a certain error of measurement which will be the 
larger, the larger the dry friction. Hence it is desirable to 
reduce the dry friction in measuring instruments to minimum 
and to create conditions close to those of fluid friction. 

SKIDDING. Suppose that a body is at rest on an inclined 
plane (Fig. 98). This means that the maximum static friction is 
larger than the force F = mg sin a which tends to cause the 
sliding of the body down the inclined plane (a is the angle of 
inclination to the horizontal). Let us now set the body in 
motion at a velocity v across the plane (see Fig. 98). The body 
immediately begins to slide down the inclined plane. This is 
due to the fact that as soon as the body starts moving in the 
direction of the velocity v11 across the plane, the friction 
between the plane and the body will be directed against the 
velocity. Hence there will be no force opposing the force 
F = mg sin a which causes the sliding of the body. This results 
in the emergence of the velocity v 1. in the direction of sliding. 
The total velocity of the body along the inclined plane is 
v = vi' + vL. The frictional force Fr, is directed against the 
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velocity. Only the component Fr. sin 13 (tan 13 = Vj_/v 11 ) acts 
against the force mg sin a. If this component is equal to the 
force mg sin a, there will be no further increase in the velocity 
at which the body slides down the inclined plane, and the body 
will move at a constant velocity v at an angle 13 to vI" In order 
to sustain such a motion across the inclined ptane, the body 
must be subjected to a constant force F cos 13 equal to the 
component of the frictional force directed against the velocity 
v11. The disappearance of static friction in the direction 
perpendicular to the velocity is called skidding. This term is 
borrowed from the phenomenon where it is manifested most 
clearly, viz. the skidding of automobiles. 

Suppose that an automobile with a horizontal longitudinal 
axis rests on an inclined plane (see Fig. 98). Owing to the 
friction between the wheels and the plane, the automobile does 
not slide down the plane under the action of the force F = 
mg sin a. We can then set the automobile in motion across the 
inclined plane in the direction of the velocity v11 . If this is done 
very carefully and with a very small acceleration so that there 
is no sliding between the points on the wheels and the inclined 
plane, static friction will exist between them and will balance 
the force F = mg sin a. The automobile will safely move across 
the inclined plane without sliding. If, however, we try to move 
across the inclined plane with a large acceleration by revving 
up the motor, the driving wheels (usually the rear wheels) will 
begin to slide down the inclined plane, and the static friction 
balancing the component of the force of gravity along the 
inclined plane will vanish. As a result, the wheels begin to slide 
down the plane. If the rear wheels are the driving wheels, only 
these will move down the inclined plane, and the automobile 
will turn or, as is often said, "skid". It can easily be seen that 
skidding will also take place if brakes are applied suddenly 
when the decelerated wheels begin to slide down the plane. 

It should not be concluded from here that a body. begins to 
slide down an inclined plane only when there is a velocity 
across the plane. Let us consider the balance of the forces 
acting on a body after a force has been applied to it across the 
inclined plane (Fig. 99). Figure 99a shows a situation in which 
the force F is not very large. The resultant of the forces F and 
mg sin a is balanced by the static friction Fr. which is less than 
the maximum static friction. All these forces lie on the inclined 
plane. Increasing the force F, we arrive at the critical situation 
shown in Fig. 99b. The resultant of F and mg sin a attains a 
value equal to the maximum static friction. The body does not 
move in this case since all the forces balance one another. If the 
force F is increased further by a small amount, this equilibrium 
is violated (Fig. 99c). As before, the frictional force is directed 
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Fig. 99. Change in the balance 
of forces when approaching the 
skidding zone. 
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against the resultant of F and mg sin 11. But since this force has 
already attained its maximum value, it is not equal to the 
resultant and cannot balance it. The most important point is 
that, primarily, the balancing of the force mg sin 11, and not of 
the force F: is violated (see Fig. 99c). The component of Frr 
directed against the force F balances the latter, while the 
component of Fr, dir~ed against that of mg sin 11 becomes 
smaller than this force. Hence the body begins to slide down 
the inclined plane, rather than to move across the plane in the 
direction of the applied force F as it might appear at first 
glance in the analysis of skidding. However, the body cannot 
just slide down the inclined plane since as soon as the sliding 
begins, the frictional force is reoriented in a direction against 
the sliding. Consequently, the force F is no longer balanced, 
and the body begins to move in the direction of this force. Thus, 
the body begins to slide and at the same time to move across the 
inclined plane. The process has been discussed as successive 
application of forces only to illustrate more clearly the essence 
of the physical phenomena. The body begins to move from the 
state of rest in the direction of the resultant of F and mg sin 11, 

which attains the maximum value of static friction when the 
critical situation shown in Fig. 99b is reached. 

LIMITING VELOCITY. In the case of dry friction, bodies 
move with an acceleration when the external force exceeds the 
maximum frictional force. Under these conditions, a body may 
acquire an indefinitely high velocity when subjected to a 
constant external ff!rce. 1he situation is quite different in the 
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Fig. I 00. Velocity approaches 
its limiting value in the pres
ence of fluid friction. 
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case offluidfriction. In this case, a constant force applied to the 
body can accelerate it only to a certain velocity called the 
limiting velocity. When the limiting velocity is reached, the 
frictional force Frr = - pv balances the external force F. and 
the body moves at a constant velocity after this. Com¢quently, 
the limiting velocity is given by Vum = Fjp. · 

APPROACHING THE LIMITING VELOCITY. In the presence 
of fluid friction, the motion of a body in homogeneous space is 
described by the equation 

dv 
m- = F 0 - Pt'. (36.1) 

dt 

We assume that the force F 0 is constant. Let v =-0 at the 
instant t = 0. Integrating (36.1 ), we obtain a solution of this 
equation: 

" I 

f dv F0 f 
l-(P/F0)v =-;; dt, 

0 0 
(36.2) 

Fo In (1- !_v) = - Fo t, 
P F0 m 

or, after integration, 

(36.3) 

The plot of this function is presented in Fig. 100. The velocity 
v(t) increases exponentially from 0 at t = 0 to its limiting value 
Vum = F 0/P. The exponential curve depends very strongly on 
the value of the exponent. After the exponent has attained the 
value -I, the function rapidly vanishes. Hence it can be 
assumed that the velocity attains its limiting value over time -r 
during which the exponent in formula (36.3) becomes equal to 
- I. In other words, this value can be found from the condition 
P-r/m = I, i.e. -r = mjp. 

FREE FALL OF BODIES IN AIR. Bodies moving in air at 
very high velocities are subjected to fluid friction as well as to 
the aerodynamic drag proportional to the square of the 
velocity. For the free fall of a body in air, the limiting velocity 
is attained when the force of gravity acting on the body is 
equal to the drag. As an example, let us consider the jump of a 
parachutist from a balloon up to the instant of the opening of 
the parachute (we are considering the jump from a balloon 
which is stationary in air, and not from an aeroplane flying at 
a high speed). It has been established experimentally that the 
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? 
Which factors determine the 
existence of limiting velocity for 
fluid friction? 
Which factors determine rolling 
friction? 
Let a cylinder rolling without 
friction stop as a result of the 
energy losses in overcoming 
rolling friction. Into what forms 
of energy and in what way is the 
kinetic energy of the rolling 
cylinder transformed? 

8. Dynamics of a Rigid Body 

limiting velocity at which a person falls in air is about 50 mjs. 
We shall take this as the limiting velocity vlim• although it 
depends to a certain extent on the height and mass of the 
jumper, the orientation of his body relative to the direction of 
motion, atmospheric conditions, etc. We direct the X -axis 
vertically upwards, and take the origin x = 0 at the surface of 
the Earth. Since at velocities under consideration the air drag 
is proportional to the square of the velocity, the equation of 
motion can be written in the form 

(36.4) 

where x is the coefficient of friction (x > 0). Assuming the 
limiting velocity vlim to be known, let us present x in terms of 
this velocity. For uniform motion with the limiting velocity, we 
have 

mx = 0 = - mg + xvnm' 
mg 

X= -2-. 
Vlim 

Taking this expression into consideration, we can write (36.4) 
for x in the form 

dv g 2 2 - = - -2-(Vlim - V ). 
dt Vlim 

Integrating, we obtain 
V I 

f dv g f li' 
2 2 =- -2- dt, 

VJim- V VJim 
0 0 

Taking antilogarithms of this expression, we get 

1 - exp (- 2gtjvlim) 
V = -vlim · 

1 + exp (- 2gt/vlim) (36.5) 

For the initial period of fall, when 2gtjvlim « l, we can expand 
the exponents into series and confine ourselves to the term 
linear in t: 

exp (- 2gt) ~ I - 2g1. (36.6) 
vlim vlim 

In this case, (36.5) gives 

v = -gt. 

This means that a nearly free fall takes place at the initial 
stage, while the air drag does not play a significant role. 

As the velocity increases, the role of air drag becomes more 
significant and is decisive at velocities close to limiting 
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velocities. In this case, 2gtfvum » 1, and hence 

Vum - v 1 - exp (- 2gtfvuml --= 1 - __ .::......c... __ .o.:=_ 

vlim 1 + exp (- 2gtfvuml 

2 exp (- 2gt/v1;m) ( 2gt) = :::::2exp --
1 + exp( -2gt/vlim) Vum 
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I 
(36.7) 

since exp (- 2g t/vlim) « 1 can be neglected in this expression in 
comparison with unity in the denominator on the left-hand 
side of the last equality. Thus, for t = 10 s, the velocity differs 
from the limiting value by about 2e- 4 ~ 1/25, i.e. by 2 mjs. 
Hence it can be assumed that the parachutist attains the 
limiting velocity in about 10 s after jumping. Jhe time 
dependence of the velocity of the falling parachutist is shown 
in Fig. 101. 

h0 r--+--t--"'--- Integrating both sides of (36.5) with respect to time, we can 
h 0 _ 100 1' 5 find the distance covered by the parachutist during his fall: 

Fig. 102. Time dependence of 
the distance covered by a para
chutist. 

t t 

f d f 1 - exp (- 2gt/vlim) d 
v t = -v1• t 

•m 1 + exp (- 2gtjvlim> 
0 0 

t _ f[ 2exp(-2gt/vlim) Jd - -Vr 1- t. 
•m 1 +exp(-2gt/vlim) 

0 

Considering that 

exp (- 2g tfvuml dt 
1 + exp (- 2gt/v,;m) 

Vum [ ( 2gt) J = -dIn 1 + exp - - , 
2g vlim 

vdt = dx, 

we obtain from (36.8) the expression 

[ Vum 2 J h0 - x = vlim t - -In , 
g 1 + exp( -2gt/V1;m) 

(36.8) 

(36.9) 

where h0 is the height from which the parachutist begins to fall. 
This formula shows that the parachutist covers about 350 m 
during the first 10 s. The remaining distance until the opening 
of the parachute is covered almost uniformly at the limiting 
velocity. The time dependence of the distance is shown in 
Fig. 102. 

The limiting velocity of descent of the parachutist with an 
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? 
H-1ly perfectly rigid bodies do not 
experience any rolling friction? 
H-1ly is rolling friction absent if 
deformations are perfectly 
elastic? 
H-1!at is an approximate value of 
the limiting velocity of a person 
falling freely in air? 
Can you show the difference in 
the dynamics of a parachutist 
when he jumps from a balloon 
and from an aeroplane flying at 
a very high speed? 

8. Dynamics of a Rigid Body 

open parachute is slightly less than 10 m/s. Hence the velocity 
of the parachutist drops from 50 m/s to about 10 m/s in a very 
short time after the opening of the parachute. This is due to the 
emergence of large accelerations, and hence large forces, which 
act on the parachutist. The action of these forces is termed 
dynamic shock. 

When the parachutist jumps from an aeroplane flying at a 
velocity of several hundred metres per second, the pattern of 
his motion changes radically. After being thrown from the 
aeroplane, the parachutist's velocity drops within a few 
seconds from the velocity of the aeroplane to about 50 m/s. In 
this case, the acceleration of the parachutist is very large and 
so is the dynamic shock. Hence special measures are taken to 
ensure the safety of pilots being hurled out of aeroplanes flying 
at very high speeds, immediately after the instant at which they 
are catapulted. 

ROLLING FRICTION. Suppose that a cylinder rolls down an 
inclined plane without sliding. The dynamics of the motion of 
a cylinder subjected only to static friction was studied in 
Sec. 34. The assumption that the cylinder rolls without sliding 
means that the points of contact between the cylinder and the 
inclined plane do not slide relative to one another along the 
surface of contact. Hence the static friction acts between the 
cylinder and the plane. It is this friction that constitutes the 
tangential fotce T in Fig. 79. Together with the force mg sin a, 
this friction causes the rolling of the cylinder. Let us imagine 
that the surfaces of the~>" cylinder and the inclined plane are 
absolutely undeformed. In this case, they must be in contact 
with each other along a geometrical line. There are no forces in 
this case except the static friction T. On the line of contact, the 
particles constituting the inclined plane and the cylinder do 
not experience any mutual displacement in the direction of the 
frictional force. Hence the work done by friction is zero and 
there are no losses due to friction. This means that 

the rolling of a perfectly undeformed cylind~.:r along a 
perfectly undeformed plane without sliding must not involve 
any losses due to friction, although static friction does exist 
and ensures the rolling of the cylinder. 

In actual practice, however, there are losses of kinetic energy 
even in the case of rolling without sliding. For example, a 
cylinder rolling over a horizontal surface without sliding will 
ultimately come to a stop. If for a cylinder rolling down an 
inclined plane the kinetic energy at the end of the rolling is 
measured precisely, it will be found to be less than the 
potential energy which has been transformed into the kinetic 
energy. In other words, energy losses take place in this case. 
These losses are due to rolling friction which cannot be reduced 



Fig. I 03. During perfectly elastic 
deformation, the resultant 
F 1 + F2 of forces passes through 
the axle of the wheel, and rolling 
friction does not set in. 

Fig. 104. During inelastic de
formation, the resultant F 1 + F2 

of forces does not pass through 
the axle of the wheel, and rolling 
friction sets in. 

36. Motion under Friction 

v/ ........ 

263 

either to static friction or to sliding friction. The emergence of 
rolling friction is due to deformation. However, it catz easily be 
seen that perfectly elastic deformations cannot give rise to any 
force impeding the motion (Fig. 103). 

Naturally, it is assumed that there is no sliding of the 
cylinder. In case there is sliding, frictional forces appear in the 
contact zone even if the deformation is perfectly elastic. The 
deformation affects both a plane and a wheel. The wheel is 
slighty "flattened", as shown in Fig. 103 on a magnified scale. 
The dashed line shows the rim of the wheel in the absence of 
deformation. Forces F1 and F2 are the resultants of forces 
applied to the deformed wheel from the deformed parts of the 
surface in front of the vertical line and behind it. The total 
force acting on the wheel is F 1 + F 2, while the moment of 
forces about the axle of the wheel is equal to the sum of the 
moments of forces F 1 and F 2 • The moment of force F 1 tends to 
increase the velocity of rotation of the wheel, while the 
moment of force F 2 tends to decrease the velocity. In the case 
of a perfectly elastic deformation, the entire pattern of forces is 
symmetric about the vertical line passing through the axle of 
the wheel. Consequently, the moments of forces F 1 and F 2 

cancel out, and the resultant force F 1 + F 2 passes tp.rough .the 
centre of the wheel. It has only a vertical component which 
balances the force of gravity and all that rests on the wheel. 
There is no horizontal force, and hence there is no rolling 
friction either. 

The situation becomes different if the deformation is not 
perfectly elastic, as is indeed the case in actual practice_ The 
forces acting on the wheel in this case are shown in Fig. I 04. 
The forces F 1 and F 2 are different, and their resultant has a 
vertical component which balances the force of gravity as well 
as a horizontal component which is directed against the 
velocity and serves as the rolling friction. The moments of 
forces F 1 and F 2 are opposite but not equal. The moment of 
force F 2 which tends to retard the rotation is larger than the 
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Fig. I 05. Diagram of forces 
acting on the wheel of self-pro
pelled means of transport. 
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dy 
dt ...... 

dv 
.....dt 

(b) (a) 

moment of force 1 which tends to accelerate it. Hence the 
resultant moment of forces decelerates the rotating wheel. 
Under the action of the rolling friction, the kinetic energy is 
transformed into internal energy through inelastic deforma
tion. 

Thus, the rolling friction and the moment of forces retarding 
the rotation of the wheel emerge as a result of inelastic 
deformation of the wheel and the rolling surface in the vicinity of 
their contact. The effect of the rolling friction and the moment 
of forces can easily be taken into account. Only the deter
mination of the rolling friction and the moment of forces is a 
difficult task. This is usually done experimentally, and their 
values are supplied in appropriate tabular form. 

SELF-PROPELLED MEANS OF TRANSPORT. Two new 
questions arise in the analysis of motion of motorcars, 
locomotives and other self-propelled means of transport: How 
are they accelerated froJ;V rest and how are they brought to 
rest? It is sufficient to consider the motion of a wheel to study 
these problems. If the motion takes place without sliding of the 
wheels, there is no sliding friction. Rolling friction is always 
present and acts in the way described above. However, rolling 
friction does not play a significant role in starting up or 
stopping of carriages. Static friction plays a main role in this 
case. 

When a vehicle is set into motion, the engine applies a 
moment of force M to the axle of the wheel (Fig. 105a). 
However, the static friction Frr at the points of contact 
between the wheel and the road impedes the rotation of the 
wheel. This results in the static friction in the direction of 
motion. 

The situation is reversed when brakes are applied. The 
moment of forces of brake blocks is directed in such a way 
(Fig. 105b) that the additional static friction resulting in this 
case is directed against the velocity of the vehicle. This 
additional static friction adds up to the static friction ensuring 
the rolling of the wheel without sliding when there are no 
internal moments of force acting on its axle. 
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If the total static friction during the interaction of the wheel 
and the road together with the additional static friction 
mentioned above exceeds the maximum static friction, the 
wheels slide. Hence the sliding of the wheels occurs when one 
wishes to start up a car too fast, or when one tries to apply 
brakes suddenly. In both cases, the skidding pf tJJ.e vehicle 
during a rapid take-off or braking may lead to sorrowful 
consequences. But even if nothing untoward takes place, a 
rapid take-off or braking will not be realized. As a matter of 
fact, as the relative velocity of sliding surfaces increases, the 
sliding friction decreases slightly in most cases in comparison 
with the maximum static friction. Hence when a wheel slides, 
the maximum take-off or braking force is smaller than in the 
absence of sliding. Hence the fastest take-off or ~)raking is 
possible only when there is no sliding. An experienced driver 
always feels the grip of the wheels on the road and never 
allows the wheels to slide. 

It was mentioned above that under certain conditions the frictional 
force begins to increase as a result of an increase in the sliding velocity. 
Obviously, in this case one can try to increase the tractive force of the 
wheels by increasing the velocity of skids. However, the lateral sliding 
force cannot be balanced even in this case. . 

ON THE NATURE OF FRICTIONAL FORCES. The emer
gence of frictional force is due to many processes occurring in 
the surface layers of the bodies in contact. The investigation of 
frictional forces is of considerable theoretical and practical 
significance and forms a separate branch of physics. These 
processes are reduced to intermolecular interactions in the 
regions where the bodies come in contact. 

Dry friction emerges in the tangential plane of two bodies 
pressed against each other as a result of their relative motion. 
Static friction is due to very small (up to about I !liD) relative 
displacement of the surfaces rubbing against each other. The 
region of displacements within which static friction is observed 
is called the region of preliminary displacements. When the 
force applied to a body exceeds a certain value, the preliminary 
displacement is transformed into sliding, and the frictional 
force slightly decreases in comparison with the maximum 
static friction. 

The surfaces of real bodies are not perfectly smooth. They 
have waviness and roughness. Hence when two bodies touch 
each other, the contact does not take place over the entire 
surface, but only over certain regions called "spots" which are 
located at "protrusions" on the surfaces. At the "contact 
spots", forces of adhesion act between the surfaces. The total 
area of contact regions is about 2-3 orders of magnitude 
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PROBLEMS 

8. Dynamics of a Rigid Body 

smaller than the apparent area of contact. As the surfaces slide 
past each other, the "contact spots" are destroyed and 
recreated, but their total area remains practically the same. 
The "spots" acquire an elongated form in the direction of 
motion. Stresses in the region of "spots" acquire very large 
values and are only a few times smaller than the theoretical 
values of the strength of a material. 

Thus, it can be stated that friction appears as a result of a 
multitude of processes of interaction between contact surfaces 
of bodies. Heating of bodies and wear of surfaces are 
important practical consequences of friction. 

S.l. A body of mass m is thrown from the origin r = 0 of the coordinate 
system at an angle a to the horizontal plane at an initial velocity u at 
the instant t = 0. The force of friction of the body against air is 
Frr = -mkv. Find r = l{t). The acceleration of free fall is g. Find the 
equation of the trajectory if the X-axis is directed along the horizontal 
and the Y-axis along the vertical. 

8.2. A stone is thrown horizontally from a high tower at an initial velocity 
u. The force of friction of the stone against air is - mkv. Find the 
height of the tower if the stone lands at a distance I from the base. 

8.3. The edges of a,homogeneous rectangular parallelepiped of mass m are 
directed parallel to the axes of a rectangular Cartesian coordinate 
system whose• origin coincides with one of the vertices of the 
parallelepiped. The length of the edges of the parallelepiped along the 
X-, Y- and Z-axes is a, band c respectively. Find the moments of iner
tia J x.< and J,z. 

8.4. Two homogeneous right circular cylinders having the same radius and 
the same mass m are at rest on a horizontal surface, their axes being 
parallel and their surfaces being out of contact. A straight beam of 
mass M lies on top of the cylinders in a direction perpendicular to 
their length. The centres of mass of the cylinders and the beam lie in 
the same vertical plane. A force F acts on the beam parallel to its 
length along the line passing through its centre of mass. Find the 
acceleration of the beam if there is no sliding between the surfaces in 
contact. 

8.5. A homogeneous rigid hemisphere of radius r rests on a horizontal 
surface in contact with a point on its convex side. Find the frequency 
of the small-amplitude oscillations of the hemisphere about the 
equilibrium position in the case when there is no friction and no 
sliding between the hemisphere and the horizontal surface at the point 
of their contact. 

8.6. A homogeneous cube of mass m1 and edge /, and a homogeneous 
circular cylinder of diameter d and length I both rest on a horizontal 
platform. The axis of the cylinder is horizontal, and its lateral surface is 
in contact with one of the faces of the cube all along its side. The 
platform is gradually inclined about an axis parallel to the line of 
contact between the cube and the cylinder towards the cube. The angle 



Answers 267 

of inclination between the surface of the platform and the horizontal 
plane is a, and the coefficient of friction at each contact is k. For what 
value of a will the cube start sliding down the inclined plane? 

!1.7. A homogeneous sphere of mass m and radius r 1 rests in the state of 
unstable equilibrium on a rigidly fastened sphere of radius r 2 (r 2 > r 1 ). 

The line joining the centres of the spheres is vertical. After/he unstable 
equilibrium has been violated, the upper sphere of radiu r 1 starts to 
roll without sliding over the surface of the lower sphere of radius r2 • If 
the angle between the vertical and the line joining the centres of the 
spheres is 9, find the value of 9 for which the pressure at the point of 
contact between the spheres vanishes. 

8.8. A body is thrown vertically upwards at an initial velocity u. The 
frictional force is Frr = -mkv. After how much time will the body 
come to a halt? 

8.9. A circular cylinder rolls without sliding down an inclined plane 
forming an angle a with the horizontal. What is the accehtration of the 
centre of mass of the cylinder along the inclined plane if the latter 
moves with an acceleration a (a) in the vertical direction, and (b) in the 
horizontal direction towards the rising plane? 

8.10. A body falls freely in a medium, its velocity v being zero at the instant 
t = 0. The drag of the medium is -m(av + bv2), where a and b are 
positive constants. Find the velocity of the body at the instant t and 
the distance covered by it during this time. 

8.11. A homogeneous disc of mass m is suspended in the vertical plane at 
points A and Bon the circumference of the disc by two vertical strings. 
Points A and B are on the same horizontal level, and the arc A B of the 
circle forms an angle 2a at the centre of the disc. Find the tension of 
one of the strings immediately after the other string snaps. 

8.12. A homogeneous rectangular parallelepiped with edges 2a, 2b and 2c 
rotates at an angular velocity ro about an axis parallel to the principal 
diagonal but passing through a vertex not lying on this principal 
diagonal. Find the kinetic energy of the parallelepiped. 

ANSWERS 8.1. r = gt2 /2 + (u- g!k)(l- e-"')/k,y = (g/P) In [I - kx/(ucosa)] + 
x[tana + g/(kucosa)]. 8.2. (gfk)In[u/(u- kl)]- glfu. 8.3. m(b2 + 
c2)/3, - mbc/4. 8.4. Ff(M + 3m/4). 8.5. jl20g/(119r), Jt5gf(26r). 
8.6. arctan {km1/[m 1 +(I - k)m2]}. 8.7. arccos (10/17). 
8.8. (m/k) In [I + ku/(mg)]. 8.9. (2/3)(g + a)sina, (2/3)(gsin a+ a cos a). 
8.10. (A/b) tanh B- af(2b), (1/h) In (cosh Bjcosh a)- at/(2b), where A = 
Jbg+a 2 /4, tanha=a/(2A), B=ct+a. 8.11. mg/(1 +2sin2 a). 
8.12. mro2 (b 2 c2 + 7a2 c2 + 7a2 b2)/[3(a2 + b2 + c2 )]. 



Chapter 9 
Dynamics of Bodies of Variable Mass 

Basic idea: 
Reaction is directly proportional to the velocity of ejection of 
combustion products from the nozzle of a rocket and to their 
mass varying with time. Mass consumption can be reduced by 
increasing the velocity of ejection of combustion products, while 
an increase in reaction at a constant velocity of ejection of 
combustion products can be reached by increasing their mass 
consumption per second. 

Sec. 37. NONRELATIVISTIC ROCKETS 
The ~:quation of motion for 
reaction propulsion is derived 
and the physical meaning of the 
basic quantities involved is 
discussed. 

REACTION PROPULSION. The thrust of rocket engines is 
created by ejecting the fuel combustion products in a direction 
opposite to that of the fop;e. The force appears in accordance 
with Newton's third law of motion and is therefore called 
reaction, while the rocket engines are called jet engines. 
However, it must be emphasized that every engine creating 
a thrust is essentially a jet engine. For example, the thrust of an 
ordinary propeller-type plane is the reaction produced as 
a result of the acceleration of a mass of air by the propeller in 
a direction opposite to that in which the plane flies. The thrust 
of a propeller-type plane is the force with which the masses of 
air thrown back by the propeller act on the plane. This force is 
applied to the propeller which is rigidly connected to the plane. 
A railway train starts moving under the action of the reactive 
thrust created by the acceleration of rails and the Earth in the 
opposite direction if the motion is considered in the inertial 
reference frame relative to fixed stars. Of course, the motion of 
the rails and the Earth cannot be practically observed in view 
of their enormous mass and a vanishingly small acceleration. 

However, there is a significant difference between the reaction 
propulsion of rockets and other types of force. The thrust of 
a rocket engine is created by the ejection of combustion 
products which form a part of the mass of the rocket until the 



.. 
v 

Fig. 106. Deriving the equation 
of motion of a rocket. 
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instant of their ejection. This is not so in other cases. For 
example, the air dispelled by the propeller of a plane never 
forms a part of the plane. Hence, when we speak of reaction 
propulsion, we mean the situation that is realized iq a rocket 
engine. This means that we are considering the motiml of a body 
of variable mass, the thrust being created by ejecting a part of 
the mass of the body.· 

EQUATION OF MOTION. Suppose that a rocket having 
a mass M(t) at the instant t and moving at a velocity v throws 
away a mass dM' at a velocity u (Fig. 106). It should be borne 
in mind that M and dM' are relativistic masses, and the 
velocities v and u are measured relative to the inertial reference 
frame in which the motion is considered (and not relative to 
the rocket). 

The mass conservation law has the form 

dM + dM' = 0. (37.1) 

Obviously, dM < 0 since the mass of the rocket decreases. At 
the instant t, the total momentum of the system is Mv, while at 
the instant t + dt, it is given by the formula (M + dM) x 
(v + dv) + udM'. The momentum conservation law for this 
isolated system can be written in the form 

(M + dM)(v + dv) + udM' = Mv. (37.2) 

This leads to the equality 

Mdv + vdM + udM' = 0. (37.3) 

The term dvdM has been neglected since it is an infinitesimal 
of the second order of smallness. Taking (37.1) into considera
tion, we arrive at the equation of motion: 

d dA1 
--- (Mv) = u ---, 
dt dt 

(37.4) 

which is valid for both the relativistic and nonre/ativistic cases. 
If the velocities are small, they can be added by using the 

formula from classical mechanics, and hence u can be repre
sented in the form 

u = u' + v, (37.5) 

where u' is the velocity of the ejected mass relative to the 
rocket. Substituting (37.5) into (37.4) and differentiating the 
left-hand side of (37.4) with respect to time, we obtain 

dv dM dM 
M-=(u- v)-= u'-. 

dt dt dt 
(37.6) 
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Konstantin Eduardovich 
Tsiolkovsky ( 1857-1935) 
Soviet scientist and inventor. 
The father of modern astronau
tics, he was the first to substan
tiate the possibility of using 
rockets for interplanetary flights 
and to indicate rational ways of 
developing astronautics and 
rocket building. He obtained 
a number of technical solutions 
in the design and construction 
of rockets and liquid-fuel rock
et engines. 

9. Dynamics of Bodies of Variable Mass 

This is the equation describing the motion of rockets at 
nonrelativistic velocities in the absence of external forces. 

If the rocket is subjected to the action of a force F. (37.6) 
assumes the form 

dv dM 
M-= F + u'-. 

dt . dt 
(37.7) 

Let us denote the consumption of fuel per second by J.l. 
Obviously, J..L = -dM/dt. Hence (37.7) can also be written in 
the form 

dv 
M-= F -- J.lU'. 

dt 
(37.8) 

The quantity J..LU' is called the reactive force. If the direction of 
u' is opposite to that of v. the rocket is accelerated. If the two 
directions coincide, the rocket is retarded. For any other 
relation between u' and v, the rocket's velocity changes not 
only in magnitude but also in direction. 

TSIOLKOVSKY FORMULA. Let us consider the acceleration 
of a rocket moving in a straight line, assuming the velocity of 
the ejected gases to be constant relative to the rocket. In this 
case, (37.6) can be written in the form 

• dv dM 
M-= -u'-. (37.9) 

dt dt ·" 
The minus sign on the right-hand side is due to the fact that in 
the case of acceleration, the velocity ~· is directed against the 
velocity v. Let us denote the velocity and mass of the rocket 
before acceleration by v0 and M 0 . In this case, writing (37.9) in 
the form 

dM dv 

M u' 

and integrating this equation, we obtain 

v- v0 
In M-In M0 = - --

u' 

(37.10) 

(37.11) 

This is the Tsiolkovsky formula which can be written in either 
of the following forms: 

Mo 
t·- v = u'ln-

o M' 

flvl = ]\;[ oC- I••- ,..,,:"·. 

(37.12a) 

(37.12b) 
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Formula (37.12a) expresses the change in the velocity of the 
rocket when its mass changes from M 0 to M, while formula 
(37.l2b) expresses the mass of the rocket whose velocity 
changes from v0 to v. When the rocket is accelerated from the 
state of rest, v0 = 0. 

The most important problem is to attain the ~aximum 
velocity with the minimum consumption of fuel, i.e. for the 
minimum difference between M 0 and M. It can be seen from 
(37.12a) that this can be done only by increasing the velocity u' 
of ejection of gases. However, the velocities of ejected gases are 
restricted. For example, velocities of about 4-5 km/s are 
attained for the gases ejected after the combustion of different 
types of fuel. 

MULTISTAGE ROCKETS. All the load carried by a rocket is 
not useful right up to the end of the flight. For example, the 
fuel tanks are required only as long as they contain fuel. After 
this, when the fuel contained in them has been consumed, they 
are not only a useless, but also a harmful load since they 
complicate maneuvers and subsequent acceleration or de
celeration of the rocket. Other parts and components of the 
rocket which become useless after fuel consumption also 
constitute a harmful load. Hence it is expedient to get i:id of 
such a load as soon as possible. This can be done with the help 
of multistage rockets, first proposed by Tsiolkovsky (see 
Example 37.1). 

If the rocket engines throw out mass in portions and not 
continuously, but at the same relative velocity, the efficiency of 
the rocket engines deteriorates, i.e. for fixed initial and final 
masses of the rocket, the final velocity decreases with increas
ing mass of the separately thrown-out installments, con
sidering that each portion (installment) is ejected instan
taneously. 

CHARACTERISTIC VELOCITY. The concept of character
istic velocity is convenient for discussing various problems 
connected with space flights. Suppose that it is required to 
change the velocity of a rocket (acceleration, deceleration, 
change in direction of flight). In the reference frame, in which 
the rocket is at rest at the given instant of time, the problem 
can be reduced to imparting a certain velocity v to the rocket 
in a direction which would ensure the desired maneuver. The 
fuel consumption in this maneuver for a rocket flying outside 
the gravitational field can be taken into account with the help 
of formula (37.12b) with v0 = 0, where M0 is the mass of the 
rocket before the maneuver. The velocity v required to be 
imparted to the rocket is called the characteristic velocity of 
the maneuver. We can also introduce the concept of character
istic velocity for maneuvers carried out by applying external 
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? 
If a hole is drilled at the bottom 
of a water-filled bucket, a stream 
of water will flow through it. 
Can the force appearing as a 
result of flowing water be 
called reaction? And what if a 
hole is drilled in the wall of the 
bucket? 
JWlat factors determine the 
thrust of a rocket engine? 
JWlat is the characteristic ve
locity of a space flight? 
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forces (gravitational force, air drag, etc.). In this case, the initial 
and final masses will be connected through a more complicat
ed relation than (37.12b). However, it can be represented as 
before in the form (37.12b) (for v0 = 0) by assuming this 
formula to be the definition of the characteristic velocity for 
the maneuver under consideration. As a crude approximation, 
the characteristic velocity can be taken equal to the character
istic velocity of the maneuver without any external force in 
order to obtain a rough estimate. It follows from the law of 
multiplication of exponents that the characteristic velocity of 
a complex maneuver consisting of several maneuvers is the 
sum of the characteristic velocities of the maneuvers com
prising the complex maneuver. The concept of characteristic 
velocity makes it more convenient to describe some important 
features of interplanetary flights. 

In order to raise a body above the Earth's gravity, it must be 
imparted a velocity of about 11.5 km/s (escape velocity). For a 
rocket, the velocity in formulas (37.12) should have such a 
value (for v0 = 0) under the assumption that the fuel is 
consumed very rapidly and the velocity is acquired by the 
rocket in the immediate vicinity of the Earth's surface. 
Formulas (37.12) can be used to determine the part of a 
starting rocket that will ultimately fly into space. Assuming 
that the velocity of ejection of gases u' ~ 4 km/s, we find that 
M ~ M 0e-'J ~ M 0/20, i.e. about 5% of the total mass of the 
rocket will fly into space. In actual practice, the rocket gathers 
speed much more slo\)IJy than we assumed. This makes the 
situation even worse since it means a larger fuel consumption. 
In order to reduce the fuel consumption for accelerating a 
rocket in the gravitational field of the Earth, we must decrease 
the time of acceleration, i.e. we must increase the acceleration 
to the maximum possible extent. This involves considerable 
overloads. Hence it becomes necessary to select certain opti
mal conditions. 

When a rocket returns from outer space, we can make use of 
aerodynamic braking, i.e. decrease the velocity in the Earth's 
atmosphere. However, the velocity can also be decreased by 
switching on the rocket engine. In this case, the velocity of 
11.5 km/s must be decreased to zero for a soft landing. This is 
the characteristic velocity of return to the Earth. Hence the 
characteristic velocity of flight into space beyond the grav
itational field of the Earth and of return without the use of 
aerodynamic braking is 23 km/s. One can ask as to what 
fraction of the initial mass will return to the Earth from such a 
flight. In accordance with formula (37.12b) we obtain the 
answer: M ~ M 0e- 6 ~ M 0/400. 

The velocity required for overcoming the Moon's attraction 
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is about 2.5 km/s. Hence the characteristic velocity for landing 
on the Moon and taking off from its surface is about 5 kmjs, 
and the characteristic velocity for flight to the Moon and 
return to the Earth is estimated at about 28 kmjs. This 
estimate, however, does not take into account theJ need for 
other maneuvers, and hence the above value should be 
increased appropriately. On the other hand, one can make usc 
of the aerodynamic braking while returning to the Earth, and 
hence this quantity can be reduced to some extent. Conse
quently. it can be stated that the characteristic velocity for 
flight to the Moon does not differ significantly from 28 km/s. 
The characteristic velocity for flight to Mars and Venus is 
somewhat higher. Assuming that u' ~ 4 km/s, the mass of the 
rocket returning to the Earth after a flight to the M<fon will be 
about I! !500 of the starting mass. Although this is a very 
rough estimate, it gives a fairly good idea of the potentialities 
of rockets with chemical fuel. 

Example 37.1. Find the optimal parameters for a two-stage 
rocket in order to impart a given velocity to a given payload. 
By way of an example, we can take the payload's mass 
M = 500 kg, the final velocity v = 8 km/s, and the velocity of 
ejected gas u = 2 km/s. Assume that according to the construc
tional requirements, the mass of each stage of the rocket 
without fuel is 10% of the mass of the fuel in this stage. 

We denote the masses of the fuel in the first and second 
stages of the rocket by M 1 and M 2• The total initial mass of 
the rocket is m0 = M + I.I(M 1 + M 2). After the fuel in the 
first stage has been consumed, the remaining mass of the 
rocket is m1 = M + l.IM2 + O.IM1, and the velocity of the 
rocket is given. by 

(37.13) 

The second stage comes into operation after a load of mass 
O.IM 1 has been discarded, i.e. the acceleration starts when the 
mass of the rocket is m2 = M + 1.1 M 2 and terminates after the 
consumption of fuel in the second stage when the mass of the 
rocket is m3 = M + 0.1 M 2 • As a result, the velocity attained by 
the rocket is given by 

(37.14) 

It can be seen from this equation that m0m2 /(m 1m3) = e•,lu = 
e4 • Taking into account the equality l.lm1 = O.lm0 + m2, we 
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can transform the above relation to the form 

llm0 m2 4 
=e. 

(m0 + 10m2)m3 

This leads to the relation 

The mass m0 has its minimum value when the expression 
within the parentheses has its maximum value as a function of 
M 2 • The extremum condition for the expression within the 
parentheses gives the equality 

M+ l.IMz z 
=e' M + O.IM2 

whence we get 

M(e2 - I) 
M 2 = 2 = 8800 kg. 

l.l - O.le 

Hence m0 = 209,400 kg and M 1 = 181,000 kg. 

(37.16) 

(37.17) 

Sec. 38. RELATIVISTIC ROCKETS 

The equation of motion for 
a relativistic rocket is derived 
and the possibility of its practi
cal realization is discussed. 

EQUATION OF MOTION. While deriving Eq. (37.4), we noted 
that it is valid for low as well as high velocities. In the 
relativistic case, a mass M must be considered relativistic, i.e. 

M' 
M= ' J!- v2jcz 

(38.1) 

where M' is the variable rest mass of a rocket (we denote it by 
a primed letter to indicate that this is the mass in the moving 
reference frame fixed to the rocket). The rest mass of the rocket 
decreases during its motion. Taking this into account, we can 
write (37.4) for the relativistic case in the following form: 

d ( M'v ) d ( M' ) 
dt Jl-v2/c2 =udt jl-v2/c2. 

(38.2) 

If necessary, we can easily take into account the external forces 
acting on the rocket. Let us transform this equation into the 
form of (37.6). For this purpose, we differentiate the left-hand 
side with respect to t and transfer the term proportional to v to 
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the right-hand side. As a result, we arrive at the relation 

(38.3) 
I 

This relation is identical to (37.6) with relativistic mass 
M = M'/Jl - v2 /c2 • However, the difference u- v in (38.3) is 
not the velocity of ejection of gases relative to the rocket since we 
must use formula (17.6)for the velocity addition in the relativistic 
case. 

DEPENDENCE OF FINAL MASS ON VELOCITY. In order to 
obtain a formula similar to the Tsiolkovsky formula in the 
relativistic case, we must solve Eq. (38.3). We shall assume that 
the acceleration takes place in the positive X-direction. Then 
(38.3) assumes the form 

M' dv = (ux _ v)~( M' ). 
Jl-v2 jc2 dt dt Jl-v2jc2 

(38.4) 

From formula (17.6) for the velocity addition, we arrive at the 
following relation of the ejected gases relative to the rocket: 

u - v 
u~ = I _x vuxfcz. (38.5) 

Further, we consider that 

d ( M' ) 1 dM' 
dt Jl _ vz;cz = ji _ vz;cz dt 

M' v dv 
+ cz (I - vz /c2)3/2 dt. 

(38.6) 

Substituting (38.6) into the right-hand side of (38.4); we obtain 
after simple transformations 

M' ( vux)dv dM' 1-- -=(u -v)-
1 - v2 / c2 c2 dt x dt · 

(38.7) 

Expressing the quantity ux - v in terms of the velocity u~ with 
the help of (38.5) and cancelling out the common factor 
I - vuxfc2 , we can represent the relativistic equation of 
motion in the following simple form: 

M'dv = ( 1 _ v2)u' dM'. 
dt c2 x dt (38.8) 

Note that the velocity of ejection of gases must be directed 
against the motion of the rocket in order to accelerate it, i.e. 
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u~ = -u', where u' is the magnitude of this velocity. We can 
now represent (38.8) in a form similar to Eq. (37.10): 

dM' 1 dv 

M' u' 1- v2 jc2-· 
(38.9) 

Suppose that the mass of the rocket at the initial instant is M 0 
and its initial velocity is v0 . As in (37.1 0), we integrate both 
sides of this equation within appropriate limits. Since 

1 1 1 1 1 --::----::- - ---- + ----
1-v2jc2-21-vjc 21+v/c' 

the integral of the right-hand side with respect to v is an 
elementary integral. As a result of integration, we obtain 

ln M'- ln Mo = - 2:,[ In ( 1 + n -In ( 1 - n I. 
= _~[In 1 + vjc -In 1 + v0 /c J. 

2u' 1 - v/c 1 - v0 /c 

Hence 

In M' = _ ~ ln (1 + vjc)(1 - v0 jc), 
M 0 2u' (1 - vjc)(l + v0 /c) 

or • 
M' = [(1 + vjc)(1 - v0 jc)J -c/1 2•") 

M 0 (1 - v/c)(l + v0 /:~) 
(38.10) 

This formula for the relativistic case replaces formulas (37.12) 
for nonrelativistic rockets. It assumes an especially simple form 
for analysis if v0 = 0, i.e. if the rocket is launched from the 
state of rest: 

( 
1 - v/c) r.(lu'J 

M'=M~ ---
1 + vic 

(38.11) 

For low final velocities (v «c), this formula is transformed 
into (37.12b) for the nonrelativistic case (if v0 = 0). Indeed, let 
us write the right-hand side of (38.11) in the following form for 
vjc« 1 and u' jc « 1: 

( c + v)-c/(2u') [( v)</(2v)J-v/u' 
-- ~ 1 +2- =e-•1•', 
c- v c 

(38.12) 

where we have considered that 

c+v l+vjc ( v)( v) v --=--~ 1+- 1+- ~1+2-, 
c- v 1 - vjc c c c 
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lim(l +~)"=e. 
n-oo n 

Suppose that the rocket has to be accelerated to the velocity 
c/2 by means of chemical fuel, when u' = 4 km/s. Which part 
of the initial mass will be accelerated in this case? tonsidering 
that c = 3 x 105 km/s, we obtain from (38.11) that 

( 1;2 )3 x 10'/(2 x 4) Mo M'n 
M'-M' "' -~ 

- 0 3/2 "' 30/Hl x to• "' 102 x w• · (38.13) 

It is not possible to imagine the number 1020•000 , hence there 
can be no question of accelerating rockets to relativistic 
velocities by means of chemical fuel. 

However, the situation is not much better in the case of 
other fuels either. For nuclear rockets powered by fission 
energy, u' ~ 104 km/s. In this case, we obtain instead of (38.13) 

M' = Mo ~ Mo ~ Mo 
33 X t0'/(2 X tQ4) 315 106' (38.14) 

i.e. only about a millionth part of the initial mass of the rocket 
attains the final velocity c/2. 

Hence one can expect more or less promising results on the 
attainment of relativistic velocities only if u' is close to the 
velocity of light. This points towards the idea of creating 
rocket propulsion with the help of photon radiation. Such 
rockets, which belong only to the realm of fantasy at present. 
are called photon rockets. 

PHOTON ROCKETS. For photon rockets, u' = c, and hence 
(38.11) assumes the form 

( 1 - vfc)l/2 
M'=Mo ---

1 + vfc 
(38.15) 

It can be seen from this formula that a mass M' = M 0/J3, i.e. 
more than half the initial mass, could be accelerated to the 
velocity c/2. Thus, these rockets could be highly effective. 
Suppose that v differs from the velocity of light by a very small 
quantity, say, by 10-4 , i.e. v/c ~ 1- 10-4 • In this case, we 
obtain from (38.15) 

10-2 
M'~Mo J2, (38.16) 

which is quite a reasonable result. However, from the engi
neering point of view, photon rockets are just a fantasy. But 
this does not mean that the "reaction of radiation" is of no 
importance. On the contrary, it plays a very significant role in 
nature, e.g. in many astrophysical phenomena. 
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PROBLEMS 9.1. 

9.2. 

ANSWERS 

9. Dynamics of Bodies of Variable Mass 

A raindrop begins to fall at the instant t = 0 in air containing water 
vapour at rest. As a result of condensation of water vapour on the 
drop, its mass increases during its fall according to the law m = m0 + 
at. The moving drop is under the action of the frictional force 
.. fr = -mkv. Find the velocity V(t) of the drop. 
Two passenger vehicles having a mass M each move on a horizontal 
surface without friction at an initial velocity v0 . Snow is falling 
vertically, and the mass of snow falling per second on a vehicle is a. 
In one of the vehicles, the snow is accumulated as it falls. In the other 
vehicle, the passengers immediately throw the snow out in a direction 
perpendicular to the motion of the vehicle. What distance will be 
covered by the vehicles in time t? 

9.1. g/k- g[(a- m0 k)e-k']/[k 2 (m 0 +at)]. 

9.2.--0 In --- , --0 [I - e-(a/Ml!J. 
Mv (M+at) Mv 

a M a 



Chapter 10 
Collisions 

I 

Basic idea: 
The knowledge of the result of a collision process and not 
of the process itself is of principal interest for 
discussing collisions. The theory aims at establishing the 
relation between the characteristics of the state of 
particles before and after a collision without answeri.ng 
the question as to how these relations occurred. Conser
vation laws do not govern collision processes, but are only 
observed in them. 

Sec. 39. DESCRIPTION OF COLLISION PROCESSES 

A method for analyzing col
lision processes by means of 
conservation laws is described. 

DEFINITION OF COLLISION. The interaction of bodies is the 
most frequently encountered phenomenon in nature. When 
billiard balls approach one another, they interact at the 
moment of coming in contact. This results in a change in the 
velocities of the balls, their kinetic energies and, in general, 
their internal states as well (for example, their temperatures). 
Such interactions of billiard balls are referred to as collisions. 

But the concept of collision is not confined just to interactions 
resulting from the contact of bodies. A comet flying from distant 
regions in the galaxy and passing in the vicinity of the Sun 
changes its velocity and again departs for distant regions. This 
is also a collision process, although there was no direct contact 
between the comet and the Sun, and the interaction took place 
through gravitational forces. A peculiar feature of this inter
action, which enables us to consider it a collision, is that the 
region of space over which this interaction occurred is 
comparatively small. A significant change in the comet's 
velocity occurs in the region near the Sun. This is a large 
region when compared with terrestrial distances, but is quite 
small on the astronomical scale and, in particular, in com
parison with the distances from the far-off regions from where 
the comet presumably came. Hence the process of collision 
of the comet with the Sun looks like this: for a long time, over 
which the comet has covered an enormous distance, it moved 
without interacting with the Sun; then, over a small range of 
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We are not interested in what 
occurs in the region of col
liding particles. It is impor
tant to know the relation 
between the characteristics 
of the colliding particles before 
and after a collision. 

? 
What is the general defini
tion of collision? 
What is common between 
the collision of elemen
tary particles, billiard 
balls and the passage 
of a comet near the Sun? 
What is meant by the ini
tial and final states? 
What is an impact? 
Give definitions of an 
elastic and an inelastic col
lision. 
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the order of just a few hundred million kilometres, the comet 
interacts with the Sun, and as a result of this interaction, the 
velocity and some other characteristic parameters of the comet 
change; after this, the comet again takes off to distant regions, 
moving practically without any interaction with the Sun. 

By way of another example, we can consider the collision of 
a proton with a nucleus. When the distance between the two is 
large, they move uniformly and in a straight line, practically 
without an interaction. At quite small distances, Coulomb's 
repulsive forces become quite large, and this leads to a change 
in the velocities of the proton and the nucleus. Quanta of 
electromagnetic radiation may be emitted in the process, and if 
their energy is quite high, the formation of other particles like 
mesons, or a decay of the nucleus, may be observed. Hence, as 
a result of this interaction, which also takes place over a 
comparatively small region of space, the proton and the 
nucleus will move in the simplest case at velocities and energies 
that are different from their values before the collision. Some 
quanta of electromagnetic radiation will be emitted and, in 
general, some other particles will be created. 

On the basis of the above examples, we can give the 
following definition of collision: Collision is the interaction of 
two or more bodies, particles, etc. which occurs over a com
paratively small region of space in a comparatively small interval 
of time so that outside this region of space and beyond this 
interval of time we can speak of the initial states of the bodies, 
particles, etc. and of theirjinal states after the collision as states 
in which these bodies, particles, etc. do not interact. 

A collision of bodies is often called an impact. An impact is 
defined as a process in which the momenta of the colliding 
bodies change without any change in their coordinates. This is 
a special case of collision. Wherever appropriate, this term can 
be used to replace the term "collision". 

In mechanics, bodies and particles participating in a colli
sion are characterized by their momenta, angular momenta 
and energies, while the process itself is reduced to a variation 
of these quantities. It can be stated that particles exchange 
energy and momentum. If new particles are formed as a result 
of collision and some of the particles that existed before the 
collision disappear, the carriers of energy and momentum 
change. 

DIAGRAMMATIC REPRESENTATION OF COLLISION 
PROCESSES. At present, it is customary to represent collision 
processes in the form of diagrams. Particles or bodies par
ticipating in collisions are represented by their momentum 
vectors. The momentum vectors of particles before and after a 
collision are symbolically shown pointing towards the collision 



Fig. 107. Diagram of various 
collision processes. 
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region and away from it respectively. Obviously, there is a 
huge variety of collision processes. Some of the most char
acteristic collision processes are shown in Fig. 107. Fig
ure l07a represents the collision of two particles a and b 
having momenta Pa and p, respectively. The same particles 
exist after the collision, but their momenta have now changed 
to p~ and p~. However, new particles c and d could be formed 
instead of the particles a and b as a result of the collision 
(Fig. 107b). Alternatively, the collision of the particles a and b 
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could lead to the formation of a single particle e (Fig. 107c). It 
may so happen that one particle a disintegrates into two 
particles b and c as a result of some processes occurring inside 
it (Fig. 107d). There is no need to represent all imaginable 
diagrams of collisions. Let us just consider the possibility of a 
process which differs basically from all those considered above. 
In this process, an intermediate state is formed (Fig. 107e) and 
the collision process consists of two stages: first the particles a 
and b interact to form a particle c (called the intermediate 
particle) which then disintegrates into two particles d and e. In 
general, these particles could be the same as a and b, but they 
may as well be different. Thus, the final result of this process is 
equivalent to the collisions shown in Fig. 107a and b. The 
existence of an intermediate state, however, generally affects 
the process. 

CONSERVATION LAWS AND COLLISIONS. Collisions are 
extremely complicated processes. Let us consider, for example, 
the simplest case of a collision of two billiard balls (see 
Fig. 107a). When the balls come in contact, they are deformed. 
As a result, a part of the kinetic energy is transformed into the 
potential energy of deformation (we speak of a part of the 
kinetic energy since the collision is not necessarily head-on). 
After this, the energy of elastic deformation is again trans
formed into the kinetic energy, but only partially since some of 
the energy is transformed into the internal energy, and the 
balls are heated as a result of the collision. Further, it must be 
noted that the surfaces qf the balls are not absolutely smooth 
and frictional forces emerge between them. On the one hand, 
these forces also cause a part of the energy to be converted into 
the internal energy and, on the other hand, lead to a change in 
the rotation of the balls. Thus, even in the simplest case of 
collision, the picture is quite complicated. 

However, the main interest in the study of collisions lies in 
the result of the collision and not in the knowledge of the 
process itself. The situation before the collision is called the 
initial state, and after the collision, the final state. Irrespective 
of the detailed nature of the interaction, certain relations are 
observed between the quantities characterizing the initial and 
final states. 

The existence of these relations is due to the fact that the 
aggregate of particles participating in a collision forms an 
isolated system which obeys the energy, momentum and 
angular momentum conservation laws (see Chap. 6). Con
sequently, the relations between the quantities characterizing 
the initial and final states of a particle are expressed through 
the energy, momentum and angular momentum conservation 
laws upon a collision. 
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Conservation laws themselves do not provide an idea of 
what happens as a result of collision. However, if we know 
what happens during a collision, the conservation laws con
siderably simplify the analysis of the way in which the process 
occurs. 

MOMENTUM CONSERVATION LAW. Let us dehote the 
momenta of various particles before a collision by Pi (i = 

1, 2, ... , n), and the momenta of particles after the collision by 
P ~ U = 1, 2, ... , k ). Since the momentum of a closed system is 
conserved, we can write 

L Pi= L pj. (39.1) 
i~ I j~ I 

Obviously, the number and type of particles before and after a 
collision may be different. The momentum conservation law is 
valid both for the relativistic and nonrelativistic case. 

ENERGY CONSERVATION LAW. The application of this 
law is more difficult than of the momentum conservation law. 
As a matter of fact, the energy conservation law was formu
lated (see Chap. 6) only for forms of energy encountered in 
mechanics. Hence in the nonrelativistic case, we have to take 
into consideration only the kinetic and potential energies, 
while in the relativistic case, we must consider the rest energy 
as well. However, there do exist other forms of energy as well 
which have to be taken into account. For example, when two 
billiard balls collide, they are slightly heated. Hence the sum of 
the kinetic energies of the balls before and after the collision is 
not the same, i.e. kinetic energy is not conserved during the 
collision. A part of this energy is transformed into the internal 
energy which is associated with the heat and is localized within 
the ball. There are other forms of internal energy as well. The 
mutual potential energy of the particles constituting the ball 
and their rest energy also belong to the internal energy. Hence, 
in order to apply the energy conservation law, we must take 
into account the internal energy of the particles or bodies 
participating in the collision. However, the potential energy of 
interaction between the colliding particles need not be taken 
into account since they are assumed to be noninteracting 
before and after the collision. Denoting the internal energy of 
the particles and the kinetic energy of translational motion of 
the body by Eint and Ek respectively, we can write the energy 
conservation law during the collision in the form 

k 

L (Eint.i + Ek.i) = L (E\nt.j + £1. j). (39.2) 
i= 1 
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Not~.: that it is t:onvenient to treat the kinetic energy of 
rotational motion as the internal energy. 

In the relativistic case, (39.2) assumes a much simpler form. 
As a matter of fact, the relativistic total energy of a body 
expressed in the form (26.10) includes the kinetic energy as well 
as the rest energy containing all forms of internal energy. For 
example, if a billiard ball is heated as a result of collision, this 
will lead to an increase in the rest mass and will be 
automatically taken care of by an appropriate change in its 
total energy. Hence in the relativistic case, (39.2) can be written 
in the form 

n k 

L E; = L Ej, (39.3a) 

where 

mo;C2 
£. = -r====;;===;;: ' Jl- vl/c2 

(39.3b) 

is the total energy of the ith particle with a rest mass m0;. 

Taking (39.3b) into account, we can represent (39.3a) in the 
following form: 

(39.4) 

ANGULAR MOMENTUM CONSERVATION LAW. While 
applying the angular momentum conservation law, we must 
remember that bodies and particles may have intrinsic angular 
momentum. In bodies, this is associated with their rotation. 
Microparticles also have intrinsic angular momentum, called 
spin. For example, electrons, protons and many other ele
mentary particles possess spin. It was described earlier that the 
existence of spin cannot be explained by the rotation of 
elementary particles. It should be considered the intrinsic 
angular momentum of the particle during collisions. Hence, if 
we denote the angular momenta of particles participating in a 
collision by L;, and their intrinsic angular momenta by Lint.;, 
the angular momentum conservation law during the collision 
can be represented as follows: 

k 

I (L; + Lint.i) = I (Lj + Llnt.j). (39.5) 
i= 1 j= 1 
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ELASTIC AND INELASTIC COLLISIONS. Collision pro
cesses are divided into two types, viz. elastic and inelastic, 
depending on the nature in which the internal energy of 
particles changes as a result of their interaction. If the internal 
energy of particles changes during an interaction, the cqllision is 
called inelastic; if it remains unchanged, the collision is laid to be 
elastic. For example, a collision of billiard balls during which 
the balls are heated to a certain extent is an inelastic collision 
since the internal energy has changed as a result of the 
collision. However, if the billiard ball is made of a suitable 
material (say, ivory), its heating is insignificant and the change 
in the rotational motion is negligibly small. Under this 
assumption, the impact of billiard balls can be treated as 
an elastic collision. Sometimes, one speaks of a perfectly elastic 
collision in order to emphasize that the internal energy of the 
colliding particles is absolutely invariable. One also speaks of a 
perfectly inelastic collision if the entire energy is transformed 
into the internal energy in the final state. For example, the 
head-on collision of two balls having the same mass and made 
of a soft material is considered to be a perfectly inelastic 
collision if the balls merge into a single body at rest after the 
collision. 

CENTRE-OF-MASS SYSTEM. Introducing the centre-of-mass 
system, we can considerably simplify the analysis of collision 
phenomena (see Sec: 21). In this system, the energy and 
angular momentum conservation laws have the same form as 
(39.3) and (39.5), while the momentum conservation law having 
the form (39.1) can be represented in a simpler form since, by 
definition, the sum of the momenta of particles in a cen
tre-of-mass system is zero: 

n k 

L p;= L ri= o. (39.6) 
i= 1 j= 1 

Sec. 40. ELASTIC COLLISIONS 
Propcnies of elastic wllisions COLLISION OF TWO PARTICLES IN A NONRELATIVISTIC 
aro.: dcscrihcd and certain CASE. Let us choose the coordinate system in such a way that 
-:xamplcs arc con~idcrcd. one of the particles, say, the second, is at rest before collision, 

i.e. p 2 = 0. In this case, the energy and momentum conser
vation laws can be written in the form 
p2 p'2 p'2 
_1 = _1 + _2 (40.1) 
2m1 2m1 2m2 ' 

p 1 = p'1 + p'2' (40.2) 

where the kinetic energy is expressed in terms of the mo
mentum [mv2j2 = p2j(2m)], and it is considered that the 
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Fig. 108. Graphical solution of 
the collision problem for two 
particles (m 1 > m2 ). 

10. Collisions 

internal energy does not change in an elastic collision. 
Substituting the value of p'1 = p 1 - p2 from (40.2) into (40.1), 
we obtain 

, '2(ml + m2) Pt ·p2 = P2 .· 2m2 . (40.3) 

Let us denote the angle between pI and p'2 by e. In this case, 
PI 0 p'2 = PtP2 cos e, and (40.3) leads to the following expres
sion for p]., thus provicjing a complete solution of the problem 
under consideration: 

p]. = 2 ( m2 )p1 COS e. (40.4) 
mi + m2 

With the help of a simple geometrical construction, we can 
now describe the result of the collision. We draw vector p 1 

from a certain point 0 to represent the momentum of the 
incident particle (Fig. 108). After this, we draw a circle of 
radius 2 [m2/(m1 + m2)]p1 with its centre lying on the straight 
line coinciding with vector p 1 in such a way that the circle 
passes through point 0. Since the angle of a triangle inscribed 
in a circle and having its diameter as the base is 7t/2, all 
segments joining point 0 to points on the circle satisfy 
Eq. (40.4). Consequently, these segments describe the momen
tum after the collision of the particle that was at rest before the 
collision. It immediately follows from the momentum con
servation law (40.2) that the momentum of the incident particle 
after the collision can be determined with the help of the 
drawing shown in Fig. 108. The angle between the momenta 
of the first and second particles after the collision is denoted by 



Fig. 109. Graphical solution of 
the collision problem for two 
particles (m 1 < m2 ). 

? 
Under what condition does the 
angle of divergence be-
tween two particles lie between 0 
and n/2 after an elastic col
lision? 
When can a particle incident on 
a target be deflected at an 
arbitrary angle after 
an elastic collision? Under what 
conditions is scat-
tering at an arbitrary angle 
impossible? 
What are the factors deter
mining the magnitude of the 
energy transferred by a moving 
particle to a target upon an 
elastic collision? 
What is the condition for 
the most effective slow
ing down of fast par-
ticles as a result of elastic 
collisions? 
What type of collisions leave the 
frequency of y-quanta practi
cally unchanged in the Compton 
effect? 
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a, while ~ is the angle by which the incident particle deflects 
from its initial direction before the collision. The value of p; 
can also be determined geometrically without any difficulty. 
Thus, all quantities characterizing the collision have com
pletely been determined. Figure 108 represents the case when 
2m2 /(m 1 + m2 )< I, i.e. when the mass of the incident particle is 
larger than the rest mass (m1 > m2 ) of the particle called the 
target. It is clear from this figure that the angle a of divergence 
between the particles after the collision varies from 1[/2 to 0. 
The momentum p'1 will have its maximum value when the 
target moves after the collision nearly at right angles to the 
velocity of the incident particle. Note that this particle cannot 
change its direction by an arbitrary angle, and there exists an 
angle ~max beyond which the direction of motion of the 
particle cannot change. In Fig. I 08, this angle corresponds to 
the case when the line representing p'1 is tangential to the 
circle. 

Figure 109 represents geometrically the case of collision 
when the mass of a target is larger than the mass of an i"ncident 
particle (m2 >m1 ). It can clearly be seen from the figure that 
the angle of divergence between the particles after the collision 
varies in the interval 1[/2 <a< 1[. The angle ~ of deflection of 
the incident particle from its initial direction of motion varies 
from 0 to 1t, i.e. the particle may suffer an insignificant 
deflection or reverse its direction after the collision. 

In each of the cases considered above, all the characteristics 
of the collision are determined by the angle 0. But what is the 
value of this angle in a particular collision? This question 
cannot be answered with the help of the conservation laws. 
Everything depends on the conditions under which the col
lision occurs and on the peculiarities of the interaction. Hence 
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the conservation laws themselves do not provide a complete 
solution to the collision problem but can be used to analyze 
only its main features. 

HEAD-ON COLLISION. It can be seen from Figs. 108 and 
109 that the stationary particle receives the maximum mo
mentum as a result of the collision if a = 0. In this case, the 
collision is called head-on, or central. Such a situation arises, 
for example, when two billiard balls approach each other 
along the line joining their centres (this line must not change 
its direction in space in an inertial coordinate system). 

In this case, it follows from (40.4) that 

p'2 = (ml2:2m2)Pt· (40.5) 

The kinetic energy of the second particle after the collision, i.e. 
Ela = p'.} /(2m2), can be expressed in terms of the kinetic 
energy of the first particle before the collision, i.e. Eu = 
PV(2m1 ), through the formula 

, [ 4m1 m2 J 
Ek2 = (m1 + m2)2 Ek 1 , (40.6) 

as can easily be seen from (40.5). It follows hence that the 
maximum transfer of energy takes place when the bodies have 
the same }Oass (m1 = m2). In this case, 

Eb = Eu, (40.7) 

i.e. the entire energf' of the first particle is imparted to the 
second particle, and the first particle comes to a stop. This is 
obvious from the energy conservation law (40.7), as well as 
from Eq. (40.5) which assumes the form p'2 = p 1 , and together 
with the momentum conservation law (40.2) leads to the 
equality p'1 = 0. 

When the masses of the colliding particles differ consid
erably, the transferred energy is very small. From (40.6), we 
obtain 

Eb ~ 4(:: )Eu for m1 ~m2 , (40.8a) 

Eb ~4(:JEk1 for m2 ~m1 , (40.8b) 

i.e. in both cases Eb ~ Eu . However, a considerable mo
mentum transfer takes place. It can be seen from (40.5) that if 
the mass of the incident particle is much smaller than that of 
the stationary particle (m1 ~m2), the momentum of the sta
tionary particle after the collision, i.e. p'2 ~ (2m2/m1 ~ 2, will be 
much smaller than that of the incident particle, but its velocity 
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will not differ significantly from that of the incident particle. 
Considering that p2 = m2 v2 and p1 = m1 v1 , we obtain the 
following relation for the velocities: 

v2 = 2v1 • (40.9) 

For m2 ~ m1 , the transfer of momentum f:roml the first 
particle to the second is quite significant, i.e. p2 ~ 2p1 • 

However, although the momentum of the second particle is 
twice as large as that of the first particle, its velocity is very 
small in comparison with that of the first particle, i.e. 
v2 ~ (2mtfm 2)v. As a result of the collision, the velocity of the 
first particle is reversed in direction, but its magnitude remains 
practically unchanged. 

MODERATION OF NEUTRONS. The peculiar features of 
elastic collisions find many practical applications. As an 
example, let us consider the moderation of neutrons. During 
the fission of a uranium nucleus, a considerable amount of 
energy is released in the form of kinetic energy of the fission 
fragments. Simultaneously, between two and three (2.3, on the 
average) neutrons are also produced as a result of fission. The 
fission of a uranium nucleus is caused by neutrons. When a 
neutron collides with a uranium nucleus, the collision is elastic 
in most cases, but sometimes it is captured by the nucleus, as a 
result of which the fission of the uranium nucleus takes place. 
The probability of capture is very low and increases with a 
decreasing neutron's energy. Hence, in order to ensure a quite 
intensive chain reaction, i.e. to ensure that the n~utrons 
released as a result of fission of a uranium nucleus cause an 
intensive fission of other uranium nuclei, we must decrease the 
kinetic energy of neutrons. According to formula (40.8), each 
elastic head-on collision of a neutron with a uranium nucleus 
involves a transfer of only a small part (about 4/238) of the 
neutron's energy to the nucleus. This is a very small amount, 
and the neutrons are slowed down at a very low rat~. In order 
to increase the rate of slow-down, a special material called 
moderator is introduced in the reactor's core where nuclear 
fission takes place. Obviously, the nuclei of the moderator 
must be very light. For example, graphite is used as a 
moderator. Carbon nuclei which constitute graphite are only 
12 times heavier than a neutron. Hence each head-on collision 
of a neutron with graphite (a carbon nucleus) involves a 
transfer of about 4/12 = 1/3 of the neutron's energy to 
graphite, and the moderation takes place quite rapidly. 

COMPTON EFFECT. In the same way, let us consider a 
collision of two particles having relativistic velocities. Assum
ing that one of the particles is stationary before the collision, 
while the other moves at a relativistic velocity, the momentum 
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conservation law will retain its form (39.1), but the energy 
conservation law (39.2) must be replaced by the total energy 
conservation law in the form 

malc2 2 malc2 mo2c2 
-----;:=='=-'=;;==::;;: + m02 c = + . (40.10) 
j1 - vffc2 ji - v'?/c2 j1 - v~2/c 2 

We shall not describe the properties of the solution of these 
equations in the general case because the analysis is very 
cumbersome. Instead, let us consider a particular case which 
played a significant role in physics. This is the Compton effect. 
All material particles have wave as well as corpuscular 
properties. This means that a particle behaves like a wave in 
some cases and like a corpuscle in some other cases. Light also 
possesses similar properties. The corpuscular properties of 
light are manifested in that the light radiation behaves like an 
aggregate of particles, viz. photons, under certain conditions. A 
photon has an energy Eph and a momentum p, which are 
connected with the frequency m and wavelength A. of light 
through the relations 

p = lik, Eph =lim, (40.11) 

where I k I = 2rt/A., and li = 1.05 x 10- 34 J · s is Planck's con
stant. The ~maHer the wavelength, the more strongly are the 
corpuscular properties of light manifested. Photons corre-. . 
spondmg to wavelengths of the order of 0.1 nm are called 
y-quanta. The corpuscular properties of y-quanta are mani
fested quite clearly. wtYen y-quanta collide with electrons, they 
behave like particles whose energy and momentum are given 
by (40.11). 

Let us consider a collision between a stationary electron and 
a y-quantum (Fig. 11 0). Before the collision, the incident 
quantum had a momentum p1 = lik and an energy E hl = 
lim. After the collision, the quantum moves at an angle ~ and 
its momentum and energy are given by p; = lik' and 
E~h2 = lim' respectively. The energy and momentum of the 
electron after the collision are E~ = mc2 and p~ = mv. Before 
the collision, its energy was equal to the rest energy E2 = 
m0 c2 and its momentum p2 was zero. Let us write down the 
energy conservation law (40.10) and the momentum conser
vation law (39 .I), taking in to account ( 40.11 ): 

m0 c2 + lim = mc2 + lim', lik = lik' + mv. (40.12) 

These equalities can also be written in the form 

mc2 = li (m - m') + m0c2, mv = li (k - k'). 

Squaring both sides, we get 

m2 c4 = li 2 (m2 + m'2 - 2mm') + m~ c4 + 21im0 c2 (m - m'), 



Fig. I 10. To the Compton effect. 
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m2v2 = li 2 (k 2 + k' 2 - 2kk' cos 13). 
Considering that k = 2rt/'A = ro/c, where A. is the wavelength, 
we multiply the second equality by c and subtract it termwise 
from the first. This gives 
m2 c4 (I - v2 I c2) I 
= mij c4 - 21i20l0l' (I - cos 13) + 21im0 c2 (ro - ro'). (40.13) 

Considering that 

m - mo I - cos 13 = 2 sin2 -2
13 , 

- j1- v2/c2 ' 

we obtain from (40.13) the relation 
c c 21i . 213 
---=-SID-. 
ro' ro m0 c 2 

(40.14) 

The wavelength and the frequency are connected through the 
relation c/ro = 'A/(2rr). Hence (40.14) can finally be repre-
sented in the form · 

A/.. = A.' - A. = 2A sin 2 ~, 
2 

(40.15) 

where A= 2rtli/(moc) = 2.42 X w-lO em is called the Comp
ton wavelength of the electron. 

Thus, we have found that if a y-quantum collides with a free 
electron and is deflected by an angle 13, its momentum will v~ry 
in accordance with the laws of an elastic collision, and this 
decrease in the momentum leads to an increase in the 
wavelength given by (40.15). The change in the wavelength of 
y-quanta can be measured directly. Observations made by 
Compton fully confirmed the validity of formula (40.15). Thus 
the original assumptions on which the derivation of this 
formula was based (including formulas (40.11)) were also 
confirmed experimentally. 

Of course, y-quanta can collide not only with free electrons 
situated outside the atoms, but also with electrons in the 
atoms. The result of collision depends on how strongly an 
electron is bound to the atom. For outer electrons which are 
situated away from the nucleus and whose attraction by the 
nucleus is screened by the electric charge of electrons situated 
closer to the nucleus, this bonding force is very weak. Hence 
when a y-quantum collides with an outer electron, the 
situation is the same as if the electron were not bound to the 
atom, i.e. as if it were free. As a result of the collision, the 
electron is detached from the atom, and the y-quantum is 
scattered in accordance with (40.15). A different situation is 
observed when a y-quantum collides with an inner electron, 
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situated at a small distance from the nucleus and having a 
quite strong bond with it. The electron cannot be detached 
from the atom in this case, and the collision practically takes 
place not with an individual electron, but rather with the atom 
as a whole. Of course, the conservation laws (40.12) remain 
valid in this case; however, by m0 and m we now mean not the 
mass of the electron, but the mass of the whole atom, which is 
many thousand times larger than the mass of the electron. For 
the change in the wavelength of the y-quantum, we also obtain 
formula (40.15) in which m0 now stands for the rest mass of the 
atom. It follows hence that AA. is practically zero, i.e. the 
y-quantum does not change momentum as a result of the 
collision, as indeed should be the case when it collides with a 
particle of a very large mass. 

Hence in Compton's experiments. we obs~:rvc at any angle 
both y-quanta of the same wavelength as that of the im:ident 
y-quanta and y-quanta whose wavelength incr~:ascs in ac
cordance with (40.15). 

Sec. 41. INELASTIC COLLISIONS 
Properties of inelastic collisions 
arc tlcscrihed and some exam
ples arc considered. 

GENERAL PROPERTIES"OF INELASTIC COLLISIONS. The 
main feature of such collisions is that the internal energy of 
particles or'bodies participating in the interaction undergoes a 
change. This means that inelastic collisions involve not only a 
transformation of kindic energy into potential energy, or vice 
versa, but also a transformation of the internal energy of one 
particle into the internal energy of the other particle. The 
particle or body whose internal energy changes (and hence its 
internal state also changes) is either converted into a different 
particle or body, or retains the same identity but in a different 
energy state. Hence a mutual conversion of particles takes 
place as a result of inelastic collisions. If, for example, a light 
quantum is absorbed by an atom, not only does the quantum 
disappear, but the atom is also transferred into some other 
energy state. Many nuclear reactions are examples of inelastic 
collisions. 

INELASTIC COLLISION OF TWO PARTICLES. In this case, 
a part of the kinetic energy of particles must be transformed 
into internal energy, or vice versa. Of course, the energy and 
momentum conservation laws are also valid in this case. But 
they do not provide any indication as to which part of the 
kinetic energy of the particles is transformed into internal 
energy, or vice versa. This depends on the specific nature of the 
collision. The collision may be nearly elastic when only a small 
part of energy is transformed into internal energy or nearly 
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perfectly inelastic when practically all kinetic energy is trans
formed into internal energy. Let us imagine that we can change 
the elastic properties of a stationary body from a purely elastic 
state to a purely inelastic state when a body incident on it 
simply sticks to it. We can then follow the collisi9ns for all 
degrees of "inelasticity". Let us consider a pel"fectFy inelastic 
collision. In this case, both bodies merge into one as a result of 
the collision and move like a single entity. Assuming that the 
second body of mass m2 was stationary before the collision, we 
can write the conservation laws in the following form: 

E;nu + Eint2 + Ekl = Einto+2l + Ei.:o+2l• (41.1) 

P1 = P(1+2l• (41.2) 

· where E;nu and E;n12 are the internal energies of tlie first and 
the second body before the collision, Ekl is the kinetic energy 
of the moving body, p1 is its momentum, while Eint(l + 2), 

Ek (1 + 2) and p(1 + 2 ) represent the internal energy, the kinetic 
energy and the momentum of the body obtained as a result of 
merging of the two bodies after the collision. 

If the mass-energy relation is not taken into consideration, 
(41.2) makes it possible to find the velocity of the body 
obtained as a result of merging: 

m1v1 = (m1 + m2)v2, 

whence 

(41.3) 

(41.4) 

Using these formulas, we can also determine the kinetic energy 
11Ek transformed into internal energy due to the collision: 

/1Ek = m1 vf _ (m1 + m2) v~ = m2 Ekl. (41.5) 
2 2 m1 + m2 

If the mass of the stationary body is very large (m2 » m1), then 
11Ek ~ Eu, i.e. nearly all the kinetic energy is transformed 
into internal energy. In this case, the body formed by merging 
of two colliding bodies is practically at rest. If the mass of a 
body at rest is very small (m 2 « md, then /1Ek ~ 0, i.e. no 
substantial transformation of the kinetic energy into internal 
energy occurs. 

The body formed by me-rging of two colliding bodies moves 
at nearly the same velocity as that of the first body before the 
collision. 

ABSORPTION OF A PHOTON. The absorption of a photon 
by an atom is a typical example of an inelastic collision which 
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When a photon is absorbed by 
an atom at rest, not all its 
energy is transformed into the 
internal energy of the atom. 
A certain part of the pho
ton's energy is transformed 
into the kinetic energy of the 
atom as well. 
When an atom emits a photon, 
it does not transfer to the 
photon all the internal energy 
liberated during emission. 
A certain part of the in-
ternal energy is transformed 
into the kinetic energy of the 
atom. 

10. Collisiom 

can be described by using the diagram shown in Fig. 98c. 
Before the absorption, we have a photon and an atom, while 
after the absorption, we are left only with the atom. Assuming 
that the atom was stationary before absorbing the photon, we 
can apply the energy and momentum conservation laws to this 
process by taking into account the relations (40.11) for the 
photon: 
M 0 c2 + liro = M' c2 , (41.6a) 

liro - = M'v'. (4l.6b) 
c 

From (41.6a), we obtain the mass of the atom after the 
absorption of the photon: 

liro 
M'=Mo+2, 

c 

while (41.6b) gives the velocity of the atom if we take into 
account the last equality: 

, cliro v -------;;---
- M 0c2 + liro · 

(41.7) 

Assuming that the energy of the photon is much smaller than 
the rest energy of the atom (liro « M0 c2), we can represent this 
formula in it more convenient form: 

v' ~ c~(l- liro \ ~ c~. (41.8) 
M 0 c2 M 0c21/ M 0c2 

Thus, after absorbing the photon, the atom acquires a kinetic 
energy 

(41.9) 

This means that not all the photon's energy has been 
transformed into the internal energy of the atom, the amount 
of energy not transformed being given by (41.9). This energy 
!iEk was used for imparting a kinetic energy to the atom. 

EMISSION OF A PHOTON. The emission of a photon by an 
atom is also a typical collision process, which is represented 
diagrammatically in Fig. 98d. Such a process is usually called 
a d.:cay. When a photon is emitted, the internal energy of an 
atom changes; a part of the energy is transformed into the pho
ton's energy, while another part is used up as the kinetic energy of 
the atom. This part of the energy is called the recoil energy. 
Consequently, the energy of the emitted photon is less than the 
change in the internal energy of the atom by an amount liEk. 
This energy can be calculated with the help of the energy and 
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momentum conservation laws which have the following form 
in this case: 
M 0c2 = M'c2 + Firo', 

Firo' 
0=-+M'v'. 

c I 

(41.10a) 

(41.10b) 

Obviously, AEk is the kinetic energy of the atom after the 
emission of the photon. From (41.10b), we obtain 

M' v'2 (Firo')2 

!J.Ek = -2- 2M'c2" (41.11) 

The quantity M' can be found from (41.10a). However, for 
Firo' « M 0 , this quantity does not differ significantly from M 0 

and there is no need to take into consideration its deviation 
from M0 . In other words, it can be assumed that (41.11) 
contains M 0 instead of M'. 

Thus, an emitted photon does not carry all the internal 
energy of the atom emitting it, and not all the energy of a 
photon absorbed by an atom is transformed into the internal 
energy of the atom. 

Sec. 42. REACTIONS OF SUBATOMIC PARTICLES 
Basic concepts associated with 
the reactions of subatomic part i
des arc described. 

THRESHOLD ENERGY. It was mentioned above that inelastic 
collisions include all the processes of interconversion of 
particles. Some of these conversions involving photons were 
considered in the previous section. We shall now discuss some 
other concepts associated with these processes. 

Suppose that particles a and b are transformed into c and d 
as a result of collision. It is customary to consider collisions in 
the centre-of-mass system. In this system, the momentum 
conservation law is reduced to the equality of the sum of the 
momenta of the particles to zero before and after the collision. 
For the present, we are not interested in this law. The energy 
conservation law has the form 

Ea + E, + Eka + Eu = E~ + E', +E).,+ EJ.d, (42.1) 

where E represents the internal energies of the particles with 
the appropriate subscripts, and Ek are their kinetic energies. 
The quantity 

Q = Ea + E, - E~ - E', = El., + EJ.d - Eka - Eu (42.2) 

is called the energy of reaction. This quantity is equal to the 
total kinetic energy of the particles participating in a reaction, or 
the change in the internal energy with the opposite sign. If the 
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The threshold energy of a 
reaction is the minimum kinetic 
energy of the reacting particles 
for which the reaction can still 
proceed. 
The activation energy is the 
minimum kinetic energy of the 
reacting particles which is 
conserved after the reaction; it 
does not participate in the 
reaction, but simply ensures 
that the reaction does take 
place. 

10. Collisions 

kinetic energy of the reaction products is higher than that of 
the original particles, then Q>O. For Q<O, the sum of the 
internal energies of the reaction products is more than the sum 
of the internal energies of the original particles. Thus, for Q > 0, 
internal energy is transformed into kinetic energy, while for 
Q < 0, on the contrary, kinetic energy is absorbed and 
transformed into internal energy. 

Let Q > 0. In this case, the reaction can take place for any 
kinetic energies of the particles, which may be quite low. For 
example, the reaction may take place for Q = 0 as well. 

However, the situation is quite different for Q < 0. In this 
case, the sum of the kinetic energies must exceed a minimum 
value at which the reaction can take place. If this minimum 
value is not attained, the reaction cannot proceed. Obviously, 
this minimum is equal to the absolute magnitude I Q 1. It is 
called the threshold energy of the reaction. Thus, the 'threshold 
energy of a reaction is the minimum kinetic energy of the 
reacting particles at which the reaction can proceed. 

ACTIVATION ENERGY. For Q > 0, a reaction may occur 
spontaneously for any values of the kinetic energy. However, 
this does not mean that the reaction does indeed occur. For 
example, if two protons are brought quite close together, they 
will interact. This will result in the formation of a deuteron, a 
positron, a neutrino, and in the liberation of kinetic energy 
equal to 1.19 MeV. In this reaction, Q>O. However, this 
reaction cannot proceed unless the forces of Coulomb re
pulsion appearing wheq..the two protons approach each other 
are overcome. 

For this purpose, protons must have a certain minimum kinetic 
energy which is conserved after a reaction, but does not 
participate in the reaction and only ensures that it takes place. 
Hence this energy is called the activation energy. 

TRANSITION TO LABORATORY COORDINATE SYSTEM. 
The activation energy and the threshold energy are determined 
in the centre-of-mass system. But how can we find the 
threshold energy in the laboratory system if we know its value 
in the centre-of-mass system? Obviously, this requires a 
transition from the centre-of-mass system to the laboratory 
coordinate system. 

Let us consider this transition, by taking the example of a 
collision of two particles. Obviously, in the general case, we 
should make use of the relativistic formulas. We assign the 
superscript c. m to quantities pertaining to the centre-of-mass 
system, and I to those corresponding to the laboratory system. 
Suppose that in the laboratory system, particle 2 is stationary 
and particle 1 is incident on it. In the centre-of-mass system, 
the particles move towards each other. As a result of the 
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collision of these particles, a reaction may occur in which the 
internal energy of the particles formed is £; (c.mJ in the 
centre-of-mass system. The threshold energy of this reaction is 
Q, while the internal energies of the colliding particles in the 
centre-of-mass system are £\c.mJ and £<2<.m) re~ctively. 
Obviously, the condition under which a reaction can take 
place between these particles in the centre-of-mass system can 
be written on the basis of (42.2) in the following· form: 

£(c. m) = £\c. m) + £~· m) + Q ;?: L Ej (c. m). 
i 

(42.3) 

Obviously, the aggregate of two particles having a threshold 
energy Q can be considered in the centre-of-mass system to be 
a single particle with internal energy £<c.m) defined_ by (42.3). 
Upon a transition to the laboratory system, this "particle" has 
a momentum p 1 equal to the momentum of the first particle, 
which is in motion in this system, and an intrinsic (internal) 
energy E 1c.mJ. Consequently, as a result of a transition to the 
laboratory system, £<<.ml in (42.3) is transformed into the 
energy 

£11) = Jc2pf_ + (£<c.mJ)2 . (42.4) 

On the other hand, the total energy of these individual 
particles can be represented in the form 

£(1) = J C2PI + (£\c.m) )2 + £<;·m) • (42.5) 

It follows from (42.4) and (42.5) that 

(£(C.m))2 = (£<t""m))2 + (~c.m))2 + 2£'£·m) J C2PI + (E\c.m))2 • 
(42.6) 

The kinetic energy of the first particle in the laboratory system 
is 

E~~ = Jc2pf + (£\c.m))2 _ £\c.m). 

Finding the value of J c2pf + (E1c.ml)2 from 
substituting this quantity into (42.7), we obtain 

(e•·ml)2 _ (E.•-ml)2 _ (E!:c.m))2 
J!;ll = 1 2 _ g,c.m) 

kl 2Ec.m) 1 
2 

(Ec.ml)2 _ (Etm' + e;-m>)2 

2E{"m) 

(42.7) 

(42.6) and 

(42.8) 

With the help of this relation, we can represent (42.3) in the 
form 

(" £~(c.m))2 _ (E,c.m) + J:!:t.m))2 
E_l) >-: .t.., I 1 2 

kl ~ 2.P{"m) (42.9) 
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This is the required inequality for calculating the threshold 
energy in the laboratory coordinate system. Let us apply this 
for determining the threshold of the most familiar reactions 
involving two protons. 

THRESHOLD OF GENERATION OF 1t0 -MESONS. When two 
protons collide, a 1t0-meson may be created according to the 
reaction 
p + p -+ p' + p' + 7to, (42.10) 

where p' are the same protons, but with different energies and 
momenta. The intrinsic energy of the proton is Epo = 
980 MeV, and of a 1t0-meson is £"0 = 135 MeV. Hence, using 
(42.9), we can determine the following value of the threshold 
energy of the reaction: 

.P~l ~ (2Epo + E"o)2 - (2Epo)2 = 280 MeV. (42.11) 
2Epo 

THRESHOLD OF GENERATION OF PROTON-ANTIPRO
TON PAIRS. The collision of two protons may also result in the 
formation of a proton-antiproton pair according to the 
reaction 

p + p -+ p + p + p + p, (42.12) 

where p is ;the symbol for the antiproton. It has the same 
intrinsic enprgy as the proton, and hence we obtain the 
threshold energy of this reaction with the help of ( 42.9): 

nl) ~ (4Epo)2 - (2Epo);1i'- 6E ""' 6 GeV 
£-kl r - pO - • (42.13) 

2EP0 

ROLE OF COLLISIONS IN PHYSICAL INVESTIGATIONS. 
Investigation of collisions is the principal method for analyzing 
properties, interactions and structure of atomic and subatomic 
particles. 

When the interaction of macroparticles is considered, it is 
possible to study the evolution of the process. For example, 
when two billiard balls collide, it is possible to follow the 
evolution of the process, the deformation of the shape of the 
balls after the collision and the transformation of the kinetic 
energy of the balls into their potential energy of deformation. 
The interval of time over which this process takes place is very 
small on the ordinary time scale. However, if we take into 
consideration the time scales that can be measured by modern 
experimental techniques, this time interval is extremely large, 
and a detailed investigation of the process is quite possible. 
Hence the impact of billiard balls can be considered not only 
to be a collision, but also a process in which the geometrical 
and physical properties of the balls undergo a change. This 
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makes it possible to carry out a continuous observation of the 
chain of events connecting the state of the billiard balls long 
before the impact with the state long after the impact. An 
investigation of this process provides information about the 
physical properties of the balls and their interaction. If this 
information is of no significance in a parti<;.ular/ case (for 
example, in a billiards game), the impact can be treated as a 
collision. 

A different situation prevails for the phenomena in the 
physics of atomic and subatomic particles, when the evolution 
of the process of their interaction cannot be studied experi
mentally in space and time, and only the result can be 
investigated. This means that in the physics of atomic and 
subatomic particles, a collision always has the meaning of the 
definition given at the beginning of Sec. 39. Studies of the 
collisions make it possible to verify the theoretical concepts 
about the collision process and is a principal method for 
investigating interactions, interconversions, structure and 
other important properties of microparticles and the processes 
occurring in the microcosm. 

Let us consider certain examples involving the studies of the 
structure of microparticles. It was assumed at the beginning of 
this century that the positive charge of an atom and the main 
part of its mass (pertaining to the positive charge) are 
"smeared" over the entire volume of the atom whose linear 
dimensions are of the order of 10- 8 em. Electrons move in this 
positively charged cloud. The total charge of the electrons is 
equal in magnitude to the positive charge of the atom, and 
hence the total charge of the atom is zero. Investigations were 
undertaken to study the collision of alpha particles with atoms. 
The electric charge and the mass of alpha particles, as well as 
the forces of interaction between their charges, were already 
known at that time. According to the theoretical results on the 
collision of alpha particles with atoms, if alpha particles have a 
very high energy, collisions with atoms cannot teverse the 
direction of their velocity or even deflect them in the backward 
direction. However, such a situation was observed experimen
tally, and hence it became necessary to change the concept of 
the structure of the atom. The result was the planetary model 
of the atom, according to which all the positive charge of the 
atom and nearly all its mass are concentrated in the nucleus, 
the electrons revolving around it like planets around the Sun. 
The size of the atom was estimated at about w-s em. 

Collisions of electrons of very high energies with protons 
were studied at the end of the fifties. In principle, these 
experiments are similar to the ones that Jed to the planetary 
model of the atom. The distribution of the electric charge over 
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the volume of the proton was determined with the help of these 
investigations. 

Collisions of electrons of extremely high energies with 
protons were studied in the seventies. It was found that an 
electron collides not with a proton as a whole, but with the 
particles (quarks) constituting it. This led to the quark model 
for the structure of the proton, which had been predicted 
theoretically before these experiments. 

These examples are but a small part of the fundamental 
discoveries made in the physics of microcosm with the help of 
the collision studies. 

10.1. A stationary particle of mass m0 decays into two particles of rest mass 
m10 and m20 . Find the kinetic energy of the decay products. 

10.2. A particle of rest mass m01 and energy E impinges on a stationary 
particle of rest mass m02 . Find the velocity of the centre-of-mass 
system. 

10.3. A particle of rest mass m01 impinges at a velocity v on a stationary 
particle of mass m02 . The collision is perfectly inelastic. Find the rest 
mass and the velocity of the particle formed as a result of the collision. 

lOA. A particle of rest mass m0 is scattered at an angle 9 after undergoing an 
elastic collision with a stationary particle of the same mass. Find the 
kinetic energy of the particle after the scattering if it had an energy Ek 
before the scattering. 

,;. 

10.2. cjE2 - m~ 1 c4/(E + :n02 c2 ). IO.J. (m~ 1 + m~2 + 2m01 m02/ 

Jl- v2/c2 ) 112 , m01 v/(m01 +m02 jl- v2/c2 ). 

10.4. Ekcos2 9/[1 + Ek sin2 9/(2m0 c2 )]. 



Chapter 11 
Motion in a Gravitational Field 

I 

Basic idea: 
Gravitational forces significantly affect the motion only when 
at least one of the interacting bodies has quite a large 
(astronomical) mass. 

Sec. 43. GRAVITATIONAL FORCES 
Gravitational forces and their NEWTON'S LAW OF GRAVITATION. This law defines the 
manifestations arc dcscrihcd. force F of attraction between point masses m1 and m2 

separated by a distance r: 

m1m, 
F = Ci---z • r 

(43.1) 

where G = 6.7 X w-ll N. m2/kg2 is the gravitational con
stant. Bodies having a spherically symmetric mass distribution 
over their volume interact as if their masses were concentrated 
at the centres of these spheres. The potential energy of the 
point mass m2 in the gravitational field of the point mass m1 

can be written in accordance with (25.35a) as follows: 

(43.2) 

But this quantity is the same as the potential energy of mass 
m1 in the gravitational field of mass m2 • Hence EP in (43.2) is 
the energy of interaction of the point masses m1 and m2 • 

GRAVITATIONAL FIELD NEAR THE EARTH'S SURFACE. 
Let us denote the radius of the Earth by R0 , and the distance 
between a point mass m and the Earth's surface by h, where 
h « R0 • The total distance between the material point and the 
centre ofthe Earth is R0 +h. Hence, in accordance with (43.1), 
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the force of gravity is given by 

GMm 
F= . 

(Ro +W 
(43.3) 

We assume that 

1 1 1 1( h ) 
(R 0 + h)2 = R~(l + h/R0 )2 ~ R~ l - 2 R 0 + ... ' (43.4) 

where we have neglected the quadratic and higher-order terms 
in (h/ R0 ) 2 in view of the fact that the quantity h/ R0 is very 
small. For example, for distances of the order of 20 km, i.e. the 
altitudes attainable by aeroplanes, we have h/Ro ~ 3 X 10- 3• 

The square of this quantity is a millionth part of unity. In most 
cases, there is no need to take into account insignificant 
variations in the force of gravity. For example, when a body 
falls from an altitude of up to 1 km, the variation in the force 
of gravity is less than 2(h/Ro)~3 X 10- 4 . Within this 
accuracy, we can consider that the force of gravity is constant 
and independent of the altitude. According to (43.3) and (43.4), 
we can write this quantity as 

GMm 
Fo = -R---z 'F gm, 

0 . 
(43.5) 

where g = GM/ R~ = 9.8 m/s2 is the acceleration Jue to 
gravity near the Earth'~urface. In this approximation, we can 
analyze the problems associated with the force of gravity near 
the Earth's surface. 

GRAVITATIONAL ENERGY OF A SPHERICAL OBJECT. 
Suppose that we have a sphere of radius Rand mass M. The 
energy of the gravitational field, or the gravitational energy, is 
associated with the mutual interaction of the particles consti
tuting this sphere. This energy is numerically equal to the work 
that must be done in order to scatter the material of the 
sphere, treated as a continuous medium, over the entire infinite 
space. Naturally, in this case, we have to take into account the 
work done in overcoming the forces of gravitational attraction. 
Forces like the electromagnetic forces that confine atoms in 
molecules and molecules in solids, liquids, etc. can be 
neglected. 

For the sake of simplicity, we shall assume that the mass of a 
body is distributed uniformly over the sphere with a density 
p = 3M/(47tR3 ). It is convenient to remove the substance from 
the sphere to infinity layer by layer, starting from the surface. 
The layers that have been removed cannot influence the 
removal of the subsequent layers in any way since the 



Fig. Ill. Computing the grav
itational energy of a sphere. 
Since the potential energy of a spher
ical layer of a substance depends 
only on the internal layers, calcula
tions should be started from the 
outer layers of a body and termi
nated at the centre. 
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JWzat is the gravitational energy 
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body? 
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subsequent layers are assumed to lie inside the spherical layers 
that have been removed. 

Here. we accept without a proof the statement that a 
homogeneous spherical layer does not create any gravitational 
field in the spherical cavity formed by it. 

A layer of thickness dr at a distance r from the &ntre of a 
sphere (Fig. 111) has a mass p4xr2 dr. When this layer is being 
removed, it is subjected only to the action of the mass of the 
sphere of radius r, enclosed within the cavity formed by this 
layer. The work done in removing this spherical layer is equal 
to its potential energy in the gravitational field created by all 
the inner layers: 

(p4xr3 /3) p4xr2 dr 
dFg.r = -G (43.6a) 

r 
Integrating this expression over the entire volume of the sphere, 
i.e. from r = 0 to r = R, we obtain the total gravitational 
energy of the sphere: 

R 

16x2 f 16x2 
Eg.r = -G-3-p2 r4 dr = -G"""""f5p2R 5• 

0 

Considering that p = 3M/(4xR3), we get 

3 M 2 

E = --G-g.r 5 R · 

(43.6b) 

(43.7) 

This is the gravitational field energy associated with the grav
itational attraction of the mass elements comprising the sphere. 

GRAVITATIONAL RADIUS. The rest energy of a body of 
mass M is equal to Mc2• One can ask if it is possible to 
visualize this energy as the gravitational field energy trans
formed into the rest energy when the substance constituting 
the body is contracted from a scattered state at infinity, where 
the particles do not interact with one another. · 

To compute the radius of the sphere to which the substance 
is contracted from infinity, we equate the gravitational energy 
to the rest energy (after neglecting the numerical factors): 

GM2 

--"' Mc2• 
r 

Hence we obtain r"' GMfc2• The quantity 

GM 
r =-

g ('2 

is called the gravitational radius. 

(43.8) 



304 11. Motion in a Gravitational Field 

By way of an example, let us calculate the gravitational 
radius of the Earth whose mass is M = 6 x 1024 kg: 

(6.7 x 10- 11)(6 x 1024) m _ 
r1 E = · 8 2 = 4 x 10 3 m = 0.4 em. 

. (3 X 10 ) 

This means that the entire mass of the Earth would have to be 
concentrated in a sphere of diameter of about 1 em if its 
gravitational energy were equal to its rest energy. In actual 
practice, the Earth has a diameter of about 109 em. This 
indicates that the gravitational energy plays an insignificant 
role in the overall energy balance of the Earth, including its 
rest energy. A similar situation prevails on the Sun which has a 
gravitational radius of about I km, while its actual radius is 
about 700,000 km. 

SIZE OF THE UNIVERSE. This, however, is not always the 
case. For some astronomical objects, the gravitational energy 
is nearly equal to their rest energy and always plays a 
significant role. The Universe as a whole can be considered an 
object of this type. 

The average density of distribution of matter over the 
Universe can be determined by observation, by estimating the 
mass of astronomical objects and their distance from the 
Earth. The accuracy of these estimates is not very high since, 
firstly, then~ are significant errors in the determination of their 
distances and, secondly, it is very difficult to take into account 
the mass of the interst.tlar gas and nonluminous objects that 
cannot be observed. At present, it is assumed that the average 
density p has an order of magnitude "'10- 25 kgjm3• This 
means that a cubic metre of the interstellar space contains 
about 100 protons, i.e. the average distance between protons 
would be about 30 em if the entire mass of the Universe were 
distributed uniformly over its volume in the form of pro-
tons. , 

This situation can be visualized as follows. It is well known 
that the electric charge of a proton is distributed over a volume 
having linear dimensions of about 10- 13 m. Hence, if a proton 
were a pea of about 1 em in diameter, the average separation 
between the protons corresponding to their average separation 
in the Universe would be about twenty times the distance 
between the Sun and the Earth. 

Let us calculate the value of the radius R0 of a sphere in the 
Universe for which the rest energy of the mass contained in the 
sphere is equal to the gravitational energy or, in other words, 
the radius of the sphere is equal to the gravitational radius of 
the mass enclosed within this sphere. Since the mass of the 
sphere is M- p0 R~, the anticipated condition can be written 
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on the basis of (43.8) in the form 

Gp0R~ 
Ro ~--2-. 

c 

Hence I 
c 3xl08 · 

Ro ~ --= ~ m ~ J026 m. 
jGp0 )6.7 X 10- 11 X 10- 25 
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(43.9) 

Thus. the required gravitational radius has the same order 
of ma!!r.i~ude as the quantity which is currently accepted as till' 
r.1dius of the Universe. This means that on the scale of the 
Universe, gravitation plays a very significant and at times 
decisive. role. 

"BLACK HOLES". The most important physical meaning of 
the concept of gravitational radius lies in the idea that the 
region within a sphere of such a radius as if loses all contact 
with the region outside it, with the exception of the gravita
tional interaction. If the entire mass of the Earth could be 
enclosed within a sphere of diameter 1 em, the inner regions of 
this sphere would have no contact with the outer regions 
except for the gravitational action. This means that light could 
not emerge from such an inner region and only the enormous 
gravitational forces would indicate the existence of such a 
region. . 

The particles and radiation quanta flying in the vicinity of 
such a sphere of gravitational radius would be drawn towards 
it and disappear there. Hence such a region is called a "black 
hole". 

Do "black holes" actually exist in the Universe? It is borne 
out by theoretical calculations that if the mass of a star is more 
than twice the mass of the Sun, it will shrink uncontrollably 
under the action of gravitational forces. At a certain instant, 
the radius of the star will become equal to its gravitational 
radius and it will be converted into a "black hole". 

"Black holes" have not been discovered so far, but at least 
one astronomical object that possibly contains a ''black hole" 
can be observed at present. 

It can also be assumed that if a rather small mass, say, of a 
few tons, were somehow confined to a small volume compa
rable to the value given by (43.8), it would then be transformed 
into a small "black hole". According to one hypothesis, a few 
such "black holes" were left from the initial superdense state of 
the Universe. These objects are called relic "black holes" and 
have also not been discovered in nature so far. 
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Apparently, "black holes" do not exist in nature any more since the 
quantum theory leads to the conclusion about the "evaporation" of 
matter from "black holes" having a mass of a few tons; consequently, it 
is believed that such "black holes" have already disappeared. 

Sec. 44. MOTION OF PLANETS AND COMETS 
Kepler's laws of planetary mo
tion arc derived and applied to 
the motion of planets and com
ets, as well as to the propagation 
oflight in the gravitational field 
of the Sun and to interplan
etary flights. 

Johannes Kepler (1571-1630) 
German astronomer who discov
ered the laws of planetary mo
tion. These laws were used for 
compiling the tables of planets. 
He laid the foundations of the 
theory of eclipses, and invented 
a telescope in which the objec
tive and the eyepiece are both 
double-convex lenses. 

EQUATION OF MOTION. The mass of the Sun (2 x 1030 kg) is 
332,000 times the mass of the Earth (6 x 1024 kg) and about 
1000 times the mass of Jupiter, the heaviest planet in the solar 
system. Hence the Sun can be considered to be stationary to a 
fairly high degree of accuracy, and the planets can be assumed 
to be revolving around it. The distance between the Sun and 
the planet!!, is much larger than the size of the Sun and the 
planets. For example, the distance between the Sun and the 
Earth is nearly equal to 150 million kilometres, while the 
diameters of the Sun and the Earth are about 1.4 million 
kilometres and 12,700 kilometres respectively. 

Thus, while considering the motion of the Earth and other 
planets around the Sun, we can treat them as point masses 
with a high degree of accuracy. 

We denote the mass of a planet and the Sun by m and M 
respectivQI.y and treat them as a point mass and the centre of 
force. We take the centre of the Sun as the origin of the 
coordinate system. l)e equation of motion for the planet can 
be written in the form 

dv mMr 
m-= -G--

dt r2 r' 
(44.1) 

where r is the radius vector of the planet. 
MOMENTAL EQUATION. The force acting on a point mass 

is directed along the radius vector. The moment of this force 
about the centre of force is zero, and the momenta! equation 
(2 1.4) has the form 

dL dt = M = r x F = 0. (44.2) 

Hence the angular momentum of a point mass about the 
centre of force has a constant magnitude as well as direction: 

L = r x mv = const. (44.3) 

PLANE OF MOTION. Equation (44.3) can be written in the 
form 

mr xi·= const. (44.4) 
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Hence the elementary displacement dr = v dt and the radius 
vector r lie in a plane perpendicular to L 

This medns that the motion takes place in the same plane, 
i.e. can be called plane motion. 

KEPLER'S SECOND LAW. This law states that 
the segment joining the Sun to a planet swt;,eps tqual areas 

in equal intervals of time. 
This law follows directly from the angular momentum 

conservation law (44.3). Indeed, (44.3) can be written in the 
form 

L 
r x dr = -dt. (44.5) 

m 

Let us find the geometrical meaning of the left-hand side of 
this equation. It can directly be seen from Fig. 1"12 that the 
vector product r x dr is equal in magnitude to twice the area 
of the triangle formed by vectors r and dr: 

I r x dr I = I r I I dr I sin ((di) = r dr sin a = r dh = 2dS. ( 44.6) 

Denoting the area of a surface element by a vector 
perpendicular to this surface (see Fig. 112), we can write 
dS = r x dr/2 and represent (44.5) in the form 

L 
dS = 2m dt. (44.7) 

Since L = const, integrating both sides of this equation with 
respect to time, we· obtain 

L 
S - S0 = 2m (t - t 0 ), (44.8a) 

or 

L 
!:!.S = --!lt. 

2m 
(44.8b) 

This is Kepler's second law which states that the radius 
vector of a planet sweeps equal areas in equal intervals of time. 

KEPLER'S FIRST LAW. According to this law, 
all planets move in elliptic orbits with the Sun as one of the 

foci. 
In order to prove this law, we must find the orbit. It is easier 

to carry out the calculations in a polar coordinate system 
whose plane coincides with the plane of the orbit. First of all, 
we must write the energy and angular momentum conserva-. 
tion laws in polar coordinates. For this purpose, we decom
pose the elementary displacement dr into two components: 
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(dr), perpendicular to the radius r in the polar coordinate 
system, and (dr), along this radius (Fig. 113). The first 
displacement is associated with the change in angle <p during 
the motion, while the second one is due to the change in the 
distance r of the planet from the origin of coordinates. We 
denote the unit vector perpendicular to r and directed towards 
increasing <p by e, and the unit vector directed towards the 
increasing radius by e,. The displacement dr can be expressed 

0 oo----"------~- through the formula 

Fig. 113. Decomposition of the 
velocity vector into two compo
nents, one along the radius and 
the other perpendicular to it, in 
the polar coordinate system. 

dr = e,(dr), + e,(dr),. (44.9) 

Since (dr), is an elementary arc of a circle of radius r, we can 
write (dr), = r d<p; the quantity (dr), is the projection of dr on r 
i.e. (dr), = dr. Hence (44.9) assumes the form 

dr = e,rd<p + e,dr. (44.10) 

Dividing both sides of (44.10) by the displacement time, we 
obtain (see Fig. 113) 

(44.11) 

where v, = rd<pfdt = rep and v, = drfdt = f. Squaring both 
sides of this equation and considering that the scalar product 
of the vectors e, and e, is zero in view of their orthogonality, 
i.e. (c,, c,) = 0, we obtain the following expression for the 
square of the velocity: 

v2 = v~ + v; = r 2 cj>2 -l;;,f2 • (44.12) 
I 

Substituting the expression r = e,r for the radius vector r 
and the expression (44.11) for the velocity v into (44.3), we 
obtain from the law of vector product the expression 

L = mr2<jlc, x c, = const. (44.13) 

The vector c, x c, is a unit vector perpendicular to the plane 
of motion. This vector determines the direction of vector L 
According to (44.13), the conservation law for L has the form 

L = mr2 <j> = const. (44.14) 

The energy conservation law can be written with the help of 
(44.12) without any additional computations: 

mv2 mM m 2 2 2 mM 
--G- = -(f + r cj>)- G- = const. (44.15) 

2 r 2 r 

Thus we have obtained two equations (44.14) and (44.15) in 
two unknown functions r(t) and <p(t), which are suffiCient for 
describing the motion completely. However, we are not 
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interested in finding the course of motion in time, but just in 
the shape of its trajectory. Hence we eliminate the time 
dependence from these equations. It follows from (44.14) that 
(j> = I/(mr2). Substituting this expression into (44.15), we can 
eliminate (j>. Next, we represent r as a composite function of 
time: r(t) = r[cp(t)]. For the sake of convenience, we introduce 
the function 

1 
p=

r 

instead of r. This gives 

dr _ dr dcp _ ~(~)dcp __ _!_ dp _!::_ 
dt - dcp dt - dcp p dt - p2 dcp mr2 

Ldp 
= -;;; dcp. 

(44.16) 

Substituting this expression for; and the expression 1/p for r 
in accordance with (44.16) into (44.15), we obtain the equation 

( dp)2 2m2 M 
- + p2 - G--p = const. 
dcp L 2 

(44.17) 

Differentiating this equation again with respect to cp, we obtain 
dlp 
dcp2 + p = c' (44.18) 

where C = Gm2 MfL 2 > 0. The general solution of Eq. (44.18) 
is well known: 

p=C+Acoscp+Bsincp, (44.19) 

where A and B are arbitrary constants which must be 
determined from the initial conditions. The right-hand side of 
this equation can be transformed as follows: 

p=C+Acoscp+Bsincp 

= C + J A 2 + B2 ( A cos cp + B sin cp) J Al + Bl J Al + Bl 

= C + J A2 + B2 (cos cp 0 cos cp + sin cp0 sin cp) 

= C + J A 2 + B2 cos(cp - <p0 ) 

[ JA2 + B2 J 
= C 1 + C cos(cp- cp0 ) 

1 
= -[1 + ecos(cp- cp0 )], 

p 
(44.20) 

where the following notation has been used: p = 1/C = 
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Fig. 114. Various possible trajec
tories of motion in the gravita
tional field of a point object: 
/-circle; 2-ellipse; 3-parabola; 
4- hyperbola. 
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L2/(Gm2M) and e = J A 2 + B 2/C. The angle cp0 is defined by 
the expressions 

A 
cos cp 0 = , 

jA2 + B2 

Thus, the equation of the curve along which a body (planet) 
moves has the following form in polar coordinates: 

I p 
-= /" = . 
p I+ ccos(cp- cp0 ) 

(44.2la) 

It is well known from analytic geometry that this is the 
equation of a conic section, i.e. the curve formed by the section 
of a cone by a plane. The quantity p is called the orbital 
parameter, while e is the eccentricity. The conic section may be 
an ellipse (e > 1), a circle (e = 0), a parabola (e = 1), or a 
hyperbola (e < 1). 

It can be seen from (44.2la) that the distance r from the 
body assumes its minimum value r min for cp = cp0 • Hence it is 
convenient to direct the axis of the polar coordinate system 
through the point closest to the centre of attraction. This point 
is called perihelion. The point opposite to perihelion on the 
orbit is called aphelion. When the axis of the polar coordinate 
system is chosen in this way, we must put cp 0 = 0 in (44.2la), 
which thus assumes a,a even simpler form: 

p 
r = ----=---

1 + ecos cp 
(44.21b) 

The curves described by this equation are shown in Fig. 114. 
Let us consider the motion along an ellipse in greater detail. 

For the smallest separation r min from the centre of attraction, 
the body is at cp = 0, while for the largest separation, the angle 
cp subtended by the body is 1t. Hence we can write from 
(44.2lb): 

p 
'min= 1 + e' 

p 
rm .. = -1--. 

-e 
(44.22) 

At the instants of the smallest and largest separations of the 
body from the centre of attraction, the radial velocity ; = 0. 

·Hence the energy conservation law (44.15) at these points can 
be written in the following form by taking (44.14) into account: 

L 2 
( 1 ) 2 mM L 2 ( 1 ) 2 mM - - -G--=- - -G-=£0 , 

2m 'min rmin 2m 'max 'm•• 

(44.23) 

where £ 0 denotes the total energy of the body, i.e. the sum of 



Fig. 115. Planetary motion in 
an elliptic trajectory. 
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the kinetic and potential energies. The value of the quantity 
p = 1/C is obtained from (44.18). Substituting (44.22) into 
(44.23), we obtain the following relation between the eccentrici
ty e and the energy E0 : 

( 2EoL2 )112 
e = 1 + G2m3 M2 ' (44.24a) 

Gm3M2 

Eo=- 2L2 (l-e2). (44.24b) 

Formula (44.24b) confirms the statement proved earlier, 
according to which bound states are possible only for negative 
values of the binding energy, i.e. only when the sum of the 
kinetic and potential energies is negative. If the total energy is 
positive, motion in a finite region is impossible. 

The particle moves along a hyperbola and goes to infinity. 
In the limiting case, when the total energy is zero, the particle 
again goes to infinity, but it follows a parabolic trajectory. 

KEPLER'S THIRD LAW. According to this law, 
the squares of the periods of revolution of various planets 

about the Sun are proportional to the cubes of the major 
semiaxes of their ellipses. 

In order to prove this law, let us write down .Eq. (44.8b) 
connecting the period of revolution T with other characteristics 
of motion: 

L 
S=-T, 

2m 
(44.25) 

where S is the area of the ellipse. It is well known from 
geometry that the area of an ellipse is S = 1tab, where a and b 
are its semiaxes (Fig. 115). Formula (44.2lb) directly leads to 
the following expression for the semiaxes in terms of the 
eccentricity e and the parameter p: 

p 
a=-.--2, 

-e 
b= p . 

~ 
(44.26) 
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It follows from (44.26) that 
p2 

b2 =--=pa. 
I- e2 

(44.27) 

On the other hand, let us take into consideration the relation 
between Land p indicated in (44.20): 

L = mfoMP. (44.28) 

Let us write down the value of T 2 from (44.25) and make use of 
(44.28) and (44.27): 

(44.29) 

This means that the square of the period of revolution of a 
planet depends only on the major semiaxis and is proportional 
to its cube. This proves Kepler's third law. 

These laws were established by Kepler from an analysis of 
the planetary motion. This was a significant achievement of the 
scientific approach and opened the way towards the formula
tion of the law of gravitation. 

MOTION OF COMETS. Comet!; are small celestial bodies 
which move near the Sun in strongly prolate elliptic orbits. 
The existedce of some two dozen comets is reliably established 
and their periodic motion near the Sun has actually been 
observed. The motioll,l()f comets in elliptic orbits with the Sun 
as one of the foci is analogous to the motion of planets and has 
been investigated in detail recently. 

The most exotic feature of comets is their "tail" which can be 
seen as a luminous plume repelled by the Sun. The "tail" is 
formed· by the gas which reflects the rays of the Sun. The 
physical reason behind the "repulsion" of the "tail" by the Sun 
is the pressure of the electromagnetic radiation corresponding 
to the visible and invisible parts of the spectrum, as well as the 
effect of the particle flux (mainly protons) emitted by the 
Sun. The latter factor is mainly responsible for the "repul
sion". 

The curvature of a comet's trajectory near the Sun depends 
on its velocity. The higher the velocity, the smaller the 
curvature. 

REPULSION OF LIGHT RAYS IN THE GRAVITATIONAL 
FIELD OF THE SUN. The curvature of the trajectories of 
bodies in a gravitational field raises the question of the effect of 
this field on light rays. If this action is the same as on a body, 
then light will not propagate in a straight line in a gravita
tional field. This hypothesis was put forth long ago, and the 



Fig. 116. Motion of a body in 
a hyperbolic trajectory. 
As the body approaches the centre 
of attraction, its velocity increases. 

Bound states can exist only for 
negative values of the binding 
energy, i.e. for a negative sum 
of the kinetic and potential 
energies. If the binding energy 
is positive, motion in a finite 
region is not possible. 
The shape of the trajectory of a 
body moving in a central force 
field is determined by the total 
energy of the body. 
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curvature of a ray in the gravitational field of the Sun was 
calculated as far back as 1804. 

For this purpose, Newton's concepts about the corpuscular 
nature of light were used. The corpuscles can be treated as 
point masses having an arbitrarily small mass m and moving at 
the velocity of light. The mass plays only an auxiliJry role in 
calculations. 

In view of the large velocity of corpuscles, their motion near 
the Sun takes place along a hyperbola with a very small 
curvature (Fig. 116). Consequently, the initial direction of 
motion changes by an angle A<p which can be calculated 
(Fig. 117). 

In order to do so, we must calculate exactly the trajectory of 
a point mass, as shown above. We obtained formula (44.19) 
which can be applied to all types of motion in a gravitational 
field. Using this formula, we obtain 
1 m2M 
~ = GU +A cos <p + B sin <p. (44.30) 

Constants A and B are determined from the conditions of 
motion of light rays. In the polar coordinate system shown in 
Fig. 117, the angle <p decreases with time, varying from· 1t to 0 
and then to a negative value - A<p equal to the required angle 
of deflection of a light ray by the Sun. 

At the initial instant of time, when the light ray is directed 
towards the Sun but is at a very large distance from it, we have 
<p = 1t, 1/r = 0, cos <p = -1 and sin <p = 0. Substituting these 
values into (44.30), we obtain A= Gm2M/L 2• Consequently, 
(44.30) assumes the form 
1 m2M 
~ = GIT(I +cos <p) + B sin <p. (44.31) 

In order to determine B, we divide this formula by sin <p and 
take into account that I + cos <p = 2 cos2 ( <p/2) and sin <p = 
2 sin ( <p/2) cos ( <p/2). This gives · 

1 m2M (<~>) -.-= G--cot - +B. 
rsm<p L 2 2 

(44.32) 

Let us now use the initial condition once again and make <p 
tend to 1t. The distance r0 at which the light ray would have 
passed by the Sun in the absence of the force of attraction is 
called the impact parameter (see Fig. 117). 

It can be seen from Fig. 117 that r sin <p = r 0 as <p ,... 1t, while 
cot (<p/2) = 0. Hence for <p ,...1t, we obtain from (44.32) 
B = l/r0 • The angular momentum Lis conserved during the 
motion. Let us calculate its value at the initial instant of time 
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Fig. 117. Calculations of the 
deflection of light rays ap
proaching the Sun, based on 
classical concepts. 
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v 

for cp = 1t. Obviously, L = mcr0 , where cis the velocity of light. 
Substituting this quantity into (44.32), we finally obtain a 
formula describing the trajectory of a light ray: 

1 M (cp) 1 --= G-cot - +-
rsin cp c2r~ 2 r0 • 

(44.33) 

This formula does not contain the mass m of the particle. This 
means that the trajectory of a particle in a given gravitational 
field is independent of its mass. 

After deflection, the ray moves away from the Sun to a 
distance r -+ oo in the direction of the angle - Acp. Let us 
determine this angle from (44.33): 

0 = G M cot(- Acp) + __!___ (44.34) 
c2r2 · 2 r 

0 • 0 

Since the angle Acp is very small, we can assume that 
cot (- Acp/2) ~ - 2/ Acp Jlld hence 

2GM 
Acp = -z -. 

c 'o 
(44.35) 

Assuming that the light ray passes close to the Sun and 
putting r0 in (44.35) equal to the radius of the Sun, we obtain 
Acp ~ 0".87. It should be recalled that this value of the angle of 
deflection was obtained in 1804. However, this value could not 
be verified experimentally for a long time. Later, the effect of 
deflection of a ray was also discovered in the general theory of 
relativity. In this case, however, the deflection was found to be 
1".75, i.e. twice as large as in the first case. Such a deviation 
from the predictions is conducive for an experimental verifica
tion of the theory. Hence the results of the first measurement of 
the effect during the solar eclipse in 1919 were awaited eagerly 
everywhere. 

The idea behind the measurements can be described as 
follows. The position of the stars near the solar disc must be 
registered on a photographic plate during the solar eclipse. In 
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view of the deflection of a light ray, the position of the stars on 
the photographic plate will correspond to the apparent 
separation between these stars and the solar disc. The true 
position of these stars is known precisely from everyday 
astronomical observations. Hence the apparent displacement 
of the stars, which is registered on the photographic 6late, can 
be used to determine the angle of deflection Acp. The result was 
found certainly to be closer to the predictions of the theory of 
relativity than to the predictions of the classical theory. 
However, the accuracy of measurements was not high enough 
to dispel all doubts. Most scientists treated these observations 
as a verification of the theory of relativity, although some 
scientists still had their reservations on this issue. Other 
measurements carried out subsequently yielded results still 
closer to the theory of relativity. • 

INTERPLANETARY FLIGHTS. A flight around the Earth at 
a low altitude is the first step towards space research. The 
circular (or orbital) velocity v 1 is the velocity of flight in a 
circular orbit of radius rE equal to the Earth's radius. The 
centripetal acceleration vVrE is equal to the acceleration due to 
gravity g at the surface of the Earth. Hence 

v1 = .;g;;. = 7.9 km/s, (44.36) 

where rE = 6371 km. 
The next step is to overcome the forces of the Earth's 

attraction. The escape velocity v2 is the.. velocity that a body 
must possess at the surface of the Earth in order to be able to go 
beyond the gravitational field of the Earth. The air resistance is 
not taken into a,ccount. From the energy conservation law 
mv~/2 = GmME/rE, we obtain 

v2 = J2ii;;_ = 11.2 km/s, ( 44.37) 

where GME/r~ =g. 
The solar escape velocity v3 is the velocity whi~h must be 

imparted to a body at a distance equal to the Earth's orbital 
radius RE from the Sun so that the body can leave the solar 
system. This velocity can be determined from the energy 
conservation law: 

md GmM5 

2=~· 

where M 5 is the mass of the Sun. Hence 

J2GM5 
v3 = -- = 42 km/s. 

RE 
(44.38) 

According to another widely used definition, the solar 
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Fig. 118. A typical trajectory 
of a flight to the Moon and 
back to the Earth. 
Using the linear velocity of the 
Earth's rotation, the launching and 
landing of a rocket are carried out 
in the eastern direction. 

? 
Prove that the motion in a 
central force field is a plane 
motion. 
Which conservation law forms 
the basis of Kepler's second law? 
What are the possible trajecto
ries of a point mass in the 
gravitational field of a point 
body and under what conditions 
are they realized? 
How do the predictions con
cerning the deflection of a light 
ray in the field of the Sun, which 
were made more than 150 years 
ago on the basis of the classical 
theory, differ from the predic
tions of the general theory of 
relativity? 
What is the experimental state 
of affairs in this connection? 
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escape velocity is the velocity that must be possessed by a body 
near the Earth's surface relative to it in order to enable it to 

'leave the solar system. This definition has a significant 
drawback in that the numerical value of this velocity is 
indeterminate. If a spaceship is launched in a direction 
opposite to the velocity of the Earth's motion around the Sun, 
the solar escape velocity will be equal to about 72 km/s. If, 
however, the launching direction coincides with the direction 
of the Earth's orbital motion, the solar escape velocity will be 
equal to about 16.5 km/s. 

For a flight to any celestial body, we must overcome the 
force of the Earth's gravity first of all, i.e. we must reach a 
point where the gravitational fields of the Earth and the 
celestial body balance each other (we do not take into account 
the presence of other celestial bodies). The velocity required for 
this purpose is somewhat smaller than v2 , but this difference is 
quite small and is not taken into consideration in rough 
estimates. 

A typical trajectory of a flight to the Moon and back to the 
Earth is shown in Fig. 118. The motion of the Moon during 
the flight of the rocket is neglected for the sake of clarity of 
illustration. The actual trajectory · is displaced along the 
Moon's orbit in the course of the flight. It can be seen from the 
figure tliat the linear velocity of the Earth's rotation is 
complete1y utilized in such a flight: during launching it is 
added to the velocity of the rocket, while during landing the 
relative velocity of .the spaceship and the Earth's surface is 
reduced on account of this motion. 

For flights to remote planets like Jupiter and Uranus, we 
must overcome not only the Earth's attraction, but also the 
attraction of the Sun between the Earth's orbit and the orbit of 
the planet. In this case, it is expedient to launch the rocket in 
the direction of the Earth's orbital motion to make use of the 
kinetic energy. The simplest trajectory of such a flight is shown 
in Fig. 119. 

The motion takes place in an elliptic orbit with the Sun at 
one of the foci. At the instant of launching, the Earth is at the 
perihelion of the ellipse, and hence the minimum distance r min 

is equal to the radius RE of the Earth's orbit, while the 
maximum distance r max is equal to the radius RP1 of the orbit of 
the planet to which the flight is directed. The distances are 
determined from the formulas (see (44.22)) RE = p/(l +e) and 
RP1 = p/(1 - e). 

Hence we obtain the ellipse's parameters: 

(44.39) 



Fig. ll9. Possible trajectory of 
flight to a remote planet of the 
solar system. 
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Knowing the orbital parameters, we can use Kepler's law to 
calculate the period of revolution of a body moving in this 
orbit around the Sun: 

T2 (R + :R )3 pi E 

T~ = 2RE ' 
( R + R )3/2 T= T. pi E 

E 2RE ' 
(44.40) 

where TE = I year is the period of revolution of the Earth 
around tl:{e Sun. The time of flight to the planet is T = T/2. For 
example, RP1 ~ l9RE for Uranus, and hence the time of flight 
will be about 16 years. . 

The trajectory of flight considered above is not the most 
suitable one from the point of view of the time of flight. It is 
possible to select a trajectory along which the time of flight is 
considerably reduced. The main idea is to use the forces of 
attraction of the planets whose orbits intersect during flight. 
This considerably increases the average velocity and reduces 
the duration of the voyage. For example, in one of the possible 
versions of the flight to Uranus, the trajectory passes near 
Jupiter, and thus the velocity is considerably increased. In this 
case, the flight to Uranus will take just 5 years instead of 16. 

Sec. 45. MOTION OF THE EARTH'S ARTIFICIAL SATELLITES 
!he distinct:.m hctv.ccn Kcp
'.:r·s Jaws and the lai\S of mo
:i .. n of th.: Earih's artifi~ial 
·.: 1 L"ilitc~ is analyzed. The c.msc
·;c~,·nccs Llf this diiTcrl'll<"C ar.: 
. Ji,cusscd. 

DISTINCTION BETWEEN THE LAWS OF MOTION OF THE 
EARTH'S ARTIFICIAL SATELLITES AND KEPLER'S LAWS OF 
PLANETARY MOTION. The motion of the Earth's artificial 
satellites cannot be described by Kepler's laws due to two 
reasons: • 

I. The Earth is not exactly spherical and the density 
distribution over its volume is not uniform. Hence its gravita
tional field is not equivalent to the gravitational field of a point 
mass situated at the geometrical centre of the Earth. 

2. The atmosphere of the Earth slows down the motion of 
artificial satellites, as a result of which the shape and size of 
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Fig. 120. Variation of a satellite's 
trajectory due to the Earth's 
rotation and the deviation of its 
shape from sphericity. 
The arrow pointing to the right 
along the equator indicates the di
rection of motion of the points on 
the Earth's surface due to its revo
lution about its axis. The arrow 
pointing to the left (westwards) has 
a dual meaning: it indicates the 
westward displacement of the satel
lite's trajectory, as well as the direc
tion of rotation of the plane of its 
orbit about the Earth's allis. 

Since the rotational plane of a 
satellite remains practically 
unchanged relative to fixed 
stars even as the Earth is 
rotating, after one revolution 
the satellite will cross a certain 
fixed latitude westwards to the 
same extent as a point situated 
on the Earth's surface at this 
latitude will be displaced east
wards relative to fixed stars as a 
result of one revolution of the 
Earth about its axis. 
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their orbit change and the satellites eventually fall down on the 
Earth. 

The deviation of the flight of satellites from the predictions 
of Kepler's laws can be used to draw conclusions about the 
shape of the Earth, the density distribution over its volume 
and the structure of the Earth's atmosphere. Hence the most 
comprehensive data were obtained only from an investigation 
of the motion of the Earth's artificial satellites. We shall briefly 
describe each investigation. 

The problem of launching of artificial satellites is considered 
in the chapter on the motion of bodies of a variable mass. 

TRAJECTORY OF A SATELLITE. If the Earth were a 
homogeneous sphere without any atmosphere, a satellite 
would move in an orbit whose plane preserves its orientation 
relative to the reference frame of fixed stars. The orbital 
parameters are determined in this case with the help of 
Kepler's laws. As the Earth rotates, the satellite moves over 
different points on the Earth's surface in successive turns. 
Knowing the trajectory of the satellite for any cycle, we can 
easily predict its position at all subsequent instants of time. 
For this purpose, we must consider that the Earth rotates from 
west to east at an angular velocity of about 15° per hour. 
Hence in its next turn, the satellite will cross the same latitude 
displaced to the west by the same number of degrees as the 
Earth has wrned to the east during a period of revolution of 
the satellite (Fig. 120). 

On account of the r;wsistance offered by the Earth's atmo
sphere, satellites cannot have prolonged flights at altitudes 
below 160 km. The minimum period of revolution at such an 
altitude in a circular orbit is about 88 min, i.e. about 1.5 h. 
During this period, the Earth turns by about 22°30'. At a 
latitude of 50°, this angle corresponds to a distance of about 
1400 km westwards as compared to the initial position. 

However, such a method of calculations gives quite accurate 
results only for a few revolutions of a satellite. If long intervals 
of time are considered, we must take into a~ount the difference 
between a sidereal day and 24 hours. Since the Earth 
completes one revolution around the Sun in 365 days, in one 
day it subtends an angle of about 1 o (to be more precise, 0.99°) 
around the Sun in the direction of its rotation about its axis. 
Hence the Earth turns by 361 o instead of 360° relative to fixed 
stars in one day, and hence one revolution is completed in 
23 h 56 min instead of 24 h. Hence the trajectory of a satellite 
is displaced westwards by ( 15 + l/24t instead of 15° in an 
hour. In the course of a few days, this correction runs into 
several degrees. 

If the Earth were a homogeneous sphere devoid of an 



The deviation of the shape of 
the Earth from spherical can 
conveniently be represented in 
the form of harmonics, each of 
which is responsible for a 
certain deflection in the orbit of 
a satellite moving around the 
Earth's sphere. An analysis of 
these deflections in the orbit 
provides information about the 
magnitude of harmonics caus
ing them. The true shape of the 
Earth can be determined from 
the values of these harmonics. 
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atmosphere, the above method of calculations would lead to 
quite accurate predictions concerning the position of a satellite 
over a considerably long time period in advance. However, the 
nonspherical shape of the Earth, the nonuniformity of its 
density and the existence of the atmosphere considerably 
change the nature of motion of satellites. . I 

THE SHAPE OF THE EARTH. It has been known since long 
that the Earth is not exactly spherical. The first quantitative 
estimate of this deviation was provided by Newton who used 
the law of universal gravitation. Newton's calculations were 
based on a simple principle. Let us imagine a channel passing 
from a pole to the centre of the Earth and then to a point on 
the equator along a radius. Obviously, the pressure in each 
channel at the centre of the Earth must be the same. Due to the 
rotation of the Earth, the weight of a certain element of the 
liquid's column in a channel going towards the equator will be 
less than the weight of the corresponding element of the 
liquid's _column in a channel going towards the pole at the 
same distance from the centre of the Earth. Hence the pressure 
at the centre of the Earth will be the same only if we admit that 
the channel going towards the equator is longer. This means 
that the Earth is not spherical in shape, but is flattened at the 
poles. The oblateness f is given by the formula 

f= Deq- Dpo, 
D.q ' 

(45.1) 

where D.q is the equatorial diameter of the Earth, and Dpol is 
the polar diameter. 

Using the arguments described above, Newton obtained the 
value f = 1/298. The results of his calculations were published 
in 1687. Various methods have been used so far to experimen
tally determine the flatness of the Earth at the poles. The 
results were found to be close to the value obtained by 
Newton, although slight differences were indeed recorded. 
Until the launching of the first satellites of the Earth, the most 
widely used estimate for the flatness of the Earth was 1/297.1. 
By observing the motion of satellites, a much more accurate 
and reliable value of this quantity was obtained in comparison 
with the methods described here. The observations resulted ~n 
a considerable variation of the estimate mentioned above. 

If the shape of the Earth is nonspherical, its gravitational 
field cannot be reduced to the gravitational field of a point 
mass located at the centre of the Earth. If we assume the 
shape of the Earth to be known, we can calculate the 
gravitational field and the trajectory of a satellite. At present, 
such calculations can be made only by means of computers, 
and we shall simply describe the result. If we consider the 
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Fig. 121. The shape of the first 
harmonics characterizing the 
deviation of the Earth's surface 
from sphericity. 
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flatness of the Earth, the plane of an orbit will no longer 
preserve its position relative to fixed stars and will turn about 
the Earth's axis in a direction opposite to the rotation of a 
satellite. For example, if a satellite moves about the Earth's 
axis eastwards 'see Fig. 120), the orbital plane will turn in the 
western direction. If we reverse the direction of rotation of 
the satellite without changing the plane of its orbit, the latter 
will also turn in the opposite direction. The angle i between 
the planes of the orbit and the equator (see Fig. 120) remains 
constant. If the plane of a satellite's orbit passes through 
the axis of the Earth's rotation, i.e. if the orbit is strictly 
polar, it will retain its orientation relative to fixed stars. The 
velocity of rotation of the orbital plane depends on the 
oblateness of the Earth and on the orbital parameters. Hence, 
by measuring the orbital parameters and the velocity of 
rotation of its plane, we can calculate the oblateness of the 
Earth. 

In addition to the rotation of the orbital plane, the 
oblateness of the Earth also leads to another effect: the 
perihelion of the orbit rotates in its plane and hence moves 
from the northern hemisphere to the southern hemisphere, and 
vice versa. The velocity of rotation of the perihelion depends 
on the oblateness of the Earth and the angle of inclination of 
the orbit. Measurement of the velocity of rotation of the 
perihelion flso led to a numerical estimate for the oblateness of 
the Earth, which is found to be in agreement with the estimate 
for the oblateness ob~ined from the rotation of the orbital 
plane. • 

Measurements of the rates at which the orbital planes of the 
first satellites turned led to the conclusion that the oblateness 
of the Earth lies between 1/298.2 and 1/298.3. This means that 
the equatorial radius of the Earth is larger than the polar 
radius by 42.77 km and not by 42.94 km according to the 
estimate that existed before that time. 

However, the oblateness of the Earth is not the only 
deviation from sphericity. The total deviation from sphericity 
can be represented mathematically as the sum of various 
regular deviations called hannoni~..:~. Oblateness corresponds 
to the second harmonic. The third harmonic takes into 
account the pear-like shape of the Earth, the fourth accounts 
for a square-shaped form, and so on. Figure 121 shows some of 
the first harmonics whose sum determines the actual shape of 
the Earth. The changes in the orbit of a satellite introduced by 
each harmonic can be calculated, and the role of each of them 
can be determined from actual observations of the shape of the 
Earth. 

The third harmonic, which characterizes the pear-like shape 



45. Motion of the Eartb's Artificial SateUites 321 

of the Earth, is responsible for a change in the distance 
between the perihelion and the centre of the Earth depending 
on the hemisphere in which the perihelion is located. As the 
perihelion moves from one hemisphere to the other, its 
distance from the centre of the Earth changes. A study of the 
satellite's orbits showed that the pear-like shape of *e Earth 
accounts for an elongation of about 40 m towards the north 
pole. This means that the level of the ocean water at the north 
pole is 40 m farther from the equatorial plane than at the 
Antarctic, where the sea level is buried under a 3-km thick 
layer of snow. 
Sub~quent harmonics also contribute towards a change in 

the orbital parameters of a satellite. Taking these harmonics 
into consideration, we can determine the shape of the Earth to 
a very high degree of precision. The most significant features of 
the Earth's shape are its oblateness and the pear-shaped 
asymmetry between its northern and southern hemispheres. 

The next important result following from the observations 
of the satellite's motion is the establishment of the form of the 
equator. Even before the launching of satellites, indications 
existed that the equator was not exactly circular. These 
indications were based on the fact that the gravitational "force 
changes slightly with longitude. However, this does not lead to 
an appreciable change in the orbit of a satellite since the 
satellite passes over all longitudes in view of the rotation of the 
Earth, and the changes in the gravitational force are averaged 
out over all longitudes. However, this averaging takes place 
through slight oscillations in the position of the satellite every 
day along its trajectory, the amplitude of oscillations being 
about a few hundred metres. These oscillations can lead to 
information about the change in the gravitational force along 
the longitudes and about the shape of the equator. In the first 
approximation, the equator is an ellipse whose major semiaxis 
is ·directed from the longitude 20° west to 160° east, and the 
minor semiaxis is directed from the longitude 110° west to 70° 
east. These two semiaxes differ in length by about 140 m. 
However, this is just an approximate picture. Subsequent 
refinements in the shape of the equator were carried out by 
following the motion of the satellites. 

ATMOSPHERIC DRAG. The friction of satellites in the 
Earth's atmosphere serves as the second reason behind the 
deviation of satellites from the predictions of Kepler's laws. 
The density of air decreases nearly exponentially with altitude. 
This is a very rapid decrease, and yet the density of air up to 
altitudes of 160 km is such that it does not allow satellites to 
exist for a prolonged time. This is so because satellites at this 
altitude rapidly lose energy due to drag and fall to the ground. 
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The higher the altitude of a satellite, the longer .the duration of 
its stay in the orbit. 

The general nature of the change in an orbit due to drag can 
be explained as follows. The most significant losses in the 
energy of a satellite due to drag occur at the perihelion. The 
altitudes of the perihelion and aphelion decrease, but the 
altitude of the aphelion changes more rapidly than that of the 
perihelion, and hence the prolateness of the orbit decreases. 
The velocity of the satellite in the orbit increases, while the 
period of its revolution decreases. Some parts of the satellite's 
orbit may lie below 160-km altitude. In this case, the energy 
losses due to drag become quite significant and the satellite 
falls to the ground, following a trajectory that rapidly 
·approaches the Earth. However, owing to the protective 
covering, the satellite does not bum out and can make a soft 
touch-down with the help of parachutes. 

The trajectory of a satellite can be calculated by taking into 
account the change in the density of the atmosphere with 
altitude. Hence a knowledge of the trajectory helps in finding 
the density distribution in the atmosphere. Besides, the 
equipment mounted on the satellite enables the study of many 
other characteristics of the space near the Earth's surface. 

The density of the atmosphere is mainly determined from 
the change in the period of revolution of a satellite. It was 
mentioned, above that the period of revolution of a satellite 
decreases owing to drag in accordance with Kepler's laws, and 
its velocity increasesli- Of course, this conclusion does not 
contradict the energy conservation law. As a matter of fact, the 
total energy of a satellite is the sum of its positive kinetic 
energy and negative potential energy, and is a negative 
quantity. As a result of drag, the altitude at which the satellite 
moves decreases, and in accordance with the energy conserva
tion law, its potential energy is spent on performing work 
against frictional forces and on increasing the kinetic energy of 
the satellite. The density of the atmosphere can be judged from 
the rate of decrease in the period of revolution of the satellite. 
At present, quite exhaustive data are available on the density 
of the atmosphere over a wide range of altitudes and on the 
dependence of density on various factors. The data have been 
obtained with the help of satellites. 

GEOSTATIONARY ORBIT. The circular orbit of a satellite in 
the equatorial plane, the motion in which keeps the satellite's 
position over a point on the equator unchanged, is called a 
geostationary orbit. The biorbital parameters can be de
termined from the following two equations in two unknowns: 

mv2 mME 21tr - = G- T=- (45.2) 
r r2 ' v ' 
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where v is the velocity of the satellite, r is the radius of the 
synchronous orbit, ME = 6 x 1024 kg is the mass of the 
Earth, T= 1 day= 86,400 s. From these equations, we obtain 
v = 3.07 x 103 m/s = 3.07 km/s and r = 4.22 x 107 m = 
42,200 km. Nearly half the surface of the Eprth can 
be linked to a satellite on a synchronous orbit through 
linearly propagating high-frequency or optical signals. Hence 
synchronous-orbit satellites are of great importance for 
communication systems. 

Sec. 46. THE TWO-BODY PROBLEM 
The two-body problem is re
duced to a one-body problem 
through coordinate transfor
mation. 

21° 

REDUCED MASS. In the problems on the motion -under the 
action of gravitational forces considered above, it was assumed 
that the mass of the body which is the source of gravitational 
force is much larger than)he mass of the body whose motion is 
being studied. Hence the heavier body can be treated as 
stationary, and the problem is reduced to the study of the 
motion of the lighter body in a given field. This is called a 
one-body problem. 

However, such an approximation is not always possible, i.e. 
the errors introduced as a result of this approximation are not 
always negligible. For example, the components of a double 
star often "have nearly equal masses and neither of the 
components can be treated as stationary. In a precise analysis 
of the motion of the Moon around the Earth, we must also 
consider the influence of the Moon on the motion of the Earth, 
and so on. Hence it becomes necessary to take into considera
tion the motion of both interacting bodies; such a problem is 
called a two-body problem. 

Suppose that two bodies of mass m1 and m2 are drawn 
towards each other by gravitational forces. In the inertial 
reference frame, the equations of motion of these bodies have 
the following form (Fig. 122): 

(46.1) 

where r = r2 - r1 is the vector joining the interacting bodies 
and having a direction from m1 towards m2 • 

The general nature of the motion can be studied with the 
help of the ideas put forth in Sec. 21 on the motion of a 
reference frame of point masses. Obviously, the centre of mass, 
whose po_sition is characterized by the radius vector 

(46.2) 
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Fig. 122. To the solution of the 
two-body problem. 
Point 0 is the origin of radius 
vectors. 
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moves uniformly and in a straight line, while the bodies of 
mass m1 and m2 move in such a way that their resultant 
momentum is zero in the centre-of-mass system. The angular 
momentum of these masses is conserved in an inertial reference 
frame, including the one fixed to the centre of mass. 

However, it is more convenient to solve the two-body 
problem in a reference frame fixed to one of the bodies rather 
than in the centre-of-mass system since in this case the 
problem becomes equivalent to a one-body problem. For this 
purpose, we divide (46.1) by m1 and m2 respectively and 
subtract the second equation from the first. This gives 

d2 d 2r ( 1 1 ) m1m2 r -(r -r )=-=- -+-G---. 
dtz 2 1 dt2 m1 mz ,z r 

(46.3) 

We denote the sum of the reciprocals of masses within the 
parentheses by 

1 1 1 
- =- + -. (46.4) 
J.l m1 mz 

The quantity J.l is called the reduced mass. We can now write 
(46.3) in the form 

(46.5) 

This is the equation oLmotion in the one-body problem since 
vector r is the only unKnown quantity in it. The solution of this 
type of equation was considered in detail in Sees. 44 and 45. 
The results obtained in these sections can directly be applied to 
(46.5). The only point that must be considered is that the force 
of interaction is determined by the masses m1 and m2 of the 
interacting bodies, while the inertial properties are determined 
by the reduced mass J.L. While solving the problem, we treat 
one of the bodies (from which the radius vector is measured) as 
stationary and describe the motion of the other body with 
respect to this body. 

The concept of reduced mass can be used in the two-body 
problems for other laws of interaction as well, irrespective of whether 
the interactions are classical or quantum-mechanical. 

TRANSITION TO THE CENTRE-OF-MASS SYSTEM. After 
the variation of vector r = r (t) has been obtained by solving 
Eq. (46.5), the trajectories of both masses can be found in the 
centre-of-mass system. Denoting the radius vectors of the 
masses m 1 and m2 by r'1 and r'2 and taking the centre of mass as 
the reference point for measuring these radius vectors, we 
obtain, by definition of the centre of mass (see Fig. 122), 



Fig. 123. The tide-producing 
force is caused by a change in 
the gravitational force with 
distance. 
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(46.6) 

Using these relations and knowing r(t), we can plot r'1(t) and 
r2(t). The trajectories of both bodies are homothetic relative to 
the centre of mass, the homothetic centre coincidest with the 
centre of mass, and the homothetic ratio is equal'to tfte ratio of 
masses. 

TIDES. The motion of bodies in a nonuniform gravitational 
field is accompanied by the emergence of forces tending to 
deform them. Accordingly, deformation appears in such bodies. 

Suppose that three point masses, m each, connected through · 
a weightless spring, fall freely in a nonuniform gravitational 
field along the straight line joining their centres (Fig. 123). The 
gravitational field in which the motion takes place is also 
produced by a point mass. The gravitational forces acting on 
these points are not equal: the upper point experiences a 
smaller gravitational force than the lower point. It can be seen 
from Fig. 123 that this- situation is equivalent to the following: 
all the three points are subjected to the same force equal to the 
force acting on the central point, an additional force directed 
upwards acts on the upper point, while the same force directed 
downwards acts on the lower point. Consequently, the spring 
must become stretched. Thus, a nonuniform gravitational field 
tends to extend a body in the direction of nonuniformity. 

In particular, the gravitational field of the Sun stretches the 
Earth along the line joining their centres. The Moon also 
exerts a similar effect on the Earth. The magnitude of the effect 
depends on the rate of change of this force, and not on the 
gravitational force. 

The motion of a planet around the Sun is a free fall. The 
planet cannot fall onto the Sun just because of the tangential 
velocity perpendicular to the line joining the centres of the 
planet and the Sun. A celestial body subjected to the gravita
tional field of another body experiences the above~mentioned 
deforming force. 

In the field of a spherical body, the gravitational force at a 
distance r from the centre is F = -GMmfr2• Hence the rate of 
change of this force with distance is given by the formula 
dF/dr = 2GMm/r3 . For the gravitational fields of the Sun and 
the Moon, we obtain the following values (all quantities are 
referred to a unit mass): 2GM 8/r3 = 0.8 x 10- 13 l/s2 and 
2GMM/r3 = 1.8 x 10- 13 l/s2• Thus, the "deforming" force 
exerted by the Moon on the Earth is more than twice the 
corresponding force exerted by the Sun. 

This "deforming" force does not significantly affect the shape 
of the Earth's crust since even small deformations in the crust 
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Fig. 124. The tides on the Earth 
caused by the gravitational field 
of the Moon. 
The tides caused by the gravitational 
field of the Sun are several times 
weaker. 

The two-body problem. is the 
simplest interaction problem 
and serves as the touchstone for 
the theory of interactions. This 
problem has an exact solution 
in many cases. The three-body 
problem is a lot more compli
cated and does not have a 
solution in a final analytical 
form. The advent of computers 
considerably simplified the 
numerical solution of this 
problem, which can be ob
tained without using the per
turbation method. 

? 
Is the reduced mass of bodies 
larger, smaller or intermediate 
between their 'fni¥ses? 
Under what conditions can one 
of the bodies in the two-body 
problem be assumed stationary? 
K11at are the trajectories of 
interacting bodies in a centre
of-mass system? 
In which (inertial or noninerti
al) reference frame does the 
equation of motion in a two
body problem contain the re
duced mass? 
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0 

can compensate for the action of this force. However, the shape 
of the water surface in the oceans changes considerably: 
"humps" appear in the direction of the nonuniform gravita
tional field, while the ocean level drops in the perpendicular 
direction (Fig. 124). Each such pair of "humps" retains its 
position along the line joining the centre of the Earth to the 
centres of the Sun and the Moon respectively. In view of the 
rotation of the Earth, the "humps" and "valleys" move along 
the surface of the Earth and periodically raise and lower the 
level of water in the oceans. This phenomenon is manifested at 
the shores in the form of tides and ebbs. Calculations show 
that during lunar tides and ebbs, the level of water changes by 
a maximum of 0.56 m. It would be fair if the entire surface of 
the Earth were covered with water: In actual practice, the 
complex effect of the mass of the dry land during the 
displacement of the "humps" and "valleys" causes a change in 
the water level at differe)Jt places from zero to 20m (approx
imately). Obviously, there are two tides and two ebbs in a day 
at a given place. 

Tides cause a motion of the water masses in the horizontal 
direction. This is accompanied by friction and a loss of energy 
in performing work against the frictional forces. This results in 
a tide-producing force, which leads to a decrease in the velocity 
of the Earth's rotation. The friction is not large, and so the 
velocity does not change significantly. Obviously, energy losses 
due to friction occur not only when liquid masses are 
displaced, but also when deformations travel along the surface 
of a body since a part of energy is always spent on deformation 
and its subsequent removal (there are no perfectly elastic 
bodies in nature). As a result of tides caused in the lunar 
matter by the gravitational forces of the Earth, the rotation of 
the Moon is slowed down to such an extent that it always faces 
the Earth from the same side. In this case, there is no 
tide-producing force. 

The tide-producing force on the Earth decreases its period of 
revolution about its axis by 4.4 x w-s s per revolution. This is 
confirmed by astronomical observations. However, the angu-
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Jar momentum must be conserved in the Earth-Moon system. 
The Earth revolves about its axis in the same direction in 
which the Moon rotates around the Earth. Hence a decrease in 
the angular momentum of the Earth must be accompanied by 
an increase in the angular momentum of the Earth-Moon 
system moving around their common centre .of J,.ass. The 
angular momentum of the Earth-Moon system is 

L=~vr, (46.7) 

where ~ is the reduced mass of the Earth and the Moon, 
defined by (46.4), and r is the distance between them. Assuming 
their orbits to be circular, we can write 

(46.8) 

It follows from (46.7) and (46.8) that 

L 2 GmEmM 
r = GmEmM~' v = --L-. (46·9> 

An increase in L due to the tide-producing force leads to an 
increase in the distance r between the Earth and the Moon, 
and to a decrease in the velocity of rotation of the Moon 
around the Earth. The rate of increase in the distance is about 
0.04 em/day at present. Although this is a small increase, the 
total increase in the distance between the Earth and the Moon 
over a period of several billion years will be comparable with 
the existing distance between them. 

11.1. Find the ratio of the periods of time required for traversing the 
segments of an elliptic orbit bounded by the minor semiaxis. 

11.2. Find the difference in the periods of time required to cover the parts 
into which the Earth's elliptic orbit is divided by the minor semiaxis. 
The eccentricity of the Earth is e = 0.017. 

11.3. The period of revolution of a body in a circular orbit about a 
gravitational centre is T. Calculate the time taken by the body to fall 
from the orbit onto the gravitational centre if its instantaneous 
velocity became zero. 

11.4. A body moves in a circular orbit of radius r about a gravitational 
centre. The period of revolution is T. At a certain point on the orbit, 
the direction of the velocity of the body is changed instantaneously by 
an angle smaller than 1t, the magnitude of the velocity remaining the 
same. What will be the new trajectory and the period of revolution of 
the body? 

11.5. The minimum distance I to which a comet approaches the Sun is 
smaller than the radius rE of the Earth's orbit(/< rE). For how much 
time will the distance between the comet and the Sun be smaller than 
rE? 
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11.6. During the motion of a body in a central gravitational field, the 
magnitude of its velocity is changed instantaneously by llv1 at the 
perihelion (r1) and by llv2 at the aphelion (r2 ) without changing the 
direction. The values of r 1 and r2 will be different for the new orbit. 
Find the values of llr1 and llr2 . 

11.7. A shell is fired vertically upwards from the surface of the Earth at an 
initial velocity v. When it reaches the upper point of its trajectory, it 
explodes and splits into two equal parts, moving at a velocity u at the 
initial instant of time. What will be the maximum distance between the 
points at which these two parts fall onto the Earth? 

ANSWERS 11.1. (7t + 2e)/(7t - 2e). 11.2. - 4 days. 11.3. T J2;s. 11.4. In an 

eJlipse with axis 2r; T. 11.5. j2 (I - /frE)[l + 2//rE/(37t)] year. 
11.6. llr1 = 411v2r1/[(l + e)v2 ], llr2 = 411vjr2/[(l- e)v1]. 11.7. 2uvfg 
for u ~ v, (u2 + v1 )/g for u ;;:. v. 



Chapter 12 
Motion in an Electromagnetic Field 

I 

Basic idea: 
Electromagnetic forces have a decisive influence on the motion. 
of charged particles over a range exceeding the nuclear 
dimensions but smaller than astronomical distances. Strong 
(nuclear) and weak interactions take place on the subatomic 
scale, while gravitational interactions occur between 
astronomical objects. ' 

Sec. 47. PROPERTIES OF ELECTROMAGNETIC FORCES 
The properties of electromag- LORENTZ FORCE. A point charge q in an electromagnetic 
netic forces are described. field is acted upon by the Lorentz force 

F = qE + qv x B, (47.1) 

where E, B and v denote the electric field strength, magnetic 
induction and the velocity of the point charge q respectively. 

According to this relation, the force F consists of two 
components, each of which affects the motion of the charge in 
a different way. The force described by the second component, 
i.e. 

Fm = qv x B, (47.2) 

which is called the magnetic force for the sake of brevity, is 
directed at right angles to the particle's velocity. This means 
that it is directed at right angles to the displacement of the 
particle and hence does no work: 

dAm=Fm·dr=F·vdt=q(v xB)·vdt=O, 

where dr = v dt is the displacement of the charge in time dt, 
and the scalar triple product is (v x B)· v = 0 since two of its 
cofactors are collinear. Thus, the magnetic force does not 
change the kinetic energy of a charge, i.e. does not change the 
magnitude of its velocity, but changes only its direction. The 
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When a charge moves in an 
electromagnetic field, the mag
nitude of its velocity changes 
only due to the action of the 
electric force, while the change 
in its direction is caused both 
by the electric and magnetic 
forces. 

? 
l#ite down the relativistic 
equation in such a form that it 
explicitly contains the particle's 
acceleration. Using this re
lation, analyze the relation 
between the directions of the 
force and the acceleration. 
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force described by the first term in (47.1), i.e. 

F.= qE, (47.3) 

which is called the electric force for the sake of brevity, can be 
oriented at an arbitrary angle to the particle's velocity. The 
work done by this force in displacing a charge q by dr = v dt is 

dA. = F.· dr = q E · v dt. 

The work done by an electric force may be positive or negative 
or zero. The work is zero if the electric field is directed at right 
angles to the particle's velocity. For E· v > 0, the work is 
positive for a positive charge and negative for a negative 
charge. Consequently, the energy of a positive charge and the 
magnitude of its velocity increase in this case, while a decrease 
in the values of these quantities is observed for a negative 
charge. For E· v < 0, the work is positive for a negative charge 
and negative for a positive charge. Hence the magnitude of the 
velocity of a negative charge increases and that of a positive 
charge decreases. 

Thus, when a charge moves in an electromagnetic field, the 
magnitude of its velocity changes only due to the action of the 
electric force, while the direction of its velocity changes due to 
the action of both electric and magnetic forces. 

POTENTIAL OF AN ELECTROSTATIC FIELD. The force of 
interaction qf stationary point charges is described by 
Coulomb's law 

(47.4) 

It was explained in Sec. 25 (see (25.32)) that the forces which 
decrease in inverse proportion to the square of the distance are 
potential forces. Any electrostatic field can be represented as a 
superposition of the fields of stationary charges and is 
therefore a potential field. Hence the potential energy of a 
point charge q in a field can be represented in the form 

EP(r) = qcp(r), (47.5) 

where cp is the potential at the point where the charge q is 
situated. Hence, in accordance with (25.20), the electric force 
acting on this charge can be calculated from the formulas 

8EP q8cp 
F X = qEX = - -a;- - ax ' 

(47.6). 

F =- q8cp 
y ay , 

F =- q8cp 
z az . 
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The methods of computing the potential, electric field 
strength and magnetic induction are considered in the theory 
of electricity and magnetism. In mechanics, fields are assumed 
to be known. 

EQUATION OF MOTION. The equation of motion for an 
electromagnetic field has the form I 

dp 
dt = qE + qv x B = F. (47.7) 

This equation is valid for all velocities. 
It was mentioned in Sec. 20 that in the relativistic case the 

direction of acceleration of a point mass does not coincide with 
the direction of the force acting on it. Hence, khowing the 
direction of the force and of the point's velocity, we can easily 
find how the momentum changes, but the variation of the 
velocity is not all that obvious. Hence we transform (47.7) as 
follows. Considering that p = mv = m0vfJI - v2/c2, we can 
write 

dp dm dv 
-'-=-V +m-. 
dt dt dt 

It follows from (33.3) that 

~( moc2 ) = c2dm = f.dr = F·v. 
dt Jt _ iJ2jc2 dt dt 

Consequently, 
dm v 
--F·-
dt - c2 • 

The equation of motion (47.7) then assumes the form 

m dv = F- ~(F·~). 
dt c c 

(47.8) 

(47.9) 

(47.10) 

(47.11) 

It can be seen that the acceleration coincides in direction 
with the force only if the force is perpendicular to the velocity. 
In other cases, the acceleration in the direction of the force is 
supplemented by an acceleration in the direction of the 
velocity. This acceleration is of the order of v2fc 2 relative to the 
acceleration in the direction of the force and is negligibly small 
at nonrelativistic velocities. 
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Sec. 48. MOTION IN STATIONARY ELECTRIC 
AND MAGNETIC FIELDS 

The most di~tinguishing fea
tures of the motion of charged 
particles in stationary electric 
and magnetic fields are de
scribed. 

v 

• • • 11v B 
Flg. 125. Decomposition of the 
velocity vector of the charge 
moving in a magnetic field into 
two components, one along the 
magnetic induction B and the 
other perpendicular to it. 

MOTION IN A UNIFORM MAGNETIC FIELD. While consid
ering the motion of a charged particle in a magnetic field, it is 
convenient to represent the velocity v as the sum of the 
components v .L and v 11 perpendicular and parallel to the 
magnetic field respectively (Fig. 125): 

V = v.l +VII· (48.1) 

The Lorentz force acting on the charge is 

F = e(v.L + v11 ) x B = ev.L x B + ev 11 x b = ev.L x H. (48.2) 

It follows from here that the component of the Lorentz force 
parallel to the magnetic field is zero, i.e. 

F 11 = e(v x B) 11 = 0. (48.3) 

The component perpendicular to the magnetic field is given by 

F.L =ev.L x B (48.4) 

and depends only on the perpendicular component of the 
velocity. 

The constant magnitude of the velocity of a charge moving 
in a stationary magnetic field indicates that the mass of the 
charge carrier, given by m = m0 /Jl - v2/c 2 , is also constant. 
Hence the etj_uations of motion for the parallel and perpen
dicular components of the velocity have the form 

dv 11 

m-=0 
dt ' 

dv.L 
m-= ev1. x B. 

dt 

It follows from (48.5a) that 

(48.5a) 

(48.5b) 

v11 = const. (48.6) 

In order to analyze the motion at right angles to the 
magnetic field, let us consider Eq. (48.5b). We have 

v2 = vi + '1 = const. (48.7) 

Taking (48.6) into consideration, we obtain 

vi = const. (48.8) 

Let us look a little more closely at Eq. (48.5b) (for v11 = 0). 
The angle between vectors v 1. and B remains constant and 
equal to 7t/2. The magnitudes of v 1. and B do not change. The 



A variation is called adiabatic if 
it takes place quite slowly in 
comparison with the variations 
characteristic of the phenom
enon under consideration. 
Hence the same process may or 
may not be adiabatic under 
different conditions. 
The drift of a charge in a 
uniform magnetic field is a 
consequence of the variation of 
the radius of curvature of its 
trajectory due to the variation 
of the particle's energy caused 
by a uniform electric field. The 
drift of a charge in a nonuni
form magnetic field is due to 
the variation of the radius of 
curvature of its trajectory due 
to the variation of the magnetic 
field. 
Particles are "reflected" from 
the region of a strong increase 
of the magnetic field, and their 
trajectories coil around the 
lines of force. This phenomenon 
is used for confining charged 
particles to a finite volume. 
Charged particles rotate in the 
Earth's magnetic field around 
the magnetic field lines and are 
displaced in the meridional 
direction from north to south 
and from south to north, 
undergoing successive reflec
tions from the regions of 
increase of the magnetic field 
near the poles. At the same 
time, the particles are displaced 
from one meridian to another, 
moving along parallels around 
the Earth. 
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force on the right-hand side of (48.5b) is perpendicular to the 
velocity and has a constant magnitude. Consequently, this 
equation describes the motion with a constant acceleration 
which is always perpendicular to the velocity. In other words, 
this equation describes the motion in a circle. The left-hand 
side of (48.5b) expresses the product of the particle'' mass and 
the centripetal acceleration vi/r, where r is the radius of the 
circle. The right-hand side of (48.5b) describes the force lei v1.B 
due to the centripetal acceleration. Hence we can write 

mv2 
~=lei V1.B. (48.9) 

r 

This equation contains a complete description of the motion of 
a charged particle in a circle in a plane perpendicplar to the 
uniform magnetic field. 

The direction of rotation depends on the sign of a charge. It 
can be concluded from Eq. (48.5b) that the direction of 
rotation of a negative charge is associated with the direction of 
the magnetic field B through the right-hand screw rule, while 
the rotation of a positive charge is connected with the 
direction of the magnetic field through the left-hand screw rule 
(Fig. 126). 

Equation (48.9) leads to the following expressions for the 
angular velocity of rotation and the radius of the orbit: 

21t 21t v 1. I e I B v 1. mv 1. ro=-=--=-=- r=-=-. (48.10) 
T l1tr/v1. r m ' ro leiB 

The complete motion of a charged particle in a constant uni
form magnetic field is composed of a uniform motion along the 
field and rotation in a plane perpendicular to it. This means 
that the particle moves along a spiral with a lead 

21t 
I= v 11 T= v 11 ·-. (48.11) 

(I) 

MOTION IN A TRANSVERSE NONUNIFORM MAGNETIC 
FIELD. The solution of this problem in the general form is 
quite complicated, and we shall confine ourselves to the case 
when a moving charged particle does not deflect appreciably 
from a rectilinear trajectory. The particle moves all the time 
nearly at right angles to the magnetic field that varies in 
magnitude but not in direction. Suppose that this field 
(Fig. 127) is defined by 

B,. = B(z), B, =B.= 0. (48.12) 

We shall assume that the particle moves along the Z-axis. The 
magnitude of the magnetic field B(z) also varies arbitrarily in 
this direction. At the instant t = 0, the particle is at the origin 
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vxB 

Fig. 126. Determining the direc
tion of rotation of a negatively 
charged particle in a magnetic 
field B. 

X 
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of coordinates and has a velocity v towards positive values of 
the Z-axis. It can clearly be seen that in this case the Lorentz 
force acts in the YZ-plane throughout, and hence the particle 
moves in this plane. Only small deviations of the particle from 
the Z-axis are considered. This means that the velocity along 
the Z-axis is much higher than the velocity along the Y..axis: 

v 
...1.«1. 
v. 

(48.13) 

Hence the velocity v, which is constant in a magnetic field, can 
be represented in the form 

( V2)112 1 v2 
- 2 2_ y ,...., y v.,.... ~- v. I +--z -v. +-v. 2 + ... , 

v. 2 v. 
(48.14) 

where the square root has been expanded into a series and 
only the first term of the expansion in v; jv~ has been retained. 
Hence, to within small values of v; jv~ « l, the particle's 
velocity along the Z-axis remains unchanged, i.e. 

v = v. = const. (48.15) 

Let us write down the equation of motion (47.7) in 
1 coordinate form by using the formula for vector product: 

Fig. 127. Trajectory of a charged 
particle in a transverse magnetic 
field. 

d2x d2y d2z 
m-d 2 = 0, m-d 2 = ev.B, m-d 2 = -ev7B. 

t • t t 
(48.16) 

In view of the smallness of v7 in comparison with v., the 
force in the equation for.the z-coordinate is much smaller than 
the force in the equation for the y-coordinate. Hence, taking 
(48.15) into consideration, the force on the right-hand side of 
the third equation in (48.16) can be put equal to zero, and the 
equation can be written in the form m(d2z/dt2) = 0. 

Under the initial conditions 

x(O) = 0, 
dx(O) 
--=0 

dt ' 

y(O) = 0, z(O) = 0, 

dy(O) = O dz(O) = v 
dt , dt , 

for x(t) and z(t), we obtain the following relations: 

{4lU7) 

x(t) = 0, z(t) = vt. (48.18) 

By means of formulas 

dy dydz dy d 2y d 2y 2 

dt = dz dt = dz v, dt2 = dz2 v ' (48.1 9) 

we can write the equation for y in the form 

d2y e 
-d 2 = -B(z). (48.20) 

z mv 
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The solution of this equation after two successive integra
tions has the form 

y(z0 ) = (:v) b, (48.21) 

where I 
:zo ~ zo 

b = J d~J B(11)d11 = J (z0 -11)B(11) d11 (48.22) 
0 0 0 

is a constant determined by the configuration of the field 
through which the charged particle passes. In our problem, 
this constant is assumed to be known. 

Measuring the deviation y(z0) and knowing the velocity v of 
the particle, we can determine the ratio e/m. This mcahod was 
used to find the charge-to-mass ratio for electrons in one of the 
earliest measurements of this quantity. 

MOTION IN A LONGITUDINAL ELECTRIC FIELD. Sup
pose that the z-axis is parallel to the force acting on a charge 
due to an electrostatic field. The particle's velocity is also 
directed along the z-axis, and its value at each point can be 
determined by the energy conservation law. In other words, 
the relation v = v(z) is known. This enables us to find the time 
dependence z(t) of the particle's position since 

dz 
dt = v (z). (48.23) 

The function on the right-hand side of this equation (velocity) 
is known. Hence if a point has a z0-coordinate at the instant t0 , 

it will have a z-coordinate at the instant t; moreover, from 
(48.23), we obtain 

z 

f dz I 

- = J dt = t - t0 • 
v(z) 1 

0 ... 
(48.24) 

Evaluating the integral on the left-hand side, we obtain the 
dependence of z on t in implicit form. For example, in the 
nonrelativistic case, the energy conservation law can be written 
in the form 

mv2 

T + e<p = E0 = const. (48.25) 

Hence 
z 

f J2 [E0 ~e<p (z)]/m = t - to· 
(48.26) 

•• 
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The sign of the root should be chosen in such a way that it 
corresponds to the sign of the velocity for a chosen positive 
direction of the z-axis. 

The motion in the relativistic case in analyzed in a similar _,.,*' x manner, the only difference being that while calculating the 
J-J-=..:_::;..;.. ___ ....;.. ____ ~--:=- velocity, we should use the energy conservation law in the 

Z0 Z following form: 
y 

Fig. 128. Trajectory of a charged 
particle in a transverse electric 
field. 

? 
Which property of forces exert
ed by a magnetic field on a 
charge ensures the invariability 
of the magnitude of the velocity 
of the charge moving in this 
field? 
What are the factors determining 
the parameters of the helical 
trajectory of a charge moving in 
a uniform magnetic field? 
What does the direction of 
rotation of a charge in a 
magnetic field depend on? 
What is the difference between 
relativistic and nonrelativistic 
motions of a charge in a uniform 
magnetic freld? 
Describe the mechanism respon
sible for the drift of charged 
particles in crossed electric and 
magnetic fields. 
Does the direction of drift in 
crossed fields depend on the sign 
of the charge? 
Write down the energy conserva
tion law for a charged particle 
moving in a stationary electric 
field. How does the motion of 
one type of charge differ from 
that of the opposite charge in a 
given field? 
What is an electron volt? Can it 
be used as a unit of energy in S/ 
system? What are out-of-system 
units? 

m c2 
0 + e<p = const. 

j1- v2/c2 
(48.27) 

This does not introduce any fundamental changes in the 
solution of the problem. 

MOTION IN A TRANSVERSE ELECTRIC FIELD. Suppose 
that the initial velocity of a particle is directed along the Z-axis 
and the electric field is applied along the X -axis. As a result, 
the particle describes a certain trajectory in the XZ-plane. 

In this case, the motion of the particle in the relativistic case 
is quite different from that in the nonrelativistic case. 

In the nonrelativistic case, the motion can be visualized as a 
combination of two independent motions: (1) along the Z-axis 
at a constant velocity equal to the initial velocity v0 , and 
(2) along the X -axis under the action of the electric field with 
zero initial velocity in this direction. Thus, at the instant t, the 
coordinate of the particle is z = v0 t, while the x-coordinate can 
be found from"the formulas obtained above for the motion in a 
longitudinal electric field. This is so because the motion along 
the X -axis is not connect«l in any way with the motion along 
the Z-axis. 

In the relativistic case, it is impossible to represent the motion 
as a combination of two independent motions in mutually 
perpendicular directions. This is due to the fact that the 
directions of the force and the acceleration do not coincide (see 
Sec. 20). Hence the force acting along the X-axis causes an 
acceleration along the Z-axis as well, and the motions along 
the X- and Z-axes are mutually connected. The formulas 
describing the motion become quite complicated, and we shall 
confine ourselves to the remark made on the basic aspects of 
the relativistic motion. 

SMALL DEVIATIONS. Suppose that the trajectory of a 
particle does not differ appreciably from a straight line, i.e. the 
radius of curvature of the trajectory is much larger than its 
length. Let the electric field be applied along the X -axis, the 
magnetic field being zero (Fig. 128): 

E, = Ez = 0, Ex = Ez. (48.28) 

The magnitude of vector E generally changes along the Z-axis, 
i.e. E = E(z). The equations of motion and the initial con-
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Fig. 129. Drift of a charged 
particle in crossed electric and 
magnetic fields. 
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ditions have the following form: 
d2x d2y d2z 

mo dt2 = eE(z), mo dt2 = 0, mo dtz = 0, (48.29) 

dx(O) dy(O) 
x(O) = y(O) = z(O) = 0, dt = 0, dt = 0, 

This problem can be solved by using the same arguments and 
transformations of variables that were described for 
Eqs. (48.16). The only difference is that we now obtain the 
following equations instead of (48.20): 

d2x e dx(O) 
-d 2 = - 2 E(z), -dz = 0, x(O) = 0. (48.30) 

z mv 

The solution of these equations is similar to Eq. (48.21): 

ea 
x(zo) = -2, 

mv 

where 
z. ~ z. 

a = J dl; J E(T)) dT) = J (z0 - T)) E(T)) dT) 
0 0 0 

(48.31) 

(48.32) 

depends only on the configuration of the electric field. 
DRifT IN CROSSED ELECTRIC AND MAGNETIC FIELDS. 

If an electric and a magnetic field are applied simultaneously, 
the motion becomes much more complicated. Let us consider 
the simplest case when these fields are mutually perpendicular 
and their magnitude is such that the radius of curvature of a 
particle's trajectory is much smaller than the linear dimensions 
of the region in which the particle moves, i.e. the magnetic field 
is quite strong. As a result, the moving particle describes a 
large number of revolutions in the region of motion. Under 
these conditions, charged particles are said to drift. 

Let us consider uniform crossed electric and magnetic fields 
(E.l B) shown in Fig. 129. The general nature of motion can be 
determined with the help of purely qualitative considerations 
without resorting to any solution of equations. For the sake of 
definiteness, we shall assume that the charge of the particle is 
positive (e > 0). In the absence of an electric field, the particle 
moves in a uniform magnetic field in a circle at a constant 
velocity v (Fig. 129a). When an electric field is applied at right 
angles to the magnetic field, the particle's velocity 6ecomes 
variable. For displacements along the electric force Fe, the 
velocity increases, and the radius of curvature of the trajectory 
becomes larger (upper semicircles in Fig. 129b). When the 
direction of the velocity is reversed, the particle moves against 
the electric force, and hence its velocity and the radius of 
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What is the mechanism of 
emergence of drift in a nonuni
form magnetic field? Does the 
direction of drift depend on the 
sign of a charge? How? 
How does the curvature of 
magnetic Judd lines result in a 
drift of charged particles? 
Under what circumstances does 
a charged particle moving 
around a line of force deflect 
from it? 
On what energy does the 
rotational magnetic moment of a 
particle depend in a magnetic 
field? 
What is meant by the adiabatic 
invariance of magnetic moment? 
What are the arguments sup
porting the statement that 
particles move on the surface of 
a magnetic tube? 
Explain the effect of magnetic 
mirrors from the conservation of 
magnetic moment and a direct 
consideration of the forces 
exerted by the magnetic field on 
the charge. 
What is a loss cone? 
How do charged particles move 
in the radiation belts of the 
Earth? 
Which factors force the particles 
in the radiation belts of the 
Earth to move along a longitude 
around the globe? 
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curvature of its trajectory decrease (lower semicircles in 
Fig. 129b). The motion with a small radius of curvature takes 
place in a smaller region of the trajectory, and hence during 
one complete cycle the particle moves in a direction per
pendicular to both the electric and the magnetic field. This 
motion is called drift. 

The drift · in crossed electric and magnetic fields is inde
pendent of the sign of a charge. 

If the particle has a negative charge (e < 0), the direction of 
rotation of the particle in the magnetic field is reversed, i.e. the 
rotation of the particle shown in Fig. 129a should be counter
clockwise and not clockwise as shown. The direction of the 
electric force is also reversed, i.e. the electric force points 
downwards in Fig. 129b. Hence the radius of curvature will be 
larger in the lower part of the trajectory than in the upper part, 
and the drift will have the same direction as for the positive 
sign of the charge. 

The drift of a particle can be represented as a motion in a 
circle about a centre which moves with the drift velocity vd. In 
order to calculate the value of this quantity, we must solve the 
equation of motion 

dv 
m0 - = eE + ev x B (48.33) 

dt ; 

in the given' field. This solution is sought in the form 

v = v' + B- 2 E X B. (48.34) 
}If 

where v' is an unknown variable velocity, and the quantity 

vd = B- 2 E x B (48.35) 

represents a constant velocity. It will be shown that this is the 
drift velocity of the particle. Substituting (48.34) into (48.33), 
we obtain 

m0 ~:· = eE + ev' x B + (;z) [B(E· B)- EB2] = ev' x B, 

(48.36) 

where we have used the formula for the vector triple product, 
i.e. (Ex B) x B = B(E· B)- E(B· B), and have taken into 
account that the scalar product of vectors E and B is zero in 
view of their orthogonality. Equation (48.36) for vector v' 

dv' 
m0 dt = ev' x B (48.37) 

coincides with Eq. (48.5b) describing a uniform motion in a 
circle. Hence vector v' represents the velocity of this motion. 
The radius of the circle and the frequency of rotation are given 
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by formulas of the type (48.10). The centre of the circle moves 
at the drift velocity vd given by formula (48.35). Its absolute 
magnitude is given by 

E 
vel= B- 2 1E x Bl = -, 

B 

while its direction is perpendicular to E and B. 

I (48.38) 

Formula (48.35) shows that the drift velocity is independent 
neither of the sign of a charge nor also of its magnitude and the 
mass of the particle. 

This is a significant conclusion since the drift of heavy 
particles like protons is analogous to the drift of light particles 
like electrons which have the opposite charge. Hence if we 
have a plasma formed by protons and electrons whose charges 
are mutually compensated, it will move at drift velocity when 
placed in crossed electric and magnetic fields. This is not 
accompanied by the emergence of any forces striving to 
separate the negatively and positively charged components of 
the plasma. 

DRIFT IN A NONUNIFORM MAGNETIC FIELD. Consider a 
magnetic field whose lines are parallel to one another and 
whose magnitude changes in a direction perpendicular to the 
field. If the field were uniform, a charged particle would move 
in a circle under the action of this field. However, in view of the 
nonuniformity of the field, the radius of curvature of the 
trajectory changes during the motion: the radius of curvature 
will be smaller in regions where the magnetic field is stronger, 
and larger where the field is weaker. Thus, the pattern is the 
same as in crossed fields, the only difference being that in this 
case the radius of curvature of the trajectory changes not 
because of a change in the energy of the particle, but rather as 
a result of a change in the magnetic field at different points of 
the trajectory. 

The drift of a particle occurs in a direction perpendicular to 
both the magnetic field and the direction of nonuniformity of 
this field. The drift pattern is shown in Fig. 130. It can clearly 
be seen in the figure that particles with opposite charges drift 
in opposite directions. 

An exact calculation of the drift velocity in this case is quite 
complicated, but we can carry out a simpler approximate 
calculation which gives reasonably precise results. We assume 
that the magnetic field does not increase continuously, but its 
magnetic · induction varies abruptly along the lines AA 1 

(Fig. 131) such that B1 > B2 • In each half-plane, the particle 
moves in a circular trajectory, but the radii of these trajectories 
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(e < 0) 

y 
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Fig. 130. Drift of a charged 
particle in a. nonuniform mag
netic field. 
The arrow pointing upwards indi
cates the direction in which the 
magnitude of the magnetic field 
grad I B I) increases. 

Fig. 131. Calculating the drift 
velocity in a nonuniform mag
netic field. 

-R 0 +R X 

Fig. 132. Calculating the aver
age distance between the points 
on a semicircle and the diameter. 

are different (R2 > R1).lt is obvious from Fig. 131 that for one 
revolution comprising two motions along semicircles of differ
ent radii the point about which the rotation takes place is 
displaced by 2(R2 - R1). If the total periods of revolution in 
circles of radii R1 and R2 are denoted by T1 and T2 , we can 
write the following expression for the drift velocity: 

2 (R2 - R1) (48.39) 
vd ~ 1 . . 

2(T2 +. T1) 

Expressing the periods J'1 and T2 and the orbital radii R1 and 
R 2 in terms of the magnetic induction with the help of 
formulas (48.10), we can transform (48.39) to: 

2 (B1 - B2) 
Vd=~V B1+B2. (48.40) 

Let us now calculate the average distance between the points 
on the semicircular trajectory and the diameter on which 
abrupt variations of the field occur. Obviously, we have 
(Fig. 132) 

d = Rsin8, x = Rcos8, 
+R 

J d·dx 
Rn Rn nR 

(d)= -:R =-J sin2 8d8 =-J(l- cos28)d8 = -. 
J dx 2 0 4 0 4 
-R 

Hence, to a first approximation, we can write 

B -B -~(R R)aB_nm0 v2 B1 +B2 8B 
1 2 "' 4 2 + 1 8y "' 4 e B1 B2 8y ' 

(48.41) 

(48.42) 
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Fig. 133. Drift of a charged 
particle due to the curvature of 
the magnetic field lines. 
The coordinate system fixed to the 
centre of rotation of the particle is 
noninertial and a centrifugal force 
1-~r emerges in it. 
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where B is the magnetic induction on the midline if the 
magnetic field is varied smoothly and not abruptly. Under the 
same assumption, we can write the following approximations: 

B1 + B2 ~ 2B, B1B2 ~ B2 • (48.43) 

Substituting (48.43) and (48.42) into (48.40), we fina~y obtain 
the following formula for the drift velocity: · · 

(48.44) 

where Ek = m0 v2 /2 is the kinetic energy of the particle. The 
drift is perpendicular to the magnetic field vector B and to the 
direction of maximum variation of the magnitu8e of the 
magnetic induction. In vector form, Eq. (48.44) can be written 
as 

(48.45) 

where b1 = B/ B is a unit vector along the magnetic field, and 
grad I Bl is a vector directed towards the maximum increase in 
the magnitude of vector Band equal to the derivative of I Bl in 
this direction. 

Fom1ula (48.45) has been derived in the first approximation. 
This means that the variation of the magnetic field at distances 
of the order of the orbital radius must be small in comparison 
with the magnetic induction. Mathematically, this condition 
can be written as follows: 

I grad Bl 
R B «1. (48.46) 

DRIFT DUE TO THE CURVATURE OF THE MAGNETIC 
FIELD LINE. In the general case, the magnetic induction of a 
nonuniform magnetic field cannot be represented by straight 
lines. The field lines are curves, each point on which cor
responds to a definite radius of curvature. A charged particle 
rotates about the centre of the trajectory, which is as if fixed to 
the line, and moves along it. Hence it is called the leading 
centre. The particle's trajectory is helical, wound on the 
magnetic field line (Fig. 133). We attach the coordinate system 
to the leading centre. In this coordinate system, the particle is 
acted upon by an inertial centrifugal force Fer which is 
equivalent to the action of an electric field of strength 
E.rr = Fer/e. Thus, the particle as if moves in crossed fields. 
This case has just been analyzed by us. The particle must drift 
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in a direction perpendicular both to B and to F cr• i.e. 
perpendicular to the plane (see Fig. 133). The drift velocity can 
easily be calculated. It is well known that the centrifugal force 
is defined by the formula 

m0v~ 
Fer= R = eEerr• (48.47) 

where v
11 

is the projection of the particle's velocity onto the 
direction of the magnetic field. Substituting Ecrr from (48.47) 
into (48.38), we obtain the following expression for the drift 
velocity due to the curvature of a magnetic field line: 

_ m0v; _ 2Ekll _ _5_ 
vd- - - ' 

eBR eBR roR 
(48.48) 

where Ekll = m0v~/2 is the kinetic energy of motion along the 
field line, and o) is the cyclic frequency of the particle. 

This drift is added up to the drift caused by the nonunifor
mity of the magnetic field, whose velocity is given by (48.45). 

In view of the above digression, it can be stated that the 
motion of a particle in a magnetic field consists of three 
components: 

(1) rotation around the field line; 
(2) motion of the leading centre along the field line; 
(3) the drift of the leading centre in a direction perpendicular 

to the magnetic field vector B and the gradient of the magnetic 
induction, i.e. in a cjP'ection perpendicular to the plane 
containing the magnetic field line near the given point. 

MAGNETIC MOMENT. In many practically important cases, 
the magnetic field does not vary appreciably over distances of 
the order of the radius of a particle's trajectory. By analogy 
with the magnetic moment of a ring current, we can speak of 
the magnetic moment of the particle moving in a magnetic 
field. The expedience of such a concept is justified by the fact 
that this magnetic moment preserves its value in slowly 
varying magnetic fields and its introduction considerably 
simplifies the analysis of motion of the particle. 

The magnetic moment Pm of a ring current of strength I is, 
by definition, 

Pm =IS, (48.49) 

where S is the area of the region around which the current 
flows. The charge lei, moving in a circle of radius Rand having 
a period of revolution T, is analogous to the ring current of 
strength lei/T. Consequently, the magnetic moment of a 
charged particle can be written in accordance with (48.49) in 
the form 
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dB 
dt 

Fig. 134. The existence of a 
magnetic field generates a vortex 
electric field. 
The directions of variation of electric 
and magnetic fields are connected 
through the left-hand screw rule. 
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lei 2 
Pm =-y1tR. 

Considering that 

21tR mvl_ 
T= ~· R = leiB' 

(48.50) 

I (48.51) 

we obtain the following etpression for the magnetic moment of 
the particle: 

mvf Ekl_ 
Pm= 2B =B, (48.52) 

where Ekj_ = mvf/2 is the kinetic energy corresponding to the 
velocity component in a plane perpendicular to the magnetic 
field. • 

ADIABATIC INVARIANCE OF THE MAGNETIC MOMENT. 
Adiabatic invariance of the magnetic moment means that its 
value is preserved in magnetic fields that vary slowly in time or 
in space. 

Let us first consider the case of a slowly varying magnetic 
field in time (Fig. 134). Suppose that the magnetic field B 
increases in the direction shown in the figure. Then, in 
accordance with Faraday's law of electromagnetic induction, a 
particle moving in a circle is subjected to a vortex electric field 
E directed along the particle's trajectory 

l d<ll R dB 
E=--=--, (48.53) 

21tR dt 2 dt 

where <II = 1tR2 B is the magnetic flux (as stipulated, the 
magnetic induction varies insignificantly over distances of the 
order of the orbital radius, and hence the field can be assumed 
to be uniform). During one revolution of the particle, the field 
imparts it an energy equal to 

dB 
a(mv~/2) = 21tREiel = lel1tR2 dt. (48.54) 

The slow time variation indicates that during one revolution of 
the particle in a circle, the magnetic induction does not vary 
appreciably. The particle's energy varies insignificantly over 
one revolution, and hence we can divide both sides of (48.54) 
by T. Taking (48.50) into account, we can write 

a(mv~/2) d 2 lel1tR2 dB dB 
T ~ dt (mv 1_/2) = -T-dt = Pm dt. (48.55) 

Expressing the energy mvi/2 through (48.52), we can represent 
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B 

Fig. I 35. When a charged par
ticle moves in a region with an 
increasing magnetic field, its ve
locity along the field decreases, 
while the linear velocity of rota
tional motion_increases. 

z 

Fig. 136. Computing the radial 
component of the magnetic field. 
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(48.55) in the form 

d dB 
dt (pmB) = Pm dt' 

dpm dr = 0, Pm = canst, (48.56) 

Q.E.D. . 
Let us now consider the variation of magnetic field in space. 

Suppose that a particle moves in the direction of variation of 
the magnetic field (Fig. 135). If the field is intensified along the 
Z-axis, the magnetic field lines become denser in this direction. 
In the present case, these lines have a component B, along the 
radius R. In view of the velocity v 1, the radial component B, 
gives rise to the Lorentz force 

F 11 = ev .1 x B,. (48.57) 

which acts along the Z-axis against the direction of crowding 
of the field lines, i.e. towards the decreasing magnetic field. 
This force de~elerates the moving particle. In order to calculate 
the decelerating force (48.57), we must know the value of B,. 
Since the mllgnetic field lines have neither beginning nor end, 
the number of such lines entering a certain volume is equal to 
the number of lines et~~erging from it. In other words, the 
magnetic flux entering a certain volume is equal to the 
magnetic flux leaving it. We choose this volume in the form of 
a cylinder of radius R and thickness Az, its axis coinciding with 
the Z-axis (Fig. 136). Equating the flux entering the left base 
and the lateral surface of the cylinder to the flux leaving 
through the right base, we obtain 

(48.58) 

Hence 

RAB, RaB. 
Br~---~--. 

2 Az 2 az (48.59) 

Consequently, the force (48.57) acting along the Z-axis is 

F _ 1 1 B _iel21tR~aB. _ aB. (48_60) 
II - e v .1 ' - T 2 az - Pm az ' 

where v 1 = 21tR/T, and the definition (48.50) of the magnetic 
moment has been taken into consideration. It can be seen from 
Fig. 136 that the direction of this force is opposite to the 
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direction in which the magnetic field increases, i.e. to the 
positive direction of the Z-ax.is in the present case. Hence the 
equation for the velocity component v. can be written in the 
form 

dv. aB. oB 1 mdt = -Pmaz = -Pmaz, (48.61) 

where we have considered that oB.foz ~ oB/oz in view of the 
slow variation of the magnetic field. In other words, the 
component B. of the magnetic field is replaced by the total 
magnetic field. This means that the magnetic field lines do not 
crowd very strongly, i.e. their slope towards the Z-axis is not 
so large. The minus sign in (48.61) indicates the direction in 
which the force acts. 

Multiplying both sides of (48.61) by v. and faking into 
account the equalities 

dv. d (v;) oB dB 
dtv. = dt 2 ' oz v. = dt' 
we can write (48.61) in the form 

d (mv;) dB 
dt 2 = -pmdt" ·(48.62) 

Since the total velocity of the particle remains unchanged 
during its motion in a magnetic field, we can write 

mv2 mv2 mv2 

-· +~=-=const, 
2 2 2 

and formula (48.62) assumes the form 

d (mv~) d dB 
dt 2 = dt(pmB) = Pmdt' (48.63) 

where we have used the substitution mv~ /2 = PmB in ac
cordance with (48.52). This equation is identical to (48.56), 
whence it follows that.. 

Pm = const. (48.64) 

In other words, the magnetic moment is also conserved during 
a slow (adiabatic) variation of the magnetic field in space. 

Thus, we have proved that the magnetic moment Pm• defined by 
Eq. (48.52), remains unchanged for a moving particle during 
a slow variation of the magnetic field in space or in time. 

It should be recalled that the criterion of slow spatial 
variation of the magnetic field indicates that its magnitude 
does not change appreciably over distances of the order of the 
radius of the circular orbit and the disP.,laccment of a particle 
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during one revolution, while the criterion of slow time 
variation of the magnetic field indicates that its value does not 
change appreciably during one revolution. The constancy of 
the magnetic moment during slow variations of the magnetic 
field is termed the adiabatic invariance of the magnetic 
moment. 

Adiabatic invariance means that particles move over the 
surface of a magnetic tube, i.e. tube formed by the magnetic 
field lines (see Fig. 135). In order to verify this, we consider 
that, by definition of a field tube, the magnetic flux penetrating 
the cross section of the tube does not change along it. The 
magnetic flux across the cross section of the field tube can be 
represented in the form 

2 2rr:m Ek J. 2rr:m 
<I>= rr:R B = --= -p = const·p ez B e2 m m· 

(48.65) 

It is obvious from this formula that the constancy of the 
magnetic flux along a tube is equivalent to the constancy of the 
magnetic moment of a particle moving over the surface of the 
field tube. But since the constancy of the magnetic moment 
during the motion of a particle has already been proved 
independently, we can conclude that the particle indeed moves 
over the surface of a field (see Fig. 135). In order to completely 
describe the motion of a particle, we must take into account its 
drift. As a reS'Ult of drift, the particle moves from one field tube 
to another in a nonuniform magnetic field in such a way that 
the magnetic flux enclo51td in the tubes remains the same. 

MAGNETIC MIRRORS. The decelerating force (48.57) de
creases the velocity v of a particle moving in the direction of 
increasing magnetic held. If the increase in the field is quite 
large, the velocity vJI vanishes as a result of deceleration, after 
which the particle begins to move in the opposite direction. 
Thus, a region of increasing magnetic field acts on a particle as 
a "mirror" that reflects it. Hence an increasing magnetic field is 
referred to as a "magnetic mirror". 

The reflection from a magnetic mirror can also be consid
ered from the point of view of the conservation of a magnetic 
moment. Since Pm = mv1/(2B), the conservation of the mag
netic moment in the direction of increasing values B of the 
magnetic field means that in this case the value of v1 increases. 
However, the square of the total velocity v2 = v1 + v~ must 
also remain unchanged. Hence, when a particle moves towards 
an increasing magnetic field, the value of v~ must decrease. In 
other words, the particle is decelerated. 

Let us find the region of field in which the particle is 
reflected. Suppose that at the initial instant of time the total 
velocity v0 of the particle forms an angle 80 with the direction 
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of the magnetic induction 8 0 (Fig. 137). At some other instant 
of time, when the particle has moved to another point in the 
field with a magnetic induction 8, its velocity remains un
changed, but the angle a between 8 and Vo changes. This 
means that the velocity components v

11 
and v 1. parallel and 

perpendicular to the field change. In. accordaQce vlith (48.52), 
the conservation of the magnetic moment can be expressed in 
the form of the equality (see Fig. 137) 
sin2 eo sin2 6 
--= -- (48.66) 

B0 B 

The particle will be reflected at the point where sin 6 = l, i.e. 
where the magnetic induction is given by 

Bo 
._____,.___~----- B = --. (48.67) 

a sin2 6o 

Fig. 137. The velocity of a 
charged particle in a magnetic 
field does not change. Hence if 
the component of velocity per
pendicular to the magnetic field 
increases, the component along 
the field will decrease. 

In this field, all particles whose velocity vector at the initial 
instant of time lies outside a cone of angle 60 will be reflected. 
The reflection criterion is independent of the magnitude of the 
particle's velocity. All particles the directions of whose veloci-
ties lie within a cone of angle 60 will not undergo reflection and 
will penetrate the region of stronger magnetic fields. They can 
be reflected at the points of the field having a large value of B. 
However, there exists a certain limiting value Bmax• and all 
particles the directions of whose velocites lie outside a cone of 
angle 6min given by 

• 2 Bo 
sm 6min =--

Bmax 
(48.68) 

will be reflected from this region. All particles the directions of 
whose velocities lie inside this cone will pass through the 
region with maximum value of the field and will leave the 
region under consideration. Hence the cone of angle emin is 
called the loss cone. · 

The reflection of particles from magnetic mirrors is used in 
the equipment for confining charged particles to a limited 
region of space, for example, in thermonuclear devices. As an 
example, we can mention the double-necked magnetic bottle in 
which the role ·of "corks" is played by magnetic mirrors 
(Fig. 138). The general nature of motion of particles in a bottle 
is clear from what has been stated above: the particles move in 
helical trajectories around the magnetic field lines from one 
magnetic mirror to the other. As a result of the drift, the 
particles move from one magnetic field line to another, slowly 
circumventing the Z-axis. If there were no collisions between 
particles the directions of whose velocities lie within the loss 
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Fig. 138. The mirrors of a mag
netic bottle are formed by 
crowding the magnetic field lines, 
i.e .. in the regions where the 
magnetic field is intensified. 

Fig. 139. Radiation belts ofthe 
Earth. 
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z 

1i' cone, all the particles would leave the bottle as a result of a 
single reflection from magnetic mirrors. The reflected particles 
the directions of whose velocities lie outside the loss cone 
would be confined within the bottle for an infinitely long time. 
In actual practice, however, the particles interact with one 
another. As a result of collisions, new particles appear in the 
loss cone and, in turn, quickly leave the bottle. The problem of 
confining particles within a limited region of space for quite a 
long time is one of the most important problems of controlled 
fusion. However, this problem has not been solved so far since 
the particles always manage to leave the region of the 
impending thermonuclear reaction in a much shorter time 
than what the physicists would like them to spend in this 
region. 

RADIATION BELTS OF THE EARTH. The peculiar nature of 
the motion of charged particles in a magnetic field is responsi
ble for the existence of radiation belts of the Earth. It is well 
known that a magnetic field exists in space near the Earth. The 
lines of the Earth's magnetic field start from the north 
magnetic pole and terminate at the south pole (Fig. 139). The 
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magnetic field lines are crowded at the magnetic poles, i.e. the 
field is stronger at the poles. 

Hence the regions near the poles serve as magnetic mirrors 
for charged particles. A charged particle moves in a helical 
trajectory around the field line in the meridional direction 
from one magnetic pole to the other. On reachipg tlle pole, it is 
reflected and its direction is reversed. As a result of drift, the 
particle passes from one line to another, i.e. it changes its 
longitude by crossing all possible meridians. Consequently, 
charged particles are confined for a long time near the Earth 
by its magnetic field. This results in the formation of radiation 
belts, discovered during the flights of satellites. The radiation 
belts influence a number of phenomena occurring on the Earth 
and play a significant role in space flights. 

Sec. 49. MOTION IN VARIABLE ELECTROMAGNETIC FIELDS 

The most significant aspects of 
the motion of charged particles 
in variable electromagnetic 
liclds arc described. 

MOTION iN THE FIELD OF A PLANE ELECTROMAGNETIC 
WAVE. In a plane electromagnetic wave, the electric and 
magnetic fields are perpendicular to each other and to the 
velocity of propagation which is equal to the velocity of light 
in vacuum. If the Z-axis coincides with the direction of wave 
propagation, the electric and magnetic fields of the wave can 
be represented in the form (Fig. 140) X 

Fig. 140. A plane electromag
netic wave at a certain instant 
of time. 

E" = E0 sin (rot - kz), E7 = E, = 0, 

B, = B0 sin (rot - kz), B" = B, = 0, 
(49.1) 

where ro = 2rt/Tis the cyclic frequency, and Tis the period of 
Z the electromagnetic wave. The quantity k = 2rt(A. is called the 

wave number, and A.= cTis called the wavelength. In a plane 
electromagnetic wave, the amplitudes E0 and B0 are connected 
through the relation E0 = c80 which has been proved in the 
theory of electromagnetic waves. 

The electromagnetic wave acts on a charged particle 
through its electric and magnetic fields. For a plane electro
magnetic wave, the projections of the Lorentz force 
F= eE+ ev x B 

on the coordinate axes can be written in the form 

F" = eE" + e(vYB•- v,B7 ) 

= eE0 sin (rot - kz) - eiB0 sin (rot - kz), 

F, = eE, + e(v,B"- v"B.) = 0, 
F, = eE, + e(v"B'- vyBx) = e:XB0 sin (rot- kz). 

(49.2) 

(49.3) 
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Hence the equations of motion of a charged particle have the 
form 

m ~:: = Fx = e£0 (I- D sin (rot- kz), 

d2y 
m dtz = FY = 0, 

d2z x 
m-2 =F.= e£0 -sin (rot- kz), 

dt c 

(49.4) 

where £ 0 = cB0 • If the particle's velocity is small as compared 
to the velocity of light (i/c « 1), we obtain 

I 

kz = ro f ~ dt « rot, (49.5) 

0 

where k = 2Tt/f.. = rojc. Hence we can neglect i/c in comparison 
with unity and kz in comparison with rot in the equations of 
motion (49.4), which now assume the form 

.. (e£0 ) . .. (e£0 ) • . x = --;; sm rot, z = me x sm rot . (49.6) 

Integrating the first equation twice, we obtain 

(e£0 ) .i = - moo .cos rot + .i0 , 

(49.7) 
e£0 • ' ( ) .. 

x = - mro2 sm rot + .i0 t + x0 , 

where .i0 is the x-projection of the particle's velocity at the 
instant t = 0, and x 0 is the coordinate of the particle at this 
instant. Substituting the solution (49.7) into the second of 
Eqs. (49.6), we obtain 

I (e£0 ) 2 I . e£0 • z = - - - - sm 2rot + - .i0 sm rot. 
2 m roc me 

(49.8) 

Integrating this equation, we get 

I (e£0 ) 2 I . e£0 . z = - - - 3- sm 2rot - --2 .i0 sm rot + i 0 t + z0 • (49.9) 
8 m ro c mcro 

The following conclusions .can be drawn from the solutions 
(49.7) and (49.9). If the particle is at rest at the initial instant of 
time (i0 = 0, .i0 = 0), the electromagnetic wave will cause 
oscillations of the particle about its mean position, and no net 
displacement of the particle from its initial position will be 
observed. If the particle has a certain velocity i 0 "# 0, .i0 "# 0 at 
the instant t = 0, it will move away from its initial position at 
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Fig. 141. Arrangement of a coor
dinate system relative to a 
constant magnetic field and a 
variable electric field in which 
the motion of a charged particle 
is considered. 

I • 
A plane electromagnetic wave 
does not change the average 
velocity of a charged particle. It 
only excites oscillations of the 
velocity about its mean po
sition with the frequen-
cy of the wave, without 
changing the average 
energy of the particle. 
In cyclotron resonance, a 
variable electric field 
coupled with a constant mag
netic field causes an increase in 
the kinetic energy of a charged 
particle. 

? 
R11at is the relation 
between the electric and mag
netic field vectors in a plane 
electromagnetic wave? 
Under what condition can we 
neglect the spatial variation of 
the field in a wave in com
parison with its time variation 
while solving the equations of 
motion? 
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this velocity as the average. Moreover, the particle will 
oscillate during its motion. Thus, it can be stated that an 
electromagnetic wave does not change the average velocity of a 
particle, but causes the velocity to oscillate with the frequency of 
the electromagnetic wave. , 

MOTION IN A VARIABLE ELECTRIC FIELD' AND A 
CONSTANT MAGNETIC FIELD. Suppose that we have vari
able electric field with frequency ro and a constant magnetic 
field, which are directed as shown in Fig. 141 and described by 
the equations 

E,. = E = E0 cos rot, Ey = E, = 0, 
(49.10) 

The equations of motion have the form 

.X = ( e!o) cos rot + ro0j, y = - ro0x, (49.ll) 

where ro0 = eB0 /m is the cyclic frequency of the particle in the 
magnetic field B0 • This frequency is called the cyclotron 
frequency. We shall assume that at the instant t = 0 the 
particle is at rest at the origin of coordinates, i.e. x0 = y 0 = 0, 
Xo =Yo= 0. 

Integrating Eqs. (49.11) and taking these initial conditions 
into account, we obtain 

( eE0 ) x = mro sin rot + rooY, j = -roox. (49.12) 

Substituting the expression for x into the second of 
Eqs. (49.11), we get 

.. 2 roo eEo . 
y + ro0y = - --sm rot. 

ro m 
(49.13) 

The nature of motion of the particle depends significantly on 
the relation between the frequency ro of the variable electric 
field and the cyclotron frequency ro0 . There can be four 
important cases: ro « ro0 , ro » ro0 , ro = ro0 , ro :::::: ro0 • We shall 
consider each case separately. 

Case I. ro « ro0 • Under this condition, the electric field does 
not change appreciably during the period of revolution of the 
particle in the magnetic field. Hence the electric field can be 
treated as constant while calculating the motion of the particle. 
The quantity sin rot is a slowly varying function. Averaging 
both sides of Eq. (49.13) over a large number of periods of 
oscillations 

(y) = 0, (sin rot):::::: sin rot, (49.14) 
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we obtain the following equality: 

1 eE0 
(y) = ---sin rot. 

(J)O)o m 
(49.15) 

This leads to the following expression for the velocity of 
displacement of' the mean position of the particle: 

d l eE0 
vd=-(y)= ---cosrot 

dt ro0 m 
E0 E 

=--cosrot=--. (49.16) 
Bo Bo 

This is nothing but ordinary drift in crossed electric and 
magnetic fields considered earlier for the case of a constant 
electric field. The drift velocity changes with a change in the 
magnitude of the electric field E, i.e. oscillates with a frequen-
cy ro. · 

Case 2. ro »ro0 • In this case, the electric field changes several 
times during one revolution of the particle in the magnetic 
field. Hence its rotation is a slow process, while the variation of 
the field is a rapid process. We carry out an averaging of 
(49.13) over many periods of oscillations of the electric field, 
which together form just a small part of the period of 
revolution of the particle. Obviously, in this case (sin rot) = 0, 
and (49.1~)-assumes the form 
(y) + ro~(y) = 0. (49.17) .. 
Thus, the particle does not drift in this case. It oscillates with the 
cyclotron frequency ro0 • 

Case 3. ro = ro0 . Under this condition, the phenomenon 
known as cyclotron resonance is observed. Equations (49.12) 
assume the form 

. (eE0 ) • x = -- sm ro 0 t + ro0y, 
mro0 

y = -ro0x, 

and instead of (49.13), we get 

•. 2 (eEo) . . y + ro0y = - ---;;; sm ro0 t. 

The solution of this equation has the form 

(49.18) 

(49.19) 

1 e£0 
y = - - - 2 (sin ro0 t - ro0 t cos ro0 t). (49.20) 

2mro0 

Hence, with the help of the second of Eqs. (49.18), we obtain 

I eE0 • 
x =---t sm ro0 t. 

2mro0 
(49.21) 
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Thus, the motion of the particle is not periodic in cyclotron 
resonance. 

Let us calculate the kinetic energy of the particle: 

m 
Ek = -(x2 + Ji2) 

2 
I e2 E~ ( 2 sin2 m0 t t sin 2 m0 t) 

=--- t + 2 + 0 

8 m m0 m0 

I 

(49.22) 

The term proportional to t2 indicates that the particle's energy 
increases indefinitely. The remaining terms are of no particular 
significance and characterize the oscillations of the particle's 
energy about the increasing value determined by the term 
containing t2• Thus, in cyclotron resonance, the energy is 
transferred from the variable electric field to the particle. 

Case 4. m ~ m0 • Under this condition, there is no exact 
cyclotron resonance.·The energy is transferredfrom the variable 
electric field to the particle only up to a certain maximum value. 
After this, the particle starts giving back its energy to the electric 
field, and so on. This process of energy exchange is periodic and 
has a frequency 

n = I m- mol· (49.23) 
Without going into detail, we simply mention that this formula 
expresses the beat frequency obtained as a result of super
position of two harmonic oscillations with comparable fre
quencies (see Chap. 13). 

Let us calculate the maximum energy of the particle. The 
particle receives energy during half the period corresponding 
to frequency n, i.e. during time 1tj!l. During this time, the 
particle is subjected to the action of an effective electric field 
E.rr• defined as the strength of a constant electric field in which 
during one period of oscillation the particle receives the same 
amount of energy as in the variable electric field. In other 
words, the energy received by the particle is given by 
(Ev) = E.rrVo, where v and Vo are the velocity and the 
amplitude of oscillations of the velocity respectively. Con
sidering that (Ev) = (E0 sin mt · v0 sin m0 t) = E0 v0 /2 for 
m ~ m0 , we obtain E.rr = E/2. Hence during half a cycle, the 
particle acquires a momentum Pmax which is given in ac
cordance with Newton's equation of motion by 

1t 1t I e I Eo 
Pmax =lei (Eerr) 0 = 21 m_ mol. (49.24) 

Consequently, the maximum energy of the particle is equal to 

(49.25) 
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PROBLEMS 

ANSWERS 

1 2. Motion in an Electromagnetic Field 

12.1. A point source emits particles of mass m and chargee in a sharp cone. 
The uniform magnetic induction vector B is directed parallel to the 
cone's axis. Assuming that the velocity components of all particles 
parallel to the induction vector are identical and equal to v, find the 
distance between the source and the point at which the particles are 
focussed. 

12.2. What will be the mean free path of a relativistic particle of charge e 
before it comes to a halt in a decelerating uniform electric field E? The 
particle's velocity is collinear with vector E, its initial total energy is W, 
and the rest mass is m0 • Answer the question without solving the 
equations of motion and then solve these equations. 

12.1. 2rtmv/(eB). 12.2. (£- m0c2 )/(l e I W). 



Chapter 13 
Oscillations 

I 

Basic idea: 
Oscillations are the most general form of motion of dynamic 
systems about the equilibrium position. For small deviations 
from the equilibrium position, the oscillations are harmonic and 
acquire a special significance. 

Sec. 50. HARMONIC OSCILLATIONS 

The properties of harmonic os
cillations and their representa
tion in -complex form are de
scribed. 

ROLE OF HARMONIC OSCILLATIONS IN NATURE. A large 
number of physical problems can be reduced to an analysis of 
the behaviour of systems that are slightly deflected from their 
equilibrium state. For example, suppose that a round ball is at 
rest in a round-bottomed cup (Fig. 142a). Let us find the 
motion of the ball when it is slightly deflected from its 
equilibrium position. In order to do so, we must know the 
force acting on the ball and solve the equation of motion. 
However, even in this simple case, the force has a very complex 
dependence on displacement and this complicates an analysis 
of the equation of motion. As another example, we can 
consider a ball fixed to a long elastic strip (Fig. 142b). In the 
equilibrium position, the strip is slightly bent and the ball is at 
rest in a certain position. We are interested in finding the 
motion of the ball in the vertical direction if it is deflected from 
the equilibrium position and then released. In this case, the 
force acting on the ball is expressed as a composite function of 
its deviation from the equilibrium position in the vertical 
direction, and the solution of the problem is fraught with the 
same difficulties that were encountered in the first case 
considered above. 

In most cases of practical importance, however, we are 
interested in analyzing the behaviour of a system only at small 
deviations from the equilibrium position and not for all 
possible deviations. Under this condition, the problem be-
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Fig. 142. Oscillations of various 
systems for small deviations. 

13. Oscillations 

comes much simpler. Irrespective of the complexity of the law 
of action of the force f(x), this function can always be 
represented in the form of a Taylor series: 

x2 x3 
f(x) = f(O) + xf' (0) + - f" (0) + - f'" (0) + .... 

2! 3! 
(50.1) 

This is a purely mathematical statement, and the conditions 
under which such a function can be expanded into a series are 
considered in mathematics. For our purpose, it is sufficient to 
note that these conditions are usually satisfied for most of the 
laws of action of the force f(x) encountered in physics . 
Obviously, f(O) = 0 in view of the fact that the point x = 0 is 
the equilibrium point, and hence the force at this point is zero. 
Two cases are possible here: either f' (O) "# 0, or f' (0) = 0. In 
the former case, the term xf' (0) is the principal term in the 
expansion (50.1). All subsequent terms of the series are 
proportional to x 2 , x 3 , etc. and are infinitely small in com
parison with the first term for quite small values of x. Henet., 
while analyzing very small deviations x, we can take the force 
equal to xf' (0). Since the point x = 0 must be the point of 
stable equilibrium, the force xf' (0) must always be directed 
towards the point x = 0. This means that f' (0) < 0. If 
f' (0) = 0, we must consider the third term which is propor
tional to x 2 • This term must be zero if the point x = 0 is the 
point of stable equilibrium. This is due to the fact that this 
term has the same sign fjt£ positive as well as negative values 
of x. 

Hence when the point is deflected in one direction, the force 
corresponding to it tends to return the point to the equilibrium · 
position, while when the point is deflected in the opposite 
direction, the force tends to remove the point farther away 
from the equilibrium position. Consequently, if this term were 
not zero, the point x = 0 would not be the point of stable 
equilibrium. Hence this term must be zero, i.e. f" (0) = 0. 

Thus, the next nonzero· term can be x 3f"' (0)/3! While 
analyzing small deviations in the case f' (0) = 0, we must use 
this term as the expression for the force. Although it is a little 
more complicated than the term xf' (0), it is still quite simple as 
compared to the original function f(x). In this case, the 
oscillations become much more complicated and nonlinear. 
The main features of these oscillations will be considered later. 

In real physical systems, the term xf' (0) is usually not zero, 
and the equation of motion for small deviations x from the 
equilibrium position has the following form: 

d2x 
m dt2 = xf'(O) = -·Dx, (50.2) 
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A real physical oscillation is 
represented by the real or 
imaginary part of the complex 
form of an oscillation. The 
complex form is more con
venient for describing an os
cillation because of the ease 
and clarity of mathematical 
operations under such a 
representation. 
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where we have considered that f' (0) < 0 and have used the 
notation D = -f'(O) > 0. 

This type of equation is obtained in the analysis of many 
physical phenomena. In the present example, x is the distance 
from the equilibrium position. However, x could mean, say, 
the charge of a capacitor in an LC circuit. If t}te physical 
factors are such that they strive to restore the zero value of the 
charge on the capacitor, the equation for small deviations of 
the charge from zero will have the form (50.2). 

An equation of the type (50.2) is called the equation of 
harmonic oscillations, and the system in which these small 
oscillations take place is called a linear, or harmonic, oscilla
tor. A familiar example of such a system is a body suspended 
on an elastic spring (Fig. 142c). According to Hooke's Jaw, an 
extension or compression of the spring is accompanied by an 
opposing force that is proportional to the extension or 
compression. In other words, the expression for the force 
exerted by the spring has the form F = - Dx, and we arrive at 
the equation of a linear oscillator. Thus, a body oscillating at 
the end of a spring is a model of a linear oscillator. 

If in addition to the term proportional to the first power of 
the deviation, we also retain in the expansion for the force the 
term proportional to x2 or x3 and leading to nonlinearity of 
oscillations, the oscillatory system obtained in this way is 
called an anharmonic oscillator. The main features of such an 
oscillator will be described in Sec. 51. 

Other examples of a linear oscillator are a simple and a 
compound pendulum for quite small angles of deflection, 
which were considered in Sec. 34. For the model of a linear 
oscillator, we can take either a load suspended on a spring 
(Fig. 142c) or a pendulum. 

The fact that most of the physical systems behave like linear 
oscillators for small angles of deflection makes an analysis of 

. their motion extremely important in all branches of physics. 
EQUATION OF HARMONIC OSCILLATIONS. Equation 

(50.2) describing the motion of a linear oscillator can con
veniently be written in the form 

(50.3) 

where ro2 = D/m > 0. The time derivatives are marked by dots. 
HARMONIC FUNCTIONS. A direct verification shows that 

sin rot and cos rot are the particular solutions of Eq. (50.3). This 
equation is linear. The sum of the solutions of a linear 
equation and the product of a solution by an arbitrary 
constant is also a solution of this equation. Hence the general 
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Fig. 143. Complex representa
tion of harmonic oscillations. 
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X 

A sin 

solution of Eq. (50.3) has the form 
x(t) = A1 sin rot+ A 2 cos rot, (50.4) 

where A1 and A 2 are constants. A function of this type is called 
a harmonic function. 

AMPLITUDE, PHASE AND FREQUENCY. It is expedient to 
transform the expression (50.4) as follows: 

A 1 sin rot + A 2 cos rot 

= J Ai +A~ ( A1 sin rot+ A2 cos rot) 
J AI + A~ J A~ + A~ 

=A (cos q> sin O?t +sin q> cos rot)= A sin (rot+ q>), (50.5) 

where we ~ave put cos <P = A 1/J Ai +A~ and sin <P = 
A 2/J A~+ At and . introduced the notation 
A = J A~ + A~. Thus, the equation (50.4) of harmonic oscilla
tions can be represented in the form 

x = A sin (rot+ q>) (50.6a) 

or 

x = Bcos (rot+ q>). (50.6b) 

The plot of this function with the notation introduced in (50.6a 
and b) is shown in Fig. 143. The quantities A and ro are 
respectively called the amplitude and the frequency of har
monic oscillations, while the quantity appearing in the argu
ment of the sine (or cosine), i.e. rot + q>, is called the phase of 
the oscillations. The value of the phase q> for t = 0 is called the 
initial phase, or just the phase, of the oscillations. It can be 
seen from (50.6a and b) that the value of xis repeated after an 
interval T = 27t/ro of time. Such a function is called a periodic 
function, and Tis called its period. Hence harmonic oscilla-



Fig. 144. Graphical representa
tion of complex numbers and 
operations involving them. 
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)( 

tions are periodic oscillations. However, not every periodic 
function is a harmonic function. It will be harmonic only if it 
can be represented in the form (50.6a and b) with a definite 
frequency, phase and amplitude. 

COMPLEX REPRESENTATION OF HARMONIC OSCILLA
TIONS. The analysis of harmonic oscillations involves their 
addition or decomposition into harmonics, the solution of 
more complicated equations than (50.3), and so on. All these 
operations can considerably be simplified with the help of the 
theory of complex numbers and the representation of har
monic oscillations in complex form. 

In the Cartesian coordinate system, the real part of a 
complex number is laid off along the abscissa axis and the 
imaginary part along the ordinate axis (Fig. 144). We then use 
Euler's formula 

c;" = cos 11 + i sin 11 W = - l.) , (50.7) 

which makes it possible to express any complex number 
z = x + iy in exponential form (see Fig. 144): 

tan 11 = ~. (50.8) 
X 

The quantity p is called the modulus of the complex number, 
and a is called its argument. 

Every complex number z can be represented on a complex 
plane as a vector drawn from the origin of coordinates to the 
point with coordinates (x, y). Complex numbers are added in 
accordance with the parallelogram law. Hence, for the sake of 
brevity, we can refer to complex numbers as vectors when 
speaking of their addition. 

It is more convenient to carry out the multiplication of 
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Fig. 145. Complex representa
tion of harmonic oscillations. 

? 
Under what conditions is it 
impossible to reduce the effect of 
small deviations from the 
equilibrium position to the 
introduction of a linear term? 
Define the frequency, amplitude 
and phase of a harmonic 
oscillation. 
For a system in equilibrium at 
the point x = 0, why must f" (0) 
be zero iff' (0) = 0? Iff' (0) '# 0, 
can f" (0) be nonzero? 

13. Oscillations 

complex numbers in complex form: 

(50.9) 

Thus, when complex numbers are multiplied, their moduli are 
multiplied, while their arguments are added. 

We shall not go into the detail of these purely mathematical 
questions. Readers desirous of a better understanding of these 
problems are referred to textbooks on the theory of complex numbers. 

Instead of the real form of notation (50.6a and b) for 
harmonic oscillations we can also use the complex form: 
X= Aei(wt+'Pl. (50.10) 

The quantity x in this equation is complex and cannot describe 
a real physical deviation like the real quantity x in (50.6a). 
However, the imaginary part of this quantity can be treated as 
the real harmonic oscillation (50.6a). On the other hand, the 
real part of (50.10), i.e. A cos (rot+ <p), also represents a real 
harmonic oscillation. Hence a harmonic oscillation can be 
written in the form (50.10) and used for all calculations and 
discussions. ' 

A transition to physical quantities can be made by taking 
the real or imaginary part of the expression in the final form. 
We shall illustrate this py considering several examples. 

Figure 145 shows the plot of harmonic oscillations in the 
complex form (50.10). The values of various quantities 
appearing in (50.10) can be noted directly from the figure: A is 
the amplitude, <p the initial phase, and rot + <p the phase of the 
oscillations. The complex vector A rotates about the origin of 
coordinates in the counterclockwise direction with an angular 
frequency ro = 2x/T, T being the period of oscillations. The 
projections of the rotating vector A onto the horizontal and 
vertical axes are real physical oscillations in which we are 
interested. 

ADDITION OF HARMONIC OSCILLATIONS WITH THE 
SAME FREQUENCY. Suppose that we are given two harmonic 
oscillations with the same frequency but with different initial 
phases and amplitudes: 

x 1 = A1 cos (rot + <p 1), x 2 = A 2 cos (rot + <p 2 ). (50.11) 

It is required to find the resultant oscillation x = x 1 + x2 • 

When represented in the form (50.10), the harmonic oscilla
tions (50.11) express the real part of the resultant oscillations. 
Hence the required result of the addition of the oscillations 



Fig. 146. Addition of hannonic 
oscillations in complex form. 
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A2 cos op2 A1 cos op1 A2 cos <P2 + A1 cos <P1 

(50.11) is the real part of the complex number 
- - - A i(wt+rp1) +·A i(wt+q>2) x = x1 + x 2 = 1e 2e 
= ei"'1(A 1eirp, + A2ei'~''). (50.12) 

The two quantities within the parentheses can easily be added 
in vector form (Fig. 146). It follows directly from Fig. 146 that 
A1ei41 ' + A2ei41' = Ae;41, (50.13) 
A 2 = Ar +A~+ 2A 1A 2 cos (cp2 - cp 1), (50.13a) 

A1 sin cp 1 + A 2 sin cp 2 tan cp = (50.13b) 
A1 cos cp 1 + A 2 cos cp 2 

Consequently, instead of (50.12), we obtain 

(50.14) 

where A and cp are defined by (50.13a) and (50.13b) 
respectively. Hence the sum of the harmonic oscillations 
(50.11) is given by the formula 

x = x 1 + x 2 = Acos(c.ot + cp), 

the quantities A and cp having the same values as in (50.14). 
The properties of the sum of harmonic oscillations can be 

determined from an inspection of Fig. 146. Obviously, owing to 
the presence of the common factor eiwr in (50.121, the entire 
pattern shown in Fig. 146 rotates about the origin of coordi
nates in the counterclockwise direction with an angular velocity 
co. The amplitude of the oscillations attains its maximum value 
A1 + A 2 at cp 2 = cp 1 • The minimum value of the amplitude is 
attained at cp 2 - cp 1 = ±1t. In this case, the complex vectors 
expressing the oscillation components are directed against each 
other, and hence the minimum amplitude is IA 2 - Ad. The 
variation of the phase cp can also be followed by looking at 
Fig. 146. 

Thus, the sum of harmonic oscillations with identical frequency 
is a harmonic oscillation with the same frequency, its amplitude 
and phase being given by (50.13a) and (50.13b). 
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ADDITION OF HARMONIC OSCILLATIONS WITH NEARLY 
w2 - w1 EQUAL FREQUENCIES. BEATS. Let us denote the frequencies 

of the components being added by ro 1 and c.o2, and assume that 
'>. c.o 1 ~ c.o2, lc.o 1 - c.o21 « m1 ~ c.o2. The equations for these oscil

~.,..... ~lations have the form 

.,..... 1x1 =A 1 cos(ro1t+cpd, x 2 =A2 cos(c.o2 t+cp2). (50.15) 
I 

/ Each of the oscillations (50.15) can be represented in the 
A,'-......._ _,/ complex form (50.10), and their addition can be carried out 

_ ___,... according to the vector addition rule, taking the tip of the first 
liE:..---------- vector as the beginning of the second. 
Fig. 147. Addition of harmonic 
oscillations with nearly equal fre
quencies (ro1 ~ ro2) in complex 
form. 

For the sake of definiteness, let us assume that A 1 > A 2 . The 
sum of vectors i 1 and i 2 at a certain instant of time can then be 
represented as shown in Fig. 147. With the passage of time, this 
pattern will change as follows. Vector i 1 will rotate about the 
origin of coordinates with an angular frequency c.o 1, while vector 
i 2 will rotate with respect to vector i 1 about its tip with an 
angular frequency ro2 - c.o 1 . If c.o2 > ro1 , the rotation of vector i 2 

about the tip of i 1 will take place in the same direction as that 
of vector i 1 about the origin of coordinates as shown in 
Fig. 147. For c.o2 <m1 , vector i 2 rotates in the opposite direction. 

-+--+-+-~r----+-+-w-t The time variation of this pattern can be described as follows: 

Fig. 148. Beats resulting from 
addition of oscillations with 
nearly equal frequencies. 

Beat period T = 21t/ I m2 - m ,1. 

? 
mtat is the reason behind the 
complex representation of 
harmonic oscillations? 
How are the argument and 
modulus of a complex number 
determined? 
mtat is the relation between the 
addition of complex numbers and 
the addition rule? 
mtat happens to the moduli and 
arguments of complex numbers 
upon their multiplication? 
mtat are beats? Are beats 
harmonic oscillations? 

since lc.o2 - ~1 1 « c.o 1 ~ c.o2 ~ c.o, the entire oscillation pattern 
rapidly rotates about the origin of coordinates, and the mutual 
arrangement ·or vectors i 1 and i 2 changes very insignificantly 
during one revolution. Hence the resultant of the two oscilla
tions is a harmonic osciltltion with frequency c.o and amplitude 
i 1 + i 2 over a large number of oscillations. However, the 
relative orientation of vectors i 1 and i 2 does change, albeit 
slowly. Thus, the amplitude of oscillations slowly changes with a 
frequency I c.o2 - m1 I from A 1 + A 2 to l A 1 - A2 l. 

Consequently, the sum of two harmonic oscillations with nearly 
equal frequencies is an oscillation with a varying amplitude. This 
oscillation is only nearly harmonic with a frequency c.o 1 ~ c.o2 ~ 
ro, and its amplitude changes with a frequency lc.o2 - c.o 1 1 from its 
maximum value A 1 + A 2 to its minimum value IA 1 - A2 l. The 
real components of this oscillation have the form shown in 
Fig. 148. Oscillations of the amplitude with a frequency 
n = lc.o2 - c.o,l are called beats, and the frequency n is called the 
beat frequency~ Beats appear as a result of addition of two 
harmonic oscillations with nearly equal frequencies. If the 
amplitudes of the component oscillations are nearly equal, i.e. 
A 1 ~ A 2 , the amplitude of the resultant oscillation at the 
minimum is nearly zero, i.e. the oscillation is completely 
suppressed. 
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Sec. 51. NATURAL OSCILLATIONS 
The methods of analysis of DEFINITION. Natural oscillations of a system are oscillations 
natural oscillations are described. produced only by the internal forces without any external influence 

on the system. The harmonic oscillations considered in the 
previous section are the natural oscillations of a linear 'scillator. 
In principle, natural oscillations can also be' anharmonic. 
However, for quite small deviations from the equilibrium 
position, in most cases of practical importance, these can be 
reduced to harmonic oscillations as has been explained above. 

INITIAL CONDITIONS. Harmonic oscillations are completely 
characterized by the frequency, amplitude and the initial phase. 
The frequency of oscillations-depends on the physical properties 
of the system. For example, when a linear oscillator is a point 
mass oscillating under the elastic force exerted by a spring, the 
properties of the elastic spring are taken into consideration 
through the coefficient of elasticity D, and those of the point 

. mass, through its mass m; ro = DIm. 
To determine the amplitude and the initial phase of 

oscillations, we must know the position and the velocity of the 
point mass at a certain instant of time. If the equation of 
oscillations is written in the form 

x = A cos (rot + <p), (51.1) 

and the coordinate and the velocity of the point mass at the 
instant t = 0 are equal to x0 and v0 respectively, we can write in 
accordance with (51.1): 

x0 = Acos<p, x0 = v0 = dxl = -Arosin<p. 
dt r=O 

(51.2) 

These two equations can be used for determining the unknown 
amplitude and the initial phase: 

A= 
2 

2 Vo 
Xo+2, 

ro 

Vo 
tan<p = --. 

x0ro 
(51.3) 

1hus, knowing the initial conditions, we can completely describe 
a harmonic oscillation. 

ENERGY. The concept of potential energy is meaningful only 
if the forces are of a potential nature. In the one-dimensional 
motion between two points, there can be only one path along 
which the motion can take place. Consequently, the potential 
nature of forces is automatically ensured, and any force can be 
treated as a potential force if it depends only on the coordinates. 
The last stipulation is quite significant. For example, the 
frictional force is not a potential force in the one-dimensional 
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f(t) case either. This is so because (the direction of) force depends on 
(the direction of) velocity. 

In the case of a linear oscillator, it is convenient to assume that 
the potential energy of a point is zero in its equilibrium position 
(at the origin of coordinates). In this case, considering that 
F = - Dx and taking into account formula (25.20) connecting the 
potential energy EP with the force, we directly obtain the 
following expression for the potential energy of a linear 

Fig. 149. Determination of time- oscillator: 
average. Dx2 mco2 x2 

EP(x) = - 2- = - 2-. (51.4) 

The energy conservation law has the following form in this case: 

m.:e mco2x 2 

-- + --- = const. 
2 2 

(51.5) 

Of course, this law can also be obtained directly from the 
equation of motion (50.3) by multiplying both sides by x and 
then proceeding in the same way as in the transition from (25.1) 
to (25.5). 

Two important conclusions can be drawn from the energy 
conservation law (51.5). 

1. 1he mqximum kinetic energy of an oscillator is equal to its 
maximum potential energy. This is obvious since an oscillator has 
its maximum potential energy when the oscillating point is 
deflected to its extreme G'osition where its velocity (and hence the 
kinetic energy) is zero. The oscillator has its maximum kinetic 
energy at the instant when the point passes through the 
equilibrium position (x = 0) where its potential energy is zero. 
Hence, denoting the maximum velocity by V, we can write 

1 1 
-mV2 = -mco2 A 2 (51.6) 
2 2 

2. 1he average kinetic energy of an oscillator is equal to its 
average potential energy. 

First of all, let us define the mean of a quantity. If a certain 
quantity f depends on time, i.e. is a function of time, the mean 
value of this quantity over the interval of time between t 1 and t 2 

is given by the formula 
•, 

<f),= - 1-Jf(t)dt. 
tz - tl 

(51.7) 

r, 

Iff(t) is represented in a graphic form (Fig. 149), the mean val-
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ue <J> 1 corresponds to the height of the rectangle whose area is 
equal to the area occupied between the curvef(t) and the t-axis 
from t 1 to t2.1t should be recalled that the area under the t-axis is 
assumed to be negative. 

Since the law of motion for a linear oscillator is des<jribed by 
the formula -

x(t) = Acos(rot + <p), 

its velocity will be equal to 

.X = -Am sin (rot + <p). 

(51.8) 

(51.9) 

The expressions for the kinetic and potential energies have the 
form 

mro2 A2 

EP(t) = --cos2 (rot + <p). 
2 

(51.10) 

The period of one oscillations is taken as the interval of time over 
which the mean value is determined. The computation of the 
mean values of< Ek) and < EP) is reduced to the determination 
of the mean values of cos2 (rot + <p) and sin2 (rot + <p). These 
values can easily be found: 

T 

<cos (rot + <p) ), = ~ J cos (rot + <p) dt 

0 

T 

= ~J![l + cos2(rot + <p)]dt 
T 2 

0 

II[ I JT I =-- t+-sin2(rot+<p) =-, 
2T 2m o 2 

(51.11) 

where Tis the period of oscillations, roT= 21t. Similarly, we get 

I 
<sin 2 (rot + <p)), = -. (51.12) 

2 

Formulas (51.11) and (51.12) are quite important and must be 
committed to memory. Taking these expressions and (51.10) 
into consideration, we obtain 

(51.13) 



Fig. I 50. Plots of displacement, 
velocity and acceleration in har
monic oscillations. 

The frequency of oscillations 
is determined by the physical 
properties of a system, while 
the amplitude and phase are 
determined by the initial 
conditions. 
In harmonic oscillations, the 
velocity leads the displacement 
by 7t/2 in phase, while the 
acceleration .leads the velocity 
by 7t/2 in phase. 
The most significant feature of 
nonlinear oscillations is the 
emergence of higher harmonics. 
The type of harmonics that 
emerge depends on the nature 
of nonlinearity of the force. 

? 
What is the relation between the 
kinetic and potential energies in 
harmonic oscillations? 
What is the relation between the 
amplitudes of velocity and 
displacement in harmonic 
oscillations? 
How does the frequency of 
natural oscillations change with 
an increase in the mass of an 
oscillating point? 
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This means that the average kinetic energy of an oscillator is 
equal to its average potential energy. The angle brackets in this 
equation have been assigned a subscript t to emphasize that 
the averaging is carried out over time. 

Whenever we refer to the mean value of a quantity, we must always 
clarify the variable over which the averaging is taken since the result of 
averaging over some other variable will generally be quite different. In 
most cases, however, the variable over which the averaging is taken is 
quite obvious and the subscript can be omitted. 

RELATION BETWEEN DISPLACEMENT, VELOCITY AND 
ACCELERATION. The displacement and velocity can be ob- . 
tained from the expressions (51.8) and (51.9), while the ac
celeration is 
i = -Aro2 cos(rot + <p). (51.14) 

Let us plot these quantities on the same diagram (Fig. 150). 
The ordinate axis represents the quantities of different 
dimensions. Hence we choose the amplitudes of the respective 
oscillati0ns in such a way that their maxima have the same 
height, as shown in the figure. The displacement, velocity and 
acceleration are represented by identical curves displaced 
relative to one another in the direction of the rot-axis. It can 
clearly be !leen that the velocity curve is displaced relative to 
the displatement curve by A(rot) = x/2 to the left, while the 
acceleratioft curve is displaced relative to the velocity curve by 
the same amount in the same direction. 

Consequently, in hltmonic oscillations, the velocity leads 
the displacement by x/2 in phase, while the acceleration leads 
the velocity by x/2 in phase. Thus, the acceleration leads the 
displacement by 1t in phase. Of course, we can also state that 
the displacement lags behind the velocity by x/2 in phase, and 
so on. 

NONLINEAR OSCILLATIONS. If in addition to the linear 
term xf'(O) in the expansion (50.1) for the force, the next term, 
say, x2f"(0)/2!, is also significant, we must consider the 
following equation of motion instead of (50.2): 

d2x x2 
m- = xf'(O) +-f"(O). 

dt2 2! 
(5l.l5) 

While discussing the expansion of the force into the series 
(50.1 ), we mentioned that if the system oscillates about the 
position x = 0 of stable equilibrium, thenf'(O) = 0 means that 
!" (0) = 0 as well. If this is not so, the point x = 0 cannot be the 
point of stable equilibrium. Obviously, if f'(O) #= 0, we must 
havef'(O) < 0, the derivativef"(O) need not be zero and may 
have a positive or a negative sign. This is the situation that was 
considered in (51.15). Moreover, it is assumed that the quantity 
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f" (0) is very small, and hence the last term on the right-hand 
side of (51.15) is small in comparison with other terms. We 
divide (51.15) by m and write it as follows: 

(51.16a) 

where, by analogy with (50.3), the following notation bas been 
used: 

2 !' (0) !" (0) !" (0) 
w0 = --, & = -- = ---. (5l.l6b) 

m 2mw~ 2/'(0) 
The quantity & is called the parameter of smallness of the term 
proportional to the square of displacement. It can be seen 
directly from (51.16a) that this parameter has dimensions of 
reciprocal length and can therefore be represented in the form 
& = 1/L, where L is a large length. We can now explain the 
meaning of smallness of the quantity & more clearly: if the 
displacements x are quite small ·and satisfy the relation 
x « L = 1/&, the term on the right-hand side of(5l.16a) can be 
treated as a small term. In this case, this term is called a 
perturbation, and the method used for finding an approximate 
solution of the equation of motion is called the perturbation 
method or perturbation theory. Let us consider the essence of 
this theory and the basic properties of nonlinear oscillations 
on the basis of Eq. (5l.l6a). 

For & = 0, i.e. in the absence of perturbation, the system 
performs harmonic oscillations. Suppose that these oscillations 
have the form 

(5l.l7) 

Such oscillations represent unperturbed motion. To consider 
the right-hand side of(5l.l6a) as a perturbation, the amplitude 
A0 must not be too large. It must satisfy the condition 
&A0 « l. If this condition is not satisfied, we cannot use the 
perturbation theory. The solution in the presence of pertur
bations, i.e. for & i= 0, can be represented in the form 
x = A0 sin w0 t + x1 (t), (51.18) 
where x 1 {t) is a correction to the unperturbed motion. 
As & -+ 0, the quantity x 1 (t) must also tend to zero. Hence, 
x 1 (t) is small in comparison with the displacements in the 
unperturbed motion. In other words, the relation lx1 1 « A 0 is 
satisfied. Substituting the expression (51.18) for x into (5l.l6a), 
we arrive at the following equation for x1 (t): 

.X1 + w~x 1 = &w~(A~ sin2 w0 t + 2A 0x 1 sinw0 t +xi). (51.19) 

The second and third terms in the parentheses on the 
right-hand side are much smaller than the first term in view of 
the inequality lxtl « A0 • Hence they can be neglected as 
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compared to the first term. Equation (51.19) can then be 
represented in the form 

2 
.. 2 Eroo 2 x 1 +ro0 x 1 =-A0 (l-cos2ro0 t), 

2 
(51.20) 

where we have used the formula sin2 ro0 t = (1/2)(1 -cos 2ro0 t). 
The solution of this equation is sought in the form 

x 1 = a1 + b1 cos 2ro0 t, (51.21) 

where a1 and b1 are constants. Substituting (51.21) into (51.20), 
we obtain 

(51.22) 

Since this equation must be satisfied for all instants of time, the 
coefficients of cos 2ro0 t on both sides of this equation must be 
equal. From this condition, we obtain 

(51.23) 

(51.24) 

• 
For this value of b1 , the time-dependent terms in (51.22) cancel 
out. From the remainini terms, we obtain an equation 
according to which ' 

EA6 
a•=T· (51.25) 

Consequently, the solution (.::~.18) can be written in the 
following form by taking into account the first correction: 

&A 2 EA 2 
A . 0 0 2 x = 0 sm ro0 t +-+-cos ro0 t. 

2 6 
(51.26) 

The most peculiar feature of this solution is that it contains 
a term with cos 2ro0 t. This shows that when the force contains 
a nonlinear term proportional to x 2 , the oscillations acquire 
a term with double the frequency, i.e. with a frequency 2ro0 , 

called the second harmonic. In the absence of the nonlinear 
term, the oscillations contain only a term with the fundamental 
frequency ro0 . Continuing the solution of Eq. (51.16a) and 
determining the next, smaller, corrections, we can verify that 
they contain higher frequencies nro0 that are multiples of the 
fundamental frequency. In other words, the oscillations con
tain higher harmonics./ t can be stated therefore that the most 
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significant consequence of the nonlinearity in the force is the 
emergence of higher harmonics in the oscillations. 

Further, it can be seen from (51.26) that both components of 
the oscillations with frequencies ro0 and 2ro0 appear near the 
point x = (l/2)EA~, and not about the point x = 0. This 
means that the presence of the nonlinear term proportiJnal to x2 

displaces the equilibrium point about which the oscillations 
occur. This result becomes quite obvious if we consider that the 
force proportional to x 2 always acts in the same direction and, 
hence, inevitably displaces the point about which the oscilla
tions occur. 

In the same way, we can consider the case when the 
expansion (50.1) for the force does not contain a term 
with x 2 (i.e. when f"(O) = 0), and we have to take into 
consideration the term proportional to x3• In this case, we 
arrive at the following equation instead of (51.15): 

d2x x3 

m dt 2 = xf'(O) + 3!!"'(0). (51.27) 

This equation can also be represented in a form similar to 
(51.16a): 

X + ro~x = Tlro~x3 , 
where 

f' (0) f"' (0) f"'(O) 
ro~ =- ----;;;-• 11 = 6mro~ =- 6f'(O)' (S1.2Sb) 

The quantity 11 plays the role of the parameter of smallness. 
As 11 ...... 0, the solution (51.28a) must tend to harmonic 
oscillations with a frequency ro0 • The solution of this equation 
is obtained with the help of the perturbation theory in the 
same way as described above. In addition to the fundamental 
frequency ro0 , a higher harmonic appears in the first approx
imation, but the frequency of this harmonic is triple and not 
double the fundamental frequency. This is a consequence of 
the trigonometric formula · 

1 
sin3 ro0 t = 4(3 sin ro0t- sin 3ro0 t). (51.29) 

For the positive and negative values of x with the same 
magnitude, the force proportional to x3 has the same absolute 
magnitude but opposite directions. This means that this force 
is either a force of attraction to the point x = 0 or the force of 
repulsion from this point. These forces are symmetric relative 
to the point x = 0. Hence, unlike the previous case, there is no 
displacement of the point about which the oscillations occur. 
The oscillations with frequencies ro0 and 3ro0 are performed 
about the point x = 0. 
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These examples show that the emergence of higher harmon
ics is the most significant feature of the nonlinear oscillations. 
The type of harmonics generated depends on the nature of 
nonlinearity of the force. 

GENERAL CONDITION OF HARMONICITY OF OSCILLA
TIONS. In most cases, small deviations from the equilibrium 
position may lead to harmonic oscillations. But this does not 
mean that only small oscillations can be harmonic. The oscilla
tions described by an equation of the type (50.3) are harmonic 
irrespective of the smallness of x. Equation (50.3) is obtained 
from the energy conservation law (51.5) by differentiating with 
respect to time and by taking into account that d(i2)/dt = 2xx. 
Hence it can be stated that if the total energy of a system, which 
is conserved, can be represented as a quadratic function of a 
certain variable and its time derivative, the free oscillations of 
this system are harmonic. 

As an example, let us consider a closed LC circuit. If the 
charge on the capacitor is denoted by Q, the current in the 
circuit will be Q. The energies of the electric and magnetic 
fields are proportional to the squares of the electric field 
strength and magnetic induction respectively, which in turn 
are proportional to the charge Q and the current Q. Conse
quently, the total energy of the system is 

E = aQ2 + 13~2, (51.30) 

where a and 13 are constants depending on the configuration of 
the oscillatory circuit, i.e~n the capacitance and inductance of 
the circuit. Considering that E = const, we arrive at the 
following equation for Q: 
aQ + I3Q = 0. (51.31) 

Thus, the natural oscillations of the current in the oscillatory 
circuit are harmonic oscillations with a frequency co = JjV<i; 
the harmonicity is independent of the smallness of oscillations 
and is due only to the fact that the total energy in the circuit is 
a quadratic function of charges and currents. 

Example 51.1. COMPUTATION OF THE PERIOD OF 
OSCILLATIONS. In the one-dimensional case, any force that 
depends only on the coordinates is a potential force (see 
Sec. 27) and the energy conservation law has the form 

mx2 

2+ Ep(x) =E. (51.32) 

Assuming that the potential energy EP (x) is minimum at the 
origin of coordinates and increases on either side of the 
minimum, we conclude that the region in which a particle 
moves depends on the condition under which the particle 
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comes to a halt at the equilibrium position (i = 0). In other 
words, the x 1- and x2-coordinates defining the region of 
motion are the solutions of the equation EP (x) = E. The time 
spent by the particle in moving from one turning point x 1 to 
the other point x 2 is half the period of oscillatisms. Hence, 
considering that x = dxfdt, we obtain the followfng formula 
for the period T of oscillations from (51.32): 

"• 
f dx 

T= 2 J(2/m)[E-Ep(x)]. 
"• 

(51.33) 

This formula can always be used for determining the period of 
oscillations. However, when numerical methods are used for 
obtaining the solution with the help of a computer, it must be 
borne in mind that the integrand turns to infinity at the 
boundaries of integration region and care must be exercised 
in choosing the points of division of the integration inter
val. 

If the potential energy has an expression of the type (51.4), 
we obtain • 

f"o dx 
T-2 

-x Jx~-x2 
0 

[ x]"o tv = 2 arccos- = 21t -. 
Xo -x D 

0 

(51.34) 

As expected, this expression coincides with the period of 
harmonic oscillations with a frequency ro = (D/m)112• It can be 
seen that the period of oscillations is independent of the 
particle's energy. This is so because the potential energy 
increases with distance as x 2• For other types of potential 
energy, the period of oscillations depends on the energy. 

Suppose that the potential energy is given by EP (x) = 
alxln/2. The boundaries of the region of motion are given by 
the equation E = a~/2. For the period of oscillations, we 
obtain the following equation instead of (51.34): 

f"o dx 
T-2 

-x J~ -lxln 
0 

1 

- 4j§m 1-n/2 f d~ - Xo • 
a Jl- ~n 

(51.35) 

0 
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Since E = aJC~o/2, we have 
T,.., E1tn~1t2. (51.36) 

This means that in a given force field, particles of different 
energies generally have different periods of oscillations. The 
period of oscillations is independent of energy only for the case 
n = 2, i.e. when the potential energy is proportional to the 
square of the distance, i.e. when the oscillations are harmonic. 

Oscillations whose period is independent of energy are 
called isochronous oscillations. It was shown that such oscilla
tions are generated, in particular, for a quadratic dependence of 
potential energy on distance. Isochronous oscillations are also 
possible for other forms of dependence of potential energy. 
These dependences can be obtained from the quadratic 
dependence by deforming it along the X-axis in such a way 
that the distance between the points corresponding to different 
energies on the curve remains unchanged. The only constraint 
on this deformation is the requirement that EP (x) be a 
single-valued function, i.e. a straight line perpendicular to the 
X -axis must intersect ihe EP vs. x curve only at one point. 

Example 51.2. Two ideJtticalloads of mass m are hung from 
the lower ends of a spring and a rubber string whose upper 
ends are rigidly fastened. The spring and the rubber string are 
stretched bf A/ under the force of gravity of the loads. The 
extension is the same in both cases if no external forces are 
present. Find the period of oscillations of the loads if at the 
initial moment the strirfk and the spring were stretched by 3A/ 
and if the loads were released without any initial velocity. 

Let us consider the oscillations of the load attached to the 
spring. We make the origin of the coordinate system coincide 
with the equilibrium position in which the spring is stretched 
by ll/. The positive direction of the X -axis is taken as the 
vertical downward direction. Obviously, the force of elasticity 
of the spring is T = D (lll + x). Hence the equation of motion 
has the form 

mx=mg-T. (51.37) 

From the condition of equilibrium of the load upon an 
extension of the spring by AI it follows that mg = D AI. Hence 
the equation of motion acquires the form 

mgx 
mx= -Dx= ---. 

lll 
(51.38) 

The general solution of this equation is given by the formula 

x =A cos cot + B sin rot, co= J :{ (51.39) 
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Consequently, the period of oscillations is 

T = 21t = 21tJAI. 
(I) g 

(51.40) 

From the initial conditions x(O) = 2fl/ and -*}0) = 0, we 
obtain A = 2A/ and B = 0. . 

For the motion of the load suspended on the string, the 
initial part of the motion is identical to that of the spring, i.e. 
the motion is described by the formula 

x = 2!l/cosrot, ro = J !r (51.41) 

However, the motion takes place according to this law only up 
to the point x = -fl./, where cos rot = - l/2; rot = 21t/3. 
Beyond this, there is no elastic force acting on the load from 
the string. The load's velocity at this instant is 

i = - 2A/ro sin rot = - j3i/li. (51.42) 

Consequently, the load moves freely upwards until it comes to 
rest in a time (3g Al)112 jg = (3AI/g)112• Hence the half-period of 
motion can be written in the form 

21t + /3Ai = (At (21t + J3) 0 

3ro ~~ ~~ 3 
(51.43) 

Obviously, the time in which the point returns to its initial 
position will be equal to this very quantity. Consequently, the 
period of oscillations is given by the formula 

T= 21tJ~1G + ~)- (51.44) 

In this case, the oscillations are periodic, but not harmonic. 

Sec. 52. DAMPED OSCILLATIONS 
The damping of oscillations is FRICTION. Natural oscillations of a linear oscillator take place 
discussed. in the absence of external forces. The energy of its oscillations 

is conserved, and so the amplitude of oscillations also remains 
unchanged. Natural oscillations are undamped oscillations. 

In the presence of friction, which is an external force, the 
energy of oscillations of a linear oscillator decreases, and hence 
the amplitude of oscillations also decreases. The oscillations 
become damped in this case. It can easily be seen that the 
frequency of oscillations must also change. The frictional force 
acts against the velocity. Hence, for a linear oscillator, its 
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action is equivalent to a decrease in the restoring force, i.e. the 
elasticity of a spring (i.e. to a decrease in the value of D). Since 
ro = D/m, the frequency of oscillations must decrease, and so the 
period of oscillations must increase. 

As the friction increases, the period of oscillations can 
increase to infinitely large values. When the friction is quite 
large, there will be no oscillations at all since all the energy of 
the oscillator will be spent in overcoming the frictional force 
over a very short path equal to just a fraction of one 
oscillation. 

EQUATION OF MOTION. Let us consider liquid friction. 
This force appears on the right-hand side of the equation of 
motion which now assumes the form 

mi = -Dx- pi, (S2.1) 

where P is the coefficient of friction. It is convenient to write 
this equation in the following form: 

i + 2yi + ro0x = 0, (52.2) 

where y = P/(2m) and ro~ = D/m. 
FREQUENCY AND DAMPING DECREMENT. The solution 

of Eq. (52.2) can be sought in the form 
.X= Aoei«r. 

Considering 'that 
d . • ' 
-(e'«') = - iae"'cr 
dt ' 

d2 . 2 . 
-(e'111) =-a e'"' 
dt2 

}I 

(52.3) 

(52.4) 

and substituting (52.3) and (52.2) into (52.4), we obtain 

A0ei«r (- a2 + 2iya + ro~) = 0. (52.5) 

The cofactor A0ei«r is not zero. Hence the other cofactor must 
be zero: 

- a2 + 2iya + ro~ = 0. (52.6) 

This is a quadratic equation in a. The solutions of this 
equation can be expressed by the well-known formula 

a= iy ± Jro~- y2 = iy ± n, n = Jro~- y2• (52.7) 

Substituting these values of a into (52.3), we arrive at the 
required solution: 
:X= Aoe-y'·e;ru, 

.X'= Aoe-y'·e-;ru. 
(52.8a) 

(52.8b) 

The existence of two solutions indicates that (52.2) is a 
second-order equation and hence must have two independent 
solutions which are obtained for opposite signs of n. 
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Fig. 151. Damped oscillations. 
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If the coefficient of friction is not very large, we have 

D 
Y = 2m <roo· (52.9) 

In this case, ro~ - y2 > 0, and hence n is a rea! quantity. 
Consequently, e;n, is a harmonic function. The real \>art of the 
oscillation described by (52.8a) can be represented in the form 
x = A0e- 7'cos0t. (52.10) 

This is an oscillation whose amplitude decreases, while its 
frequency Cl remains unchanged. Such an oscillation is shown 
graphically in Fig. 151. 

This oscillation is neither periodic nor harmonic. The period 
of harmonic (periodic) oscillations is defined as the ti1]le in which 
the oscillation is repeated. In the case of (52.10), the oscillation 
is not repeated, and hence the concept of period becomes 
meaningless. Nevertheless, it is convenient to refer to the period 
of these oscillations, meaning thereby the interval of time in 
which the displacement becomes zero. In the same context, we 
can also use the concept of the frequency n = 2TC/T of 
oscillations. The amplitude of the oscillations is given by 
A = A0e- 7' in accordance with (52.10). This quantity is roughly 
equal to the magnitude of the maximum deviations in successive 
oscillations. 

It can be seen from (52.10) that the amplitude of oscillations 
decreases by a factor of e = 2. 7 in a period of time 

1 
t = -. 

y 
(52.11) 

The interval t of time is called the die-away time of 
oscillations, while y is called the damping decrement. 

LOGARITHMIC DECREMENT. The damping d~rement y 
as such does not carry much information about the intensity of 
oscillation damping. For example, the amplitude decreases in a 
period of time At by a factor of e741• However, depending on 
the period of oscillations, different numbers of oscillations can 
take place in this time. If a large number of oscillations has 
been performed in this period, the variation of the amplitude in 
successive oscillations will be insignificant. If, however, the 
number of oscillations is small, there will be a considerable 
variation of the amplitude after each oscillation. Obviously, it 
can be stated that the damping of oscillations takes place more 
slowly in the former case than in the latter case. 

Hence damping must be reduced to a natural time scale of 
oscillations, i.e. to the period of oscillations. The intensity of 
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I • 
The reciprocal of the loga
rithmic decrement is equal to 
the number of periods during 
which the amplitude decreases 
by a factor of e. The higher the 
logarithmic decrement, the 
stronger the damping of oscilla
tions. 
Damped oscillations are nei
ther periodic nor harmonic. 
The period of such oscillations 
is taken to be the interval of 
time in which the displacement 
vanishes. 

? 
K1!at is the meaning of the 
period of damped oscillations in 
spite of the fact that they are 
aperiodic? 
K1!at leads to the conclusion 
that the frequency of damped 
oscillations must be lower than 
the frequency of the correspond
ing undamped natural oscilla
tions? 
K11at is logarithmic decrement? 
K1!ich important properties of 
the damping of oscillations are 
characterized by the damping 
decrement? 

13. Oscillations 

damping is characterized by the damping of their amplitude 
during one period of oscillations, and hence it is expedient to 
use the logarithmic decrement instead of the damping 
decrement y. 

Let us find the amplitudes of oscillations in two successive 
time intervals differing by the period T of oscillations: 
At= A0e-y1•, A 2 = A0e-y<r,+TJ. (52.12) 

Hence 

A 
_t = eYT. 

A:z 
(52.13) 

Consequently, the variation of the amplitude of oscillations 
during one period of oscillations is characterized by the quantity 
e = yT, called the logarithmic decrement. From (52.13), we 
get 

(52.14) 

The logarithmic decrement can also be interpreted in 
another way. Let us consider the decrease in the amplitude of 
oscillations over N periods, i.e. in time NT. Instead of (52.12), 
we can wri~ 
At= A0e-Y'•, AN+t = A0e-y<r,+NTJ. (52.15) 

Hence the ratio of amvfttudes over time periods separated by 
N periods of oscillations is 

AN+t = e-yNT = e-NII. 
At 

(52.16) 

For NO= 1, the amplitude decreases by a factor of e. Hence it 
can be stated that the logarithmic decrement 

(52.17) 

is the reciprocal of the number of periods over which the 
amplitude of oscillations is reduced by a factor of e. 

Such an interpretation provides a clear visual representation 
of the damping intensity: 
The amplitude decreases by a factor of e over a number of 
oscillations, equal to the reciprocal of the logarithmic decre
ment. If, for example, e = 0.01, the oscillations will be damped 
only after about 100 oscillations. Over ten oscillations, the 



A 

Fig. 152. The case of very strong 
friction. 
No oscillations appear in this case. 
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amplitude will vary only insignificantly, i.e. by about 10% of 
its initial value. Hence for processes occurring over a small 
number of periods of oscillations, we can assume the oscilla
tions to be undamped in the first approximation. 

The situation is quite different if the logarithmic decrement 
is large. If 8 = 0.1, the oscillations will be completelT damped 
over ten oscillations. The damping will be significant even after 
a few oscillations. Hence, the oscillations can only be treated as 
damped even while considering processes occurring over a few 
periods. 

LARGE FRICTION (y » ro0 ). As the friction increases, the 
period of oscillations increases. For high friction, the motion is 
no longer oscillatory. This happens under the condition 

'Y = ro0 , ~ = 2~. (52.18) 

Upon a further increase in friction, 'Y > ro0 . Assuming that 
J rog - y2 = ± iB, where I) = J y2 - rog is real, we can repre
sent (52.3) in the form 

(52.19) 

Obviously, 'Y ±I) = 'Y ± Jy2 - rog > 0. This simple exponen
tial function does not contain any oscillation. The plot of such 
a function is represented in Fig. 152. 

All these phenomena can clearly be demonstrated by 
considering the oscillations of a pendulum suspended in 
liquids having different viscosities. If the viscosity is very high 
(as, for example, in glycerine), the pendulum slowly returns 
from its deflected position to the equilibrium position, and the 
motion is by no means reminiscent of oscillatory motion. 

ANALYSIS OF DAMPING BASED ON ENERGY LOSSES 
DUE TO FRICTION. It was mentioned above that the energy of 
oscillations of an oscillator is spent in overcoming the 
frictional forces and therefore decreases with time. Hence the 
law of decrease in the amplitude can be found "by directly 
considering the work done by the frictional forces. The work 
done by these forces in one period of oscillations is given by 

T 

!!.Ek = - ~ J i dx = - ~ J i 2 dt 
0 

T ~vz 
= - ~ J V2 sin2 rot dt = - - 2- T, 

0 

(52.20) 

where we have considered that damping is small. Hence the 
change in the amplitude V of the velocity oscillations can be 
neglected over one period. On the other hand, the energy spent 
in doing work against the frictional forces during one period is 
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the difference between the kinetic energies of a particle in two 
successive periods. i.e. 

(52.21) 

where we have considered that the change in the amplitude 
over one period of oscillations is quite small. Equating the 
right-hand sides of (52.20) and (52.21), we get 

~~ AV ~ 
-- T= mVAV. or-=- -V (52.22) 

2 ' T 2m · 

For a weak damping, the period Tis the small interval of time 
in comparison with the time period for the case of significant 
damping. During the time T, the amplitude of the velocity 
oscillations changes by a small amount A V. Hence we can 
assume in (52.22) that AV/T~ dVfdt. This leads to the fol
lowing expression for the time variation of the amplitude of 
velocity oscillations: 
dV 
dt = -yV, (52.23) 

where ~/(21JI) = y is the damping decrement. It is well known 
that the solution of Eq. (52.23) has the form 
V= V0e- 1'. Ji' (52.24) 

This damping of the velocity amplitude is completely in accord 
with the damping of the displacement amplitude given by 
(52.10), which was derived from a rigorous solution of the 
equation of motion. Hence the calculations carried out above 
show that the energy of an oscillator is indeed spent on 
overcoming the frictional force. 

Example 52. t. DAMPING IN THE CASE OF DRY FRIC
TION. According to an exponential law, the damping of the 
amplitude of oscillations occurs when the frictional force is 
proportional to the velocity. For other types of frictional 
forces, the amplitude of oscillations decreases according to 
different laws. 

If the motion takes place against dry friction, the equation of 
motion has the form 

m.i + C~)Fo + Dx = 0, (52.25) 

where (.:i/1 x I)F 0 is a constant quantity directed against the 
velocity. The quantity .:i/1 xI = sgn x determines the sign of the 
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force. Using the change of variables ~ = x + (.i/1 .X I)F 0 /D, we 
can transform (52.25) to the form 

m~ + D~ = 0, (52.26) 

which is characteristic of harmonic oscillations. Thus, between 
the instants of time when the velocity vanishes, the oscjllations 
are harmonic with a frequency ro = ,jiii;, although the 
oscillations take place about an equilibrium point which is 
displaced in the direction of deviation by an amount 
flx = F 0 /D. Hence, during one period of oscillations, the point 
of maximum deviation approaches the equilibrium position by 
4F 0 /D, i.e. the amplitude decreases by flA = -4F 0 /D. This 
means that the amplitude of oscillations decreases in direct 
proportion to time and not according to an exponential 
law. 

Example 52.2. DAMPING IN THE CASE OF ARBITRARY 
FRICTIONAL FORCES. In order to find the law according to 
which the amplitude of oscillations decreases, we must solve 
the equation of motion. This is not always a simple task. 
However, with the help of the energy concepts, we can directly 
compute the energy losses due to friction and compare them 
with the total energy. This enables us to draw conclusions 
about the nature and rate of attenuation of oscillations in the 
same way as in the derivation of Eq. (52.24). 

Let us apply this "energy" approach for analysis of damping 
in the case of dry friction. It is convenient to carry out 
computations by using the displacement amplitude A instead 
of the velocity amplitude that was used for the derivation of 
Eq. (52.24). During one period of oscillations, the force F 0 is 
directed against the velocity, the path traversed being equal 
to 4A. Consequently, the energy spent in overcoming the 
frictional forces is flE = -4AF0 • On the other hand, the energy 
of oscillations is E = DA 2/2, and hence flE = DA flA. Equat
ing the last two expressions for flE, we obtain flA = -4F0 /D, 
which is in accord with the exact solution of Eq. (52.25). 

Let us use this method for determining the nature of 
damping for other dependences of the frictional forces on 
velocity. It has been shown above that if the frictional force 
were independent of the velocity, the energy loss in one period 
would be proportional to the amplitude, i.e. flE- A. If 
Fr,- v, then in accordance with (52.20), flE- A2• Similarly, 
calculating the work done against the frictional forces in one 
period, we find that if Fr, - v" (n > I), then flE- An+ 1• 

Hence 

flA flE 1 ---,_A"-. 
A E 
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Consequently, 

dA L\A 
----A". 
dt T 

(52.27) 

This means that the law of variation of amplitude with time 
has the form 

A - (t + b)1'' 1 - •>, (52.28) 

where b is a constant. For example, for moderate velocities in 
air, the frictional force is proportional to the square of the 
velocity (- v2 ). The amplitude of oscillations of a point must 
in this case decrease according to the law 1/(t + b). In other 
words, if the amplitude of oscillations at the instant t = 0 is A 0 , 

the amplitude variation will take place according to the law 

bA0 
A (t) = -. (52.29) 

t+b 

If the amplitude decreases by a factor of 1/y in one period, i.e. 
if A (T) = yA0 , we obtain the following equation for constant b 
in (52.29): 

bA0 

yAo=T+b. (52.30) 

It follows ftom this equation that b = y'I7(l - y). According to 
the law (2.29), the amplitude decreases until the frictional 
force depends linearly on the velocity as a result of a decrease 
in the velocity. BeyoJi(l this point, the amplitude decreases 
according to an exponential law. 

Sec. 53. FORCED OSCILLATIONS. RESONANCE 
The methods of investigating 
forced oscillations are discussed 
and the concepts associated 
with them are described. 

EXTERNAL FORCE. Besides friction, other external forces can 
also act on a linear oscillator. In this case, the nature of motion 
of the linear oscillator changes, depending on the properties of 
the forces acting on it. 

The most important case is that of a harmonic external 
force. It will be shown that more complex cases of variation of 
the external force with time can be reduced to this simple case. 
Hence we shall assume that the external force acts on the linear 
oscillator according to the following law: 

F = F 0 cos rot, (53.1) 

where F 0 is the amplitude of the force, and ro is its frequency. 
EQUATION OF MOTION. Instead of (52.2), we can write the 

equation of motion in the following form: 

m.i = -Dx -IJi + F0 cos rot. (53.2) 
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Dividing both sides by m, we obtain an equation similar to 
(52.2): 

F 
x + 2yx + ro~x =~cos rot, (53.3) 

m 

where 1 and ro0 have the same meaning as in (5~.2)./ 
TRANSIENT CONDITIONS. Assuming that an external pe

riodic force has started to act on a linear oscillator at a certain 
instant of time, the subsequent motion of the oscillator over a 
certain interval of time will depend on the motion at the instant 
when the force began to act on it. However, the effect of the 
external forces is weakened with time, and the oscillator starts 
performing steady-state harmonic oscillations. Irrespective of 
the conditions under which the external force begins tg act on 
the oscillator, the latter will perform the same type of 
steady-state harmonic oscillations after a certain interval of 
time. The process of establishing steady-state harmonic oscilla
tions is called transient conditions. 

The most important aspect of the transient conditions is its 
duration. It is determined by the die-away time of oscillations at 
the instant when the external force began to act. We know that 
this period is • = lfr. This is the interval of time after which we 
can forget about the initial oscillations and consider only the 
steady-state oscillations established under the action of the 
external force. On the other hand, if there were no initial 
oscillations, the forced oscillations could not have attained the 
steady state instantaneously. It can be shown that the time of 
establishing the steady state of forced oscillations after the initial 
force has started acting is again • = lfy. 

STEADY-STATE FORCED OSCILLATIONS. In this case, we 
must assume that the force F 0 cos rot has started acting a long 
time ago, i.e. at an instant of time in the infinite past. Thus, we 
consider that Eq. (53.3) is valid for all instants of time. To solve 
this equation, it is again expedient to use the compleJS: form of 
harmonic oscillations. We write the expression for force on the 
right-hand side of (53.3) in complex form, after which the 
equation assumes the form 

(53.4) 

The real part of the solution of Eq. (53.4) is the solution of 
Eq. (53.3). This solution is sought in the form 
x=Ae1<~~. (53.5) 

Here, A is not a real quantity in general. Substituting this 
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expression into (53.4), we get 

· 2 2 Fo · Ae'«'( -a + 2iya + ro0 ) = -e'w1• (53.6) 
m 

This equality must hold for all instants of time, i.e. the time t 
must be cancelled out. It follows from this condition that 
a = ro. We determine the quantity A from (53.6) and multiply 
its numerator and denominator by ro~ - ro2 - 2iyro. This gives 

F 0 1 F 0 ro5 - ro2 - 2iyro 
A-- =- (53.7) 

- m ro5 - ro2 + 2iyro m (ro5 - ro2)2 + 4y2ro2 · 

The complex number (53.7) can conveniently be written in 
exponential form: 

A= A0ei"', 

Fo 
Ao = - -r===::====::=========~ 

m j(ro5 - ro2)2 + 4y2ro2 ' 
2yro 2yro 

tan q> = - -
ro5 - ro2 ro2 - ro5 · 

(53.8a) 

(53.8b) 

(53.8c) 

Consequently, the solution (53.5) can be written in complex 
form as folfows: 

(53.9) 

while its real part, whtth is the solution of Eq. (53.3), can be 
written as 

x = A 0 cos (rot + q>), (53.10) 

where A 0 and q> are defined by (53.8b) and (53.8c), and ro is the 
frequency of the external force. 

Thus, under the influence of an external harmonic force, an 
oscillator performs forced harmonic oscillations with the fre
quency of the external force. The phase and amplitude of these 
oscillations depend on the properties of the external force and-of 
the oscillator itself 

Let us consider the change in the phase and amplitude of 
forced oscillations. 

AMPLITUDE-FREQUENCY CHARACTERISTIC. The curve 
describing the dependence of the amplitude of steady-state 
forced oscillations on the frequency of the external force is 
called the amplitude-frequency characteristic. The analytic 
expression for this characteristic is given by formula (53.8b), 
and the plot of the characteristic is shown in Fig. 153. 

The maximum value of the amplitude is attained when the 
frequency of the external force is close to the frequency of 
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natural oscillations of an oscillator (ro ~ ro0 ). Oscillations with 
the maximum amplitude are called resonance oscillations and 
the phenomenon of "building up" of oscillations to the maximum 
amplitude at ro ~ ro0 is called resonance: In this case, the 
frequency ro0 is called the resonance frequency. \1\jhen the 
frequency of the external force deviates from the resonance 
frequency, the amplitude of oscillations sharply decreases. 

Let us consider the physical pattern of the phenomenon in 
various frequency ranges. Of most interest are oscillations at 

......w...__.....,..,.w weak friction. Therefore we shall asume that y « ro0 . 

Case I. ro « ro0 • From (53.8b), we obtain the following 
Fig. 153. Amplitude-frequency expression for the amplitude: 
characteristic. 
For small damping, the resonance 
frequency is close to the natural 
frequency. 

Fo 
Aost ~--2. 

mro0 
. (53.11) 

The physical meaning of this result lies in the following. At 
very low frequencies, the external force acts on a system as a 
constant static force. Hence the maximum displacement (ampli
tude) is equal to the displacement (53.11) under the action of 
the static force F 0 , i.e. xm•• = F 0 /D = F 0/(mro~). where 
D = mro~ is the rigidity characterizing the restoring force. It 
follows from the condition ro « ro0 that in Eq. (53.3) the term x 
due to the acceleration and the term 2yx due to the velocity 
are much smaller than the term ro~x due to the elastic force 
since x ~ rox and x = -ro2x. Hence the equation of motion is 
reduced to the following form: 

F 
ro~x = ~ cos rot. (53.12a) 

m 

The solution of this equation can be written as follows: 

Fo 
x = --cos rot. 

mro~ 
(53.12b) 

This means that the displacement at each instant of'time is the 
same as it should be in the case of a time-independent force and 
should be equal to its instantaneous value. Frictional forces are 
.neglected. 

Case 2. ro » ro0 • Formula (53.8b) leads to the following 
expression for the amplitude: 

Fo 
Ao ~--2. 

mro 
(53.13) 

The physical meaning of this expression can be explained as 
follows. When the frequency of the external force is very high, 
the term x due to the acceleration is much larger than the terms 
due to the velocity and to the elastic force since 
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I xI ~ I ro2xl » I ro~x I and I xI ~ lro2xl » 12yx I ~ 12yrox 1- Hence 
the equation of motion (53.3) assumes the form 

x ~ F 0 cos rot. 
m 

Its solution can be represented in the form 

Fo 
x ~ - --cos rot. 

mro2 

(53.14a) 

(53.14b) 

Thus, the elastic force and the frictional force do not play 
any significant role in the oscillations in comparison with the 
external force. The external force acts on an oscillator as if there 
were neither elastic force nor frictional force. 

Case 3. ro ~ ro0 • This is the situation corresponding to 
resonance. At resonance, the amplitude has its maximum value 
for which we obtain the following expression from (53.8b) at 
'Y « roo: 

Fo 
A ---o res - m 2yroo (53.15) 

The physical meaning of this result can be explained as 
follows. The term due to the acceleration is equal to the term 
due to the· elastic force, i.e. x = -ro2x = -ro~x. This means 
that the atceleration is caused by the elastic force, while the 
external force and the frictional force cancel each other. 
Equation (53.3) then assumes the form 

Fo 
2yi =-cos ro0 t. 

m 

Its solution can be represented as follows: 

Fo . 
X = --SlD (l) t. 

2ymro0 ° 

(53.16a) 

(53.16b) 

Strictly speaking, the maximum amplitude is attained not 
exactly at ro = ro0 , but near this value. The exact value of 
frequency can be obtained from the general rule by equating 
the derivative of A0 with respect to ro in (53.8b) to zero. 
However, when friction is not very strong, i.e. when 'Y « ro0 , 

the displacement of the maximum from the position ro = ro0 is 
quite insignificant and can be neglected. 

Q-FACTOR. An important characteristic of the properties of 
an oscillator is an increase in its amplitude at resonance in 
comparison with its static value, i.e. in comparison with the 
displacement under the action of a constant force. From 
(53.ll) and (53.15), it follows that 
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Fig. 154. Resonance curve for 
the square of the amplitude. 
The resonance width ruo is determined 
rrom this curve. 
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Ao res 0) 21t 1t 
Q=-=-=-=-, 

Aost 2y 2yT e 
(53.17) 

where e is the logarithmic decrement. The quantity Q is called 
the Q-factor of a system. The Q-factor is an ibtportant 
characteristic of the resonance properties of the system. 

It can be seen from (53.17) that the lower the damping of an 
oscillator, the more vigorous its resonance build-up since, in 
accordance with (53.17), A0 res = A0 stQ = A0 st (1t/6). 

An important feature of the resonance properties is not only 
an increase in the amplitude at resonance, but also the rate of 
this increase. In other words, it is important to know not only 
the value of the resonance amplitude, but also the rapidity 
with which this amplitude decreases as a result of departure 
from the resonance frequency. This property is characterized 
by the width of a resonance curve. However, this quantity is 
referred not to the amplitude of oscillations, but rather to the 
square of the amplitude. This is so because the energy of a linear 
oscillator, which is a vital characteristic of the linear oscillator, 
is defined in terms of the square of the amplitude qf dis
placement. The shape of the resonance curve for the square of 
the amplitude is similar to that shown in Fig. 153. This curve 
is represented in Fig. 154, where the half-width of the 
resonance curve is also indicated. The half-width of a resonance 
curve is the distance Aro/2 on the frequency scale from the 
resonance frequency (ro = ro0 ) to the frequency at which the 
square of the amplitude is reduced to half its value. The value 
of the half-width can be calculated without any difficulty. 

Near the resonance ro = ro0 we can assume that 

I 

(53.18) 

where we have considered frequencies close to the resonance 
frequency for which Aro « ro0 and ro ~ ro0 . Since A~ res = 
(F0 jm)2/(4y2roij) at the resonance, the condition of a de
crease in the amplitude to half its value at the resonance 
assumes the form · 

(53.19) 
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Consequently, the width of the resonance curve is given by 
Aro = 2y, (53.20) 

i. e. the width of the resonance curve is equal to twice the 
damping decrement: the weaker the damping, the smaller the 
width of the resonance curve and hence the sharper the 
resonance. 

Formula (53.20) can be represented in a more convenient 
form in terms of the logarithmic decrement and the Q-factor. 
We divide both sides of (53.20) by ro0 and take (53.17) into 
account: 

Aro 2y yT 1 1 

Olo = roo = --; = 2 Q' (53.21) 

roo 
Aro = -. (53.22) 

Q 
Thus, the width Aro of a resonance curve is equal to the 

resonance frequency divided by the Q1actor. 
As the Q-factor increases, the resonance amplitude increases 

and the width of the resonance peak decreases. However, in 
accordance with (53.17) and with what has been stated above 
about the transient conditions, a larger Q1actor means a longer 
stabilization time for the forced oscillations. 

PHASE CHARACTERISTIC. Another important characteris
tic of forced oscillations is the relation between their phase and 
the phase of the external force. In formula (53.10) for displace
ment, this relation is ex)ll'essed through the quantity Cjl since 
the dependence of force on time is given by the function cos rot. 
If Cjl < 0, the displacement lags behind the external force in 
phase. The dependence (53.8b) of phase Cjl on frequency is 
called the phase characteristic (Fig. 155). 

At very low frequencies ro « ro0 the phase Cjl is small and 
negative. This means that the displacement lags behind the 
force in phase by a very small amount. With increasing 
frequency, the phase lag of the displacement from the force 
increases. At resonance, the displacement lags behind the force 
by rt/2 in phase. This means that when the force attains its 
maximum value, the displacement is zero, and conversely, 
when the force is zero, the displacement attains its maximum 
value. Upon a further increase in the frequency, the phase of 
the displacement continues to lag behind the phase of the force 
and approaches the value 1t for very high frequencies ro » ro0 • 

In other words, it can be stated that the displacement and the 
force are nearly opposite to each other since cos (rot - rt) = 
-cos rot. Hence, when the force attains, say, its maximum 
positive value, the displacement has its maximum negative 
value. Mter this, the directions of the force and the displace-



Fig. 155. Phase characteristic. 
For small damping, the phase changes 
rapidly over a very small frequency 
interval near the resonance frequency, 
from the value 0 to the value lt. In 
other words, a phase "reversal" takes 
place at the resonance frequency. 

The Q-factor, which is equal to 
the reciprocal of the loga
rithmic decrement multiplied 
by 1t characterizes the build-up 
of oscillations at resonance. 
The Q-factor indicates the 
factor by which the amplitude 
at resonance exceeds the am
plitude of the static displace
ment for the same amplitude of 
the force. 
The width of a resonance curve 
is defined not with respect to 
the amplitude of oscillations, 
but to the square of the 
amplitude. 
Resonance occurs when 
conditions are most favourable 
for an effective transfer of 
energy from an external source 
to an oscillating system. 
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ment are reversed and they pass the zero point almost 
simultaneously. 

These phase relations between the displacement and the 
force permit a deeper understanding of the resonance phe
nomenon. It was mentioned in Sec. 50 that the velocity leads 
the displacement by rt/2. On the other hand, at reso#J.ance the 
force also leads the displacement by rt/2. Consequently, the 
force and the velocity oscillate in phase, i.e. the direction of the 
force always coincides with that of the velocity. Hence the 
work done by the external force attains its maximum value. If 
there is no resonance, the force coincides in direction with the 
velocity for a part of the period of oscillations, and hence the 
energy of an oscillator increases. For another part of the 
period, the force acts in a direction against the velocity, and 
hence the energy of the oscillator decreases. Hence re"sonance is 
characterized by the most favourable conditions for trans
ferring the energy from the external source to the oscillator. 
The most unfavourable conditions for transferring the energy 
from the external source to the oscillator exist at ro « ro0 and 
ro » ro0 , when the phases of the force and the velocity differ by 
about rt/2. This means that the force is directed against the 
velocity about half the time and coincides with it for the 
remaining half. Thus, on the average, an insignificant amount 
of energy is transferred from the external source to the 
oscillator during one period of oscillations. Hence the ampli
tude of oscillations is very small in this case. 

PERIODIC ANHARMONIC FORCE. If the external force 
F 0f(t) acting on an oscillator is periodic with a period T, in 
accordance with the formulas of mathematical analysis, it can 
be represented as a Fourier series, each of whose terms is a 
harmonic function: 

F 0/(t) = F 0 L (a,. cos nrot + b,. sin nrot), (53.23) 
n=O 

where ro = 2rr./T. This force acts on the oscillator instead of the 
force (53.1) and appears on the right-hand side of Eq. (53.3). 

In order to find the result of the action of this force, there is 
no need to carry out any new computations. It is sufficient to 
take into account that (53.3) is a linear equation, and hence its 
solution can be represented as the sum of the solutions of 
equations whose right-hand sides contain one of the terms 
from the sum (53.23). In other words, each of the terms of the 
harmonic forces in (53.23) acts independently on a linear 
oscillator. This action of the force has already been studied. 
The total oscillation is the sum of the oscillations caused by 
individual harmonic forces in (53.23). 
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The strongest influence on the oscillator is exerted by the 
terms in the sum (53.23) whose frequencies are close to the 
resonance frequency, i.e. for which nro ~ ro0 • If such fre
quencies do not exist, the periodic force F 0 f(t) does not cause 
a sharp rise in the amplitude of oscillations. If, however, such 
frequencies do exist, resonance is observed. The resonance 
amplitude, the width of the resonance line and the phase shift 
are determined with the help of the formulas considered above. 
The absolute value of the resonance amplitude depends on the 
coefficients a. and b. of the appropriate terms in the sum 
(53.23). If these terms are very small, even a hundredfold 
increase in the resonance amplitude does not cause a sig
nificant increase in the resultant amplitude of oscillations. In 
this case, the resonance terms in (53.23) are insignificant. 

If the coefficients a. and b. in resonance terms are not very 
small, the resonance amplitudes corresponding to them play a 
decisive role in the action of the force F 0 f(t) on the oscillator. 

It was mentioned above that most physical systems behave 
like linear oscillators for small deviations from the equilibrium 
position. For example, the tops of structures (towers, houses), 
bridges of different designs, etc. oscillate like linear oscillators. 
The rotating shafts of engines perform torsional vibrations 
that can also be treated as the oscillations of a linear oscillator 
(the angular;acceleration ii produced upon a deviation from 
the equilibrium position is proportional to the angle of 
deflection, i.e. ii- a). Moreover, these systems are often 
subjected to the action_,pf periodic forces. For example, the 
shaft of an engine experiences periodic forces exerted by the 
piston as a result of combustion of the fuel in the cylinder, 
various parts of a bridge are subjected to nearly periodic 
pressure from the succession of motor vehicles following one 
another more or less regularly, as well as from the steps of 
pedestrians, and so on. In order to analyze the result of these 
periodic forces, we must carry out their spectral analysis, i.e. 
represent the forces in the form (53.23) and find the coefficients 
a. and b. in this expansion that are associated with various 
harmonic components of the force. After this, we must find the 
natural frequencies ro0 i with which a system can oscillate. In 
general, a system has several, and even an infinite number of, 
natural frequencies, and for small deviations we cannot always 
represent the system as a single linear oscillator. It may so 
happen that for small deviations a system may behave as an 
aggregate of linear oscillators with different natural frequen
cies. Each of these oscillators can initiate resonance oscilla
tions under the action of appropriate harmonic components. 
For example, a bridge may perform vertical vibrations, 
horizontal displacements across its length, vibrations along its 
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length, and so on. The natural frequencies of these vibrations 
are different, and each type may have several natural fre
quencies. All the natural frequencies must be taken into 
consideration in the analysis of the action of an external 
periodic force. One of the tasks facing the designers i,s to avoid 
the resonance action of the external forces on a §ystem. In 
other cases, it may be equally important to create conditions 
ensuring the resonance action of the external forces on the 
system. For example in radioengineering, the reception of 
radio signals makes it imperative to attain their resonance 
action on the oscillatory circuits of the radio receiver. In both 
cases, the problem is reduced to the investigation of the forced 
oscillations of a linear oscillator under the action of an 
external periodic force. 

The possibility of mutual coupling between various linear 
oscillators must also be taken into consideration. This will be 
discussed in the analysis of oscillations of coupled systems. 

APERIODIC FORCE. The periodic force, whose action on a 
linear oscillator was considered above, is an idealized concept 
which is never realized in practice. For a force to be periodic in 
the strict sense of the word, its action must be periodic o.ver an 
infinitely long time. If the action of the force has a beginning 
and an end, the force cannot be periodic. However, real forces 
having a periodic nature and acting over a finite interval of 
time can be treated as periodic forces. For this purpose, the 
force must act for "a sufficiently long time". In order to get an 
idea of the criterion of "sufficiently long time", let us analyze 
harmonic forces. 

After the harmonic force (53.1) has started to act, a time 
' = 1/y is required for establishing steady-state forced oscilla
tions. If the force continues to act for a much longer time than 
' and the system performs a large number of oscillations in this 
time, the result will be the same as if the force had been acting 
for an infinitely long time. Consequently, the force js assumed 
to be harmonic under this condition, and its boundedness in 
time need not be taken into consideration. 

A periodic force also has a beginning and an end and is not 
periodic in the strict sense of the word. However, in the same 
way as for the case of a harmonic force, a force can be 
considered to be periodic if the time ' for establishing forced 
oscillations is much smaller than the time for which the force 
acts. After the passage of time '· the oscillations acquire their 
steady-state characteristic and the situation is just the same as 
if they had existed for an infinitely long time. In other words, 
the force can be assumed to be strictly periodic. 

By an aperiodic force we mean a force during whose 
existence no periodic variation can be established. The action 
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of such a force can be studied with the help of the consider
ations put forth above. Suppose that the time T during which 
a force acts on a system is much longer than the time t in 
which oscillations set in. Then after the passage of time t 

certain steady-state conditions will be established in the 
system, and no significant changes in the system will take place 
in the subsequent interval of time T- t. Hence it is natural to 
consider the process to be periodic with a period T. Let us 
represent this force in the form (53.23). Obviously, the compo
nents of the force corresponding to terms with n » I will 
perform a large number of oscillations during the time T, while 
the steady-state conditions will be established during the first 
few oscillations. Hence all the conclusions concerning the 
action of periodic forces are fully applicable to these compo
nents. If the frequencies belong to the resonance region, the 
amplitude of the oscillations will increase significantly. Since it 
is possible that w « w0 in this case (010 = 21t/T), many terms of 
(53.23) may have their frequencies close to the resonance value 
nw = w0 . The resulting nearly resonance oscillations are 
superimposed on one another. On the other hand, the first 
terins in the sum (53.23) with n = 0, I, 2, ... have frequencies 
much lower than the resonance frequency. Such frequencies 
satisfy Eq. (53.12) in which the force is followed almost 
instantaneously by the displacement. Thus, if an aperiodic 
force exists f6r a much longer time than the time during which 
the oscillations set in or the period of resonance oscillations, 
the process is considerltd in exactly the same way as for a 
periodic force. Strictly speaking, a certain amount of error will 
creep in under such an assumption since the motion of the 
oscillator at the beginning and end of the action of the force 
will not be the same. Hence we should add the die-away time t 

to the period Tso that the second "imaginary" period begins in 
the same way as the first, i.e. without any oscillations before 
the force begins to act. However, t « T, and this correction 
does not introduce any significant changes. From mathemat
ical point of view, a more rigorous solution of the problem can 
be obtained by going onto a continuous spectrum, i.e. by 
assuming that the time for which the force acts is given by 
T-+ oo. 

In this case, instead of the expression (53.23) for force as a 
sum over frequencies, the force can be represented as an 
integral over frequencies, called the Fourier integral. In this 
case, the frequencies assume continuously varying values 
instead of discrete values. Forced oscillations are also com
posed of all possible frequencies the densities of whose 
amplitudes are connected with the density of the force 
amplitudes of the same frequency. The components of force 
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with frequencies lying in the resonance region cause a sharp 
increase in the displacement amplitudes. The physical nature 
of the phenomenon in the case of continuous spectrum is the 
same as in the case of discrete spectrum. 

If the time T during which the external force acts is smaller 
than the time • = 1/y in which forced oscillations set in, the 
arguments based on the pattern of steady-state forced oscilla
tions are not applicable. In this case, the oscillations must be 
investigated under the transient conditions. 

RESONANCE OF NONLINEAR OSCILLATIONS. The most 
important feature of nonlinear forced oscillations is the 
resonance at combination frequencies. It was mentioned in 
Sec. 51 that in addition to the fundamental frequency ro0 , 

nonlinear oscillations also contain higher harmonics with 
frequencies n0>0 • Under the action of an external harmonic 
force with a frequency ro, resonance occurs not only at the 
fundamental frequency, when ro ~ ro0 , but also at frequencies 
corresponding to higher harmonics, when ro ~ nro0 • The 
spectrum of an arbitrary periodic force contains, besides the 
fundamental frequency ro, higher harmonics with frequencies 
mro as well. 

Hence resonance may occur at frequencies satisfying the 
condition mro = nro0 , i.e. for various combinations of the 
fundamental frequencies. Of course. the role of any resonance 
depends on its amplitude which in turn depends on the 
characteristics of a nonlinear system and the properties of the 
force. If the amplitude is small, there is· no need to take 
resonance into account. 

Sec. 54. SELF-EXCITED OSCILLATIONS 
AND PARAMETRIC OSCILLATIONS 

The methods of obtaining sclf
.:xcitcd oscillations and para
rnctri~,; oscillations are qualita
tively described. 

DEFINITION. Natural oscillations are gradually attenuated 
due to energy losses by friction. If energy is supplied from a 
source of an external harmonic force to an oscillator, it 
oscillates with the frequency of the force. This frequency is 
generally different from the natural frequency of the oscillator. 

However, it is possible to construct devices in which the 
oscillator itself regulates the supply of energy from the external 
source in such a way as to compensate for the energy losses 
due to friction. The energy acquired by the oscillator from the 
external source during one period of oscillations is equal to the 
energy consumed by it in overcoming friction. As a result, the 
oscillator performs undamped oscillations. Such self-sustained 
oscillations are called self-excited os\.:illations. If the friction is 
not strong, only a small fraction of the total energy of the 
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Fig. 156. A pendulum suspend
ed from a rotating axle is the 
simplest example of a self-oscil
lating system. 
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oscillator is supplied to the system during one period. In this 
case. the self-excited oscillations are harmonic to a very high 
degree of accuracy, and their frequency is very close to the 
frequency of natural oscillations. If, however, the friction is quite 
strong, a considerable fraction of the total energy of the 
oscillator is acquired from the external source, and hence the 
oscillations differ significantly from the harmonic oscillations 
even though they are periodic oscillations. The period of these 
oscillations differs from the period of natural oscillations of the 
oscillator. 

SELF-EXCITED OSCILLATIONS OF A PENDULUM. Let us 
consider the oscillations of a pendulum suspended from the 
axle of a rotating bush (Fig. 156). We shall consider the 
transformation of the energy of the pendulum under different 
conditions. Suppose that the pendulum is at rest. Then the 
rotating bush slips about its axle and performs work in 
overcoming the frictional force. This work is completely 
transformed into internal energy as a result of which the bush 
and the axle are heated. The energy transformed into the 
internal energy is supplied by the motor turning the bush. 

Let us suppose that the pendulum is set in oscillation. In the 
half-period of the pendulum's oscillations, when the direction 
of rotation of the pendulum's axis and the bush's axle coincide, 
the frictional' forces have the same direction as that of the 
surface points of the axis and the axle. Hence these forces cause 
an enhancement of the oscillations of the pendulum. On the 
other hand, the energy _fransformed into the internal energy 
during the half-period of oscillations will be lower than for the 
case when the pendulum is at rest in view of the fact that the 
relative displacement of the surfaces rubbing against each 
other (the outer surface of the axis and the inner surface of the 
bush) decreases. Hence only a fraction of the energy supplied 
by the motor for rotating the bush is transformed into the 
internal energy, while the rest of the energy is spent in 
enhancing the oscillations of the pendulum. 

In the other half-period of the pendulum's oscillations, when 
the direction of rotation of its axis is opposite to that of the 
bush's axle, the frictional forces act against the direction of 
motion of the pendulum. Hence they retard its motion, and the 
energy of oscillations of the pendulum is transformed into the 
internal energy. The energy supplied by the motor to rotate the 
bush is also completely transformed into the internal energy. 
The net result of the energy transformations over a complete 
period of oscillations is determined by the dependence of the 
frictional forces on velocity. 

If the frictional force is independent of velocity, the energy 
acquired by the pendulum in the half-period, when the 
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directions of rotation of its axis and of the bush's axle coincide, 
is equal to the energy spent by the pendulum in overcoming 
the work against the frictional force in the remaining half
period. In this case, the rotation of the bush does not cause any 
change in the oscillations of the pendulum in comparispn with 
the case when the bush is not rotating. · 

If the frictional force increases with velocity, the energy 
acquired by the pendulum in the half-period, when the 
directions of rotation of its axis and of the bush's axle coincide, 
is lower than the energy spent by it in overcoming the work 
against the frictional force in the remaining half-period. This is 
so because the relative velocities are higher in the second 
half-period, and hence the frictional force is also stronger than 
in the first half-period. In this case, the rotation of the bush 
increases the damping of the pendulum's oscillations. 

If the frictional force decreases with increasing velocity, the 
energy acquired by the pendulum in the half-period, when the 
directions of rotation mentioned above coincide, is stronger 
than the energy consumed by it in overcoming the work 
against the frictional force in the remaining half-period. This is 
so because the relative velocities are higher in the second 
half-period, and hence the frictional force is weaker than in the 
first half-period. Thus, the rotation of the bush causes an 
increase in the amplitude of oscillations of the pendulum. 
However, in this case, the energy losses due to friction of the 
pendulum against the air increase. When the energy supplied 
to the pendulum in a period becomes equal to the energy spent 
by it in overcoming friction, the amplitude and the frequency 
of oscillations acquire constant values, and the pendulum is 
said to oscillate in a self-excited mode. If the energy losses 
during one period are not large in comparison with the total 
energy of oscillations of the pendulum, and the amplitude of 
oscillations is quite small, the oscillations are harmonic, and 
their frequency is equal to the natural frequency of oscillations 
of the pendulum. 

Self-excited oscillations are frequently employed in engi
neering. A familiar example is the pendulum clock. In this case, 
the energy is supplied to the pendulum in jerks following the 
application of force to the pendulum from a spring or a 
suspended weight at the instant of time determined by the 
oscillations of the pendulum itself. In an electric bell, the 
vibrations of the hammer switch on and off the electric current 
which supplies the energy to the bell for maintaining the 
self-excited oscillations of the hammer. 

RELAXATION OSCILLATIONS. These oscillations are a par
ticular case of self-excited oscillations, but the nature of 
variation of their parameters with time is quite peculiar: 
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Fig. 157. Relaxation oscillations 
of the height of a liquid column. 
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parametric excitation of 
oscillations like the build-up of 
oscillations on a swing? 

13. Oscillations 

h (a) 

(b) 

variations are slowly a~umulated in a system over a rather 
long time. This is followed by a sudden, almost abrupt, 
variation in the state of the system which thus returns to its 
original state. After this, variations are again accumulated 
slowly in the system, and so on. 

An example of such oscillations, which is well known since 
ancient times, is shown in Fig. I 51 a. A vessel is equipped with a 
wide siphon through which water can flow out of it. The vessel 
is filled from a tap from which a thin stream of water flows. As 
a result, the water level in the vessel slowly rises. When the 
level reaches the lower wall of the bend in the siphon (height 
H 2 ), water begins to overflow, expelling the air and filling the 
entire cross section of the siphon in the upper part. After this, 
water flows from the entire cross section of the siphon quite 
rapidly since this cross section is quite large. The water level in 
the vessel falls quickly to the lower end of the siphon inside the 
vessel (height H 1 ). After this, the cycle of filling begins again. 
The variation of the water level in the vessel is plotted in 
Fig. l57b. It can be seen that these oscillations are dis
continuous: the rate of change of h at the upper and lower 
points abruptly reverses its sign from the plus sign for 
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increasing h to the minus sign at the upper point when the 
liquid begins to flow out of the siphon. 

PARAMETRIC EXCITATION OF OSCILLATIONS. The prop
erties of oscillating systems are defined by quantities called 
parameters. For example, a simple pendulum is characterized 
by a single parameter, viz. its length. When this ;arameter 
changes, the nature of oscillations of the pendulum also 
changes, i.e. the natural frequency of its oscillations changes. If 
this parameter changes in step with the oscillations, we can 
supply energy to the pendulum and hence increase the 
amplitude of its oscillations or simply sustain the oscillations if 
they are damped. Such an excitation and maintenance of 
oscillations is called parametric. 

A well-known example of excitation and maintenance of 
oscillations is a swing. When the swing reaches the uppermost 
point in its motion, the person rocking it squats down, while at 
the lowest point in the motion of the swing, the squatter gets 
up again. As a result of squatting, the magnitude of the work 
performed at the uppermost point is smaller than the work 
done in raising the swing from its lowest position. According 
to the energy conservation law, the difference in these two 
works is equal to the difference in the energies of the swing, 
and the oscillations of the swing increase. If this energy is 
completely spent in overcoming the work against friction, the 
swing will continue to rock in undamped mode. 

Sec. 55. OSCILLATIONS OF COUPLED SYSTEMS 
The meaning of terms used in 
the dc~cription of coupled sys
t<.:Im. i~ clariJicO.::. 

SYSTEMS WITH MANY DEGREES OF FREEDOM. If a system 
has several degrees of freedom, small deviations from the 
equilibrium position may induce oscillations for all d~grees of 
freedom simultaneously. For example, in the case of vibrations 
of a bridge considered above, one of the degrees of freedom of 
the bridge is its vibration in the vertical plane, while another 
degree of freedom is its vibration in the horizontal direction. 
Of course, other degrees of freedom also exist. A simple 
pendulum may oscillate in two mutually perpendicular vertical 
planes passing through the point of suspension. Hence it has 
two degrees of freedom. If the oscillations corresponding to each 
degree of freedom are independent of each other, i.e. if they 
cannot exchange energy, the motion of the system with several 
degrees of freedom can be analyzed in a purely kinematic form: 
knowing the motion for each degree of freedom, we carry out a 
kinematic summation of the motion. Although the resultant 
motion in this case may be quite complicated, it does not 
involve any new physical laws from the point of view of 
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Fig. 158. Oscillations of coupled 
systems. 

In a coupled system, energy is 
transferred between the parts of 
the system through the 
coupling. 

? 
Which factor makes a system 
with many degrees of freedom a 
coupled system? 
What is meant by normal 
oscillations of a coupled sys
tem? 
How many such oscillations are 
possessed by a coupled system? 
How can we represent an 
arbitrary oscillation of a 
coupled system in terms of 
normal oscillations? 

13. Oscillations 

dynamics. Only the coupling between various degrees of freedom 
introduces new physical regularities in an oscillatory system with 
many degrees of freedom. 

COUPLED SYSTEMS. A coupled system is a system with 
many degrees of freedom which are mutually coupled and can 
therefore exchange energy with one another. 

As an example, let us consider two pendulums connected 
through a spring which serves as the coupling (Fig. 158). This 
system may oscillate in the vertical plane in which the 
pendulums and the spring are located in a state of equilibrium, 
as well as in directions perpendicular to this plane. In all, there 
are four degrees of freedom coupled with one another. If one of 
the pendulums is drawn out of the equilibrium position by 
deflecting it simultaneously in the plane of the pendulums, as 
well as in a direction perpendicular to this plane, the second 
pendulum will also begin to oscillate over its degrees of 
freedom after the onset of the oscillations of the first pendu
lum. The oscillations of the pendulums have varying ampli
tudes. On the whole, a quite complicated pattern of motion of 
the pendulums and of energy transfer between them is 
observed. 

NORMAL OSCILLATIONS OF COUPLED SYSTEMS. In 
spite of the complicated motion of two coupled pendulums, we 
can always "represent the motion as a superposition of four 
harmonic o~illations whose frequencies are called the normal 
frequencies of the coupled system. The number of normal 
frequencies is equal to tltt! number of the degrees of freedom. In 
the case of the coupled pendulums, we have four normal 
frequencies. We shall give the definition of these frequencies 
and describe the method of their determination. 

To begin with, let us write down the oscillations of the 
pendulums in the vertical plane perpendicular to the line 
joining the points of their suspension. Each pendulum may 
occupy a certain position in this plane. The state of the system 
is characterized by the position of both pendulums. Let us 
consider the simplest cases: (I) both pendulums are deflected 
from the equilibrium position in the same direction by the 
same angle; (2) the pendulums are deflected in opposite 
directions by the same angle. These simple deviations are 
called normal deviations. Any possible deviation of the pen
dulums can be represented as the sum of their identical 
deviations in the same direction and in opposite directions. In 
other words, any state of the system in the above-mentioned 
sense can be represented as a superposition of states (I) and (2). 
The proof of this statement can easily be obtained with the 
help of the plot shown in Fig. 159. The dashed line shows the 
mean equilibrium line. The quantities a and b denote the 



Fig. 159. Representation of an 
arbitrary deviation of two pendu
lums as the sum of two normal 
deviations. 
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I 

deviations of the pendulums from the equilibrium position 
(b >a). On the right-hand side of the equality we have the 
combinations of deviations 1 and 2 whose sum gives the initial 
deviations of the pendulums. 

If the pendulums are deflected in the same direction by the 
same angle and then released, they will oscillate with a certain 
frequency ro 1 , called a normal frequency. The frequency of 
oscillations of the pendulums deflected in the opposite di
rections by the same angle is another normal frequency ro2 • In 
accordance with the decomposition shown in Fig. 159, an 
arbitrary oscillation of the two pendulums in the given 
directions can be represented as the sum of two harmonic 
oscillations with normal frequencies. 

In the same way, we can analyze the oscillations of the 
pendulums in the vertical plane passing through the line 
joining their points of suspension. The normal oscillations in 
this plane are the oscillations of the pendulums deflected at the 
same angle in the same and opposite directions. The line of 
reasoning adopted in this case is the same as in the previous 
case. Hence, in this case, the oscillations of the two coupled 
pendulums can also be represented as the sum of two 
oscillations with normal frequencies equal to the frequencies of 
the corresponding normal oscillations. 

The total motion of the two pendulums with four degrees of 
freedom is a superposition of four normal oscillations with the 
corresponding normal frequencies. In the present case, not all 
four normal frequencies are different, but this by ·no means 
alters the situation. 

Thus, the problem of investigating coupled systems is 
reduced to finding their normal oscillations and normal 
frequencies. Sometimes, normal oscillations can be determined 
with the help of simple arguments, as was shown in the 
previous case. Two of the normal frequencies are just the 
natural frequencies of oscillations of the pendulums (taking 
into account the mass of the spring and the height of its 
suspension, or without considering these parameters). The 
remaining two normal frequencies are the frequencies of the 
pendulum's oscillations when an additional elastic force is 
exerted by the spring in the case of a symmetric deviation of 
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the pendulums in opposite directions from their equilibrium 
position. 

In most cases, the problem is found to be a lot more 
complicated. The normal frequencies can be determined with 
the help of some general methods which will not be described 
in this book. 

Let us now carry out a detailed mathematical description of 
the oscillations of coupled systems by considering the example 
of coupled pendulums. We shall confine ourselves to the case 
of two degrees of freedom. It will be assumed that the 
pendulums oscillate in the same plane coinciding with the 
vertical plane and passing through the points of their suspen
sion and the equilibrium position of the point masses of the 
simple pendulums (Fig. 160). For small oscillations, we can 
neglect the vertical deviations of the points, and their motion 
can be considered along a straight line. The position of the 
oscillating points is characterized by their deviations x1 and x 2 

from their equilibrium positions denoted by 0 1 and 0 2 

respectively. If the points are simultaneously in the positions of 
equilibrium, the spring joining them will be undeformed and 
will not exert any force on the points. 

Let us denote by ro 1 the frequency of normal oscillations of 
the pendulums when they oscillate synchronously (in the same 
phase), and by ro2 the same frequency when the oscillations of 
the pendul•ms are in opposite phases. Obviously, ro 2 > ro 1 • 

The resultant oscillation of the system is the superposition of 
two normal oscillatioq,; According to the method described 
above for the decomposition of an arbitrary motion of coupled 
pendulums, we can write 

x 1 =A sin(ro1 t + q> 1) + Bsin(ro2 t + q> 1), 

x 2 =A sin(ro1 t + q>2)- Bsin(ro2 t + q> 2). 
(55.1) 

The four unknown constants A, B, q> 1 and q> 2 are determined 
from the initial conditions expressing the values of the 
deviations x 10 and x20 and the velocities i 10 and i 20 at the 
initial instant of time, say, t = 0: 

x10 =A sin q> 1 + Bsin q>2 , 

x20 ~A sin q> 1 - Bsin q>2 ; 

.X 10 = Aro 1 cosq> 1 + Bro1 cosq>2 , 

.X 20 = Aro2 cos q> 1 - Bro2 cos q>2 . 

(55.2) 

Having determined the values of the constants A. B. q>1 and q> 2 

from these conditions, we can completely describe the motion 
with the help of Eqs. (55.1). 

Let us now solve the same problem by applying the dynamic 
laws of motion directly. We can write the equations of motion 



Fig. 160. Calculating the de
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of the given simple pendulums in the following form assuming 
that they have the same length /: 

.. g .. g (55 3) a 1 = - 1a 1 , a 2 = - 1a2 , • 

where a 1 and a 2 are the angles of deflection of the pendulums 
from the vertical position. The deviations from the equilibrium 
position are connected with the angles a 1 and a 2 through the 
obvious relations (see Fig. 160): x 1 = a 1/ and x 2 = a2 /. Hence 
the equations of motion of the point masses have the following 
form if we neglect their coupling through the spring: 

.. g .. g (55 4) x1 = - 1x 1 , x 2 = - 1x 2 • • 

The deformation of the spring gives rise to forces pro
portional to elongation (Hooke's law). The elongation of the 
spring is x 2 - x 1 , and hence the forces acting on the point 
masses are 

(55.5) 

where D is the proportionality factor. Hence, taking into 
account the coupling forces introduced by the spring, we can 
write the equations of motion as follows: 

.. g D( ) x 1 = - 1x, +;;; x 2 - x 1 , 

(55.6) 

where m is the identical mass of the point masses. These two 
coupled equations can easily be solved as follows. The addition 
and subtraction of the right- and left-hand sides of these 
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equations gives 

Thus, the equation for the sum and the difference of the 
pendulum's deviations has the same form as the equations for 
natural harmonic oscillations: 

(i1 + i 2 ) + rof(x1 + x2) = 0, 
(i1 - i 2) + ro~(x 1 - x2) = 0, 

where 

(J)l=J~. (J)2=J7+ 2
:· 

The solution of these equations is well known: 

x 1 + x 2 = A0 sin(ro1 t + q> 1), 

x 1 - x 2 = B0 sin(ro2 t + q> 2). 

(55.7) 

(55.7a) 

(55.8) 

Hence adding and subtracting the left- and right-hand sides, 
we obtain for the deviations x 1 and x2 : 

Ao . Bo . 
x 1 = 2sm((l)1 t + q> 1) + 2 sm(ro2t + q>2), 

(55.9) 
A0 . ,"'B0 . 

x 2 = 2 sm (ro 1 t + q> 1) - 2 sm (ro2 t + q> 2). 

As expected, these formulas are the same as (55.1) if we put 
A = A0 /2 and B = B0 /2. Hence the quantities w1 and w 2 , 

defined by (55.7a), are normal oscillation frequencies of the 
coupled system under consideration with two degrees of 
freedom. 

Two springs having the same length I and rigidity D 1 and D2 may form 
a combination of two springs of the same length I (parallel connection) 
or of length 21 (series connection). Find the circular frequencies of 
oscillations of a load of mass m suspended at the lower end of the 
combinations of the springs if their upper ends are rigidly fastened. 

13.1. A weightless pulley is suspended at the lower end of a weightless spring 
of rigidity D1 • The upper end of the spring is rigidly fastened. A 
weightless elastic string of rigidity D2 passes over the pulley. One end 
of the string is rigidly fixed to the ground, while a load of mass m is 
suspended at the other end. In the state of equilibrium, both rectilinear 

13.2. sections of the string and the spring are in the vertical position. The 
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frictional forces can be neglected. Find the circular frequency of small 
harmonic oscillations of the load under which the string is always 
stretched in the vertical position. 
A small load, suspended at the lower end of an elastic string, stretches 
it in the equilibrium position by M. The upper end of the string 
oscillates along the vertical, its deviation from the equilibriuqt position 
being described by the formula A sin ro0 t. The positive/ value of 
deviations is measured downwards. Assuming that the string is always 
stretched, find the equation of motion of the load, denoting its 
deviation from the equilibrium position by x. 
A ring of mass m1 can slide without friction over a horizontal rod. A 
point mass m2 is suspended from the ring on an unstretchable 
weightless string of length /. Find the frequency of small harmonic 
oscillations of the system. 
A hole in which a point mass can move is drilled along the diameter of 
the Earth which is assumed to be a homogeneous spher€;. Find the 
period of oscillations of the point in the hole near the centre of the 
Earth. The acceleration due to gravity at the surface of the Earth and 
the radius of the Earth are denoted by g and r respectively. 
A hydrometer of mass m having a cylindrical tube of diameter d floats 
in a liquid of density p and is set into motion by a push in the vertical 
direction. Find the frequency of small oscillations of the hydrometer. 
The motion of the liquid and its resistance to the motion of the 
hydrometer can be neglected. 
A homogeneous rod is suspended horizontally with the help of two 
vertical strings of length I each tied to its ends. In the state of 
equilibrium, the strings are parallel. Find the period T of small 
oscillations excited as a result of a twisting of the rod about a vertical 
axis passing through its centre. 
A circular ring of radius r rotates about its vertical diameter at an 
angular velocity ro. A sphere of mass m can slide over the ring without 
friction. The position of the sphere is defined by the angle a between 
the downward vertical direction and the direction of the radius vector 
of the sphere drawn from the centre of the ring. For what value of the 
angle a will the sphere be in a stable equilibrium and what will be the 
frequency of its small oscillations about the equilibrium position? 

13.1. ~(D 1 + D2)/m, [(D! 1 + D2 1)mr 112. 13.2. {D 1D;/[m(4D2 + 
D1)JP' . 13.3. x + (g/Al)x = (gA/Al)sinro0 t. 13.4, [(m1 + m2)g/(m11)] 112. 
13.5. gjr. 13.6. dJ1tpg/m/2. 13.7. 21tJ/i(ji). l3.H. arccos [g/(rro2)], 
ro 1 - g2 /(a2ro4). . 



Appendix 1 

Sl Units Used in the Book 

Quantity Unit 

name of quantity dimensions basic name of unit symbol 
symbol 

Base units 

Length L metre m 
Mass M m kilogram kg 
Time T t second s 
Electric current 1 1 ampere A 
Thermodynamic temperature e T kelvin K 
Amount of substance N v mole mole 
Luminous intensity J 1 candela cd 

Derived units 

Area L2 s square metre m2 
Volume L3 v cubic metre m3 
Plane angle dimensionless a, cp radian rad 
Solid angle dimensionless n steradian sr 
Period of oscillations T T second s 
Frequency of periodic process T-1 v hertz Hz 
Circular frequency T-1 CJJ inverse second s-1 

Angular velocity T-1 CJJ radian per second radjs 
Angular acceleration T-2 a radian per second squared rad/s2 
Velocity LT- 1 V, U metre per second mjs 
Acceleration LT- 2 a metre per second squared mjs2 

Density C 3M p kilogram per cubic metre kgjm3 
Momentum LMT- 1 p ·"' kilogram-metre per second kg·m/s 
Force LMT-2 F newton N 
Pressure C 1MT- 2 p pascal Pa 
Moment of force L 2MT- 2 M newton-metre N·m 
Angular momentum L 2MT- 1 L kilogram-square metre kg·m2/s 

per second 
Moment of inertia L 2 M J kilogram-square metre kg·m2 
Work L 2MT- 2 A joule J 
Energy L 2MT- 2 E joule J 
Potential energy L 2MT- 2 EP joule J 
Kinetic energy L 2MT- 2 Ek joule J 
Power L 2MT- 3 p watt w 
Phase of harmonic oscillations dimensionless cp 
Damping factor T-1 y inverse second s-1 

Logarithmic decrement dimensionless 8 
Q-factor dimensionless Q 
Rigidity MT- 2 D kilogram per second kgjs2 

squared 
Coefficient of friction MT- 1 p kilogram per second kg/s 
Electric field strength LMT- 3r 1 E volt per metre V/m 
Magnetic induction MT- 2r 1 B tesla T 



Appendix 2 

Physical Constants Encountered in the Book 

Quantity Symbol Numerical value 

Velocity of light in vacuum c 2.99792458 x 108 m/s 
Acceleration due to gravity g 9.80665 m/!f 
Electron charge e 1.6021892 x 10- 19 c 
Electron rest mass m. 9.109534 X J0- 31 kg 
Proton rest mass mP 1.6726485 X J0- 27 kg 
Neutron rest mass m. 1.6749543 X J0- 27 kg 
Gravitational constant G 6.6720 x 10- 11 m3/(kg·s2) 



Conclusion 

The basic concepts of mechanics were worked out in the 
course of a prolonged evolution rooted many centuries back. 
The ideas of space and time formed in human consciousness 
were inseparably linked with these concepts. These concepts 
and ideas served as the foundation for the development of 
classical physics. Mechanics has always held primary in the 
system of physical concepts. 

The basic concepts of classical mechanics are associated 
with the ideas about a body, a point mass, motion of a point 
mass along a certain trajectory and force as the cause of 
peculiarities of motion of a body or a point mass. The 
interrelation between the concepts of space and time and the 
concepts of mechanics was refined during the evolution of 
science, but these concepts have always formed the basis of 
classical physics. The most important result of this evolution is 
the establishment of an inseparable link between space, time, 
matter and motion. These ideas are laid down in a clear 
philosophical form in the teachings of dialectical materialism. 
In dialecticai materialism space and time are forms of existence 
of matter and are therefore inconceivable without matter. 
Motion is a mode of ei'istence of matter. 

Although modern concepts of classical mechanics were 
developed since the time of Newton, Aristotle was the first to 
put forth the main ideas associated with the description of 
motion of bodies. These ideas were retained in their entirety by 
Newton who formulated new laws of motion differing from 
Aristotle's laws. Aristotle· divided all kinds of motion into two 
categories: natural and forced. Natural motion takes place on 
its own without any external influence, and it is senseless to 
raise the question of the cause behind natural motion. Forced 
motion does not take place on its own and is carried out under 
the action of external factors described by the concept of force. 
Aristotle considered natural motion to be the upward motion 
of light bodies, the downward motion of heavy bodies and the 
motion of heavenly bodies in the celestial sphere. All other 
types of motion are forced and can be explained only as being 
the result of the action of force. Force is imparted to a body 
from the surrounding space which according to Aristotle is 
never empty but is always filled with a certain medium. 
Aristotle's law of mechanics is similar in nature to Newton's 
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second law of motion and can be reduced to the statement that 
velocity is proportional to force. 

The approach towards the problems of motion contained in 
Aristotelian mechanics contained all basic elements of the 
theory which subsequently formed the basis of classical 
mechanics. The formulation of the basic la,.ws 6r classical 
mechanics is based to a considerable extent on the analysis of 
the physical content of these original basic elements of the 
theory with the help of experimental investigation of objects, 
phenomena and processes which are studied in classical 
mechanics. The physical meaning of the fundamentals of 
classical mechanics has undergone significant changes, but 
Aristotelian mechanics has always remained the first funda
mental stage in the development of mechanics. 

Newtonian mechanics was the second fundamental stage in 
the development of classical mechanics. The first step towards 
the creation of this stage of classical mechanics was taken by 
Galileo who formulated the relativity principle in mechanics, 
the laws of inertia, the law of free fall of bodies and the .law of 
summation of motion. 

In Newtonian mechanics, natural motion (including the 
natural motion as understood by Aristotle) is the motion by 
inertia (first law). It does not require the action of any force for 
its description. The action of a force is not a result of the 
velocity of a "forced" motion, but rather the acceleration of 
bodies (second law). The third law of motion establishes the 
general property of forces in the interaction of bodies. The 
question of force in this context was not raised in Aristotelian 
mechanics. 

Although the general approach towards the problem of 
motion was retained in Newtonian mechanics without any 
significant changes, the theory of motion put forth by Newton 
marks a fundamental change from Aristotle's theory. The 
questions related to the introduction of coordinate systems, 
including the relativity principle, the properties of interaction 
of bodies, a new equation of motion and a further development 
of the concepts of space and time are among the main aspects 
of Newton's theory. 

During the evolution of Newtonian mechanics, its basic 
concepts were subjected to a deep analysis. One such basic 
concept is that of mass. Newton defined this concept as 
follows: the amount of matter is its measure determined by its 
density and volume together. Later, Newton indicated that the 
amount of matter will be called mass, thus defining mass in 
terms of density. However, he never gave an independent 
definition of density. Thus, mass was defined in terms of mass 
per unit volume, i.e. the definition of mass was tautological. 
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For this reason, the concept of mass was subjected to thorough 
analysis, which resulted in the statement that mass is a 
measure of inertial properties of bodies. This definition of mass 
is widely accepted at present. 

Another important concept of classical mechanics is that of 
force. According to Newton, the applied force is the action on 
a body to change its state of rest or of uniform motion in a 
straight line. The force is manifested only in its action and does 
not remain in the body once the action ceases. Newton did not 
analyze the nature of forces. He treated the concept of force 
phenomenologically, assuming it to be something given. 
Subsequently, however, much attention was paid to deter
mining the nature of force, which seemed enigmatic to many. 
But one thing was clear: the force is due to the properties of 
matter. According to Euler, the essence of force lies in the 
fundamental properties of matter, i.e. inertia and impenetra
bility. The mysterious nature of the concept of force led to 
attempts at constructing mechanics without forces. Such 
efforts, however, proved to be futile, and the concept of force 
continued to exist in classical mechanics as a basic concept. 
After the advent of quantum mechanics which does not use the 
concept of force, it was opined that the force need not have an 
objective nature in classical mechanics either. This conclusion 
is erroneous since quantum mechanics does not use other 
concepts of glassical mechanics like a point mass moving along 
a given trajectory, acceleration, velocity and position in space 
in successive intervals ~time, which impart physical meaning 
to the concept of force. Hence, force is one of the basic 
concepts of classical mechanics, and attempts to divest 
mechanics of this concept must be rejected. 

Considerable attention was paid to investigations into the 
physical nature of Newton's laws and to the substantiation of 
mechanics in the course of its evolution. The idea that 
Newton's second law is a definition of force and not a law of 
nature is refuted by physical, historical and logical con
siderations presented in this book. Hence it is unacceptable to 
substantiate the concepts of mechanics and the definition of 
mass without using force as a basic concept. 

The nature of inertial forces is fundamental in classical 
mechanics. In the framework of Newton's concepts about 
relative and absolute space, inertial forces are caused by 
accelerated motion relative to the absolute space and can 
easily be described, especially if the absolute space is assumed 
to be filled with ether. However, once the concepts of absolute 
space and ether had been rejected, the problem of inertial 
forces became important again in the framework of new 
concepts. 
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In addition to the basic concepts and ideas of classical 
physics, the latter also contains the description of the methods 
of physical investigations and formulation of physical theories. 
These concepts, ideas and methods were successfully used for 
creating the special and general theory of relativity and for 
investigating the field form of matter, especially in /classical 
electrodynamics. 

The creation of the general and special theory of relativity 
was the third culminating stage in the evolution of classical 
mechanics. At this stage, the inseparable link between space 
and time, motion and matter was established to the fullest 
possible extent. The requirement of relativistic invariance of 
the theory became an important heuristic principle of physical 
investigation. A transition was made from the formulation of 
the theory in the four-dimensional space-time manifold. The 
geometry of this manifold has become an important element of 
the theory. One of the important results preceding the 
evolution of the physical theory was the conclusion that the 
connection between physical quantities must be expressed in 
the form of local relations. 

The study of phenomena in the microcosm revealed that the 
classical concepts are inadequate for explaining such phe
nomena. On the other hand, it is obvious that human intellect 
is not armed with any concepts except classical ones for 
constructing a theory to explain the phenomena of the 
microcosm, while the human experience and existence were, 
are and, apparently, will continue to be macroscopic. This 
means that the properties of objects of the microcosm and the 
laws of their motion must be described by using the concepts 
of classical physics. This problem was solved by quantum 
mechanics and quantum physics, based on it. The concepts, 
ideas and methods of classical mechanics has also retained 
their significance in quantum physics. 

Mechanics has always been of prime importance in the life 
and activity of man since it is associated with all phenomena 
and processes involving macroscopic bodies. Hence of all the 
physical sciences, mechanics was the first discipline which was 
developed as a science and applied not only for cognition of 
the world surrounding us, but also for practical utilization of 
its laws. Later, other branches of physical sciences were also 
developed, but, as a rule, a practical application of these 
disciplines was impossible without mechanics. Hence, me
chanics has continued to play a significant role in the life and 
activity of man, and in the growth of creative power. 

At present, mechanics has not lost its importance in the 
advancement of science and engineering since it is linked with 
practically all aspects of human life and activity. Mechanics is 
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vital for designing all kinds of machines and mechanisms, in 
construction, transport, space technology, rocketry, robotics, 
etc. Even the progress in electronics is closely connected with 
mechanics. For example, the motion of an electron beam 
which forms an image on a display screen ·is calculated with 
the help of the laws of classical mechanics. Data processing 
from magnetic tapes, floppy discs or rigid discs require the 
design of high-precision mechanical elements, and so on. If we 
take into account the fact that the design and construction of 
any instrument or equipment inevitably involve classical 
mechanics at least for the optimization of material con
sumption, there is hardly any branch of science and engi
neering that could do without mechanics. 
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ERRATA 

p. 59 Equation (8.19) should be written as: 

dv d dt dv 
a=-= -(w) = -v + t-. 

dt dt dt dt 

p. 67 The notation in Fig. 22 should be written as: 

a, a. 

p. 75 The answer to· Problem 2.13 should be written as: 

2.12. i .. + iy- i,, ... 

p. 264 The first line should be written as: 

moment of force F 1 ... 

i'- 344 The third line from below should be written as: 

where VJ. = ... 

p. 365 The first line of Eq. (51.11) should be written as: 
I T 

(cos2 (rot+ cp)), =- J cos2 (rot+ cp) dt 
To 

p. 400 The number of Problem 13.1 should be put at the level of the first line of the brevier and that of 
Problem 13.2 at the level of the sixth line. 
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