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Preface

This course reflects the present level of advancement in science and takes into
account the changes in the general physics curriculum.

Since the basic concepts of the theory of relativity are known from the course
on mechanics, we can base the description of electric and magnetic phenomena
on the relativistic nature of a magnetic field and present the mutual correspon­
dence and unity of electric and magnetic fields. Hence we start this book not
with electrostatics but with an analysis of basic concepts associated with charge,
force, and electromagnetic field. With such an approach, the information about
the laws of electromagnetism, accumulated by students from school-level physics,
is transformed into modern scientific knowledge, and the theory is substantiated
in the light of the current state of experimental foundations of electromagnetism,
taking into account the limits of applicability of the concepts involved. Some­
times, this necessitates a transgression beyond the theory of electromagnetism
in the strict sense of this word. For example, the experimental substantiation of
Coulomb's law for large distances is impossible without mentioning its con­
nection with the zero rest mass of photons. Although this question is discussed
fully and rigorously in quantum electrodynamics, it is expedient to describe its
main features in the classical theory of electromagnetism. This helps the stu­
dent to acquire a general idea of the problem and of the connection of the mate­
rial of this book with that of the future courses. The latter circumstance is quite
significant from the methodological point of view.

This course mainly aims at the description of the experimental substantiation
of the theory of electromagnetism and the formulation of the theory in the local
form, i.e. in the form of relations between physical quantities at the same point
in space and time. In most cases, these relations are expressed in the form of
differential equations. However, it is not the differential form but the local
nature which is important. Consequently, the end product of the course are Max­
we~l 's equations obtained as a result of generalization and mathematical formu­
lat~on of experimentally established regularities. Consequently, the analysis is
mainly based on induction. This, however, does not exclude the application of
the deductive method but rather presumes the combination of the two methods
of analysis in accordance with the principles of scientific perception of physical
Jaws. Hence, Maxwell's equations appear in this book not only as a result of
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mathematical formulation of experimentally established regularities but also as •
an instrument for investigating these laws.

The choice of experimental facts which can be used to substantiate the theory
is not unique. Thus, the theory of electromagnetism is substantiated here with
and without taking the theory of relativity into account.The former approach
is preferable, since in this case the theory of relativity appears as a general space­
time theory on which all physical theories must be based. Such a substantiation
has become possible only within the framework of the new general physics cur­
riculum.

An essential part of the theory is the determination of the limits of its ap­
plicability and the ranges of concepts and models employed in it. These ques­
tions, which are described in this book, are of vital importance. In particular,
the analysis of the force of interaction between charges in the framework of the
classical theory (i.e. without employing any quantum concepts) shows that the
classical theory of electricity and magnetism cannot be applied for analyzing
the interaction between isolated charged particles.

The author is grateful to his colleagues at Moscow State University as well
as other universities and institutes for a fruitful discussion of the topics covered
in this book. He is also indebted to Acad. A. I. Akhiezer of the Academy of
Sciences of the Ukrainian SSR, Prof. N. I. Kaliteevskii and the staff of the
Department of General Physics at the Leningrad State University who care­
fully reviewed the manuscript and made valuable comments.

A. Matveev
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Introduction

At present, four types of interactions between material bodies are known to
exist, viz. gravitational, strong, weak, and electromagnetic interactions. They
are manifested on different three-dimensional scales and are characterized by
different intensities.

·Gravitational interaction is noticeable only for bodies on astronomical scale.
Strong interactions can be observed only between certain particles when they
approach each other to quite small distances (10- 16 m). Weak interactions are
exhibited during mutual conversion of certain kinds of particles and become
insignificant as the particles are separated by large distances. Only electromag­
netic interactions are manifested in our everyday life. Practically, all "forces"
which are involved in physical phenomena around us, except for gravitational
forces, are ultimately electromagnetic forces. Naturally, all diverse relations
and phenomena due to electromagnetic interactions cannot be described by
the laws of electrodynamics since on each level of a phenomenon there exist
specific features and regularities that cannot be reduced to regularities on an­
other level. However, electromagnetic interactions on all levels are to a certain
extent an elementary link with the help of which the entire chain of relations
is formed. This makes electromagnetic phenomena important from a practical
point of view.

The theory of electromagnetic phenomena plays an extremely important role.
This theory is the first relativistically invariant theory, which played a decisive
role in the creation and substantiation of the theory of relativity and served
as the "training ground" on which many new ideas have been verified. Quantum
electrodynamics is the most elaborate branch of quantum theory, whose predic­
tions are in astonishingly good agreement with experiment, although at pres­
ent it is still not complete and free of internal contradictions. The philosoph­
ical aspect of electromagnetism is also very important. For example, specific
features of the field form of existence of matter are clearly manifested within
the framework of electromagnetic phenomena. The mutual conversion of differ­
ent forms of matter and energy is also clearly reflected in these phenomena.

The substantiation of the theory is presented in the book in two ways. When
the theory is substantiated without taking into account relativistic effects, the
experimental basis of the theory of electricity and magnetism is formed by the
invariance of an elementary charge, Coulomb's law, the principle of superposi.-
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tion for electric fields, the Biot-Savart law, the superposition principle for mag­
netic fields, Lorentz force, Faraday's law of electromagnetic induction, Maxwell's
displacement currents, and the laws of conservation of charge and energy.
When relativistic effects are taken into account for substantiating the theory,
the Biot-Savart law, the principle of superposition for magnetic fields, and the
Lorentz force no longer serve as independent experimental facts in the formula­
tion of the theory. The second way of substantiating the theory of electricity
and magnetism is presented not as the main line but as a side track chosen so as
to simplify the mathematical aspect of the problem. It includes the following
stages.

The relativistic nature of the magnetic field is demonstrated in Sec. 8, where
the formula for interaction of currents flowing in infinitely long parallel conduc­
tors is derived and Lorentz force is obtained from electric interaction of charges.
The field interpretation of these results allows us to find the magnetic induction
of current passing through an infinitely long conductor. The principle of super­
position for a magnetic field now becomes a corollary of the principle of super­
position for an electric field. The transition to magnetic induction for arbitrary
currents and the derivation of the corresponding equations are given in Sec. 35,
where the independence of local relations from the values of physical quanti­
ties at other points is effectively used. After this, the Biot-Savart law is theoret­
ically derived in Sec. 37, thus concluding the analysis of the connection ex­
isting in the relativistic concept of space and time between the invariance of an
elementary electric charge, Coulomb's law, the principle of superposition for an
electric field and the Biot-Savart law, as well as between the Lorentz force and
the principle of superposition for a magnetic field.



CHAPTER 1

Charge. Field. Force

Charge is the source and the objed of adion of an eledromagnetlc
field.
Field is the material carrier of eledromagnetic interadions between
charges, and is a form of the existence of matter.
Force is a quantitative measure of the intensity of interaction between
charges.
Charges, fields, and forces are inseparably linked with space, time,
and motion of matter.
Their interrelation cannot be understood without taking into account
the connection with space, time and motion.

Sec. 1. Microscopic Charge Carriers

The properties of basic microscopic charge carriers
are described. The distribution of electric charge
in a proton and a neutron is discussed, and the phys­
ical meaning of electric charge is analyzed.

Classification. By microscopic charge carriers we mean charged particles and
ions which can carry both positive and negative charge. The numerical value of a
charge can only be an integral multiple of the elementary charge

I e I = 1.6021892(46).10-18 C. (1.1)

In spite of persistent experimental attempts; it has not been possible so far to
detect microscopic carriers with a fractional charge (see Sec. 3).

About 200 particles and an enormous number of ions, atoms, and molecules
are known at present. A large number of particles exist only for a short time
after their creation and then disintegrate into other particles. In other words,
particles have a finite lifetime. In most cases, this lifetime is extremely small
and is of the order of a very small fraction of a second. Only a small number of
charged particles have an infinite lifetime. These are the electron, the proton, and
their antiparticles. Atomic nuclei contain protons, while the electron shells of
atoms contain electrons. It is these particles that are responsible for almost all
phenomena analyzed in a course on electricity and magnetism. In addition to
protons, nuclei also contain neutrons. These are electrically neutral and have
an infinite lifetime in nuclei. However, their average lifetime outside nuclei is
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about 17 min, after which they disintegrate into protons, electrons, and anti­
neutrinos.

The charge of ions is due to the fact that the electron shell of the corresponding
atom or molecule lacks one or several electrons (positive ions) or, on the con­
trary, has extra electrons (negative ions). Consequently, the treatment of ions
as microscopic charge carriers boils down to an investigation of electron and

. proton charges.
Electron. An electron is the material carrier of an elementary negative charge.
I t is usually assumed that an electron is a structureless point particle, i.e. the en­
tire charge of an electron is concentrated at a point. Such. a representation is
intrinsically contradictory since the energy of the electric field created by a point
charge is infinite, and hence the inertial mass of the point charge must also be
infinite. This is in contradiction with the experiment since the electron rest
mass is me = 9.1 X 10-31 kg. However, we must reconcile ourselves with this con­
tradiction in the absence of a more satisfactory and less contradictory view on the
structure (or absence of a structure) of electron. The difficulties associated with
an infinite rest mass can be successfully overcome in calculation of various effects
with the help of mass renormalization which essentially consists in the following.
Suppose that it is required to calculate a certain effect and an infinite rest mass
appears in the calculations. The quantity obtained as a result of calculations
is infinite and is consequently devoid of any physical meaning. In order to
obtain a physically reasonable result, another calculation' is carried out, in
which all factors, except those associated with the phenomenon under con­
sideration, are present. This calculation also includes an infinite rest mass
and leads to an infinite result. Subtraction of the second infinite result from the
first leads to the cancellation of infinite quantities associated with the rest mass.
The remaining quantity is finite and characterizes the phenomenon being con­
sidered. Thus, we can get rid of the infinite rest mass and obtain physically
reasonable results which are confirmed by experiment. Such a method is used,
for example, to calculate the energy of an electric field (see Sec. 18).
Proton. A proton is the carrier of a positive elementary charge. Unlike an
electron, a proton is not considered as a point particle. The distribution of the
electric charge in a proton has been thoroughly investigated in experiments.
The method of investigation is similar to that used at the beginning of this
century by Rutherford in investigations of the atomic structure, which led to
the discovery of the nucleus. The collisions between electrons and protons are
analyzed. If we assume the proton to be a spherically symmetric distribution of
charge in a finite volume, the electron trajectory which does not pass through this
volume is independent of the law of charge distribution, and is the same as if the
entire charge of the proton were concentrated at its centre. The trajectories
of electrons passing. through the volume of the proton depend on the specific form
of charge distribution in it. These trajectories can be calculated. Hence, by
carrying out quite a large number of observations of the results of collisions
between electrons and protons, we can draw conclusion about the charge distri­
bution inside the proton. Since very small volumes in space are involved, elec­
trons with very high energies are required for experiments. This necessity is
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Fig. 1.. Electromaglletic structure
of a proton. Almost the entire
charge is concentrated in a sphere
of radius roe
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Fig. 2. Electromagnetic' structure
of a neutron. The positive charge
is located near lthe centre, while
the negative charge is at the pe­
riphery. The positive and negative
chargescompensate for each other,
and hence the neutron is electri­
cally _:neutral as a whole.~

dictated by the quantum theory. According to the de Broglie relations material
particles have wave properties, and the wavelength of a particle is inversely
proportional to its momentum. In order to perceive a certain part in space, it
is obviously necessary to use particles whose wavelengths are less than the
corresponding spatial dimensions of this part. This involves quite high momenta
of particles. Therefore the investigation of the electromagnetic structure of a
proton became possible only after the creation of electron accelerators with an
energy of several billion electron-volts. The result of these experiments is shown
in Fig. 1a. Here, the ordinate represents not the charge density p at a distance r
from the centre of the proton but the quantity 4nr2p which is the density of the
overall charge in all directions at a distance r from the centre. This is so be­
cause 4rtr 2p (r) dr is the total charge in a spherical layer of thickness dr. It can
be seen from the figure that the entire proton charge is practically concentrated in
a sphere of radius of about 10-15 m. After the first maximum, 4nr2p (r) does not
decrease monotonically, but another maximum exists.

2-0290
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Neutron. Similar experiments, carried out on scattering of electrons by neu­
trons, showed that the neutron has an electromagnetic structure and is not an
electrically neutral point particle. The distribution of electric charge in a neu­
tron is shown in Fig. 2a.

Obviously, a positive charge is located near the centre of the neutron, while a
negative charge exists at its periphery. The areas bounded by the curves and the
abscissa axis are equal. Consequently, the positive charge is equal to the negative
charge, and the neutron is electrically neutral as a whole. The sizes of the regions
in which electric charges are concentrated are approximately the same in a proton
and a neutron.
What does the continuous distribution of an elementary electric charge mean?
The area bounded by the curve and the abscissa axis (see Fig. 1a) is numerically
equal to the proton charge, while the shaded area is equal to the charge inside
a proton in a spherical layer of thickness dr at a distance r from the centre of
the proton. Clearly, this charge is just a small part of the total proton charge,
i.e. a small part of an elementary charge. However, it has not been possible to
discover in nature phqsical objects whose charge is a fractional part of the elemen­
tary charge. What, then, is the meaning of the statement that a small part of
an elementary charge is located in the volume 4nr2dr?

At present, it is assumed that a proton consists of two point quarks with 8

charge +2fe 1/3 and one point quark with a charge-I e 1/3 (see Fig. 1b). The quarks
move inside a proton. Their relative duration of stay at different distances from
the proton centre can be effectively represented as a spreading of the charge
over the proton volume, as shown in Fig. 1a. A neutron consists of two quarks
with a charge -I e 113 and one quark with a charge +21 e 1/3 (Fig. 2b). The
charge distribution in a proton can be explained similarly.

Quarks have not been observed in free state in spite of considerable experi­
mental efforts. At present it is assumed that it is practically impossible to detect
quarks in free state since it requires an infinite energy. They do, however, exist
inside a proton. Such an assumption provides an explanation for a large number
of phenomena and is therefore accepted by physicists as a possible hypothesis.

There is no direct evidence of the presence of quarks inside a proton.
Spin and magnetic moment. In addition to charge, particles may possess angular
momentum, or spin. Spin is not due to the rotation of a particle since for such an
explanation under reasonable assumptions concerning the particle size, linear
velocities exceeding the velocity of light would have to be admitted. This, how­
ever, is impossible. Consequently, spin is considered as an intrinsic property of a
particle.

Spin is associated with the magnetic moment of a charged particle. This also
cannot be explained by the motion of the charge and is considered as a fundamen­
tal property.

In classical electrodynamics, magnetic moment appears only due to motion of
charges along closed trajectories. Consequently, the spin magnetic moment of
particles cannot be described in the classical theory of electricity and magnetism.
However, the magnetic field created by the spin magnetic moment can be described
phenomenologically if necessary. As a rule, the strength of this field is very
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small and attains large values only in the case of permanent magnets. The clas­
sical theory is unable to explain the mechanism of creation of this field, although
the field itself outside permanent magnets can be completely described by the
classical theory (see Sec. 38).

Electron Is considered as a point particle, elthoulh It leads to dlfflcuHles. It hu not be..
possible to experimentilly determine the Infernal electromlgnellc structure of an electron.
Continuous distribution of In elementery electric charge Is not conne~ecI with Its
division Into Plrts Ind only means Ibet the II. of motion of this charge In spece Is fIIken
Into account.

There is no charge smaller than an elementary charge. What, then, is the idea behind the
distribution of charge in a proton if the total charge in it is equal to an elementary charger.
What is the main difficulty associated with the representation of an eleefren as a point
particlel What artificial method is used for overcoming this difficultyl

Sec. 2. Charged Bodies. Electrostatic Charging

The physical nature of processes resulting in electrostat­
ic charging of bodies in contact is elucidated. Some
information on the energy spectrum of electrons tn
solids is given.

Thermionic work function. The forces that keep neutral atoms in a molecule
and neutral molecules in a solid are considered in the course on molecular physics.
The very fact of the existence of solids indicates that there are forces confining el~.:-

. trons inside a solid, In order to extract an electron from the solid, a certain work
against the forces retaining the electrons inside the solid must be performed.
Suppose that a solid body together with the surrounding medium is enclosed
in an adiabatic shell and is kept at a constant temperature T. Owing to thermal
motion and the velocity distribution of electrons inside the body, there will be electrons
whose kinetic energy is sufficiently high to allow them to overcome the forces keeping
them inside the body and thus leave the body. As a result, an electron "gas" is formed
neat the surface of the body. In the course of their motion, the electrons of this
gas approach the surface of the body and are captured by it. If the number of
electrons leauing the volume of the solid is, on the average, equal to the number of elec­
trons entering the volume of the solid from the layer of the electron "gas" adjoining
its surface, thermodynamic equilibrium is attained. In this case, the electron con­
centration near the surface of the solid has a definite value no. This electron gas
is non-degenerate, and its density can be represented in the form of the Boltz­
mann distribution:

no = A exp [-et>/(kT)) , (2.1)
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where A depends only on the temperature T, and
<I> is the thermionic work function.

According to the content of the Boltzmann dis­
tribution, the work function is the difference in
energies of an electron outside a solid and inside
it. However, electrons in a solid have different
energies, and only an analysis of their energy
spectrum clarifies what energy is meant while
determining <1>.
Energy spectrum of electrons. The laws of motion
of microparticles are given in quantum mechan­
ics, which allows us to calculate the energy spec­
trum of electrons if we know the law of variation
of their potential energy. These calculations are
complicated by the fact that we must also take
into account the mutual interaction of electrons.

Fig. 3. Energy spectrum of a The exact solution of such problems cannot be
hydrogen atom. obtained even with the help of modern computers

and will hardly be possible in future. But there
is no need for them, since it is possible to work out approximate methods
which meet practical requirements sufficiently well. It is important to
establish that this spectrum exists and is discrete for electrons contained in a
finite region of space. It determines various properties of a body. Experimental
investigation of these properties allows us to reveal the peculiarities of the energy
spectrum. Consequently, the energy spectrum can be studied both theoretically
and experimentally.

The energy spectrum of electrons in solids is investigated in detail. Its basic
features consist in the following. Energy levels in an isolated atom form a dis­
crete set of energies.

Figure 3 represents idealized energy levels of a hydrogen-like atom. In ana­
lytical form, the electron energy on the nth level is given by

Wn = -Aln2
,

where A is a positive quantity expressed in terms of an elementary charge, mass
of the nucleus and electron, and Planck's constant. Electrons on the level n = 1
have the lowest energy. The separation between the levels amounts to "several
electron-volts, these distances decreasing with increasing n:

Since electrons obey the Fermi-Dirac statistics, only one electron can exist
in each quantum-mechanical state. The quantum state is characterized not only
by energy. In a hydrogen-like atom, it'[is also characterized by the angular mo­
mentum of the electron in its orbital motion in an atom, its orientation in space,
as well as by the orientation of the electron spin. These two latter characteristics
are also quantized, i.e. have a discrete set of numerical values. As a result, it
turns out that each energy level contains not one but several electrons. Calculations
show that the level n = 1 may contain two electrons which differ in the spin orien­
tation (only two spin orientations are possible). The angular momentum on this
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level may only be equal to zero. On the next level n = 2, the angular momentum
of the electron may have, in addition to the zero value, a value differing from
zero. For the zero value of the angular momentum, there is no sense in determin­
ing its spatial orientation, in contrast to the case when the angular momentum
has a nonzero value. For n = 2, the angular momentum has three possible orien­
tations. Consequently, there are four quantum-mechanical states on the level
n = 2 corresponding to different magnitudes and spatial orientations of the
angular momentum. In each of these states, the electron spin may have two orien­
tations, and hence in total there are eight quantum-mechanical states on the
energy level n = 2. This means that this level may contain eight electrons alto­
gether. It turns out that the next levels may contain 18, 32, 50, etc. electrons.
Since the stable state of an atom (ground state) corresponds to the state with
the lowest energy, the energy levels must be filled starting from the level n = 1,
and the filling of the next level starts only when the previous level is completely
filled by the electrons. A complex of electrons with a certain value of n is called
an atom shell. Atom shells are usually denoted by the letters K, L, M, N, etc.
according to the following array:

n
Electron
shell

f 2 345

K L M N 0

For example, instead of saying "an electron on the level n = 2" we say "an electron
of the lrshell".

The situation changes for the atoms constituting the crystal lattice of a solid.
The very existence of crystal lattices indicates that there is an interaction be­
tween atoms, which substantiates the lattice formation. Consequently, the atoms
in a lattice cannot be considered isolated. We must, therefore, consider the
entire crystal lattice as a single system and speak about the energy levels of this
system. It turns out that the energy spectrum of the crystal lattice is connected
with the energy spectrum of isolated atoms through a simple relation, viz. as a
result of interaction between the atoms, each of the energy levels n = 1, 2, ...
splits into a large number of closely spaced sublevels on which all the electrons, which
were initially on the corresponding level of isolated atoms, can be arranged. For
example, the K-shell of an isolated atom is occupied by two electrons. If atoms
constitute a crystal lattice consisting of No atoms, the level n = 1 splits into N 0

sublevels each of which contains two electrons with different spin orientations,
i.e. 2N0 different quantum-mechanical states occupied by 2N0 electrons which
formerly belonged to the K-shells are formed in total in the crystal lattice.

A set of closely lying energy levels formed as a result of splitting of a certain energy
level of an isolated atom is called the energy band, or simply, the band. We can speak
of the K-,L-, etc. bands corresponding to the K-, L-, ... shells of isolated atoms.
The schematic diagram of band formation is shown in Fig. 4. As was mentioned
above, the separation between different levels inside the bands is extremely small.
On the other band, the distance between different bands remains considerable
and is equal, in order of magnitude, to the distance between the energy levels
of isolated atoms. The spacings between the energy bands occupied by electrons
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are also called bands. These bands are termed for­
bidden bands since electrons cannot exist in these
bands.

Thus, the energy spectrum of electrons in a sol­
id consists of allowed and forbidden bands. The
distance between the energy levels ioithtn each al­
lowed band is extremely small in comparison with the
forbidden bandwidth. The energy level diagram
considered above for an isolated atom is idealized.
If we take into account the interaction between
the electrons in greater detail, it turns out that
the energy of electrons in a shell is not the same
but depends, for example, on the angular mo­

mentum. The energy of the electron with a higher value of n may be not
higher hut lower than the energy of electrons on the preceding level. As
a result, the sequence of filling shells with electrons may change. The struc­
ture of the energy bands in a crystal and their filling with electrons will change
accordingly. However, the general nature of the spectrum of a solid remains un­
changed.
Fermi energy. The ground state of a solid is the state with the lowest possible
energy. Consequently, at the temperature 0 K all quantum states of electrons must
be filled successively, without gaps, starting from the level with the lowestenergy.
Since the number of electrons is finite, there is a finite filled level corresponding to
the highest energy, while the upper-lying levels are vacant. Thus, at 0 K there
exists a distinct boundary between the filled and unoccupied levels.

At a temperature other than 0 K, this boundary is blurred, since as a result. of
thermal motion, the energy of some electrons turns out to be higher than the
boundary energy corresponding to T = 0 K, while the energy of some other elec­
trons is lower than the boundary energy. Thus, some energy levels which were
free at 0 K will be occupied, while some of the previously occupied levels will
become empty. The width of the transition region from almost completely filled
levels to almost completely unoccupied energy levels is of the order of kT. In this
case, the energy distribution of electrons is described by the Fermi-Dirac function

f (E, T) = {1 + exp [(E - ~)/(kT)ll-1~ (2.2)

where E is the electron energy and f..t the Fermi energy which depends on tem­
perature. The Fermi energy is defined as the energy for which the Fermi-Dirac
function is equal to 1/2.

The concept of the Fermi energy for metals is quite obvious. In this case, the
Fermi energy is the energy of electrons on the level which is filled at T = 0 and
above which the levels are empty. This definition is exact for T = 0 K and fairly
accurate for all temperatures at which "blurring" of the Fermi distribution is
slight (for most metals, this statement is valid up to the melting point and even
higher).

The Fermi energy for dielectrics corresponds to the middle of the forbidden band
(for T = 0 K) lying above the uppermost completely filled band. Since no elec-
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Fig. 5. Potential well for an electron in a metal (a) and
in a dielectric (b). The thermionic work function <D is the dif­
ference betw\en the energy Eo of an ~eleetron at rest in vacuum
and the energy '" gf the Fermi level.

tron can occupy this level, the 'Fermi energy does not correspond to the energy of
any real electron in a dielectric. This, of course, does not make it less important
for the description of statistical properties of electrons in dielectrics by using
formula (2.2).

The theory shows that the thermionic work function <Il appearing in for­
mula (2.1) is connected with the energy J.L of the Fermi level through the relation

<I> = Eo - J.L, (2.3)

where Eo is the energy of an electron at rest outside the conductor in a vacuum.
Thus <1> is the work performed in shifting an electron from the Fermi level to beyond
the limits of the solid. For metals, this statement has a literal meaning, while for
dielectrics it· is conditional to a certain extent since there are no real electrons
on the Fermi level. In both cases, however, it is the work done to extract an electron
from a solid against the forces confining electrons in it. The existence of work func­
tion is manifested, for instance, in photoelectric effect, when the energy of a pho­
ton absorbed by a metal is completely transferred to an electron. The work func­
tion can be directly determined from the photoelectric threshold. Hence we
can say that electrons inside a solid are in a potential well of depth <D. The form
of potential wells for metals (a) and for dielectrics (b) is shown in Fig. 5 (the
energy levels occupied by electrons are hatched). The gap between the levels Eo
and E; is the forbidden band. It should be noted that the work function for di­
electrics strongly depends on the degree of purity of the material. Even slight im­
purities can considerably change the work function. Besides, the work function
depends on even very lOID contamination of the surface. The work function for
pure metals is of the order of several electron-volts. For example, it is equal to
4.53 eV for tungsten, 4.43 for molybdenum, 4.39 for copper, etc.
Contact potential difference. The forces confining electrons to a solid are elec­
tric in origin. They are due to the potential diHerence between the points outside
a body and its inner points. In other words, the electron gas near the surface is
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Fig. 6. Formation of contact potential difierence between metal-metal (8) metal­
dielectric (b), and dielectric-dielectric (c) surfaces.

subjected to the action of electric forces that tend to~ pull r-electrons into the body.
These forces are the stronger, the larger the work function <1>. They act in a very
thin layer of molecular dimensions (d ~ 10-10 m). Consequently, the effective
intensity of the electric field due to which these forces appear is very high:

, E.ff '" <l>/( I e I d) '" 1010 V1m, (2.4)

where we took into account the fact that in order of magnitude, the work func­
tion is equal to several electron-volts.

Let us bring together the surfaces of two solids so that the layers of the electron
gas near these surfaces overlap in the gap between them. Consequently, the
bodies will exchange electrons. Since the forces pulling electrons into a body are
stronger in the body with a larger work junction, the electrons of the body with a
smaller work function will go over to the body with a larger work function when
two bodies approach each other. As a result, the former body will acquire a positive
charge, and the latter a negative charge. Hence an electric field arises between the
surfaces and prevents the motion of electrons which generated this field. The
intensity of this field attains a certain value, after which a further transition
of electrons from one body to the other is terminated, and equilibrium state
sets in. The surfaces turn out to have charges opposite in sign but equal in mag­
nitude. A potential difference, called the contact potential difference,
appears between these surfaces, as between the plates of a capacitor.

The contact potential difference can be found from the following considera­
tions. Since electron equilibrium sets in between the bodies, the Fermi energies
of these bodies must be equal, and hence the upper points of the potential wells
are displaced relative to one another. Consequently, a potential difference and
electric field intensity appear between the surfaces of the bodies.

Figure 6 illustrates the contact potential difference across a gap between
two metals (Fig. 6a), between a metal and a dielectric (Fig. 6b) and between two
dielectrics (Fig. 6c). The difference in the formation of contact potential diffe­
rence between a metal and a dielectric consists in that the electric field does not
penetrate the metal but penetrates the dielectric to a small depth (in Fig. 6b, c,
the penetration depths are denoted dt and d 2) . Consequently, a potential drop
in dielectrics occurs not only between the surfaces but partially in a thin layer near
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its surface as well. The thickness of this layer, however, is usually small in com­
parison with the distance between the surfaces, so that this circumstance can
be ignored to a high degree of accuracy.

Figure 6 shows that the-difference in energies corresponding to upper points
of the potential wells is equal to '(1)2 - <Ill. Hence, the contact potential differ­
ence between the surfaces of bodies in electron equilibrium is given by

1l\tp 1== 1<1>2 - <1>1 III e 1· (2.5)

It should be noted that the potential decreases in the direction from positively
charged bodies to negatively charged ones. Therefore, the change in potential is
opposite to the change in the potential energy of an electron, i.e. the potential
decreases in the direction from the first body to the second.
Electrostatic charging. If flat surfaces of two bbdies between which a contact
potential difference exists are moved apart and kept strictly parallel, the charges
on the surfaces will remain, and the bodies will carry unlike charges. However,
it is practically impossible to move the surfaces apart in such a way that they
remain strictly parallel,since different regions move apart with different veloc­
ities. The results of moving conductors and dielectrics apart are different in prin­
ciple.

When flat surfaces of conductors are drawn apart, the charges on them can
move over the surface. If some regions of the surfaces are drawn apart before
the others, the charge density on them will decrease at the same potential differ­
ence as in the case of a capacitor. As a result, the bodies will exchange charges
in order to restore the electron equilibrium. This exchange occurs through the
electron cloud at a given region of the surface and as a result of motion of charges
over the surface in other regions. The regions of the conductor surface, which
were drawn apart to a sufficiently large distance and thus lost contact through
the electron cloud near the surface, turn out to be practically uncharged. The
charge is retained only on those regions of the surface which, are still in electron
contact. Finally, a moment, comes when the electron contact is observed only
on an infinitely small surface area containing very small charge. For this reason,
no electric charge remains on the conductors when they are drawn apart completely.

The situation is different when dielectrics are drawn apart. The charges on
the dielectrics cannot move along the surfaces, and the potential itself may be
different in different regions of the surface. When these regions of the surface
are drawn apart, the potential difference then increases in the same way as the­
potential difference between the capacitor plates when the charge on the plate is
constant and the distance between the plates increases, The charge density on
the surfaces does not change significantly. After the electron contact through
the electron cloud near the surface has disappeared, electric charges remain on
the regions of the surface. As a result of complete separation of the dielectric sur­
faces, they become carriers of equal but opposite charges. This process is called elec­
trostatic charging.

In order to ensure a closer approach of dielectric surfaces and the formation
of a contact potential difference, the bodies are usually rubbed against each
other. This process is called triboelectrification. However, friction in this case
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has nothing in common with electrostatic charging. It would be more correct
to call this effect charging by contact. The terminology was established before
the physical nature of the phenomenon was clarified.

The work fundion of dielectrics depends on the purity of composition and the dBfe of
the surface.
When two dielectrics are brought In contad, electrons are transferred from the body with
a smaller work function to the body with e greater work function.

The separation between energy levels inside each allowed energy bend Is extremely
small in comparison with the width of the forbidden band. The Fermi energy In 8 dielectric
does not correspond to the energy of any real electron In the dielectric.
The thermionic work function is the work required to trensfer an electron from the
Fermi level outside the solid.

What is the relation between the energy levels of an isolated atom and the energy bands
of a solid? Which factors are responsible for the formation of energy bands?
How can the Fermi energy in metals be visually interpretedr
Why is this interpretation inapplicable to dieledriesr
How can the signs of charges of bodies in contact be determinedl Why cannot metals be
electrically charged by contadl

Sec.' 3. Elementary Charge and Its Invariance

The experiments prouing the existence of an electric
charge and the absence of charges that are fractions
of an elementary charge are described. The experimen­
tal evidence on the identity of positive and negative
charges as well as the inuariance of these charges are
discussed.

Millikan oil-drop experiment. Although the idea of discrete nature of electric
charge was put forth in a clear form by Franklin a~ early as in 1752, it was
rather speculative. The discreteness of electric charge was established as a fun­
damental experimental result following the discovery of the laws of electrolysis
by Faraday (1791-1867) in 1834. However, such a conclusion was drawn only
in 1881 by Helmholtz (1821-1894) and Stoney (1826-1911). Soon afterwards,
Lorentz (1853-1928) developed in 1895 the theory of electromagnetism which is
based on the existence of elementary charges (electrons). The numerical value of
an elementary charge was theoretically calculated from the Jaws of electrolysis,
since the value of the Avogadro constant was known. A direct experimental
measurement of the elementary charge was made in 1909 by Millikan (1868­
1953).

The experimental set-up used by Millikan is shown in Fig. 7. Minute spherical
particles move in a viscous liquid in a uniform electric field E.The particle
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is subjected to a lifting force acting against the
force of gravity (the density of the particle is
higher than that of the liq'1id), and to the force Ifr
of viscous friction acting against the velocity.

According to Stokes' formula, the force of vis­
cous friction is proportional to velocity. At a
constant particle velocity, the sum of forces acting
on it is equal to zero.

All forces, with the exception of the force
acting on the particle due to the electric field, Fi~~. 7. Schematlc diagram of
can be measured experimentally as the particle Millikan's experiment.·
moves in a medium in the absence of an electric •
field. Having studied the motion of the particle rIn the electric field we calcu...
late the force qE. This allows us to calculate the particle charge q, since the
field strength E is known.

We can also change the field strength and ensure that the particle is in a state
of rest. In this case, there is no friction and the other forces are known. Conse­
quently, we can calculate the value of q if we know the value of E,.

The charge of a particle changes with time. This i~ reflected in the motion of
the particle. Having determined the charges ql and q2 of the particle at differ­
ent instants of time, we can determine the variation of charge

t1q = q"l - qt- (3.1)

Ajter carrying out a large number of measurements of charges, Millikan found
that t1q is always all, integral multiple of the same quantity I e I:

t1q = 11, 1e I, 11, = ±1, ±2, •••• (3.2)

Ie' = 1.6-10-18 C. (3.2a)

Resonance method for measurement of charge. The methods used for directly
measuring an electric charge were later perfected. At present, measurements can
be made with such precision that it is possible to detect decimal fractions of an ele­
mentary charge. The most effective method used for such measurements is the
resonance method shown in Fig. 8. A sphere of a very small mass m is fixed to a
very thin elastic rod. Under the action of elastic forces resulting from bending
of the rod, the sphere oscillates about its equilibrium position with a natural
frequency 000 which can be measured experimentally. If the sphere carries a
certain.charge q, it undergoes forced vibrations under the action nf an alternat­
ing electric field. The amplitude of these vibrations depends on the ratio of the
frequencies ro and roo. The maximum amplitude of vibrations is attained at res­
onance (00 ~ (00). In the resonance state, the amplitude of vibrations of the
sphere is equal to

Ares = qEoQI(moo:), (3.3)

where Q is the quality of the system and Eo is the amplitude of the electric:fteld.
Let us estimate the potentialities of this method. Suppose that m = 1 mg =
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10-6 kg; Eo ~ 105 Vim; q = 1.6 X 10-11 c;
roo = 10-1 S-I; and Q O! 100. In this case,

i.6·io-18·iOI·iOI
Ares ~ io-'.io-I m ~ 1.6·1.0-' m= 160 Jim.

(3.4)
The value of Ares (160 urn) is quite large and

we can easily measure a small part of this quan­
tity. Consequently, this method can be used for
measuring electric charges that are much smaller
than 1.6 X 10-19 C. This method has attained
such a degree of perfection that it can be used
for measuring, in principle, a fraction of an ele­
mentary charge, if only it existed.

As the charge on the sphere changes by Sq, the
amplitude of resonance vibrations changes ab­
ruptly:

m,q
~ .

E =Eocos wot

I \
I \
/ \

/ \
'\/ \

/ \
/-, >-~ ..

\ '-::» <:»

Fig. 8. Resonance method for
measuring electric charge.

~Are8 = ~qEoQ/(mro:). (3.5)

As a result of measurements, it was established with a very high degree of pre­
cision that the charge on the sphere always changes by an integral multiple of an
elementary charge, and that there are no charges that are fractions of an elementary
charge.
Nonexistence of fractional charges. Following the predictions concerning the.
existence of quarks, many serious attempts were made to detect fractional charges
It is assumed that quarks are particles which constitute most of the heavy
elementary particles (protons, etc.). It was predicted that quarks must carry
an electric charge of 1/3 and 2/3 of an elementary charge (with appropriate sign).
Various methods, including the resonance method, were employed by many
scientists to detect quarks. All these attempts proved unsuccessful. Thus, at
present it has been experimentally established to a sufficiently high degree of accu­
racy that fractional charges do not exist in free state.

The words "in free state" are quite significant, since the experiments were di­
rected at quests for free quarks. This, however, does not mean that quarks do not
exist in bound states inside elementary particles. A direct experimental verification
of this statement, however, has not been made.
Equality of positive and negative elementary charges. Negative, as well
as positive, elementary charge was measured in the experiments described
above. The results of these experiments proved their equality to the same degree
of accuracy as the precision with which the values of a charge were measured.
This is not a very high degree of accuracy. For example, it can be stated that a
positive and a negative elementary charge differ in their absolute value by not
more than one-tenth of their magnitude, i.e.

(3.6)
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This accuracy is quite unsatisfactory since the theory presumes an exact equal­
ity of absolute values of negative and positive elementary charges.

The accuracy of estimation can 4)e immensely improved if we do not di­
rectly measure the value of an elementary charge. It is well known that equal
numbers of protons and electrons are present in atoms. Bodies also contain the
same number of electrons and protons, and hence the equality of' a proton and
an electron charge can be estimated by measuring the neutrality of bodies.
This can be accomplished with an extremely high degree of accuracy since even
a slight violation of neutrality results in enormous forces of electric interaction
between bodies, which can be easily detected. Suppose, for example, that two
iron balls of mass 1 g each are separated by 1 m and are not neutral because the
charge of a proton differs from that of an electron by a millionth part of the
absolute magnitude of the charge. Let us estimate the repulsive force between the
spheres. Each gram of ::Fe contains 6 X 1023 X 26/56 charges of each type.
Consequently, a departure from neutrality just by 10-8 results in a charge

q = [1.6 · 10-19 • 10-6 • 6 • 1023 • 26/56] C = 4.46 • 10-2 C (3.7)

on each sphere. The repulsive force between these spheres is equal to

F=-4
t L=(4.46.10-Z)2.9 .108 N==18·107 N=18 MN. (3.8)
neo r l •

This means that the repulsive force between the spheres is equal to the force
exerted on the railway track by a goods train weighing.2000 tonnes. And this
is the force resulting in just 2 grams of iron if the proton and electron charges
differ by a millionth partl It is obvious th~t forces between two iron spheres
which are extremely small in comparison with (3.8) can be easily measured. If
such forces are not detected experimentally, this indicates a corresponding in­
crease in the accuracy with which the absolute magnitude of the charge of an elec­
tron is equal to that of a proton. A t present, it has been experimentally established
that the magnitude of the negative elementary charge of an electron is equal to the
positive charge of a proton with a relative accuracy of 10- 21 , i.e,

(3.9)

The proof described above for the equality of absolute values of positive and
negative elementary charges may appear to be not quite rigorous. We can imag­
ine a body consisting of atoms or molecules, in which the elementary charges
are not equal in magnitude, although their number in each atom or molecule
is the same. In this case, atoms or molecules must have a charge. But the body
as a whole may remain neutral if, in addition to these atoms or molecules, it
contains the required number of electrons or positive ions (depending on the
sign of the charge on atoms or molecules). Such an assumption, however, leads
to complications which are difficult to reconcile with. For example, we have
to discard the notion that bodies have a homogeneous structure, and accept that
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their structure depends on their size, etc. Nevertheless, it is desirable to have
a more straightforward and direct proof for the equality of absolute values of
positive and negative elementary charges in atoms. Such a proof has actually
been obtained.

The neutrality of individual atoms was verified by direct experiments. The devia­
tion of a beam of neutral atoms in electrostatic fields was investigated. From the
magnitude of deviation, we can determine the charge of the atom and draw
conclusions about the equality of electron and proton charge in an atom. In­
vestigations carried out on cesium (Z = 55) and potassium (Z = 19) beams
have proved that the absolute values of the charge of an electron and a proton
are equal with a relative accuracy of 3.5 X 10-18•

Invariance of charge. The independence of the numerical value of an elementary
charge of velocity is also proved by the fact that an atom is neutral. The differ­
ence in masses of an electron and a proton suggests that electrons move much
faster in an atom than protons. If the charge were dependent on velocity, the neutral­
ity of atoms uiould be violated. For example, electrons in a helium atom move
about twice as fast as in a hydrogen molecule, while the neutrality of a helium
atom and a hydrogen molecule has been proved to a very high accuracy. It can
be concluded that with the same accuracy the charge is independent of velocity
right up to the ~elocitiesof electrons in a helium atom, which is approximately
equal to 0.02c. In heavier atoms, whose neutrality has also been proved, elec­
trons in inner shells move with velocities that are about half the velocity of light.
Thus, it has been proved that the elementary charge is invariant up to 0.5c.
There are no reasons to believe that this is not so at higher velocities. Hence, the
invariance of electric charge is taken as an experimental foundation of the theory
of electricity.

The quest for quarks proved with high accuracy that fractional cherges do not exist In
nature. The absence of quarks In free state does not prove their nonexistence In bound
state inside elementary particles.

What is the principle underlying the resonance method of measuring an elementary charger
What is the precision of this mefhod at presentl Give quantitative estimates.

Sec. 4. Electric Current

Basic concepts and values characterizing the distri­
bution and motion of electric charges are discussed.

Motion of charges. The motion of electrons and protons involves the motion
of their charges. Therefore, we can simply speak about the motion of charges
without stipulating their carriers each time. This is not only convenient but
also makes the consideration more general, since many phenomena depend only
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on the charges and their motion and do not depend 011 the properties of charge
carriers, say, their mass. When the properties of a charge carrier (for example,
the mass of the carrier) are also important, besides the charge itself, we must
take into account not only the charge but other characteristics of the charge
carrier as well.

In the theory of electricity an elementary charge, including the charge of 8

proton, is assumed to be a point charge. The position of a charge, its velocity
and acceleration have the same meaning as in the case of point partie-lese
Continuous distribution of charges. An elementary charge is very small. For
this reason, most macroscopic phenomena in electricity involve a huge number of
electric charges, and their discrete nature is not manifested in any way. For in­
stance, each plate of a parallel-plate capacitor with a 10 JiF capacitance contains
about 7 X 1016 elementary charges at a potential difference of 100 V. About
6 X 1018 elementary charges pass each second through the cross-sectional area
of a conductor carrying a current of 1 A. Hence in most cases we can assume the
charge to be continuously distributed in space and disregard its discreteness.
Volume charge density. The volume density of 8 continuous distribution of
charges is defined as the ratio of the charge to the volume occupied by it:

t ~ AQ
p= AVph LJ ef = AVph '

AVph

(4.1)

where et are the eler entary charges in the volume AVp h (taking into account
their sign) and ~Q is the total charge on l\ Vph. The volume l\ Vph is small but
not infinitely small in the mathematical sense. We speak of the volume l\ Vph

as an infinitely small volume in the physical sense. This means that it is very
small and hence its position in space is characterized with a sufficiently high
accuracy by the coordinate of 8 point lying inside this volume. In other words,
for the argument of p on the left-hand side of (4.1) we can take the coordinates
(x, y, z) of any point inside l\Vp h and write p (x, y, z). However, the volume
!! Vph must contain a sufficiently large number of elementary charges so that
a slight variation of this volume will not lead to a significant variation of den­
sity p calculated by formula (4.1). Consequently, AVph depends on specific
conditions. In some cases, a small volume AV may satisfy the required conditions
and be considered as an infinitely small physical volume, but in other cases it may not.
Finally, under some conditions there does not exist a volume S V uhicb could be called
an infinitely small physical volume. In this case, the concept of continuous dis­
tributionofcharges cannot be used, and p in formula (4.1) cannot he defined as the
volume density. However, in most cases considered in the classical theory of elec­
tricity, the concept of continuous distribution of charge is valid.

When determining the volume density p with the help of formula (4.1), it
can be considered as an ordinary mathematical function and the charge can be
assumed to be continuously smeared over the volume. Then it follows from (4.1)
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that the charge on the volume V is equal to

Q=lpdV, (4.2)
v

where dV is the differential of the volume.
Charge concentration. The concentration of charges of a certain sign is defined as
the ratio of the number of charges to the volume occupied by them:

An±
n:l: = AVph ' (4.3)

where L\n± is the number of charges of the appropriate sign in the volume AVph.
Then [see (4.1)1 we can write

p = _1_ ~ ei+)+_1_ '" e.->
L\Vph AVph LJ

AVph AVph

= e(+)An(+) + e(-)An(-)
L\Vph L\Vph e<+)1&(+) +e<-)n<_) == p(+) +P<-)f (4.4)

where e(+) is the elementary point charge of the corresponding sign and p(:I:) =
e(:I:) n(:I:) is the volume density of charges. An infinitely small physical volume
must contain a sufficiently large amount of charges for the definition of con­
centration to be meaningful.
Surface charge density. Sometimes,. charge is distributed in a very thin layer
near a certain surface. If we are interested in the action of the charge at dis­
tances much longer than the thickness of the layer rather than in the processes
within this layer, we can assume that the entire charge is concentrated on the
surface. In other words, this very thin layer may be assumed to be the surface.
The surface charge density is defined as

(4.5)

(4.6)

where L\Sph is an infinitely small surface area in the physical sense, and L\Q
is the charge on the surface area L\Sph of a thin layer adjacent to it.

For the argument of a we can take the coordinates of points of the surface
and treat it as a function of these coordinates. The substantiation and the mean­
ing of this procedure are the same as for the volume charge density p in (4.1).
Consequently, the total charge on the surface S is

Q= 1adS,
B

where dS is the differential of the surface area.
Currant density. The charges contained in a volume dV ph move with velocities
which differ in magnitude and in direction. The motion of a charge
results in a transport of the charge in thedireotion of its ve·locity. Con-
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sequently, various movements of charges contained in the volume ~Vph result
in a certain average transport of the charge contained in this volume. The inten­
sity of this transport is characterized by the current density defined as

(4.7)

where VI is the velocity of the charge ei.
DividiVg the sum in (4.7) into the sums over positive and negative charges, we

obtain

· 1 ~ (+) (+) + 1 ~ (-) (-)_ e(+) ~ (+)+ e(-) ~ (-) (4 8)
J = AVph "-J ef VI AVph "-J ef VI - AVph LJ VI l\Vph "-J VI. •

f f t t

Formula (4.8) becomes more clear if we express the quantities appearing in
it in terms of average velocities and concentrations of charges:

~ vi" - t\n(+) _1_ ~ vl" - L\n(+) (v(+»"-J - l\n(+) "-J - ,.
t t

where

(V(+» - _1- ~ vl"- An(+) "-J ,
t

since ~n(+) is the number of charges the sum of whose velocities appears under
the summation sign ~. The sum over the velocities of negative charges is trans­
formed in a similar way. As a result, formula (4.8) becomes

j = e(+) An(+) (v(+» + e(-) An(-) (v(-» = e(+)n(+) (v(+» +e(-)n(-) (v(-»
AVph AVllh

= p(+) (v(+» +p(-) (v(-», (4.9)

where we took into account relations (4.3) and (4.4). Thus, negative and positive
charges generate their own current densities

j(+) = p(+) (v(+», j(-) = p(-) (v(-»,

j = j(+) + j(-). (4.10)

The direction of current density of positive charges coincides with the direction
of their average velocity, while for negative charges, the current density has a di­
rection opposite to that of the average velocity.

For the sake of simplification, formulas (4.10) are usually represented in the
form

(4.11)

where p and v are the volume density and the velocity of the charges of the cor­
responding sign. If current is generated by charges of both signs, then the right-

8-0290
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Fig. 9. Calculation of current
through a surface area element.

Fig. 10. Electric current
through a surface.

hand side is assumed to contain the sum of two terms corresponding to positive
and negative charges. However, in most cases considered in the theory of elec­
tricity, the current is due only to the motion of negative charges (electrons),
and hence the right-hand side of (4.11) contains only the product of the negative
volume charge density of electrons and their average velocity. The transfer of
a negative charge against the velocity is equivalent to the transfer of an equal posi­
tive charge in the direction of the velocity. While analyzing various situations, it
is more convenient to assume that the current is due to the motion of positive
charges since their displacement in space coincides with the direction of the
current density.
Current through a surface. An infinitely small surface element is characterized
by the vector dS whose magnitude is equal to the area of the surface element and
which is directed along the positive normal to the surface.

Let us calculate the charge which crosses the surface element dS during
the time dt (Fig. 9). The displacement of the charge during this time is equal to
v dt. Consequently, the charge crossing dS is equal to the volume charge density
multiplied by the volume of the oblique cylinder (Fig. 9). The area of the base
and the height of this cylinder are equal to dS and h = v ~t cos 8. Consequent­
ly, the charge crossing the surface dS is equal to

dq = pv dt dS cos e = dt j dS cos e = dt j · dS, (4.12)

»<:
where j • dS = j dS cos (j, dS). The current through a surface is defined as
the charge crossing the surface per unit time. Hence an infinitely small current
dI crossing the surface element dS [see (4.12)] is given by

dI = dQldt = j • dS. (4.13)

The current flowing through a finite surface S (Fig. 10) is equal to the integral
of the current elements (4.13) over this surface

I = JdI = Jj.dS.
S B

(4.14)
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If a direct electric current flows in a conductor, formula (4.14) defines the
current as the quantity of electricity flowing per second through the conductor
cross section.

Most of the macroscopic phenomena investigated In electricity Involve an enormous number
of electric charges and their discreteness is not manifested In any way.
In some cases, a certain small volume can be considered as an infinitely small physical
volume, while in some other cases this assumption Is not true. Under certain conditions,
no volume can be treated as an Infinitely small physical volume. In this case, we cannot
go over to a representatioll of a continuous charge distribution In • volume.

Sec. 5. Law of Charge Conservation

Two aspects of the concept of charge conservation are
discussed. Integral and differential formulations of
the law of charge conservation are given.

Two aspects of the concept of charge conservation. The concept of "charge con­
servation" includes two groups of entirely different facts: (1) electrons and protons
are material particles with an infinite lifetime, their elementary electric charges
are invariant and do not depend on velocity. Consequently, these charges remain
unchanged as long as an electron and a proton exist, irrespective of the way in
which they move. In other words, the charge is conserved under any type of mo­
tion. In this aspect the law of charge conservation is just a consequence of the inde­
structibility of charge carriers as physical objects, and of the invariance of charge;
(2) besides protons and electrons there exist a large number of other charged elemen­
tary particles. All these particles are created, create other particles and are anni­
hilated in various interconversion processes. The entire multitude oj'expertmentol
data indicates that whatever the process of interconversion of particles, the total
charge of the particles before interconversion is equal to the total charge of the par­
ticles after the conversion. For example, in the case of ~-decay, the nucleus has
a certain positive charge Ze(+). After the emission of an electron, the positive
charge of the nucleus increases by one elementary positive charge and becomes
equal to (Z + 1) e(+). However, together with the negative charge of the emit­
ted electron, the system "nucleus + electron" has the same char ge as before:

(Z + 1)e<+) - I e(-) I = Ze(+).

By way of another example, we can consider the creation of an electron­
positron pair by a gamma-ray photon. The initial particle, viz. the gamma-ray
photon, is electrically neutral and is transformed into a pair of particles whose
total charge is again equal to zero. This has been proved to a high degree of accu­
racy during the measurement of positive charge on a positron. A vast number of
cases of interconversion of elementary particles have been investigated and the
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Fig. 11. The outward normal is
the posi ti ve normal to a closed
surface.
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Fig. 12. Flux of vector A
through a surface.

total charge in each case before and after the process remains the same. In other
words, the law of conservation of charge is obeyed. Consequently, the charge
acquires its individual existence in a certain sense independently of its carrier,
and the law of its conservation can be formulated as Iollows: In all processes
associated wi-th the motion of charge carriers, the charge is always conserved.

In spite of its relative independence, however, a charge cannot exist without
a charge carrier, or beyond space and time. This means that a charge is not an
independent entity, capable of existence without matter. Rather, it is a
property of matter. Finding the nature of this connection is one of the most dif­
ficult problems of modern physics. It is not yet clear as to why there exists just
one elementary charge and why it is equal to I e I and not to some other value.
Integral form of charge conservation law. Considering charge conservation as an
experimental fact, we can express it as the statement that the charge in a cer­
tain volume V can change only if charge flows into, or out of, a closed contour S
bounding the volume V:

a .. 'h7ft ) p dV = -:r j •dS.
v s

(5.1)

The left-hand side of this equation defines the rate of variation of charge in
the volume, and the right-hand side is the strength of current flowing through the
surface bounding this volume. The negative sign indicates that it the positive
charge inside the volume V decreases, the current density is directed outwards from
the volume. It should be recalled that the outward normal is considered posi­
tive for closed surfaces. Consequently, vector dS in (5.1) is directed along the
outward normal to the surface (Fig. 11).
Divergence. The mathematical concept of divergence plays an important role
in the description of processes associated with the creation, annihilation and
conservation of physical quantities.

Suppose that a certain vector A (x, y, z). is defined at all points in space.
We consider a surface Sl:(Fig. 12). The integral

<IJA = ~ A·dS (5.2)
s
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is called the flux of the vector A across the sur­
face S. This term is due to the following reason.
Suppose that we have a fire whose smoke has a
density p and a velocity v at different points in
space. We choose the quantity pv as the vector
A. In this case, integral (5.2), together with
Fig. 10, gives the mass of smoke passing thfough
surface S per second. A similar concept was ap­
plied to an electric charge in Eq. (4.14). In anal­
ogy with (5.1), we conclude that the flux of
vector A through a closed surface characterizes Fig. 13. The flux of a vector
the intensity of creation or annihilation of A through" the surface of a cube
inside the volume bounded by the surface. Thus, is the sum of the fluxes through

its faces.
the vector flux pv across the closed surface charac-
terizes the intensity of smoke created within
the volume bounded by the closed surface. When applied to electric charge,
Eq. (5.1) can be interpreted in the same way. It can be stated that the integral
(5.2) describes the total power of the sources of vector A inside the volume.

Divergence characterizes the power of sources and is defined by the formula

~ A·dS
di A I· _A_S~_

IV - nn AV
AV..O

(5.3)

where ~S is an infinitely small closed surface bounding an infinitely sma 11 vol­
ume ~V.

Let us find an expression for div A in Cartesian coordinates. For this purpose,
we calculate the flux of vector A across the surface of a cube with sides ~x, ~y,

~z (Fig. 13) having its centre at the point (x, y, z). The coordinates of the mid­
points of the faces are (x + flx/2, y, z), (x - ~x/2, y, z), (x, y + ~y/2, z),
(x, y - fly/2, z), (x, y, z + ~z/2), (z, y, z - ~z/2). The integrand of Eq.
(5.3) in coordinates has the form

A • dS = AxdSx + AI/dB" + A ,dB z' (5.4)
where

dB:.: = ±dy da, dB" = ±dz dz, dS% = ±dx dYe (5.5)

The sign of these quantities is determined by the direction of the outward nor­
mal to the face with respect to the positive direction of the corresponding axis.
For example, dS" has a positive value over the right face (x, y + ~y, z) and
a negative value over 'the left face. The integral over the surface of the cube is
reduced to the sum of integrals over its faces.

Let us calculate, for example, the integral over the faces parallel to Y-axis.
On these faces, dSx = 0, dS11 = ±dz dx, d8 z = °and, consequently, the sum
on the right-hand side of (5.4) is reduced to a single term A ydS y. Denoting the
surface area of the left and right faces by 88yl and ~SY2' respectively, we can
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(5.7)

(5.11)

(5.9)

(5.10)

I y= ~ A·dS= J AydSy+ J Ayas,
ABu l +ABu 2 ABYl ASys

= J-Ay(x, y-li.y/2, z)dxdz+ J Ay(x, y+li.y/2, z)dxdz. (5.6)
ABu l ABy S

The negative sign of the first integral on the right-hand side of this equation
takes into account the fact that the outward normal to the left face I1Syl is di­
rected toward the negative values of y. For further calculations, we express All
in the form of a Taylor series in ~y:

A y (x, y + ~y/2, z) = A (x, y, z)

+ (~y/2) 8A lI (x, y, z)/8y + 0 [(~y)2],

All (x~ Y - ~y/2, z) = A (x, y, z)

-(~y/2) 8A u (x, y, z)/8y + 0 [(~y)2],

where 0 [(~1I)2] are terms of highest order of infinitesimals in tJ.y. Substituting
(5.7) into (5.6), we get

I y = li.y J 8A
y (~~ y, z)dx dz + 0 [(li.y)2], (5.8)

ABu

where we have taken into account the fact that the surface areas AS111 and ~S 112

are equal and have the same coordinates along X-and Z-axes.
The integral in (5.8) can be calculated by expanding the integrand into a se­

ries assuming x and z as variables of integration rather than the coordinates
of centres of the cube faces. If x and z denote the coordinates of faces of the cube,
it is convenient to replace the variables according to formulas

X -+x + £, z -+z + 'll' dx dz -+d£ dn,

J 8A y (~~ y, z) dx dz = J aAJI {z+:~ y, z+1J) ds dn,

ABy ABy

where x, y and '1 on the right-hand side of (5.10) are the coordinates of centres
of the faces and remain constant in calculations of (5.10). The expression 8A yl8y
can be expanded into a series in £ and ..,,:

8Ay (Z+6, y, z+'I'J) 8A y (:t, y, s) S 81Ay (z, y, z)

iJy iJy + az fJy

iJ2A (z y .I)

+ u', +0 (t2 2)'ll az oy '0 ,1) ,

where ~ and 11 vary from 0 to ±~xI2 and ±~z/2 during integration and, conse­
quently, have the same order of inftnitesimals as ~x and ~z. Substituting (5,11)
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into (5.10), we get

r lJAy (z+~, yt z+l1 ) dt d = lJAy r dt d + lJlAu r ~ dt d
J lJy ~"lJy J b 1) lJz lJy J b b "

ABu ABu ABu

02Ay r lJAy+ OS oy J 1) dsdn + ·.. = aupx L\yL\z + 0 [(L\X)2, (L\Z)2].
ABy

This gives the following expression for (5.8):

oAy (z, y, .I)
111 == lJy L\xL\yL\z+0 [(L\xL\yL\Z)2].

39

(5.12)

(5.13)

(5.14)

The flux across other pairs of faces is calculated in a similar manner:

~ ( lJA lJAu lJA)'j' A· dS == lJzx +ay+ 0.1% ax ay L\z+0 [(L\xL\yL\z)'].
s

Substituting (5.14) into (5.3) and considering that the volume L\V of the cube
is equal to ~x ~y ~z, we obtain

{
lJA lJAy lJA }divA= lim ~+-~-+-++0[(dxayL\Z)2]/(ax/1y/1z)

AV~O uZ uy uS

= OA:.: + OAy + aAz (5.15)
lJz lJy lJ.I'

since the term depending on (~x !iy !iz) vanishes as we proceed to the limit.
The formula

I
div A = 8A:.: + BAy + 8Az I

lJz lJy 8.1
(5.16)

(5.17)

allows us to calculate the divergence in Cartesian coordinates.
Gauss' theorem. This theorem relates the power of the sources to the fluxes of vec­
tors generated by them, and plays an important role in the theory of electricity.
We divide the volume V bounded by the surface S (Fig. 14a) into a large num­
ber of volumes ~V i with surfaces !is i»

Formula (5.3) can be written in the form

(divA)IL\V,~ ~ A.dS,
AS,

where (div A)i denotes div A in the ith volume. The approximate equality
used in (5.17) indicates that although L\Vi is small, it has a finite value. Upon
an indefinite decrease in !iV h the relation (5.17) becomes an exact equality.
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(5.18)

Summing both sides of (5.17) over all the cells of
volume V, we get

dS j

(a)

~ (div A)i AV i ~ ~ ~ A·dS.
t ABi

The sum on the right-hand side can be trans­
formed as follows. The adjacent cells have a com­
mon surface of contact. The entire surface of inner
cells is in contact with the adjoining cells. Hence,
each surface integral in the volume V appears
twice as the integral over adjacent parts of the
neighbouring cells (in the sum on the right-hand
side of (5.18), see Fig. 14b; dSi is opposite to dS j).
Since the normals in each pair of these integrals
are in opposite directions, and the vector A has
the same magnitude, these integrals are equal in

(b) absolute value and opposite in sign. Consequently,
their sum is equal to zero, and hence the sum of

Fig. 14. To the derivation of the all integrals on the right-hand side of (5.1b) over
Gauss theorem. the contact surface of cells within the volume V is

equal to zero. This leaves only the sum of the in­
tegrals over those parts of cells on the boundary of volume V which are not in
contact with other cells. The sum of the areas of these outer surfaces of cells lying
on the boundary of volume V is equal to the surface area S bounding the vol­
ume V. Consequently,

~ ~ A·dS= ~ A·dS. (5.19)
t ABi B

This is an exact equality which is valid for any division of the volume V into
cells LlVi.

For LlVi -+ 0, the left-hand side of (5.18) can be expressed in the form of the
integral:

lim ~ (div A)i AV i = ~ div A dV. (5.20)
AVf+O AV v

I

Substituting (5.19) into (5.18) and proceeding to the limit, we obtain the
formula

~ div AdV= ~ A·dS.
v s

(5.21)

This is the formulation of Gauss' theorem. It connects the volume integral of diver­
gence of a vector with the flux of this vector across the closed surface bounding this
volume. The conditions of applicability of this theorem are indicated in mathe-
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matics and will not be specified here since they are automatically satisfied in
most real physical systems.
Differential form of charge conservation law. Volume V and surface area s:
in formula (5.1) do not change with time. Consequently, the time derivative
on the left-hand side of (5.1) can be included in the integral. On the other hand,.
the right-hand side of this equality can be transformed into a volume integral
in accordance with Gauss' theorem:

~~j.dS= JdivjdV.
B v

(5.22)

Transposing all terms in (5.1) to the left-hand side and taking into con­
sideration (5.22), we get

(5.23)

This equality is valid for any volume. The integrand is obviously equal to·
zero. The proof is obtained by contraction. If the integrand is not equal to zero­
at some point, we can take for V a small volume around this point in which the­
sign of the integrand remains unchanged. This, however, is in contradiction to
Eq. (5.23). Consequently, the integrand is equal to zero at all points. In this case,.

I *+diVj=O./ (5.24}

This is the differential form of the law of charge conservation. It is als()
called the continuity equation.

Charge is conserved in all motions and Interconverslons of charge carriers.
The power of a source is charaderlzed' by divergence. The Gauss theorem connects
the total power of sources in a volume with the flux of the vedor len.reted by the
sources through the surfaces bounding this volume.
Charge is not a concept independent of matter. Ratherr If is a property of matter.

What requirements must an infinitely small physical volume meetl
Under what conditions can the concept of continuous charge distribution be usedl Is it
always possible to determine the volume charge densityl Give examples.
Under what conditions can the concept of surface charge be usedl
What is the relation between the direction of the current density vector and that of the-
charge velocity vedorl .

Which two groups of different facts are described by the concept of charge conservation?"
What is the physical meaning of the equation expressed by the Gauss theoreml
What condition must be satisfied so that vanishing of an integral results in vanishing of
the integrandl
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z
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Example 5.t. Calculate the fluz of the radius vector acrose
the surface of a right circular cyltnder (Fig. 15). The ealcu­
lations should be carried out directly and with the help of
Gauss' theorem.
C- "IWe take the centre of the cylinder base as the origin
and direct the Z-axis along the axis of the cylinder (Fig.
15). In this case,

Jr·dS= Jr·dS+ Jr·dS+ Jr·dS,
S sl 8 u 8 lat

where~S) and Su are the areas of the lower and upper
bases of the cylinder, while Slat is its lateral surface
area. We have

Jr·dS=O, Jr·dS=hna ll ,

8 1 8u

/"r.dS = r dS cos (r, dS)= 0,
and

since

/,
r·dS=rdS cos (r, dS)=hdS

for points on the lower and upper bases. Finally, for the integral over the lateral surface, we

have Jr·dS = a2nah, since r-dS = a dS for points on the lateral surface. Consequently,

Slat

Fig. 15. Calculation of the flux
of a radius vector through the
surface of a right circular cylin­
der,

) r·dS=3na llh.

B

According to Gauss' theorem, we have.

Jr.dS- Jdiv r dV=3na2h,

B v
where div r = 3 and V = '!talh (volume of a right circular cylinder).

(5.25)

(5.26)

Sec. 6. Coulomb's La.

The accuracy of experimental verification of Coulomb's
law is discussed.

Experimental verification of Coulomb's law. Coulomb's law for the force F
of interaction between two point charges ql and q2 separated by a distance r
has the form

F- _1_ qlq2
- 4neo r 2 ,

(6.1)
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where eo = 1/(4n X 9 X 109) F/m. This law was established by Coulomb (1736­
1806) in 1785 from direct measurement of forces of interaction between charged
bodies whose dimensions are much smaller than the distance between them.
The accuracy of these experiments was not very high and it was only on the
basis of general concepts emerging from an analogy with the forces of attraction
that the absolute accuracy of this law could be believed.

Coulomb's law (6.1) is one of the fundamental experimental facts on which
the study of electricity is based. The verification of its validity and the deter­
mination of the limits of its applicability are significant problems and consider­
able efforts were devoted to these investigations by experimental physicists.

A verification of the law (6.1) with a very high degree of accuracy is difficult
through a direct measurement of the forces of interaction on account of the-fact
that the scientists do not have at their disposal point charges at rest. Conse­
quently, the experimental results can be associated with corollaries of Coulomb's
law, and this serves as the basis for ascertaining the limits of applicability and
the accuracy of this law.

The first experimental verification of this law was made in 1772 by Cavendish
(1731·1810) thirteen years before it was actually discovered by Coulomb. How­
ever, Cavendish did not publish his results and thus lost his claim to this discov­
ery. The manuscript containing a description of his experiments was found in
the archives only in 1860's. The Cavendish method was widely used and has re­
cently led to the experimental verification of Coulomb's law with a high degree
of accuracy.

The problem of experimental verification is formulated as follows. The law
of interaction is expressed in the form

(6.2)

It is required to find the order of smallness of ex. The smaller the value of , ex I,
the closer the law of interaction to Coulomb's law. Hence the experimental result
is expressed in the form of a constraint on ex: I ex I :::;;; ~. The aim of the experi­
ment is to find the value of ~.

The Cavendish method. Free charges in a homogeneous conductor are located
on its surface. At first glance, it seems to be a consequence of the repulsion of
like charges, which makes them move apart to the maximum possible distances,
i.e. to the surface. This, however, is not true. Such a situation arises due to the
fact that the force of interaction between point charges decreases exactly in inverse
proportion to the square of the distance between them, and in no other manner.

It is known from the theory of gravitation that a spherical homogeneous layer
of a substance does not create any force in a cavity surrounded by this layer.
Consequently, if point charges interact in accordance with the inverse quadratic
law, a spherical layer of charges does not create any force in this cavity.

Suppose that a chargeis distributed uniformly over a sphere with a surface den­
sitya (Fig. 16). At a point P inside the sphere, the charges on the surface elements
dSl and dS 2 create forces dFl = a dSl/(4n8or~) and dF2 = a dS 2/(4n8or:)
which are directed oppositely. It follows from the property of tangents
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Fig. 16. To the theory of the
Cavendish method.

Fig. f 7. Emergence of a force
due to a spherical layer at points
inside tlie sphere.

at the ends of a chord that angles 81 and 82 between the perpendiculars to the
chord and the surface elements dS I and dS 2 are equal. In this case. dS l =
dS~/cos 8 and dS 2 = dS;/cos 8. Consequently, dF l = a dS~/(4neor~ cos 8), and
dF 2 = a dS~/(4neor: cos 8), where dS~/r~ = dQ1 and dS~/r: = dQ2 are the solid
angles at which dS I and dS 2 are seen from the point P (they are equal by
construction). Thus, forces dF l and dF 2 are equal in magnitude but are direct­
ed oppositely, since the charge on dS 1 is the same as the charge on dS 2. This
results in a mutual compensation of forces from all pairs of opposite surface
elements, and the total force acting on a test charge at the point P is equal to
zero.

A charge imparted to a conducting sphere is distributed uniformly over its
surface due to spherical symmetry. The absence of charge inside the volume is
proved in the following manner. Suppose that certain charges exist inside the
sphere. In view of spherical symmetry, the distribution of these charges must
be spherically symmetric. Let us consider a sphericaJ. layer of charges. These
charges are not acted upon by any force from charges located outside the cavity
bounded by the spherical layer but they are influenced by the repulsive forces
from the charges located inside such a cavity. This means that the spherical layer
of charges starts moving from the centre to the periphery. Consequently, under
equilibrium distribution, there are no charges in a conducting sphere.

The situation is quite different if the interaction between charges does not obey
Coulomb'sJ law. In this case, the following forces act at point P due to charges
(J dBl and a dS 2 located on the surface elements dS l and dS 2 :

(6.3)
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The resultant

~F=A (_1__1) (6.4)
rc; r!f

of these forces is not equal to zero. In formula (6.4)
A denotes equal coefficients of 1/rTand 1/rC:in(6.3).

The existence of the force ~F facilitates a uni­
form distribution of charges over the entire volume Fig. 18. The Cavendish method
of the conducting sphere. This is so because the for verif,ying Coulomb's law.
charge inside the sphere is subjected not only to
forces from the inner spherical layers but also to external forces whose nature
depends on the sign of cx.

Let us consider the case when cx > O. Here, the force due to a charge (0 > 0)
located at a more distant surface element from point P (Fig. 16) is smaller than
the force due to a charge located at a nearer surface element. Consequently the
force is directed towards the more distant surface element. Adding possible pairs
of surface elements, we conclude that the resultant force F is directed towards
the centre 0 (Fig. 17). Consequently, we can distribute a charge inside a sphere
of radius OP so that the force due to this distribution at point P compensates
the force due to charges in the outer spherical layers. As a result, the layer
of charges on a sphere of radius OP may be in equilibrium. We should choose
the radial distribution of charge density so that the force at each point inside the
sphere is equal to zero. This is the equilibrium distribution. Hence, for a > 0,
charges in a charged conducting sphere are located not only on the surface as for
cx = 0, but also inside the sphere. A similar result is obtained for cx < O. We
can carry out a more detailed numerical analysis and determine the charge in
the volume of the sphere as a function of cx. The Cavendish method involves the
measurement of charge in the volume of a sphere and a subsequent calculation of
the value of a.

A conducting spherical shell consisting of two hemispheres tightly clasps a
conducting sphere (Fig. 18) thus imparting an electric charge to the system.
The shell is then detached from the sphere with the help of insulated handles, and
the charge remaining on the sphere is investigated.

If Coulomb's law holds, the entire charge is located on the shell and is removed
together with it. The charge remaining on the sphere is equal to zero.

If Coulomb's law is violated, a part 0/ the charge is concentrated in the volume
{)f the sphere, while the remaining charge is locatedon the shell. After the removal of
the shell, some charge is left on the sphere. By finding the value of this charge, we
can estimate cx. Of course, we can measure the potential instead of the charge in
actual experiments. This, however, does not alter the state of affairs.

Cavendish found that I a I~ 0.02. Similar experiments carried out by Max­
well about a hundred years later gave a value of I ex I~ 5 X 10-&. The Cavendish
method was perfected in 1971. The experiment was carried out not under static
conditions but with potentials varying in time. The apparatus consisted of two
concentric conducting spheres. An alternating voltage of ±10 kV with respect to
the earth was supplied to the outer sphere. If Coulomb's law were violated, the



46 Chi t. Charge. Field. Force

potential on the inner sphere would vary relative to the earth. The researchers
were able to detect potential differences less than 1 pV. Since no potential os­
cillations were observed on the inner sphere, it could be assumed that I a I~
12.7 ± 3.1 1 X 10-18•

These experiments confirmed the validity of Coulomb's law, for distances from
several millimetres to tens oj centimetres with an extremely high degree of accuracy
indicated above.
Verification of Coulomb's law for large distances. It is difficult to apply the
Cavendish method to verify Coulomb's law for distances of several metres and
larger. In this case, indirect methods are used, whose substantiation is beyond
the scope of the classical theory of electricity. They are based onf.quantum-me­
chanicaI concepts about the interaction between particles, taking into account
their wave properties. Each interaction involves a certain type of particles.
The law of interaction depends on the properties of particles responsible for
this interaction and, aboveall, on their mass. If the rest mass of particles re­
sponsible for an interaction is zero, the force of interaction is inversely propor­
tional to the square of the distance, while the interaction potential islinversely
proportional to the distance. If, however, the rest mass of interacting particles
differs from zero, the interaction potential varies in proportion to~(1/r)exp( -flr) ,
where ,..., depends on the rest mass of the particles. For the zero rest mass, 11
is equal to zero, and the potential varies in inverse proportion to the distance,
as it should be when the Coulomb law and Newton's gravitation law are valid.
According to modern concepts, electromagnetic interactions are due to photons.
Consequently, the verification of the validity of Coulomb's laio is reduced to proving
that the rest mass of photons is equal to zero.

Besides corpuscular properties, all particles possess wave properties. The
energy cph of photons is connected with their frequency and mass through the
relations Cph = nm and f.pb = m vc

2
, where 1i = 1.05 X 10-34 J·s is Planck's

constant and mv is the photon mass. This mass is larger than the rest mass, if
a photon had one. Consequently, having found the upper limit for:mv' we obtain
the constraint for the photon rest mass. Having proved the existence of electro­
magnetic waves with a sufficiently large wavelength experimentally, we can
state that the value of mv is quite small. If we could verify the existence of elec­
tromagnetic waves with an infinite wavelength, we would be able to state that
the photon rest mass is equal to(zero, and that Coulomb's law is valid.

The longest electromagnetic waves that can be observed at present are formed
as standing "Taves in the space between the surface of the Earth and the iono­
sphere. They are called the Schumann resonances. The smallest Schumann
resonance corresponds to -the frequency "0 = 8 Hz. Hence, from this fact and
on account of the distance from the surface of the Earth to the ionosphere and
from the conditions of formation of standing waves, we obtain that the photon
mass mv < 10-48 kg. This estimate shows that Coulomb's law is observed to an
extremely high degree of accuracy, since the inequality I a I~ 10-16 is equiv­
alent to mv~ 10-&0 kg.

Experiments on the investigation of the magnetic field in Earth's atmosphere
have been carried out with the help of satellites. These experiments made it
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possible to determine the accuracy with which Coulomb's law is satisfied at
large distances. It was established that Coulomb's law is valid to a very high
degree of accuracy up to distances of the order of 107 m. Undoubtedly, Coulomb's
law is satisfied for larger distances as well, although there is no direct experimental
evidence for it so far.
Verification of Coulomb's law for small distances. The validity of Coulomb's
law for small distances is verified in experiments on interaction between ele­
mentary particles. Even Rutherford's experimentsjhave led to the conclusion
that Coulomb's law is valid to a high degree of accuracy down to distances of
the order of 10-11 m. Subsequent experiments on elastic scattering of electrons
having energy of the order of several billion electron-volts have shown that
Coulomb's law is valid down to distances of the order of 10-17 m,

These experiments are interpreted with the help of quantum electrody­
namics.
Field form of Coulomb's law. Before Faraday's experiments, Coulomb's law
was interpreted as a long-range interaction, i.e. it was assumed that one body
acts on another as if without intermediaries. For this reason, this phenomenon was
termed a' long-range interaction. Another point of view on the mechanism of in­
teraction appeared in the second half of the 19th century, according to which
bodies interact only due to a continuous "transfer of forces" in the space between
them. This phenomenon was called a short-range interaction. It was introduced
by Faraday (1791-1867) in a number of works published between 1831 and 1855.
Together with the idea of short-range interaction, the concept of the field as an inter­
mediary in interactions was introduced. Initially, the role of an intermediary was
assigned to the medium pervading the entire space. This medium was called
the ether. The state of the ether was characterized by certain mechanical prop­
erties such as elasticity, tension, motion of some parts of the medium relative
to others, and so on. According to this treatment, the force acting on a body is
the result of interaction of the body with the medium at the point where the
body is located. Thus, the mechanism of interaction was formulated in the form
of local relations. An attempt to provide a mathematical interpretation of this
mechanical mode of interaction was made by Maxwell in 1861-1862. Maxwell
(1831-1879) endeavoured to represent the forces of electromagnetic interaction
in the form of mechanical forces caused by stress and pressure in the ether. He
then went over to a phenomenological formulation of the interaction, character­
izing . the state of the medium with the help of vectors E, D, H, and B without
giving, however, any mechanical interpretations to these vectors. It should be
noted that Maxwell did not exclude a possibility of the mechanical interpreta­
tion of phenomenological equations. In 1864, he formulated the equations for
an electromagnetic field, viz. Maxwell's equations. Later on it was found that
mechanical properties could not be ascribed to the ether and motion relative to
it was also ruled out. The hope of the mechanical interpretation of electromagnetic
interaction was lost, but the ideas of local formulation of interaction and oitheexis­
tence in space of a field through which this interaction could be realized were retained.
The field is considered to be a primary concept and is characterized by the quan­
tities that cannot be interpreted within the framework .of mechanical concepts.
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"This statement was formulated in the most clearcut form in 1889 by Hertz
{1857-1894) who experimentally discovered electromagnetic waves and formu­
lated the Maxwell equations for vacuum in the modern form. Obviously, the
field, along with matter, exists in space and time, in the form of atoms, mole­
-cules, etc.

Consequently, the field is also a form of matter, which possesses properties
like momentum and energy, characteristic of all types of matter.
Electric field. Let us denote by F t 2 the force exerted by charge ql on charge
-q2 and by F 21 the force exerted by charge q2 on charge q1' Correspondingly, f 1 2
and r 21 are the vectors drawn from the point of location of the first charge to
that of the second charge and vice versa. Accordingly, Coulomb's law can be
written in the form

(6.8)

(6.5a)

(6.5b)

(6.6a)

(6.6b)

(6.7a)

F - _1_..!!.L ril
12 - 4no r2 r q2'c/o 12 11

F - 1 ql r2I
21- 4210 -rl -r- qt·

c/o 11 21

These formulas differ in their physical content and define the forces acting
on the second and first charges at the points of their location, i.e. they describe
the forces at different points in space. However, the mechanism of emergence of
these forces is the same. The charges q1 and q2 create in the space surrounding them
a field which is characterized by the strength E. The field strength is a local concept
and has a definite value at each point in space. The electric field strength at a point
is the quantity defined as the ratio of the force with which the field acts on a positive
charge placed at this point to the charge itself. This, however, does not mean that
the field at any point in space can be measured just by placing a positive charge
at this point and measuring the force acting on it.

Frequently, imparting a charge to a given point entails a sharp change in the
electric field at this point, and the results of measurement appear to be consid­
erably distorted (see Sec. 7).

Taking this into account, we can represent formulas (6.5) in the form

E
2
= _1_..!!.L rll

421eo rll rII'

Ft2 = F2 = q2~"
E - _1_..!lL r21

1 - 421eo rll rll '

F2t = F t = qtEt. (6.7b)
Formula (6.6a) describes the strength of the electric field created by the point

charge Q1' while formula (6.6b) characterizes the force with which a field of
strength E 2 acts on a charge located at a point in this field. Formulas (6.7a) and
(6.7b) have a similar meaning.

Thus, the action of one charge on another can be divided into two stages.
1. A point charge q creates in the space surrounding it an electric field

E (r) =_1_....!L..!.
'neo r 2 r ?
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q

Fig. t9. Field forln of
CoUlomb's law.

(6.9)

exerted by this field.
The statement (6.9) for the second stage of interac­

tion is of a local nature: field strength E, charge q, and force F are determined
at the same point. The statement (6.8) for the first stage of interaction, however,
is not local: field strength E on the left-hand side depends not only on the point
where it is determined, but also on the point where the field source is located.
In other words, Eq. (6.8) is a relation between quantities pertaining to different
points in space, and thus is of a nonlocal nature. The local formulation of this
interaction will be given in Sec. 13.
On the limits of applicability of the classical concept of fteld. I t was assumed
above that the field strength E varies continuously and quite smoothly in space
and time. However, in accordance with quantum concepts, the force of interac­
tion between charged bodies appears as a result of an exchange of photons.
This leads to the discreteness of interaction, and hence the field E cannot be re­
presented as a continuous quantity which varies smoothly in space and time.
It can be asked: under what conditions can the field be still treated as a contin­
uously varying quantity? Clearly, this is possible only if the action of indi­
VIdual quanta is weak in comparison to their combined action, i.e. if the phe­
nomenon under consideration is determined by the simultaneous action of a
huge number of quanta. Such a situation is encountered most frequently. For
example, the photon flux of visible light from a 200 W electric lamp at a distance
of 2 m is about i O'vphotons/fcm'".s). The pupil of the eye has an area much smal­
ler than 1 em", and yet the number of photons impinging per second at the eye
is quite large. Hence the photon flux is perceived as continuous. However, by
decreasing the intensity of light we can arrive at a situation when a small num­
ber of photons is incident on the eye per second. Under special conditions, a
human eye is capable of perceiving photons as separate flashes. In this case,
we cannot use the concept of continuous light flux. Short-wave transmitters in
the USSR operate at frequencies of 60-70 MHz. The electromagnetic flux from
a 200 W transmitter of this type at a distance of 10 km is about 4 X 1014 quan­
ta/(cm2 •s), which corresponds to a density of 10' quanta/ems. Consequently, more
than 1011 radiation quanta are present in a volume equal to the cube of the wave­
length (~64 m"). Under such conditions, the detection of the field of a single
quantum is quite difficult. Classical description can be used in cases where the
action of individual quanta is not manifested. This is possible when the number
of quanta is large and the momentum of an individual quantum is small in
comparison with the momentum of a material system. For example, the radia­
tion from an individual atom cannot be analyzed classically, since there are no
photons before the emission, while only one photon is present after the emission.

where r is the radius vector drawn from the point
of location of the charge to the point where the
field strength is measured (Fig. 19).

2. The point charge q located at a point where
the field has a strength E is subjected to a force
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If Co"lomb's law Is strldly satisfied, the cherge of a conduding sphere Is distributed over
Its surface. If this law is violated, a charge also exists Inside the sphere.

The concept of a classical continuous Interadlon Is velld only when the eOed of Indivlduet
quanta Is small In comparison with their colledive eOed, I.e. when the phenomenon under
consideration depends on the simultaneous ection of a huge number of quanta and the
action of individual quanta Is not manifested.
The determination of electric field strength is not conneded with the smallness of test
charges.

What physical principle lies behind the Cavendish method of verification of Coulomb's
law? What is the accuracy with which Coulomb's law can be verified by the Cavendish
method with the help of modern facilities? For what distances ere the verifications valid?
What is the essence of the method for verifying Coulomb's law for large distances? Up to
what distances are the results of dired verification available? What are these results?
How is the validity of .Coulomb's law verified for very small distances? What are the
results of these verifications?
What is the difference between the concept of an electromagnetic field and that of etherf

Sec. 7. Superposition Principle

The physical meaning of the superposition principle is
analyzed and the limits of its applicability are dis­
cussed.

Superposition principle for interaction of point charges. The forces of interaction
between two isolated point charges are defined by Coulomb's law (6.1). Does
this force change if a third point charge is brought in the vicinity of two interact­
ing point charges? In order to give a unique meaning to this question, we must
specify the forces of interaction between two point charges in the presence of a
third charge (all charges are assumed fixed).

If by the forces of interaction we mean the forces directed along the line con­
necting the two interacting charges, these forces will depend on the third charge
and will not fulfill the requirement that action and reaction be equal, The dif­
ficulty stems from the fact that we can measure the force acting on a charge, but
we cannot distinguish between the forces due to separate charges. However, the
third charge does not differ in any way from the two point charges under con­
sideration and all three charges are equivalent. Hence the question can be for­
mulated in a different way. Suppose that we have three interacting point charges.
The experimentally measurable quantities are the forces acting on each of these
charges. We know the law of addition of forces according to the parallelogram
rule. It can be asked whether the measured force acting on each charge is equal
to the sum of the forces exterted by the other two charges, if these forces are
calculated in accordance with the Coulomb law (6.1). It should be noted that
we are speaking of experimental measurement of a force and the mathematical
calculation of forces in accordance with the law (6.1), as well as their addition
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F3 = Fl 3 + F23• (7.1)

Let us denote by E l 3 and E 23 the strengths of the field created by charges ql
and q2 at the point charge q3 assuming it to be the only charge present. According
to formula (6.9), we get

Fl 3 = q3E13' F 28 = q3E23· (7.2)

Expression (7.1) can be written in the form
F3 = qSEl 3 + qaE23 . (7.3)

The force in an electric field appears as a result of the action of the field on
a charge. Consequently, force F 3 in (7.3) shows that an electric field of strength
E 3 is set up at the point of location of charge q3 (see (6.9)], i.e,

F8 == qsEs• (7.4)

Substituting (7.4) into (7.3) and cancelling out the common factor qs, we get

n, = El 8 + E 28 • (7.5)

This expression is the field form of the superposition principle: the field
strength of two point charges is equal to the sum of the field strengths due toeachsep­
arate charge if it acted alone. This formulation is of a local nature, since all the
quantities involved are referred to one point in space.

in accordance with the parallelogram rule. Under
such a formulation, the question has a quite defi­
nite meaning and the answer can be obtained exper­
imentally. Investigations have shown that the
force being measured is always equal to the sum of
forces exerted by the two separate charges and cal­
culated in accordance with the Coulomb law. This
experimental result can be expressed in the form
of the following statements:

(a) the force of interaction between two point
charges does not change in the presence of other
charges;

(b) the force exerted on a point charge by two Fig. 20. Principle of superposi­
point charges is equal to the sum of forces exertedby tion,
each point charge separately in the absence of the
other.
_ This statement is called the superposition principle, and reflects an experi­

mental fact which is one of the fundamental principles of electricity. This prin­
ciple is as significant in electricity as, say, the Coulomb law. Obviously, this
rule can be generalized to the case of many charges.
Field form of the superposition principle. Let us consider a force F 8 acting on
a point charge q3 in the presence of two other point charges ql and q2 (Fig. 20).
We denote the forces exerted on charge q3 by charges ql and q2 by F13 and F23
respectively, assuming qs to be the only charge present. In accordance with the
superposition .principle, we have
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The generalization of this principle to the case of many charges is obvious:

(7.6)

i.e. the field strength of any number of point charges is equal to the sum of field
strengths due to each separate charge if it acted alone.
Test charges. It follows from the definition of the electric field that its measure­
ment is reduced to the measurement of the force acting on a point charge. The
point charge used for measuring the strength of an electric field is called a
test charge. The magnitude of a test charge remains to be specified. If we assume
that all point charges whose total field strength is calculated are fixed at certain points
in space. the test charge can be of any magnitude. If, however, the positions of the
point charges are not fixed in space, the action of the test charge on these charges
may lead to their displacement in space. In this case, instead of the field at the
point of location of the test charge for the initial position of all charges, we shall
obtain the field created due to the displacement of charges to their new positions
under the influence of the test charge. In order to avoid this, we must decrease
the effect of the test charge on the charges creating the field under investigation.
Hence the test charge must be quite small. It should, however, be noted that
this requirement has nothing to do with the principle of superposition, but simply
ensures the conditions under which the strength of the field under consideration does
not alter due to measurement.
Limits of applicability of the principle of superposition. The agreement between
the results obtained by applying the principle of superposition and the experi­
mental results serves as an experimental verification of the principle. It has
been established that the principle oi superposttion is valid up to very high fields.
Its accuracy is verified in engineering for field strengths up to several million
volts per metre (electrical engineering, particle accelerators, high-voltage dis­
charge, etc.). Atoms and nuclei possess stronger fields. The strength of fields on
electron orbits of atoms attains values E ~ 1011_10t~ VIm. The differences in atom­
ic energy levels calculated by using the superposition principle are confirmed
experimentally to a very high degree of accuracy (the relative error is not higher
than 10-8) . This means that the principle of superposition is also obeyed to a
high degree of accuracy for intra-atomic field strengths. Extremely high field
strengths are attained (E ~ 1022 VIm) at the surfaces of heavy nuclei. Experi­
mental results indicate that the principle of superposition is obeyed even for
such strong fields. However, this is accompanied by the appearance of some other
effects; to be more precise, the creation of electron-positron pairs leads to a pola­
rization of vacuum at field strengths of about 1020 VIm. This brings about a non­
linearity in quantum-mechanical interactions.

The force of interaction between two point charges does not vary In the presence of other
cherges. but, generBlly speaking, the force of Interaction between charged bodies varies In
the presence of other charged bodies. A test charge Is assumed to be quite small. this
requirement, however, has nothing to do with the principle of superposftlon which remains
valid for all values of the test charge.
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Why does the force of interadion between two charged bodies generally vary in the
presence of a third charged body? Is it a violation of the superposition principle?
What experimental facts help Judge about the validity of tne principle of superposition
for very strong eledric fieldsl

Sec. 8. Magnetic Field

The relativistic nature of magnetic field is analyzed.
The law of interaction between parallel conductors
is derived from Coulomb's law with the help of rela­
tivistic transformations.

Inevitability of magnetic field generation due to motion of charges. The inter­
action between fixed point charges is defined completely by Coulomb's law.
This law, however, is incapable of describing the interaction between movingcharges.
Such a conclusion is based on relativistic properties of space and time and
the relativistic equation of motion rather than on the specific features of Cou­
lomb's interaction.

This statement stems, in principle, from the following considerations. The
relativistic equation of motion

dp/dt = F • (8.1)

is invariant and has the same form in all inertial coordinate systems, including
the system K' which moves uniformly and rectilinearly relative to the system K:

dp' Idt' = F'. (8.2)

The quantities with primes pertain to system K'. The left-hand sides of these
equations contain purely mechanical quantities whose behaviour under a trans­
formation from one coordinate system to another is known. Consequently, the
left-hand sides of Eqs. (8.1) and (8.2) can be interrelated through a certain for­
mula. But this means that the forces on the right-hand sides of these equations
are also interrelated. Such a relation stems from the requirement of relativistic
invariance of the equation of motion. Since the left-hand sides of Eqs, (8.1) and
(8.2) contain velocities, we can conclude that the force of interaction between
moving charges is velocity-dependent and cannot be reduced to a Coulomb force.
This proves that the interaction between moving charges is due not only to a Cou­
lomb force but also to another kind of force called the magnetic force. The existence
of such a force can be revealed by considering the following example of charge
interaction.
Interaction between a point charge and an infinitely long charged filament.
The Coulomb interaction between two point charges which are at rest in the coor­
dinate system K' is, of course, the simplest type of interaction. In another coor­
dinate system K moving relative to K', however, these charges move with
the same velocity, and their interaction becomes more complicated since the
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(8.3)
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electric field at each point in space varies due to
the motion of charges. Hence it is expedient to
choose a situation which is quite simple for the
coordinate system K', where the charges are at
rest, and for the system K, where the charges are
in motion. A relatively simple interaction is that
between a point charge and an infinitely long
charged filament.

In the system K' the filament is at rest and direct-
Fig. 21. On the calculation of ed alongtheX'-axis (Fig. 21). A point charge q
force of interaction between a is located on the Y'-axis at a distance y; from
point charge and an infinitely the filament. We denote the cross-sectional area
long charged filament. of the filament by S~ and assume that its linear

dimensions are very small in comparison with the
distance from the point charge. If p' is the volume charge density, a charge dq'
piS~ dx' exists on the element dx' of the filament. For the sake of definite­
ness, we assume that the charge on the filament as well as the point charge is
positive. In this case, the forces exerted on the point charge by the charge on
the element of the filament are directed as shown in Fig. 21. In accordance
with Coulomb's law, we have

, qp'So dz'
dFs = 4n8o (yol + Z' 2) cos a,

, qp'S~ dz'
dF'II = 4n ('1+ '2) sin a.80 Yo z

Considering that cos a = -X'/(y~2+ X'2)1/2, sin a = y~/(y~2 + X'2)1/2, we ob­
tain the following expressions for the projections of the force:

(8.4)

The first integral is equal to zero since the integrand is an odd function, but
to calculate the second integral, it is expedient to carry out the following sub­
stitution of variables: x' = -y~ cot a, dx' = y~ da/sin2 a, 1 + cot 2 a =
1/sin2 a. This gives

(8.5)

(8.6)

n
qp'S ' 1 qp'So'F' 0 F' - 0 • dz =, 'II - 4n80Yo sin ex, a = 2n8oYo •

o
Besides, F; = O. Considering that the charge is at rest at a given instant and

denoting the mass of a charge carrier by mo, we obtain the following expression
for the acceleration of charge in the system K':

a~= 0, a~ = F;/mo= qp'S~/(21t8gY;mo), a:= O.
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Let us now consider this interaction in the coordinate system K moving rel­
ative to K' towards negative values of the X'-axis with velocity v. We direct
the X-axis along the filament so that its positive direction coincides with the
positive direction of the X'-axis and assume that this system is fixed. In the
coordinate system K, the filament, the charge, and the system K' move with
velocity v in the direction of positive values of the X-axis.

Let us calculate the repulsive Coulomb force exerted by the moving filament
on the moving charge. The point charge q is constant in view of the charge in­
variance. Due to a reduction of moving scales, the number of charges per metre
length of the moving filament is larger than that of the fixed filament, In other
words, the charge density of the moving filament is higher than that of the fixed
filament. The charge density of the fixed filament was denoted by p' in the above
calculations. Hence, the charge density of the moving hlament in the coordinate
system K is

P== p'IV1-v2/c2
f (8:7)

where V 1 - V 2/C2 takes into account the relativistic variation of moving scales.
All further calculations are exactly the same as for the fixed filament. Since the di­
mensions in a direction perpendicular to the velocity v remain unchanged, the
cross-sectional area of the moving filament and the distance between the fila­
ment and the point charge remain unchanged. Hence, we obtain instead of (8.5)

Ix = 0, ITl = qpSo/(2n 8oYo)' I I! = O. (8.8)

Here, the Coulomb force is denoted by a small letter in order to distinguish it
from the total force which acts on the charge and cannot be reduced to a Coulomb
force. Substituting (8.7) into the second of Eqs. (8.8) , we obtain

!r._.JJ!:'~o/(21teoYoV1-vl/cl ) = qp'So/(21tBoY:V1-vl /cZf - F;;7l!1-V2/C2• (8.9)

where So = S~, Yo = y~,~ and formula (8.5) is taken into account.
Let us find the total force acting on a point charge in the coordinate system K.

Due to symmetry, the force is directed along the Y-axis and is connected with
the momentum through the following equation of motion:

Fu = dPul dt. (8.10)

In the coordinate system K', this relation has the form

F~ = dp~'dt'. (8.11)

Using the transformation formulas of the theory of relativity, ,ve get

, :dt' Y1-~2
PII=P" dT= 1+vu~/c' (p=v/c), (8.12)

where u~ is the component of the particle velocity in the coordinate system K'.
In our case, u~ = O. Taking (8.12) into account, we obtain from (8.10)

F1/= dp1/ldt = (dp~/dt') (dt' /dt) = F~V1-p2. (8.13)
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Fig. 22. Interaction between
two parallel currents.

A comparison of (8.13) with (8.9) shows that
r, = (1 - ~2) f 1l, (8.14)

i.e. the Coulomb repulsive force t, is larger than
the force F 11 exerted on the moving charge by the
moving filament. Consequently, besides the Coulomb
repulsive force, a non-Coulomb force, which in the
present case is attractive, also acts on the charge.
This force appears as a result of the motion of
charges and is called the magnetic force. The field
form of interaction for the magnetic force is simi­

lar to that for the electric interaction: a moving charge creates a magnetic field in
the surrounding space. The magnetic field exerts a force on the moving charge.
Relativistic nature of magnetic field. Formula (8.14) shows that the mag­
netic force is

Film = FII - 11/ = -vl/U/CS• (8.15)
The 'minus' sign indicates that the force is directed towards the charged fila­
ment, i.e. is attractive in nature. It can be seen from this formula that this force
is described by a quantity of the second order of smallness in vic relative to the
Coulomb interaction. Consequently, the magnetic interaction is comparable to
the electric interaction only for quite large velocities of particles. Nevertheless, it
is also perceptible for small charge velocities if Coulomb interaction does not mani­
fest itself for some reason or other. Such a situation may arise, for example, when
an electric current flows in a conductor. In this case, the electric field of moving
charges is neutralized by the electric field of the opposite charges of the conductor,
i.e. it is screened. As a result, only the magnetic force remains, which is negli­
gibly small in comparison with the Coulomb force if the latter were not screened.
For instance, for typical electron drift velocities in a metallic conductor
(see Sec. 31), the magnetic force is less than Coulomb's force by a factor of 1020,
but nevertheless it is sufficiently large and is manifested in the form of interac­
tion between current-carrying conductors. Therefore, a purely relativistic effect
of the emergence of magnetic field is exhibited not only at very high velocities but at
any velocity.
Forces of interaction between parallel current-carrying conductors. Suppose
that charges move in a thin cylindrical wire which is electrically neutral as a
whole. Then Coulomb's forces exerted by moving charges which create an elec­
tric current are screened by the opposite charges of the wire, and only a magnetic
force (8.15) is acting outside the wire. Consequently, in the space surrounding
the current-carrying conductor only the magnetic force acts on moving charges
that generate an electric current. This leads to a magnetic interaction between
currents. This result was obtained from the relativistic analysis of interaction
of moving charges. However, the magnetic interaction between currents was
discovered long before the theory of relativity was developed.

Let us assume that moving charges create a linear current in a conductor
parallel to the initial current flowing along the X-axis and arranged at a dis­
t.ance r from it (Fig. 22). We shall use subscripts 1 for the quantities pertaining
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to the initial current andl2 for those pertaining to the linear current. Each charge
of current 12 is acted upon by the magnetic attractive force Fm (8.15) due to
current 11. Taking into account (8.8), it is convenient to represent this force in
the form

F - ~ QP1Sol _ _ f PtVSOl t 11 (8 16)
mll - - cl 2nsor - 2nsocl qv-r-= - 21tsocl qv -r- , ·

where P1VS01 = II [see (4.11) and (4.14)] and r = Yo [see (8.8)].
Let us denote the linear charge concentration on the second conductor by n2•

The element of length dX2 contains n2dx2 charges acted Upon by the magnetic
force

dFm = Fmyn2dx2.

Substituting (8.16) into this expression, we find

dF t_ l,qvn2 dZ2

m - 2nsoc'
r '

where qvn" = I,. Besides, in the theory of magnetism, the magnetic constant
fJ.o = 1/(eoc

2) is commonly used instead of the constant Eo. Then we obtain [see
(8.18)]

dF - Jlo Ill, d
m- - 2n -r- X2·

This force characterizes the interaction between linear currents in infinitely
long parallel conductors. It should be noted that formula (8.19) can only be ap­
plied when the cross sections of the conductors are small in comparison with
the distance between them (thin conductors and linear currents).
Unit of current. It immediately follows from formula (8.19) that the force
acting per unit length of a conductor is

F - Jlo Ill. 1
ml- - 2n -r- 2·

The 'minus' sign indicates that when currents /1 and /2 have the same direc­
tion, the force acting between the conductors is attractive. If, however, the
currents I} and 12 have opposite directions, a repulsive force appears.

Equation (8.20) can be used for defining the unit of current: the ampere (A)
is the constant current which, if maintained in two very long parallel conductors of
negligibly small cross-section one metre apart in vacuum, produces a force of
2 X 10- 7 N on each metre of the conductors. Putting /1 = 1 2 = 1 A, r = 1 m,
12 = 1 ID, and Fm I = -2 X 10-7 N in (8.20), we obtain

f.Lo = 41t·10-1 N/A2. (8.21)

It has been noted that [see (8.19)]

J.t080 = 1lc', (8.22)

where c is the velocity of light in a vacuum. This expression reflects a relation
existing between electric and magnetic fields which is characterized by the
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fundamental physical constant c equal to the velocity of light. The nature of
this relation will become clear from the analysis of electromagnetic waves (see
Chap. 9).
Magnetic field. In complete analogy with the field form of Coulomb's inter­
action (see Sec. 6), we can represent the process of creation of force (8.18) in
two stages: generation of a magnetic field by current II in the space surrounding
it, and the action of the magnetic field on a moving charge or current. However,
the laws governing the generation of a magnetic field and the act ion of force turn
out to be more complicated than Coulomb's law, since they depend
on the mutual orientation of currents and the velocity of the charge. Besides,
current II flowing in a very long conductor cannot be considered as an elementary
object whose interaction with a point charge could be considered as an elementary
act. For this reason, we should return to the analysis of the action of forces on
moving point charges and current elements.

Coulomb's law is insufficient for describing the Interaction between moving charges. This
conclusion is based on the relativistic properties of space and time and the relativistic
equation of motion rather than on the specific features of Coulomb's Interadlon.
Magnetic interaction can be compared with electric interadion only at sufficiently high
velocities of charged particles. If, however, Coulomb's interaction is absent due to some
reasons, magnetic interadion can manifest itself at very low velocities.

Sec. 9. Lorentz Force. Ampere Force

Relativistic properties of Lorentz and Ampere forces
are discussed.

Transformation:of forces. It was shown in Sec. 8 on the basis of a specific example
that if we assume the relativistic invariance of the equation of motion, it is
possible to define the law of transformation of a force upon a transformation
from one system of coordinates to another. Let us extend this method to a more
general case.

As usual, the coordinate system K' moves relative to the system K with a
velocity v in the positive direction of the X-axis. Let us consider the motion of
a material point under the action of given forces. Let (F~, F~, F;) and (Fx,

F u: F z) be the components of forces in the coordinate systems K' and K re­
spectively. In the general case, the corresponding components of these forces
in different coordinate systems are not equal. However, these components are
connected through quite definite relations which ensure the invariance of equa­
tions of motion, i.e. the identity of their forms in different coordinate systems:

dpz/dt = F%':

dp~/dt' = F~I

dpl//dt = F'I' dp./dt = F' I

dp;/dt' = F;, dp:/dt' =- F;.
(9.1)

(9.2)
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We transform the left-hand sides of these equations by using formulas from
the theory of relativity for momentum, and the Lorentz transformations:

p~+ (E'/e l ) v , ,
Ps = V f -Ill 'P1J = P" pz = Pz, (9.3)

where E' = m'c" is the total energy of the material point, and ~ = u!c. Formu­
las (9.1) are reduced to the form

F _~_ dpx dt' _~ [P~+(E'let)v ] de'
#: - dt - dt' dt - dr' Vi-pi dt

vu I le 2 vu'let

- F' + 1/ F1/' + z F' (9 4)
- % i +vu~/e2 i +vu~/el If •

dpy dp~ dt' V i-p2 ,
F1J= """'dt=d7 (I"t= f+vu~/cl F" (9.5)

F dpz dp~ dt' V~ F' (9 6)
z= (It=d7 dt = i+vu~/e2 Zl •

where (u~, u~, u~) are the components of the velocity of the point in the sys­
tem K'. The quantities F~, F;, F~ appear on the right-hand sides of Eqs. (9.4)­
(9.6) as a result of the application of the equation of motion (9.2). While calcu­
lating Eq. (9.4), we have taken into consideration the formula

dE' F' I'dT- eU. (9.7)

(9.9)

(9.8)

which expresses the law of conservation of energy in the system K'. With the
help of the formulas for summation of velocities

u' Vi-~I U' Vi-pi
U - 'II U -:--z_~~

u:" 1+vu~/e" z= i+vu~/el

we can transform Eq, (9.4) as follows:

F = F' + vUy le
2

F' + vUz/c
l F'

:.: - Vi-pi 11 Vi-pi •.

In order to simplify (9.5) and (9.6), we require an important relation which
is obtained from formulas for velocity transformation. By way of an example, let
us write the direct and inverse transformations of the y-components of the veloc­
ity:

u'Vi-p2 , u1/ Vi-pI
11-- II U - ~--~--,,- t+VU~/C2' '11- i-vuxlcl .

Multiplying the left- and right-hand sides of these equations termwise and
dividing the equations thus obtained by the common multiplier ulIu;, we obtain

(1 + v:.~) (1 _ v;%) = 1-~1. (9.10)
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With the help of this equation, we can transform formulas (9.5) and (9.6):

F - t-vux/c
l F' (9.11)

s>: V1-~1 JI'

F - 1-vux/c2 F' (9.12)
z- V1-~2 z·

Thus, a force in the system of coordinates K can be expressed in terms of a
force in the system K' with the help of equations (9.9), (9.11) and (9.12). The
formulas for inverse transformation can be easily obtained by using the rela­
tivity principle.

In the derivation of the above formulas, no assumptions were made about
the properties of the initial forces which may depend on coordinates, time and
velocity. Besides, it was not assumed that in some coordinate system the particle
will be at rest, since no constraints were imposed on the particle velocities.
The formulas thus obtained show that in the relativistic theory, the dependence of
forces on velocity is unavoidable: even if the force is independent of velocity in
some coordinate system (say, F~, F;, F;), the dependence inevitably appears
in other coordinate systems (in the present case, F x' F 11' F z depend on the parti­
cle velocity (u x , u ll , u z) .

Let us write the formulas for the transformation of forces in vector form. For
this purpose, we introduce the notation

(f)=(F~, F~/V1-~2, F~!V1-P2), (9.13)

G == [O~ - (vlcZ) F;IV1-pat (vIc:!) F~tV1-pzJ_ (9.14)

It can be easily verified that in terms of these quantities, formulas (9.9).
(9.11) and (9.12) can be written in the form of the vector equation

F = (f) + u X G. (9.15)

Since F is a vector, the entire right-hand side is a vector. This equality is
valid for any u; consequently, each term on the right-hand side is a vector. Since
u X G and u are vectors, we conclude that G is also a vector. This shows that
the quantities <f) and G defined by equalities (9.13) and (9.14) are vectors.
Lorentz force. We assume that only an electric field exists in the coordinate
system K', and hence the force (F~, F~, F~) is independent of the particle veloc­
ity u'. In this case, (J) [see (9.13)] is independent of the particle velocity u and
represents the electric force in the coordinate system K.

Similarly, it can be concluded that the vector G is also independent of the
particle velocity u and can depend only on coordinates and time. Consequently,
the dependence of force on particle velocity is expressed by the second term of
(9.15):

Fro = u X G. (9.16)

This is a magnetic force directed perpendicular to the particle velocity and
vector G which represents the magnetic field acting on the moving particle.
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Since <J) in formula (9.15) is the electric force acting on a point charge q,
we can write the electric field strength in the form

E = (J)!q.

Similarly, the magnetic induction is given by the formula

B = G!q.

(9.17)

(9.18)

Taking these formulas into account, we can rewrite formula (9.15) for the
force acting on a point charge in the following form:

IF=qE+quXB·1 (9.19)

This is the Lorentz force. The first term on the right-hand side characterizes the
force exerted on a point charge by an electric field, while the second term expresses
the force exerted by a magnetic field.
Magnetic induction. Since the force exerted on a moving charge by a magnetic
field is denoted by B, it is but natural to term this vector as the magnetic field
strength. However, historically the term magnetic field strength was used to de­
scribe another vector which is denoted by H. This vector is not a property of the
magnetic field, but just takes into account the properties of the material medium
in which the field exists. In particular, for a given H, the vector B, and hence
the force acting on a moving charge, can have quite different values (see Sec. 38).
The vector B is called the magnetic induction.
Ampere force. Suppose that we have an aggregate of point charges with a con­
centration n; Then there will be n dV charges in a volume element dV. If the
velocity of each of these charges is u, and if each charge is acted by a magnetic
force defined by the second term in (9.19), the force acting on the charges in the
volume element dV will be

dF m = nq dVu X B. (9.20)

Henceforth, we shall omit the subscript "m" on the force, which only indicates
the magnetic nature of the force. The force exerts the same action on a charge
irrespective of its origin. Considering that

nq = p, nqu = pu = i, (9.21)

where p and j represent the charge and current densities [see (4.4) and (4.11)1,
we can write formula (9.20) in the form

dF = pu X B dV, (9.22)
or

IdF=j X B dv.1 (9.23)

This relation is called the Ampere law and defines the force acting on an
element of electric current with density i. enclosed in volume dV.
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steady volume currents to linear
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Transformation from steady volume currents to lin­
ear currents. Formula (9.23) can be represented
in another form also. Suppose that an electric cur­
rent flows in a thin conductor of cross-sectional
area So' Consider a line element dl of the con­
ductor (Fig. 23). The volume dV of this element
is So dl. Since the cross-sectional area of the con­
ductor is small, we assume that the density j of
the current flowing through it is constant, and
hence

I = Soj. (9.24)
Suppose that the direction of dl coincides with the density vector of the cur­

rent flowing through this region of the conductor. In this case,

j dV == jSo dl == I di. (9.25)

Generally speaking, the electric current flowing through each point in space
has a different density and is therefore called the volume current. The force
acting on such a current in the volume element dV is defined by formula (9.23).
If, however, the current passes through thin conductors (having infinitely small
thickness in the limit, in the physical sense), it is called linear current. In
this case, we can speak of a current element on the length dl of the conductor.
A transformation from formulas derived for volume currents to formulas for lin­
ear currents is accomplished through relation (9.25) which can be represented
in the form

Ij dV =4± I dl./ (9.26)

The arrows indicate that the transformation can be made from formulas for
volume currents to formulas for linear currents, and vice versa.

In particular, formula (9.23) for linear currents assumes the form

IdF=I dl X B./ (9.27)

This formula reflects the basic idea of Ampere, viz. to reduce the interaction
between current circuits to the interaction between very small current elements.
Magnetic field of a rectilinear current. Comparing formulas (9.27) and (8.19),
we conclude that the current {lowing through a long straight conductor generates
a magnetic field whose lines of force are concentric circles around the current and
lie in a plane perpendicular to it. The magnetic induction at a distance r from
the centre of a current-carrying conductor is given by the formula

B= ~ ~ (9.28)

This formula is obtained from Coulomb's law with the help of the theory of re­
lativity and by taking into account the principle of superposition for the elec­
tric field strength and the invariance of charge. From the superposition principle
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for the electric field strength, we can conclude that the superposition principle is
also valid for magnetic induction.

Formula (9.28) can be expressed in vector form as follows. We direct the
X-axis of the Cartesian system of coordinates along the line current. Denoting
by

r = ix (x - x') + illY + izz

the radius vector directed from point (x', 0, 0) to the point (z, y, z), and tak­
ing into account the value of the integral in the expression (8.4) for F;, i.e.

(9.29)

we can express (9.28) in the following form:
00

B - ....01 r ix X r d '
- 4r J r8 X ,

-00

where we have considered that

II:.; X rl = Vy2+ Z2.

(9.30)

The transformation formulas for force are obtained from the requirement of invariance of
the relativistic equation of motion•
.The dependence of force on velocity is inevitable in the relativistic theory. Even if the
force is independent of velocity In some coordinate system, this dependence .ppeen In
another coordinate system moving with resped to the first system.

The formulas for force transformation are obtained from the requirement of invariance of
the relativistic equation of motion. Does this mean that the law of force transformation
is a statement devoid of any physical meaning, and is just the tautology of the require­
ment of relativistic invariancel
Why are we unable to conclude directly from formulas (9.13) and (9.14) that <I> and G
are vectorsl

Sec. 10. Biot-Savart Law

The field form of the interaction between currents and
the Biot-Savart law are discussed.

Interaction' between current elements. The law of interaction between currents
was discovered experimentally long before the theory of relativity had been
created. It is much more complicated than Coulomb's law describing the interac­
tion between fixed point charges. This explains why so many scientists took part
in the investigation of this phenomenon. A considera hle contribution to the
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discovery of this law was made by Biot (1774-1862)". Savart (1791-1841), Am­
pAre (1775-1836), and Laplace (1749-1827).

In 1820, Oersted (1777-1851) discovered the action of an electric current on
a magneticJneedle. In the same year, Biot and Savart formulated this law for
the~force dF with which the current element I dl acts on a magnetic pole at a
distance r from this element:

dF ~ I dlcp (a) f (r). (10.1)

where a is the angle:characterizing the mutual orientation of the current element
and the magnetic pole. The function cp (a) was soon found experimentally.
The function f (r) was theoretically determined by Laplace in the form

I (r) ~ 1/rl • (10.2)

Thus, the efforts of Biot, Savart, and Laplace led to the formula describing
the action of current on a magnetic pole. In the final form, the Biot-Savart­
Laplace law was formulated in 1826 as an expression for the force acting on a
magnetic pole, since tho concept of field strength has not yet been introduced.

In 1820, Ampere discovered the interaction (attraction or repulsion) between
parallel currents. He proved the equivalence of a solenoid and a permanent mag­
net. This made it possible to clearly formulate the problem, viz. to reduce
all magnetic interactions to the interaction between current elements and to
find the law of their interaction as a fundamental law which plays the same role
in magnetismjas Coulomb's law in electricity. By his education and inclinations,
Ampere was a theoretician and mathematician. Nevertheless, while investigating
the interaction between current elements, he fulfilled scrupulous experimental
work and constructed a number of intricate devices. Ampere's bench for demon­
strating the forces of interaction between current elements and their dependence
on angles is still used as a teaching aid. As a result, Ampere discovered the law
of interaction between current elements. Unfortunately, the way that has led
him to this discovery is reflected neither in publications nor in his notes. How­
ever, Ampere's formula for the force differs from (10.3) in that it contains a total
differential on the right-hand side. This difference is insignificant when the force
of interaction between current loops is calculated, since the integral of the total
differential around a closed path is equal to zero. Considering that the force
of interaction between current loops is measured in experiments rather than the
force of interaction between current elements, we have all grounds to assume
that Ampere was the author of the law of magnetic interaction of currents. In
its present form, the law of interaction between current elements was obtained
in 1844 by Grassman (1809-1877). In modern notation, this law is written as
follows:

I
dF =~ IsdlgX(ItdllXrtl) I

12 4n rfs '
(iO.3)

where dF 12 is the force with which the current element IIdl, acts on the current
element 12d12 , and f 1 2 is the radius vector drawn from current element 11dl}



Sec. 10. Biot-Savart Law 68

Fig. 24. Interaction between
current elements.IdF21+dF12 =F o. I (10.5)

The force with which current II flowing in closed loop £1 acts on closed loop L~

carrying current 12 , according to (10.3), is

to 12dl2 (Fig. 24). The dashed circles in the figure
denote closed loops in which the interaction of
current elements is not considered.

The force dF21 with which current element
12dl 2 acts on I 1dl1is naturally given by the same
formula (10.3) in which subscripts 2 and 1 are
interchanged:

dF -h... Itdltx(lgdlgXrll) (10.4)
21 - 4n "f11 •

The unit vectors 021 and D1 2 in Fig. 24 show the
directions of forces dF21 and dF1 2 perpendicular
to the corresponding current elements. Generally,
these forces are not collinear. Consequently, the
interaction of current elements does not obey N ew­
ton's third law:

(10.6)

The currents 11 and I 2 are taken out of the integral since they are constant at
all points of integration paths £1 and L 2• The formula for the force F 21 acting on
the closed loop carrying current 11 has a similar form. Newton's third law is ob­
served for the forces of interaction between closed current loops (see Sec. 39):

(10.7)

On experimental verification of the law of interaction. Strictly speaking, the
law (10.3) of interaction between current elements cannot be verified experimentally,
since there are no isolated current elements I dl the force of interaction between
which could be measured. Each current element is a part of a closed current,
loop, and hence only the law (10.6) of interaction between closed current loops
can be verified experimentally. However, the validity of (10.6) does not imply
the validity of (10.4), since we can add to (10.4) any function which, when sub­
stituted into (10.6) vanishes upon integration over closed path.

The electric current is due to motion of charges. Hence, formula (10.4) also
expresses the law of magnetic interaction between moving charges, which can be
easily obtained from it and verified experimentally, since the force of interaction
between moving charges can be measured. The agreement between numerous co­
rollaries of this formula and experimental results provides its most convincing
verification.

1-0290
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Field,' form of interaction. In complete analogy with electrostatics, the inter­
action between current elements occurs in two stages: current element I 1dl,
CfPP. tes a magnetic field at the point of location of current element I 2d1 2 • The
interaction of element I 2dl 2 with this field leads to a force dFl 2. The action of
the magnetic field with induction B on I dl is described by formula (9.27). Tak­
ing this formula into account, the two stages of interaction are described as.
follows:

(1) current element lIdll creates at the point of location of current element 12dl 2:
a magnetic field characterized by induction

(10.8)

(2) current element I 2 d12 , located at a point where the magnetic induction is­
dBl2, is acted upon by the force

IdFtl=IldllX dBtz·1 (10.9)

Biot-Savart law. Relation (10.8)t describing the generation of a magnetic field
by a current, is called the Biot-Savart law. For a closed loop with current I,
we have

IB=~ ~ ldlxr I
41£ 'Y r S ,

(10.10)

where r is the radius vector drawn from the current element I dl to the point
at which the magnetic induction B is being calculated. The integration in (10.10)
is carried out over the closed path. The current is assumed to be linear. A tran­
sition to volume currents is accomplished in accordance with rule (9.26). For­
volume currents, the Biot-Savart law (10.10) assumes the form

B = ~ 1j;' r dV.
v

(10.11),

Here, the integration is carried out over all regions in space where volume cur-
rents exist and are characterized by the current density j. .
Foree of interaction between rectilinear currents. The magnetic induction dBl~
created by the current element Ildxl at the point of location of the current ele­
ment 12dx2 ' (Fig. 22) is directed along the outward normal to the plane of the
figure .. Its magnitude is
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(10.14)-

d

y

I"
I!00

B - JL Ol l \ sin a, dXl Jlo r 1 (10 13)
12-4it J rls 2n r ·

-00

where the substitution of variables for evaluating
the integrals is the same as in formula (8.5).

Ampere's formula leads to the conclusion th.at Fig..25. M~gnetic induction of a·
in a magnetic field with induction (10.13), the stral~.t wire segment of finite
force dF1 2 , acting on the current element 12d12 , lengt.
is perpendicular to the conductor carrying current 12 and is directed towards
current 11, i.e. is attractive:

dF JLo Ill,. d
12 = 2n -r- %2'

Consequently, the magnetic induction of the
field created by a rectilinear current II flowing in
an infinite conductor at the point of location of
the current element 12dx2 [see (10.10)] is expres­
sed by the formula

Formulas (10.13) and (10.14) coincide with (9.28) and (8.19) respectively..

The experimental verification of formulas for a magnetic field obtained from the correspond­
Ing formulas for an electric field through relativistic transformatfons not only serves as .'
proof of the existence of a magnetic field, but also confirms Its relativistic nature.

The forces of interadion between current elements do not obey Newton's third law.
The forces of interaction between closed current-carrying loops obey Newton's third law.

Current elements do not exist in an isolated form. What, then, is the idea behind a direct
experimental verification of the formula for interaction between current elementsl
What conclusion can be drawn from the fact that forces of interadion between current
elements do not obey Newton's third law, while the forces of interaction between closed
current-carrying loops obey this lawl

Example to.t. Find the magnetic induction of the field created by a straight wire segment of
length I carrying a current I (Fig. 25).

The magnetic induction of the field created by each element of the conductor is perpen-·
dicular to tile plane of the figure and, in accordance with the law (10.10), is

dB=~1 dixit
4n r l '

since dl X r is perpendicular to the plane of the figure. Then

Idl X r I= dlr sin (it'~)= dlr sin ~ = dyd,
and hence

a

B= f!4o: d r dy flo! ( · +. )"" J (d2+y2)3/2 4nd sin ai sin as ·
-(I-a)

Using this formula, we can calculate the magnetic induction for any current loop eon--
sisting of rectilinear segments. '.

&*
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Fig. 26. Magnetic induction along
the axis of a current-carrying
loop.
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Fig. 27. To the calculation of
interaction between two circu­
lar currents.

Example 10.2. Find the magnetic induction on th« azts of a circular current I of radius TO (Fig. 26).
Let us use the law (10.11):

B _ flo I ~. dl X r
- 41t ·Y -rs- ,

L

where r = ro + h, dl X r = dl X to + dl X h. The magnitude of r does not change
in integration, and hence

B= ::;3 (~dl X ro+~ dl X h) . (10.15)
L L

Since h is a constant vector, we find

~ dl X h = ( ~ dl) X h = 0,
L L

because ~dl =0. The other integral in (10.15) is calculated as follows:

~ dl X ro= ~ nro dl=nro ~ dl= nro2nro,
L L L

where D is a unit vector perpendicular to the plane containing the current loop.
Then we obtain

~'oI r~
Bh = -2- (rij -t- hl)3/~ n. (10.16)

Example 10.3. Helmholtz rings are two coaxial circular conductors of the same radius arranged
in parallel planes so that the distance d between them is equal to their radius.

Prove that the magnetic field on the axis of Helmholtz rings at the midpoint between them
,. uniform to a high degree of accuracy.

Let us place the origin of the Cartesian system of coordinates at the centre of one of the
rings and direct the Z-axis along the axis of the rings (Fig. 27). The magnetic induction on
the axis of the rings at a point with coordinate z is given, in accordance with (10.16), by
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y

z

L

x

Fig. 28. A solenoid of finite
length.

J.Lol r~ l- t + 1 ]
BZ=-2- (J2+r~)3/1 [(z-d)2+r~]3/2'

(10.17)
where I is the current in a rin6'.

In a first approximation, the nonuniformity of Bz, is
characterized by the first derivative

8Bz 3fJ.olr~ [-Z z-d ]
8z 2 (Z2+ r3)&/2 [(Z-d)2+ rBl&/2 •

(10.18)
which givesFor J = d/2, we obtain 811z18% = 0,

82s, 3floI r~ {5z2 1
~ 2 (z2+r~)7/2 (%I+ rB)&/2

5(%-d)1 1}
+ [(J-d)2+r~]7/2 [(Z-d)2+ rBl&/1 •

(10.19)
Since for Helmholtz rings d = rOt for z = dl2 we obtain 8"B,18%" = O. This means that the
field in the vicinity of the point % = d/2 on the axis of Helmholtz rings is actually uniform
to a high degree of accuracy. .
Example 10.4. A straight circular solenoid of length L consists of n turns of a tightly wound
thtn wire. Find the magnetic induction on the solenoid axis assuming that current I flows
through its turns.

Since the turns are wound tightly, we can assume with a sufficiently high accuracy that
each turn creates on the solenoid axis a field defined by formula (10.16). The number of
turns per unit len~th is nIL. We can assume that the current over the length dz of the solenoid
is (lnIL) ds, Placing the origin of coordinates at the midpoint on the solenoid axis (Fig. 28),
wefind, using formula (10.16), that the magnetic induction at the point % on the solenoid ax18
is given by

L/2

B - fJ.onr~I r dz'
z - 2L J [(z-z'p'+rBl3/ 1

-L/2

J.LonI {-I+L/2 I+L/2}=u- [(%-L/2)2+rBll/2 +[(z+L/2)2+rBl1/ 1 .. (10.20)
For a very long solenoid (L -+- 00), for points z <: L/2, we obtain from formula (10.20)

lim Bz= J.LonI/L. (10.21)
L-+oo

The magnetic field of a very long solenoid is not only constant along its axis
but is also uniform over its cross section [s~e (8.38) 1.

Sec. 11. Field Transformation

The law of field transformation is derived proceeding
from the invariance of the equation of motion of a
charge in an electromagnetic field.

Invariance of the expression for force in an electromagnetic field. Expression
(9. f 9) for the Lorentz force acting on a point charge in an electromagnetic field
has been obtained from the requirement of the invariance of the relativistic
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.equation of motion. Consequently, this expression must also be relativistically
invariant, i.e. must have the same form in all systems of coordinates. Thus,
the expressions for forces in the coordinate systems K and K' have the form

F = q (E + u X B),

F' = q (E' + u' X B').

(11.1)

(11.2)

Using the relativistic invariance of these expressions and taking into account
(9.9), (9.11) and (9.12), we can obtain a relation between electric and magnetic
field vectors in various coordinate systems.

A particular case of transformation of field vectors was considered earlier,
when it was shown that while an electric field only exists in the coordinate sys­
tem K, a magnetic field also appears in the system K. Similarly, it can be shown
that if, a magnetic field only is present in one system of coordinates, the electric
field also appears in another system. Let us consider the relation between elec­
tric and magnetic fields in the general case.
Transformation of fields. Substituting the expressions (11.1) and (11.2) for
F y and F~ into formula (9.11), we obtain

ElI+(uzB~-u~Bz)= ;;vux/c
s
[E~+(u;B~-u~B;)]. (11.3)

1-~2

Eliminating u~ and u; from this formula by using the formulas for addition
of velocities,

, ux- v , uzY~
Ux = 1-vux/CI' Uz = 1- vux/C2 ,

(11.4)

and transposing all the terms in (11.3) to the left-hand side, we get

( E E~ VB1 )
1/- Y1-~:a - Yi-Pl

vE' B'
+(-Bz + yll +y Z )u.+(Bx-B~)uz=O. (11.5)

C2 1-p2 1-~2

This equality is valid for any values of u« and U z . Consequently, the expres­
sions in the pare n theses in Eq. (11.5) are separately equal to zero. Equating
these expressions to zero, we obtain the transformation formulas for field vec­

tors:

E;+ z;B; B :=:z B;+(v/c2
) E~

ElI= Y . (11.6) B:e=B~. (11.7) z y (11.8)1-p2 1-~2 .

The formulas for transforming other components can be obtained in a similar
manner by proceeding from (9.12):

Ex = B~, (11.10)
B~_(V/C2) E;

BII= Y . (11.11)
1-~2
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It is convenient to derive the transformation of the z-projectlon of a force
through formula (9.4) which can be written in .the form

Fs = t+v~~/cI [F;+:' (F',u')]. (11.12)

Proceeding in the same way as before, we can reduce Eq. (11.12) to the form

(1 + v;: )[Es+(u"Ba-uzBII)]-[E;+(u;B~-u;B;)]= ;1 (E"U')l (11.13)

where F' • u' = qE' • 0'. With the help of formulas (11.8) and (11.11), we
find that

Ex = E~. (11.14)
Thus, the transformation formulas for the electric and magnetic field vectors

ha ve the form

E~=E~, B:c=B~,

E _ E;+vB; B B~_(V/Cl) E;
11- Y1-~I' 11= Y1-~1

E
_ E;-vB~ B;+(v/cS) E;

z- Yi-lil' Bz= yi-lil

(11.15)

The inverse transformation formulas for the field vector in accordance with
the relativity principle can be obtained by replacing v by -v, the primed quan­
tities by unprimed ones, and vice versa.
Application of formulas (11.15). Formulas (11.15) can be used to find the elec­
tromagnetic field vectors in any inertial system of coordinates if their value is
known in any such system.

As an example, let us consider the field of a very long charged filament. The
filament is fixed and lies along the X'-axis in the coordinate system K'. Conse­
quently, this coordinate system only contains an electric field whose strength
is given by formula (8.5) by taking into consideration the definition of the field
strength. Hence, instead of (8.5), we obtain the following expression for the
electric field strength: .

E~=O, E~=p'Sol(21t8oYo)' E;=O. (11.16)
The Y-axis may have any direction perpendicular to the filament. From for­

mula (11.16) we find that the electric field strength of a very long charged fila­
ment is perpendicular to the filament and decreases in inverse proportion to the
distance from it. Since the charges are fixed, there is no magnetic field in the
coordinate system K'.

In the coordinate system K, the filament moves alongIts length in the posi­
tive direction of the X-axis with a velocity v. On the basis of (11.15), the electric
field strength is

Ex = 0, E,I = E~/V1-p2= p'S;/(2neoll;V 1- ~2), EI, = 0, (11.17)
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(11.18)

(11.19)

(11.20)

which is equivalent to {8.8),r'since~the field strength
is the ratio of force to charge.

Formulas (11.15) show that in addition to the
electric field, the moving charged filament also
generates a magnetic field in the space surround­
ing it. The induction of this field is

(v/c 2) E'
B:r:=O, Bg=O. Bz= V1-~~

vp'S;'
- --.--;..---=-:~~

2n80c2yo V1-B2

Fig. 29. Magnetic field lines of which is equivalent to formula (8.15) if we take
a charged filament moving along into account (8.9), and go over from force f" to
its length. the magnetic field induction in accordance with

formulas (9.18) and (9.16), i.e. if we divide t, in
(8.15) by qv. Obviously, the magnetic field lines are concentric circles in
planes perpendicular to the filament (Fig. 29), the centre of the circles lying on
the filament.

While solving specific problems, we must choose the coordinate system in such
a way that the electromagnetic field in it has the simplest form. This consider­
ably simplifies the solution of the problem. It should not be thought that there
always exists a coordinate system in which the field can be reduced either to an electric
field or to a magnetic one. There are configurations of electromagnetic fields for
which electric and magnetic fields exist simultaneously in any coordinate system.
A general analysis of this question is carried out by considering the invariance
of an electromagnetic field with respect to the Lorentz transformation (seeSec. 62).
Field of 8 point charge moving uniformly in a straight line. To begin with"
we fix the origin of the coordinate system K at the point charge q. In this sys­
tem, the electric field strength is described by Coulomb's law, and the magnetic
field is absent:

E,=-q-~, B'=O,
4n80 r' ~

where r'l = X'2 + y'2 + z''l.. In the coordinate system K the charge q moves
with a velocity v in the positive direction of the X-axis. The coordinate axes
of the system K' are oriented so that they coincide with the corresponding axes
of the system K at the instant t' = t = O. Substituting (11.19) into (11.15)
and using the Lorentz transformation, we obtain

E - E' -_q_ .=:-- tfV (z-vt)~ ,
~ - % - 41teo r'S - 4neo [,\,2 (z - vtF'+ yl+Z2]S/2

where
11

Y= (1- vl/el)l/I (11.21)

Denoting by x q the coordinate of the charge q in the system K at the instant t
when the field is determined at the point (z, y, z), we can rewrite (11.20) in
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the form

78

E __9_ ,(z-Zq) (11 22\
x - 4:tso (i'2 (Z-Zq)l+1/2+ 12]3' 1 , • r

since x q = vt is the law of motion of the charge in the system K.
The other two components of the electric field strength are obtained in the­

same way:

E, = ~eo [V2 (Z_zq/~y2+S2]3/1 , (11.23}

E = _9- yl (11 24'-
I 4neo (y. (a:-Zq)I+1I2+Jlj8/2 - • r

The magnetic induction is calculated with the help of formulas (11.15).
The result can be written in the vector form as follows:

B = (l/c S) v X E, (11.25}

where E is defined by formulas (11.22)-(11.24). It can be seen that the field lines­
of B are concentric circles with their centre on the X-axis along which the chargeq·
moves.

The field configuration of a charge moving uniformly and rectilinearly does.
not change with time. Only the position of this configuration changes relative­
to the fixed coordinate system K. In other words, the invariable field configura­
tion moves along with the charge. Let us consider this configuration at the in­
stant when the charge is at the origin of the system K, i.e, when x q = O. In­
this case, we have [see (11.22)-(11.24)]

E= -q- yr (1126\
4n£o (yx2+ y2+ Z2)S/2 . • r

where r is the radius vector from the point of location of the charge q to the
point, where E is being determined. Thus, the field strength is directed along­
the radius vector, although its value depends on the direction of the latter.
We denote by 8 the angle between the direction of the velocity v of the charge­
and the radius vector. In this case, x = r cos 8, y2 + Z2. = r2 sin" 8, yx2 +
+ y2 + Z2 = r2y2 (1 - ~2 sin" 8), ~ = vIc and formula (11.26) assumes the
form

E __9 _ .!- f - ~I

- 4nso r3 (t - ~I sin 2 8)3/2 ·

The difference between the field of a moving charge and that of a fixed charge­
is manifested in a strong dependence of the field strength on the direction of the­
moving charge. The field strength along the line of motion of the charge (8 = 0,
e = n) and in a direction perpendicular to this line (8 = ±1t/2) is given by

En =-q- (1-P2) (11.27)4neorl ,

EJ. = 4n:or 2 V1~~2 • (11.28)
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: For relativistic velocities (~ ~ 1), the field of a moving charge at a given distance
is weak along the line of its motion and strong in the direction perpendicular to it.
I n other words, the field is as if concentrated in the vicinity of the plane passing
through the charge perpendicularly to its direction of motion.

11 an electric field exists in a certain coordinate system, a magnetic field also appears In
another system, and vice versa. Through an appropriate choice of a reference system, we
can strive to obtain simple configurations of electric and magnetic Delds, or even eliminate
one of them. However, it is not always possible to find a reference system In which the
field can be reduced either to an electric field or to a magnetic one.

-Proceeding from formulas for the transformation of quantities from the system K' to the
system K, how can we obtain formulas for the transformation of the same quantities from
the system K to the system K'? Verify by using formulas (11.5) as an example that the
results obtained in both cases are the same.
Is the field of a rapidly moving point charge centrall centrally symmetrlcl

Problems

1.t. Calculate div r.
1.2. Calculate grad (r-A), where A is a constant vector.
t.3. Calculate div (00 X r), where 0) is a constant vector.
1.4. Calculate div (r/r).
1.5. Calculate div [A X (r X B)], where A and B are constant vectors.
t.6. What is the value of the magnetic induction at the centre of a square loop with side a,

if a current I flows in it?
1.7. A wire is wound to form a spiral around a cylindrical insulator of radius a and makes n

complete turns. The helical angle of the spiral is equal to <X. Find the magnetic induc­
tion at the centre of the cylindrical insulator if a current I flows through the winding.

Z

I
L

Fig. 30. Two hnite-Iength con­
ductors.

L
/

/

/ Y
/

I
X

Fig. 3f. Notation of angles in a
chosen coordinate system.

i.a Two point charge! q and -q are located at the points (a, 0, 0) and (-at 0, 0) respec­
tively. Find the electric field strength at the point (z, y, s).
A charge is distributed with a linear density 't over the length L along a radius vector
drawn from the point where a point charge q is located. The distance between q and
the nearest point on the linear charge is R. Find the force acting on the linear charge,
Two·~charges are distributed with the same linear density 't over a length L and are loca­
ted parallel ~to each other at a distance l (Fig. 30). Find the force of interaction between
them.
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t.ll. A disc has a surface charge density a = arl, where r IS the distance from the centre of
the disc. The radius of the disc is equal to roo Find the field strength at a height h along
the normal passing through the centre of the disc.

t.12. Two uniformly charged surfaces are parallel to the plane X, Y and intersect the Z­
axis at the points Zt = at and Z2 = a2 > at. The surface charge densities are equal in
magnitude but opposite in sign (Ot = -02). Find the electric field strength at all points
in space.

t.13. Find the strength of the electric field created at a point P by a charged filament of
·,JI length L (Fig. 31). The linear charge density is 't'. The point P lies in the (Y, Z) plane;
~ this, however, does not involve any loss of generality of the solution since the field is

axisymmetric.
t.14. A very long uniformly charged circular cylinder has a surface density o, A very long

filament charged to a linear density 't' is arranged along the cylinder axis. Find the
condi tion under which the electric field strength outside the cylinder is equal to zero.

t.15. A charge is uniformly distributed with the volume density p = aY;inside a spnere of
radius a. Find the electric field strength.

t.16. A proton beam of circular cross section of radius 1 mm is accelerated by the potential
, difference of 10 kV. Assuming that the density of protons is constant over the cross see­

tion, find the volume charge density in the beam for the current of 5 X 10-6 A.

Answers
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1 1 8 _ q {(x-a) ix+Yly (%+4) Ix+yl, }
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q'tL \ _ 't
2

[( LI ) 1/2 ] ) _ ah [ r~+2;1,..
41t80R (R+L) • i.io, (- 2n80 I+T -1;. i.n, Eh- 280 (rB+hll)I/ II -
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0
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CHAPTER 2

Constant Electric Field

Constant electric fields do not exist ion nature since there are no fixec'
elementary charges. However, if the sum of elementary charges of
each sign is nearly constant in an infinitely small physical volume, ancr
if their average velocity is close to zero, the field generated by
them at a sufficiently large di'stance from this volume element I.
nearly constant. It is called a constant electric field. A fixed point
charge serves as the model of the charge generating this field. A~
aggregate of point charges may form space charge, surface charge
or linear charges. As we go over to the continuous charge distriba­
fion model these aggregates are charaderized by volume, surface,.
and linear charge densities.

Sec. 12. Constant Electric Field

The ideal model of a constant electric field and the limits of its
applicability are discussed.

Fixed charge. Electrostatics studies electric fields of fixed charges. It is assum­
ed that charges are held at various points in space by the forces of nonelectrostat­
ic origin, whose nature is not specified in the framework of electrostatics. For
example, electrostatics studies charge distribution over the surface of a conduc­
tor, the electric field created by these charges, the forces acting in the field;
but does not explain why these' charges remain on the surface of the conductor;
The nature of forces holding the charges on the surface of conductors is not stud­
ied in electrostatics. The expression "a charge q is at the point (z , y, z) in vac­
uum" has a similar meaning. It is assumed that the charge q is as if fixed at the­
point (x, y, z) in space, and that there are no material particles in the vicinity
of this charge (vacuum). Such a representation is obviously an idealization.
The essence of the model. There are no fixed elementary charges in nature;
and hence constant electric fields also do not exist. However, in most of the phe-·
nomena studied in the classical theory of electricity, a superposition of fields;
created by many charges is observed rather than the field of an individual ele-·
mentary charge. The contribution of the field of an individual elementary charge­
to the superposition of fields is rather small. Moreover, the electric field~

strength is defined as the quantity averaged over a certain physically small;
volume and a physically short interva 1 of time. The fluctuations from the mean
value of the field strength are quite small. 1t is these mean i alues that are studiet!
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(13.1)

J,n the classical theory of electricity and magnetism. Hence, strictly speaking, the
-constancu of electric field in time rather than the immobility of charges is essential
for electrostatics. In other words, in the model of constant fields the idealization
is associated not with the constancy of the field but with the immobility of

-charges creating this field.
_Limits of applicability of the model. Since the model is based on the existence
"Of fields with very small fluctuations of mean values and not on the existence of
-nxed charges, the limits of its applicability are determined by the requirement that
the contribution of individual elementary charges to the observed field should be
.small, Hence it follows, for example, that electrodynamics is inapplicable to
-the description of motion of individual electrons in an atom. Their motion if,
-described by the quantum theory.

Sec. 13. Differential Form of Coulomb's Law

The physical factors responsible for the validity of the
Gauss theorem are analysed. The differential form
of the Coulomb law is given and its corollaries are
discussed.

Gauss' theorem. The Gauss' electrostatic theorem establishes a mathematical
relation between the electric flux through a closed surface and the charge located
in the volume bounded by this surface.

Suppose that a point charge q is inside a volume V bounded by a closed sur­
iace S (Fig. 32). Let us consider the flux N of the field E across this surface:

N=~ E·dS
s

It should be recalled that the outward normal is always taken as the positive
-direction for closed surfaces. This means that the surface area element dS in
~13.1) is directed outwards from the volume (Fig. 32). According to Coulomb's
law, we have

. 1 q r
E=--- (132)

4nBo r2 r " •

Consequently, the integral in (13.1) can be expressed in the form

N = -4
q th~ (2:... dS) . (13.3)
",eo :Y r r

B

Let us consider the relation

r I r I /...,r- dS r dS cos (r, dS) = dS', (13.4)
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(13.6)

where dS' is the projection of the surface' area element dS onto a plane perpen...
dicular to. the radius vector r. It is well known from geometry that

dQ == dS""', . (13.5)

where dQ is the solid angle at which the surface area element dB' is seen from
the origin 6f radius vectors, which coincides in the 'present case with the point
where charge q is located. Taking (13.4) and (13.5) into consideration, we can
write Eq-. (13.3) in the form

N = L! f'dQ.
~ ..eo ';Y

B

The total solid angle at which a closed surface is Seen from points inside the
volume bounded by this surface is equal to 4rr, i ,e,

~ dQ=4n.
B

Consequently, we get from (13.6)

IN = q/eo.j

(13.7)

(13.8)

The flux of E through a closed surface when a point charge is located outside
the volume bounded by it is calculated in a similar manner (Fig. 33) and is

Fig. 32. Calculation of the elec­
tric flux through a closed sur­
face when a point charge is in­
side the volume bounded by the
surface.

q

Fig. 33. Calculation of the elec­
tric flux through a closed sur­
face when a point charge is out­
side the volume hounded by
the surface.

defined by formula (13.3). The integrand, however, can now assume positive
»<.

as well as negative values: if the angle(r, ' dS) is acute at some points on the sur-
face, the integrand will be positive at these points. For points where the values
of this angle are more than n/2, the integrand will be negative. This means that
the integrand is positive on the surface ADB and negative on ACB. Hence the
elements of the solid angle (13.5) ,on the· surface ADB are positive, while on
ACB, these elements are negative. We denote by Qo'the solid angle at the vertex
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of a cone formed by the tangents from the point 0 to the surface under consid­
eration (Fig. 33)." In this case,

~ :. (~ dS)= JdQ- J dQ==Qo-Qo==O,
B A~ A~

(13.9)

since the surfaces ACB and ADB are seen from point 0 at the same solid angle Qo~

but appear in the integral with different signs. When a point charge is outside
the volume, the flux of field E through a closed surface is ·

N = O. (13.10)

Combining results (13.8) "and (13.10), we can write (13.1) in the following finnl
form:

~ E.dS==
B

rjleo t when q is inside the volume bounded
by the surface S;

0, when q is outside the volume
bounded by the surface S.

(13.11)

The statement expressed in (13.11) forms the content of the Gauss electrostatic
theorem for a point charge.

The generalization of this theorem to a system of point charges is made with
the help of the principle of superposition. For point charges qi' the field strength E
at each point is the sum of fields E, created by each of the point charges:

Conseq \l erI tly,

~ E dS == }} ~ E, dS.
B ( B

(13.12)

(13.13)

While calculating each integral in the sum on the right-hand side of
(13.13), we must take into account Eq. (13.11): the integral is equal to qi/fO
for a point charge contained inside the volume, while it is equal to zero for a
charge" outside the volume. Consequently, Eq. (13.13) assumes the form

(13.14)

where V under the sign ~ means that the summation is carried out only over
the charges located inside the volume V. The tota1 charge inside this volume is
denoted by Q in (13.14):

(13.15)
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Taking into account definition (4.1) for the volume density p for a continuous
charge distribution, we can write formula (13.14) in the form

(13.16)

where

Q= j pdV (13.17)
v

is the total charge in the volume bounded by the closed surface S. The state­
ment expressed in formula (13.16) forms the content of Gauss' electrostatic theo­
'rem for a continuous charge distribution. Obviously this formula also contains
expressions (13.14) and (13.11) as particular cases.
Measurement of charge. Gauss' theorem allows us to find the total charge
contained in a volume by measuring the field flux through the surface bounding
this volume. Other methods of determining the charge do not give satisfactory re­
.sults. For example, it is impossible to find this charge by measuring the force
exerted by it on a test charge outside this volume, since the force depends not
only on the total charge, but also on its distribution over the volume which
is, generally speaking, unknown. The charge can be determined by measuring
the force acting on it in a known uniform external electric field. In this case,
the field must be uniform. Clearly, this method is applicable only when the ex­
ternal uniform field does not significantly change the charge distribution inside
the volume.
Physical foundation of the validity of Gauss' theorem. It can be seen from the
derivation of Gauss' theorem that its validity stems from the possibility of re­
ducing the integrand in (13.3) to the differential dQ of the solid angle with the
help of (13.4) and (13.5). This is possible only when E (r) decreases in inverse
proportion to the square of the distance from the point charge. For any other de­
pendence of E on r, the integrand in (13.6) must contain, besides the differen­
tial of the solid angle, a certain function of r which makes it impossible to express
the electric flux through a surface as a function of charge. This is a violation of
the Gauss theorem. Hence, Coulomb's law forms the physical foundation of the
Gauss theorem or, in other words, the Gauss theorem is the integral form of Coulomb's
law.
Differential form of Coulomb's law. Maxwell's equation for div E. With the
help of the divergence formula (5.21), the flux of E through a closed surface can
be transformed into the volume integral of div E:

~ E·dS = j divEdVt (13.18)
8 V

Consequently, formula (13.16) assumes the form

) (div E-p!8o) dV = O. (13.19)
v
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This equality is satisfied for any volume V. Consequently, the integrand is
identically equal to zero, i.e.

IdivE==p/eo·1 (13.20)

The validity of (13.20) and of the Gauss theorem depends on the validity of
Coulomb's law. Consequently, (13.20) is the differential form of Coulomb's law.
The linearity of Eq. (13.20) reflects the validity of the principle of superposition
for field strength. It has been derived here for fixed charges, although it is assumed
that this equation is valid for an arbitrary motion of charges. ·
Lines of force. An electric field line (line of force) is a line the tangent to which
at any point coincides with the field strength E. The lines of force are a convenient

Fig. 34. Lines of force for a
field whose strength increases
from right to left

Fig. 35. Lines of force for two
unlike charges

way in which a field can be graphically represented. The field strength is conven­
tionally characterized by the number of field lines intersecting 1 m2 of the sur­
face perpendicular to the direction of the field lines at the corresponding point:
the higher the density of the lines of force, the stronger the field. Figure 34
shows an electric field whose strength increases from right to left.

Sources and sinks of field E. It can be seen from Eq. (13.20) that the field lines
start where div E > 0 and terminate where div E < O. In other words, the field
lines originate at positive charges and terminate at negative ones. Consequently,
the positive and negative charges are respectively called the sources and sinks
of field E. Such a distinction between charges is, of course, arbitrary and stems
from the definition of the direction of a field. Positive and negative charges
play an exactly identical role in the creation of an electric field. Figure 35 shows
the lines of force for two unlike charges.
Charge invariance. Let us find the flux of E through a closed surface surrounding
a point charge q which is moving uniformly and rectilinearly. The field created
by this charge is given by formula (11.26). The electric flux is

N = ~ E.dS== ~ Er2dQ == ~ Er2sin 0 ae de, (13.21)

where the surface of integration is taken in the form of a sphere having the
moving point charge as its centre at a certain instant of time. It is considered

6-0290
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that E and dS are collinear with the radius vector r; e and q> are the polar and
the axial angle respectively of a polar coordinate system whose polar axis coin­
cides with the X-axis of the fixed coordinate system. Substituting (11.26) into
(13.21), we get

1C

N- q(1-~2) r sin9d8 (13 22)
- 280 J (1- ~2 sin2.8)3/2 , •

o
where the integration has been carried out over the angle drp on which the inte­
grand in (13.21) does not depend. Since sin" e == 1 - cos" e, and sin e de
-d cos 8, we get

n 1r !in 8 d8 _ 2 r dz
J (1- ~2 sin2 8)3/2 - J (1- ~2+ ~2X2)3/2
8 I

where a2 == (1 - ~2)/~2. In this case, relation (13.22) assumes the form

N == q/co' (13.23)

which is identical with (13.8). This proves that the Gauss theorem is also valid
for a point charge moving uniformly and rectilinearly. If the charge in a volume
is determined by means of the flux of E through a closed surface bounding this
volume, Eq. (13.23) expresses the invariance of charge.

The Gauss theorem expresses a reldon between the electric field flux through 8 closed
su.rface and the charge in the volume bounded by this surface. Coulomb's law serves as
the physical foundation of the Gauss theorem. In other words, the Gauss theorem is the
integral form of Coulomb's law.

A line the tangent to which at each point coincides with the electric field vedor Is
called the line of force of this field.
Positive charges are the sources and negative charges are the sinks of the eledric field.
This distinction between charges, however, is purely arbitrary. They play identical roles
in generating an electric neld.

Sec. 14. Potential Nature of Electrostatic Field

The integral and differential forms of the definition
of the potential nature of field are discussed. The sca­
lar potential is introduced and its properties are ana­
lysed. The potential of charges distributed in a finite
region of space is calculated. The Earnshaw theorem
is proved.

Work in an electric field. Since the force acting on a point charge q in an elec­
tric field is F = qE, the work done to displace the charge by dl is

dA = F·dl =qE.dl. (14.1)·
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(14.3)

The work performed per unit charge in displacing the charge is defined as the
ratio of the work to the charge:

dA' = dA/q = E·dl (14.2)

and is measured in joules per coulomb. It follows from (14.2) that the uiork
performed by the field is assumed to be positive while the uiork done by the forces
external relative to the field is assumed to be negative. This sign rule is similar to
that used in thermodynamics for the work of a system.

When a charge is displaced from point 1 to point 2 along the trajectory L
(Fig. 36), the work per unit charge is

(2)

A' = ) E·dl.
(1)
L

Potential nature of a Coulomb field. A force field is called a potential field if
the work done upon a displacement in this field depends only on the initial
and final points of the path and does not depend on the trajectory. A n equivalent
definition of the potential nature is the requirements that the work must be equal
to zero upon a displacement along any closed contour.

It is well known that the force of gravity of a mass, which is inversely pro­
portional to the square of the .distance, is a potential force, its potential nature
being determined precisely by this dependence on distance. Since the Coulomb
force of a point charge decreases with distance according to the same law, it is
a potential force. The entire mathematical part of the concept of potential was
developed in the theory of gravitation. This concept first appeared in 1777 in
the works of Lagrange (1736-1813), although he did not apply this term to the
function representing the potential. The term "potential" was introduced in
science in 1828 by Green and independently by Gauss (1777-1855). Laplace
(1749-1827) and Poisson (1781-1840) also made significant contributions to the
theory of potential.

According to the principle of superposition, the potential nature of an arbitrary
electrostatic field follows from the potential nature of the field of a point charge.
Mathematically, this statement is proved as fo llows:

where

~ E.dl ... ~ (~Et)·dl=~ ~Et·dl=~ 0=0,
I I i

(14.4)

(14.5)

Curl of a vector. The criterion of the- potential nature of the field used by us
so far does not have a differential form and for this reason cannot always be ap­
plied easily and effectively. Its application boils down to the verification of the
statement that the work over any closed contour is equal to zero. This means that

••
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we must investigate an infinite number of closed paths, which is generally im­
possible. This criterion can be applied only when the general expression for the
work over any path is given in an analytic form. Such a formula can be obtained
only in rare cases. Hence it is desirable to obtain another criterion for the poten­
tial nature, which could be easily and conveniently applied in practice. The
differential form given with the help of the curl of a vector serves as such a cri­
terion.

First of all, let us consider the definition of the curl of vector A (denoted by
curl A) in vector form. A vector is specified by three components which do not

Fig. 36. Work performed in an
electric field during the displa­
cement of a point charge

---.
L

Fig. 37. To the vector defini­
tion of curl

lie in the same plane. We choose a certain direction characterized by a unit vec­
tor D. In the plane perpendicular to D we bound a surface area element ~S by
a very small closed contour L (Fig. 37). As usual, the direction of the positive
circumvention of the contour L is connected with the direction of D by the right­
hand screw rule. The curl is a vector whose projection onto the direction of D

is defined by
. ~'A.dl

curl., A = 11m AS r

~s.. o
(14.6)

The curl characterizes the vorticity of a vector, which is reflected in the name
of the operation. Suppose, for example, that the vector A is equal to the velocity
v of the points of a rigid body rotating at an angular velocity (0 about an axis
collinear with D. We shall find curl; v for points lying on the axis of rotation.
For the contour L, we choose a circle of radius r having its centre on the axis and
lying in a plane perpendicular to this axis. Obviously, we have v = cur, ~S =
nr 2

, and A· dl = v dl, where dl is the scalar value of an element of the circle.
Hence, using (14.6), we obtain

tor ~ dl . ror2nr 2
curlnv=lim =IIm---= (0,

r-.O nr2
r-+O nr 2 (14.7)
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(14.9a)

(14.9b)
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where ~ dl = 2nr is the circumference of the

circle. Thus, the curl of the linear velocity of
the points of a "perfectly rigid rotating body is (x y )" ( +: ), ,z x, y ~y, z '
equal to twice the angular velocity of its rota- . 4-

7
'

tion. It can be shown that this statement is X /./' /J
valid not only for the points lying on the axis Z-.
of rotation but for all points. .

F . I . fl·· .(x + 4X, y, Z) (x + .4X, y ,+ 4Y, z)or a practica computation 0 a cur, It IS
more convenient to use formulas written in Fig. 38. To the definition ~of curl
terms of coordinates instead of (14.6). Let us in terms of coordinates
find the projections of curl A in a rectilinear
Cartesian system of coordinates. We take, for instance, the Z-axis (Fig. 38).
The contour L is a rectangle with the sides ~x and ~y. The direction of posi­
tive circumvention is shown in the figure. In this case, we obtain

(x+Ax, y, z) (x+Ax, tl+AlI, z)

~A.dJ= J Ax(x,y,z)dx+ I All (x+Ax, y, z)dy
L (x, 11, z) (x+Ax, 11, z)

(x, lI+AlI, z) (x, 1/, z)

J Ax (x, y+ Ay, z) dz -l- J A" (x, y, z) dy, (14.8)
(x+Ax, 1I+dy, z) (x, 1I+A1I, e)

where the integration is performed along the sides of the rectangle between its
vertices whose coordinates are used in (14.8) as limits of integration. Consider­
ing that ~x and ~y can be as small as desired, in the integrands of the second
and third integrals we can expand Ax and Au into a series in ~x and' ~y and
confine ourselves to the linear terms:

A ( + A ) A ( ) + A BA (z, y, .I) +
oX x, Y uy, z = x x, y, Z uY By •••

)+ A BAli (z, y, s) +
A, (x+ S», Y, z) = All (x, y, Z ts» Bx •••

Let us calculate the sum of the first and third integrals:

(x+Ax, II, s) (x, II+Ay, s)

/1= J Ax(x,y,z)dx+ J Ax(x.y+Ay,z)dx
(x, JI, z) (x+Ax, y+Ay, s)

(x+Ax, 11, z) (x+Ax, II, z)

= J A" (x, y, z) dx- J [Ax (XI Yl z)+Ay 8Ax (:~ V, s) ] dx,
(s, II, z) (x, 1/, %)

(14. to)

where in calculating the second integral in (14.10) we use formula (14.9a),
and the minus sign appears as a result of the reversal of the order of integration.
In this formula, the terms containing Ax (x, y, z) in the integrands are cancel-
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(14.13)

(14.12)

(14. t 1)

led out, and hence
/ _ iJAx (x, y, z) L\ ~
1- - ay Y x,

Similarly, we calculate the sum of the second
and Iourt h integrals in (14.8):

oAy (z, y, s)
/2 = ex ~x ~y.

Using formula (14.6), we find

{jAy aA
(curIA)z=----xox ay·

The projections onto the other axes of coordi­
nates are calculated in a similar way:

Fig. 39. To the proof of Stokes' iJAz oAy oAx oAz
theorem (curIA)x=ay-7il' (curIA}u=--as-h.

(14.14)
Denoting, as usual, the unit vectors of the coordinate axes by ix, i y , and i z'

we can wr ite the vector curl A in the form

I A · (OA z oAy ) +. (8A x iJAz ') • (BAy iJAx ) (14 15)cur = Ix iiY - --as ly ---az - 7fZ + lz 7fZ - ay. ·
Stokes' integral theorem. This theorem relates the circulation of a vector around
the contour bounding a surface to the flux of its curI through this surface. Its
derivation is based on definition (14.6). Let us calculate the flux of the vector
curl A through the surface 8 bounded by a contour L (Fig. 39), dividing the
surface into elements 118i: .

JcurlA·dS= ~ J curl Av dS, (14.16)
S i ASi

Since 118i are very small, we obtain, according to (14.6), the following expres­
sion for each element

J curlA·dS= j (curlA)ndS~(curlA)nL\S~~A.dl, (14.17)
ASi AS i L i

where L, is the contour bounding 118i : Hence Eq. (14.6) can be represented in the
form

JcurlA·dS~ ~ ~A.dI. (14.18)
S i L i

The parts of the contours Li, which are the boundaries between 118i 's, appear
in two terms of the sum (14.18): once in the integration along the contour of a
given area element 118i' and for the second time, in the integration along the
contour of the neighbouring area element. These integrals are equal in magnitude
but opposite in sign, since the paths of integration along the boundary have op-
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posite directions. Thus, in (14.18) all parts of the integrals over the boundaries
between ~S i cancel out, and we are left only with the sum of integrals over those
parts of the contours L, which do not form a boundary between ~S i : In other
words, we are left with the integral over the contour L bounding the surface S.
As ~S i ~ 0, the approximate equality (14.18) becomes exact:

Jcurl A· dS = ~ A· dI.
S L

(14.19)

(14.22)

This relation is known as Stokes' integral theorem.
Differential form of the potential nature of the field. The fact that the work
performed during the displacement of a charge in an electrostatic field is inde­
pendent of the path is expressed by the equality

B B

JE·dl = Js.ar, (14.20)
A A
z, L.

where L1 and L 2 are different paths between points A and B. Considering that

r tJ E· dl = - J E· dl, we can represent (14.20) in the form
A B
~ LI

B A

JE.dl+ JE.dl=~E.dl=O, (14.21)
A B L
Ll L.

where L = L 1 + L 2 • This formula is a mathematical expression of the state­
ment that the work done in displacing a charge over any closed contour in an
electrostatic field is equal to zero.

Using (14.19) and (14.21), we get

Jcurl E·dS = 0,
S

where S is the surface bounded by the contour L. Since S is arbitrary, it fol­
lows from (14.22) that

curl E = O. (14.23)

This equation is the differential form of the statement that the electrostatic
field is 8 potential field.
Gradient. Let q> (x, y, z) be a scalar position function. The gradient of q> is
defined as the vector

d • oq> +i oq> +. icpgra cp = 1% -a;: 11 7iii 1% h · (14.24)
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In order to elucidate the meaning of this vec­
tor, let us calculate the total differential of the
function cp upon a displacement by dr == i x dz-]­
i y dy + i z dz:

dcp= :: dx+ :~ dy+ :~ dz = grad qi-dr,

(14.25)

Thus, an infinitely small increment dcp due to
Fig. 40. The direction of grad q> a displacement in a certain direction is equal to

the component of grad cp in this direction, multi­
plied by the magnitude of the displacement. We construct a family of sur­
faces cp == const (Fig. 40). As we move over the surface cp = const, dip ==0. Hence
[see (14.25)], grad cp -.L dr, i ,e. the vector grad cp is normal to the surface <p ==const.
The magnitude of this vector is equal to the derivative of rp with respect to the
direction perpendicular to the surface cp == const.
Scalar potential. Since the work done in displacing a charge in a potential
field does not depend on the path and depends only on the initial and final points
of the trajectory, it can be expressed in terms of the coordinates of these points.
This can be done with the help of potential.

It can be directly verified that the following identity always holds:

curl grad <p = O. (14.26)

Consequently, Eq. (14.23) will be satisfied if E is represented in the form

IE= -gradcp·1 (14.27)

The sign is chosen so that the field strength E is directed towards decreasing
values of <p. The scalar function <p related to the field strength E through for­
mula (14.27) is called the scalar potential of electric field.

Field strength can be measured experimentally. The potential rp does not have
any definite numerical value, and it is meaningless to speak about an experimental
measurement of its value.
Ambiguity of scalar potential. Formula (14.27) shows that if a certain con­
stant is added to rp, the field described by this potential does not change since
the derivatives of a constant quantity with respect to coordinates are equal
to zero. Consequently, the potential cp of a given electric field is defined only to
within an additive constant.
Normalization. In view of the ambiguity of scalar potential, we can ascribe
to it any preset value at any preset point. After this, the potential at all
other points has a quite definite value, i.e, it will be single-valued. This proce­
dure of making the potential single-valued by ascribing to it a certain ualue at
one of the points is called potential normalization. When electric fields are inves­
tigated near the Earth surface, the potential of the Earth is usually taken as
the zero potential. When general questions are analysed, and the charges are
located in a finite region of space, it is more convenient to assume that the po-
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tential is zero at an infinite distance from the charges. Such a normalization
will be frequently used in this book.
Expression of work in terms of potential. If a charge moves between points
1 and 2, the work per unit charge is

(2) (2) (2)

A' = i E·dl = - Jgrad q> -dr = - Jdrp= q> (1) - q> (2), (1.4.28)
(1) (1) , (1)

where we have used formula (14.25) and the fact that dl = dr. It follows from
this equation that the work indeed depends on the initial and final points of
the path and does not depend on the shape of the trajectory. It also shows that
the potential difference between two points has a clear physical meaning and
can be measured experimentally. Thus, it is not the potential itself but the poten­
tial difference between different points that has a physical meaning.
Field potential of a point charge. We shall normalize the potential to ~zero
at infinity. Assuming that point 2 in formula (14.28) is at infinity, we put cp (2) =
cp (00) = 0 and obtain the following expression for the potential at point 1:

00

q>(1)= JE·dI. (14.29)
(1)

The path from point 1 to infinity can be arbitrary. However, we must choose
it so as to simplify the calculations as much as possible.

The field of a point charge is spherically symmetric. In accordance with
formula (14.29), the potential at a distance r from the point charge q is given by

00

cp(r)=-q- r .i-("!'edl )
4neo J r l r •

r

(14.30)

Since for any dl the equality (r dl/r) = dr is observed, it follows from (14.30)
that

00

q r dr q [ f ] 00 f q
<p (r) = 4tt80 J -;:2 = 4neo - r r = 4neo -;:.

r

(14.31>.

We recommend to the reader to verify that Coulomb's law
q f f q r

E= -gradcp= - 4neo grad-;:= 4n80 77 (14.32)

can be obtained from this formula.
Field potential of a system of point charges. According to the principle of super­
position, the field potential of a system of point charges is equal to the sum of the
potentials created at a given point by each of the charges. This is obvious since

E = E1 + E 2 = -grad <PI - grad <P2 = ~grad (cpt + q>2)·
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Consequently, using formula (14.31) we can write the following expression fo!'
the potential created by a system of point charges qi:

(14.33)

(14.34)

where r, = V (x - Xi)2 + (y - Yi)2 + (z - Zi)2 is the distance from the point
charge qi located at the point (Xi' Yb Zi) to the point (x, y, z) at which the po­
tential is calculated.
Field potential of continuously distributed charges. As before, we assume that
all charges are located in a finite region of space and that the potential is normalized
to zero at infinity. Denoting the volume charge density by p (x', y', z'), we ob­
tain the following expression for the potential instead of (14.33):

1) P (x', y', z") dx' dy' da'
q> (x, y, z) = -- .

. 4neo Y(X-X')2+(y_y')2+(Z-z')1

This formula can be written in a more compact form (without detailed speci­
fication of variables):

1 r p dV -
cp = 4neo J -r- , (14.35)

where dV is the volume element over which the integration is performed. This
brief form will be often used in further analysis.
Field potential of surface charges. If a charge is located on the surface, the
charge distribution is characterized by the surface charge density (J. On the area
element dB (which is a scalar and not the vector of area element), there is a
charge (J dB, and hence the potential at a certain point is given by a formula
similar to (14.35):

__1_ r adS
cp - 4nso J r '

S

.
(14.36)

where r is the distance between the area element dB and the point at which the
potenti al is calculated. Integral (14.36) is valid for all surfaces carrying surface
charges.
Infinite value of the field potential of a point charge. I t follows from (14.31)
that as r --+ 0, the potential cp (r --+ 0) --+ 00. This is due to the fact that the
volume density of a point charge is formally equal to infinity since its volume
is equal to zero. It is the infinite volume charge density that is responsi ble for the­
infinite value of the potential.
Finite value of the potential for 11 continuous charge distribution with a finite
density. If a charge is distributed continuously with a finite density, the po­
tential does not assume infinite value anywhere. This can be verified by calcu­
lating the potential with the help of formula (14.34). We take the point (z ,
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y, z) as the origin (x = y = z = 0) and carry out calculations in 8 spherical
system of coordinates. In this system, the volume element is expressed by
dx' dy' dz' = r'2 sin S' dS' do,' dr', where r' = V X'2 + u" + Z'2. Then [see (14.34)]

cp (0, 0, 0) = ~eo Jp (r'. a.', a') r' sin a' da' da.' dr'. (14.37)

Consequently, if p is finite, the potential q> is also finite, Q.E.D.
Continuity of potential. The derivative of the potential with respect to a Car­
tesian coordinate gives the corresponding component of the electric field strength.
Obviously, the intensity cannot be infinite. Therefore, the derivatives of the
potential with respect to coordinates must be finite. This means that the poten­
tial is a continuous function. Thus, the potential q> is a continuous and finite func­
tion with finite coordinate derivatives. These conditions are important for solv­
ing differential equations for potential.
Earnshaw's theorem. This theorem states that there exists no configuration of
fixed charges, which would be stable in the absence of forces other than the forces of
Coulomb's interaction between the charges of the system.

The proof of the Earnshaw theorem follows from the Gauss theorem. Suppose
that the equilibrium is stable. Then the displacement of any charge from the
equilibrium position in any direction will give rise to a force tending to return
the charge to the initial position. And this means that the field created in the
vicinity of each fixed charge by all other charges is directed along the radii
emerging from the point of location of this charge. The flux of this field through
a closed surface around the charge differs from zero, since the field has the same
direction along the radii (in the vicinity of a positive charge it is directed to
the charge, while near a negative charge, it is directed away from it). In accor­
dance with the Gauss theorem, the flux through a closed surface is created by the
charge located in the volume bounded by this surface. This is in contradiction
with the initial assumption according to which the flux is created by the charges
located outside the volume. Thus, the assumption about the equilibrium con­
figuration of fixed charges is rejected and the Earnshaw theorem is proved.

Stable configurations of fixed charges may exist only when, in addition to
the forces of interaction between them, there are some extraneous forces holding
the charges in equilibrium positions. Stable states of moving charges are pos­
sible, for example, in the form of the motion of two unlike charges in ellipses
around the centre of mass (naturally, if we ignore radiation).

The sign rule: the work done by the field is assumed to be positive while the work done
by the forces external to the field is assumed to be negltive.
The differential form of the statement that the eledrostatic field is of a potential nature:
curl E = o.
The minus sign in the expression E = -grad cp Is chosen conventionally to show that E
is directed towards decreasing cp.

The application of Poisson's equation for solving a problem is not based on the assump­
tion ,that the potential is normalized in I certain way and that there are no chlrges at
infinity. The potential is a cQntinuous and finite function having finite derivatives with
resped to coordinates.
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What methods do you know for determining the field strength for a given charge distribu­
tion? What determines the choice of the method of solving the problem in each specific
easel
What are the advantages of determining the field strength by solving the Laplace and
Poisson equations in comparison with other methodsl
What are the properties of the potential as a solution of the corresponding differential
equationsl
Which forms of the statement of the potential nature of an electrostatic field do you knowl
What are the advantages of the differential forml
What physical factors determine the possibility of the normalization of the scalar potential?
What normalization conditions are used more frequently and when are they most expedientl

Example 14.1. Calculate grad q> (r),
We have

d • oq> +. oq> +. oq>gra cp= Ix 7iX . I y 7iii 1, --as '
oq> oq> or , or r= y x 2+11 2+z2.iii' = fir ax = q> OX'

Similarly, we calculate oq>loy and oq>laz. The prime denotes the derivative with respect

h C ideri h or 2x x b ·to t e argument r, onsi ermg t at ax = 2Yx2 + y2 + z2 = r t we 0 tain

d (r) dtp (. +. +.) dq> rgra q> r = dr IxX lyll IzZ =<rr r·
In particular, grad r = tlr, for <p (r) = r, while grad (1/r) = -r/~ for q> (r) = 1/r.

Example 14.2. Calculate the circulation of the vector ro X r around the circle L of radius rOt

lying in the plane perpendicular to the constant vector 0), both directly and with the kelp of Sto­
kes' theorem. The centre of the circle coincides with the origin of coordinates.

The vector ro X ro at each point is directed along the tangent to the circle. Consequently,

~ m X r ·dl = roro j dl = 2nrorB. (i4.38)
L L

The direction of circumvention is chosen so that the vectors ro X rand dl are collinear at
each point. If the direction of circumvention is reversed, the integral will have the opposite sign.

With the help of Stokes' theorem, the 'Problem is solved in a different way.

~mxr.dl= j rot (mXr)·dS,
L B

where S is the surface bounded by the circle L. For 0) = const, curl (ro X r) = 2m and

j curl (mX r) ·dS= 2 I.m·dS= 2m JdS = 2nrorft, (i4.39)
8 8 B

which, as expected, coincides with (14.38).
In can be easily seen that the surface S can be any surface stretched over the circle and

not only a plane surface. We have

j curl (mXr)·dS=2 Jm·dS=2m. j as,
81 81 81

(14.40)
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We take into account that L Z.. .-

.rt

o

-L!

.dz: z'(~4.41)~ dS=O,
s'

where S' is the closed) sur.face consisting of the surface
SI from (14.40) and the' surface S of the circle from
(14.39), Le. S' = SI + S. Form (14.41) we obtain

JdS= -nnrl, (t4.42)
B.

where D is a unit vector perpendicular to the plane of
the circle. In (14.42) we took into account the fact that
the element dS in (14.41) is directed along the outward
normal to the closed surface. Substituting (14.42) into Fig. 41. A linear charge of a
(14.40), we obtain a formula identical to (14.39).
Example 14.3. Ftnd the potential and the strength of the field finite length
created in the space surrounding a uniformly charged
filament of a finite length 2L. The linear charge denstty of the filament is 1'.

We place the origin of the Cartesian system of coordinates at the middle of the filament
(point 0) and direct the Z-axis along the filament (Fig. 41). In view of axial symmetry, the
potential depends only on r and the coordinate s,

Figure 41 shows the plane j)assing through the point (r, z) and the Z-axis. The charge
't dz' located on the element of length dz' creates at the point (r, z) the potential

dq>=_1_ 't'dz'
4n£o V r!+{z-z')2 ·

Consequently, the potential created by the entire charged filament is
L

q>__1_ r 'tdz' __'t_ In ( Z- L + v r2 + (z - L )2 ) (14.43)
- 4n8o J Vr2+(z-z')2 4n8o z+L+Vr2+{z+L)!·

-L

The components of electric field are given by the following formulas:

V rll+~z+L)1l ).

z+L )
V r2 + {z+ L)1 •

(14.44)

(14.45)

For L -+ 00, we obtain

As L ~ 00, the potential also tends to infinity:

't'
<p= --;c- [In r-In (2L)] ~ 00.

~"£o

This is a consequence of the fact that the charge is not concentrated in a finite region of
epaee, and hence formula (14.43) cannot be used for calculating the potential when L ~ 00.
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(15.2)

(15.1)

For very large distances from the middle of the filament l(R = V rI + Zl ::> L), for­
mula (14.43) gives

_~__1_!L
<p - 41t80R - 41t80 R '

where Q = 't'2L is the total charge of the filament. Thus, at distances that are large in com­
parison with the linear dimensions of the filament, the field is slose to the Coulomb field.

Sec. 15. Electrostatic Field in Vacuum

The basic methods for calculating the potential and
strength of an electrostatic field are described and
examples of calculations are analysed.

Formulation of the problem. Let us solve the following problem of electro­
statics:

Determine the electric field created by a given charge distribution.
This problem can be solved in several ways. All these methods are equivalent

in principle, but different in practice, depending on the circumstances, since
they involve different amounts of computational work. It is expedient to choose
the method which leads to the required result in the simplest manner.
Direct application of Coulomb's law. In this case, the field strength at 8 point
is determined as the sum of the fields created by all the elements p dV and
a dS of the volume and surface charges. This is the most natural method, though
not the simplest one since it involves the addition of vectors which considerably
complicates the calculations. An example of using this method was considered
in Sec. 8 while calculating the forces of interaction between a point charge and
a very long charged filament.
Calculation of potential. Formulas (14.35) and (14.36) can be used only for
charge distribution in a finite region of space and when the potential is nor­
malized to zero at infinity.

By way of an example, let us consider the field at the points on the perpen­
dicular passing through the centre of a uniformly charged disc of radius a
(Fig. 42). The total charge on the disc is equal to Q. For the potential at a dis­
tance h from the surface of the disc, we have [see (14.36)]

(h) - _1_ r °dz dy
cp - 4n80 J VZ2+1I2+h2 t

s
where a = Q/(na2

) is the surface charge density of the disc. It is convenient
to calculate this integral in. polar coordinates by putting x2 + y2 = r2 and
dx dy = dS = r dr dee. This gives [see (15.1)]

2n a
cp(h) __o_ rde r rdr _1_.!L(Va2+h2-h}

- 4neo J J V r2 + h2 2neo a2 •
o 0
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(15.4)

(15.3)

(15.5)

From the axial symmetry of charge distribution it follows that the electric
field vector is directed along the axis of the disc and is equal to

E o, __t__Q (t_~Ia_)

h - ala - 2nso til Va2+h2 •

For h ~ a, it can be assumed that

h t 1 a2

Va2+h2 = V1+al/h2 ~ 1-"21i2+ ....
Consequently,

E ~ t Q
h~ 4ne. hi t

as could be expected even without calculations, since at large distances the
field due to a charged body is equal to the field due to a point charge.
Application of Gauss'theorem. In the presence of symmetry, Gauss' theorem is
sometimes found to be the most effective means for determining the field strength.

y

h

'Pig, 42. Field along the axis 01
a uniformly charged disc

Fig. 43. To the calculation of
the electric field of a very long
charged filament with the help
of the Gauss theorem

For example, suppose that it is required to find the field strength due to a very
long straight charged filament with linear density 't. We construct a right cir­
cular cylinder of radius r, whose axis coincides with the filament (Fig. 43).
We denote the height of the cylinder by h. Applying the Gauss theorem to the
volume of the cyljnder, we get

I E dS = Q/80 (15.6)
s

where Q is the charge in the volume of the cylinder and S is the cylinder surface.
Obviously, Q = xh, The flux of E through the bases of the cylinder is equal to
zero, since the vector E is parallel to the bases. The flux of E through the lateral
surface can be easily calculated, since in this case the vector E coincides with
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the normal to the surface, and its absolute value is constant. This gives

IE·dS= I E·dS=E·2nrh. (15.7)
B Slat

Thus, Gauss' theorem leads to the equality

E·2nrh = 'th/f o' (15.8)
whence

1 't
E=--­2neo r ' (15.9)

In a field of this strength, the force acting on a point charge is equal to (8.5),
which is obtained directly from the Coulomb law.
Laplace's equation and Poisson's equation. In order to find the field strength
it is preferable in many cases to reduce the problem to the solution of the differ­
ential equation for potential. In order to obtain this equation, we substitute
into

the expression

This gives

We consider that

div E = p/Eo

E = -grad cpo

div grad cp = -p/eo.

(15.10)

(15.11)

(15.12)

• o2~ 02~ 02~
div grad cp = OZ2 + oy2 + OZ2 = V2cp, (15.13)

where V2 is the Laplace operator, equal to the sum of the second derivatives
with respect to coordinates. Sometimes, this operator is denoted by ~ == V2 •

With the help of (15.13), we can write Eq. (15.12) in the form

V~<p = -p/Eo• (15.14)

This equation is called Poisson's equation. In those regions of space where
charges do not exist (p = 0), this equation is reduced to the form

V2<p = 0 (15.15)

called Laplace's equation.
After the potential cp has been determined as the solution of (15.14), we can

calculate the electric field strength by using formula (15.11). The solution must
satisfy the requirements formulated for the potential (see Sec. 14): the potential
<p is a continuous and finite function with finite derivatives with respect to coor­
dinates.

If all the charges are concentrated in a finite region of space, it follows from
the uniqueness of the solution of problems of electromagnetism that (14.35)
will be the solution of (15.14) (see Sec. 58).
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The biggest advantage in finding the field strength with the help of Poisson's
differential equation for potential is that this method is quite general and it
can be widely applied. Formulas (14.35) and (14.36) assume that all charges
are located in a finite region of space, and hence it is reasonable to normalize
the potential to zero at infinity. Poisson's equation, however, does not assume
any definite normalization of the potential and the absence of charges at infinity.
A very long uniformly charged circular cylinder. Using Poisson's equation,
let us determine the potential created by a very long circular cylinder of radius
a and the volume charge density p = const.

We direct the Z-axis along the axis of the cylinder. In view of the axial sym­
metry of the charge distribution, the potential <p is also axially symmetric, i.e.
<p = <p (r). It is therefore convenient to use a cylindrical system of coordinates,
whose axial angle is denoted by ct. In this system of coordinates, the Laplace
operator has the form

(J2q> 1 8q> 1 82q> 82q>
V2<p = ar2 +r ar+ Ti"" aa2 + 8J' • (15.16)

Since in this case the potential <p depends only on r" Eq, (15.16) can be sim­
plified as follows:

2 _ d
2

q> !.~-!.~ (r 2.!.)
V cp - dr2 + r dr - r dr dr'

while Poisson's equation (15.14) can be written in the form:

~ :r (r ~~1 ) = -p/eo (O<r<a),

!. .!.. (r dq>1 ) = 0 (r > a).
r dr dr

(15.17)

(15.18)

(15.20)

(15.19)

The general solutions of this equation are obtained by integration:

<1'1 = - 4
1 -e.. r2+A

11nr+B1,
8,

<P2 = A2 ln r +B2,

where At, A 2 , B l and B 2 are integration constants. Since the potential must be
finite at all points in space, and In r -+ 00 as r -+ 0, we must put A l = 0 in the
solution (15.19). It is convenient to normalize the potential by the condition
<Pl (0) = u, which gives B1 = O.

Since there are no surface charges, the electric field strength on the surface
of a sphere is continuous. In other words, the derivative of the potential is
continuous. The continuity conditions for the potential and its derivative at
r = a give two algebraic equations for determining the two remaining unknown
constants A 2 and B 2:

A2Ina+B2 = - 4
1 -e.. aZ, ~- -!...£....a

So a- 280

7-0290
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Consequently,

This gives

( ) i P 2<Pi r = --4 - r
80

i PIa 1 P 2
<1'2 (r) = -- a2 n ---- a

2 eo r 4 eo
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(O<r ~a),

(15.21)
(r~a).

(15.22)

(15.24)

Er = - lJlJq>t = 2
i L r (O<r~a),

r 80

E = _ lJq>s -! .£...~ (.............)
r or - 2 80 r r ~a •

Considering that pna2 = l' is the charge per meter length of the cylinder, the
second equation in (15.22) can be rewritten in the form

E =_1_!.. (15.23)
.,. 2ne() r "

,A comparison of (15.23) and (15.9) shows that the field outside a uniformly
charged cylinder is the same as if the entire charge were concentrated on the
axis.

Dlred application of Coulomb's law for calculating the electric field strength from a given
charge distribution is the most natural, although not the simplest approach.
For a symmetric charge distribution, it is usually expedient to determine the electric field
strength with the help of the Gauss theorem.

\Vhat is the physical meaning of the potential within the framework of electrostaticsl
What is the physical meaning of the potential differencel

Example 15.1. Find the field strength for a uniformly charged finite straight filament wtth·linear
charge density ,;0 (Fig. 44). The parameters have the following values: 't = 10-10 Clm, 1 = 1 rot
d = 0.5 m and a = 0.5 m.

According to Coulomb's law, we have

dE = 't dy cos ex d1: dy
x 4n80 (yS+ dS) 4n80(yS,_ d2)3/1 '

dE = 't dy sin ex ,;oy dy
y 4n80 (ys+d 2) 4n8o (yS+dS)3/S '

whence
G 0

'fd r dy '( r y dy
Ex = 4nso J (yl+d2)3/ 2 t E y= - ' n80 J (yS+d l)3/S e

-(I-a) -(l-a)
"

Carrying out the substitution of variables y = d tan a, dy = d da/cosl a, 1 + tanl a =
f/cos l a, and evaluating the integrals, we get

E:I:= 41t:
o
d (sincx2+sincxl)=1.27 Vim,

-r
E lI=-, d (COS~2-cOSat)=O.

11'80



Sec. 15. Electrostatic Field In Vacuum 99

Fora very long filament (l ~ co), (Xl = (X2 = n/2, and henceE~ = oand Ex ='t'/(2n sod) .
Example 15.2. With the help of the potential, find the field strength at point. on Ike perpendicular
to the plane of a disc on which a charge Q is uniformly distributed. The radius of the dlBc is equal

L

Fig. 44. To the calculation
of the electric field of a linear
charge of a fini te length

Fig. 45. To the calculation
of the electric field of a
charged disc

Fig. 46. To the calculation
of the electric field of the sur­
face charge of a sphere

to a (Fig. 45), and it is assumed that Q = 10-1 0 C, a = 10 em, h = 20 em (the distance between
a point and the plane of the disc).

In accordance with formula (14.36), we have

(
h)__1_o\ odxdy Q

cp - 4neo J V X2+y2+h2' 0== na2 •
s

In order to calculate the integral, we go over to polar coordinates in the plane of the disc:
x2 + y2 = ,-2, dz dy = r dr de, This gives

2n a

cp (h) - _0_ r orr. r r dr _1_.!L ("Va2 + h2 - h). (15.25)
- 4nso J J V r2+ h 2 2neo a2

o 0
whence

Eh= _~=_1_.!L(1- h ) = 18V/m. (15.26)
oh 2neo a2 V a2+h2

This formula is similar to (15.3).
Example 15.3. Find the strength of the electric field created by the surjace charge of a Ip,Mre 01
radius R. The total charge on the sphere is Q, and the surface charge density lB~a = Q/(4nRI).

The potential created by a charged surface element at a point characterized by r (Fig. 46)
is

dm- 1 OR2 sin e de da (15.27)
.,,- 4nso p

where R2 sin 0 dO de is a surface element of the sphere in spherical coordinates whose polar
axis coincides with the vector r, and a is the axial angle. It can be seen from the figure that
p = R - r, Squaring both sides of this equation, we get p2 = R2 + ,.s - 2Rr cos A. Dif­
ferentiating both sides, we obtain

2p dp = 2Rr sin 0 dO,

7*
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whence R2 sin e dO· = (pR/r) dp. In this case [see (15.27)]

1 oR
dq>=-4-- dp dn. (15.28)

neo r

Integrating this equation over the entire surface of the sphere, we get

2~ r+R { OR2 :=-.:_1_!{ (r> R),
_ 1 oR \ d r d 1 o.R r+R _ eor 4neo r

q>- 4neo -r- J ex J p =2: -r- [p11 r-R I - «n 1 Q (15.29)
o IT-HI --=-4--R (r<R).eo neo

This leads to the following expression for the electric field strength:

E
r
= _~=={ ~eo r~ (r>R),

or . o (r < R),

l.e. the field strength outside a uniformly charged sphere is the same as if the entire charge
were concentrated at tts centre. There is no field inside the sphere.

Sec. 16. Electrostatic Field in the Presence of Conductors

The effect of conductors on an electric field is con­
sidered. Basic physical phenomena due to charge
distribution over the surface of a conductor (such
as charge leakage from a point) are described. Quan­
titative characteristics of electrical propertiesof solitary
conductors and systems of conductors are analysed.
The essence of the image method is discussed.

Differential form of Ohm's law. Conductors are material bodies in which the
motion of charges, i.e, electric current, appears due to an electric field. The
law connecting the current created in a conductor when a potential difference
is applied across its ends was discovered experimentally in 1827 by Ohm (1787­
1854). This law has the form

I = U/R, (16.1)
where R is called the resistance of the conductor. In differential form, Ohm's
law is obtained if we write this relation for the current density. Let us consider
a very small element of a conductor (Fig. 47; I1l is the length and 118 is the
cross-sectional area of the conductor and 11<p is the potential difference across
its ends). Let y be the electric conductivity of the substance, viz. the reciprocal
of the electric resistivity. The electric resistance of the conductor element and
the current in it are respectively given by

t Al
R=y AS' (16.2a) I,=j~~St (f6.2b)



Sec. 16. Electrostatic Field in the Presence of Condudors 101

J1/

\
\

~cp = j ~ ~S ~ :~ (16.3) \\\~\\\\\\\\\\\\\\\\VT\\\\\\\\\\\\\\\ tlS

Considering that (~q>1~l) = E't is the electric
field component along the element under inves-
t igat ion, we obtain from (16.3) Fig. 47. To the derivation of

Ohm's law in differential form
j't = "(E't. (16.4)

This relation is valid for any orientation of the conductor element, and
hence can be written in vector form:

where the subscript 't indicates that the current
density component is taken along the conductor
element. For this element, Ohm's law is written
in the form

(16.5)

This equation is called the differential form of Ohm's law.
Classification of materials according to conductivity. Electric conductivity
y depends on the properties of a material. Depending on conductivity, the
materials are divided into three classes: dielectrics, semiconductors, and con­
ductors. There is no sharp boundary between them. According to their con­
ductivity, these materials are specified as follows.

(a) Dielectrics are substances with low electric conductivity. An ideal di­
electric is characterized by the absence of conduction. This, however, can be
observed only at 0 K. At temperatures other than 0 K, all materials have a
certain conductivity, and hence ideal dielectrics do not exist. Dielectrics are
the materials whose electric conductivity "( < 10-6 S/m.

(b) Semiconductors have electric conductivity between 10-6 and 103 S/m.
(c) Conductors are characterized by an electric conductivity higher than

103 S/m. Mainly, these are metals. The best conductors among them are copper
and silver which have electric conductivity of the order of 107 S/m.
Absence of electric field inside a conductor. In electrostatics, we consider the
case when charges are fixed, i.e. j = O. Equation (16.5) gives for this case

E = 0, (16.6)

for E = 0 gives

i.e. there is no electric field inside a conductor in electrostatic equilibrium.
Absence of volume charges inside a conductor. The equation

div E = p/eo (16.7)

p = 0, (16.8)

i.e. there are no volume charges inside a conductor. This means that the charge
of the conductor is concentrated on its surface in a layer of atomic thickness.
Of course, both positive and negative charges exist inside the conductor, but
they compensate each other, and the interior of the conductor is neutral on the
whole [see (16.8)].
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The neutrality is established very quickly. Let us suppose that in a certain
volume inside a conductor the density of free charges differs from zero (p (0) =1= 0)
at the instant t = O. The continuity equation (5.24) combined with (16.5) as­
sumes the form

:~ +div(yE)= :~ +ydivE=O,

where y = const (for a homogeneous conductor). Taking into account (16.7),
we obtain from this expression the equation for time variation of p:

op 'V----p
iJt - eo •

The solution of this equation has the form
p (t) = P(0) e-(Y/2o)t ,

i.e. the charge density decreases exponentially. In accordance with the general
rule, we can assume that the space charge in the conductor "is asstmilated"
during the time L. = eo/y, which is called the relaxation time. For metals, this
time 'is extremely short. For example, for copper (y = 6 X 107 S/m), L ~

10-11 s. This interval of time is extremely short even on the scale of intra­
atomic processes. Consequently, in nonstationary cases, when fields vary with
time, we can assume with a high degree of accuracy that for moderate fre­
quencies free charges in a conductor are distributed over its surface and space
charges are absent. This conclusion remains valid even if we take into account
the dependence of the conductivity y on frequency, although in this case the
relaxation time increases by several orders of magnitude.

The establishment of neutrality is associated with currents which, however,
do not create a charge in the regions through which they flow. Let us illustrate
this by a simple example. Suppose we have a sphere of radius a 2 , made of a
material with the permittivity e and electric conductivity y. At the initial
moment t = 0, the spherical region of radius at < a 2 is uniformly charged with
the charge density Po' The spherical layer between radii at and a2 is neutral.
Let us considerjthe process of charge neutralization in the volume of the sphere.

The time variation of charge density at different points of the sphere is given
by the formula

( ) {
poe-I,-r (r < at),

p r, t =
. 0 (r> at),

where L = ely. The total charge of the sphere Qo = (4/3) na:po remains con­
stant, while the charge of the spherical region of radius at decreases in accord­
ance with the law

4Q1 (t) = 31ta~POe-I,-r = Qoe-I,-r.

Conduction current carries this charge through a spherical layer between
radii at and a2 to the surface of the sphere, where it is concentrated in the form
of a surface charge.
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At any instant of time, the charge distribution is spherically symmetric, and
hence the Gauss theorem gives the following expression for the electric field
strength:

Qoe-,,-cr
(O<r<at)4n8a1

Er = Qoe-I'-c
(at<r<~)t4nerl

Qo
(r>~).4nsor2

The surface charge of the sphere increases. It can be calculated with the help
of the law of charge conservation or from the boundary conditions. In the former
case, we obtain

(al<r<~f

(~<r<oo).o

O=.t! I rQo-Qt(t)]= .t~~1 (1-e-'/-c).
~~al ~W61

In the latter case,

a 1r-G.~Dr Ir-a.+o-Dr Ir-o.-o==eoEr 1,-a.+o-eEr 1...-0.-0= 1.~01 (1-0-1/"),
~.al

where the values of the function with the arguments r = a2 + 0 and r = a 2 - 0
are taken from the inside and outside of the surface of the sphere.

The conduction current density is given by

YQoe-t'''r
4n8a1

t, = yEr = YQoe-I'-c
4nsrl

The conduction current through a spherical surface of radius r is determined
from the formula

yQ08- I,-c ,.a
8 a~

Ir=ir4nr2= YQoe-I''C
8

o
(at<r<~,

(~<r< 00).

Thus, the total current in the region 0 < r < at increases with the radius.
This is due to the fact that each point in this volume is a source of conduction
current. In the region at < r < a2 there are no sources of conduction current,
and hence the total current through the spherical surface does not depend on the
radius.
Electrostatic induction. If a neutral conductor is placed in an external electric
field, the surface charges are redistributed over its surface in such a way that
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the field created by them inside the conductor
completely compensates the external field. As a
result, the total field strength inside the conduc­
tor is equal to zero. The redistribution of surface
charges on a conductor placed in an external electric
field is called the electrostatic induction. If the con­
ductor is charged, its charges are also redistribut­
ed under the action of the external field.
The field near the surface of a conductor. Let us
isolate an area element L\S on the surface of a
conductor and construct a right cylinder of height
h so that it crosses the surface (Fig. 48). We apply
the Gauss theorem to this cylinder:

SE.dS=Q1eot (16.9)
B

Fig. 48. To the derivation of
the formula for the normal where S is the surface of the cylinder and Q is the
component af the electric field charge in the cylinder volume.
vector near the surfaee of a Inside the cylinder, the charge exists only on
conductor the surface of the conductor and is characterized by

the surface charge density a. Hence Q = as. The
field inside the conductor is equal to zero, and hence the flux of E through the part
of the cylinder surface located in the volume of the conductor is equal to zero.
The flux through the part of the cylinder lying outside the conductor is the
sum of the fluxes through the cylinder base and the lateral surface. In the limit,
we take the height h of the cylinder as small as desired (h ~O), and hence
the area of the lateral surface of the cylinder and the flux of E through it will
be as small as desired. Therefore, in the limit h ~ 0, only the flux through the
cylinder base is left:

JE.dS=En~S, (16.10)
AS

where En is the normal component of E. It should be recalled that in the Gauss
theorem, the positive direction of the normal is that of the outward normal to
the closed surface. In the case under consideration, this means that the positive
normal is directed outwards from the conductor surface. As h ~ 0, expression
(16.9) combined with (16.10) becomes

En ~S = a sst«; (16.11)
whence

En = afEo- (16.12)

Thus, the normal component of the field strength at the surface of a conductor is
uniquely determined by the surface charge density.

Let us consider now the tangential component of the field strength. We shall
show that it should be equal to zero proceeding from the fact that a perpetual
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motion machine cannot exist. We consider a closed loop L crossing the surface
of a conductor so that its upper part is parallel to the surface of the conductor
outside it, while the lower part is inside the conductor (Fig. 49). The electric
field strength E is equal to zero inside the conductor, and hence the tangential
field component is absent. Suppose that outside the conductor the tangential
component is not equal to zero. We take a positive charge and move it along
the closed loop in the direction shown in Fig. 49 by arrows. On the section AB,
the field performs a positive work. The section BC can be made in the limit
as small as desired since the sections AB and CD can be arranged as close to
the conductor surface as desired. Consequently, the motion on the section Be
is associated with the work which can be as small as desired. The motion of the

E

Fig. 49. To the proof of the ab­
sence of the tangential compo­
nent of the electric field outside
a conductor

charge in the section CD does not involve any work since the field inside the
conductor is absent. The work associated with the motion of the charge along
the section DA, as in the case of the section BC, can be as small as desired.
Thus, as a result of motion of the charge along the closed loop, the electric
field performs a~ positive work, and no changes occur in the system. We can
repeat this cycle and obtain the same work, and so on. Thus, we have realized
a perpetual motion machine of the first kind, which is impossible. This per­
petual motion machine performs work at the expense of the tangential com­
ponent of the electric field near the surface of the conductor. Hence, this com­
ponent must be equal to zero. In other words, the fact that the tangential com­
ponent of the electric field near the surface of a conductor is equal to zero is a con­
sequence of the potential nature of electrostatic field and of the absence of the field
inside the conductor.

The equality
s; = 0 (16.13)

indicates that the electric field strength near the surface of a conductor is perpen­
dicular to the surface and is equal to ol £0 [see (16.12)].
Mechanism of creation of the field near the surface of a conductor. Electric charges
are the only source of electric field in electrostatics. Hence the field in the
vicinity of the surface of a conductor is created by all surface charges of this
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(a)

'(b)

conductor and all charges outside it. Let us iso­
late a very small area element ~S of the conductor
surface (Fig. 50). The field strength E near the
surface of the conductor is the sum of two compo­
nents, viz. the strength of the field E1 created by
the charges contained in the element ~S and
the field E 2 created by the remaining charges
outside the element ~S. Clearly, the charges of
the area element ~S create the field on both sides
of the element. Since both sides of the element ~S
are equivalent, we may conclude that the vec­
tors E1 and E~ are oppositely directed and equal
in magnitude: I E1 I = I E~ I· The field E 2 is
created by all charges located outside the element
~S. Obviously, these charges create not only the

Fig. 51. Dependence of the sur- field E 2 outside the conductor, but also a field
face charfe density on the cur- E~ inside the conductor. Since this field is in the
vature 0 the surface space outside the charges and is created by them,

it must be continuous, and hence E 2 = E~. The
total field strength inside the conductor is equal to zero, i.e, E' =E; + E~=O.

Hence it follows that E; = -E;. Taking into account the equality I E1 I =
I E: I, we conclude that

lEI' = I E2 1.
Hence it follows that

(16.14)

i.e. the field near the surface of a conductor is the sum of two equal components,
one of which is created by the surface charges of the adjoining surface element, while
the other is createdby all the remaining chargeslocatedoutside this surface element.
Dependenceof thesurface charge density on the curvature of thesurface. The charge
on the surface of a conductor is distributed nonuniformly, and the surface
charge density depends on the curvature of the surface. In order to verify this,
let us analyse the distribution of the field strength near a certain element of the
surface (Fig. 51). If the surface is slightly curved (Fig. 51a), the charges lying
outsi de dS create a small normal component of the field E~ near this element.
Therefore, to compensate the normal component, the charges located on this
area element must create a comparatively weak field E~ = -E;. In accordance
with formulas (16.14) and (16.12), we conclude that the surface charge density
(J = 2eoEt on this element must be comparatively low. On the other hand, if
the curvature of the surface near the element under consideration is large,
the field E~ created by the charges located outside the area element dS is strong,
and accordingly the field created by the charges located on the area element
must be considerably stronger. This means that the surface charge density
on this element must be higher. Thus, we can conclude that the surface charge
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Fig. 52. Charge leakage ~rom
a tip

Fig. 53.
wheel

Electrical "Segner"

density increases with the curvature of the surface, i.e. increases with decreasing
radius of curvature.

Similar arguments can be used to show that the surface charge density on the
concave surface of a conductor is lower in comparison with the flat surface.

An increase in the surface charge density on convex surfaces is manifested
most visually in the leakage of charge from a tip.
Charge leakage from a tip. Let us analyse the phenomenon occurring near the
tip of a charged conductor (Fig. 52). The field E near this point is very strong.
The surrounding air contains charges (ions and electrons) which are acted upon
by a force in the field E. In accordance with Newton's third law, an equal and
opposite force acts on the charges on the tip. Consequently, as a result of in­
teraction, the charges in the air in the vicinity of the tip and the tip itself
receive equal and opposite momenta. The charges in the air, which move towards
the point under the action of the force, transfer their momentum and charge to
the point upon impingement. This momentum is equal in magnitude to the
momentum received by the point as a result of interaction with the correspond­
ing charge, but is opposite in direction. Consequently, as the point is hit by
the charges, these momenta compensate each other, and the net result of inter­
action is equal to zero.

Thus, the interaction between the charges on the tip with unlike charges in the
surrounding air does not lead to a force acting on the point.

A different situation arises for like charges: the force acting on the
charges at the tip is always directed inside the conductor (in Fig. 52, this force
is denoted by -F(+»). If the tip is positively charged, negative charges hitting
the tip (as shown in Fig. 52) neutralize the corresponding positive charges.
This]looks as if positive charges leave the tip or, as is usually said, leak from
the tip. The force -Fc+ ) acting in this case on the tip is equivalent to the
reactive force due to the leakage of charges from the tip. If the tip is
negatively charged, the electrons in fact leave it, i.e, actually leak from the
tip. The mechanism of appearance of "reactive force" in this case is completely
identical to that described above.

This means that the "reactive force" appears not only at the moment the
electrons start leaking from the surface of the conductor, but at all subsequent



108

Fig. 54. Schematic diagram of
an electrometer

Ch. 2. Constant Electric Field

Fig. 55. Demonstration of the
surface charge density depen­
dence on the curvature of the
surface with the help of an elec­
trometer

instants of time, when an electron is accelerated by the field of charges left on
the point.

An effective demonstration of the appearance of "reactive force" as a result
of leakage of charges from a tip is the rotation of the electrical Segner wheel
(Fig. 53). The dashed arrows show the direction of charge leakage, as a result
of which a "reactive force" appears and the horizontal segment of the conductor
is set into rapid rotation around the vertical axis.
Electroscopes and electrometers. The simplest device for detecting electric
charges is a vertical metallic rod or plate with a light conducting foil or pointer
attached to it at one end (Fig. 54). If there is no charge on the metallic rod
and foil (pointer), the latter hangs vertically, parallel to the rod. In the presence
of charge, the repulsive forces acting between like charges on the rod and on the
foil (pointer) deflect the foil from the vertical position by a certain angle. Thus,
the device may serve as an indicator of the presence of charge, i.e. an electro­
scope. The angle of deflection of the pointer from the vertical is the larger, the
larger the charge on the rod. This makes it possible to graduate the electroscope
and to determine the amount of electricity on it by the angle of deflection.
Such an electroscope, adapted for quantitative measurement of charge is called
an electrometer. The charge depends on the potential of the rod and of the
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pointer. Consequently, an electrometer can be used for measuring the potentia]
difference. The device is enclosed in a case (Fig. 54).

The dependence of the surface charge density on the curvature of the con­
ductor surface can be illustrated with the help of an electrometer as follows.
A small conducting ball fixed on a nonconducting hand~e touches a part o! the
:surface of a conductor (Fig. 55). The charge on the ball IS the larger, the higher
the surface charge density on the part of the surface touched by the ball. Aft?r
this, the ball is separated from the surface of the conductor and brought In
contact with the rod of an electrometer. The charge transferred to the electro­
meter depends on the charge on the ball. Consequently, the deflection of the
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Fig. 56. A metallic screen for
external fields

Fig. 57. A charge surrounded by
a closed conducting shell

pointer indicates the surface charge density of the part of the surface from
which the charge was transferred to the electrometer. The ratio of the surface
charge densities of the corresponding parts of the surface of the conductor can
be judged by the ratio of the angles of deflection of the pointer. Depending on the
curvature of the surface, the surface charge density may vary significantly.
Metallic screen. The annihilation of the field inside a conductor by the charge
distribution on its surface indicates that the inner parts of the conductor have
nothing to do with the field and hence can be. done away with. As a result, we
are left with a closed conducting shell (Fig. 56). In the space surrounded by the
shell, the electric field is equal to zero. The closed shell is called a screen. It shields
the internal space from the external electric field. The screens (shields) are used
for protecting technical devices from the influence of external electric fields.
They are usually made from a mesh with small cells rather than from a solid
conducting material. Experiments and calculations show that the screening
-effQct of such a mesh is slightly inferior to that of a solid screen, but the material
expenditures are much smaller and the construction is much simpler.

Does a closed conducting shell screen the external space from the charges
located inside a cavity? In other words, does the field of charges in the volume
:surrounded by a closed conducting shell penetrate the surrounding space? Yes,
it does. In order to verify this, we have to analyse the situation in greater detail.



110

Suppose that the charge
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(16.15)

(16.16)

Q= j pdV
v

is distributed in the volume V inside a cavity. In accordance with the law of
electrostatic induction, an opposite charge appears on the inner surface of the
shell (Fig. 57). In order to find its magnitude, we shall apply the Gauss theorem
to the volume inside the closed shell:

j E.dS= E10 j pdV,
sin V

where Sin is the inner surface of the shell.
Denoting by a the surface charge density on the inner surface, we obtain the

following expression for the field E near the surface [see (16.12)]:

E=~n,
80

(16.17)

where n is the normal to the inner surface of the shell, directed inside the volume
bounded by the shell. We consider that dS in (16.16) is directed along the out­
ward normal to the volume V, i ,e. oppositely to D, and hence

/'n- dS = dS cos (n, dS) = dS cos n = - dS. (16.18)

Using (16.17) and (16.18), we can write the integral on the left-hand side of
(16.16) in the form · .

) E·dS= - ;0 ) adS. (16.19)
sin SIn

Then the Gauss theorem (16.16) assumes the form

- J adS= ) pdV=Q.
sin V

(16.20)

Consequently, the charge formed on the inner surface of the shell is equal and
opposite to the charge inside the cavity.

The field strength inside the shell is equal to zero since the shell is a con­
ductor. The charge on the outer surface has a sign opposite to that of the charge
on the inner surface, its magnitude being equal, in accordance with the law of
conservation of charge, to the magnitude of the charge on the inner surface.

In order to prove the existence of an electric field in the surrounding space,
we shall use the Gauss theorem. The dashed line in Fig. 57 shows the closed
surface surrounding the shell. The total charge in the volume bounded by this
closed surface is equal to the charge inside the cavity bounded by the shell
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since the charge of the shell is equal to zero.
Consequently, the Gauss theorem has the form

JE.dS= e~ J pdV=QI8o=p O, (16.21)
S v

i.e. the field strength E in the space surrounding
the shell differs from zero.

Let us "earth" the shell, i.e. connect it by a
conductor with a very large remote conducting
body. Usually, the Earth serves as such a body
(Fig. 58). In order to simplify the analysis, we
represent this body in the form of an infinite con- Fi¥. 58. An earthed closed shell
ducting medium that fills the entire,space outside shields the external space from
the shell and is in contact with it. All the charges the charges inside a volume
will go from the outer surface of the shell to
infinity, and only the charges inside the cavity and on the inner surface of the
shell will remain. The field strength in the conducting medium surrounding the
shell is equal to zero. In this case, the medium ensures the removal of the charge
from the outer surface of the shell to infinity. Hence, at a finite distance from the
shell a thin wire conductor will ensure the charge exchange between the shell
and sufficiently remote regions of the medium. Obviously, after the removal
of the conducting medium from the region surrounding the shell, the field
strength at the points of this region is, as before, equal to zero. Thus, the earthed
closed shell shields the external space from the charges located in the volume surround­
ed by this shell. An unearthed shell does not provide such a screening.
Potential of a conductor. The fact that the field strength E inside a conductor
is equal to zero means that the potential at all points of the conductor has the
same value, i.e. the. potential difference between points 1 and 2 of the conduc­
tor [see (14.28)) is

(2)

cp'(2)-cp (1)= JE·dl=O. (16.22)
(t)

The potential, whose value is the same at all points of a conductor, is called
the potential of the conductor.

Suppose that we have an isolated charged conductor. In the space surrounding
the conductor, there is an electric field created· by the charge of the conductor.
We shall normalize the potential to zero at infinity. Then [see (14.29)] the
potential of the conductor can be expressed by the formula

00

cp = ) E·dl.

(COnduct or)
surface

(16.23)

In this formula, the integration path starts at any point of the conductor
and terminates at infinity.



112 Ch. 2. Constant Eledric Field

Capacitance of an isolated conductor. What determines the potential of an
isolated conductor? It follows from formula (16.23) that in accordance with the
principle of superposition, the potential must be proportional to the charge since
E in the integrand of (16.23) is proportional to the charge. Further, it is clear
that the potential depends on the size and shape of the conductor, which are
taken into account by its capacitance.

The capacitance of a conductor is defined as the ratio of the charge Q of an
isolated conductor to its potential (J):

IC=Q/cp·1 (16.24)

The capacitance of a conductor is measured in farads (F). Formula (16.24)
gives

1 F = 1 av, (16.25)

In the CGS system, the capacitance is expressed in centimetres and the for­
mula for capacitance coincides with (16.24). Since 1 V = (1/300) CGS units,
1 C = 3 X 109 CGS units, it follows from (16.24) that

1 F = 9 X 1011 em, (16.26j

A farad is a very large unit. Let us calculate, for example, the capacitance
of a sphere of radius R carrying a charge Q. Since the strength of the electric
field created by such a sphere in the surrounding space is

f Q r
E = 4ns

o
-;:s r. (16.27)

the potential and capacitance are expressed by the formulas
00

J
t Q

(J)= Edr=-­
4nso R '

R

C = QI(J) = 4:rtEoR .

For the radius of the sphere equal to 1 em, we obtain

C = 10-2/(9 X 109) ~ 10-12 F.·

(16.28)

(16.29)

(16.30)

For this reason, the capacitance is usually expressed in fractional units.
A system of conductors. If we have several conductors, the potential of each
of them depends not only on the charge of the conductor but also on the strength
of the fields created by other conductors or, in other words, on the charges of
other conductors. In accordance with the principle of superposition, the poten­
tial is proportional to these charges.

Let us consider, for the sake of definiteness, two conductors (Fig. 59). It
follows from what has been said above that

CPl = allQl + a 12Q 2' q>2 = aJfJ.IQ1 + r:L22Q2t (16.31)
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(16.33)

(16.32)

where ail are the potential coefficients which de-
pend on the shape and size of the conductors and &J).'.
on their mutual arrangement. The theoretical cal- ; Qt: "'.,]l••·;i
culation of these coefficients is a complicated _.~

mathematical problem. Usually, they are deter-
mined experimentally.

The potential coefficients are not independent Fig. 59. A system of conductors
of each other. This can be shown as follows. Let
0'1 and 0'2 be surface charge densities, r11 the distance from the surface element
dS 1 of the first conductor to a certain fixed point inside it, and r1 2 the distance
from the area element dS 2 of the second conductor to the same point. Then
the potentials of the first and second conductors are given by

cpt=_1- r al dSl +_1_ r a2 dS2

4neo J TIl 4neo J T12 '
81 8.

CP2=_1- r a2 dS2 +_1_ r a l dSl•

4neo J T22 4neo J TIl
8. 8.

(the meaning of r 2 2 and r 21 is similar to that of Til and Til). The charges of the
conductors are

(16.34)

(16.35)

Let us suppose that the charges of the conductors have changed:

Q~= Ja;dSi • Q~=) a~dS2'
8. 8.

We multiply both sides of (16.32) by Qland (16.33) by Q; and add the obtained
equalities termwise:

Q' +Q' =_1_ r a' dS f al dSI +_1_ jr a' dS \-- aldS I

1CPt 2CP2 4neo J 1 t J TIl 4neo 1 t., T12
81 8 1 81 8.

+_1_ r a~dS2 r 0'1 dS2 +_1_ r a'dS
2
r a l dSl

4neo J J T22 4neo J I J T21
8 1 8 1 8. 8 1

_ 1 r dS r O'~ dS1 + 1 r dS r 0'1 dS1
- 4neo J O't t J~ 4neo J 0'2 2 J ---;:;;-

8 1 8 1 8. 8.

+_1_ r 02 dS2 r 0'~dS2 +_1_ \ aidS. \ a~dS2
4neo J J T22 4neo J J T21

BI 81 8. 8.

= QtCP; + Q2CP~, (16.36)

where the order of integration has been changed since the integration is carried
out with respect to different independent variables. The quantities <pi and cp~

are the potentials of the conductors when their charges are equal to Q1and Q~.

8-0290
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The relation
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I Q~lpi+Q;1p2=Qllp;+Q21p~ I (16.37)

obtained in (16.36) is called the reciprocity theorem. From this theorem, we
can obtain the condition that must be satisfied by the potential coefficients ai i:

If the charge of the second conductor is equal to zero (Q2 == 0, Ql =1= 0), then
[see (16.31)]

<"Pt = a llQ1' CP2 = a 21Q1' (16.38)

If the charge of the first conductor is equal to zero (Q; == 0, Q~.. =F 0). then
[see (16.31)] J

cp~ = at2Q~, cp~ = ~Q~. (16.39)

The reciprocity theorem (16.37) for these two cases assumes the form

Q~CP2= Q1CP~ (16.40)

Substituting into this expression the expressions for CP2, and cP~ [see (16.38)
and ([16.39)] and cancelling the common factor Q~Ql on both sides of the ob­
tained equality, we find

(16.41 )

i.e. the potential coefficients are symmetric relative to their indices.
These calculat ions can be easily extended for any number of conductors hy

writing the initial relations (16.31) for n conductors in the form

n

cP, = ~ a'JQJ (16.42)
;=1

All further calculations are similar to (16.32)-(16.37) and lead to the following
formula instead of (16.37), which expresses the reciprocity theorem in the
general case:

n n

~ Qicp, = ~ Q,cpie
i=t i=t

(16.43)

Instead of (16.41), we obain from this equation the general condition for
the symmetry of potential coefficients:

aii = ali-

The system of equations (16.42) can be solved for Qi:

(16.44)

n

Qi == ~ C'JCPJ- (16.45)
;=1

Here Cij == A ij/D, where D is the determinant of the coefficients of the system
of equations (16.42), Ai j being the complement of the element ai i in this deter­
minant. On the basis of (16.44) we conclude that the coefficients C i j satisfy
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the condition
CIJ = C jft (16~46)

where C i J are the capacitance coefficients, C i i is the capacitance coefficient of
the i-th conductor and Cij the capacitance coefficient between the i-thand
j-th conductors. The capacitance coefficient of an isolated conductor is called
the capacitance of the conductor.

Since a positive charge creates in an isolated conductor a positive potential,
we may conclude that all capacitance coefficients with similar indices (C11' C22' .••• )

are positive. In order to verify this, let us earth all the conductors with the

r

Fig. 60. To the determination
of capacitance coefficients for
the case of two spheres

Fig. 61. To the calculation of
capacitance coefficients for two
conducting spheres

exception of the i-th conductor, retaining on it a positive charge. In other
words, we shall assume that Qi > O. Obviously, in this case CJ>i > 0 and <P J = 0
for j =1= i. Consequently, Eq. (16.45) for Q assumes the form

Q, = C iiCJ>i· (t6.47)

Since CJ>i > 0 and Qi > 0, C i i > 0 as well, Q.E.D.
Similarly, we can prove that the capacitance coefficients with unlike indices

cannot be positive. They are either negative or equal to zero. Let us consider, for
example, two conductors one of which is earthed while the other is isolated and
positively charged. On account of electrostatic induction, this positive charge
will induce a negative charge on the earthed conductor. Formula (16.45) assumes
the following form for the charge on the second conductor:

Q2 = C21<1'1· (16.48)

Since Q2 < 0 and <1'] > 0, C21 < O. This result does- not exclude that the
coefficient can be equal to zero, but by no means can this coefficient be positive,

Let us consider three conducting spheres (Fig. 60). We denote their poten­
tials and charges by <1'1' <1'2' q>3 and Ql' Q2' Q3 respectively. For determining C i»
we have Eqs. (16.45) which in this case have the form

Qt = Ctt<l't+Ct2<1'2+CtsCJ>s,

Q2 = C2tCJ>t + C22<1'2+ CUCJ>:h (16.49)

Qa= Cat<l't +Ca2<1'2+Caa<J'a.
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In order to calculate the coefficients C t J' it is necessary to have a sufficient
number of equations (16.49) with known Qf'S and <PI s, from which C t t can be
found.

Let us assume that Q3 = 0 and that the second sphere is earthed. Then <P3 =
CP2 = 0, and equations {16.49) become

Ql = C11q>1 ' Q2 = C21q>1' 0 = C31<Pl· (16.50)

This gives C31 = C13 = 0, i.e, the capacitance coefficient (mutual capacitance)
for screened conductors is equal to zero.

Suppose now that the first and second spheres are earthed, i.e. <PI = 0 and
q>2 = 0, while the charge Q3 =1= O. In this case, Eqs. (16.49) assume the form

Ql = 0, Q2 = C23<P3' Q3 = C33<P3. (16.51)

It was shown above that the charge induced on the inner surface of an earthed
conducting shell is equal in magnitude to the charge in the cavity bounded by
the shell but has the opposite sign, i.e. Q2 = -Q3. Equations (16.51) give

C23 = -C38- (16.52)

Thus, the capacitance coefficient for a conductor which completely envelopes
another conductor is equal and opposite to the capacitance coefficient of the
inner conductor. This fact is very important for the theory of capacitors.

Suppose that we have two spheres at a distance r from each other, this dis­
tance being large in comparison with their radius a (Fig. 61) (we denote by r
the distance between the centres of the spheres). Since a ~ r, we can ignore the
redistribution of charges on the spheres due to mutual electrostatic induction
while calculating the field strength at large distances from the spheres. Then
the formulas for the potentials of the spheres become

<Pi = 4:eo (~1 + ~2 ), <P2= 4:eo ( ~1 + ~I ) , (16.53)

where Ql and Q2 are the charges on the first and second spheres. These equations
can be solved for Ql and Q2:

Then

ar 2 • a2r

Q1 = 4neo-2--2 <Pi - 4nBo -2--2 <P2'r -a r -a

ra 2 r 2a

Q2 = - 4neo-2--2 CP1 + 4nBo -2--2 <P2·r -a r -a

ar2

Cit = C22 = 4nBo -2--2 = C> 0,r -a

ra2

C12 = C2i = - 4neo-2--2 = l' < 0.r -a

(16.54)

(16.55)

(16.56)

Taking into account (16.55) and (16.56), let us represent (16.54) in the form

Ql = CCPl + 1'<P2' Q2 = ,\,<PI + C<P2- (16.57)
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(16.60)

(16.61)

For r ~ 00, we obtain C1I = C2 2 = 4n£oa, C1 2 = C21 = 0, i.e, the electric
coupling between the spheres vanishes, and each of them behaves as an isolated
conductor. The capacitance coefficient for each of the spheres simply becomes
the capacitance of an isolated sphere.

Let us now consider a typical problem.
It should be recalled that the capacitance coefficients are constant for an

invanabfi--connguratioll _of conductors and their .mutual arrangement, regard..
less of tHe cliange' In~their charges and potentials.. Therefore, we must analyse
different situations equal iii number to the unknown capacitance coefficients
and then solye the system of equations.

Suppose that the spheres receive certain charges as a result of which their
potentials become <PI and <P2. After this, the second sphere is earthed. What will
be the charges and potentials of the spheres after earthing?

Before we earthed the second sphere, the charges and potentials of the spheres
were related through Eqs. (16.57). Since the potentials are known, the charges
can be calculated with the help of these formulas. After earthing, the potential
of the second sphere becomes equal to zero (cp~ = 0), and the charge Q~ is un..
known. The charge of the first sphere, as before, is Q~ = Ql since the sphere is
isolated. Its potential <p~ is unknown. Let us write Eqs. (16.57) for the case
when the second sphere is earthed:

Q~ = C<p~, Q~ = 1'<P~, Q; = Qt. (16.58)

The solution of these equations has the form

cP~ = ~l C'PltY'P1 = CPt + ~ CP2' Q; = 'V ~l • (16.59)

It follows from (16.55) and (16.56) that

"(IC = -air.

Consequently, expressions (16.59) become

CP: = CPt - (air) <P2' Q~ = - (aIr) Qtt

i.e. after we earthed the second sphere, the potential of the first sphere changed
by a fraction air of the potential which primarily was on the second sphere.
The induced charge remaining on the second sphere is equal to the fraction air
of the charge on the first sphere and has a sign opposite to that of the first sphere.

Let. us remove the earthing of the second sphere and then earth the first sphere.
Now we determine the potential of the second sphere and the charge of the
first sphere.

Obviously, after earthing, the potential of the first sphere wi ll be equal to
zero (<p" = 0), while the charge Q; is unknown. Since the second sphere is now
isolated, its charge remains unchanged upon the earthing of the first sphere
(Q; .= Q;). Equations ~16.57) assume the following form in this case:

Q" "Q" C H Q" Q'1= l'<PS' 2= CPst S= I' (16.62)
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(16.63)

"Q~ a Q a ( II ) 2
CPI = C = - rc t = - r <Pt+ T <P2t

Q; = ~ Q~ = _ ( ; )2 Qt.

These examples illustrate the methods of calculating capacitance coefficients,
charges, and potentials for a system of several conductors in an electrostatic
field .. -

Capacitors. A capacitor is a system of any two conductors carrying charges
equal in magnitude and opposite in sign. These conductors are called the capacitor
plates. Putting Ql = Q and Q2 = -Q in (16.31) we obtain CPl = Q (CXl l - CX12)
and CP2 = Q (CX 21 - CX 2 2) . Then the potential difference between the plates is

~cP = CPl - CP2 = Q (CXl l + CX22 - Ct12 - CX 2l ) · (16.64a)

This means that the potential' difference between the capacitor plates is
proportional to the charge on a plate and, hence, the capacitor is characterized
by a single parameter called the capacitance. The capacitance of a capacitor is
defined by

(16~64b)

and is assumed to be positive by definition, i.e. Q and ~cP in (16.64b) must
have the same sign. A comparison of (16.64b) with (16.64a) shows that the
capacitance of a capacitor is expressed in terms of the potential coefficients
through the formula

C = (CXl l + CX 2 2 - 2CX1 2) - I , (16.64c)

where CX1 2 = CX 2l • Since CX12 and CX 2l are negative, the capacitance C in (16.64c)
is always positive [see (16.64b)]. Taking into account the meaning of the potential
coefficients in (16.64c) , we conclude that the capacitance 0/a capacitor depends only
on the geometrical characteristics oi the capacitor plates and their mutual arrange­
ment.

Proceeding from (16.45) and using definition (16.64b), we obtain the following
expression for the capacitance in terms of the capacitance coefficients:

C - CI I CS2 - Cfl (16.64d)
- Cl l +C2s+2CI S •

In most cases, the shape of the capacitor plates and their mutual arrangement
is chosen in such a way that the external fields do not significantly affect the
electric field between the plates and the field lines emerging from one plate
necessarily terminate on the other. Owing to this, the equality of magnitudes
of the charges on the plates is always ensured.

A capacitor can be represented in the form of a conductor placed into the
cavity surrounded by a closed shell (Fig. 62a). If the inner conductor is a ball
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or a sphere and the closed shell is the sphere concentric to it, we get a spherical
capacitor (Fig. 62b). If the inner conductor is a straight solid cylinder and the
shell is a hollow straight cylinder coaxial with it, we obtain a cylindrical ca­
pacitor (Fig. 62c). A system of two parallel plane conducting plates forms
a parallel-plate capacitor (Fig. 62d).

The calculation of the capacitance of a capacitor boils down to determining
the potential difference between the capacitor plates for a known value of
charge on the plates. If, for example, the inner plate of a spherical capacitor

(a) (b),

(c)

(d)

Fig. 62. Capacitors: general (a), spherical (b), cylindrical (c),
and parallel-plate (d)

has the charge Q, the field strength in the gap between the inner and outer plates
is equal to E = Q/(4ne or

2) and is directed along the radius. Hence, the potential
difference between the plates is

r. r.

CP2-CP.= rEdr=-.!L r~=-.!L (...!.._..!..). (16.65)J 4neo J lr l , 4nso rl rs
rl r,

Using formula (16.64b), we obtain the following expression for the capacitance
of a spherical capacitor:

C = 4neOrlr2f(r2 - r1) . (16.66)

Similarly, we can find the capacitances of a cylindrical and a parallel-plate
capacitor:

C ~ 2neollin (r2frl ) , C = 8 0S/d.

Let us calculate the capacitance of a parallel-plate capacitor with the area
of the plates equal to 1 em" = 10-4 , m2 and the distance between the plates
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d = 1 mm = 10-3 m:

C - 1 10-
4

F I"'V 10-12 F - 1 F (16.67)- 41£.9.109 10-3 ~ - p.

Capacitors can be connected in series (Fig. 63a) or in parallel (Fig. 63b). In
the caseof a series connection, the potential differences are added, while for a parallel
connection, the charges on the plates are added.

For a series connection, we have

U = U1 + U2, U = QIC, U1 = QIC1 , U2 = QIC2 , (16.68)

where U is the potential difference between the outer plates of the capacitors,
U1 and U2 are the potential differences between the plates of each capacitor,

I:
u

:1Ut ,;t;
U2

(a)

(b)

Fig. 63. Series (a) and parallel
(b) connection of capacitors

Fig. 64. Field inside a uniform­
ly charged sphere

Q is the magnitude of charge on each capacitor plate (the charges on all the
plates are modulo equal), C is the capacitance of the two capacitors, and C1 and
C2 are the capacitances of each capacitor. It Iollows from (16.68) that

(16.69)

Thus, with a series connection, the reciprocal values of capacitances are
added.

For a parallel connection, we have

Q = Ql + Q2' Q = UC, QI = UCI , Q2 = UC2· (16.70)
In this case,

(16.71)

i.e, the capacitances of the capacitors are added.
A conducting sphere in a uniform field. The field which appears when a con­
ducting sphere is introduced into a uniform external electric field can be deter­
mined with the help of elementary methods.
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First of all, let us find the field strength inside a uniformly charged sphere
of radius R (Fig. 64), which, of course, is not a conductor. Suppose that the
volume charge density inside the sphere is p, Then the charge contained in the
spherical volume of radius r < R is equal to Qr = (4/3) 1tr3 p. Using the Gauss
theorem for this spherical volume, we obtain (Eo is the permittivity of the
material from which the sphere is made)

E(r) 4nr2 = Qr/Eo = 4nrS p/(3eo) (16.72)

and hence the field inside a uniformly charged sphere at a point characterized
by the radius vector r is

E(r) = [(p/(3eo)] r, (16.73)

the origin of the radius vector coinciding with the centre of the sphere.
Now suppose that we have two' spheres of the same radius and with the same

volume density of unlike charges (Fig. 65). Let the negatively charged sphere
Eo
~

~.

Fig. 65. To the calculation of
the electric field of two spheres
displaced relative to each other

Fig. 66. A conducting sphere
in a uniform electric field

be shifted to the left. The vector drawn from its centre to the centre of the
other sphere is denoted by I. We shall find the electric field strength at the
inner points of these spheres. The fields created by the charges of each sphere are

E(+) = [I P 1/(380)] r(+h E(_) =' - [I P 1/(380)] r(-h (16.74)

where E(+) and E(-) represent the fields created by the charges of the corre-.
sponding sign, and r(+) and r(-) are the radius vectors drawn to the point under
consideration from the centres of the spheres with charges of the corresponding
sign. The total electric field strength is given by

E = E(+) +E(_) = [I P 1/(380)] (r(+) - r(_» = - [I p 1/(380)] I, (16.75)
where

r(_) = 1+r(+) (16.76)

(see Fig. 65). Thus, the electric field inside the spheres is constant and directed
along the line connecting their centres.
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At the points where the volumes of the spheres intersect, the charge density
is equal to zero, since the positive and negative charge densities compensate
each other. Only the crescent-shaped nonintersecting parts of the spheres are
charged (see Fig. 65). The maximum width of these regions, equal to l, can be
as small as desired.

Suppose now t~at a conducting sphere is placed into a uniform external
electric field of strength Eo. The electrostatic induction will lead to the appear­
.ance of surface charges, The signs of these charges and the direction of the
external field are shown in Fig. 66. Inside the sphere, the electric field must be
equal to zero, i.e. the surface charge distribution will be the same as in Fig. 65,
and the field appearing in this case compensates the external field. Then [see
(16.75)]

(16.77)

Thus, the centres of the imaginary charged spheres are shifted relative to
each other along the line of force of the external field. Since I in (16~77) coincides
in direction with Eo, for scalar quantities we can write

I P I l = 3EoEo•

obviously, the shift I of the spheres can be as small as desired if I p I is suf
ficiently large. Hence, the charges appearing in this case can actually be con­
sidered as surface charges with varying surface density.

Let us find the distribution of the surface charge density as a function of the
angle 8. The distance between the surfaces of the spheres in the direction of the
angle 8 is l) = l cos 8 (Fig. 65). If the volume charge between the surfaces of
the spheres is treated as the surface charge and if its surface density is denoted
by a, we obtain

a~S = p~Sl), (16.78

where the left-hand side contains the expression for the charge contained in the
area element ~S in terms of the surface density while the right-hand side expres­
ses the same quantity in terms of the volume density. Consequently [see (16.78)],

a = pl) = pl cos 8 = 3e oEo cos St (16.79) ,
where () = l cos S.

We can now find the field strength at the surface of the conducting sphere:

En = a/eo = 3Eo cos St (16.80)

from which it follows that it varies between zero and thrice the value of the
uniform field strength. Naturally, at all points of the spherical surface the field
is directed along the normal to the surface.

Outside the sphere, at a finite distance from its surface, the field strength is
the sum of the strengths of the external field and the fields created by the charged
spheres shifted relative to each other or, which is the same, by the corresponding
surface charges. The field outside a uniformly charged sphere is the same as if
the entire charge were concentrated at its centre. Thus, we must find the field
created by two unlike point charges of the same magnitude, located at a small
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(16.83)

p == ql
e

Fig. 67. A dipole

distance from each other. Such a system of charges
is called a dipole (Fig. 67). The vector I drawn
from the negative charge to the positive one is
-called the dipole arm. The vector

p == ql (16.81)

is called the dipole moment. In this formula, q indicates the magnitude of each
-of the dipole charges. In order to find the electric field outside the conducting
.sphere, we must find the field of a dipole whose charges are located at the centres
-of displaced spheres. It follows from (16.77) that the dipole moment is equal to

p = (4/3)nR3 pI == 4neoR3Eo, (16.82)

where R is the radius of the sphere.
The field of 8 dipole. The electric field of a dipole is the sum of the fields created
by dipole charges. The dipole arm is as small as desired, and hence it can be
assumed much smaller than the distance to the points at which the field is cal­
culatedv Let us find the potential of the dipole. At the point P (Fig. 68), the
potential is given by

q>(P)=_q_ (_1__1 )__s., ( T(_)-T(+»)
411:Bo T(+) T(_) - 41£Bo T(+)T(_) •

Since l ~ r, we can assume that r(-) - r(+) ~ l cos e and r(-,r(+) ~ r2
• We

can characterize the position of the point P by the radius vector r with the
origin at any point of the dipole, since the dipole has as small geometric dimen­
sions as desired.

Then [see (16.83)] we can write

1 p-r
cp (r) = 41£B

o
--;:r , (16.84)

(16.85)

where ql cos e = (p-rj/», whence

1 [3(p.r)r PJE= -gradq>=-- --
41tso T~ r 8 •

The electric field of a dipole decreases in inverse proportion to the third power of
the distance, i,e. more rapidly than the Coulomb field of a charge. The lines of force
of the dipole field are shown in' Fig. 69.

Formula (16.85) allows us to construct the field lines when a conducting
sphere is placed in a uniform external field. At each point, the field strength
is equal to the sum of the strengths of the uniform external field Eo and the
field E created by the charges induced on the surface of the conducting sphere.
The field lines for this case are shown in Fig. 66.
Method of image charges. While solving the problem about a conducting sphere
in a uniform external field, we made an assumption whose validity was not
proved. Namely, we constructed a certain field satisfying all the conditions of
the problem and assumed that there is no other field that would satisfy the same
conditions. In other words, wa assumed that the solution of the problem is
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unique. Otherwise, the obtained concrete solution would not necessarily be
the solution which is realized in fact. It is proved in the theory of electricity
and magnetism that the solution of a problem, which satisfies all necessary'
conditions, is unique. Later we shall consider the conditions mentioned here­
and give a rough proof of this statement. At the moment, we shall admit without
proof that this statement is correct. This al lows us to find the solution of the­
problem with the help of some conjectures or constructions and then conclude ,

-q, +q:.

Fig. 68. To the calculation of
a dipole field

Fig. 69. Field lines in the vi­
cinity of a dipole

(16.87)

(16.86)

on the basis of the uniqueness theorem, that the field found in this way is the­
solution of the problem. The solution of the above problem about a conducting­
sphere in a uniform external electric field may serve as an example of a successful
conjecture.

There exists a visual method of constructing the field satisfying the conditions
of the problem, which is called the method of image charges. The essense of this
method consists in the following. The field of a point charge is well known. Hence ,.
a system of charges is sought whose total field satisfies all the conditions of the
problem. On the basis of the uniqueness theorem, we conclude that this field.
gives the required solution. Mathematically, this problem is reduced to deter­
ruining the potential satisfying the conditions of the problem. The field vector E'
is normal to the equipotential surfaces and is calculated as the gradient of
potential, taken with the opposite sign. The shape of equipotential surfaces,
of the system of point charges can, in principle, be easily obtained. Let us con­
sider, for example, the field of two positive point charges q located at a distance­
2d from each other (Fig. 70). Since the potential of a point charge at a distance r'
from it is <p = ql(4ncor) , the potential of the system of two identical point,
charges (see Fig. 70) at a point (x, y, z) is defined by

q (t t)<p (z', y, z) = -- + .
4'leo V(Z-d)2+y2+ Z2 \ V(z+d2)+yl+ZI

From this equation, we can obtain the equation for equipotential surfaces:
t tV + V =const.(Z-d)l+y2+ Z2 (Z+d)2+ y2+ SI
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Each of them is characterized by the corresponding potential CPt = const ,
<f)2 = const, etc.

Figure 70 shows the lines of intersection of the plane XY with equipotential
aurfaces. The equipotential surfaces proper can be obtained by rotating the
-pattern depicted in Fig. 70 around the X-axis.

Suppose that an isolated conducting surface coincides with one of the equipo­
tential surfaces, whose potential is equal to CPo. If we assume that the charge
-on this surface is 2q and the surface potential is equal to CPo, the system of equipo­
tential surfaces and the field corresponding to it completely satisfy the conditions
of the problem about the field of a charged surface. At all points external relative

y

x

Fig. 70. Equipotential sur­
faces of two like point charges

Fig. 71. Equipotential surfaces
of two unlike and unequal point
charges

(16.88)

to this surface, the potential is determined by formula (16.86). Thus, the deter­
mination of the characteristics of the field created by the charged conductor is
reduced to the determination of the characteristics of the field created by two
like and equal point charges. This is the essence of the method of image charges.
'The examples considered below will clarify the origin of the name given to this
method.

The potential of two unlike point charges is determined in a way similar to
(16.86):

q ( f<p--
- 4nso V(Z-d)l+ yl+ Z2

The shape of equipotential surfaces in this case is shown in Fig. 71. The
'potential along the Y-axis is equal to zero, and hence it is equal to zero in the
J>lane X = O. .

Suppose now that the entire infinite half-space X < 0 is filled by a conductor
bounded by the plane YX and suppose that the charge +q is located as shown
in Fig. 71. Obviously, on account of electrostatic induction, this charge will
induce on the surface of the conductor the charge -q. In this case, the potential
<p of the conductor must be equal to zero, and the lines of force at each point of
the surface must be normal to it. It is clear that the pattern of the lines of force
in "the half-space X > 0, shown in Fig. 71, completely satisfiestheseconditions.
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(16.90)

(16.93)

(16.91)

(16.12)]

(16.92)q d
0= -231 (Z2+y2+d2)3/2 .

The total surface charge on the plane X == 0 is

r) adzdy= - i~ fJ (JI+~~dl)3/1 = -q,
-~ -~

,
Hence, the problem of determining the characteristics of the field of the point
charge +q, located at the distance d from a plane surface of the conductor filling
the half-space X < 0, is reduced to finding the characteristics of the fields of
two point charges q and -q. The charge -q is located at the point which would
be the image of the point charge q if the plane X == °were a mirror. Hence the­
name of the method of image charges (method of images). Instead of the con­
ducting body filling the half-space X < 0, we could take an earthed conducting­
plate parallel to the plane X == 0. The method of calculation and the field
remain unchanged. If the plate is not earthed, at the surface of the plate facing­
the negative values of the X-axis positive surface charges are induced, which.
completely alter the nature of the field. In this case, the field is no longer the­
superposition of the fields created by the charge q and by its image.

Let us find the field due to a charge q located at a point x == d in the presence­
of the earthed conducting plane X == 0. At all points x > 0, the field potential
is given by formula (16.88). The electric field strength in the plane Z = °is

8<p q {X-d X+d} 8
E:x;= -ax== 4n80 [(X-d)2+y2]3/2-[(x+d)2+ yS]3J2' (16. 9)

E oq> q {Y Y}
y= -7ii/= 4n80 [(X-d)2+yS]3/2-[(x+d)2+ yS]3J2 •

In the plane X = 0, the component E,I vanishes, while
q d

E;x= - 2neo (Z2+y2+d2)3/2·

In the plane X = 0, the surface charge density is given by [see

i.e. the charge induced on the conductor is equal to the inducing charge with­
the opposite sign [see (16.20)].

The force of interaction between the point charge q and the charge on the
surface x = 0 is equal to the force of interaction between the charge q and
its image:

(16.94)

The minus sign indicates that the point charge is attracted to the conducting
earthed surface.

Of course, the method of images is not reduced in all cases to finding the­
mirror image of charges in the literal sense. Let us consider a pattern of equipo­
tential surfaces created by two charges of different magnitude. For the sake
of convenience, we introduce the polar system of coordinates with the origin
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pat the point 0 (Fig. 72). The polar axis passes
through the point charges ql and q2. The polar
coordinates of ql and q2 are 81 = 0, r 1 = dl and
82 = 0, r 2 = d2 respectively: The potential at
the point P is given by

(r 8) - _1_ ( qt
cp , - 4neo . V r2+df-2rd

t cos e

+ q2 ~) (16.95)V rl + d! - 2r A g cos a · Fig. 72. To the determination of
iQ ~ equipotential surfaces of two

If d 2/d ( < d ) d /d th point charges of different mag-
I = a 2 a 2 an q2 = -aq2 2' en nitude

cp (a, 8) = 0, i.e. on the sphere of radius a, the po-
tential is equal to zero. Consequently, this sphere
is an equipotential surface with the zero value of the potential. If we replace it
by a real conducting earthed surface, the field will remain unchanged. Thus,
if we have a conducting earthed sphere of radius a and a point charge q2 outside
it at a distance d2 from the centre of the sphere, the fiel,; outside the sphere is
the same as that created by the charge q2 and its "image", viz. the charge ql =
-aq2Id2' placed at the point with the coordinates dl = a2/il2, 8 = 0 inside the
sphere. The force of interaction between the charge q2 and this sphere is given by

(16.96)

In electrostatics, there is no field Inside a conductor, end volume charges do not exist.
Near the surface of • conductor, the electric field vector Is normal to the surface and Is
proportional to the surface charge density.
On the convex surface of a condudor, the surface charge density and field strength In­
crease with the curvature of the surface, I.e. with d.c....slng radius of curvature. On the
concave surface of a condudor, the surface charg. d.nslty d.creu.s.
In differential form, Ohm's law is valid for the varying as well as for a constant .Iec­
trical condudivity, regardless of the causes and I1IItur. of Its variation.

The capacitance of an isolated conductor depends only on Its shape and size. The
potential and capacitance coeHlclents are determined only by g.ometrlcal charaderlstlcs
of condudors and their mutual arrang.ment.
Capacitance coeHlclents with identical Indices .re alw.ys positive, while those with dif­
ferent indices are either equal to zero or negative.

Due to which property of the eledrostetic field Is the tangential component of the field
near the surface of a condudor equal to zerol

Examle 16.1. Find the force of tnteraetion between a conducting sphere of radius a and a point
charge q2 located at a distance dl from the centre of the sphere, if the charge Q is distributed over
the sphere.

The mutual arrangement of the sphere and the charge is shown in Fig. 72. The charge qs
induces on the sphere its image in the form of the charge ql = -qla/d" at a distance dt = al/ds
from the centre of the sphere. However, now the interaction is not reduced to the force of at­
traction between the charge q2 and its image since, by assumption, the sphere has the charge
Q and not qt" Consequently, in order to describe the interaction, we must add one more "im­
age" of the charge which creates a constant potential on the sphere and is equal to Q - ql.
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(16.103)

Hence, we must place at the centre of the sphere the charge
Q -. ql = Q + q"ald2• The interaction of the point charge
q2 with the sphere carrying a charge Q is the sum of interac­
tions of q" with the "images" ql and Q + q2a1d2. Thus
the force of interaction is '

F=--'lL [ Q+q2ald2 - q2a ] (16.97)
4n8o dl d2 (d2 - d1) 2 •

Example 16.2. Find the force of interaction between a con­
ducting sphere of radius a, maintained at a constant poten­

Fig. 73. To the calculation of tial CPo and a point charge q" at a distance d" from the centre
the field of a capacitor with of the sphere.
nonparallel plates The mutual arrangement of the sphere and the charge

is shown in Fig. 72. The potential created by the charge q2
and its image ql on the sphere is equal to zero. In order

to make it equal to CPo it is necessary to place the "image" Q = 4n8 oacpo at the centre of the
sphere. The force of interaction between the point charge q2 and the sphere maintained at
the potential CPo is given by

F = --.!lL. [.!L - q2
a

] (16 98)
4n8o d~ d2 (d2 -d1) " • .

Example 16.3. Two plane conducting plates form an angle ao (Fig. 73). These plates are perpen­
dicular to the plane of the figure and are infinitely long. A constant potential difference U0 is
applied between the planes. Find the field strength between the plates and the capacitance over a
length l, The width of the plane is b - a. We assume that the plates do not touch each other at
the point 0 but are separated by a suffici~ntly small distance so that edge effects can be neglected.

.The field is axisymmetric. Consequently, it is convenient to use the cylindrical system
of coordinates, where the Z-axis is normal to the plane'of the figure. We denote the axial angle
by a and the distance from the axis by r. Then the~Laplace equation becomes

.!.~ (r ~) -+_J:.... 02cp =0 (16.99)
r or lJr I r 2 lJa" ,

where we took into account that lJ"cp/lJz1 = 0 due'[to the cylindrical symmetry of the field.
We seek its solution in the form

cp (r, ex) = R (r) <D (a). (16.100)

Substituting this equation into (16.99), we find

~~ (r dR ) +.:!- d 2<1> = 0
r dr dr r 2 dal •

Multiplying both sides of this equation by r"/ RC1>, we obtain

r d ( dR) 1 d2 eDIf dr r dT = -a> da2 • (16.101)

The left- and right-hand sides of this equation contain different independent variables.
Consequently, the equality is possible only if its left- and right-hand sides are separately equal
to the same constant. Hence we put

i: 3:- (r dR ) = n2 _1_ d
2
$ = -n2 (16.102)

R dr dr '\ <D da" ,

where n2 is a constant. The solution of the equation for C1> is obvious:

<1>= { Bta+B" for n=O
Al sin nex+A2 cos na for n =1= o.
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We shall seek the solution of the equation for R in the form R = Arf3 (~ =1= 0).
Substituting this expression into the first equation of (16.102) we obtain the equality

~2 = n2 , / (16.104)
from which it follows that ~ = ±n. For n = 0, the first of Eqs. (16.102) is simplified:

dR
r (l-;:- = const

and can be satisfied by the function

R = D 1 In r + D 2•

Consequently, the solution of (16.102) can be written in the final form as follows:

R={ D1lnr+D2 for n=O, (16.105)
Csr" + cv:» for n =1= O.

Let us try to find the solution of the problem which would be independent of r, In other
words, for n = 0, D1 = 0 we have [see (16.103)] cp (a) = Bia + B 2• The boundary conditions
for cp have the form cp (0) = 0, cp (a o) = U0' i.e. 0 = B 2 , U0 = BlaO• Consequently,

.. cp (ex) = Uoex/exo. (16.106)

The electric field strength is given by

Eo. = - ~ :: = - Uof(rao) (16.107a)

The surface density of charges on the plates is

(11 = BEa. (ex = 0) = -BUo/(rexo), (12 = -BEa. (a = ao) = BUo/(rao). (16.107b)
The charge on the length 1 of each plate (in magnitude) is expressed by

b

Q= l ) a dr = (lEoUofao) In (bfa) (16.108)
a

The capacitance corresponding to the length 1 is equal to

C=.!L~ lEO In (b/a)
o; cx.o·

Sec. 17. Electrostatic Field in the Presence of a Dielectric

(16.109)

The in fluence of a dielectric on an electrostatic field
and various mechanisms of polarization are discussed.
The relations between the volume and surface densities
of bound charges and polarization are introduced. The
phenomena occurring at the interface between dielectrics
are discussed.

Dipole moment of a continuous charge distribution. The effect of matter on the
electric and magnetic fields was experimentally discovered and investigated
by Faraday. The results of these investigations led Faraday to put forth the idea

9-0290
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0'

(17.1)

of short-range interactions and the concept of a
field. The electrostatic induction was discovered
by him in 1837, when he also introduced the terms
"dielectric" and "dielectric constant".

Suppose that in a certain volume V (Fig. 74) we
have a continuously distributed charge with a
volume density p and that the volume is electri­
cally neutral as a whole. This, however, does not
mean that the positive and negative charges com­

Fig. 74. To the determination pensate each other at each point inside this volume.
of the dipole "momentof a con- If positive and negative charges are distribut­
tinuously distributed charges ed in the volume according to different laws, the

overall charge density p will be positive at some
points in the volume and negative at some other points. Mathematically, the
condition of neutrality of volume V can be expressed as follows:

) pdV=O.
v

If p = 0 at all points in the volume, the material system is electrically neutral
inside the volume V: it is acted upon by an external electric field and it does not
generate any electric field on its own. However, it the charge density p is positive
at some points of the volume V and negative at some other points, the system will
have electric properties even though the total charge in the volume V is equal to
zero: the system is acted upon by an external electric field and it itself generates an.
electric field. To a first approximation, the electric. properties of a neutral system
are characterized by its dipole moment. Formula (16.81) serves as the definition
of dipole moment for two point charges. For a continuous charge distribution,
the dipole moment (Fig. 74) is defined by the formula

p= ) prdV.
v

In this equation, the radius vector r is measured from any point 0 which can
be taken as the reference point. Obviously, the form of the expression (17.2)
is independent of the choice of this point. In order to prove this, let us take
point 0' as the reference point from which measurements are made, and suppose
that the position of this point relative to 0 is characterized by the radius vector
ro (see Fig. 74). Formula (17.2) has the Iollowing form for point 0':

p' = ) pr'dV. (17.3)
v

This. equation can be transformed as Iollows:

P'=) p(r-ro)dV=) prdV- )ropdV':"- JprdV=p,
v v v v

(17.4)
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Q.E.D. Here, r = r o + r', and [see (17.1)]

i ropdV=ro i pdV=O. . (17.5)
v v

Let us use formula (17.2) for 'calc,ulating the dipole moment of two point
charges which can be treated as charges lying in indefinitely small volumes
~Vl and ~V2 (Fig. 75):

p= i prdV= ) prdV+ J~prdV
v i\ \'. AV.

= r. I p dV + r2 JP.dV = r.Q.+r2Q2' (17.6)
AV. AV.

where Ql and Q2 are charges in volumes ~Vl and ~V2 respectively, and r1,and r,
are the radius vectors of these volumes, For example, suppose thatn positive

Q. Q2'

~ vt u·....----.....~ 4 V2

Fig. 75. To the calculation of the
dipole moment of two foint
charges with the help 0 the
formula for continuous distri­
butlon of charges

Fig. 76. Polarization of nonpo­
lar dielectrics in an electric
field

charge Q2 = Q is located in volume ~V 2. In view of the electrical neutrality
of the system, in this case Q1 = -Q, and formula (17.6) assumes the form

Ip=Q(r2-r.)=QI, I (17.7)

which is analogous to (16.81).
The field strength of a neutral system with a dipole moment p is given by

formulas (16.84) and (16.85). .
Polarization of dielectrics. Dielectrics are materials in which' the application
of an electric field does not lead to a displacement of charges '8S, for 'example,
in conductors. This, however, does not mean that charges in a dielectric do not move
at all when an electric field is applied. The charges do move in such a case, but are.
not displaced by large distances. .

Let us consider an electrically neutral volume of a dielectric (Fig. 76). An.
external electric field tends to displace positive charges in the direction of the
9*
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field and the negative charges in the opposite direction. Hence an excess charge
is accumulated in the direction of the field, while a deficiency of charge is created
in the opposite direction. Consequently, the dielectric acquires a dipole moment.
This process is called polarization.
, The extent of polarization of a dielectric is characterized by the dielectric

polarization which is defined as the ratio of the dipole moment ~p of a dielectric
to its volume ~V:

Ip--~ I- L\V • (17.8)

Molecular pattern of polarization. A dielectric consists of atoms and molecules,
and any infinitely small physical volume element of a dielectric is electrically
neutral. The positive charge is concentrated at the atomic nuclei, while the
negative charge is distributed over the electron shells of atoms and molecules.
Positive and negative charges are located at different points in space and hence
atoms and molecules can have electric dipole moments which vary with the
frequency of electron oscillations in atoms, which is of the order of 1015 s :'.

If in the absence of an external electric field the distribution of the electron
cloud is spherically symmetric with respect to the nucleus, the atom does not possess
an electric dipole moment. Similarly, the positive and negative charges in a mole­
cule may have such a symmetry of distribution that the molecule does not have a
dipole moment. Such molecules and atoms are called nonpolar and include,
among others, the helium atom, diatomic molecules consisting of identical atoms
(H 2 , N2' 02' ... ), and symmetric polyatomic molecules like CO2 and CH~. In
the absence of an external electric field, such a dielectric is not polarized.

Molecules and atoms which possess an electric dipole moment in the absence
of an external electric field are called polar, and include CO, N20' S02 etc.
The permanent dipole moment in such molecules is of the order of 10-29_10-30 C · m.
This corresponds to a dipole consisting of two elementary charges of 1.6 X 10-19 C
separated by a distance 10-10 m, i.e. of the order of atomic dimensions.

In the absence of an external electric field, the permanent dipole moments of
individual molecules are oriented at random and hence their sum in an infinitely
small physical volume is equal to zero. In other words, the dielectric is not
polarized.

When an electric field is applied to a dielectric, the positive charges tend to
move along the field vector, while the negative charges tend to move in the
opposite direction. As a result, nonpolar molecules acquire a dipole moment and
the dielectric is polarized. Polar molecules also acquire an additional dipole
moment induced by the external field and also get polarized, although this
polarization is insignificant. The basic polarization mechanism for polar mole­
cules is different: in an external electric field, the permanent dipole moments of
molecules are acted upon by the moments of force [Fig. 77, see (19.7)] which tend
to orient the dipole moments along the field vector. Consequently, the molecules are
reoriented in such a way that infinitely small physical volume elements of the di­
electric acquire dipole moments, i.e. the dielectric is polarized. The polarization
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due to the reorientation of molecules is much E F(+),'~,
stronger than due to the formation of additional ----. .
dipole moments induced by the external 'field.

Besides these mechanisms of polarization, there
exists another. In ionic crystals, the positive ions
under the action of an external electric field are dis- ! !

placed along the field, while the negative ions are
dOL dOth °t directi Thi It Fig. 77. Polarization of polar

lSP ace In e opposi e tree ton, IS resu s dielectrics in an electric field
in a certain deformation of the crystal lattice or
a relative displacement of sublattices, which
leads to the emergence of dipole moments in the dielectric, i.e. to the polariza­
tion of the dielectric. Such a polarization is called ionic lattice polarization.

The quant.itative measure of polarization in all cases is the dielectric polariza­
tion P. The polarization mechanism is revealed only as a result of the investiga...
tion of the dependence of P on the strength of the applied electric field and
other factors (see Chap. 3). The formula which relates the electric field strength,
the electric displacement and polarization remains unchanged [see (17.29)].

The polarization of nonpolar molecules is
1

P=L\V ~ Pi = Npo, (17.9)"
~v

where ~V under the symbol ~ means that the summation is extended to all
molecules in the volume ~V, N is the concentration of molecules; Po is the in­
duced dipole moment (its value is the same for all molecules) whose direction
coincides with that of the external electric field E. In the absence of an external
field, Po == 0, and hence P == 0, i.e, there is no polarization.

The principal mechanism of polarization in polar molecules is the reorienta...
tion of the direction of permanent dipole moments under the action of an external
field. The formula for polarization has the form

p= J1~ ~ p,=N{p), (17.10)
~v

where (p) is the average value of the dipole moments which are equal in mag ..
nitude but are oriented in different directions in space. In isotropic dielectrics,
the direction of the average dipole moments coincides with that of the external
electric field. In anisotropic dielectrics, which have different properties in differ.. '
ent directions, such a coincidence is not observed. The relation between the
polarization and the field strength is more complicated in such dielectrics
(see Chap. 3). In polar dielectrics, the contribution from induced dipole moments
to the polarization is much smaller than the contribution from the realignment
of permanent dipole moments and is usually not taken into account. If necessary,
this contribution can be taken into account by adding the right-hand side of
Eq. (17.9) to the right-hand side of formula (17.10). ~

Ionic lattice polarization is defined by formula (17.10) in which (p) is the
average value of the dipole moments created in volume ~V due to adisplace-.
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ment of ions at the crystal lattice sites. In most cases, this polarization is aniso­
tropic.
Dependence of polarization on the electric field strength. In electrets and ferro­
electrics, the polarization may be nonzero in the absence of electric field
(E = 0, P =1= 0). The .. polarization in other dielectrics in the absence of
electric field is equal to zero. In the general case, the dependence of polarization
on field strength can be expressed in the form

P, = 80 ~ X'JEJ+ 80 ~ 'X'J",EJE",+ ···,
; ;, Ie

where the indices i, j, k: e e enumerate the components of the quantities along
the Cartesian coordinate axes. (i = x, y, z; j = x, y, z, ...). Hence, in the
general case, polarization, depends not only on the first power of the electric
field strength', but also on its higher powers. If the dependence on the higher powers
is significant, the dielectric is called nonlinear. Such a nonlinearity is usually
manifested only in very strong electric fields, although there are some special
materials in which nonlinearity is observed in comparatively weak fields.

If the nonlinearity is insignificant, the polarization is expressed in terms of
first powers of the field components:

Pi = eo ~ x'JE J•
;

Such a dielectric is called linear. If the properties of such a dielectric are
different in different directions, the dielectric is called anisotropic. The set of
nine quantities X'j constitutes the dielectric susceptibility tensor which com­
pletely characterizes the electric properties of a dielectric. If the properties
of a dielectric are identical in all directions, it is called a linear isotropic dielec­
tric. Its dielectric properties are then characterized by a scalar quantity called
the dielectric susceptibili ty.

For a linear isotropic dielectric, we have

P = xfoE, (17.11)

where x is the dielectric susceptibility. In the Gaussian absolute system of units
the dielectric susceptibility x' is a quantity 4n times smaller than x in formula
(17.11):

x' = x/(4n). (17.12)

For most solid and liquid dielectrics, the dielectric susceptibility is expressed
by numbers of the order of several units. The dielectric susceptibility of most
gases is a fraction of a thousandth part of unity and in most cases need not be
taken into consideration. However, there are dielectrics whose susceptibility
reaches very high values. For example, x = 80 for water, 25-30 for alcohol,
while in ferroelectrics (Rochelle salt, barium titanate, etc.), the dielectric sus­
ceptibility attains values of several thousands.
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Fig. 78. Mechanism of field
weakening during polarization

Fig. 79. Calculation of the
charge crossing a surface area
element upon polarization

The effect of polarization on electric field. In accordance with formula (17.8),
the dipole moment of a volume element dV is

dp = P dV = xBoE dV, (17.13)

i.e. coincides in direction with the electric field E, since x > O. Hence, the
field created by the dipole moment is directed against the external field and
weakens it (Fig. 78). Thus, the field inside a dielectric is weakened as a result of
polarization. The role of polarization is reduced just to a separation of positive
and negative charges, leading to the appearance of charges in the volume and
on the surface of the dielectric. These charges are called polarization charges
or bound charges, since they are as if attached to different places in the di­
electric and cannot move freely in its volume or on its surface. Bound charges
giuerise to an electric field in the same way as free charges, and are in no way different
from them in this respect. Thus, the presence of a dielectric is taken into account
by considering the electric field created by bound charges induced as a result
of polarization. Hence it is necessary to find an expression for bound charges.
Volume and surface density of bound charges. Let us consider a surface element
dS (Fig. 79) inside a nonpolarized dielectric. As a result of polarization the
charges move across this surface element. Let us calculate the charge inter­
secting the element dS when a polarization P appears. In order to simplify
the formulas, we shall assume that only positive charges are displaced. We
denote the dipole charge by q, the dip-ole arm corresponding to the polarization
P by l and the charge concentration by N. The area element dS (see Fig. 7-9)
is intersected upon polarization P by all positive charges which were present
in volume dV = h dS = l cos 8 dS of an oblique cylinder with base dS
before displacement was ~aused by polarization. Consequently,

dQ = NIl cos e dS = P dS cos e = P·dS. (17.14)

Let us now consider a certain volume V (Fig. 80). As a result of polarization,
the surface S bounding this volume is crossed by charges. Depending on the
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Fig. 80. To the derivation of
the expression for the bound
space charge

Fig. 81. To the derivation of
the expression for the surface
density of bound charges

(17.15)

(17.16)

balance of charges entering and leaving the volume, a bound charge of volume
density Pb appears. Taking (17.14) into account, we can write the law of charge
conservation in volume V in the form

JPb dV= - ) P·dS.
v s

The minus sign indicates that the charge induced in the volume is opposite in
sign to the charge flowing through the surface bounding it. Applying Gauss'
theorem to the right-hand side of Eq. (17.15), we can write it in the following
form:

) (Pb- div P) dV = O.
v

If Eq. (17.16) is identically satisfied for all values of V, the integrand will be
identically equal ~ zero. Consequently,

-------.IPb= -divP. I (17.17)

Thus, bound space charges appear only in the case when the polarization P
changes from point to point. This is clear even without calculations since in
the case of a uniform polarization the charges moving on to new places occupy
the vacancies created by the same number of eharges. As a result, the correspond­
ing volume of the dielectric remains electrically neutral.

Surface charges appear at the interface between two different dielectrics. This
is apparent from the following eonsiderations. The dielectric polarization is
different at different points for the same electric field strength. Consequently,
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a different number of polarization charges cross the boundary surface from
different dielectrics. As a result, a certain bound charge, called the bound surface
charge, is concentrated near the interface between two dielectrics. Let us
denote the surface density of this charge by abo In order to find this charge, it
is best to proceed from formula (17.17). We construct at the interface between
the two dielectrics a right cylinder with a base of area ~S and height h (Fig. 81),
and integrate both sides of Eq. (17.17) over the volume of this cylinder:

~ PbdV = - ~ div P dV. (17.18)
v v

The left-hand side of this equality represents the total charge in the cylinder,
i.e. the surface charge ab ~S. With the help of the Gauss theorem, we can
transform the right-hand side of this equation into a surface integral:

~ divPdV= ~ P·dS= ~ P2·dS2+ JP1·dS1, (17.19)
v 8 8. 8 1

where subscripts 1 and 2 correspond to the first and second dielectrics on
different sides of the interface. The polarization flux of the vector P is the
sum of fluxes through the bases and lateral surfaces of the cylinder. The
flux through the lateral surface of the cylinder is taken equal to zero, since in
the limit the height h of the cylinder tends to zero. For the positive normal to the
interface, we choose the direction from the first dielectric to the second. Conse­
quently, dS 2 is directed along the positive direction of the normal, while dS 1
is along the negative direction. Consequently,

JP.dS=P2n~S-P1n~S. (17.20)
8

It should be recalled that the integral over the lateral surface is not taken into
account. Considering the value of the integral on the left-hand side of Eq. (17.18),
we finally obtain

(17.21a)

Hence, denoting the unit normal vector directed towards the second medium
by "2' we can represent formula (17.21a) in the form

I(Jb= -02.(P2-P1)·1 (17.21b)

It is worth noting that vacuum can also be treated as a dielectric with a
polarization equal to zero. Formula (17.21a) can be applied to the boundary
between a dielectric and the vacuum. In this case, we consider the outward
normal to the dielectric as the positive normal, i.e, we assume the dielectric in
(17.21a) to be mediuml and put P 2n = O. Consequently, we get [see (17.21a)1

(Jb = r ; (17.22}
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where Pn is the normal component of the dielectric
polarization on its boundary with vacuum.

With the help of formulas (17.17) and (17.21),
we can completely take into account the influence
of a dielectric on an electric field. The strength of
the field created by bound charges is calculated

Fig. 82. Field in a capacitor in by the same formulas that are used for determin­
the presence of a dielectric ing the strength of the field created in vacuum

by free charges. In particular, the potential CPd'
created by the bound charges in a dielectric, is given by formulas (14.35) and
(14.36) where the free charges have been replaced by bound charges:

q> = _1_ r Ph dV +_1_ r O'h dS
d 4n80 J r 4neo J r

v s
=_1_ r -divPdV +_1_ r Pin-Pin dS. (17.23)

4neo J r 4neo J r
V B

This potential is added to the potential created by free charges.
I t is worthwhile to formulate once again in an explicit form the basic idea

behind the influence of matter on field, which was traced by considering the
example of conductors and dielectrics: in the presence of an external electric
field, the matter itself becomes the source of an electric field; consequently, the
external field undergoes a change.

Let us consider this process by taking the example of the field formation in
a capacitor the space between whose plates is filled with a dielectric (Fig. 82).
We shall assume that the capacitor plates carry a charge with surface density a.
If the capacitor plates are in vacuum, we get E' = a/eo [see (16.12)]. As a result
of polarization of the dielectric, the field strength decreases. We determine the
dielectric polarization with the help of formula (17.11), considering that E =1=
0'/ eo. In view of the homogeneity of the dielectric and the uniformity of the
field between the charged parallel plates, we conclude that the dielectric polariz­
ation is uniform, i.e. there are no hound space charges. There are only bound
surface charges with a surface density [see (17.22)]

(17.21 )

where E is the component of the field vector along the outward normal to the
dielectric. It is well known that the field vector is directed from the positively
charged. plate to the negatively charged plate of the capacitor. Hence, it follows
from (17.24) that the surface density of a bound charge is negative on the bound­
ary with the positively charged plate and positive on the boundary with the
negatively charged plate. Consequently, the strength of the field in a dielectric
between the -plates of a capacitor is identical to that between the same plates in
vacuum, but. with a surface density of charge equal to a - abo Thus, we can
write the following equation for determining the unknown quantity:

E = (a - ab)/eO = (a - xeoE)/eo. (17.25)
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The vector

The solution of this equation has the. form

E = a/[eo (1 + x)]. (17.26)

Electric displacement. Considering that bound charges are responsible for the
field, we can obviously write Eq. (13.19) in the form'

div E = pleo + Pb/eO. (17.27)

Substituting into this equation the expression. (17.17) for p b' we get

di~ ·(eoE + P). . p. (17.28)

(17.29)

is called the displacement vector. It is not purely a field vector since it takes
into account the polarization of the medium. With the help of this vector, we
can write Eq. (17.28) in the form

(17.30)

Recalling the meaning of the divergence of a vector, it can be concluded from
(17.30) that it is advantageous to use D. It can be seen that the only source of D
are the free charges at the head and tail of this vector. This vector is continuous at
points without free charges, including points with bound charges. The varia­
tions in the field introduced by bound charges have already been taken into
consideration in the vector D [see (17.29)].

Expressing P in (17.29) with the help of formula (17.11), we get

D = (eo + X80) E = eE, e = (1 + x) eo, (17.31)

where e is the dielectric constant or permittivity. The use of D considerably
simplifies the analysis of the field in the presence of a dielectric. In addition to E,

another dimensionless quantity
E r = e/Eo, (17.32)

called relative permittivity is also used.
Gauss' electrostatic theorem in the presence of dielectrics. Multiplying both
sides of (17.30) by dV and integrating over the volume V, we obt ain

JdivDdV= ) pdV. (17.33)
v v

The right-hand side of this equation represents the total charge Q inside the
volume, while the left-hand side can be transformed into a surface integral with
the help of Gauss' theorem. As a result, we get the formula

JD·dS=Q,
s

(11'~~4)
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or

called Gauss' theorem for electrostatic fields in the presence of dielectrics. I t is
valid for any arrangement of dielectrics and boundary surfaces: a part or the
entire volume may be filled with different dielectrics, and the surface S may
either be in vacuum or cross the dielectrics.

Let us apply formula (17.34) to a point charge q located in an infinite homo­
geneous dielectric medium, and taking a sphere of radius r with its centre at.
the point where the point charge is located as the integration surface, we obtain
Coulomb's law for a homogeneous dielectric medium:

E-_1_ -!L -!... (17.35)
- 41t8 r 2 r·

The intensity of the field in a medium is e, times smaller than in vacuum ..
The potential of the point charge behaves in the same manner. Formula
(17.26) shows that in the presence of a dielectric, the field strength between the­
plates of a capacitor also drops to 1/cr of its value in vacuum. The capacitance
of the capacitor increases cr times.
Boundary conditions. Boundary conditions are relations between field vectors
on different sides of the interface between two regions. This surface may separate
substances with different properties, be the boundary between a body and
vacuum or, in general, may just be an imaginary surface in a homogeneous
medium. In all cases, boundary conditions can be used to determine the change­
in the field vector upon crossing this boundary. These conditions are derived
with the help of field equations.
Boundary conditions for the normal component of vector D. Let us derive this
condition in the same way as the boundary condition (17.21). In this case,
however, we must proceed from Eq. (17.30) rather than from (17.17):

ID2n-Dt n = o, I ID2 · (D2 - Dt ) = o, I (17.36)

where a is the surface charge density at the boundary. The normal n 2 is directed
towards medium 2. In particular, Eq. (17.36) can be used to obtain the field
strength on the surface of a charged conductor. Taking the outward normal
to the surface as the positive one, we must consider vacuum as medium 2 and
conductor as medium 1 in formula (17.36). The field E inside the conductor is­
equal to zero, i.e. DIn == O. Consequently,

D n == a (17.37)

En==ale. (17.38)

This formula is identical with formula (16.12) for vacuum, where to has been
replaced by e, i.e. the field strength on the surface of a conductor decreases in
the presence of a dielectric to 11 Cr , i.e. tol e of its initial value.

Formula (17.38) also provides a solution to the problem of the field in a
parallel-plate capacitor, which is expressed by relation (17.26). In this case,
it is not necessary to explicitly take into account the bound surface charges in
the dielectric between the capacitor plates, as was done while deriving Eq. (17.26).
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(17.39)

Boundary conditions for the tangential component of vector E. Let us construct
a closed contour near the interface between dielectrics 1 and 2 (Fig. 83). In view
40f the potential nature of the electric field, the circulation of E around the
'closed circuit is equal to zero:

~ E·dl=O.
ABCDA

The integrals over the segments Be and DA are arbitrarily small, since AB
and CD are infinitely close to the interface. The signs of integrals over AB and

Fig. 83. To the derivation of the
boundary condition for the tan­
gential component of vector E

Fig. 84. Refraction of field lines
at the interface between two
dielectrics

CD are opposite in view of the fact that the integration is carried out in opposite
directions. Hence [see (17.39)]

IE2T-Eh:=0.! (17.40)

Refraction of field lines at the interface between dielectrics. Suppose that there
are no free charges at the interface between two dielectrics. In this case,

«.u.; = e2E 2n , E 1 1: = E 21: . (17.41)

It £2 > £1' then E 2n < E 1n , and hence the field lines behave as shown in
Fig. 84. It can be seen in this figure that the field lines deviate from the normal
when entering the dielectric with a higher permittivity.
Slgns of bound charges at the interface between dielectrics. Let us consider the
normal coniponents of field and polarization vectors at the interface between
dielectrics. With the help of formula (17.31) we can-write formula (17.11) for
dielectrics on both sides of the boundary in the following form (Fig. 85):

P 2n = (£2 - eo) E 2n , PIn = (e1 - eo) E 1n • (17.42)

Let us write formula (17.21) for surface charge density by taking into account
Eq. (17.32):

(17.43)
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If there are no free charges on the surface, we get CtEtn - e2E 2n = 0, and
formula (17.43) can be simplified as follows:

(17.44)

For the sake of definiteness, we shall assume as before that f 2 > C] and E
is directed from the first medium into the second. It should be recalled that the
normal directed towards the second medium is taken as the positive normal. In
this case, E t n and E 2n in (17.44) are positive and E 1n > E 2n • Hence the bound

(a)

Fig. 85. Sign of the surface charge and the behaviour of normal
components of the electric field and polarization vectors when

the interface is crossed in opposite directions

charge at the boundary is negative (Fig. 85a). The quantities Ptn and P 2n are
also positive and, consequently; P 2n > PIn' as can be seen from (17.43) for
0b < 0 (Fig. 85a).

Similar arguments can be applied to study the variation of normal components
of the field and polarization vectors, as well as the sign of the surface charge
density when the field vector is directed towards the dielectric with lower
permittivity (Fig. 85b).
Method of images. When applied to dielectrics, the idea of this method is the
same as for conductors (see Sec. 16).

Suppose that we have two very long dielectric media (having permittivities
£} and C2) with a plane interface. A point charge q is located in the first medium
at a distance d from the interface. It is stated that the potential in the first
medium is the same as due to charge q and its image q' =.q (Cl - C2)/(et + C2)
located in the second medium at a distance d from the interface (see Fig. 86a).
The calculations are carried out as if the permittivity of the media were equal
to Ct. The potential in the second medium is equal to the potential due to the
charge q" = 2c2Q/(Cl + C2) located in place of charge q in the first medium
(Fig. 86b), the calculations being carried out as if the permittivities of both
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(17.45)

(17.46)

media were equal to £2. Thus, the potentials in the first and second media are

q { 1 -1 81 - 82 1 }
<P.= 4n81 Y(Z+d)l+yl - 81+82 V(x-d)2+y2 '

q 282 1
<J>2= -4m-2 -8-1+-8-2 V(Z+dPI+y2·

It can be easily verified that CPl and <P2 satisfy the Laplace equation and the
boundary conditions

e1 Oq>1 I = B OCP21 Oq>1 I = Oq>2/ = 0
OZ x==0 2 OX %=0' oy %=0 oy x==O '

which express the continuity of the normal components of D and of the tan-

.y

'Pl(X < 0) .

q

(a)

q' q"

(b)

x

Fig. 86. Method of images applied to dielectrics

gential components of E. Besides, the requirement that the potential be finite
is also met:

<Pi Ix -+ - 00~ 0, <1'21 x -+ + 00~ o. (17.47)

III accordance with the uniqueness theorem, formulas (17.45) give the required
solution.

The force acting on charge q is equal to the force of interaction of this charge
with the image [(C) - c2)/(cl + £2)] q, located at a distance 2d from q:

IF - - 1- ( 81-
e

2 ) .e, (17.4~)
- 4nel 81 +e2 4dB •

For c) < €2' F is negative, i.e. q is attracted towards the interface between
the dielectrics. If £1 > £2' F is positive and hence q is repelled from the inter­
face.
Dielectric sphere in 8 uniform field. With the help of the Laplace equation,
let us find the field strength whena dielectric sphere is brought into an initially
homogeneous electric field. If the linear dimensions of the plates in a parallel­
plate capacitor are quite large, the field will be homogeneous to a high degree of
accuracy in the inner parts away from the edges even for large separations
between the plates. If the size of the plates is increased to infinity and at the
same time the distance between them is also increased to infinity for a constant
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/

/./
/

/
/

/

surface charge density on the plates, a uniform electric field is created in the
entire space. We place a conducting dielectric sphere in this space. I t is clear
that as a result of polarization the field strength near the sphere will change
while it wi ll remain unchanged at infinity. Let us determine the electric field
strength in the entire space including the region inside the dielectric sphere.

We assume that a sphere of radius R consists of a dielectric with permittivity
£1' and its surrounding space is filled with a dielectric with permittivity £2

.Eo--..

Fig. 87. Orientation of the coordinate system for a dielectric
sphere in a uniform field

(Fig. R7). A homogeneous field is directed along the Z-axis. In view of the axial
symmetry of the problem, it is convenient to use a spherical coordinate system
with' the polar axis along the Z-axis.

For a homogeneous dielectric with permittivity e, the Poisson equation
(15.14) has the form

V2cp = -pi e. (17.49)

This is obvious from a comparison of Eq. (15.10) for vacuum with Eq. (17·.30)
which has the Iollowing form for a homogeneous dielectric:

divE=p(e. (17.50)

In spherical coordinates, Poisson's equation c~n be written as follows:

_1~ (r2 acp ) + 1 ~ (sin e ocp ) + 1 a2cp - _ .e, (17.51)
r 2 ar a,. r 2 sin 8 ae ae r 2sin28 aa2 - e'

(17.52)

where a is the axial angle. There are no free charges (p = 0) in this problem,
and 8qJ/8a == 0 on account of axial symmetry. Hence the problem is reduced
to the solution of the Laplace equation

1 a ( 2 acp ) 1 a (. ocp ) - 0
-;:2 ar \r fir + r 2 sin e as SID ~88 -

in the entire space under the following conditions..
(1) potential <p is continuous and finite everywhere;
(2) the normal components of 'vector D = -E grad qJ are continuous at the

interface, i.e. on the surface of the sphere;



Sec. 17. Eledrostetic Field in the Presence of a Dieledric

(3) the tangential components of vector E = -grad q> are continuous on
the surface of the sphere.

The quantities corresponding to the inner region of the sphere are denoted by
subscript 1, while those corresponding to the space outside the sphere are
denoted by subscript 2. The general solution of Eq. (17.52) is well known in
mathematics. In the present case, it becomes much simpler. It can be found as
a result of direct verification that the functions

<Pf = Air cos 8+ A 2r- 2 cos 8, CP2 = - Ear cos 8+ B2r-
2 cos e (17 .53a)

satisfy Eq. (17.52), "There At, A 2 and B 2 are constants, and Eo-is the absolute
value of the strength of the uniform field (at infinity).

Since CPI and CP2 satisfy Eq. (17.52), they represent the potential if they satisfy
all the conditions of the problem. The potential <PI corresponds to the inner
region of the sphere, whi le CP2 corresponds to the space outside it. I t can be seen
from (17.53a) that CPI ~ 00 as r ~ O. Hence, it can be assumed that A 2 = O.
The continuity equation for cP at the boundary has the form

AIR cos 8 = -EoR cos e + B 2R - 2 cos e, (17.53b)
whence

Al = B 2R -3 - Eo- (17.54)

The tangential component of the electric field vector E on the surface of the
sphere is .

E~=Ee= -[+~: l=R' (17.55)

The condition E I 9 = E 29 is satisfied if Eq. (17.53b) is valid, i.e. Al and B 2
are connected through relation (17.54).

The normal components of the electric field vector are given by

Et n = Et T = - ({JCPi/fJr)r=R· - At cos 8,

E2n = E2T = - ({JCP2/{Jr)r=R = Eo cos:e + 2B2R-3cos 8.

It follows from the condition eIEI T = E2E 2 T that

Al = -(e2/el) (Eo + 2B 2R -S).

The solution of the system of equations (17.54) and (17.57) is

A
1
= - &1 E B 21-81 R3E

21+ 281 Ot 2=21+. 2 21 0-

The potentials inside and outside the sphere are

3el E eCPt = - +2 or cos ,
81 82

( 1 RI 81 - 8. ) E eCP2= - --I +2 oreos.\ r 81 81

to-0290

(17.56)

(17.57)

(17.58)

(17.59)

(17.60)



146 Ch. 2. Constant Electric Field

~a) (b)

Fig. 88. Field lines of displacement vector D for a dielectric
. sphere in a uniform external field

Obviously, the field inside the sphere is constant and parallel to the Z-axis:

E = - Oq>l - _ OCPl 38
2 E (17 61)

1% OZ - o(r cos 8) 81 +282 o· •

This field is the sum of the external field aIid the field created by the bound
charges appearing on the surface of the sphere. Consequently, the strength of the
field created inside the sphere by bound charges is

E b = E 1 z - Eo = (E2 - Ct) E o/ (E1 + 2E2) · (17.62)

This field is constant and parallel to the Z-axis. The charge distribution on the­
surface of the sphere, which leads to a constant field strength inside the sphere,
is given by formula (16.75). Hence it can be concluded that the field (17.62) is
created by bound charges on the surface of the sphere, the charge density varying
with angle 8 in the same way as in formula (16.79), i.e. a ex: cos 8.

It can be seen from (17.62) that for £1 > C2 the field E b is directed against Eo..
Consequently, the field inside the sphere is less than the initial uniform field.
If E2 > E1 , the field E b is in the same direction as Eo, and the field inside the
sphere is stronger than in the surrounding medium. The lines of vector D for­
the case (a) £.1 > E2 and (b) E1 < C2 are shown in Fig. 88, as wel l as the signs
of the bound charges appearing on the surface of the sphere. It should be
noted that Fig. 88 shows the lines of vector D rather than E, since it is the vector"
D that is continuous in the absence of bound charges. While plotting the lines of
vector E, we must change their density on the surface of the sphere where bound.
charges exist.

Polarization (or bound) charges appear at the sites where the polarization changes.
In the presence of an external electric field, material bodies themselves become the sources
of an electric field, as a result of which the field changes. In this case, electric fields
behave with respect to their sources as if the laffer were In vacuum and there were no
material bodies.
Polarization is the process of formation of dipole moments in macroscopic volumes of a
dielectric.

The normal component of an electric field vector undergoes a discontinuity at the inter­
face between different dielectrics. Hence, the field lines break.
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Example 17.1. Find the" bound charges, polarization and the field induced by a point charge
q placed at the centre of two concentric spheres of radti at and a2 .respectiuelu, The spherical
layer is filled with a substance having permittivity 8 (Fig. 89).

The field is spherically symmetric. Choosing for S the surface of a sphere of radius r
having its centre at the point where charge q is located, we determine from the Gauss
formula

JD·dS= Dr4n r2 = q
s

(17.64)

(17.63~

and r

.,.",.

the electric displacement

Er=.!!.L=-4
1 4- forr<at,

80 neo r

Dr 1 q f
Er=-e-= 4n8 -;:i" orat<..r<a2'

~

E -.!!.L - _1_ L for a2 < r
r - 80 - 4neo r 2

and undergoes a discontinuity at the surfaces of the spherical layer for r = at
The polarization is given by the expressions

~. \ ... ·1 J0 for r < at,
(e- 80) q

P r= Dr-£oEr= 1
0

4n8r 2 fOI at < r < a2 ,

\ for a2 < r.

1 q
D r = 4n -;:2 ,

This displacement is continuous in the entire space. The strength of the electric field is given
by

+

(17.65)

+

+

+

(17.66)

Consequently, the surface density of bound charges is

0bt = - Pr (r= at) = - (e-80) q/(4n8af) ,

0b2 = P r (r = Q2) = (8 - eo) q/(4n8 al ).
The hound charges on the surface of the spherical layer are calculated from the Icrmula

qbt=4naiobt= -(e-eo) qle, qb2=41fa~Ob2=(8-80) qle.

These charges are equal in magnitude but opposite in sign.
The volume densi ty of bound charges is equal to zero

everywhere, since

Pb= -divP= __1_.!- (r2Pr)= O.
r2 Br

The field inside the spherical layer is created by the
point charge q and the bound charge qbt on the inner sur­
face of the layer. The bound charge on the outer surface of
the layer does not create an electric field in the volume
bounded by it. Hence the field strength of the point charge
q in the spherical layer is reduced by the value of the field
created by the bound charge qbt = -(8-80 ) qle. As al-+O,
we find that the point charge q in the dielectric behaves as
an effective point charge

qeff = q + qbl = e.. qle, (17.67) Fig. 89. A point charge surround-
This results in a weakening of the electric field in the ed by a concentric layer of a
dielectric. dielectric
fO*
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Sec. 18. Energy of Electrostatic Field

Ch. 2. Constant Electric Field

The interaction energy is considered as well as the selj­
energy of charges and its relation with the energy
density of an electric field. Formulas for the energy of
charged conductors and of a dielectric in an external
field are derived.

Energy of interaction between discrete charges. Let us suppose that we have
charged spheres of a very small diameter which is less than the distance between
the centres of the spheres. The charge distribution in the spheres is spherically
symmetric. From the physical meaning of formula (14.32) we may conclude
that the quantity

Ul,=_1_ Q102
4n8 o r

(18.1)

is equal to the work done upon increasing the distance between the charges Ql
and Q2 from r to infinity. This work is positive when the charges have the
game sign and repulsive forces are acting between them. Unlike charges attract
each other, and the work is negative. In the latter case the work must be accom­
plished at the expense of external energy sources. Consequently, in accordance
with the general definition, (18.1) is the energy of interaction between the
charged spheres. Since both charges appear in formula (18. t) symmetrically,
it is expedient to write it in the form

w' --!. (~&-Q +_1_!h. Q ) -J-. ('Q 'Q)- 2 4nBo r 1 4n8o r 2 - 2 CPI 1+CPa z, (18.2)

where q>~ is the potential created by the second charge at the centre of the first
sphere, while q>; is the potential due to the first charge at the centre of the second
sphere.

Formula (18.2) can be easily generalized for the case of several charged spheres
with charges Qi:

W ' - -!- ~ _1_ QiQi _~ ~ ~Q'- 2 J. - 2 LJ <Pt t·
• 'tn8o riJ

i¢J i

(t8.3)

It gives the interaction energy of a system of charges.
Energy of interaction for a continuous distribution of charges. Suppose that
a volume element dV contains a charge dQ = p dV. In order to find the energy
of interaction between elements of charge dQ, we can apply formula (18.3),
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going over from the summation to the integration in it:

W= ~ ) <ppdV,
v

149

(18.4)

where q> is the potential at a point in the volume element dV.
Self-energy. At first sight, formula (18.4) seems to be similar to (18.3). How­
ever, these two formulas differ in principle. Formula (18.3) takes into account
only the energy of interaction between charged spheres and disregards the energy
of interaction between elements of charge in each sphere. Formula ('18.4) takes into
consideration both the energy of interaction between the spheres and the energy
of interaction between elements of charge in each sphere, called the self-energy
(intrinsic energy) of a charged sphere. In calculating the energy of interaction
between charged spheres, formula (18.4) is reduced to the integrals over volumes
Vi of the spheres:

W=~ )<ppdV='~ ~ ) <ptpdV. (18.5)
v i Vi

At any point in the volume of the ith sphere, the potential CPi is the sum of
two components: the potential cp\U created by the charges of other spheres and
the potential q>\aelf) created by the charges of the ith sphere:

cp, = cp~t) + cp~selt) (18.6)

In this case, [see (18.5)]

W= ~ ~ ~ <p\1)p dV+~+ )<p\SelC)p dV. (18.7)
i Vi i Vi

Since the charge distribution in the spheres is spherically symmetric, we have

) <p\1) p dV = <piQt. (18.8)

Vi

where <pi is the potential at the centre of a sphere and Qi = ~ P dV is the total
v,

charge of the sphere. The proof of (18.8) is similar to that of the equivalence of
the electric field generated by a spherically symmetric charge distribution in
a sphere and the field created by the corresponding point charge located at the
centre of the sphere (for the region outside the sphere). Now we can write (18.7)
in the form

W= ~ ~ <PiQa+ ~ ~ ) <p\self) p dV= W' +~ Writ)
t i v, i

where W, is given by formula (18.3).

(18.9)



180 Ch" 2. Constant Electric Field

The self-energies W(~lf) of the spheres depend on the laws of charge distribu­
tion in the spheres and on the magnitudes of the charges. Let, for example, the
charge Q be uniformly distributed over the surface of a sphere. In this case, the
potential is defined by formula (16.28), and hence

1 Q2
W(seU) = ---- (18.10)

&tEo R .

As lR -+ 0, the value of W(self) -+ 00. This means that the self-energy of
8 point charge is equal to infinity. This creates serious difficulties when the
concept of point charges is being used.

Thus, formula (18.3) can be applied for analyzing interaction between point
charges since it does not contain their infinite self-energies. Formula (18.4) for a
continuous charge distribution takes into account the entire interaction energy,
while formula (18.3), only a part of this energy. Therefore, formula (18.4) is
more complete and informative in comparison with formula (18.3).
Energy density of a field. Using the equation

div D = p, (18.11)
we write (18.4) in the form

w= ~ Jq>divDdV. (18.12)
v

Taking into account the formula

cp div D = -D grad <p + div (<pD), (18.13)

of vector calculus, we represent (18.12) as the sum of two integrals:

W = ~ j E·D dV +i- Jdiv (q>D) dV, (18.14)
v v

where E = -grad <po The second integral in (18.14), in accordance with the
Gauss theorem, is written as

j div(q>D)dV= Jen.as, (18.15)
v s

where S is a closed surface enveloping the volume V. It is assumed that all
charges are located in a finite region of space. At large distances r from the
charges, cp ex: 11r, D ex: 1/r2 , i.e. cpD ex: 1/rs. The area S of the surface increases
in proportion to r2 • Consequently, integral (18.15) is of the order of cpDS ex: 1/r
and tends to zero as the surface of integration approaches infinity. Hence, for the
entire space, formula (18.14) becomes

w=i- JE·DdV. (18.16)

The energy W calculated by formulas (18.16) and (18.4) has the same value,
but the physical contents of these formulas are quite different. Suppose that the
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charges are located in thin surface layers of the spheres. In this case, integral
(18.4) is reduced to the sum of integrals over the surface layers of the spheres,
since in the space between the spheres it is equal to zero. On the other hand,
integral (18.16) is reduced to the integral over the volume between the spheres
where the field E is contained. Consequently, in (18.4) the carriers of energy are
charges, and the energy is assumed to be localized on charges. In (18.16), the
carrier of energy is the electric field, and the energy is assumed to be localized
in the entire space containing the electric field. The density of electric energy
{see (18.16)] is given by

I W=}Eonol (18.17)

Thus, the energy density in (18.17) is positive since E·D = eE2 > O. Con­
sequently, the total energy in (18.16) and (18.4) is positive. However, the
interaction energy (18.3) of discrete charges can be either positive or negative.
The reason behind this is clear from equality (18.9), which can be represented
in the form

W' = W _ ~ ",Y~Self). (18.18)

Thus, the interaction energy of discrete charges is positive if their intrinsic energy
(which is always positive) is less than the total energy of the field and negative if
their intrinsic energy is higher than the total energy of the field.

Suppose that all charges, with the exception of one, are fixed at their places.
Then the energy of interaction between this charge and the remaining charges
is called its potential energy. It follows from what was said above that it is
a part of the energy of the electric field. A change in the potential energy is
associated with the change in the energy of the field. The law of conservation of
energy for a particle in a potential field, which states that the sum of its kinetic
and potential energies is constant, indicates that a decrease in the kinetic energy of
the particle is accompanied by the corresponding increase in the energy of the field,
and vice versa.

Expression. (18.17) is formulated in the local form and defines the energy
density as a function of the electric field strength and properties of the medium
at a given point, which are taken into account by the displacement D. Obvious­
ly, the validity of this formula cannot depend on the way in which the field is created
at a given point. Hence, expression (18.17) is valid not only for constant fields but
also for varying fields. In other words, this formula expresses the energy density
of an electric as well as an electrostatic field.
Energy of the field of surface charges. Since formula (18.17) does not depend
on the nature of charges which are the sources of the field, it is also varid for
surface charges. Formula (18.16) also gives the total energy of the field irrespec­
tive of the nature of the charges creating this field. Therefore, formula (18.16)
takes into account surface charges as well as volume charges.
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For surface charges, formula (18.4) assumes a somewhat different form. This
change, however, is self-evident, The integrand in (18.4) is equal to rpp dV =
rp dq and has the meaning of the potential energy possessed by the element of
charge dq located at a point with potential cpo This potential energy does not
depend on whether dq is the element of a volume charge or a surface charge.
Consequently, expression (18.4) is applicable to surface charges as well, but in
this case dq = a dS, and we must integrate over all surfaces S which contain
charges. Thus, for surface charges, formula (18.4) becomes

W=-} ) <ppdV+ ~ ) rpo dS.
v s

(18.19)

All that has been said about the interaction energy and self-energy is also
valid for surface charges. We must only take into account their contribution
to the total as well as to the intrinsic energy. This circumstance has already been
used in deriving t.he formula for self-energy [see (18.10)].
Energy of charged conductors. Since there are only:surface charges on conductors
and the potential at different points on the surface of a conductor has the same
constant value, formula (18.18) assumes the form

W=-} J<padS={ ~ J<p,a,dS.
S i Si

= ~ ~ <p, Ja, dS,= ~ ~ <P.Q,. (18.20a)
i s, i

Substituting expression (16.42) into this formula, we obtain the relation

W= ~ ~ a,jQ.QjO
i. ;

Using (16.45), we transform (18.20a) as follows:

W=-} ~ C,j<P,<Pj'
i, ;

(18.20b)

(18.20c)

From (18.20a), we have

(18.20d)

where C = Q/(CPl - Cl'2) is the capacitance of a capacitor and Q is the charge
on one of the pla 3S.

Energy of a dipole in an external field. This energy is equal to the sum of
the energies of dipole charges (see Fig. 77):

W = q [cp (r + I) - CI' (r)l. (18.21)
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Let us expand q> (r + I) into a series in I:

8<p oq> oq>
<p(r+I}=rn(r}+lx-+l -+l -+ ...

T 8x y 8y z oz

== cp (r) +(lxEx+ lllE,I + lz,Ez)= q> (r) -I·E, (18.22).

where we retained only the first-order terms in l due to an extremely small value­
of l. Formula (18.21) assumes the form

(18.23)-

Energy of a dielectric in an external field. The dipole moment of the volume­
element dV of a body is dp = P dV. The energy of this element in an external
field E is [see (18.23)] dW = -P·E dV. It may seem that the energy of a di­
electric body is equal to the integral of dW over the volume of the body. This,
however, is wrong. As a matter of fact, each polarized volume element dV of a
dielectric body becomes a source of electric field and thus appears twice during­
the calculation of energy: 'once as a dipole in an external field and the second
time as a source of the field in which other dipoles are located.

Hence, in determining the energy of the field, it is convenient to proceed from
its total energy. Besides, let us assume that the dielectric, is homogeneous and
fills the entire space, which considerably simplifies mathematical calculations.

Let an electrostatic field be created by a certain charge distribution in free'
space. As usual, we assume that the charges are located in a finite region of
space. We denote by Eo and Do = EoEo the vectors of the field created by the
distribution of charges in free space. The total energy of the field [see (18.16)] is.

Wo= ~ ) Eo.DodV, (18.24),

where the integral is extended over the entire space. Let us now suppose that
the entire space is filled with a dielectric medium, the charges as the sources of
field remaining unchanged. The field in the entire space varies. We denote by E,

E and D = EE the permittivity and the field vectors in the medium. After the­
space has been filled with the dielectric, the total energy becomes

(18.25)·

Consequently, the energy of the dielectric placed in an external field E~

is given by

(18.26)

(18.27)

Upon filling the entire space with a homogeneous dielectric having permit­
tivity e, the field strength at all points of the field decreases by a factor of e/ eo.
Consequently,
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Hence, the integrand in (18.26) can be transformed as follows:

E.D-Eo·Do=8E2-80E~= -(8-80) e: E1l= -P.Eo,

where

(8- 80) ~Eo= (8- Bo) E= P.
8

Then [see (18.26)]

(18.28)

(18.29)

Wd = - ~ 1P.EodV. (18.30)

It can be shown that formula (18.30) is also valid for the energy of a dielectric
.of a finite size in an external field Eo.

Formula (18.30) can be used to obtain the energy of a dielectric body of per­
mittivity 8 2 , located in the medium whose permittivity is 8 1 , Let us write for­
mula (18.30) for the energy of a dielectric body with permittivity 8 1 :

Wd1= - ~ J(81- 80) E1oEodV, (18.31)

where E 1 is the field strength in the body. In order to simplify calculations, we
assume that the dielectric fills the entire space. The energy of the dielectric
having permittivity 8 2 is expressed, by analogy with (18.31), by

Wd2. = -+ J(82,- 80)E2.. Eo dV. (18.32)

Hence it follows that the difference in the energies of dielectrics having per­
.mittivities 8 2 and 8 1 is

W d2.1=Wd2.- Wdl= - ~ J[(e2.-80)E2..Eo-(81-80)El·Eo]dV. (18.32a)

Transforming the integrand with the help of formulas

E 2 = EoE o/8 2 , E 1 = 8 0E o/81 , (18.33)

we find

(82 - eo) E2.Eo- (e1 - eo) E1·Eo= [~(82- eo)-~ (81- eo)J E3
82 81

= (e2-e1)~E~=(e2-e1)E2·E1' (18.34)
81F2

Then (18.32) becomes

where W d21 is the energy of the dielectric of permittivity £'2 placed in the medium
-of permittivity 8 1 , in which the field E1 is created by fixed free charges. It can be
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shown that this formula is valid for a finite di­
electric as well, if in (18.35) we assume that inte­
gration is performed over the volume of the di­
electric. In this case, E1 is the strength of the field
which would exist in the volume of the dielectric
if its permittivity were equal to the permittivity
Cl of the surrounding medium, and E 2 is the field
in the volume of the dielectric after it has been
introduced into the field provided that the charges
creating the field are fixed. Formula (18.35) is
important for understanding the nature of forces
acting on dielec tries.

Formula (18.35) leads to the following impor- Fif. 90. A two-layer cylindri­
tant conclusion: an increase in the permittivity of ca or spherical capacitor
the medium leads to a decrease in the total energy
.of the field. The proof of this statement can be obtained as follows. Suppose
that the strength of the initial field is E1 = E and the permittivity of the me­
.dium is 8 1 • If the permittivity of the medium increases by 6e = 8 2 - e1 , the
field. strength becomes E 2 = E + 6E, and hence the change in the energy is
given by

6W = - {- J6eE2dV (18.36)

(we neglected the term 6e6E·E of the higher order of smallness). Formula (18.36)
proves the above statement.

The intrinsic (self-) energy of a charge is the energy of interaction of different elements
-of the charge with each other. The intrinsic energy of a point charge is infinite.
The energy of interaction of discrete charges is the total energy of the field minus the
intrinsic energy of the charges. It is positive when their Intrinsic energy (which is always
positive) is less than the total energy of the field and negative in the opposite case.
The law of conservation of energy for a particle in a potential field, which establishes the
constancy of the sum of its kinetic and potential energies, indicates that a decrease in
1he kinetic energy of the particle is accompanied by the corresponding increase In the
field energy, and vice versa. An increase in the permittivity of the medlium leads to
a decrease in the total energy of the field.

What determines the difference between the coefficients in the formulas for the dipole
-energy [see (18.23)] and the energy of a dielectric [see (18.30)]1

Example 18.1. Find the energy accumulated in a cylindrical two-layer capacitor over length l,
The parameters of the capacitor are given in Fig. 90.

Assuming that the inner capacitor plate contains the charge Q over the length 1 and ap­
plying the Gauss theorem to the cylindrical surface of radius r, coaxial with the capacitor,
we find. the expression for the radial component of the field:

1
2:rt

1
18

1
~ for rl < r < a,

Er = 1 Q f
-2-[- - or a < r «; r2'

Jt 8 2 r
o forr2<r<oo.
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The energy of the field is found by the formula

w= ~ ~ E·DdV

which in this case assumes the form

Ch. 2. Constant Eledric Field

w= 21 rdl r (_Q_)2_1 _1 2nrdr -Li-. rdlrf (_Q_)2--!-_1 2nrdr
J J 2nl £1 r2

I 2 J J 2nl £2 r2

o r. 0 a

= ~ (_1_ In ~-t-_1- In ~)' •
4nl 81 rl £2 a

Sec. 19. Forces in an Electric Field

Forces acting on charges, conductors and dielectrics
in an electric field are considered. The emergence of
volume and surface forces is analyzed.

Nature of forces. All forces in an electrostatic field are ultimately forces acting
on a charge.
Force acting on a point charge. This force is equal to

IF = qE = - q grad lp·1 ( 19.1)

Force acting on a continuously distributed charge. This force is equal to

I dF=PEdV·1

-~., '~

Consequently, the volume-charge, density is equal to

dF
f=dV-= pE = - p grad cp.

(19.2)

(19.3)

Force acting on a dipole. This force is equal to the sum of forces applied to the
dipole charges (Fig. 91):

F = F(+)+ FC- ) = q [E (r + I) - E (r)]. (19.4)
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Here, we can express E (r + I) as a series in lx'
ly, lz' confining ourselves to linear terms only:

E (r + I) = E (r) + t; 8~;r) + i, 8~y(r)

iJE(r)+ lz a;-+ · · · =E (r) + (I. V) E (r), (19.5)

where
a iJ a

(I· V) = i: ax + i, iiii + lz iii·
Taking (19.5) into account, we can write for­

mula (19.4) in the form

(19.6)

E
-+

+q

1~7

F(+)

The force acting on a dipole in a uniform field is Fig. 91. Force and the moment
of force acting on a dipoleequal to zero, since the dipole charges are subjec-

ted to equal and opposite forces.
Moment of force acting on a dipole. Forces applied to the charges of a dipole
(see Fig. 91) form a couple with moment

(19.7)

Volume forces acting on a dielectric. The forces applied to a volume element
dV of a dielectric is equal to the sum of forces acting on the elementary dipoles
in this volume. Consequently, formula (19.6) assumes the form

dF=~Fi=~(p,.V)E" (19.8)

where ~V indicates that the summation is carried out over all the elementary
dipoles in the volume ~V. On the macroscopic scale, field strength E is assumed
to be a slowly varying quantity. Hence we can replace E i in the sum (19.8)
by the quantity E which is the same for all the terms in the sum. In this case,
the summation in (19.8) is reduced to the computation of

~ Pi = P L\V. (19.9)
AV

Consequently, we get from (19.8) the following expression for the volume
density of the force acting in a dielectric:

dF
f= L\v==(P.V)E. (19.10)

Considering that
P = xEoE = (s - 8 0) E

and using the well-known vector identity

(E· V) E = 1/2 grad E2 - E X curl E, (19.11)
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in which curl E = 0 in view of the potential nature of the electric field, we get

e- 8 0f = -2-grad E2. (19.12)

This formula is valid both for absolutely rigid dielectrics and compressible ones
under the condition that their polarization is a linear function of their mass density,
i.e, the dipole moments of individual molecules and atoms do not change due to'
compression or extension of a volume element, while the dipoles due to displace­
ment of ions are either absent or do not contribute significantly to the polariza­
tion. These conditions are satisfied for gases and for most of the liquids.

This formula is quite illustrative, since it shows that the volume elements of
a dielectric are subjected to forces which tend to displace these elements towards
the highest rate of increase in the absolute value of the electric field. This is
sometimes expressed in the form of the statement that the volume element of
a dielectric is drawn towards the increasing field strength.

The formula for the volume density of forces, which is valid for isotropic.
compressible dielectrics, has the form [(see (19.41)] .

f= - ~ E2 grad e+i- grad [Pm( iJ:: )TE'2], (19.13)

where P7n is the mass density of the dielectric. This formula is also valid when
8 =1= const. If P depends linearly on Pm' we get 8 = DIE = 8 0 + PIE, P ex: Pm,.

whence Pm (iJ~:) = e - eo, and formula (19.13) is transformed into (19.12).
If a dielectric hasjfree charges inside it and is subjected to a hydrostatic pressure,
Eq. (19.13) is supplemented by the volume density pE of forces acting on the
free charges, and by the hydrostatic pressure.

Let us apply these formulas for determining the forces acting on a dielectric
sphere in a uniform field (see Fig. 88). In order to apply formula (19.12), \V~

must assume that the transition from the external region having permittivity
£2 to the internal region of permittivity £1 is accomplished not abruptly on the­
surface of the sphere, but continuously over a certain thin spherical layer. In
this layer, field strength E changes continuously from its value outside the­
sphere to its value inside the sphere. Formula (19.12) can he used to calculate
the force at each point in the spherical layer.

If £1 > £2' the field inside the sphere is weaker than outside it. Hence the
force at each point of the layer is directed outwards. In view of symmetry, the­
resultants of these forces on opposite sides of the sphere tend to stretch it along'
the external field vector (see Fig. 88a): However, the resultant of all the forces is·
equal to zero and the sphere as a whole remains at rest. For £1 < 8 2 , the forces
in the transient spherical layer are directed inwards and their resultants on both
sides of the sphere tend to compress this sphere along the external field vector.
As before, the resultant force acting on the sphere as a whole is equal to zero
(Fig. 88b).
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If, however, the external field is not uniform, the resultant force acting on
the sphere as a whole is not equal to zero. It can be easily seen that for E1 > E 2·.
this force is directed towards increasing field strength in the medium. This­
explains why light dielectrics are attracted by electrified bodies: for air 8 2 = Eo,

and the condition £1 > Eo is always satisfied. If, however, £1 < £2' the resultant
force is directed oppositely, i.e. towards decreasing field strength in the medium.
Hence in a medium with a fairly high permittivity, dielectrics with low per­
mittivity are repelled by electrified bodies.

While investigating the behaviour of the electric field at the interface bet­
ween two dielectrics (see Figs. 84 and 85), it was remarked that E2 always
increases towards the dielectric with a lower permittivity. Hence, by applying

Fig. 92. Emergence of a force
of attraction due to a charge on
neutral dielectric bodies

Fig. 93. A dielectric body having
the shape of a prolate ellipsoid
is oriented so that its major axis
is along the field

arguments similar to those considered in the case of a dielectric sphere, we con­
clude from Eq. (19.12) that at the uncharged interfaee between two dielectrics,.
the force is always directed towards the dielectric with lower permittivity..
This explains several phenomena. For example, dielectrics (pieces of paper,
etc.) are attracted by a charge. Of course, the forces in any part of the surface
of the object (a piece of paper, etc.) are directed outwards, but these forces are­
larger in the regions in the vicinity of a charge. This results in an overall force­
of attraction (Fig. 92).

Such a behaviour of dielectrics can be understood by proceeding from-
Eq. (18.35) for the energy of a dielectric having permittivity E2 , placed in a
medium of permittivity El . It is obvious that this energy is negative if E2 > E1 •

It decreases with increasing E2 and E1 and with decreasing E1• Since the system­
strives to attain minimum energy position, the body will be drawn for E2 > £1

towards the region with a higher field strength or the lower permittivity E1 .

If, however, E2 < E1 , the dielectric with permittivity E2 will be repelled from
thl region wi th a higher field strength to a region where the field is weaker.

Let us assume that a dielectric body in the form of a prolate ellipsoid is placed
in a field shown in Fig. 93. Since at all points of the ellipsoid surface the forces
directed outwards are stronger at points where the square of the field strength
has a larger gradient, a moment of force is created and tends to rotate the ellip-
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.soid in such a way that its major axis is parallel to the field lines. This becomes
especially clear if we recall that all parts of the dielectric. are drawn towards
the region with the highest field strength.

If the permittivity of a body is lower than that of the medium, the forces
in the surface layer are directed outwards. Consequently, the direction of the
'resultant force changes. Instead of being attracted by an electrified body, di­
electrics (pieces of paper, etc.) are now repelled by it. The pattern of forces in

o
Fig. 94. Emergence of the re­
pulsive force exerted by a
charge on a neutral dielectric
body placed into a dielectric
medium with permittivity
higher than that of the body

Fig. 95.jA prolate ellipsoid in a
medium with permittivity high­
er than its own permittivity
is oriented so that its major axis
is transverse to the electric
field

this case is shown in Fig. 94. A prolate dielectric ellipsoid, when placed in a
medium whose permittivity is higher than its own, is oriented with its major
axis not along the field lines, but perpendicular to them (Fig. 95). In this case,
parts of the dielectric are repelled from the region with a stronger field to regions
with a weaker field.
Forces acting on a conductor. The charge dq = a dS on the surface element
dS of a conductor is acted upon by only half the field at the surface of the con­
ductor, since the other half is created by the charge of the surface element itself
and cannot act on it (see Sec. 16, Fig. 39). Consequently, the surface density of
force is equal to

dF aE as
fs= dS =2=28 n, (19.14)

where n is the unit outward normal to the surface of the conductor, and e is the
permittivity of the medium adjoining the conductor [see (17.28)]. Thus, the force
on the surface of a conductor always acts in the direction of the outward normal and
as if tends to increase its volume.

The resultant force acting on the conductor as a whole [see (18.24)] is

(19.15)

where S is the surface area of the conductor.
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This expression can be used to calculate the force on the surface element S
of the plate of a parallel-plate capacitor filled with a dielectric:

t 0 1
F=28 8 1 (19.16)

since the field is uniform in this case, i ,e. a and e in the integrand of (19.15)
are constant. This force is directed into the capacitor.
Surface forces acting on a dielectric. In the equilibrium state, volume (body)
forces of electrostatic nature do not lead to a displacement of the corresponding
volume element. Such forces cause a. deformation of the medium, thus creating
elastic body forces which completelq balance the volume forces of electrostatic nature.
A similar balancing takes place in the volume of a liquid in a gravitational
field. Each volume element· is acted upon by a force of gravity due to the liquid
in this volume; this force, however, is balanced by the force generated by the
pressure exerted on the surface 'of the volume element by neighbouring regions.
Electrostatic volume forces lead to a displacement of volume elements only for
quite rapid variations of the fields, when elastic forces do not balance electric
forces at each instant of time. The resultant of all volume elements is applied
to the dielectric as a whole and may cause its displacement if it is not balanced
by some other force.

Besides volume forces, a dielectric is also subjected to surface forces whtch
emerge in its surface layer. These forces act together with the volume forces.
We shall derive these forces from the first law of thermodynamics.

The thermodynamic potential in isothermal processes is the free energy F
which is connected with work through the relation

dA = -dF. (19.17)

Since the thermodynamic relations in the absence of an electric field were
described in molecular physics, we shall now take into account only those quan­
tities which depend on the electric field. Hence, we consider in (19.17) only the
work and change in the free energy due to the electric field. The work and change
in the free energy due to deformations and elastic forces are not taken into
account, i.e. the dielectric is assumed to be nondeformable. Besides, we confine
the analysis to isotropic dielectrics only.

The part of the internal energy which is not bound in the system and is avail­
able for obtaining work is considered as the free energy. Its magnitude depends
on the conditions under which a process is carried out.

Let us consider the plane interface between two dielectrics having permittivi
ties £1 and £2. By way of a specific model for the physical system, we can con­
sider a parallel-plate capacitor, the space between whose plates is filled
with liquid dielectrics with a plane interface. The interface may be parallel or
perpendicular to the capacitor plates. This model can be used to obtain an
expression for the surface density of forces acting at the interface between
dielectrics. Since the relations obtained in this case are of a local nature, they
will be independent of the specific shape of the nonlocal model under which they
have been obtained. In other words, these relations will be of a general nature.

11-0290
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Let us consider the plane interface parallel to the capacitor plates (Fig. 96).
The field vector E is perpendicular to the interface. The normal directed towards
the second dielectric is taken as positive. Upon an infinitely small displacement
of the interface, work is performed due to a change in the free energy. Having
independently calculated the work and the variation in the free energy, we can

Fig. 96. Emergence of Maxwel­
lian stresses

Fig. 97. Emergence of Maxwel­
lian pressures

(19.20)

find the surface density of forces from (19.17). Of course, the displacement dz
should be considered as a virtual displacement, i.e. not necessarily realizable
In practice.

The work done in displacing the surface element ~S by dx along the normal is

dA = !1S/. dx, (19.18)

where /s is the surface density of the force.
In order to calculate dF, we consider that D 2 = D 1 at the interface between

the dielectrics, i.e. at D = const the interface is displaced. This corresponds to
the condition that the charge at the plates of the capacitor is constant, since
D = 0'. Consequently, we must calculate dF at a constant charge qon the plates,
i.e. (dF)T,q. As a result of the displacement of the interface by dx, the volume
~S dx, which was initially filled with an electric energy of density E 2D 2/2, will
now be filled with energy whose density is E1D 1/2. There are no other energy
factors participating in doing work. Consequently, the difference in energy in
the volume ~S dx before and after the displacement of the interface is just the
variation in the free energy:

(dFh,q=( ~ DtnEJn- ~ DznF2n ) ASdx (19.19)

where the subscript n means that the normal components of D and E are con­
sidered.

Taking (19.18) and (19.19) into account, we can write (19.17) in the form

f f
t, =2 E2nD2n - 2: EtnDtne
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The surface density of force is directed along the normal to the interface.
It can be seen from (19.20) that the surface force density f. is composed of two
parts:

(1) the surface density

(19.21)

of the force emerging under the effect of the electric field of the second medium
and directed towards the second medium;

(2) the surface density

(19.22)

(19.23)

of the force emerging under the effect of the electric field of the first medium and
directed towards the first medium.

Thus, in this case the electric fields on both sides of the interface as if attract
the interface with a surface density of force equal to the volume density of the electric
energy along the normal component of the field.

The resultant of the two forces applied to the interface from both sides of the
fields is the total force acting on the interface. Since D2n = DIn = Dn , we get
[see (19.20)]

1 ( 1 1)f.=-1Yn --- .2 82 81

For £2 < £1' the surface density fs of force is greater than zero. This means
that the force at the interface acts in the direction of the dielectric having a lower
permittivity, i.e. in the direction of the higher volume density of the electric
energy. It should be noted that the volume density of the force [see (19.12)]
is also directed towards increasing volume density of the electric energy.

Let us now consider the dielectrics the plane interface between which is
perpendicular to the plates of a parallel-plate capacitor (Fig. 97). In this
case, the condition E 2" = E 1't = E" is satisfied, since the field vector is parallel
to the interface. The subscript 't' indicates the components of the vectors tan­
gential to the interface. The displacement of the boundary takes place under the
condition E'C = const, i.e. at a constant potential difference. Consequently, it is
necessary to calculate the variation in the free energy (dF)T, •. In order to
maintain a constant potential difference, we must change the charge density
in that part of the capacitor plates which corresponds to a displacement of the
interface by dz. This involves an expenditure of energy equal to dq (CP2 - CPl) =
dq E'tl, where E" and l are the field strength and the distance between the capa­
citor plates. The surface charge densities in the region where the plates come
in contact with the first and second dielectrics are respectively equal to 0'1 =
£lEI = £lE" and at = £2E2 = £2 E 't . The depth of the dielectric in the direction
perpendicular to the plane of Fig. 97 is equal to ~S/l. Consequently,

dq = (0'1 - 0'2) (!!is/l) dz, (19.24)

11*
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Under the conditions described above, work can be performed only due to the
difference between the field energy and the energy spent to keep the potentials
constant. Consequently, the change in the free energy is equal to

(dFh, ql= ( ~ E1'fDl'f- ~ E2'fDh)ASdx- (02-01) (AS/l) dx E'fl. (19.25)

Since <1 2 = e2E1: and <11 = e1E'C, we get

(dFh, q:>= - ( ~ E1'fD l 'C - ~ E2'CD2'C ) ASde. (19.26)

Taking (19.18) and (19.26) into account, we can write (19.17) in the form

f t
f.= -T E2"D2'C+T E ! 'CDt". (19.27)

This surface density of force is also directed along the normal to the interface.
It can be seen from (19.27) that it is composed of two parts:

(1) the surface density

(19.28)

of the force exerted at the interface by the electric force of the second medium
in the direction of the first medium. It should he recalled that the positive
normal is chosen in the direction from the first medium to the second, and hence
the minus sign in (19.28) indicates that the force is directed from the second
medium to the first;

(2) the density

(19.29)

of the force exerted at the interface by the electric field of the first medium in
the direction of the second medium.

Thus, the tangential component of the electric field strength as if exerts a pressure
on the interface in contact with it. This pressure is equal to the volume density of
the energy corresponding to the tangential component of the field strength.

The resultant of the pressure forces exerted by the fields on both sides of the
interface is the total force applied to it. Since E1'C = E 2 'C = E'C, formula (19.27)
assumes the form

(19.30)

For e2 < £1' the force density fs > O. Consequently, the surface density of
the force is directed towards the dielectric having lower permittivity. Thus,
irrespective of the orientation of the field with respect to the interface, the surface
density of the force is always directed towards the dielectric with lower permittivity
[see (19.12)]. The validity and generality of this statement follows also from
Eq. (18.36) if we consider that the system tends to go over to a state with mini­
mum energy.
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Volume forces acting on a compressible dielectric. We proceed from formula
(18.36) in which 6£ is due to the strain which changes the mass density. The
processes are assumed to be isothermal (T = const). The permittivity changes
from point to point, being a function of r. Besides, it may be a function of the
mass density Pm of the dielectric, i.e. E = E (r, Pm). Suppose that as a result
of deformation, the volume element dV is displaced by 1 and that the mass
density of the dielectric changes in the process. The volume element which is
at the point with radius vector r after displacement was 'at the point r - I
before displacement. Hence,

de = -I grad e+ aOs ~Pm, (19.31)
- Pm

where 6pm is the change in the mass density of the dielectric.
It can be shown that after deformation the volume element dV' becomes

equal to
dV = (1 + div I) dV'., (19.32)

The law of mass conservation has the following form for the volume element:

Pm dV = p:n dV' (19.33)
or

Pm (1+ div I) dV' = p:n dV', (19.34)

where p:O and Pm are the mass densities after and before deformation. From
(19.34) we obtain the following expression for an infinitely small displacement:

6Pm==Pm-p:n= -Pm div I. (19.35)

Substituting (19.31) and (19.35) into (18.36), we obtain

6W=+ ) [E21.grade+E2Pm 8~: divl] dV. (19.36)

From formula (A.12), we have

E2Pm 8:: divl=div(WPm 8:: 1)-I.grad(E2Pm ::m). (19.37)

This gives [see (19.36)]

6W={- J[Wgrade-grad(WPm 8:: )]-ldV

+ {- ) div (WPm 8:: I) sv, (19.38)

On the basis of the usual assumptions about the continuity of integrands, we'
can transform the second of the above integrals into an integral over the surface
hounding the volume under consideration with the help of the Gauss theorem..
Assuming for the sake of simplicity that the dielectric occupies the entire space
while the charges generating the field are distributed over a finite region of space,
we find that the second integral is equal to zero, since E2 ex: 1/r4 , r being the
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distance between the charge and the integration surface. Consequently,

) div (E2Pm 8~~ I) dV= sl
oo

E2Pm 8:: l·dS-O. (19.39)

The volume densityI of the forces describes the action of an electric field on
a dielectric. The volume density of the work done by this force upon deformation
is equal to f ·1. Consequently, the law of energy conservation for deformation
can be expressed in the following form if we take into account Eqs. (19.38) and
(109.39):

(19.40)

Since this relation is valid for any displacement I, we obtain

I
,f = _.!. EB grad e +.!. grad (E2p ~) (19.41)

22 m °Pm •

This formula is valid for isotropic compressible dielectrics for any dependence
of E on the mass density Pm [see (19.13)].

If polarization depends linearly on the volume density of the mass, we get

8e
Pm 8Pm =8-80 (19.42)

and Eq. (19.41) is transformed into (19.12). Consequently, formula (19.12) is
valid not only for rigid dielectrics, but also for compressible dielectrics with
P ex: Pm'

Although for the sake of simplicity in transformation of (19.39) formula
(19.41) was derived under the assumption that the dielectric occupies the entire
space, it is actually valid under any condition, since it is a differential relation
whose validity is independent of the processes occurring at other points in space.
Calculation of forces from the expression for energy. In order to transfer a charge
dq to a point with potential <1', we must perform work cp dq. Consequently,
the total change in the energy of a system of charges upon a change in the
charge by dqi is

(19.43)

This change is accompanied by a change in the energy of the electric field by
dWand by performance of work by the charges. If the system configuration is
characterized by the parameters ~i then, by definition, the generalized force
connected with this parameter is the quantity F i , such that F, dS i is the work
done by the system when the parameter ~i changes by d;i. The law of conser­
vation of energy has the form

(19.44)
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(19.45a)

(19.45b)

To begin with, let us consider virtual processes in which charges remain con­
stant, i.e. dqi = O. In this case, Eq. (19.44) assumes the form

0= (dW)q +~ F , dsi .
t

Here, (dW)q depends only on ~i. Consequently,

(dW)q= ~ (~~).ds,.
i

Considering that d~i is an independent quantity, a comparison of (19.45a) and
(19.45h) gives

(19.46)

where the subscript q on the partial derivative in an explicit form indicates that
the force is calculated at a constant value of the charges. In order to use this
formula, we must express the energy W as a function of charges and parameters 6i·

The generalized force can also be expressed in terms of the derivative at a
constant potential. For this purpose, we take into consideration the expression

W= ~ ~ <p,q,.
t

The change in energy under a constant potential is equal to

(dW)tp--:- ~ ~ <p, dq,.
i

Consequently [see (19.45a)],

0= (dW)cp-~ F, d6,.
i

Taking into account the independence of d6i' we obtain

(19.47)

(19.48)

(19.49)

(19.50)

where the subscript <p on the partial derivative in an explicit form shows that
differentiation is carried out at a constant potential. In order to use this for­
mula, we mult express the energy W as a function of potentials <Pi and para­
meters St. Obviously, formulas (19.46) and (19.50) are equivalent and are ob­
tained from each other. The choice of a particular formula depends on the cir­
cumstances.

For example, suppose that it is required to calculate the force of attraction
between the plates of a parallel-plate capacitor. The energy of such a capacitor
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is equal to
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W = Q2/(2C) = (Llq»2 C/2,

where C = coS/x, S and x being the surface area of a plate and the
between the plates respectively.

Calculation of the force from formulas (19.46) and (19.50) gives

Fx = - :x (~ )Q= - ~2 :x (~ )= 2~: ~~;

F' .:s: [ (Aq»2 C ] _ (Aq»2 .ss.
X - OZ 2 tp - 2 OZ·

distance

(19.51)

(19.52)

Taking into consideration the definition of the capacitance C = Q/l1cp, we
conclude that F~ = Fec-

The forces In an electric field are ultimately the forces acting on the charges, although
the value of charges does not always appear in the expression for the force.
The formula for the forceading on perfedly rigid dielectrics Is also valid for compressible
dielectrics provided that their polarization depends linearly on the density of the material.
The forces adlng on a dielectric depend on the ratio of the permittivity of the body and
the permittivity of the surrounding medium. At the interface between dielectrics, the
force is always directed towards the dielectric having lower permittivity.

The field component normal to the interface between dielectrics as if attracts the surface
with the surface density of force equal to the VOlume density of electric energy of the
field associated with this component.
The field component tangential to the interface between dielectrics IS If exerts a pressure
on the surface, the pressure being equal to the volume density of electric energy of the
field associated with this component.
The surface force acts towards the dielectric with lower permittivity in III cases, ir­
respective of the field orientation.

Example 19.1 Proceeding from the solution of Example 16.3 find the moment of the force of at­
traction between the plates of the capacitor shown in Fig. 73.

The energy of the capacitor is equal to [see (16.109)]

w- USC UI leln (bla) (19.53)
- 2 2<%0

The generalized force for the angle of rotation is the moment ftf of the force with respect
to the axis coinciding in the present case with the line of intersection of the capacitor plates.
Hence, taking into account Eq. (19.50), we obtain

M=( OW) =_Ulleln(b/a) (19.54)
oao ., 2aB

where the minus sign indicates that the moment of force tends to reduce the angle ao. In oth­
er words, forces of attraction exist between the plates of the capacitor. Of course, attractive
forces always exist between the capacitor plates and formula (19.54) just states that the mo­
ment of force is obtained with the minus sign. Such a verification of the correctness of the
result is useful when generalized coordinates and generalized forces are used, in which case
these variables cannot be interpreted graphically.

We can obtain this result in another way. The surface density of theforce acting on a con­
ductor is f = 0 2/ (2e). Consequently, a layer of length 1 between r arid r + dr is subjected to
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(19.57)

eUI
dF= -fl dr= --,-" l dr, (19.55)

2aJr2

where the value (16.107b) is used for a. The .minus sign indicates that this force tends to
reduce the angle a o• The resultant force acting on the plate is equal to

b b

F= r dF= _ eUll r~= eu,Il (-!._..!..) (19.56)J 2al J r I 2a~ b II •
a a

The line of application of forces is at a distance ro from the axis of rotation, which is de­
termined from the condition

•
J eUBl II

r.F= rdF= ---In-, 2al a'
a

whence
ab b

ro=--ln-
b-a a •

The moment of force with respect to the axis of rotation is equal to
'- eUll b

M == r gF= - __0_ In -
2a~ a'

which is identical to (19.54).

Problems

(19.58)

(19.59)

2.1hind the strength of the electric field in a spherical cavi ty of radius a inside a uniformly
V charged sphere of radius R. The volume charge density is equal to pl(Fig. 98).

Fig. 98. A cylindrical cavity in
a cylinder or a spherical cavity
in a sphere

d lettJ----.
Fig. 99. A conducting plate in
a parallel-plate capacitor

,
2.2/Find th,e field strength in" an infinite cylin,drical cavity whose axis is parallel to the
:V axis of a very long uniformly charged circular cylinder. The' volume charge density is
Ml 'n Bual .. to p (Fig."98)., " ) . . " , ' .
W~~~e distance between the plates of a parallel-plate" capacitor 18 equal to d. A metallic

strip of thickness l), with its surface parallel to the capacitor plates, is brought into
the space between the plates whose potentials are <PI and <PI respectively (Fig..99).
Find the potential of the metallic strip.
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~2~4.'~ Find the force acting on a charge q placed at a distance d from the centre of an ua-
/' d) charged isolated conducting sphere of radius ro (ro < d).
2.5. Find the force acting on a charge q placed in a metallic sphere at a distance r from
{ its centre. The radius of the sphere is equal to a.pe. A point charge q is placed between two concentric conducting spheres of radii rl and
i "- '2 ('1 < '1) at a distance d from their common centre (rl < d < r2). Find the charges

induced on the spheres.
2.7. A point charge q is placed at a distance d from the centre of a grounded sphere. Find
rj the ratio f of the charge induced on the part of the sphere seen from the point of location

of the charge q to the charge on the part which cannot be seen from this point. The ra­
dius of the sphere is equal to a, d > a.

~8. Two capacitors having capacitances C1 and C2 and charges ql and q2 (ql and q2 are the
; absolute values of the charge on the plates of the first and second capacitors) are con­

nected in parallel. Calculate the change in the energy of the capacitors and explain
the reasons behind the result.

j69. The permittivity of the medium between the plates of a parallel-plate capacitor (sur-
face area of plates is equal to S) changes uniformly from 81 to 8 2• The distance between

1
the plates is equal to d. Find the capacitance of the capacitor.

Z. • A cylindrical capacitor with plates of radii 'I and r~ is immersed vertically into a
dielectric liquid having permittivity 8. The bottom of the capacitor is in the liquid

, while the top is in the air whose permittivity is taken as 8 0 • The mass density of the
liquid is p. Find the height h to which the liquid rises between the capacitor plates

. if the potential difference between them is U.
2.11. A conducting sphere of density PI floats in a liquid of density PI.. (P2 > 2PI) and per­
I mittivity 8. The sphere is submerged in the liquid to less than half Its diameter. What

charge must be imparted to the sphere so that it is half submerged into the liquid?
The radius of the sphere is equal to a.

2.12. A parallel-plate capacitor has square plates with side a. The distance and the potential
I difference between the plates are respectively equal to d and U. A square strip with

rJ side a and thickness A is partially introduced into the space between the plates. The
surfaces and edges of the strip are parallel to the surfaces and edges of the plates, and
its permittivity is equal to 8. Find the force with which the strip is drawn into the space
between the capacitor plates.

2.13. A uniformly charged very long filament is placed at a distance d from the axis of an in­
finite conducting cylinder of radius r the cylinder axis being parallel to the filament.
The linear charge density of the filament is 'to Find the force acting on the length 1
of the filament (d > r),

2.14. Using the method of images, find the force acting on length 1 of each of two infinite
conducting cylinders the distance between whose parallel axes is equal to d. The radii
of the cylinders are equal to '1 and '2t and one of the cylinders is charged and has a li­
near charge density 'to

~t5. Find the dipole moment of a charge distributed uniformly over the surface of a sphere
of radius a. One hemisphere has a charge Qwhile the charge on the other is equal to -Q.

2.16. A point dipole with a moment p lies at a distance d from the centre of a grounded con­
v ducting sphere of radius a. Find the induced dipole moment of the sphere.

2.17. A constant potential difference lJq is applied to the square plates of a parallel-plate
.../ air capacitor with side l, Find the terce which must be applied in order to displace one

of the plates parallel to itself in a direction perpendicular to any side of the square so
nolL that the distance d between the plates remains unchanged.
~. There is a conducting sphere of radius '1 and a concentric spherical conducting layer
~ whose inner surface lias a radius '2 ('2 > Tl)' while its outer surface has a radius equal

to '21. (ra > r2). The space between the spheres of radii rl and r2 is empty. The sphere and
the layer carry charges equal to Ql and Q. respectively but, unlike the case of a capac­
itor, Ql and -Q2 are not equal in this case. Find the energy of this system of charges.

t.19. Find the electric field strength at the centre of a right circular cylinder of length l
.J. and radius a, whose polarization P is uniform and parallel to the axis.,.20. The polarization P in Problem 2.19 is perpendicular to the axis of the cylinder. Find

the field strength at the centre of the cylinder.
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2.21. An infinite conducting cylinder of circular cross section of radius a and a conducting
plane at a distance d from the axis of the cylinder form a capacitor. Find the capacitanee
of such a capacitor of length I.

2.22. Using the solution of problem 2.2f, find the fnT ce exerted by an earthed infinite plane
on a segment of length I of a rectilinear charged filament parallel to the plane. The li­
near charge density of the filament is equal to 'f.

2.23. A molecule is represented by a charge -2 I q I at the origin and two oharges I q I at
the points characterized by the radius vectors'l and rl' where I rl I == I r. I =J. The
angle between rl and r2 is denoted bye. Find the effective charge I q lem fgr a water
molecule for which I = 0.958 X 10-10 m, a= 105°, and p = 6.14 X 10-30 e·m.

2.24. A paint charge q is placed between two infinite earthed parallel conducting planes sep­
arated by a distance d. The distance between the point charge and one of the plates
is equal to x, Finding the images of the charge q, calculate the force acting on it.

Answers

2.1. E=pr/(3so)' 2.2. E-pr/(2ao).2.3. CP=CPI- d
A

R (lIl(-lIlt). 2.4. F=- 4qt~ X
-u .J 'l80 .

[
2d2-rB ] q2ar ri (rs-d) rl(a-r1)
(d2-r~)2 • 2.5. F= 4 (2 2)2 2.6. ql= - d ( ) s, q2= - d( ) q.'l80 a -r rl~rl rl-rl

2.7. f=y(d+a)/(d-a). 2.8. AWI==(CtQl-CIQ.)t/[2CICt (C1+Ct)). 2.9. C= {-x
81- 81 (8-80) U2 1 V ai, (PI-2pl)

I ( I .: 2.10. h= (I I) I ( / ) -. 2.11. C=4n (8+80) 3 ( ).n 82 £1 TI-r1 n r2 rl pg 8-80

2 80 (8-80) ~ a 't2 dl
.12. F= 2 (d-~) 8+~80 d U 2

• 2.13. f== -'t
2dl l [2neo (d 2 - rl

)) . 2.14. f= - 2n8, X

[d2- (r l +rl)2]-1/2 [d2- (ra- r l )l j- l / 2. 2.15. p=Qa. 2.16. Plnd= paS/dl. 2.17. F=-

~ ~ol o; 2.t8. W= a:s
o

[( :1 - :t + T~ ) QI + 2QIQ~+QI J. 2.19. E==-

(1/80) P (t -IIY4a2-t· l l ) . 2.20. E = - [1/(28
0)) lP 2.21: C= 2n80l

y 4a2 + l1 In [(d+ Y d l - alIa))

f h 21t£ol ( aw ) ( aw ) 1 I ec UI
ora~dwe aveC~ In(2d/a). 2.22. F=- ad Q= ad cp=2 U a;r=T X

'l80 I U"C 2l 't 2l
(In2dla)1 = 41t8,d = 4n8ed • 2.23. P= Iqlel(rl+ r2), p=2lqlefflcos (9/2) , Iq1etr=

oe

5.26.10-20 e = O.328Iel. 2.24. F= - ~ {_1_ +" [ 1 - t ]}
16n80 2:1 LJ (nd+z)1 (nd-z)1 ·

n==l



CHAPTER 3

Dielectrics

The electric dipole moment of atoms and molecules is the basic
physical factor determining the nature of interadion between a
dielectric and an electric field.
The principal mechanisms of polarization are associated with the ap­
pearance of induced dipole moments of atoms and molecules or with
the spatial reorientation and rearrangement of available dipole
moments.
Ionic lattice polarization also takes place.

Sec. 20. Lecal Field

The reasons behind the difference bettceen the local
and external fields are discussed, and the loca 1 field
strength is calculated for simplest conditions.

The difference between a local field and an external field. As a result of polariz­
ation, a dielectric placed in an external field becomes a source of an electric
field. Consequently, the field inside a dielectric, which acts on dielectric molecules,
differs from .the external field. This field is called local field. The difference be­
tween the local field and the external field is especially significant for dielectrics
with a high density, viz. liquids and solids.
Calculation of local field strength. Let us isolate in the volume of a dielectric
a physically small sphere at whose centre the local field strength is being cal­
culated (Fig. 100). The field appearing at the centre of the sphere as a result of
polarization of the dielectric consists of the field E 1 generated by the part of the
dielectric located outside the volume bounded by the sphere and the field E 2
created by the part of the dielectric contained in the volume bounded by the
sphere. .

While calculating E1 , we can assume that the dielectric is a continuum because
the distance from the centre of the sphere at which the local field strength is
being calculated to the sources of the field is comparatively large. Since the
volume of the sphere is physically small, we can aSSUDle that the medium near
its outer surface is polarized uniformly. In the volume bounded by the sphere,
we should take into account the atomic structure of the dielectric, i ,e. calculate
the contribution of the dipole moment of each individual atom to the local field
strength and assume that the sphere is the interface between the surrounding
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y

(20.3)

zmedium and the vacuum in the volume boun d­
ed by it.

At the centre of the sphere, the field is created
by bound charges at its surface as on the interface
between two media with different permittivities.
The surface density of bound charges is given by ,-..
[see (17.21)]

O'b = (P2n - PIn) = -PIn' (20.1)

where PIn is the normal component of polariza­
tion from the outer side of the surface of' the Fig. 100. To the calculation of
sphere and P 2n = 0 from the inner side. In this local field
formula, the outward normal of the sphere is posi-
tive. Directing the Z-axis along the vector P of constant polarization,~ obtain

O'b = -PIn = -P cos 8. (20.2)

The surface charge contained within a solid angle dQ is given by

dQ = O'br2 dQ,

where r is the radius of the sphere. At the centre of the sphere this charge creates
a field

1 dQ
dEz = - -4- -1- cos 8neo r (20.4)

in the direction of the Z-axis.
It can be seen that only the component of the field along the Z-axis differs

from zero. Combining (20.4) and (20.3), we obtain
1 ..

Ez=Et = -4- p \ cos28dQ= s,
neo J

2n n

= -4
1

P ~ da rcos2 asin 8 d8=_g1 P (20.5)
neo ~ J 8 0o 0

or, in vector form,

(20.6)

This formula is valid only for an infinite homogeneous dielectric. If a dielectric
is finite, the field in it generally depends on its size and shape. In homogeneous
dielectrics, volume polarization charges are equal to zero since Pb = --':"'div P =
-xeo div E = O. Therefore, the difference between the field of a finite di­
electric and the field E; of an infinite dielectric is due to the field created by
bound charges appearing on the outer surface of the body. This field is some­
times called a depolarization field since it reduces the field strength.
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The field E 2 depends on the distribution of dipole moments of molecules
inside the small isolated sphere and cannot be represented by any universal
formula. Let us calculate the field for the case when molecules are located at
the sites of a cubic crystal lattice and all dipole moments are oriented along the
same direction in space. This condition is satisfied for induced dipole moments.
We must find the field E 2 at the point of location of a molecule, i.e. at a lattice
site. We fix the origin of coordinates at this point and direct the X-, Y-, and
Z-axes along the edges of the lattice. Let us use formula (16.85) which has the
following form for the x-component:

2 9 o.,

E2~=-l!.=.-" - r i t 3zi +-ElL"~+~,, SztSt. (20.7)
4nee LJ Ti 4neo LJ Ti 4neo LJ '1
iii

The summation is carried out over all molecules in a small volume inside the
sphere. Similar formulas can also be written for the y- and z-components of
the field.

In formula (20.7), we can first calculate the sum over all molecules contained
in a small spherical layer of radius r and then calculate the sum over the spheri­
cal layers corresponding to different r's. In view of cubic symmetry, for the
first summation we have

~ xi= ~ yt=~ zt = ~ ~ Tt,
iii i

~ x,y,= ~ y,z,= ~ z,x,=O.
i

Consequently, expression (20.7) assumes the form

E 2X = o.

(20.8)

(20.9)

Similarly, we can prove that E 21/ = E 2& = O. Hence, we finally obtain

(20.10)

Thus, the strength of the local field acting on a molecule inside a dielectric is

E* = E + P/(3Eo) . (20.11)

This formula must be treated only as a first approximation, since a real dielectric
differs from the model used tor obtaining this formula. In particular, electric
fields of molecules may considerably differ from the fields of dipoles, the crystal
lattice of a dielectric may have a different symmetry, dipole moments of the
molecules may have different directions, etc.

The local field acting on the molecules of a dielectric differs from the external
field because the dielectric placed in an external field itself becomes a source of
an additional field.
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Molecular dielectric susceptibility does not depend noticeably on the density of the
material or on temper....'e.
The permittivity of a nonpolar dielectric may depend on temperBfure only Implicitly.
through the temperature dependence of molecular concentrBflon.
The local field acting on the molecules of • dielectric differs from the external field since
the dielectric itself In the external field becomes a source of an additional field.

Which basic fadors are responsible for the difference in dielectric properties of rarefied
and dense gasesl" What are these differencesl
What physical fadors determine the independence of the permittivity of nonpolar dielectrics
from temperature over a sufficiently wide rangel

Sec. 21. Nonpolar Dielectrics

Basic properties of nonpolar dielectrics are described.

Molecular dielectric susceptibility. It follows from the mechanism of creation
of the induced dipole moment of a molecule (see Sec. 17) that its direction coin­
cides with the direction of the electric field. To a first approximation, the dipole
moment of a molecule can be considered proportional to the field strength:

p = cxeoE*, (21.1)

where a characterizes the "polarizability" of a molecule (or atom) and is called
the molecular (or atomic) dielectric susceptibility. It is determined by the
intrinsic properties of the molecule. In view of strong intrinsic electric fields
in the molecule, the molecular dielectric susceptibility is small and does not
noticeably depend on the density of the substance and temperature. The magni­
tu de of ex can be estimated by proceeding from the following model of molecular
polarization. A molecule is represented in the form of a conducting sphere whose
radius is approximately equal to the molecular radius (a = 10-10 m), In a
constant field E*, this sphere acquires a dipole moment [see (16.82)] given by

p = 4n:eoa3E* . (21.2)

Comparing (21.2) with (21.1), we obtain" the fnllowing expression for the
dielectric susceptibili ty:

(21.3)

If for molecular radii we use the values, obtained in the kinetic theory, formula
(21.3) gives a slightly exaggeratedbut still correct (in order of magnitude) value 0/:,(1,.
Hence, this model of molecular polarization is quite suitable for order-of-magni-
tude estimates. .

Using (21.1), we find the polarization

p= !l1V ~ cxeoE* ;::- cxeoE* !l1V ~ 1= cxeoNE*. (21.4)
~v ~v
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Here
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~ 1=~VN, (21.5)
£\V

where N is the molecular concentration.
Rarefied gases. In this case, the local field strength E* differs but slightly

from the external field strength E. Hence [see (21.4)], we ha ve

P = aeoNE. (21.6)

Comparing (21.6) and (17.11), we conclude that the dielectric susceptibility is

)( = ccN, (21.7)

Taking (17.31) into account, the relative permittivity e, = eleo can then be
presented in the form

er = 1 + aN. (21.8)

The value of Er differs from unity by the value of aN, which is very small
for gases. For example, the molecular concentration of air under normal con­
ditions is N = 2.6 X 1025 m-3 • Considering, in accordance with (21.3), that
a ~ 10-29 m" for molecules, we find

(21.9)

The value of a, and hence a.N; increases with molecular size, remaining small
in order of magnitude.

The value of e r may depend on temperature only implicitly through the tem­
perature dependence oj N. We denote by N A' Pm and 1'.,[ the Avogadro constant,
gas density and molar mass respectively and write the obvious equality

N = N APm/M. (21.10)

Using this relation, we can write (21.8) in the form

(e, - 1) M/Pm = aNA. (21.11)

Consequently, (e, - 1)/Pm is a constant quantity independent at temperature
and pressure only it the pressure is sufficiently low. As the pressure rises, the den­
sity increases, and we must take into account the difference between local and
external fields.
Densegases. In this case, we must use expression (20.11) in formula (21.4) for E*:

P = aEoN [E + P/(3e o) ] ' (21.12)
whence

P aeoN E
- 1-aN/3 •

Substituting (21.13) into (17.29), we obtain

D=eE=8oE+ 1~e~Z/3 E,

(21.13)

(21.14)
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Fig. 101. To the calculation of
atomic dielectric lsusceptibility
of .hydrogen

(21.16)

(21.15)

3(sr-1) M N
+2 -=a A·

sr Pm
The left-hand side of this expression does not de­

pend on temperature and pressure within the limits
in which the molecular susceptibility remains con­
stant. For gases, such pressures can be high (of
the order of 100 MPa). In liquids and solids having
high densities, the value of ex depends on pressure. Formula (21.16) was experi­
mentally verified for a wide range of pressure. For example, for carbon dioxide,
which is a nonpolar gas, the validity of the Clausius-Mosotti relation (21.16)
was checked to a high degree of accuracy up to pressures of the order of 100 MPa
at 100°C. Over the entire pressure range, the relative deviation of the left-hand
side from the constant value does not exceed a few hundredths. In this case up
to pressures of about 20 MPa, a small increase is observed in the value of the
left-hand side of (21.16), while above this value, the left-hand side of this expres­
sion slightly decreases. The relative permittivity 8 r here varies considerably
(by a factor of 1.5) in the pressure range from 1 to 100 MPa.

3 (sr-1)
+2 ~N.Sr

This expression is called the Clausius-Mosotti
formula. It can be used to represent (21.10) in
the form

whence

(21.17 )

whence

Example 21.1. Estimate the atomic dielectric sU8ceptlblltty ex, 01 a hydrogen atom. The electric
field is directed normally to the plane In ,ohtch the electron move, (Fig. 101).

We write the equilibrium condition for an electron moving in an extemal field:
el el z

eE= cos~= ---~~~4neo (%2+r2) 4nso (Zl+ r2)8/ 2 •

For x <: r, we obtain x/(xl + rI)s/2 = z/,JI, and hence [see (21.17)]]

ez = 4nso,JIE = p,

ex, = 4nr8 ~ 1.57.10-80 mS,

which gives the correct order of the dielectric susceptibility of a hydrogen atom.

Sec. 22. Polar Dielectrics

Basic properties of polar dielectrics are described.

Temperature dependence of polarization. The constant dipole moment for most
molecules is of the order of 10-29-10-90 C· m. For example, it is equal to 0.36 X
10-30 C· m for CO, 5.3 X 10-90 C· m for 802' and 3.5 X 10-28 C· m for KCI.
12-0290
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The dipole moments of many molecules have been
measured and compiled in tabular form.

The potential energy corresponding to a dipole
with a dipole moment p in an electric field E
is given by

(22.1)W = -p·E.

This quantity attains its minimum value when
r the direction of the dipole orientation coincides

with the direction of the electric field. Since the
state of a system with minimum energy is stable,

Fig. f02. Dipole orientation in the dipole moments of polar molecules tend to orient
a spherical coordinate system themselves along the electric field vector. The re-

quired rotation is realized by the couple acting
on the dipole (see Fig. 91). Thermal motion, however, disturbs the ordering
action of the electric field. As a result, a certain equilibrium sets in.

Let us direct the Z-axis along the electric field E (Fig. 102). The potential
energy (22.1) of molecules depends on the angle between the directions of their
dipole moment and the field vector:

W = -pE cos e = -p zE (22.2)

and hence the angular distribution of dipole moments is characterized in this
case by the Boltzmann distribution The number dn of molecules whose dipole
moments are contained within the solid angle dQ is given by

pEcos 8 pEcos 8

dn = Ae kT dQ== Ae AT de sin e de. (22.3)

(22.4)2n n
A S de SePcos e sin~e_de

o 0

S pzdn
(p,~==--­

Sdn

Then the average value of the Z-component of the dipole moments is
2n n

Ap S de SePcos e cos e sin e de
o 0

where p z = p cos e and the notation

P = pE/(kT) (22.5)

has been introduced.
First of all, we must calculate the internal integral in the denominator of

(22.4):

II

1= Jell cosesin e de,
o
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since the internal integral in the numerator IS given by
n1ell C09 ecos0sin 0 dO = oIta~.
o

Integral (22.6) can easily be evaluated:

(22.7)

n

I - reP cos e sin ede = _l.- eP cos eIn - ~ sinh A- J ~ 0 - ~ p,
o

(22.8)

whence
et 2 ( 1.)
~=T eoshp-r;slnhp • (22.9)

Thus, formula (22.4) combined with (22.8) and (22.9) assumes the form

(pz) = pL (~), (22.10)

where L (~) = coth ~ - 1/P is the Langevin function (Fig. 103).
For not very strong fields, when pE ~ kT, i.e. ~ ~ 1, we expand the hyper­

bolic cotangent into the series

coth ~ = 1/~ + ~/3 - ~3/45 + . . . (22.11)

(22.15)

and confine ourselves to the term ~inear in ~ in the expression for L (~):

L (~) = ~/3. (22.12)

(pz) =p2EI (3kT). (22.13)

Saturation field. As the field strength increases, the dipole moments are oriented
in the direction of the field more and more intensely, and when pE ~ kT, i.e,
for ~ ~ 1, we can assume that all dipole moments are parallel to each other
and are directed along the field. Consequently,

(pz) = p. (22.14)

This relation can be obtained from (22.10) if we take into account that, for
~ ~ 1, the function L (~) is close to unity:·

L(~~oo)~1.

This gives

is satisfied,

~--------

"{3

Fig. 103. The Langevin func­
tion(22.16)e, ~ kTlp ~ 4.2.108 VIm.

Maximum possible polarization is attained when condition (22.14)
and any further increase in the field does not lead to
a higher polarization. The field at which the maxi­
mum possible polarization is reached is called the
saturation field. Considering that the order of
magnitude of dipole moments is equal to 10-29

C· m, we conclude that for T = 300 K the satu­
ra tion field strength is

12*
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Hence it follows that the condition pE ~ kT under which formula (22.13)
is valid is fulfilled up to field strengths of the order of million volts per metre.
Therefore, in most practically important cases, we can use formula (22.13).
Rarefied gases. In this case, the local field strength can be assumed to be equal
to the external field strength and the polarization [see (22.13)] can be represented
in the form

P = N p2E/(3k T ). (22.17)

Further, in complete analogy with the calculations carried out by formulas
(21.6)-(21.8), we find that the relative permittivity is

(22.18)

In addition to polarization due to a reorientation of constant dipole moments,
polar dielectrics also possess polarization due to induced dipole moments, de­
scribed by formula (21.8). Hence, taking into account both polarization mech­
anisms, we obtain the following expression for Cr of polar gaseous dielectrics
under a moderate pressure:

Er = 1 + N [a + p2/(3kTE
o)]. (22.19)

It can be seen from (21.3) that a = 10-29 m". On the other hand, at room tem­
peraturekT ~ 4 X 10-21J,andhenceforp ~ 10-29C·mp2/(3kTco) ~ 10-27m3 ,

i.e. the contribution from induced dipole moments to polarization amounts to about
1/100 of the value due to constant dipole moments and hence can be ignored. How­
ever, it is possible at present to make precise measurements which allow us to distin­
guish between the contributions to polarization from constant and induced dipole
moments. For this purpose, e, is measured over a wide range of temperature and
formula (22.19) is employed. The Er vs, 11T dependence is represented on the
graph by a straight line. Its intersection with the axis of ordinates for 11T = 0
gives e, = 1 + o.N, Hence we can calculate a = (e, - 1)IN. After this, we
can use the results of measurement for other values of 11T and calculate the
constant dipole moment with the help of formula (22.19) since all other quantities
in this equation are known.
Quantum interpretation of polarization of polar gaseous dielectrics. In quantum
theory, as wel l as in the classical one, the polarization of polar dielectrics is
explained by the predominant orientation of constant magnetic moments of
molecules in the direction of the electric field. The permittivity of dielectrics
is described by formula (22.19). However, there is an essential difference in the
interpretations of the reorientation of constant dipole moments according to classical
and quantum theories.

In the quantum theory, it is necessary to take into account the rotation of
molecules. The angular momenta of rotating molecules are oriented in various
directions in space and their projections onto any particular direction form a
discrete set of values, the mean value of the projection being equal to zero.
The electric dipole moment is rigidly connected with a molecule and changes its
spatial orientation as a result of molecular rotation. a
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(22.22)

(22.21)

The dipole moment of a molecule can he decomposed into two components:
along the axis of rotation and normal to it. As a result of rotation, the latter
component changes its spatial orientation in the plane perpendicular to the axis
of rotation of the molecule. In the coordinate system in which this molecule
rotates, the mean value of this component is equal to zero. The mean value of
the dipole moment component along the axis of molecular rotation is also equal
to zero due to the fact that the moment of inertia of the molecule is quantized,
and the mean value of its projection onto any direction is equal to zero regardless
of whether or not the electric field is present. Consequently, molecules with
nonzero angular momentum do not contribute to polarization. Polarization is
created only by nonrotating molecules with zero angular momentum as a result of
reorientation of their constant electric dipole moments. The projections of dipole
moments onto the direction of the electric field form a discrete set of values with
a nonzero mean, which explains the appearance of the polarization.
Dense gases. In this case, we must bear in mind the difference between the local
field and the external field and different orientations of dipole moments, which
depends on the interaction between dipoles. This considerably complicates
the calculations.

Assuming that the local field is much weaker than the saturation field, it is
expedient to write the following formula for polarization instead of (22.17):

p= ~:; E*. (22.20)

However, the local field E* in it cannot be expressed in terms of the external
field through formula (20.11). This can be verified by the following considera­
tions.

Suppose that we place a dipole p at the centre of a spherical cavity of radius a,
formed in a dense dielectric having the relative permittivity E r . The field of
this dipole polarizes the medium outside the sphere. Thus, an additional field

E _ 2(8r - 1) P
add - 2er + 1 4n8oal

appears in the spherical cavity, i.e. there appears a constant field coinciding
in direction with the dipole moment. This additional field creates an additional
induced dipole moment which coincides in direction with the constant dipole mo­
ment, and hence cannot reorient it. Consequently, polarization cannot be inter­
preted as a reorientation of dipole moments in the local field.

Considering (20.11), we can give formula (22.20) the form

Np" [ P ]p= 3kT E-t-ge;-
whence

p NP"/(3kT) E (22 23)
1-Np"/(9kT8o) • •

When To = Np2/(9keo}, the denominator on the right-hand side vanishes.
For T > To, the polarization P has a finite value, while for T = To it tends to
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(22.24)

infinity. This means that for T ~ To the corresponding quantity must possess
a spontaneous polarization. For example, analyzing formula (22.23) we can
expect that water vapour should be spontaneously polarized, which is obviously
wrong. Similar erroneous results are obtained for other materials also. Con­
sequently, different models are required for the description of dense gases with polar
molecules and polar liquids.
Polar liquids. Onsager proposed a model for polar liquids which is in better
agreement with experiment although it gives rather approximate numerical
results. In this model, each dipole is assumed to be at the centre of a real spheri­
cal cavity whose volume is equal to the mean volume per molecule. The model
takes into account the dipole orientation by long-range forces and the appear­
ance of an additional dipole moment under the effect of the field (22.12). As a
result, the following relation was obtained:

(er - 8lnd) (28r +8r Ind) N pI
8 r (e, Ind +2)2 9kT8o

where E r is the relative permittivity, and er tnd is the relative permittivity
due to induced dipole moments. For water, e, md = 4.9, p = 2.16 X 10-29 Cvrn,
and formula (22.24) gives er = 105 at T = 273 K. The experimental value of
er = 88. We can hardly expect a better agreement with experiment.

A better quantitative agreement with experimental results was obtained for
highly dilute solutions of polar dielectrics in a nonpolar solvent. In this case,
polar molecules of a dissolved substance are located at sufficiently large distances
from each other, and the interaction between them can be ignored. Using the
Onsager model, it is possible to take into account the interaction between polar
molecules and a nonpolar solvent. This leads to the theory which is fairly in
agreement with experiment.
Ionic crystals. These materials can be represented as combinations of two sub­
lattices with positive and negative ions. Under the action of an external electric
field, these lattices are displaced relative to each other, as a result of which
a considerable polarization appears. This gives comparatively high values of
the relative permittivity gr' For example, er = 6 for common salt, 5 for KCI, etc.

Under usual conditions, the saturation fields (viz. the fields at which the polarization of
a polar dielectric attains the maximum possible value) amount to hundreds of millions velts
per metre.
The contribution from Induced dipole moments to the pol8,Ization Is about one hundredth
of that from permanent dipole moments and In most cases can be Ignored.
Taking into account the local field, the mechanism of pollrlzatlon of dense polar gases
and liqUids cannot be interpreted as the reorientation of dipole moments in this field.

Why do the dipole moments of polar molecule tend to align with the eledric fieldl
Under what conditions does the polarization of polar dieledrlcs attain saturatlonl
To what distances between elementary charges do the permanent dipole moments of
molecules correspondl
Do the modern experimental techniques allow us to separate the contributions of perma­
nent and induced dipole moments to the polarizationl Explain how this can be done in
principle.
What physical factors make it impossible to treat the polarization of dense polar dielec­
trics as the result of reorientation of dipole momenis in the local fieldl
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Sec. 23. Ferroelectrics

tss

The physical properties of [erroeleetrics and the nature
of ferroelectricity are considered.

Definition. Ferroelectrics are polar dielectrics which are spontaneously polarized
in a certain temperature interval. In other words, they possess polarization
in the absence of electric field. As a result of phase transition, a ferroelectric is
transformed into a polar dielectric at the boundaries of this temperature inter-
val, .

Relative permittivity of Ierroelectrics is extremely high (e, ~ 104) and
depends on the field strength, although it is not a single-valued function of the field.
The value of Er depends on the variation of the field strength before a given
value has been attained.

The term "ferroelectrics" is explained by a formal analogy existing between
their properties and the properties of ferromagnetics. Examples of ferroelectrics
are Rochelle salt NaKCiH,Oe·4H20 and barium titanate BaTi03 •

U

Fig. 104. Schematic diagram of
the circuit for eliminating the
hysteresis loop: tan q> = 8/80 =
DI80E

Fig. i05. Hysteresis loop

Hysteresis loop. Since e depends on B, D = eE depends nonlinearly on E.
Besides, since E is determined by the past history of variation of E, D depends
ambiguously on E. Let us place a ferroelectric between the plates of a capacitor
and measure E depending on the field strength E which varies according to a
harmonic law.

The schematic diagram of the circuit is shown in Fig. 104. The outer ter­
minals of two series-connected parallel-plate capacitors are connected to a
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generator which creates a harmonically varying potential difference across the
terminals. The potential difference is distributed between the capacitor C con­
taining a ferroelectric and the capacitor CI with no material between its plates.
Assuming that the areas of all capacitor plates are equal and denoting by d the
distance between the plates, we have

E = ole, E1 = a/Eo t (23.1)
whence

(23.2)
and

tan q> = UI/U = e/eo = eEI(eoE). (23.3)

Therefore, if the voltage U is applied to the horizontal sweep and VI to the
vertical sweep of an oscillograph, the variation of E will be registered on the
screen by a curve the abscissa of whose points is equal to EoE on a certain scale,
and the ordinate is equal to EE = D on the same scale. This curve is called the
hysteresis loop (Fig. 105). The arrows on the curve indicate the direction of
motion of a point along the curve upon the change in the field strength. The
segment OA characterizes the residual polarization, i.e. the polarization of the
sample for zero external field. The segment OB characterizes the field vector
directed against the polarization, at which the sample is completely depolar­
ized, i.e. its residual polarization vanishes. The larger the magnitude of I OA I,
the higher the residual polarization of a ferroelectric. The larger the value of
I OB I, the better the residual polarization is retained by the ferroelectric.
Curie point. As the temperature of a ferroelectric exceeds a certain value Tc­
typical of each material, its ferroelectric properties vanish and it becomes an ordi­
nary polar dielectric. The point marking the transition between ferroelectric
phase and polar electric phase is called the Curie point, .and the temperature Tc
corresponding to it is known as the Curie temperature. In certain cases there are
two Curie points, i.e. ferroelectric properties vanish with decreasing temperature
also. For example, Rochelle salt has two Curie points corresponding to the
temperatures Tc UP = 24°C and tc 1 = -18°C. The number of ferroelectrics
with two Curie points is comparatively small. Most ferroelectrics have only the
upper point which is simply called the Curie point.

A t the Curie point, a dielectric goes over from the ferroelectric state to the state
of a polar dielectric. The permittivity in this process varies continuously from the
value corresponding to the ferroelectric phase to the value corresponding to the
phase of polar dielectric. The law of variation of dielectric susceptibility x in
the vicinity of the Curie point has the form

x=~ I (23.4)

where A is a constant and To is the Curie-Weiss temperature which is close to
the Curie temperature Tc (in formula (23.4), T(j is often used instead of To.,
which does not introduce any significant error in the value of x for temperatures
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differing from Te). The law expressed by formula (23.4) IS called the Curle­
Weiss law.

If the lower Curie point also exists, the Curie-Weiss law in the vicinity of this
point has the form

(23.5)A'
T~-T •

As was mentioned above, crystals exhibit different dielectric properties in
different directions, and hence their dielectric susceptibility is characterized:
by the dielectric susceptibility tensor Xi j instead of the scalar dielectric suscep­
tibility x, However, the temperature dependence of tensor components is the­
same as in (23.4) and (23.5).
Molecular mechanism of spontaneous polarization. The theory of ferro electricity
is beyond the scope of the course of general physics. For this reason, we shall
confine ourselves to only a qualitative description of processes' on molecular
level. A very strong interaction between dipole moments of molecules may lead'
to the appearance of a finite polarization P at as small a field strength E as desired
or, which is the same, the polarization P may exist in the absence of an
electric field. In other words, a very strong interaction between dipole moments
of molecules causes spontaneous polarization which is characterized by the same
orientation of separate dipole moments. Taking into account the fact that perma­
nent dipole moments are much larger than the induced ones [see (22.19)], we­
conclude that spontaneous polarization is characterized by a very high polariza­
tion. Consequently, the corresponding susceptibility x and permittivity E

have considerably higher values than those observed for polar and nonpolar
dielectrics. The state of spontaneous polarization is precisely the ferroelectric state..
A transition from the ferroelectric phase to the polar dielectric phase is the­
transition from the state of spontaneous polarization to the state when spon­
taneous polarization vanishes and the substance becomes an ordinary dielectric'
whose molecules have permanent dipole moments. In other words, this is the­
transition to the polar dielectric state. The physical factors responsible [or this­
transition ultimately weaken the interaction between the dipole moments of mole­
cules.
Dielectric domains. Spontaneous polarization is a source of strong electric
fields. Consequently, if a macroscopic volume of a ferroelectric is polarized
spontaneously in a certain direction, a very strong electric field appears arround
this volume, and a high energy is associated with it. Such a state is disadvanta­
geous from the point of view of energy. The system tends to go over to a state charac­
terized by a spontaneous polarization on the one hand and the minimum field energu
on the other. This can be realized as a result of division of the volume of the ferro­
electric into small regions each of which is spontaneously polarized in a certain
direction. These directions are different for different regions. The average polariza­
tion of the volume containing a sufficient number of small regions with differ­
ent direction of spontaneous polarization is equal to zero, and hence the strength
of the external electric field created by this volume is close to zero. Small regions
of spontaneous polarization are called dielectric domains, or simply domains. Thus,
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E

p a nonpolar ferroelectric is an aggregate of do­
mains with randomly oriented spontaneous po­
larizations.

Obviously, in order to decrease the electric
energy, it is expedient to decrease the volumes of
domains. However, the process of decreasing the
domain size is hampered by another factor associat­
ed with the presence of the surface energy at the
boundary between neighbouring domains. Obviously,
the total surface area of domain boundaries in­
creases upon a decrease in the domain volume,
and hence the surface energy also increases. For

Fig. 106. Double hysteresis loops h h
for antiferroelectrics which be- t is reason, t, e volumes of domains may decrease
come ferroelectrics in strong only to certain limits corresponding to a decrease
nelds in the total energy of the system. Upon a further

decrease in the domain volume, the total energy
increases rather than decreases at the expense of the surface energy. This determines
the domain sizes. These sizes are of the order of thousands of intermolecular
distances. The existence of domains is proved in experiments involving direct
observations with the help of polarized light, as well as in the experiments on
etching of a ferroelectric, since different parts of a domain are destroyed at
different rates upon etching.

The variation of polarization of a ferroelectric in an external electric field
involves the reorientation of dipole moments of individual domains, a change
in the domain volumes, and displacement of domain boundaries. These processes
are thoroughly investigated since ferroelectrics ita ve wide practical applica­
tions. More than one hundred pure ferroelectrics and a very large number of
ferroelectric solid solutions are known to date.
Antiferroelectrics. Under certain conditions, two spontaneous polarizations
with opposite orientations appear in a crystal. One of them appears due to the
orientation of dipole moments of molecules of one crystal sublattice in a certain
·direction, while the other is due to the orientation of dipole moments of the
.other crystal sublattice in the opposite direction. In this case, the total polariza­
tion of any physically small volume of such a crystal is equal to zero. Thus,
there are no domains with different orientations of spontaneous polarization;
although spontaneous polarization exists in any physically small volume. Such
materials are called antiferroelectrics. In their structure, they are similar to
antiferromagnetics.

In sufficiently weak fields, antiferroelectrics behave as ordinary dielectrics
with a linear dependence of polarization on the external field strength. In suf­
ficiently strong fields, the substance may go over to the ferroelectric phase with
all the consequences following from this. In particular, a hysteresis loop is ob­
served. The transition occurs in a strong electric field. For this reason, if we
replace an antiferroelectric by a ferroelectric in the circuit depicted in Fig. 104,
two hysteresis loops will be observed (Fig. 106) at large amplitudes of voltage
oscillations.
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The Curie-Weiss temperature does not coincide with the Curle femper8ture b.. Is close
io It. In many cases, there Is no need to distinguish between them.
Most ferroelectrlcs hive only one lupper) Curle point. However, there .re severa' ferro­
electrlcs with two Curle points.

Sec. 24. Piezoelectrics

The mechanisms of piezoelectric and inverse piezo­
electric effects are described. The relationship. between
inverse piezoelectric effect and electrostriction is ana­
lyzed. Basic information on pyroelectric materials is
given.

Properties of piezoelectrics. There are many crystals whose surfaces acquire
electric charges upon deformation. Such crystals are called piezoelectrics. Since
deformation itself cannot] alter the total charge of the crystal, the surface charges
induced as a resuls of deformation have opposite signs on different parts of the
surface. Piezoelectrics include quartz, tourmaline, Rochelle salt, and many
other materials.

Experience shows that charges appear on the surface of a piezoelectric as
a result of a uniform compression or extension in quite definite directions
called the polar axes of the piezoelectric. On opposite faces perpendicular to
a polar axis, charges of opposite signs appear under a uniform strain. The signs
of the charges are reversed together with the sign of the deformation. If, for
example, the compression along a polar axis has resulted in the appearance of
a positive charge on a given face, this face will acquire a negative charge as a
result of extension along the same axis. Piezoelectric effect is observed not
only due to a pure compression or extension along a polar axis, but also upon
any deformation of the crystal, which is accompanied by an extension or com­
pression along a polar axis.

Since charges of opposite sign appear on different faces perpendicular to a
polar axis, different directions along the polar axis are not equivalent. This means
that if a crystal is rotated through 180° around an axis perpendicular to the
polar axis, the polar axis will coincide with itself but the crystal will not.
Consequently, crystals having a centre of symmetry cannot be piezoelectrics.
The necessary condition for the piezoelectric effect to exist upon uniform de­
formation is the absence of a centre of symmetry in the crystal. Polar axes are
determined by the symmetry properties of the crystal lattice. Generally, a crystal
has several polar axes.

Piezoelectric properties depend on temperature. If at a certain temperature the
crystal lattice is rearranged so that a centre of symmetry is formed, piezoelectric
properties of the crystal vanish at this temperature. For example, piezoelectric
properties in quartz change insignificantly up to the temperature of 200°C.
Then, up to the temperature of 576°C, these properties slowly become less and
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less pronounced. l\t 576 "C, the crystal Iatt.ice in quartz is rearranged, as a result
of which piezoelectric properties disappear. As the temperature decreases, the
piezoelectric properties of quartz change in the reverse order.
Longitudinal and transverse piezoelectric effects. The appearance of charges
on the faces perpendicular to a polar axis upon uniform deformation along
this axis is called the longitudinal piezoelectric effect. However, the charges
can be induced on the same surfaces by compressing or extending the crystal
in a direction perpendicular to the polar axis only if extension or compression
along this axis is observed. This phenomenon is called the transverse piezoelectric
effect. It owes its existence to the relation between longitudinal and transverse
deformations of a rigid body.
Mechanism of piezoelectric effect. Only ionic crystals may possess piezoelectric
properties. Piezoelectric effect appears when the crystal sublattice of positive ions
is deformed by external forces not as the crystal sublattice of negative ions. As a re­
sult, the positive and negative ions are displaced relative to each other, which
leads to the polarization of the crystal and the appearance of surface charges.
To a first approximation, the polarization is directly proportional to the strain
which, in turn, is proportional to the force. Consequently, polarization is pro­
portional to the applied force. The potential difference appearing between op­
positely charged faces can be measured, and its value can be used to estimate­
the strain and applied forces. This relation finds numerous practical applica­
tions. For example, piezoelectric transducers are used for measuring rapidly
varying pressures. Piezoelectric microphones are well known and piezoelectric
transducers are widely used in automation and telemetry.
Inverse piezoelectric effect. I t consists in the deformation of a piezoelectric
introduced into an external electric field. This effect ouies its existence to the
direct effect and to the law of conservation of energy. When a piezoelectric is
deformed, work is required to increase the energy of elastic deformation and
the energy of the electric field appearing as a result of the piezoelectric effect.
Consequently, in deforming a piezoelectric, it is necessary to overcome besides·
the elastic force of the crystal an additional force, which hampers the defor­
mation and is a factor responsible for the inverse piezoelectric effect. In order
to compensate for this additional force, we should apply an external electric
field opposite to that appearing as a result of the piezoelectric effect. Con­
sequently, in order to deform the piezoelectric to a certain extent by an external
field, this field must be equal and opposite to the field that would appear under
the given deformation due to the direct piezoelectric effect. For example, if a
certain potential difference appears between the faces of a piezoelectric, which
are perpendicular to its polar axis, upon a deformation along this axis, a poten­
tial difference of the same magnitude but of opposite sign must be applied to
these faces in order to attain the same deformation without applying mechanical
forces. .,

The mechanism of the inverse piezoelectric effect is }similar to that of the
direct effect: under the action of an external field, the crystal sublattices of
positive and negative ions are deformed differently, which causes a deformation
of the crystal.
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The inverse piezoelectric effect also has numerous practical applications. In
particular, quartz ultrasonic vibrators are widely used.
Pyroelectrics. A sublattice of positive ions in some piezoelectrics turns out
to be displaced relative to the sublattice of negative ions in the state of ther­
modynamic equilibrium. As a result, such crystals are polarized in the absence
oi an external electric field. Thus, these crystals possess a spontaneous electric
polarization.

Usually, the presence of such a spontaneous polarization is masked by free
surface charges induced on the surface of the crystal from the surrounding me­
dium by electric field due to spontaneous polarization. This process occurs until
the electric field is completely neutralized, i.e. until the presence of spontaneous
polarization is totally masked. However, as the temperature of the sample
changes, for example, as a result of heating, the ionic sublattices become dis­
placed relative to one another, which causes a change in spontaneous polariza­
tion, and electric charges appear on the surface of the crystal. The appearance
of these charges is called the direct pyroelectric effect, and the corresponding
crystals are called pyroelectrics.

Every pyroelectric is a piezoelectric, but the conuerse is not true. This is due to
the fact that a pyroelectric has a preferred direction along which spontaneous
polarization takes place, while a piezoelectric generally does not have such
a direction.

The inverse pyroelectric effect is also known to exist: a variation of the electric
field in an adiabatically isolated pyroelectric is accompanied by a change in
its temperature. The existence 'of the inverse effect can be proved on the basis
of a thermodynamic analysis of the process and be demonstrated experimentally.

When conditions are suitable for spontaneous polarlz8ll0n, 8 dielectric t.nels to go over
to such a state In which, on the one hand, spontaneous polerlzatlon exists end, on the
other, the field energy Is minimum. Under these conditions, domeIns ere formed.
The factors that weaken the Interadion of dipole moments of molecules CBuse the dlup·
pearance of spontaneous polarization and the transition from the ferroelectric shde to the
state of a polar dielectric.

What is the difference between the Curie and the Curie-Weiss temperature1
What is the mechanism behind the domain formatlon1 Why cannot domains be very large'
What materials are called antiferroeledrlest

Problems

3.1. Calculate the relative permittivity of helium at p = 101.3 kPa, t = 15°C, if its atomic
dielectric susceptibility ex = 2.48 X 10-80mS• The experimental value of 8 r is 1.000074.

3.2. Calculate the permittivity of ammonia at t = 27°C, for ex = 1.37 X 10-29 mS, and the
dipole moment 1! = 0.46 X 10-29 C-m, .
Hint. Use formula (22.19).

3.3. The permanent dipole moment of water molecule is 6.2 X 10-80 C.m. Find the polar­
ization of saturated water vapour at t = 100°C under atmospheric pressure.

3.4. Air mainly consists of N2 and O2 molecules. Using the Clausius-Mosotti formula, cal­
culate their atomic susceptibilities assuming for simplicity that they are equal. Find
the radius of molecules.
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3.5. Taking the values of a and TO obtained in Problem 3.4 for nitrogen molecules, calculate
the change in the distance between the charges forming the dipole in a field of strength
1 MV/m.

Answers

3.1. £r=1.000067. 3.2.8r = 1.0076. 3.3. 1.2X1(F-4 C/m2 • 3.4. a=1.1 X10 21 mat 'al:a
0.96 X 1O-l 0 m, 3.5. 0.87 X 1(F-16 m.



CHAPTER 4·

Direct Current

A direct current cannot be generated by forces which are of purely
electrostatic origin. In order to create a dired current, we must have·
noneledrostatic forces called extraneous electromotive forces. The
basic law for direct current i's Ohm's law in local forms.

Sec. 2.5. Electric Field in the Case of Direct Currents

The peculiarities of the electric field created by direct
currents and the role of surface and volume charges
are discussed. The part played by various factors in
ensuring the existence of direct current is analyzed.

The field in 8 conductor. In differential form, Ohm's law (see Sec. 16) can be­
written as follows:

j = '\'~. (25.1)

If a current is flowing, j =1= 0 and hence E =1= O. Thus, an electric field exists
inside a current-carrying conductor. It should be recalled that in electrostatics;
there is no field inside a conductor.

Generally speaking, the distribution of direct current density over the conductor
cross section is not uniform. In order to verify this, let us consider a segment of a
bent conductor with a circular cross section (we are considering a homogeneous.
conductor for which w = constant). We assume that the curved part of the
conductor is cut from an undeformed piece of a material, since a bent conductor­
is under strain and, strictly speaking, the homogeneity condition is not satisfied­
for it. This complicates the entire pattern of the distribution of current density.

Near the surface of the conductor, the current density can be directed only
along the tangent to the surface. This means [see (25.1)1that the field E near'
the surface of the conductor is tangential to the surface. Consequently, the
equipotential surfaces are perpendicular to this surface. If the part of the con­
ductor under consideration is bent, two close equipotential surfaces obviously
cannot be at a fixed distance from each other at all points inside the conductor.
For example, if the conductor is in the shape of a ring of circular cross section,
the distance between the equipotential surfaces at the inner part of the ring will
be smaller than at the outer part. Since the distance between the neighbouring­
equipotential surfaces changes, the electric field strength at the corresponding­
points on the equipotential surface also changes. Hence [see (25.1)], the density
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of the direct current in a uniform conductor generally varies over its cross
section. The equipotential surfaces in a very long right circular cylindrical
'conductor are the planes perpendicular to the cylinder axis. Consequently,
the electric field strength and the current density are constant over the entire
cross section of such a homogeneous conductor.

We shall be considering conductors with a very small cross-sectional area,
called linear conductors. To a fairly high degree of accuracy, we can neglect
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Fig. 107. Field inside a conduc­
tor and the tangential compo­
nent of the field near the outer
surface of the conductor
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Fig. 108. Demonstration of the
presence of the normal field com­
ponent near the surface of a con­
ductor

the variation in the current density over the Gross section of such a conductor
and assume that it is constant in magnitude at each point of this cross section
and is directed along an element dl of the conductor. In this case, the current
flowing through the conductor wi ll be equal to I = j 118, where 118 is the
-cross-sectional area of the conductor.

Thus, the question of the electric field and density of direct current in thick
-conductors is quite complicated in general. The distribution of current density
over the cross section depends on several factors and, in particular, on the shape
·of the conductor. More definite statements can be made for the field in the
vicinity of the surface of a conductor. Near the surface, the field as well as the
-current density are directed along the tangent to the surface. There are no
-components. of these quantities inside the conductor that are normal to the
·surface. From the boundary condition (17.30), we can conclude that in the
vicinity of the surface outside the conductor there exists an electric field whose tan­
gential component E,; is equal to the tangential component E,; of the field inside
the conductor (see Fig. 107). However, it is impossible to draw any conclusions
about the normal component of the field outside the conductor from here.
The sources of a field. What creates an electric- field inside a conductor? In
other words, what is the source of this field? Since the existence of a direct
current in a circuit is ensured by a current source in the circuit, say, a galvanic
cell, it has obviously got something to do with the generation of the electric
field. However, this source cannot generate the field directly. Such a statement
is quite obvious for a very long conductor..and for parts of the circuits which are
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at a very large distance from the cell, say, several hundred kilometers. The
field which can be created by the charges across the terminals of this cell at
such a distance is infinitely small. Consequently, the cell cannot directly act
as the source of the electric field in a conductor.

The electric charge can be the only source of the electric field in a conductor.
Hence, the problem under consideration is reduced to determining the charges
which generate an electric field inside the conductor, as well as their location.
Field outside a conductor. In order to investigate this problem, we must con­
sider the field outside the conductor. We place a current-carrying conductor in
a plane tray with a thin layer of dielectric powder (Fig. 108). In this case, the
grains of the powder are aligned in chains along the lines of force of the electric
field (see Sec. 19). The figure shows two parts of the current-carrying conductor
and the lines of force between them.

It can be seen that field lines are not tangential to the surface of the conductor.
This means that outside the conductor near its surface, we have the tangential
component E't of the field as well as the normal component En. Inside the con­
ductor, however, En = O. Hence, we can conclude on the basis of (17.26) that
the surface of the conductor must bear charges whose surface density is given by

a = 8 oE n • (25.2)

Here it~".is assumed that the conductor is in vacuum. If the conductor is in
a dielectric medium, we must replace 8 0 by 8, the permittivity of the medium.
Surface charges. Thus, the surface of a conductor through which a direct current
is flowing bears electric charges. These charges are sources of the field which exists
in the conductor and ensures direct current in the conductor. The surface density
of the charge may have different signs in different parts of the conductor. For
example, the left and right parts of the conductor in Fig. 108 have positive and
negative surface charge density respectively.
Volume charges. Only surface charges exist in homogeneous conductors. In
nonhomogeneous conductors, where the electric conductioitu varies from point to
point, charges appear in the bulk of the conductor also. This follows directly
from the law of charge conservation (5.24). In the stationary case under con­
sideration (ap/at) = 0, and Eq. (5.24) assumes the form

div j = O. (25.3)

(25.5)

(25.4)

(25.68)p '+ Pb = 8 oj -grad (1/1').

In principle, the volume charge in matter can be free or bound. We are in­
terested in the total volume charge density p + Pb' which is responsible for
variation of the electric field along the conductor. Consequently [see (17.27)],­
the total volume charge density is equal to

P + Pb = div (8oE) = 8 0 div (j/y),

where E = j/y. Considering (25.3) and the expression

div (j/y) = (1/1') div j + j.grad (1/1'),

we obtain from (25.4)

11-0290
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(25.6b)

Directing the X-axis along the rectilinear part
of the conductor and assuming that its properties
vary only in this direction, we can write formu­
la (25.6a) in the form

cp(2)

If the conductivity decreases in the direction of
the current flow, the volume charge density is pos­
itive. This is due to the following reason. For a
constant cross-sectional area of the conductor, the

Fig. t09. To the calculation of current density along the conductor must be con­
the potential difference between stant. If the conductivity decreases in the direc­
two points of a current-carrying tion of the current, we must increase the field
conductor

strength to keep the current constant. It is this in-
crease in the field strength that is responsible for the positive volume charges.
The emergence of negative volume charges when the conductivity increases in
the direction of the current flow can be explained in the same way.
Mechanism of generating direct currents. The current source is called the source
of extraneous electromotive forces (extraneous e.m.I.s: see Sec. 26). According
to the results of its action, such a source is a process or a device separating
positive charges from negative ones. After being separated, these charges move
towards the electrodes and act, in accordan: e with Coulomb's law, on the charges
of the conductor in the vicinity of the electrodes. In turn, these charges act on
other charges, and so on. As a result of these collective interactions, charges are
distributed on the conductor surfaces in the circuit so that the corresponding"
electric field appears in the conductor. Thus, the charges at the terminals of the
source of extraneous e.m.],s do not directly create an appropriate electric field in
all conductors, but ensure a surface .charge distribution on the conductors such that
it generates the required electric field inside them. This is what creates a direct
current. Since the interaction between charges takes place through electro­
magnetic forces, the flow of a direct current after the circuit is closed is charac­
terized by the velocity of propagation of electromagnetic waves, which in turn
depends on the distribution of capacitances, inductances, and other characteris­
tics of the circuit. In the free space, the velocity of propagation of electro­
magnetic waves is equal to the velocity of light.
Change in potential along a current-carrying conductor. Since E =F 0 in a con­
ductor carrying direct current, the potential varies along the conductor. In
other words, unlike in electrostatics, the potential is not constant at all points
of the conductor, However, the field inside the conductor is created by immobile
surface charges which dO not vary with time. Consequently, as in electro­
statics, this field is a potential field, and the potential difference between two
points on the conductor (Fig. 109) is given, in accordance with formula (14.28), by

. (2)

q>(2)-q>(1)=- )E.dl, (25.7)
(1)
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where the integral is calculated along any path joining points 1 and 2. For the
sake of convenience in calculations, it is expedient to choose for this path one
of the current lines joining a certain point in the cross section 1 to the corre­
sponding point in the cross section 2. Along such a line, E and dl are collinear
and hence E· dl = Edl, the positive sign indicating that the current flows in
the direction from a higher to a lower potential. Besides, if the cross-sectional
area of the conductor is constant, E = const along the conductor. Consequently
[see (25.7)],

q> (1) - q> (2) = El. (25.8)

where l is the length of the conductor between the cross sections 1 and 2. The
potential difference between the cross sections is called voltage and is denoted
by U12 = cP (1) - q> (2). From the differential form of Ohm's law (j = yE),
we get

E = j/'\( = jSI('\(S) = 1/('\(8), (25.9)

where 1 is the current Taking this relation into account, we can write (25.8)
as follows:

U1 2 = Il/(yS) = IR 12 , (25.10)

where R11 = ll(yS) is the ohmic resistance of the part of the conductor between
1 and 2. This formula represents Ohm's law for a subcircuit,

Sec. 26. Extraneous Electromotive Forces

The role of extraneous e.m.j.s in current-carrying
circuits is discussed and specific sources of extraneous
e.m.j.s are described.

The origin of extraneous e.m.I.s, An extraneous e.m.I. cannot be of electrostatic
origin for the simple reason that electrostatic field is a potential field. Con­
sequently, the work done by the field in a closed current-carrying loop is equal
to zero. Under such a condition, there can be no current, since it must perform
work in order to overcome the ohmic resistance of the conductors. The existence
of a direct current proves that extraneous electromotive forces are of a nonelectro­
static origin.

In particular, an extraneous e.m.I. can be mechanical or electrical, but not
electrostatic. An example of such an e.m.I. is the force acting on a charge in an
electric field resulting from Faraday's law of electromagnetic induction (see
Chap. 8). JI
Mechanical extraneous e.m.I, Figure 110 shows the circuit for the simplest
current source in which the extraneous e.m.I. is of mechanical origin. The space
between electrodes A and B' is filled with a neutral medium having the same
number of positive and negative charges. A nonelectrostatic extraneous force
ta*
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draws positive charges to electrode B and negative charges to electrode A. As a
result, electrode A acquires a negative charge, while electrode B becomes posi­
tively charged. In the outer circuit, a current flows from B to A and performs
a certain amount of work. The energy required for this purpose is provided by
extraneous forces which perform work to distribute the charges between elec­
trodes A and B and to bring these charges to the respective electrodes against
the forces of the electric field of strength E existing between the electrodes. The
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Fig. 110. Schematic diagram of
extraneous e.m.f.s of mechani­
cal origin
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Fig. 111. Schematic diagram of
the Wimshurst machine

current between electrodes A and B inside the e.m.I. source closes the external
circuit. If the direction of current is determined relative to the electrodes, the current
in the external circuit flows from a positive to a negative electrode, while inside the
source, the current flows from a negative to a positive electrode.

A mechanical extraneous e.m.f. can be created with the help of the Wimshurst
machine shown in Fig. 111. Charges Q+ and Q- generate an electrostatic field
in the space between them. Mutually insulated conducting plates C and D
move in a circle around an axis perpendicular to the plane of the figure
under the action o-f extraneous mechanical forces. In the position 1, the plates
are connected through a fixed conductor (solid line with arrows at the ends). As
a result of electrostatic induction, the plates C and D acquire negative and po­
sitive charges respectively in this position. Upon further rotation, their contact
with the conductor is broken and they become isolated from each other in the
position 2, carrying at the same time unlike charges. In the position 3, these
strips come in contact with the electrodes A and B, and impart their charge to
these electrodes. An electric current flows in the circuit BGA between the elect­
rodes. If we have one pair of rotating conductors CD, the current in the circuit
flows in pulses at ,the rate of two pulses per revolution. If, however, we take
quite a large number of pairs of plates 'like C and D, so that they come in contact
with the electrodes A and B successively at negligibly small time intervals, a
nearly direct current will flow in the external circuit. Such a machine produces
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an extraneous e.m.I. of mechanical origm, generated by mechanical forces
that ensure the motion of the plates C and D in the circle.

The chain of mutual conversions of energy in this case looks like this. The
extraneous mechanical forces which move the plates C and D perform work
against the forces of an electrostatic field existing between the charges Q+ and
Q- and transfer the charge from the plates to the electrodes A and B. This
results in a change in the energy of the electric field, i.e. in conversion of me­
chanical energy to the electrical field energy. As the current flows in the circuit

Cu + + 1.1Y Zn
+ +
+ +
+ +
+ +

Fig. 112. Emergence of a poten­
tial difference between a solid
and a liquid

Fig. 1i3. Voltaic cell

EGA, this energy is converted into Joule's heat and other forms of energy on
account of the work performed by the current in the external circuit.
Galvanic cells. Galvanic cells and accumulators are the most widely used
sources of direct current. Electric current was discovered in 1791 by L. Galvani
(1737-1798). However, Galvani could not provide a correct explanation for his
experimental results. This was done by A. Volta (1745-1827) in 1792. The direct
current cells which we shall be describing here were named after Galvani.

A potential difference (see Sec. 2) is created not only when two solids are
brought into contact, but also when solids come in contact with liquids. This
may he accompanied by chemical reactions. For example, if a zinc plate Zn
(Fig. 112) is immersed in a solution of H 2SO., it is dissolved in the acid solution.
However, not neutral zinc atoms but positive Zn ++ ions pass into the solution.
As a result, the solution becomes positively charged while the plate acquires
a negative charge. A potential difference is thus created between the plate and
the solution. At a certain potential of the metal with respect to the solution
(called the electrochemical potential), zinc ions no longer pass into solution.
This potential depends on the properties of the metal, liquid, and on the' con­
centration of ions in the solution. Upon coming in contact with water, a metal
acquires a larger negative charge than in contact with a salt solution con­
taining ions of this metal. For a large concentration of ions in the solution, the
reverse process may take place, when positive ions start depositing on the plate
which thus gets positively charged. Thus, for different combinations of metals,
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solutions and different concentrations of ions in solutions, different electrochemical
potentials can appear.

Since the electrochemical potential depends on the concentration of metal
ions, it is customary to take a solution whose one litre contains a mole of metal
ions divided by the valency of the ions. The electrochemical potential of a
metal relative to such a solution is called absolute (normal) electrochemical
potential. For example, the absolute electrochemical potential for Zn in a
sulphuric acid solution is equal to -0.5 V, while for Cu this value is equal to
+0.6 V.

If two different metals are immersed in a solution, a potential difference
equal to the difference in their electrochemical potentials is created between

Fig. 114. Change in potential in a circuit containing 3 voltaic cell

them. The set of two metals in a solution is called a galvanic cell, and the potential
difference between the metals is called the electromotive force of the cell.
Voltaic cell. A voltaic cell consists of a zinc plate and a copper plate immersed
in a solution of sulphuric acid (Fig. 113). Taking into consideration the electro­
chemical potentials of zinc and copper, we conclude that the e.m.I. of a voltaic
cell is equal to [0.6-(-0.5)] V = 1.1 V.
Range of action of extraneous e.m.f.s, It should not be thought that extraneous
e.m.I.s are generated in the space between the zinc and copper plates. In this
case, we have two extraneous e.m.j.s concentrated in the surface layers of contact
between the zinc' and copper plates and the solution. The thickness of these layers
is of molecular size. There are no extraneous e.m.].s in the remaining volume
0/ the solution. If the two plates are connected by a metallic conductor, a current
wi ll flow through the latter from the copper plate, which is a positive electrode,
to the zinc plate which serves as a negative electrode. Inside the solution, the
current flows from the zinc plate to the copper plate. Thus, the lines of direct
current are closed, as expected.

Let us consider the variation of potential in a current-carrying circuit. The
potential drops across the ohmic resistance of the conductor in the direction of
the current. Figure 114 shows the change in potential over a closed circuit con­
taining a voltaic cell as the source of extraneous e.m. f. The points A and B
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f'espectively correspond to the surface layers of the copper and zinc plates in
contact with the solution over which extraneous electromotive forces act.The
difference between these forces constituteS the extraneous e.m.I. of the cell and
is equal to the total potential drop acrose the ohmic resistance of the external
circuit in the section AGB and across tpe ohmic resistance of the electrolyte
in the section BDA. The ohmic resistance of the electrolyte is called the internal
resistance of the cell. We denote by ~ext' Rand r the extraneous e.m.I. of the
cell, the resistance of the external circuit and the internal resistance of the cell
respectively. For the entire circuit, Ohm's law can be written in the form

~ ext = I {R + r), (26.1)

The extraneous e.m.I, of a cell is determined by the properties of the cell
and is independent of the current passiOg through the circuit. It can be seen
from formula (26.1) that the voltage droP in the external circuit (U = IR) is
not equal to the electromotive force of the cell.and is always less. This is the
voltage between the terminals of the wot'king cell when a current flows in the
circuit. As the current increases, the voltage in the external circuit decreases,
the decrease being the more significant, tlle higher the internal resistance of the
cell, While using a cell it is always desirable that the voltage in the external
'Circuit should depend on current, i.e. 00 the load as little as possible. Hence
the internal resistance is an important vharacteristic of a cell. The lower the
internal resistance, the better the quality of the source of extraneous e.m.L,
other conditions being equal.
Law of conservation of energy. Let us anfJ.lyze the law of conservation of energy
in the circuit with current shown in Fig. 114. We denote by Al the work done
by the electric field as a charge q movee in the closed circuit, and by A 2 the
work done 'by the extraneous e.m.Ls, Tlle electric field performs work in the
sections where the potential drops from CPI to ((>2 (external circuit) and from CPa
to ((>4 (due to the ohmic resistance offered by the solution to current in the cell).
This work is

(26.2)

The work done by extraneous e.m.f.s in layers of molecular thickness leads
to an increase in potential from q>4. to q>l (on the copper plate) and from ((>2
to q>3 (on the zinc plate). Hence the work done by the extraneous e.m.Ls is
given by

(26.3)

where the second equality is ohtained as a result of regrouping the terms. It
can be seen from a comparison of (26.2) and (26.3) that

Al = A 2 , (26.4)

i.e, the work done in the circuit as the cur.,-ent flows in it is equal to the work done
by the extraneous e.m.j,s.
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Let us derive once again Ohm's law for the entire circuit by using Ohm's
law (25.10) for a part of the circuit:

CPl - CP2 = IR, CP3 - «p, = Ir, (26.5)
whence

IR + Ir = (CPl - <1'2) + (<<P3 - q>,) = (cpt - cp,) + (CPa - q>,) = ~ext· (26.6)

Polarization of a cell. As ~ current flows through a circuit containing a voltaic
cell, Zn ++ ions pass into solution where they combine with negative SO,- ions,
liberated along with H~+ ions as a result of dissociation of sulphuric acid. The
reaction Zn"" + SO;- = ZnSO, takes place in the solution and the reaction
products precipitate from the solution. The positive hydrogen ions rush towards
the copper plate where they are neutralized by the electrons of the conduction

Fig. ttS. Daniell cell

current in the plate. Thus a hydrogen film is formed on the copper plate. On the
one hand, this film increases the internal resistance of the cell, while on the
other hand, it creates an additional electrochemical potential directed[against
the potential which existed there before the formation of the hydrogen film.
As a result of these processes, the e.m.f. of the cell drops. Such processes are
called polarization of the cell.
Methods of depolarization. Various methods of depolarization are used to avoid
a drop in the e.m.I.

1. Two liquids are selected in such a way that no new materials are deposited
at the electrodes. A suitable liquid is chosen for each electrode. The liquids are
separated by a porous partition which, on the one hand, prevents them from
mixing and, on the other hand, does not obstruct the ion exchange. For example,
the two liquids chosen for a Daniell cell are CuS04 and ZnS04 solutions (Fig. 115).
The copper plate is immersed into the CuS04 solution while the zinc plate is
immersed into the ZnS04 solution. Zinc passes into the H 2S04 solution in the form
of Zn ++ ions. Electrons from the copper plate pass into the copper sulphate solu­
tion and neutralize Cu ++ ions, as a result of which copper is deposited from the
solution on the copper plate. The SO~- ions remaining in the solution pass
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through the partition to the other part of the cell where they combine with Zn" "
to form an excess of ZnSO" which precipitates at the bottom. Thus, no polariza­
tion takes place during the operation of the cell, but the copper sulphate solu-­
tion is slowly depleted and must be replenished from time to time.

2. Strong oxidizing agents, which combine hydrogen and oxygen to form
water, are also used.
Accumulator. This is a galvanic cell in which the substances consumed during
its operation as a current source are accumulated when a direct current is
passed through it. Such a procedure is called the charging of the aceumu-­
lator.

The most widely used accumulator is a lead-acid cell consisting of two lead:
plates immersed in sulphuric acid solution. In this case, PbSO. is formed at.
the electrodes and saturates the entire solution. The passage of current through­
the accumulator during charging is accompanied by the oxidation of the lead
of the electrode connected with the positive terminal of the battery charger to­
Pb02 and the reduction of the other electrode to pure lead. Thus, a charged:
accumulator has one plate with Pb0 2 and the other plate made of pure lead;
the electrolyte being the solution of H 2SO, saturated with PbSO,. During­
operation of the accumulator, the plate with Pb0 2 serves as the positive elec­
trode and is gradually reduced, yielding PbSO,. The negative plate, made of
pure lead, is gradually covered by a layer of lead sulphate. As a result, the­
accumulator is discharged. The e.m.I. of a fully charged lead accumulator is­
about 2.7 V. However, it drops to about 2.2 V after a brief period of discharging,
and remains at this level for quite a long time, dropping very slowly during the"
operation. The lowest permissible e.m.I. required for complete restoring of the
properties of the accumulator as a result of charging is 1.85 V. TIle accumulator
gets spoiled when discharged to lower values of e.m.f.

An important characteristic of an accumulator is its capacity, defined as the-­
total charge released by the accumulator during discharging and measured illt
ampere-hours.

A nonelectrostatlc force capable of separating charges Is called an extraneous e.m.f.
The work performed in a circuit during the passage of an electric current Is equal to the
work of extraneous electromotive forces. Generally speaking, the distribution of direct
current over the cross section of a condudor Is not uniform.
The surface of a current-carrying conduCtor contains charges which are the sources of an
eledric field. The field exists In the condudor and ensures the passage of a dlred current.

Surface charges on different parts of a condudor may have different signs.
The role of the charges at the terminals of an extraneous e.m.f. source Is not to dlredly
create a corresponding field In all the condudors, but to ensure a distribution of surface
charges on the condudors which generates the required field In them. Volume charges are­
Induced only In nonuniform conducton.
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Sec. 27. Differential Form of Joule's Law. Work Done during
the Passage of Currentand Power Developed

The formulas for the work done during passage of cur­
rent and for the developed power are introduced. The
differential form of Joule's law is given. The classical
electron pattern of electric conductivity is described
and its disadvantages are discussed. General features
of quantum-mechanical treatment of electrical con­
ductivity are considered.

Work performed during passage of current. Power. The amount of work per­
formed in transferring a charge dQ between two points with a potential difference
U is

dA = UdQ • (27.1)
.....

Suppose that a current I flows through a conductor. Let us consider a part of
this conductor, the potential difference between whose ends is equal to U. During
the time dt, a charge dQ = I dt is transported over this part of the conductor.
Consequently, the work done in this case is

dA =IUdt. (27.2)

Hence, the power developed by the current in this part is defined by the for­
mula

I P=dA/dt=IU·1 (27.3)

The form of energy liberated in this case depends on the nature of physical
factors responsible for the potential drop. The potential drop across the ohmic
resistance of wires is accompanied by liberation of heat, the potential drop
across the terminals of a d.c. motor is due to the mechanical work performed in
this case, and so on. Forumla (27.3) gives the total power developed by the cur­
rent in the part of the circuit with the potential drop U. If the entire potential
drop takes place on the ohmic resistance of the conductor, then, according to
Ohm's law, U = IR, where R is the resistance of the subcircuit. In this case,
the entire energy is liberated in the form of heat with the power

(27.4)

Formula (27.4) expresses Jonly's law, discovered by J. P. Joule (1818-1889)
in 1841 and subsequently investigated in detail by F. A. Lenz.
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(27.6)

that ~S~l = ~V
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Fig. f16. To the derivation of
Joule's law in differential form

Differential form of Joule's law. Applying law
.(27.4) to a very small cylinder (Fig. 116) whose
axis coincides with the direction of the current,
we obtain

~p - (J·dS)2'-!.~ (27.5)
- V AS '

'where T = j~S, j being the current density. The
resistance of this cylinder ~R = ~l/(VdS). Considering
is the volume of the cylinder, we obtain from (27.5)

p v = ~P/(~l ~S) = j2/V,

-where P v is the volume density of the thermal power liberated in the conductor,
i.e. the heat liberated in 1 mS of the conductor in 1 s. Formula (27.6) is the dif­

ferential form of Joule's law, since all quantities refer to the same point.
With the help of the differential form of Ohm's law, we can transform (27.6)

.as follows:

IPv = j2/V= VE2= j .E· 1 (27.7)

Any of these equalities with P v on the left-hand side is the differential form
-of Joule's law. Although formula (27.6) has been derived for a very small cy­
lindrical segment of a conductor, its validity is not related to the shape of the
very small volume since the quantities appearing in it depend only on their
values at the point and not on any other factors.

"The source of energy for the work done by current. The potential drop in the
circut with current is compensated by the corresponding increase in the poten­
tial as a result of the action of extraneous electromotive forces on the charges
(see Sec. 26). The current passing in the circuit performs work, and energy is
liberated, for example, in the form of heat. Extraneous electromotive forces per­
form work over the charges, imparting a certain energy to them. Hence it fol-
lows that the entire work of current is performed at the expense of the energy of ex­
.traneous electromotive forces .
.Derivation of Ohm's law from the electron pattern of electrical conductivity.
In the framework of classical concepts, the mechanism of passage of current
through a conductor and its heating are described as follows.

A free electron is accelerated by the field in a conductor. For a moving elec­
tron, Newton's law has the form

ma = eE, (27.8)

where m, a and e are the mass, acceleration and charge of the electron respec­
tively. The actual motion of the electron is quite complicated since electrons are
in a random thermal motion. Under the action of an external field, all electrons
-acquire the same acceleration and an additional velocity in the same direction.
'This results in an ordered motion of electrons, i.e. an electric current. We are
interested only in this ordered motion of electrons which is superimposed on the
random thermal motion. Moving electrons interact with one another and with
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the atoms of the crystal lattice of the conductor. During their interaction with
the atoms of the crystal Iattice, electrons exchange with them a small part of'
their energy. On the average, this energy is acquired by the electrons from the·
electric field, since, in the absence of an electric field; free electrons and atoms:
are in thermal equilibrium. This complex pattern of electrons acquiring energy
from an electric field and subsequently transferring it to atoms upon interaction
can be represented in the following form. Suppose that an electron is accelera­
ted during time 't in accordance with Eq. (27.8), collides with an atom and im­
parts to it all the kinetic energy acquired during the motion. After this the elee-­
tron is again accelerated during time 'I, again collides with an atom, and so on.
In other words, 't is the relaxation time of the nonequilibriurn distribution of"
electrons to thermal equilibrium with the crystal lattice. It is assumed in the­
model that the mean kinetic energy of electrons increases during this time UD-·

der the action of an external electric field to values higher than thir mean ther­
mal energy. The excess energy is imparted to the crystal lattice, and thormal
equilibrium is restored once again. In actual practice, however, this process­
takes place continuously, and its gradation is introduced in order to simplify
mathematical calculations. The relaxation time 'I characterizes the velocity at'
which the aggregate of electrons and the crystal lattice of the conductor return,
to thermal equilibrium if the electron equilibrium is somehow disturbed (not
just by the external electric field).

In this model, the result of numerous acts of energy transfer from an electron
to atoms is replaced by a single act, and hence 't has the sense of the mean inter­
val of time between collisions. If l is the mean free path between collisions and'
v is the mean velocity of the electron due to its thermal motion, then, by defini-,
tion,

't = llv, (27.9)·

The path traversed by an electron from its state of rest as a result of accelera-·
tion by an electric field is equal to

a't2 t,E
s=2=2 m; '(2. (27.10)~

This is the path traversed on the average by an electron between f,ollisions·
during time 't in the direction of 'the electric field. This ordered motion of elec­
trons causes a drift with the velocity

Vd = sh: = eElI(2mev). (27.11)

The drift velocity is inversely proportional to the collision frequency vII'
and therefore decreases with increasing temperature.

If n is the electron concetration, we get

i = envd = e2ln/E (2mev). (27.12)!

A comparison of this formula with Ohm's law j = ,E leads to the following
expression for the electrical conductivity:

1 e2ln

Y==T rne
V

• (27.13)
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Thus, we have obtained the correct dependence of current density on electric
-field strength and the expression for the electrical conductivity in terms of the
-parameters of motion of free electrons.
.Derivation of Joule's law from the electron theory of electrical conductivity.
'The velocity lost by an electron as a result of a collision is

eE I L
Vi = a-r =-- . (27.1~)

me v

'Therefore, the kinetic energy acquired by the electron between collisions and
"t,ransferred to the conductor atoms upon collision is

mev1 1 eSE'l'
Wk = - 2 - = -2 --I • (27.15)

meV

The frequency of collisions of each electron with atoms is equal to vll, and
}hence the collision frequency of n electrons is equal to noll, Consequently, the
"volume density of thermal power is given by the expression

nv t e1nl
Pv = W k -,=-2 - E2=yE2, (27.t6)

mel'

-where we took into account Eqs, (27.13) and (27.15). Thus, we have obtained
1lhe correct expression for the differential form of Joule's law by proceeding
.from the electron theory of electrical conductivity.
Drawbacks of the classical theory of electrical conductivity. The classical theory
-of electrical conductivity is quite visual and gives a correct dependence of cur-
-rent density and the amount of liberated heat on the field strength. However,
:thi, theory does not lead to correct quantitative results. The main discrepancies
between the theory and experiment consist in the following:

(1) In order to obtain the correct value of y from formula (27.13), we must as­
.sume a very large value of l (exceeding the interatomic distance in the conductor
by thousands of times). Classical theory fails to explain the existence of such
large mean free paths.

(2) Experimental investigation of the temperature dependence of electrical
-conductivity y leads to the law y ex: 11T. This cannot be explained by formula
{27.13) since the kinetic theory of gases gives v ex VT. The dependence 1 ex
°t!V'i' cannot be accepted in the classical model of interaction.

(3) According to the law of equipartition of energy among the degree of free­
-dom, a very large contribution to the specific heat of conductors sho.rld be ex-
-pected from free electrons. This, however, is not observed in experiments.
:Main features of quantum-mechanical interpretation of electrical conductivity.
"The above drawbacks of the classical concepts could be eliminated only in
quantum theory. Quantum theory takes into account wave properties of microparti­
-cles. The diffraction of waves at obstacles is the most important characteristic
-of wave motion. Consequently, moving electrons as if undergo diffraction at
atoms without collisions, and their mean free paths may become quite long.
Since electrons obey the Fermi-Dirac statistics, only an insignificant part of
eleetrons near the Fermi level can participate in the formation of the electronic.



206 Chi 41 Direct Curren"

specific heat. Therefore, the electronic specific heat of conductors is insignificant.
The solution of the quantum-mechanical problem on the motion of an electron
in a metallic conductor leads to the dependence 'V ex: 11T, which is observed in
actual practice. Thus, a consistent quantitative theory of electrical conductivity
was constructed only in the framework of quantum mechanics.

The work done during the passage of current is not the result of a conversion of the
kinetic energy of electrons Into other forms of energy. The energy spent In accomplishing
the work is carried by the eledromagnetic field and not by electrons. Only In a particular
case involving the liberation of Joule's heat is the kinetic energy of eledrons the inter­
mediate form of energy through which the energy of the electromagnetic field is converted
into heat. In other cases, the kinetic energy of electrons does not play any role.

What is the meaning of the mean free time between collisions in the classical theory of
electrical conductivityl
What are the principal difficulties of the classical theory of electrical conductivity?
How are they eliminated in general1

Sec. 28. Linear Circuits. Kirchhoff's Laws

The laws for calculating linear circuits are formulated ..

An isolated closed loop. We have already considered this case in Sec. 26 and
obtained the result in the form (26.1): if an isolated closed loop contains a source
of extraneous e.m.j,s, the current in the loop must be such that the total voltage drop'
across the external and the internal resistance of this source is equal to the extrane­
ous e.m.i, If there are several sources of extraneous e.rn.f.s., we must take their'
algebraic sum, having chosen a certain direction for the positive e.m.f.

In order to avoid confusion in signs, the following approach is usually adop­
ted. Either clockwise or counterclockwise direction of circumvention of the cir­
cuit is taken as positive. In Fig. 117, the clockwise direction of circumvention'
is considered positive. The electromotive forces of the sources are denoted by
~1' ~ 2' ~3' The direction in which the current flows is unknown beforehand.
Hence, any direction can be chosen for the current. In Fig. 117, for example, it
coincides with the positive direction.

Now we must adopt a sign convention. The e.rn.f. is considered to be positive­
if on moving along the loop in the positive direction, we first arrive at the nega-

81. tive terminal. If, however, the positive terminal
g\~ is encountered first, the corresponding e.m.f. will

be negative. The current is assumed to be positive

r
11 if its direction coincides with the direction of cir-

cumvention. In the opposite case the current is
negative. The electromotive force and current are
therefore algebraic quantities that can assume ei-

Fig. 117. Isolated closed loop ther positive or negative values. We can now easily
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generalize Eq. (26.1) to an arbitrary number of extraneous e.m.f. sources in an
isolated closed loop: the product of the magnitude of current and the sum of exter­
nal and internal resistances of all parts of a closed loop is equal to the sum of the
magnitudes of eatraneous e.m.j.s in this loop:

(28.1)I±I~ R1t=~±~" I
where the ± symbol in front of I and ~i indicates that the sign must be cho­
sen in accordance with the above rules. For example, for the case depicted in
Fig. 117, Eq. (28.1) has the form

I (R + r t + T 2 + Ts) = ~1 - ~2 + ~3' (28.2)

B
I, ef1

A--+-

where T1, T 2 , r s are the internal resistances of the sources of extraneous e.m.I. s
and R is the total resistance of all the parts of the circuit containing no e.m.f..
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Fig. 119. To the determination
of closed loops and junctions
in a network

Fig. 118. Electric network

sources. If the arrow showing the direction of current were oriented oppositely
for the same direction of circumvention which was taken earlier as positive,
we would obtain the following equation instead of (28.2):

-I (R + T1 + T2 + T3) == ~t _. ~2 -to ~3. (28.3)

This equation must be solved for I. If the obtained value of I is positive, the
current flows in the direction indicated by the arrow. Otherwise, it. will flow in
the opposite direction.
Branched circuits. The electric circuits encountered in most cases of practical
importance are much more complicated as shown in Fig. 118. However, any
complex circuit contains the elements of two simplest types:

(1) junctions where more than two conductors meet (Fig. 119, points C and
D);

(2) closed loops (Fig. 119, loops ABDCA, CDFEC, ABFEA).
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Kirchhotl's laws. Kirchhoff's laws can be used to write a system of equations
from which we can obtain currents for any complex branched circuit. They express
the law of charge conservation at each junction and Ohm's law (28.1) for each closed
loop. The sign convention adopted for currents and e.m.I.s for each closed loop
is the same as for an isolated loop [see (28.1)]. The direction of positive circum­
vention for all loops must be the same. The law of charge conservation at a junc­
tion requires that the sum of currents entering the junction must be equal to
the sum of currents leaving it. In other words, the algebraic sum of currents at
.a junction must be equal to zero. While composing the sum, the currents shown
by arrows pointing away from the junction are assumed, say, to be negative,
while the currents shown by arrows pointing towards the junction are taken as
'positive. Of course, we can choose the opposite signs, but this will "not alter
the corresponding equations. The main thing is that the same sign rule should
be applied to all the junctions.

Thus, Kirchhoff's laws state that
,(1) the sum of algebraic values of currents at each junction is equal to zero:

(28.4)

(2) the sum of products of algebraic values of currents and the resistances of the
corresponding parts of each closed loop is equal to the sum of the algebraic values
()f extraneous e.m.j.s in each closed loop:

(28.5)

It can be shown that the system of equations thus obtained for any branched
circuit is complete and can be used to determine all currents.

These laws were derived by G. R. Kirchhoff (1824-1887) who obtained the
general solution of the problem on branched d.c, circuits in 1847, although the
laws themselves were formulated in 1845.

Let us apply Kirchhoff's laws to the circuit depicted in Fig. 119.
1. In accordance with Kirchhoff's first law, we have

(a) -It-12-18=0

(b) II + I 2 + I 3 = 0
(junction C);
(junction D).

2. In accordance with Kirchhoff's second law, we obtain

(a) Itrt + fiR l - 12R 2 - 12r2 = el + ~2 (loop ABDCA J •

(b) 12R 2 + [2r2 - laR3 - I sr8 = - ~2 - ~3 (loop CDFEC).
(c) Itrt + IlRt - I aR3 - 13r3 = ~t - ~3 (loop ABFEA).
Here, r1 , r 2 , r 3 are the internal resistances of the extraneous e.m.I, sources.

The equations for junctions are identical, while only two of the three equations
for loops are independent. For example, the sum of the 'first two equationsyields
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the third equation. Thus, we have got a system of three equations in three un­
known currents II' 12 and 13 • The values of the currents and their actual direc­
tions can be found by solving this system of equations. However, even without
solving it, we can conclude that we were obviously wrong in choosing the direc­
tions of currents in Fig. 119, since the law of charge conservation at the junc­
tions cannot be satisfied for the chosen directions of current: a negative charge
must be accumulated at the junction C~ and a positive charge at the junction
D. This. however, should not worry us, since the solution will automatically
indicate the direction of current.

Thus, the above example shows that if Kirchhoff's laws are written for all
junctions and all loops, we get a larger number of equations than required since
not all the equations are independent. In order to avoid additional work, it
is desirable not to write superfluous equations. For this purpose, the following
rule is adopted. While writing an equation for a closed loop', we must ensure
that it contains at least one quantity that did not appear in the previous equa­
tions. If all the quantities appearing in this equation have been encountered be­
fore, the equation is superfluous. The same rule is observed while writing equa­
tions for junctions. For example, in the above equations expressing Kirchhoff's
second law, there is no need to write Eq. (b) since all the quantities appearing in
it were already encountered in Eq. (a). Similarly, in the equations corresponding
to Kirchhoff's first law, Eq. (c) is superfluous since it contains nothing new in
comparison with Eqs. (a) and (b). Further control of the correctness of the ob­
tained system of equations can be made by verifying its completeness: the
number of equations must be equal to the number of unknowns.

What is the convention of signs in Kirchhoff's lawsl
Which considerations must be followed in order to avoid writing superfluous Kirchhoff's
equationsl

Sec. 29. Currents in a Continuous Medium

The method of calculating currents in continuous me­
dia is described.

Formulation of the problem. Electric current can flow not only through con­
ductors. For example, soil (especially damp) also conducts electric current.
What is the resistance of the soil if the ends of two conductors connected to the
terminals of a source of e.m.I. are thrust into the soil a certain distance apart?
Or, what will be the resistance of a massive .metallic plate to which two conduc­
tors from the terminals of an e.m.f. source are connected? By the ...·esistance of
a massive plate or a medium to the electric current we mean the ratio of the po­
tential difference between the current-carrying conductors to the current. Al­
though the electrical conductivity of the medium is known, it is not an easy

t4-0290
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task to .calculate the resistance. However, the resistance can be easily measured
with the help of standard methods by determining the potential difference and
current.
Derivation of the formula. Let us consider a homogeneous continuous medium
into which electrodes are immersed. A current flows between the electrodes and
the current density lines coincide with the electric field lines in the medium,
since

j = '\'E. (29.1)

The current across a closed surface S surrounding one of the electrodes is

I = ~ j·dS= i' ~ E·dS.
s s

(29.2)

Let us now imagine that the conducting medium is removed and the electrodes
behave like the plates of a capacitor. By definition of capacitance C of a ca­
pacitor, we have

Q = CU, (29.3)

(29.4)

where Q is the charge of an electrode and U is the potential difference between
the electrodes. In accordance with the Gauss theorem, we obtain

~ E·dS= Q/eot

s

where E is the field of the capacitor and S is the same surface as in (29.2). How­
ever, in view of the uniqueness of the solution of problems in electrostatics, the
potential difference between given electrodes uniquely determines the field ..
Consequently, the field in a current-carrying conducting medium [see (29.2)1
coincides with the field created in vacuum between the same electrodes for the
same potential difference [see (29.4)1. Hence, taking into account Eq. (29.3)"
we obtain from (29.2) and (29.~):

I = yQ/~o = -ctu«; (29.5)

Thus the resistance offered by a homogeneous medium to the current is given
by the formula .

(29.6)

It should be noted that all the above discussion is not applicable to nonhomoge­
neous media, since the passage of current through them is accompanied by the­
creation of volume charges which are the sources of electric field. In this case,.
the electric field generated in a medium during the passage of current is not
the same as the field in vacuum, although the same potential difference is
maintained between the' electrodes.
Conditions of applicability of Eq. (29.6). Formula (29.6) can be used to deter­
mine the resistance of a medium to the current if we know the capacitance of the
capacitor formed by the electrodes. The accuracy of the results. depends on the
extent. to which the potential of an electrode. fluctuates during the passage or
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current through it. If the last requirement is not
fully satisfied and different points on the conduc­
tor have considerably different potentials during
the passage of current, the calculation of the
resistance does not boil down to the calculation of
the capacitance of the capacitor, since the poten­
tial at all points on the plate of the capacitor is
the same, Hence, in particular, it is necessary that
the resistivity of the electrodes be small in com­
parison with the resistivity of the medium. This
condition is not applicable if the electrodes have
small surface areas.
Coaxial electrodes. By way of an example, let us
consider two coaxial electrodes. It is required to Fig. 120. To the calculation of
calculate the resistance of the conducting medium the resistance of the medium
between these electrodes (Fig. 120). In order to between coaxial electrodes
apply formula (29.6), we must assume that the
conductivity of the material of the core and shell is much larger than the con­
ductivity of the medium. The current in the medium flows over the entire volume
along the radii between the core and the shell. Since the capacitance of a cy­
lindrical capacitor is

C = 2nleo/ln (T 2IT1) ,

the resistance of the medium is

R = In (T2ITl)/(2nlv). (29.7)

Nonhomogeneous medium. The problem becomes quite complicated if the
conductivity is not constant, since in this case volume charges appear and it is
necessary to take into account the electric field generated by them.

As an example, let us consider the electric currents in the atmosphere. It is
shown experimentally that an electric field E: ~ - 100 VIm exists near the
Earth's surface and is directed towards its centre. The Earth is quite a good con­
ductor and hence it can be assumed that it has a surface charge

0'0 = eoE~O) = - 8.85 .10-10 e/m2• (29.8)

It is borne out by measurements that the conductivity of the Earth's atmo­
sphere increases with height. The main reason behind this is the ionization
caused by cosmic radiation. Solar radiation is mainly responsible for the ioni­
zation at large heights. At a height of about 50 km,. the atmosphere can be prac­
tically assumed to be an ideal conductor. Measurements show that the depen­
dence of the conductivity on height can be expressed to a high degree of accu-
racy in the following form: I

(29.9)

Here r o is the Earth's radius, T is the distance between the- Earth's centre and
the point under consideration, 'Vo = 'V (To) is the electrical conductivity at the

Il·
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Earth's susface , and A is a constant. The last two quantities have the following
values:

1'0 = 3.10-14 Slm,

A = 0.5.10-20 S/m.

(29.10)

(29.11)

On the average, the Earth's field in the atmosphere is stationary and spheri­
cal ly symmetric. Hence the continuity equation for the current density as­
sumes the form

whence

div l·= _1 .!.... (r2l· ) = 0r l or r , (29.12)

(29.17)

t- (r) = ior:/r2
, (29.13)

where jo is the current density near the Earth's surface (r = r o), which is equal
to

io= 1'oE~O) = - 3 .10-t 2 AIm?. (29.14)

Since the radius of the Earth is "» ~ 6 X 106 ill, the current from the atmo­
sphere to the Earth is equal to

1= liol 4nr: ~ 1400 A.

At a distance r from the Earth's centre, the electric field is

E _ir(r) (29.15)
r - l' (r) •

Hence the potential difference U between the Earth's surface and the upper at­
mosphere whose conductivity is practically infinite is given by the formula

00 00

u = - Js, dr = - jor~ J r2~~r) • (29.16)
ro ro

Here, the domain of integration is extended to infinity, since at distances larger
than about 50 km, l' (r) practically becomes infinite and the integrand vanishes.
However, quite accurate results can also be obtained by using expression
(29.9) for 1'. In this case, the contribution to the integral from the domain of
integration for r > r o + 50 km is quite small in comparison with the contri­
bution from the domain of integration between ro:and r o + 50 km and can
therefore be neglected. Hence, instead of (29.16) we obtain

00

U · 2 r dr
= - loro J r 2 [yo+A (r-ro)2) •

ro
This integral can be easily evaluated in terms of elementary functions. How­

ever, the results of calculations are quite cumbersome and we shall omit them
here. To within quantities of the order of f1'o (r~A)] ~ 1, this result can be ex-
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pressed quite accurately in the form

U=--i.L[1+ln--.YL+ nro .. /" A J.
Aro ArH 2 V '\'0

213

(29.18)

Substituting into this equation the values of j 0' '\'0 and A from (29.14), (29.10)
and (29.11), we obtain U ~ 400 kV.

Owing to a direct current of about 1400 A passing through the atmosphere,
this potential difference must decrease and the charge on the surface of the Earth
must be neutralized. The relaxation time for this process is of the order of
't = Eo/Yo ~ 300 s. However, both the current and the potential difference are
constant on the average. Thus, there are some reasons behind this constancy.
Basically, transient atmospheric processes like storms and thunder are respon­
sible for this.

The most important property of earthed transmission lines is that the resistance is in­
dependent of the distance between the electrodes. The main contribution to the resistance
is made by the regions of the medium in the immediate vicinity of the electrodes.
The formula expressing the resistance of the medium in terms of the capacitance of a
capacitor with the eledrodes as its plates is valid only provided that, in the presence of a
current, the potential at all the points on each plate is constant to a high degree of ac­
curacy, and volume charges do not appear in the medium.
For this purpose, the electrical condudivity of the electrode material should be much
higher than that of the medium and the latter should be electrically homogeneous.

Under what condition can the formulas for the resistance of the medium between two
eledrodes be applied in terms of the capacitance of the capacitor formed by the elec­
trodesl

Sec. 30. Earthing of Transmission Lines

The physical principle behind the possibility of earthing
is explained and the conditions necessary for earthing
are discussed.

Formulation of the problem. Since the electrical conductivity of the soil is
quite high, one can ask whether it is possible to use the Earth as a conductor of
electric current. Such an electric circuit is shown in Fig. 121 (A and B are elec­
trodes embedded into the Earth). Obviously, the expenditure on the wires can
be reduced by about half in this case.
Calculation of resistance. Let us find the resistance of a continuous medium,
assuming that the electrodes are spheres of radius "» each. We denote by d
the distance between the centres of the electrodes. In order to simplify calcula­
tions, we assume that the medium is infinite (Fig. 122) and the charge distribu­
tion on the electrodes is spherically symmetric.
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Fig. 121. Earthing of~a trans- Fig. 122. To the calculation of
mission line the resistance of the medium in

the case of spherical electrodes

Let x be the distance between the centre of the left electrode and a certain
point on the line connecting the centres of the electrodes (Fig. 123). The field
at this point is given by

E = E(+)+E(_) = 4~80 (;2 + (d~Z)2 ) • (30.1)

The potential difference between the electrodes is
d-ro

U = JE dx= 4';:0 [ - ~ + (d~Z) J:;ro

ro

= 4~80 (- d 1 TO + :0 + :0 - d 1 TO ) . (30.2)

-Q
d

Fig. 123. To the calculation of the resistance of the medium
in the case of spherical electrodes

In most practically important cases the distance between the electrodes is much
larger than their size, i.e. d /;> r. Therefore, we can write Eq. (30.2) in the form

U-_Q__1 (303)
- 2n80 ro· •

On the basis of what has been said in Sec. 29, we obtain

I = ~ j · dS = y ~ E· dS = yQ/eo.
s s

(30.4)
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where I is the current in the medium and S is a:
closed surface surrounding one of the electrodes.
From (30.3) and (30.4), we obtain for the resis­
tance of the medium

R = UII = (2nl'ro) -1. (30.5)

The most important property of resistance (30.5)
is its independence of the distance between the elec­
trodes. Physically, this is explained by the fact that
as the distance between the electrodes increases,
the effective area of the medium through
which the current is passing also increases accord­
ingly. An increase in the distance between the
electrodes increases the resistance while an increase
in the area decreases it. Formula (30.5) shows Fig. f24. Demonstration of the
that these two factors practically compensate independence of the resistance

of the medium from the distan-
each other and resistance is found to be inde- ce between the electrodes
pendent of the distance between the electrodes.

Consequently, the main contribution to the resistance of the medium comes from
the regions adjoining the electrodes. Hence, it is especially important to ensure
their good conductivity. For this reason, electrodes with large surface area are
used, which are buried deeply into the Earth, where the ground water ensures
a good conductivity of the soil.
Experimental verification. Two plane electrodes, connected to the terminals
of an extraneous e.m.I. source, are immersed into a weakly conducting liquid,
say, river water (Fig. 124). A certain current flows through the circuit. By chang­
ing the separation between the electrodes, we see that the readings of the am­
meter are not altered even at large distances (as compared to the size of the elec­
trodes). Consequently, under these conditions the resistance of the medium is
independent of the distance between the electrodes.
Step voltage. Since a current flows through the medium, an electric field exists
as well as a potential which varies in space.

Suppose that there is a break in a high-voltage transmission line and the free
end of a wire of length L is lying on the ground. An electric current flows through
the regions of soil adjoining the conductor. If a man happens to be walking near­
by, a potential difference called the step voltage appears between the points
where his feet touch the ground. Consequently, an electric current whose
strength depends on this potential difference flows through the man.

Let us calculate the step voltage. Since the conductor is quite long, we assume
that the current flows from it to the ground in a direction perpendicular to
the conductor. The equipotential surfaces are the surfaces of semicylinders whose
axes coincide with the conductor (Fig. 124). Suppose that the man is walking
in a direction perpendicular to the conductor with a step of length l, the distance
between the conductor and the foot closer to it being d. Assuming that the
current flows uniformly from the conductor over the semicylindrical region we
obtain the following expression for the current density at a distance r from the
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(30.6)

(30.8)

(30.7)

j = I/(nrL).

In this case, the field strength along the radii
perpendicular to the conductor is

E; = j/y = I/(nrLy).

Consequently, the step voltage is
d+lr I d+l

Ust = J Erdr= nyL In-d - ·
d

conductor:

For example, if I == 500 A, d == 1 ID, l == 65 em
Fig. 125. To the calculation of and L == 30 ID, we find that Ust == 270 v. Much
step voltage when a hemisphe- higher voltages may appear under other condi­
rical earth plate is approached tions and other shapes of conductors. Hence, when

a part of a high-voltage transmission line falls on
the ground, it creates a hazard not only because there can be a direct contact between
the cable and a human being, but also because of the emergence of step voltages.

The ~esistance does not depend on the distance between the electrodes since the effective
cross section of the area through which the current flows Is proportional to the distanct'
between the eledrodes.

Example 30.1. A hemispherical earth plate is buried into the earth in level with its surface
(Fig. 125). Find the voltage which may be applied to a woman apyroaching this earth plate
(step voltage). The current passing through the earth plate is equa to I, the length of a step
is I, and the distance between the plate and the foot closer to it is roo Solve the numerical
problem: y = 10-2 Slm, I = 1 A, ro = 2 m and l = 1 m.

The current from the earth plate is uniform in all directions and hence the current density
vector is directed along the radius vector from the earth plate and is equal to

t- = II(21tr2).

In accordance with Ohm's law, the electric field strength is equal to

E; = irlr = I/(2nr2y).

Consequently, the step voltage is

ro+l To+l

Ust= ) Erdr= 2~Y ) ~; = 2~Y ( ~ - ro~l )=2.7 V.
ro ro

Problems

4.1. A corper sphere of 10-em diameter is lowered into a water-filled hemispherical copper
vesse of 20-cm diameter so that the sphere and the vessel are concentric. The electrical
conductivity of water is equal to 'V = 10-3 81m. Find the electric resistance between the
sphere and the vessel.

4.2. A small spherical electrode of radius a is immersed in a medium of conductivity 'V at
a distance d from another electrode in the shape of a large plate having a high conduc-
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tivity. Find the resistance of the medium to the electric current passing between the
electrodes.

4.3. Find the resistance of a medium to the current flowing between two concentric electrodes
of radii Tl and T2 respectively. The conductivity of the medium is 'V.

4.4. Find the resistance between points A and B of the network shown in Fig. 126. The r~
sistance of the side of a small square is R.

4.5. Two plane electrodes of area S each, whose linear dimensions are much larger than the­
distance d between them, are separated by a conducting material whose conductivity

A

.I

_____"'--- B·

-+----+-. - - ----I~---

.,.\\\\\\\\\\\\\\\\\\\\\\\\\\\i

Fig. 126. To Problem 4.4 Fig. 127. To Problem 4.6

varies linearly from 'VI at the surface of one electrode to 'V2 at the surface of the other
electrode. Find the resistance of the medium between the electrodes.

4.6. Find the resistance of a conic conductor of a circular cross section, whose dimensions
are shown in Fig. 127. The electrical conductivity of the conductor material is 'V.

4.7. The space between two infinite plane-parallel electrodes separated by a distance d is­
filled with two layers of a substance with a plane interface parallel to the electrodes.
The conductivities and the permittivities of the layers are 'VI, 81 and 1'2' 8 2 respectively,
the layer thicknesses being a and d - a. The potentials CPl and CP2 are applied to the­
electrodes. Find the potential and the surface charge density at the interface.

Answers

4.t. R=1590Q. 4.2. R=[1-a/(2d))/(4n'Va).

£... R 4 5 R- dIn ('V2/'Vl)
22 . .• - S ('\'2-1'1)

(1'182- 'V281) (CPl - CP2)
0== '\'1 (d-a)+1'2a



(CHAPTER 5

Electrical Conductivity

The mechanisms of electrical condudivity are diverse. Their only com­
mon feature is the close relation with the motion of charges. The
laws governing electrical condudivity vary over wide limits depend­
ing on the mechanism of electrical condudivlty, properties of
materials and conditions under which electric current flows in con­
ductors.

Sec. 31. Electrical Conductivity of Metals

Main experimental facts associated with electrical
conductivity of metals aredescribed and their theoretical
interpretaion is given.

The proof of the absence of mass transport by electric current in metals, Long
before electrons were discovered, it was experimentally shown that, unlike in
-electrolytes, the passage of current in metals is not connected with the mass
transport of metals. Experiments involved the flow of a direct current through
a metal-to-metal contact, for example, between gold and silver, during a period
-of time reaching several months. After this, the material in the vicinity of con­
tacts was investigated. It was demonstrated that no mass transport through the
interface between two metals was observed, and the substances on both sides of
the interface have the same composition as before the passage of current. This
-experirnent proved that atoms and molecules in metals do not participate in elec-
tric current but they failed to give an answer to the question about the nature
of charge carriers in metals.
"The Tolman and Stewart experiments. These experiments, carried out in 1916,
served as a direct proof that current in metals is due to the motion of electrons.
The idea of these experiments was put forward by Mandelstam and Papaleksi
in 1913.

Suppose that we have a conducting coil which can rotate about its axis. The
-ends of the coil are connected to a galvanometer with the help of sliding con­
tacts (Fig. 128). If the rapidly rotating coil is abruptly stopped, free electrons
in the wire continue to move by inertia, as a result of which the galvanometer
.should register a current pulse..

Let us denote by v the linear acceleration of the coil during braking. It is
-directed along the tangent to the surface of the coil. For a sufficiently dense wind­
ijng and thin wires, we can assume that the acceleration is directed along the
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Fig. f28. Tolman and Stewart's
experiment

wires. During the deceleration of the coil, the

inertial force me~ directed against the acceleration
is applied to each free electron (me is the electron
mass). Under the action of this force, an electron
in metal behaves as if it were acted upon by a cer­
tain effective electric field .

Eefl = -mev/e. (31.1)

Hence, the effective electromotive force in the
coil due to inertia of free electrons is given
by

r m • r m •
~eff = J Eefl dl = - --;- v J dl = - -T vL, (31.2)

L L

where L is the length of the wire. All points of the wire have the same decel-.
eration rate, and hence v in (31.2) is taken out of the integral.

Denoting the current flowing in the closed circuit by I and the resistance of
the entire circuit including the resistance of the coil wires and the wires in the
external circuit and in the galvanometer by R, we write Ohm's law in the form

(31.3)

The amount of electricity passing through the cross section of a conductor for
a current I during time dt is

dQ I d me L • d me L d= t= ---v t= --- v.eRe R (31.4)

Thus, the amount of electricity passing through the galvanometer during the
braking time required to decrease the coil velocity from the initial linear ve­
locity Do to zero is given by

(31.5)
o

Q= JdQ = - ~e i Jdv = ~e i Vo·
Vo

The magnitude of Q is determined from the readings of the galvanometer,
while the values of L, R, and Vo are known. Hence we can find the sign and the
magnitude of elm i, Experiments showed that elm ; corresponds to the ratio of
the electron charge to its mass. Thus, it was proved that the current observed
with the help of a galvanometer is due to the motion of electrons.
On the band theory. The quantum theory of electrical conductivity is based
on the band theory which follows from an analysis of the energy spectrum of elec­
trons see Sec. 2). The electron spectrum is split into bands separated by forbid­
den gaps. If the upper band of a substance, which still contains electrons, has
some free quantum states, i.e. if there is a possibility for rearranging the energy
and momentum of electrons, this substance is a conductor. In this case, its up-
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per band is called the conduction band, and the
substance is called a conductor with electronic­
type conductivity. If there are many electrons and
free quantum states in the conduction band, the­
electrical conductivity is sufficiently high. The
electrons in the conduction band are the only
charge carriers responsible for electric current.
Their motion obeys laws of quantum mechanics.
The number of these electrons constitutes only a
small part of the total number of electrons. This
circumstance eliminates drawbacks of the clas­
sical theory of electrical conductivity (see Sec. 27).
Temperature dependence of resistance. Motion of
electrons is the main cause of electrical conduc­
tion not only in metals. For example, in semi-­
conductors with electronic-type conductivity the
motion of electrons also contributes significantly
to the transport of electric charge. One of the
most typical differences in electrical conduction
in these two cases is in the nature of temperature
dependence of electrical conductivity.

Experiments show that the resistivity of metallic
conductors grows with temperature, i.e. their

conductivity decreases. For a moderate temperature, the temperature dependence
of conductivity has the form 'V ex: 1IT.

However, for some materials (e.g. glasses, semiconductors, electrolytes) conduc­
tivity increases with temperature. Although the mechanisms of increase in con­
ductivity are different, they all ultimately boil down to a decrease in the num­
ber of electric charge carriers responsible for current. The number of carriers
in metals, i.e. free electrons, practically does not depend on temperature. Hence,
the resistance to the current is determined only by the ability of metals to­
form an ordered motion under the action of an electric field, viz. by their mo­
bility, which decreases with increasing temperature.
Hall effect. The charges creating an electric current due to their motion are
acted upon by Ampere's force (9.23). The density of this force can be written
in the form

f = i X B == nev d X B, (31.6)

where e is the charge whose motion forms the current, and n and v d are its con­
centration and drift velocity respectively.

In the presence of a magnetic field whose induction is perpendicular to the
current density j, the charges in the conductor tend to move in the direction of
the force with the density f (Fig. 129a). As a result, an excess charge of the same
type that generates the current is formed on the corresponding surface of the·
conductor. Thus, if the current is due to the motion of positive charges, the dis­
tribution of the surface charge density wi ll be as shown in Fig. 129b, while
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for the motion of negative charges we obtain the distribution depicted in Fig.
129c. A potential difference and an electric field E appear between the opposite
faces of the conductor. This field neutralizes the action of the forces with density
f (31.6). The direction of this field depends on the sign of charges forming cur­
rent, and its magnitude is determined by the factors responsible for the density
of force (31.6). The emergence of a potential difference in a current-carrying con­
ductor placed in a magnetic field is called the Hall effect. This effect was dis­
-covered in 1879.

The induction B of the magnetic field and the velocity v d of charges are at
right angles. The ratio of the force density (31.6) to the charge, like (31.1), can
be treated as the effective electric field called the Hall field:

(31.7)

(31.8)

Consequently, the potential difference emerging between the faces of the
'Conductor (Fig. 12gb) is given by:

d

U= ) vdBdx=VdBd,
o

where d is the thickness of the conductor. Considering that j == nevs, we can
write this expression in the form

where

U == djB/(ne) == RjBd,

R == 1/(ne)

(31.9)

(31.10)

is the Hall constant. The potential difference can be measured. The other quan­
tities, except the concentration n of charges and their sign, are known. The sign
of the potential difference can be used to determine the sign of the charge carriers
whose motion creates current, while its magnitude determines the carrier concentra­
tion.

It should be noted that formulas (31.9) and (31.10) coincide with the corre­
sponding formulas in a more complete theory of the Hall effect, where the veloc­
ity distribution of electrons, statistical nature of their collisions and other
factors are taken into account. In this case, however, calculations are very cum­
bersome and we shall not consider them in this book.

The results of measurements showed that current in metals is formed by the
motion of negative charges. The carrier concentration is approximately equal to
the atomic concentration. In other words, one charge participating in a current
corresponds to about one atom of the metal, although this number varies within
certain limits. Electrons are the charge carriers responsible for current in metals.
This means that in metals, on the average, one free electron corresponds to an
atom. For example, 0.7 electron corresponds to a silver atom, 0.8 to copper,
0.9 to gold, and about two electrons to aluminium. It should be recalled that
the atomic concentration in metals, and hence the concentration of free
electrons, is close to n ~ 1028 m:".
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(31.11)

(31.12)

The analysis of the Hall effect in other cases revealed that it is not always
due to the motion of negative charges. When the sign of the potential difference
in the Hall effect corresponds to the motion of negative charges, the effect is called
anomalous.

The Hall effect is one of the galvanomagnetic phenomena. This term refers
to the phenomena observed in a current-carrying conductor placed in a magnetic
field. The physical essence of all these phenomena consists in that the electrical
conductivity of a conductor in an external magnetic field is a tensor rather than
a scalar, The transverse electric field, called the Hall field, is added to the elec­
tric field which creates a current in the absence of a magnetic field. As a
result, the direction of the resultant electric field forms with the current densi­
ty a certain angle called the Ball angle. This means that the directions of the
current density and the electric field do not coincide. These quantities are rela­
ted through the tensor formula

where Yik is the electrical conductivity tensor. The conductivity of anisotropic
materials is described by the electric conductivity tensor even in the absence of
a magnetic field.
Magnetoresistance. Another important galvanomagnetic effect is a change
in the resistance of a conductor placed in a transverse magnetic field (magnetoresis­
tance). Experiments show that the relative change in the electrical conductivi­
ty 11-V/-V for not very strong fields is expressed by the formula

~y/y = - Xl.B2,

where Xl. is the transverse magnetoresistance coefficient which depends on the
properties of the material and B is the magnetic induction.

This phenomenon is a consequence of the tensor nature of electrical conductiv­
ity of a conductor placed in a magnetic field. As a result, the electric field com­
ponent collinear with the current appears, which causes a change in the cur­
rent manifested as a change in the resistance.
Mobility of electrons. Ohm's law j = '\'E can be written in the form

nevd = 'VE .

The mobility b of electrons is defined as the ratio of their drift velocity to the
electric field strength:

Taking into account (31.11), we obtain

\? ~= y/(ne). (31.13)

The electrical conductivity of a metal is known, and ne can be found from the
Hall effect. In other words, the change in the Hall effect makes it possible to find
the electron mobility in the conductor. The electron mobility in metals is of
the order

b ~ 10-4-10-3 m2/ (V -s). (31.14)
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Thus, the drift velocity of electrons in metals is very small as compared to
ordinary velocities of motion of microparticles. A high conductivity of metals is-·
mainly due to a high carrier concentration (n ~ 1028 m-3) and not due to their
high mobility [see (31.13)] :

'\( = enb ~ 10-18.1028.10-3 Sim = 108 S/m.

In dielectrics, most electrons are rigidly connected to the atoms, and the num­
ber of free charge carriers is very small. Consequently, the conductivity of dielec­
trics is very low although the mobility of charge carriers in them does not differ­
drastically from the mobility of free electrons in metals. The carrier concentration­
in semiconductors varies between 1019 and 1026 m -3, while their mobilities lie be­
tween 10 and 10-4 m 2/(V -s), i.e. are high. Such a wide range of variation of the­
concentration and mobility of carriers determines tho wide range (over several
orders of magnitude) of variation of electrical conductivity of semiconductors..
However, it is impossible to attain as high conductivity for semiconductors as
for metals, having retained, of course, the temperature dependence of electrical
conductivity typical of semiconductors (i.e. an increase in electrical conduc­
tivity with temperature).
Superconductivity. In 1911 H. Kamerlingh Onnes discovered that apparently
mercury completely loses its resistance t.o electric current at 4.2 K. The loss
of resistance occurs abruptly within an interval of a few hundredths of a de­
gree. The disappearance of resistance was subsequently observed for many other'
pure materials and alloys. This phenomenon was called superconductivity.
Transition temperatures for the superconducting state are different but always­
very low.
Critical temperature. If an electric current is excited in a superconducting
ring with the help of electromagnetic induction the magnitude of this current
remains the same for several years. This allows us to determine the upper limit
of resistivity of superconductors (which is below 10-26 Q. m). This value is less
than the resistivity of copper at low temperature (equal to 10-12 Q. m) by many
orders of magnitude. Therefore, it is assumed that the electric resistance of super-­
conductors is equal to zero. Before the transition to superconducting state, the
resistance may have different values. Many superconducting materials have a
rather high resistance at room temperature. The transition to superconducting
state always occurs abruptly. For pure single crystals, this temperature in­
terval is less than 10-3 degree.

Among pure materials, aluminium, zinc, indium and gallium exhibit super­
conducting properties. These properties depend on the crystal lattice structure.
For example, white tin is a superconductor while grey tin is not. Mercury is.
a superconductor only in the a-phase.
Critical field. In 1914, Kamerlingh Onnes found that the superconducttng:
state is destroyed by a magnetic field when the magnetic induction B exceeds a cer­
tain critical value. The critical value of induction depends on the superconductor-
material and temperature. .

The critical field that destroys superconductivity may be created by.the super­
current itself. Therefore, there exists a critical current at which superconduc­
tivity vanishes.
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Meissner effect. In 1933, Meissner discovered that there is no magnetic
field inside a superconductor. When a superconductor placed in a constant
external magnetic field is cooled, the magnetic field is completely ex­
pelled from its volume at the moment of the transition to the superconducting
'state. This is the principal difference between a superconductor and an ideal con­
ductor in which the magnetic induction in the volume remains unchanged when
its resistivity drops to zero. The property of expulsion of magnetic field from
the volume of a superconductor is called the Meissner effect. This effect and the
absence of electrical resistance are the most important properties of a supercon­
.ductor.
Surface current. Proceeding from the general laws of magnetic fields (see
Chap. 6) and taking into account the absence of a magnetic field in the bulk of a
superconductor, we may conclude that only surface current exists in it. From the
physical point of view, it is a real current flowing through a certain thin layer near
the surface. The magnetic field of the current neutralizes the external magnetic
'field in the superconductor. In this respect, a superconductor behaves formally
as an ideal diamagnetic (see Sec. 41). However, it is not a diamagnetic since
magnetization inside it is equal to zero.
:80ft and hard superconductors. The number of pure materials exhibiting
'superconduct.ing properties is not large. Most frequently superconductivity is
-observerl in alloys. The Meissner effect is observed to the fullest extent in pure
materials, while in alloys, the magnetic field is not expelled completely from their
volume (partial Meissner effect) . Materials exhibiting complete Meissner effect
are called soft superconductors} while those in which the effect is partial are
-called hard superconductors.

In the bulk of hard superconductors, circular currents create a magnetic
field which, however, does not fill the entire volume of the conductor but is dis­
tributed in it in the form of individual filaments. As to the resistance, it is
equal to 'Zero in hard as well as soft superconductors.
The theory of superconductivity. In its physical nature, superconductivity
is the superfluidity of a liquid consisting of electrons. Superfluidity sets in when
the energy exchange between the superfluid component of a liquid and its other
parts ceases, and consequently the friction vanishes. An important feature of
this process is the possibility of "condensation" of liquid molecules on the lower
·energy level separated from other levels by a sufficiently large energy gap which
cannot be surmounted by the forces of interaction. This is the reason behind the
termi.nation of interaction. For the accumulation of many particles on the low­
-er energy level to become possible, it is necesary that they obey the Bose-Ein-
stein statistics, i.e. have an integral spin.

Electrons obey the Fermi-Dirac statistics and hence cannot be "accumulated"
-on the lower energy level to form a superfluid electron liquid. The repulsive
forces between electrons are compensated to a considerable extent by the
forces of attraction exerted by the positive ions of the crystal lattice. However,
an attractive force may appear between electrons due to thermal fluctuations
.at the lattice sites, and then the electrons are combined into pairs. These ele-
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etron pairs behave as particles with an integral spin, i,e. obey the Bose-Einstein
statistics. They may condense and form a current of super{luid liquid, viz. electron
pairs which [orm. a supercurrent. Above the lower energy level there is an energy
gap which cannot be surmounted by an electron pair at the expense of the energy
of interaction with the remaining charges. In other words, the electron pair
cannot change its energy state and hence there is no electrical resistance.
::\.The possibility of the formation of electron pairs and their superfluidity is
explained by the quantum theory.

The large difference In the electrical condudlvltles of condudors, semiconductors and
dielectrics is due to 8 large difference In the carrier concentrations rather than to • dif­
ference In the mobility of charge carriers.

Example 3t. t. The temperature dependence of resistance Is quite essential for the operation of
many deutces, as can beeasily seen from the operation of an ordinary Incandescent lamp. The fila­
ment of a lamp Is made of tungsten, lohose conductivity and radiant emittance M (the Burface den­
,Uy of the radiant flux from the surface) can be represented by the following formulas in the temper­
ature range between 300 and 3000 K: y = 0.95 X 1010 T-I.I Slm, M = 6.6 X 10-12 ~ W/ml ,
where T I. the thermodynamic temperature. Calculate the diameter d and the length I of a filamen'
lIthe lamp emits a power P at a voltage U and filament temperature T. A ssum« that the energy
loae. due to the thermal conductivity of the filament are negltglbly small, Estimate the preci,'on
requtrements for manufacturing the filament,

We have
~U" 1 4 tR=- R=--- P=1tMldP J Y ·1tdl •

whence

d= ( 4P2 ) 1/3 1= ( yPU 2
) 1/3

n2yU2M 4nM2·

Since yM ex: ']'3/8 and ylM2 ex: T-ll.2, the temperature dependence of the length and thick­
ness of the filament is rather strong. Therefore, the error in the diameter and length of the
filament during manufacturing considerably affects the temperature, and hence the spectral
composition of the' emitted light. Consequently, the precision requirements are quite strin­
gent.

Sec. 32. Electrical Conductivity of Liquids

The mechanism'[oj electrical conductioitu in liquids
is described and the dependence of electrical conduc­
tivity on various factors is considered.

Dissociation. Pure liquids are basically poor conductors of. electricity. This
is due to the fact that. they consist of neutral atoms and molecules whose mo­
tion cannot generate an electric current. However, the solutions of salts, acids
and alkalis are good conductors of electricity. It can be explained as follows.
The molecules of a dissolved substance dissociate, i.e. are decomposed into pos­
itive and negative ions. The ordered motion of ions ensures the transport of
15-0290
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electric charges, viz. an electric current. If the process of dissolution does not in­
volve a molecular dissociation, the solution is not a conductor.
Calculation of electrical conductivity. We denote by N = N(+) = N(-) the con-­
centration of ions of each sign in a solution. For current density, we can write

j = q (b (+) + b (-») N E, (32.1)"

where q is the value of the ion charge and b(+) and b(-) are the mobilities of
positive and negative ions (see (31.12)).

On the basis of (31.12), the drift velocity of ions is proportional to the field
strength:

(32.2)~

I

Generally speaking, the positive and negative ions have different mobilities.
The mobility of positive ions in liquids is small and usually amounts to about.
10-~ m2/ (V -s).

The ion concentration depends on the degree of dissociation which is char..
acterized by the dissociation coefficient a defined by the ratio of the ion concen­
tration N to the concentration No of the solute molecules:

N = o.No- (32.3)·

Consequently, the concentration of un dissociated molecules is

N' = (1 - a) No. (32.4)·

Dissociation and solvation, i.e. the combination of ions into neutral mole­
cules, occur simultaneously and continuously in a solution. At equilibrium, the
intensities of these two processes that change the solution composition in oppo­
site directions are equal. The rate of variation of the concentration (dN/dt)
of each type of ions as a result of molecular dissociation is proportional to the
concentration N'" of undissociated molecules:

(dN/dt) = ~ (1 - a) No, (32.5)·

where ~ is the proportionality factor.
The rate dN/dt of variation of concentration ot un dissociated molecules as a

result of ionization of molecules is proportional to the product of concentrations
of, positive and negative ions:

~-.'

. (dN'/dt) = 1]a2N 2o' (32.6)

where 1] is the proportionality factor. At equiibrium,

( dN )=(~)
dt dt· (32.7),·

Taking into account (32.5) and (32.6), we obtain a formula connecting the
dissociation c~lf!~nt with the concentration of the solute:

. i-a ~
..y4.·:· ~=~No. (32.8),
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Obviously, the dissociation coefficient depends on the concentration of the­
solute. For a very low concentration (N 0 ~ 0), formula (32.8) gives

a = 1, (32.9)

i.e. the dissociation is almost complete. If a~ 1, W~ obtain from (32 8)

a=V ~ y~o · (32.10)

In other words, a decreases with increasing concentration of the solute.
Taking into consideration Eq. (32.3), we can write (32.1) in the form

j = q (b(+)+ bC-»)a.NoE. (32.11)

The mobility of ions does not depend on the electric field over a wide range of
the field strength. The deviation from the linear dependence of the field strength on
the drift velocity of carriers is observed only for a very large strength of the order of
millions of volts per centimeter, at which, in accordance with (32.2), the mobility
depends on the field strength. The value of a is also independent of E over a very
wide range. Consequently, formula (32.11) expresses Ohm's law for fields up to
~ 108 V/cm. Thus, the electrical conductivity of a solution is given by

'V = t] (~( ...,+ b<-») oN o. (32.12)

Dependence 01 electrical conductivity on concentration. For a not very high
concentration of a solution, the dissociation coefficient is constant. The sum of"
the mobilities b(+) and b(-) of ions is also nearly constant. Consequently, for a.
small concentration of a solution, its electrical conductivity is proportional to the
concentration. For largeconcentrations, the situation becomes much more complicated.
On the one hand, we must take into account the dependence of the dissociation
coefficient on concentration [see (32.8) and (32.10)], while on the other hand, the­
ion mobility also begins to depend noticeably on concentration. In concentrated:
solutions, the mobility of ions decreases as the electric interaction between ions
comes into play. Therefore, at high solution concentrations, a linear dependence
of the electrical conductioituon solution concentration is not observed.
Temperature dependence of electrical conductivity. As the temperature rises,
the dissociation coefficient increases since a more rapid motion of molecules
hampers solvation and facilitates dissociation (upon collisions). The viscosity of
liquids decreases with heating, and hence the mobility of ions becomes higher.
Consequently [see (32.12)], the conductivity of electrolytes increases with tempera-­
ture, and may assume quite large values (exceeding the initial values by several,
orders of magnitude).
Electrolytes. Since the current through solutions is due to the motion of ions,
the molecules of a dissolved substance are decomposed into components which are
liberatedat the electrodes. This phenomenon is called electrolysis. The study of elec-­
trolysis has played a significant role in the development of the theory of the
structure of matter. The laws of electrolysis discovered by M. Faraday are stud­
ied in detail in the course of secondary school physics. The conductors which
undergo electrolysis, i.e, are dissociated into ions, upon the passage of electric.

5*
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current through them are called electrolytes. Hence it follows that electrolytes
include many solutions of salts, acids and alkalis as well as a number of chemical
compounds in liquid and solid states.

An example of a solid electrolyte is glass which in its physical nature is a
supercooled liquid with a very high viscosity. It can be shown experimentally
that the Na+ ions which are responsible for electrical conductivity of glass have
a noticeable mobility in it. When glass is heated, its resistance may decrease to
several millionths of its initial value. This can be illustrated by a very impressive
experiment. A glass rod connected to an electric power source is first heated
by the flame of a burner. The Joule heat liberated in the circuit contributes to
the heating of the rod. At a certain temperature (which is selected experimental­
ly) the burner is removed, and the further increase in the temperature of the
rod is only due to ohmic heating. The rate of change of temperature of the rod
is constantly increasing since the conductivity of glass increases with tempera­
ture, which, in turn, causes an even sharper increase in the temperature. As a
result of such an avalanche increase in temperature, the glass rod vigorously
melts and burns with a .bright flash.

Sec. 33. Electrical Conductivity of Gases

Various mechanisms of conduction of current in gas­
es are discussed. The characteristic of current and the
role of volume charge are outlined

Self-sustained and non-self-sustained currents. A gas containing no charged
particles cannot conduct. electricity. It becomes a conductor only upon being
ionized, when charge carriers appear in the form o~ free electrons, and ions. Pos­
itive ions may be singly or multiply charged depending on the number of lost
electrons. Negative ions formed as a result of addition of an electron to an atom
are usually singly charged.

In order to make a gas conduct, some external ionization factors ( a high tempera­
ture of the gas, ultraviolet and X-ray radiation, etc.) are required. If the field
strength is not high, the current through the gas ceases as soon as the extrinsic
ionization factor stops to operate. Such a current is called non-self-sustained.

If the field strength is sufficiently high, the field itself may cause ionization
as a result of which the gas becomes a conductor. The current appearing in this

'ease is called self-sustained. There is no unique universal dependence of current
on voltage for self-sustained currents. The situation is determined by specific condi­
tions. In particular, it may happen that a self-sustained current decreases with
increasing voltage.
Non-self-sustained current. Let us consider a non-self-sustained current in
.greater detail. We denote by N the concentration of charges of each sign and by
(dNldt)cr the rate of variation of the charge concentration due to an external
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source of ionization. The creation of charges is accompanied by their annihila­
tion as a result of recombination, i.e. mutual neutralization. After a sufficiently
long time, a dynamic equilibrium sets in, when the rate of charge formation and
the rate of recombination become equal. Obviously, in this case

N = N(+) = N(-), (33.1)

where we assume for the sake of simplicity that ions are singly charged.
Clearly, the fjcombination rate must be proportional to the product of charge

concentration, i.e. N2. Hence, at equilibrium we have

(dN/dt)cr = -rNI, (33.2)

where r is the recombination coefficient.
By definition, the current density is given by

j = j(+) + jC-) = q (N(+)v~+)+N(-'Vd-» = qN (v~+)+Vd-». (33.3)

The drift velocity of charge in an electric field is proportional to the field
strength:

Vd = bE. (33.4)

The mobilities b(+) and [)(-) of positive and negative charges are generally
different. Taking into account (33.4), we can write Eq. (33.2) as

j = (b<+) + bC-») NE. (33.5)

This formula resembles Ohm's law. However, it is equivalent to Ohm's law
only when the coefficient of E does not depend on E and [. Generally speaking,
this coefficient for gases depends on the indicated quantities, and hence formula
(33.5) is not equivalent to Ohm's law.

If the number of ions recombining in 1 s is much larger than the number of
atoms reaching an electrode, we can use expression (33.2) under equilibrium
conditions for determining N in (33.5). This gives

(33.6)

In order to find the conditions of applicability of this formula, we must bear
in mind that the mobility of ions in gases is of the order of 10-4 miN -s, while
the recombination coefficient r ~ 1 mS/s. For example, if dNldt is of the order
of 1018 ions/frns-s) and E = 10s VIm, the number of ions arriving at 1 m2 of an
electrode during 1 s is given by

~ =WH + bl
-

I
)}/ +I(~~ )Icr E ~ 2.1013 m-2

• 8-t (33.7)

If the distance between plane electrodes is 0.1 m, the number of ions recombin­
ing in the space between the electrodes per 1 m2 of the cross-sectional area is
equal to 1010, i.e. the condition of applicability of formula (33.6) is satisfied
in this case. The applicability of this formula for other values of parameters is
verified in a similar way.
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(33.9)

(33,10)

J Saturation current density. We denote by d the
/ distance between two plane electrodes. If the field

,,// strength is sufficiently high, so that all the ions
....-'___ formed by an external source reach the electrodes

before they recombine" asaturation current appears
with density given by

o ex isat = qd { ~~ Lr (33.8)

Fig. 130. Characteristics of self- The characterlS·tle of current. In the region of in­
sustained and non-self-sustained
currents termediate electric fields, a part of ions has time

to recombine before they reach the electrodes. The
equation for the balance of loss and creation of ions is written in the form

( dN ) ( dN) +( dN ) = o.
Cit cr + dt ree dt;

Taking into account Eqs, (33.2), (33.3), and (33.8), we get.

isat/q - rN2d - N (b(+) + b(-»)E = O.

(33.12)

(33.13)

(33.11)
Considering that

where

j = qN (b(+) + b(-»)E,

we can write (33.10) in the form of the following equation in j:

j2 + 2a,j + 2ajsat = 0,

a, = I q I (b(+) + b<-»)2E2
/ (2rd).

The positive root of Eq. (33.12) is

i =r1J (V 1+2/ sat/cz - i ). (33.14)
The dependence of the current density on (1, is shown in Fig. 130. In the lim­

iting cases (a,<C.jsat and (1,» jsat), Eq. (33.14) is transformed into (33.6) and
(33.8) respectively.

Expression (33.14) is called the characteristic of non-self-sustained current.
It is in good agreement with experiments if ion losses as a result of diffusion are
additionally taken into consideration.
Self-sustained current. If we continue to increase the electric field strength
at a current density nearly equal to the saturation value, the current den­
sity again starts increasing. This is so because before recombining with the
ions, the electrons existing in the gas have time to get accelerated by the field
up to energies at which they ionize the gas molecules by collisions. Consequent­
ly, the ionization rate becomes dependent on the field. The current appearing in
this case is called self-sustained current. The initial part of the characteristics
for this current is shown in Fig. 130 by the dashed line. It starts at a finite
value of ct.
The effect of volume charge.As was men tioned above, the mobilities of positive
and negative charges are different and b<-) is usually greater than b(+). Con-
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:sequently, the density of current resulting from the motion of positive charges
is less than that due to the motion of negative charges. Hence, the number of
'Positive charges reaching the cathode during a fixed interval of time is less than
the number of negative charges reaching the anode although the number of ions
formed is the same as the number of recombining ions during this interval of
time. Obviously, such a state _annot be an equilibrium state. The equilibrium
:state is attained in the following way. As a result of the motion of positive char­
-ges towards the cathode and negative charges towards the anode, an excess pos­
itive charge is accumulated at the cathode while negative charges are accumu­
lated at the anode. However, in view of a higher mobility of negative charges,
the excess negative charge at the anode will be larger than the excess positive
charge at the cathode. As a result of such a redistribution of charge concentration
and the change in the electric field associated with it, an equilibrium is estab­
lished, at which the numbers of positive and negative charges reaching the elec­
trodes become equal.
M.~!?ili~of charges. An ion having a mass m and charge q moves in a uniform
(magneti field E with a constant acceleration

JJ"1vk'-------- . a = qElm (33.15)

and passes a distance
s = qE't"/(2m}, (33.16)

during the time r, the initial velocity being equal to zero.
If l is the mean free path of the ion in a gas for a random thermal motion and

v is its mean velocity, we can assume that 't" = llv, The time and the mean free
path are defined in such a way that we can assume that during each collision
the ion completely loses its energy of ordered motion. Consequently, on the ba­
sis of (33.16), we can express the drift velocity as the mean velocity of ordered
motion in a direction collinear with the direction of the field:

Vd = SiT = qET/(2m) =~qiEI(2mv). (33.17)

The -:-modifications introduced by the statistical distribution of l lead just to j

a small change in the numerical factor in (33.17). Hence, the mobility of ions
is given by

b = qll (2mv). (33.18)

This formula shows that the mobilities of posit ive and negative ions of the
same mass must be equal. However, the mean mobility of negative charges is higher
than that of positive chargessince the mobility of negative charges is determined
not only by the contribution from negative ions but from electrons as well. The
mobility of electrons is significant due to their small mass, and this ultimately
determines the high mobility of negative charges.
Comparison of results with experiment. It follows from (33.18) that the mobi­
lity is inversely proportional to the gas density since the mean free path is in­
versely proportional to density. This conclusion is confirmed by experiments.

However, formula (33.18) on the whole does not explain the entire body of
experimental facts. In particular, the experimental values for the mo.bility are
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lower than theoretical values. In order to explain the discrepancy between the
theory and experiments Langevin took into account the polarization of ions ap­
proaching each other in collisions, owing to which the ions acquire additional di­
pole moments and the nature of their collisions changes. This circumstance in­
troduces considerable corrections into the formulas. In the framework of this
book, however, we shall not discuss this theory.

The presence of some external Ionizing fador (high temperature of the gas, ultraviolet
radiatoin, X-rays, etc.) is essential to make a gas condud. For quite strong fields, however,
the gas is ionized by the field itself. The current generated in this way is called self­
sustained current. If external ionizing fadors are present, the current is called non-self­
sustained current.

What is a self-sustained and a non-self-sustained currentl
Why is a volume charge induced between two eledrodesl
What is its effect? Due to what factors is the mobility of negative charges higher than
that of positive chargesl

Sec. 34. Electric Current in Vacuum

Basic regularities of thermionic emission and their
manifestation during the passage of current between
electrodes in vacuum are discussed.

Thermionic emission. Electric current cannot exist in vacuum if the latter
contains no charge carriers. If, however, electrons exist in vacuum, their mo­
tion generates an electric current which is called vacuum current.

Metals contain electron gas. In thermodynamic equilibrium, the distribution
of electrons over energy levels is described by the Fermi-Dirac statistics and is­
given by

ni 1
g;-=- exp [~(E,-~)1+1 '

(34.1)

where ~ = 1/(kT), n, is the number o~ electrons having an energy E b gi is the
number of quantum states corresponding to this energy, and f..L is the Fermi ener­
gy at temperature T, which tends to the Fermi energy ~o at T = 0 as T -+ 0 K,.
in accordance with the formula

[
n2 ( kT ) 2 ]

f..L = ~o 1-12 ~ +.. . (34.2}

Considering that in all cases of practical interest f.1~ kT, we may assume that.
the quantity f.1 in (34.1) is equal to ~o.

Let Eo be the energy of an electron at rest near the outer surface of a metal
(Fig. 131). Substituting Eo for E, in formula (34.1), we can calculate the prob­
ability that the electron has the energy Eo. This probability differs from zero.
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the more the higher the temperature (i.e. the sWall- E
er the value of ~). Thus, near the surface of the me-
tal there is an electron cloud which is in equilibrium
with the electro" gas in the metal. This equilibrium E(J
is dynamic: the electrons in the metal, which have ~

a sufficiently high kinetic energy, overcome the JJ.o

forces which confine them within the metal and --- 0
become free. On the other hand, the electrons Vacuum Metal Vacuum
which are near the metal surface and have appro-
priate positions and directions of motion are cap- Fig. tSf. Energy levels of free
tured by the forces which confine them to the electrons in a metal
metal. Thus, in dynamic equilibrium equal and
opposite currents flow across the surface of the metal. The total current across
the surface is equal to zero. The formation of an electron cloud near the surface of
a metal due to the thermal motion of free electrons is called thermionic emission. At
o K, no thermionic emission is observed, i.e. the electron cloud near the sur­
face of a metal does not exist.

The total energy of electrons having a kinetic energy Wk near the surface of a
metal is E, = W k + Eo, and formula (34.1) assumes the following form:

2:.1 t (34.3), wk exp(~(Wk+<I»J+1'

where <I> = Eo - f.L is the work function of electrons. It follows from this for­
mula that the electron cloud density near the surface of a metal strongly depends
on the work function <I> and sharply decreases when the work function increases.

If an electric. field exists near the surface of a metal, the electrons of the cloud
start moving and an electric current called the thermionic current is generated.
Thus. if two metallic plates to which a potential difference is applied are in
vacuum, a thermionic current flows between them. Thus current should obviously
increase with increasing potential difference. There exists a maximum current at
which all the electrons which get into the electron cloud acrossthe surface of the cathode
are entrained by the electric field towards the anode, and no reverse electron current
flows into the cathode through its surface. This maximum current is called the
saturation current. Any further increase in the potential difference between the
cathode and the anode does not alter the current since all the electrons supplied
by the cathode as a result of thermionic emission are involved in the generation
of electric current, and there are no other charge carriers for a further increase
in the current.

For metals, <1> amounts to several electron-volts. The energy kT is equal to a
fraction of an electron-volt even at a temperature of several thousand kelvins.
Consequently, ~<1>~ 1 and exp [~ (Wk + <1»] ~1. Hence we can neglect unity
in the denominator of (34.3) in comparison with exp [~ (Wk + <1»] and write
this formula in the form

(34.4)
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(34.5)

(34.6)

Thus, the saturation current strongly depends on the work function and tem­
perature since these quantities appear in the exponent. For pure metals, a sig­
nificant current can be obtained only at a temperature of the order of 2000 K,
i. e. metals with a high melting point should be used for manufacturing cathodes. On the
other hand, it is desirable that their work function be as small as possible. For
example, pure tungsten whose work function is 4.5 eV should operate at a tem­
perature of 2500 K. For reducing the operating temperature of the cathode and
its work function, oxide-coated cathodes are used, in which a layer of oxides of
alkali-earth metals (e.g. BaO, SrO) is deposited on the substrate (base) with the
help of special technological processes. The cathode is then activated by passing
a thermionic current through it at a temperature of about 1300 K. As a result,
the monoatornic layer of the alkali-earth metal is formed, which considerably
reduces the work function. For example, barium-strontium oxide-coated cath­
odes have a work function of about 1.8 eV, due to which considerable currents
can be obtained even at temperatures of about 1100 K. The current density
attained at such a temperature is of the order of 10' A·m-2• The harium-stron­
tium oxide layer is usually deposited on a nickel tube with a tungsten filament
inside it, used as a heater. Such a construction has an additional advantage over
a heated tungsten filament used as the cathode, since in the latter case a consi­
derable potential drop appears across the filament, and its surface will not be an
equipotential surface. The oxide layer in a coated cathode is an equipotential
surface, which ronsiderably improves the operating conditions of the cathode as a
whole.
The characteristics of an electron cloud. The electron cloud near the surface
of a metal is described by formula (34.4). The number of quantum states in the
element dx dy dz dpx dp~ dp z of the phase volume is

g= (~Ii)a dx:rly ds dpx dpu dpz.

Hence, the number of electrons in the element dz dy dz dp% dPII dpz of the
phase volume is represented in the form

dn - _2_ _c!>/(1&T)e -p2/(2mekT) dx dy dz dp dp dp
- (2nh)8 e % y z'

where W k = p'l{2me).
The integration of (34.6) over dx dy dz yields volume V as a factor. Con­

sequently, the number of electrons in volume V, whose momenta are confined
in the element dpx dpy dpz near the momentum Px, Py' Pz, is

dnp == [2V/(2n1i)3) exp r-<D/(kT)] exp r- p2/(2niekT)] dp% dplI dp. (34.7)

where pI = p~ + P: + p:. Hence, we"obtain'rthe following expression for the
concentration of the electron cloud near the surface of a metal:

00

n; = : ~ dnp = [ (2:1i)3 ] exp ( - iT ) ~ ~ )exp ( - 2~:T )dPxdp,dpz
-00

_ i. ( 2nmekT ) 3/2" ( _ ~)
- 4 Ii' exp kT· (34.8)
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zThe average kinetic energy of electrons is
given by

W <
p2 > S[p2/( 2me)] dnp

( k) = -2- = Sm dnp

3
T kT .

(34.9)
Saturation current density. Let us direct the
Z-axis of a Cartesian system of coordinates nor­
mally to the surface of a metal (Fig. 132). The
electrons with the velocity component V z along Fig. 132. To the calculation of
the Z-axis only contribute to t.he saturation cur- the saturation current
rent density. The contribution to the current
density from an electron is equal to evz = ep,/me• Consequently, the satura­
tion current density is given by

isst = ;e ) pz dn p = [ me ~n1i)3 ] exp ( - :. )
Pz>O

or
isat == AT2 exp [ -<1l/{kT)], (34.1t)

where the constant
A = emek

2/(2n21i,3) = 1.2.108 A·m-2 · K-2. (34.12)

Equation (34.11) is called the Richardson-Dushman equation.
For an experimental verification, it is convenient to represent this formula

in the form

In (jsa t1T2) = In A - (f)/(kT). (34.13)

The dependence of In (jsa tl T2) on 1/ T expressed by formula (34.13) is a straight
line (Fig. 133). Experiments confirm this form of dependence if we take in­
to account a slight variation of <1> due to a decrease in J.L with temperature [see
(34.2)]. In accordance with (34.13), the slope of the curve can be used for deter­
mining the work function <1>. The value of In A is determined by the point of
intersection of the straight line with the axis of ordinates. According to formula
(34.12), the quantity A should be a universal constant having the same value
for all metals. This conclusion is not confirmed by experiments. The value of A
slightly differs for different metals. For example, A = 1.1 X 108 A· m-2. K-2
for copper, 1.2 X 108 A·m-2· K-2 for nickel, and 0.3 X 108 A·m-2· K-2 for
platinum. This variation of A is due to surface effects. Besides, the current den­
sities have different values for different faces of a crystal.
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Three-halves power law. Let us consider the dependence of the current flowing
in vacuum between two electrodes on the applied potential difference. We shall
assume that the electrodes are flat and direct the X-axis along the normal to
their surfaces (Fig. 134). The potential of the cathode is assumed equal to zero,
(<Dc = 0), while the anode potential is denoted by U.

The main physical factor that influences the motion of electrons between the
cathode and the anode is the volume charge: the forces of interaction with this

x

d

0-----------1-----------o liT ~=o

Fig. t33. Temperature depen­
dence of the saturation current

Fig. 1.34. To the derivation of
the three-halves power law

charge hamper the motion of electrons from the cathode to the anode under the
action of the applied potential difference.

Suppose that the areas of the cathode and anode plates are sufficiently large
so that, while calculating the current density near the line connecting the cen­
tres of the electrodes, we can ignore the variation of quantities in the direction
perpendicular to this line. In other words, we shall consider a one-dimensional
problem, when all the quantities depend only on the x-coordinate. The Poisson
equation for the potential has the form \

(34.14)

where n is the electron concentration. The law of conservation of energy for the
electron drift can be written as

1.
2" mev3= lei CPt' (34.15)

where Vd is the drift velocity at the point with a potential cp. The volume cur­
rent density at this point is

(34.16)

All the quantities on the right-hand side of this equation are positive. Calcula­
ting the velocity Vd from (34.15) and substituting the result into (34.16), we ob­
tain

n lei = Iii [m./(2Iel q»]f/2. (34.17)

Taking this equation into account, we can transform Eq. (34.14) into

d2<p/dx2 = a!Vq;, (34.18)
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where a, = (I i I/eo)Yme/ (2 I e I). Multiplying both sides of (34.18) by (d<p/dx) =

;p, we obtain

.~~= a,~rv<P, (34.19)

where the dots indicate the differentiation with respect to z, Considering that

~~=(~2)·/2 and <p/Ycp=2(Yq,)-,
we write (34.19) as follows:

(34.20)

(34.21)

Now we can integrate both sides of this equation with respect to x between 0
and the value of x for which the potential is equal to <po This gives

(~) 2_ (~)2=4a,Y-
dz d:c 0 <p, f(34.22)

where we assume that <p (0) = O. TIle derivative (d<p/dx)o characterizes the elec­
tric field strength near the cathode, and a, is proportional to [, Consequently,
the volume current density i attains its maximum at (d<p/dx)o = 0 and then
[see (34.22)]

(34.23)

or
dcp Y-
q>1/4 = 2 a, dz (34.24)

Integrating both sides of this equation between x = 0, <p = 0 and x = d,
(J) = U, we obtain

3 Y­U3/ '" = 2 d ct.

Squaring both sides of this equation and considering that

a,= (Iii/eo) Y mel(2Iel),

we obtain
Iii = ~U3/2.

where

(34.25)

(34.26)

(34.27)

A.- 4eo (~) 1/2 (34.28)
1'1- 9d2 \ me •

The solution of a similar problem for coaxial cylindrical electrodes or concen­
tric spherical electrodes leads to the same form of dependence of the volume cur­
rent density on the potential difference. viz. j is proportional to U to the power
of three halves. By the way, this dependence should be expected without cal­
culation from dimensional analysis. It follows from the Poisson equation writ-
ten in different coordinate systems that the coefficient ~ in all cases has the
same dimensions.
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In the absence of volume charge between the
cathode and the anode, the variation of the po­
tential follows a linear law (Fig. 135, line 1). The
volume charge changes this dependence. Obvious­
ly, the volume charge near the cathode reduces
the forces acting on electrons in the absence of

Fig. 135. Effect of volume charge volume charge, while near the anode these forces
on the potential distribution be- are increased. The variation of the potential
tween the cathode and thp anode between the electrodes taking into account the

volume charge is shown by curve 2.
The derivation of formula (34.27) is given under the assumption that elec­

trons leave the cathode at zero velocity. However, they may leave the cathode
at a finite velocity of emission. In this case, a current will exist even when there­
is a small reverse field near the cathode. Consequently, the volume charge den­
sity m3Y change to such values at which the potential near the cathode is re­
duced to negative values. In this case, the variation of the potential near the
cathode is described by the dashed curve C.

The deviation from the three-halves power law is observed at a sufficiently
high potential difference. This deviation becomes noticeable when the volume charge­
densitu decreases so that it becomes impossible to maintai n zero electric field nr a r:

the surface of the cathode, and hence the condition (dcp/dx)o = 0 under which this­
law was obtained is violated. Upon a further increase in the field, the volume cur­
rent density becomes indepe ndent of the potential difference (saturation cur­
rent).

The three-halves power law was considered here as an illustration of the non­
linear dependence between current and voltage. It is not of universal nature and
even in the case considered above it is valid only for a comparatively narrow·
range of voltages and currents. The nonlinearity of the current-voltage character­
istic is the most important feature of many elements of radio- and electrical
engineering circuits, including the elements of solid-state electronics.

What is thermionic emissionl
What causes the saturation currentl What does it depend onl
Under what conditions are deviations from the three-halves power law observed'

Problems

5.1. The concentration of conduction electrons in copper is no = 8.5 X 1.022 cm-3. Find the­
average drift velocity of conduction electrons for the current density j = 10 A/mm l •

5.2. A charge of I Q I coulombs was passed through an electrolyte. The mobilities of ions were
b(+) and b(-). Calculate the amount of electricity carried by positive and negative ions.

5.3. Two electrolytic baths with AgNOa and CuSO4 solutions are connected in series. Cal­
culate the mass of silver liberated in the time during which 10 mg of copper are liber­
ated.

5.4. Electrolysis of AgNOs was carried out at the potential difference of 4 V. Find the electric
energy spent for the liberation of 100 mg of silver.

5.5. A conducting metallic ribbon of thickness a = 0.1 mm and width d = 5 em is placed
in a uniform magnetic field with the induction B = 1 T perpendicular to the surface of
the ribbon. The current 1 in the ribbon is equal to 1.6 A. Find the Hall voltage.
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5.6. The saturation current in a gas-discharge tube;with electrodes having a surface area
equal to 1 cm2.and separation 3 em is]sat E:: 10-7 A. The discharge is non-self-sustained.
Find the number of elementary charges of each sign induced per second in:t ems of the
tube volume.

Answers

b(- 'IQI b(+> IQI
_1, vd=O.0736 cm/s. 5.2. IQ(+>I b'-'+b<+) IQ<-)I = bl-J+b(+). lii.3. 34 mg.

4. 360 J. 5.5. 1O-~ V. 5.6. N ~ 2.1010 s-l.cm-J.



CHAPTER 6

Stationary Magnetic Field

Stationary magnetic field is due to electric currents. It cannot be
caused by the motion of an individual charge since in this case the
magnetic field is necessarily varying. Nevertheless, we can use the
superposition principle to draw a conclusion about the field created
by an individual moving charge.

Sec. 35. Ampere's Circuital Law

The differential form of Ampere's circuital law is
derived. The experimental ierification of this law is
discussed;

Formulation of the problem. As in electrostatics. we have to obtain the laws
of magnetic field in "differential form. In electrostatics this was done proceeding
from Coulomb's law and the superposition principle as experimental facts.
Their integral form is given by the Gauss theorem from which differential
equation (13.20) follows.

In the case of a magnetic field we may, in principle, proceed in a similar 'Yay,
viz. from the Biot-Savart law (10.10) or (10.11) and the superposition principle
for a magnetic field as the experimental facts. Their integral form is called AIn­
pare's circuital law (in this chapter, we shall consider it for stationary fields),
from which the corresponding differential equation can be obtained. However,
we may take another route and continue the theoretical derivation of the laws
for a magnetic field from the laws for an electric field with the help of the theory
of relativity (see Sees, 8, 9). Thus, we proceed from formula (9.28) for the mag­
netic induction due to the current flowing in an infinite rectilinear conductor,
which has been obtained theoretical lv,
The integral form of Ampere's elreultal law. The lines of the magnetic field
generated by the current flowing in an infinite thin rectilinear wire are concentric
circles with their centres at the line of the current. The value of the induct ion is
given by formula (9.28). Let us calculate the circulation of the vector B

~ n.ai
L

(35.1)
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around a certain closed contour L enclosing the current I (Fig. 136). Since the
lines of B lie in the planes perpendicular to the line of current I, the contour L
should be chosen in one of such planes.

Evaluating the integral (35.1) with the notation shown in Fig. 137a, we obtain

-<:
B.dl=Bdlcos(B, dl)=Bdl~. (35.2)

By definition, de = dl.L/r. Taking into account formula (10.3), we write
(35.2) in the form

This gives
B·dl = 2J1o L dl.l == 2

J1o I dee,
1t r 1t

(35.3)

~B.dl= :~ I ~ da==l1ol, (35.4)
J) L

where we have considered that the integral of dee over a closed contour around
the origin is equal to 2rr. Consequently, the circulation of B around a closed

Fig. 136. Calculation of the cir­
culation of vector B around a
closed contour

(b)

Fig. 137. Current 1 is perpen­
dicular to the plane of the figure
and is directed upwards. The
positive direction of circum­
vention coincides with the coun­
terclockwise direction.

contour surrounding the current does not depend on the shape of the contour and
is determined only by the current.

If a closed contour L' does not embrace the current I (Fig. 137b), we.get

~ de = 01 (35.5)
L'

( 6-0290
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(35.6)

(35.7)

(35.8)

i.e, the circulation of B around a closed contour which does not embrace the
current is equal to zero. Consequently, the obtained results can be formulated
as follows:

{
J1el (the path of integration embraces the current),

~B.dl- 0 (the path of integration does not embrace the current).
~

Suppose that we have a large number of currents and the contour embraces a
part of them (Fig. 138). In accordance with the superposition principle, the mag­
netic induction at each point of the contour is equal to the sum of magnetic in­
ductions of the fields created by each current:

B==~B,.
t

Substituting B into the left-hand side of (35.6), we obtain

SB.dl - I (~ B,) ·dl= ~ ~ B,.dl = ~ l!oIk= f1o/,
L L i iLk

where the subscript k denotes only the current embraced by contour L. The
currents which are not embraced by L make no contribution to the integral.
Consequently, the current I in (35.8) is the sum of the currents embraced by the
contour. Hence the Ampere's circuital law for the general case can be formulated
as follows:

(35.9)

where I is the total current embraced by contour L. If the total current is equal
to zero, the circulation is equal to zero as well. Such a situation is realized not
only when the contour embraces no currents but also when the embraced cur­
rents flow in opposite directions and in total are equal to zero. For example, the
circulation of B around a contour embracing two currents equal in magnitude
and having opposite directions is equal to zero. The sign of the current I in
formula (35.9) is determined in accordance with the general rule (see Sec. 14):
if the direction of circumvention of contour L and the direction of the current

are related through the right-hand screw rule, the
current I is posi tive.

Otherwise, the current I has negative sign.
Expression (35.9) of Ampere's circuital law

for vacuum in stationary case is a direct con­
sequence of relation (9.28) and can be verified
experimentally. In the above analysis, this law
was verified for the current flowing in a straight
infinite conductor. Let us show that it is alsoFig. t38. Generalization of Am-

pere's circuital law to an arbit- valid for an arbitrary current.
rary system of currents.. Differential form of Ampere's circuital law. Letins
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(35.10)

(35.11)

(35.13)

write formula (35.9) for volume currents. We denote by[S the surface enveloped
by contour L. As usual, the positive normal to the surface is connected with
the direction of circumvention of contour L through the right-hand screw rule.

The total current I flowing through this surface is given by

1= 1j.dS,
B

where j is the volume current density. Consequently, Ampere's circuital law'
(35.9) assumes the form

JB· dl = Ito Jj. as,
L B

In accordance with Stokes' theorem, the left-hand side of this equation can be
transformed to the surface integral:

JB ·dl = Jcurl B·dS. (35.12)
L S

Then (35.11) can be represented in the form

J[curl.B-ltoi]·dS=O.
B

Integral (35.13) must be equal to zero for an arbitrary choice of the surface
S. Consequently, the integrand is equal to zero and

Icurl B = ....oj·1 (35.14)

This equation is called the differential form of Ampere's eireultal law. It is
of differential nature and is valid for any point. Hence it follows that it is valid
tor an arbitrary field as well, although itl.has been,,! derived for the field gene­
rated by the current flowing in an infinite rectilinear conductor.

We can now prove that Ampere's circuital law (35.9) is valid for arbitrary
currents and not only for rectilinear ones. In order to prove this, let us take ar­
bitrary currents and draw an arbitrary surface S bounded by a closed contour
L. Multiplying both sides of (35.14) by the element dS of this surface and in­
tegrating over dS, we find

Jcurl B.dS = Ito Jj.dS. (35.15)
B S

We transform the left-hand side of this equality with the help of Stokes' theo­
rem (35.12) to the contour integral and express the right-hand side, with the
help of (35.10), in terms of the total current I crossing the surface. As a result,
(35.15) assumes the form (35.9). This proves that the law (35.9) is valid for
arbitrary currents and arbitrary contours. It should also be noted that while cal­
culating the total current with the help of formula (35.10) we can choose any

II·



244 Ch. 6. Stationary Magnetic Field

surface S streched over the contour L. Hence it
follows that Eq. (35.14) has been obtained from
Coulomb's law, the superposition principle for the
electric field, invariance of charge, and formulas
of the theory of relativity. The Biot-Savart law
in the form (10.10) or (10.11) can be obtained from
(35.14) as a solution of this equation in the ab­

Fig. 139. Rogovskii's belt. sence of currents at infinity [see (37.11c)1.
Experimental verification of Ampere's circuital

law. Ampere's circuital law can be demonstrated and verified experimentally
to a not very high degree of accuracy with the help of Rogovskii's belt. It
consists of a flexible wire spiral made in the form of a belt (Fig. 139) whose ends
are connected to a galvanometer. The operation of the belt is based on the
Faraday's law of electromagnetic induction (see Chap. 8): an electric current
appears in the circuit of the Rogovskii belt spiral upon a change in the mag­
netic. field. The readings of the galvanometer are used to determine

) n.ai,
L

(35.16)

where L is the contour coinciding with the axis of the Rogovskii belt spiral.
In order to demonstrate Ampere's circuital law (35.9), it is sufficient to use

a Rogovskii's belt in the form of a closed contour coinciding with the con­
tours Land L' (see Fig. 137). If the current is switched on, as shown in Fig. 137a,
the pointer of the galvanometer is deflected indicating that the int.egral is
equal to ~ol. In the case shown in Fig. 137b, the pointer is not deflected, which
means that the circulation of B around the contour L' is equal to zero.
The derivation of the differential form of Ampere's law by direct differentiation
of the Biot-Savart law. Formula (35.14) can be immediately obtained if we
take the curl of both sides of formula (10.11) expressing the Biot-Savart law.
On the right-hand side, this operation is applied only to the integrand since
the volume of integration does not depend on the variables with respect to
which the cur] is taken. In the integrand, j is independent of these variables
and only rand r depend on them. Taking the curl and integrating, we obtain
formula (35.14). These calculations can be made as an exercise.

It the permeability of a body exceeds the permeability of the medium, It behaves as a
paramagnetic; if it is lower than that of the medium, the body behaves 8S a diamagnetic.
The circulation of magnetic indudion around a closed contour enclosing a current does not
depend on the shape of the contour and Is determined only by the current.

Example 35. I , Using A mpere's circuital law, find the magnetic induction in a coaztal cable
which is used for transmitting a direct current (Fig. 140). The current flows in a central core of
radius rt and returns along the sheath whose inner and outer radU are equal to r2 and rs respec­
ttvely. The space bettpeen the core and the sheath is filled with a dteleetrtc,
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Taking into account the axial symmetry of the mag­
netic field, we get from Ampere's law

B=...1!:..~
2n r '

where Iris the current embraced by the circular contour
of radius r. The current density in the core is il = l/(nrl).
Hence, for 0 < r < rlt we obtain I r = ilnr2=Ir2/r¥. Con­
sequently,

B = f.tlr/(2nrf).

When rl < r < r2' we have I r = I = const, and
hence

B = f.tI/(2nr).

If r2 < r < rs, the contour embraces the reverse cur-
rent whose density is.; Fig. 140. Coaxial cable.

i2 = I/[n (ri - rl)]·

Then the current embraced by the contour for '2 < r < rs and the magnetic induction are
given by

I = I _ I r
2

- rl B =~ .( 1- r
2

- r~ )
r r~-r~ , 2nr rj- r~ •

Outside the cable, the magnetic induction vanishes.

Sec. 36. Maxwell's Equations for a Stationary Magnetic Field

Maxuiell'» equations for the special case of a sta­
tionary magnetic field are formulated. The types of
problems involved are discussed.

Equation for div B. Let us calculate div B proceeding from Iormula[ (9.30):
00

d · B Jl.ol r d· (. r ) d 'IV = -4- , IV Ix X -s x ,n .: r
-no

(36.1)

(36.2)

where the operation div is taken under the integral since the integration limits
do not depend on the variables with respect to which differentiation is per­
formed while calculating the divergence. It is expedient to write the variables
in Eq. (36.1) in the explicit form for convenience of further transformations.
Let B be the magnetic induction at the point (x, y, z), i.e. B = B (x, y, z).
The calculation of divergence is reduced to differentiation with respect to
x, y, z. We denote the running coordinates of the points of integration in the
integrand of (36.1) by x'. Then

r = i~ (x-x') + illY +izz,

r= V(x' _X)2+ y2+ Z2.
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In accordance with formula (A.15), we have

div (ia: X :. ) = ~ curl ia:- ia: curl :. = 0,

(36.3)

since the first term on the right..hand side is equal
Fig. 141. A line of force is not to zero as i x is independent of the coordinates
closed when the ratio of the (x, y, z) with respect to which the differential is
torus circumference to the spiral performed during the evaluation of the curl. The
pitch. is an irrational number.

equality of the second term to zero can be proved
by a direct calculation of curl (r/r3 ) =0. The fact

that curl (r/r3
) is equal to zero is a direct consequence of the central symmetry

of the field of vector rlr", It can be easily shown that any centrally symmetric
field is a potential field. We leave it for the reader to prove this as an exercise.

Thus, the integrand in (36.1) is identically equal to zero, and hence

I divB=O. I (36.4)

From this equation, we conclude (see Sec. 13) that the lines of B do not
have sources. This means that there are no magnetic charges which would generate
a magnetic field in the. same way as electric charges create an electric field. The
lines of B have neither beginning nor end. They are either closed or go to in­
finity. The absence of the beginnings and ends in such lines is obvious. How­
ever, there may exist unclosed lines contained in a finite region of space, which
nevertheless have no beginning and no end. Let us consider, for example, a torus
(Fig. 141), on whose surface a spiral is wound. If the ratio of the large circum­
ference of the torus to the spiral pitch is an irrational number, the field line
wi 1] never he closed and wi ll be wound around the torus an infinite number
of times. Such a line is an example of an open line which does not have a begin­
ning or end and is contained in a finite region of space. The lines of field B
of this type can be easily obtained in experiments. For this purpose, »r« must
pass the current I) along the axis of the torus, perpendicularly to its plane
and the current I 2 along the large circle coinciding with the axis of the spiral.
At a certain ratio between I 1 and 12 , the above conditions for the existence of
unc losed lines of B will be realized.
Maxwell's equations. Equations (35.14) and (36.4) form a system of Maxwell's
equations for the magnetic field generated by direct currents in vacuum:

curl B = f!oi. (35.5)
div B = O. (35.6)

The solution of these equations allows us to determine B provided that i
is known, The number of unknown scalar quantities in these equations is three
(B:x., By, B z) , while the total number of scalar equations for determining these
unknowns is four (three scalar equations obtained from the first vector equation

~, and one scalar equation (30.6)). Thus, the number of equations is larger than

-,
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the number of unknowns. This, however, does not make the system overdeter­
mined (see Sec. 58).
The types of problems involved. Using Eqs. (36.5) and (36.6), two problems
can be solved.

1. Knowing the magnetic induction, find the volume density of currents.
For this purpose, curl B must be calculated by using Eq. (36.5).
2. Knowing the density of currents, calculate the magnetic induction of the

field generated by them. For this purpose, the above equations must be solved
in unknown j's. The methods of solution of these equations will be considered
later. Here, we note that for the case when all currents are concentrated in
a finite region of space, the solution is given by formula (10.11) expressing the
Biot-Savart law:

B=: )J~ r dV. (36.7)

The complex structure of the integrand and its vectorial nature make the cal­
culations quite cumbersome. For the sake of simplification, it is expedient
to introduce the vector potential.

The equation div B = 0 shows that the magnetic field lines have neither beginning nor end:
they are either closed or go to infinity. These lines can also be concentrated In a finite
region of space, but in this case too they do not have a beginning or end. This means
that there are no magnetic charges which would create a magnetic field In the same way
as electric charges create an electric field. There are four scalar equations (36.51 and (36.6)
for determining the three components of the magnetic Indudlon vector. This, however
does not make the system of equations overdetermined (see Sec. 58J.

Give an example of a line lying entirely in a finite region of space and having neither
beginning nor end.

Sec. 37. Vector Potential

The properties of the vector potential and its gauging
are discussed. The magnetic induction of an electric
current is calculated.

The possibility of introducing a vector potential. The identity div curl 55 0
which is known from vector calculus shows that the solution of the equation

div B = 0 (37.1)
can be represented in the form

B = curl A, (37.2)

where A is the vector potential of a magnetic field.
Ambiguity of vector potential. A field with a given magnetic induction B can
be described by many vector potentials rather than by a single potential. In
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order to verify this, we shall prove that if the potential A describes a field with
magnetic induction B, another potential

A' == A + grad 'X' (37.3)

where 'X is an arbitrary function, also describes the same field B. For this pur­
pose, we calculate the magnetic induction B' of the field described by the poten­
tial A'-:

B' == curl A' = curl A + curl grad 'X = curl A = B, (37.4)

since curl grad =:0.
The ambiguity of vector potential is similar to the ambiguity of the scalar

potential in the electrostatic field theory, the only difference being that the scalar
potential is defined accurate to an arbitrary constant, while the vector potential is
defined to within {In arbitrary function of a certain class.
Potential gauging. Since the potential is chosen ambiguously, we can impose
a certain condition on it. In magnetostatics, this condition is most frequently
chosen in the form

div A = 0 (37.5)

and is called the gauging condition for the potential. Its role is similar to that
of the scalar potential in electrostatics. In particular, the arbitrariness in the
choice of the vector potential indicates that the vector potential plays only an aux­
i liary role and cannot be measured experimentally.
Equation for vector potential. Substituting (37.2) into (36.5), we obtain

curl curl A = ~oj. (37.6)

It is known from vector calculus that

curl curl A = grad div A - V2A, (37.7)

and hence Eq. (37.6) assumes the form

V2A = -~oj, (37.8)

where gauge condition (37.5) is taken into account. Let us write Eq. (37.8) in
terms of coordinates:

V 2A x = -~ojx, V 2A
y = -J1o;yl V 2A Z = -~Jjz· (37.9)

Thus, each component of the vector potential satisfies Poisson's equation (see
Sec. 15). In particular, if all currents are concentrated in a finite region of
space, then by analogy with function (14.35) which is the solution of (15.14),
we can write the solution of Eqs. (37.9) in the form

A ==~ r jx dV A =.f!. r judY A _~ r fzdV (37.10)
:c 4ft J r I 11 4ft J r ' z- 4n J r

or, in vector form

A=~ ri. dV.
4n J r

(37.118)
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(37.11b)

For a line current, we have

A=h... r Idl=~~I rj!
4nJ r 4n~'Jr'

L i L i

where L, are the contours of currents. The currents I i are generally different
in different contours. While integrating over the closed contour L, around a
particular current I i i this current can be taken out of the integral as in the sum
of (37.11b).

Having found the vector potential, we can determine the corresponding mag­
netic induction with the help of formula (37.2).
Biot-Savart law. Using (37.2), we can obtain the following expression for
the magnetic induction from (37.11a):

B (x, y, z)=-f!. r curl [ j(x', y', .I') ] dx' dy' dz',
421 J Y(X-x')I+{y_y')2+(Z-Z')2

where the coordinates of the point of observation at which the curl is calculated
and the running coordinates (x', y', z') of the integration point are WI itten
explicitly. The curl operation involves the calculation of partial derivatives
with respect to (x, y, z). Taking into account the formula curl (cpA) :=

cp curl A + grad cp X A of vector calculus, we obtain

I i 1 1·+ d 1 • j x rcur r=-': cur l gra -; X J=--;:s- ,

where curl j == 0 since j does not depend on the variables with respect to which
the curl is evaluated, and grad (1Ir) = -rlr3 • Consequently, we obtain the­
formula

(37.11c}B=~ J~dV,
which expresses the Biot-Savart law. This completes the derivation of the­
basic magnetostatic field laws from the electrostatic field laws with the help
of the theory of relativity.
The field of an elementary current. Let us calculate the vector potential and
the magnetic induction of the field created by an elementary closed current,
viz. the line current flowing around a surface with very small linear dimensions.
We shall choose the current loop in the form of a parallelogram with sides
i; i; l3 and l", (Fig. 142). We place the origin of coordinates at a point 0 of
the surface about which the current flows. The choice of the point 0 is arbitrary
since the loop and the surface are infinitely small. The potential is calculated
at the point characterized by the radius vector r. Using formula (37.11b), we·
obtain

(37.12)dl
A(r) = ~I J r'

'll2lal'

where a transition to rectilinear currents is made (j dV ~ I dl).
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I.

Fig. 143. Calculation of the
difference in the distances from
two points.

11

Fig. 142. Elementary current.

Since the sides of the parallelogram are very small. we can assume that in the
integration of (37.12) over each side, the value of r is constant and equal, for

'4
r r2 ~

example, to the distance from the point at which the field is determined to the
middle of the side. Hence [see (37.12)1,

(37.13)

Considering that 11 = -Is and 12 = -)~t we find that

~+~= 1
1
(-.!-_...!..) = 1

1
( ra-rl ) ~ II (-I•. r) = _ II (11·r) t

rl ra rl ra rlrs r l r8

(37.14)

where we have considered that higher-order infinitesimals can be neglected in
'Calculations. For example, Fig. 143 shows the geometrical constructions used
for the calculation of the second group of equalities (37.14):

r, = 11 + r l t (37.15)

whence

(37.16)

and hence

(37.17)

This gives

(37.18)
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Here we retained only the first-order terms in 11. Using the equalities of the
form (37.18), we obtain formulas (37.14). Taking into account (37.14), we
can write expression (37.13) for the potential in the form

(37.19)

In vector algebra, the following formula for the decomposition of a vector
triple product is known:

A X (B X C) = B (A·C) - C (A.B), (37.20)

which shows that the expression in the brackets in (37.19) can be represented
in the form

12 (11· r) - 11 (12· r) = r X (J 2 X 11) = (11 X 12) X r.

Considering that

(37.21)

11 X 12 = S (37.22)

is the vector element of the surface around which the current flows, we can
write (37.19) combined with (37.21) and (37.22) in the form

The quantity

A-~ ISXr
-4n r3 ·

(37.23)

IS = Pm (37.24)

plays an extremely important role in magnetism and is called the magnetic
moment of elementary current, Its magnitude is equal to the product of the
current in the loop by the area bounded by the loop. Its direction coincides with
the direction of the positive normal to the surface.

We represent the vector potential of the elementary current in the form

whence

A-~ PmXr
- 4n r 3

I B - lA-b-{ 3(Pm· r)r
-cur - 4n ri ~}·I

(37.25)

(37.26)

This formula shows that the magnetic induction corresponding to the magnetic
moment decreases in inverse proportion to the third power of the distance, while the
magnetic induction of the field of the current element decreases in inverse proportion
to the square of the distance. This is due to the fact that the magnetic induction
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(37.27)

associated with the magnetic moment is the sum
of the magnetic inductions of the fields of cur­
rent elements having opposite directions and
separated by very small distances.

,.z
Z~-----:"(r, .t)

1,12 Example 37.1. Find the vector potential and magnetic induc­
tion of the field created by a rectilinear segment of a line con-

dz' ductor of length L carrying current I.
I t is assumed that this segment is a part of a closed

o circuit. According to the superposition principle, this po-
Y tential is a summand in the total potential of the cur-

X rent flowing in the closed circuit. Consequently, its cal-
.culation has a physical meaning even though an unclosed
direct current does not exist.

_ L/2 We place the origin of coordinates at the middle of
the segment under consideration and direct the Z-axis

Fig. f44. To the calculation of along the conductor (Fig. 144). Since the magnetic field
the potential of a finite region of a rectilinear current is axisymmetric, it is sufficient
of a rectilinear current. to calculate the induction at points in the ZY plane.

We shall characterize the coordinates of a point in this
plane by the distance r from the Z-axis and by the s-coordinate. It follows from formula
(37. f 1b) that only the component A z differs from zero since the current flows in the direc­
tion of the Z-axis. Hence

L/2
~oI r ds' f.to l [ -z+L/2+[(z-L/2)2-t-r2)1/2 ]

Az = 4;t J [{Z-Z')2+ r2]1/2 = 4n In -(z+L/2)+[(z+L/2)I+ r2)1/2 •
-L/2

The magnetic induction can be calculated by the formula

B = curl A,

which should be written in cylindrical coordinates. The only nonzero compo­
nent of magnetic induction B is Brp where cp is the axial angle of the cylindrical
system of coordinates. This component is given by

Brp = -fJA zlfJr. (37.28)

At the points on the plane ZY in the figure, the component Brp is perpen­
dicular to this plane and is directed towards negative values on the X-axis.
Using formula (37.28) together with (37.27), we get

JA-oI [-Z+L/2 z+L/2 ] (37 29)
BfP= -OA,,/or = 41Cr [r2+(z-L/2)2]1/2 + [r2+(s+L/2)2)1/2' •

For a very long straight conductor, we find from (37.27) and (37.29)

Az (L -+ 00) = - ~~ In r +const, (37.30)

BfP (L-+ 00) = ~~~ . (37.31)

Example 37.2. Find the vector potential and the magnetic induction created by the current flowing
in a coaxial cable (Fig. 140), assuming that the material of the conductors and the space between
them are nonmagnetic.
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(37.33)

(37.34)

The potential satisfies Eq. (37.8). In view of axial symmetry, it is convenient to use the
cylindrical system of coordinates, whose Z-axis coincides with the axis of the cable. Obvious­
ly, the potential does not depend on .z and the axial angle q>, i.e, A = A (r). Besides, if only
the component i z of the current density differs from zero, then the required component A;
of the vector potential will have a nonzero value. Let us denote this component by A and
use the subscripts indicating to which region this component corresponds, viz. AI' A 2 , A a,
and A 4, are the vector potentials in the regions (0, rl), (rlt r2), (r2' ra), and (ra' (0) respec­
tively. Then [see (37.8)]

V2A =.!.~ (r dA 1 )=J.101 (O<r<rl),
1 r dr dr nrl

V2A 2 = O (rl <r<r2).

V2Aa= .!.~ (r dAa ) ==: - J.101 (r2 < r < ra), (37.32)
r dr dr n (rj-r~)

V2A
4 = O (ra<r<oo),

where
ii = II(n1), i2 = 0, ia = I/[rI- 711, if, = O.

The solution of Eqs, (37.32) is given by

""olrl
A1 = - 4nr' +C11nr+C2 (O<r<rl),

42=Cs ln r + C, (Pl<r<r2),

A - 1-101r
l

+Csln r+Ce (rl < r < ra),s- 4n (rj-ri)

A4= C71n r+Cs (r8 < r < 00).

We find the magnetic induction from the formula B = curl A, which in the case under
consideration is reduced to the expression Bep = -{JAI{Jr.

Since B <p is the only nonzero component of the magnetic induction, the subscript q> will
be omitted in the further analysis. The subscripts will indicate the regions to which the value
of B corresponds. Then

B _=J.1oI r _ Ci
l-12nrl r·

Since B 1 is finite for r = -0, we conclude that Ci = O. We choose for the normalization
condition Al (0) = O. This gives C2 = 0, and hence the equations for A 2 and B 2 assume the
form

(37.35)

For the region rl < r < r2t we obtain

B.== -Calr. (37.36)

Using the boundary conditions for B and considering that u = flo, we obtain B 2 (rl) =
8 1 (r1) = -Cs/rl = ""011(21trl)' Consequently, Ca = -floII(2n).

Let us write the continuity equation for the vector potential for r=ri in the form CaIn rl+
C4, = -""011(41t), which leads to the equation Cf, = -flQI I (41t) + rf.toII(21t)] In rl' Hence
the equations for the vector potential and the magnetic induction for rl < r < r2 become

(37.37)
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(37.38)

(37.39)

The magnetic induction In the cable sheath (T2 < r < Ta) Is given by

B == _ 8Aa _ J1o/r eli
a or - 2n (rl-r~) r

Using the boundary conditions B 2 (r2) c= B a (rl) and A 2 (r.) = A a (r2), we obtain

C,,= _ Jlo/rl •
2n (ri-rl)

C - - ""01rl + J101r~ In r; _ flo/ In.!:!-
1- 4ft (rl-r~) 2n (rl-rl) jIj 2n rl'

whence

Aa= _ flo/ [rl-r2 + 2rl In-!"'-+2In2:!.J '
4n rl-r~ ri-r~ r2 rl

B
a

Jlo/ (rl- r l )

2nr (rl-ri) -

Using the boundary conditions for T c:: ra, we find the following equations for the vector
potential and magnetic induction for ra < r < 00:

A = - Jlo/ [ rJ In !J!..+ In .!:!-] = coast,
4 2n rl-r~ r2 rl

B,=o.

Sec. 38. Magnetic Field in the Presence of Magnetics

The influence of a magnetic on the magnetic field and
various mechanisms of magnetization are considered.
The relation between the volume and surface densities
of molecular currents and the magnetization is derived.
The phenomena at the interface between magnetics
are discussed and the measurement of magnetic induc­
tion in a magnetic is considered. The essence of mag­
netic screening is elucidated.

Definition. Magnetics are substances which, upon being introduced into an external
magnetic field, change so that they themselves become sources of an additional mag­
netic field. The total magnetic induction in this case is the sum of the inductions
of the external magnetic field and the magnetic field generated by the mag­
netic. The change in the state of a magnetic under the action of an external mag­
netic field, as a result of which the magnetic itself becomes a source of a mag­
netic field, is called magnetization of the magnetic. This phenomenon was
experimentally discovered in 1845 by Faraday for a wide class of materials.
He also established the existence of dia- and paramagnetic bodies for which he
Introduced these terms.
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Mechanisms Df magnetization. There are several mechanisms of magnetization.
Accordingly, magnetics are du.ided into dia-, para-, [erro-, and ferrimagnetics.
Antiferromagnetics also belong to magnetics although they do not create a magnetic
field in the space surrounding them (see Chap. 7).

In all cases, the intensity of magnetization is quantitatively characterized
in a similar way. In other words, under the action of a magnetic field, all volume
elements acquire a magnetic moment. This can be realized through the following
mechanisms.

1. When a magnetic is introduced into a magnetic field, the motion of elec­
trons in atoms and molecules varies so that a total circular current oriented
in a certain way appears. This current is characterized by a magnetic moment
[see (37.24)]. It can be said that the molecules of the magnetic introduced into the
magnetic field acquire an induced magnetic moment. As a result, they become the
sources of an additional field whose induction is defined by formula (37.26),
i.e. the substance is magnetized. Such substances are called diamagnetics.

2. The motion of electrons in molecules can be such that the molecules will
have a magnetic moment even in the absence of a magnetic field, i.e. the mole­
cules possess a permanent magnetic moment. Owing to this, each molecule is
a source of a magnetic field. In the absence of an external field, the magnetic
moments of different molecules are oriented quite randomly so that the total
magnetic induction of the field created by them is equal to zero. In other words,
infinitely small elements of th« body are not the sources of a magnetic field, and
the body is not magnetized. When such a magnetic is introduced into an external
field, the permanent magnetic moments of individual molecules are reoriented in
the direction of the magnetic induction of the field, as a result of which the preferred
direction of orientation of magnetic moments is singled out. In this case, infinitely
small physical volumes acquire a magnetic moment equal to the sum of mag­
net.ic moments of molecules contained in the volume and become the sources
of a magnetic field. The magnetic is magnetized. Such materials are called
paramagnetics.

3. Magnetization of ferro- and ferrimagnetics i~ due to the fact that elec­
trons have a magnetic moment which is in a certain relation with their intrinsic
angular momentum, viz., the spin. Magnetization of this class of magnetics
is associated with a certain orientation of spins and is called the spin mag­
netization. The explanation of spin magnetization is beyond the scope of the
classical theory of electricity and magnetism and is possible only in the frame­
work of the quantum theory. For this reason, in this book we shall only
describe the 'most important properties of this class of magnetics without
presenting a quantitative theory. The theory of magnetic field in the presence
of magnetics considered below refers only to dia- and paramagnetics unless the
opposite is stipulated.
Magnetization. This quantity is defined as the ratio of the magnetic moment
of an elementary physical volume to this volume:

J= t}v ~ Pmh (38.1)
AV
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where ~V is the "elementary volume and Pmi are
the magnetic moments of molecules. The sum­
mation is performed over all the molecules in
volume ~V.

In other words, definition (38.1) of magnet­
ization can be formulated as follows: magnet­
ization is the volume density of the magnetic mo­
ment of a magnetic. It follows from (38.1) that the
magnetic moment of a volume element dV is
given by

dpm = J dV. (38.2)

Vector potential in the presence of magnetics. I t is equal to the sum of the
potential Ao created by the conduction currents and the potential Am created
by the magnetic as a result of magnetization:

Fig. 145. To the derivation of
the expression for the volume
density of molecular currents.

A = Ao + Am.

On the basis of (37.11), (37.25) and (38.2), we can write

(38.3)

(38.4a)

A -~ r JXr dV
m-4n J r3 •

(38.4b)

Volume density of molecular currents. It was mentioned above that the appear­
ance of magnetic moments is associated with the presence of circular currents.
The currents creating magnetic moments of the required magnitude in element­
ary volumes are called molecular currents. However, it would be wrong to attach
a too literal meaning to this expression. In a strict sense of the term, molecular
currents may flow only within molecules. While defining magnetization and
other quantities, averaged quantities are meant, owing to which the magnetic
.moments of molecules are as if continuously smeared over the entire volume and
molecular currents are assumed to flow over the volume of a magnetic as in a con­
tinuous medium. Nevertheless, the term "rnolecular currents" was retained for
them.

Let us consider a very small closed contour L bounding ~S (Fig. 145) and
calculate the circulation of the magnetization around the contour:

(38.5)

where J't is the tangential component of J along the path of integration. It is
created at the expense of current flowing in closed contours around the line
along which the integration in (38.5) is performed (Fig. 145; fJS is the area
over which the current flows in the plane perpendicular to the line of inte-
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(38.8b)

gration). Multiplying the numerator and deno­
minator in (38.5) by fJS, we make the following
transformations:

1r, dl = 1/-c d~~S = ~ J6; V = 1d~s-c , (38.6)
L L L L

where we took into consideration formula (38.2). Fig. 146. To the derivation of
From the definition of the magnetic moment, we the formula for the surface den-

sity of currents.
obtain dpm't = fJ!fJS (fJ! is the current flowing
around the area element fJS over the length dl, fJ! intersecting f,Sl:along the
normal). Hence,

)d:s"' = ) ll~:S = 1M =Aln, (38.7)
L L L

where tl!n is the normal component of the current crossing the area element tlS.
Thus, taking into account (38.6) and (38.7), we represent (38.5) in the form

JJ · dl = AIne (38.Sa)
L

Let us find the component of curl J in the direction of the normal to the area
element tlS. Using the definition (14.6) for the curl and Eq. (38.8a), we obtain

SJ ·dl
1 J I· L I' 11[n •cur n = im -~= im ~=lmn.

6S~O 6S~O

The quantity

· I' 111n
lmn== im~

6S~O

(38.9)

is obviously the normal component of the density of molecular currents since
precisely these currents are responsible for the magnetization. Equation (38.8b)
is valid for an arbitrary orientation of the area element tlS, i.e. for any com­
ponents of curl J and Jm • Consequently, the following vector equation holds:

im = curl J. (38.10)

This formula gives the expression for the volume density of molecular cur­
rents which generate magnetization J.
Surface molecular currents. Molecular currents may also flow over the interface
between magnetics or over a magnetic-vacuum interface.

Figure 146 shows the interface between magnetics 1 and 2. All quantities
referring to magnetics 1 or 2 are marked by the subscript 1 or 2. Let us draw
a contour L in the plane perpendicular to the interface. The parts of the contour
parallel to the interface are equal to l, while the perpendicular parts are very
small and tend to zero. This contour bounds the area S of the surface perpen­
dicular to the interface between the magnetics. Suppose that the element dS

17-0290
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of this area is directed away from us for a chosen direction of circumvention
of the contour. Multiplying both sides of (38.10) by dS and integrating over S,
we obtain

1curlJ·dS= 1jm· dS.
s

(38.11)

The left-hand side of (38.11) can be transformed in accordance with Stokes"
theorem to the integral around the contour L, which gives

1curl J -es = JJ ·dl = (J2'f - J1'f)l +(Jhat ill1att (38.12)
L L

whet e J 1 T. and J 2 T. are the magnetization components in the first and second
media, which are tangential to the path of integration. The minus sign of J 11:

has appeared because of the reversal of the integration path in the second me­
dium. The quantity (J )lat~llat takes into account the integrals over the ver­
tical parts of the path. There is no need in writing these integrals in detail since­
they vanish as the horizontal regions of the integration path are contracted­
to the surface. The right-hand side of (38.11) gives the projection of current
onto the direction of the normal to surface S. This direction is also tangential
to the interface between the magnetics, and hence

1jm· dS = illm.surr- (38.13)

Taking into account (38.12) and (38.13), and dividing Eq. (38.11) by l, we
obtain

(38.14)
where

im.surt = ~Im.surf/ l (38.15)-

is the projection of the surface current density onto the direction perpendicular­
to surface S. Contracting in (38.14) the contour to the surface (~llat -+ 0),
we obtain

(38.16}

This formula is valid for an arbitrary orientation of the contour relative to
different directions along the interface. Consequently, it is more convenient
to write it in vector form. Let us denote by n the unit normal to the interface,
which is directed into the second medium (Fig. 147). It is clear from Fig. 147
and from the meaning of the quantities appearing in the above formulas that.
expression (38.16) can be written in vector form as follows:

i m = n X (J 2 - J1) . (38.17)

Uniformly magnetized cylinder. By way of an example of calculation with
the help of formula (38.17), let us find the surface density of molecular current
in a uniformly magnetized cylinder (Fig. 148), which can be realized in the
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form of a permanent magnet. Although the nature of ferromagnetism explain­
ing the existence of permanent magnets cannot be understood in the framework
of the classical theory of magnetism, the field created by magnetized ferromag­
netics in space can be described with the help of the classical theory. In this case,
magnetization of a ferromagnetic which is assumed to be known is considered to be
a source of a magnetic field in the same sense as the magnetization of dia- and para­
magnetics is a source of a magnetic field. The magnetization of dia- and paramag­
netics exists only in the presence of an external field. The magnetization of ferro-

Fig. 147. To the derivation of
vector form of the expression
for the surface density of molec­
ular currents.

Fig. 148. Surface molecular cur­
rents flowing over a uniformly
magnetized cyIinder.

magnetics is retained in the absence of an external field, and the field generated by
this magnetization exists independently. The problem consists in the description
of this field.

A uniformly magnetized cylinder can also be imagined as a dia- or paramag­
netic placed in an external field which ensures constant magnetization with
a sufficient degree of accuracy. In this case, the induction of not the total field
but only its part associated with magnetization is determined in the space out­
side the cylinder.

The magnetlsation J 1 of the cylinder is shown in Fig. 148 by the arrow.
In vacuum J 2 = 0, and the normal n to the interface is the outward normal
to the cylinder. In accordance with formula (38.17), the surface density~of the
molecular current flowing over the cylinder is given by

i m = -n X J1 = J1 X n. (13.18)

One of the lines of this current is shown in Fig. 148 by the circle with the
arrows. Obviously, magnetization J1 forms a right-hand screw system with the
current flowing over the surface of the cylinder. Formula (38.10) shows that
there are no molecular volume currents inside the cylinder since curl J 1 = o.
Consequently, the entire field outside the cylinder is created by the surface
currents flowing in circles. Thus, we have proved the equivalence of the field
of a permanent cylindrical magnet and the field of circular currents (the field
of a solenoid). This statement is valid for all magnetics, including ferromag­
netics.
17·
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where

Magnetic field strength. In the absence of magnetics, the following relation
is valid:

curl B == floj.

This relation describes the generation of a magnetic field by conduction cur­
rents. In the presence of magnetics, a field is generated by molecular currents
irn and by conduction currents j [see (38.10)]. Consequently, in the presence of
magnetics Eq. (38.18) can be written in the form

curl B = J.10 (j + jrn) = ""'0 (j + curl J). (38.19)
Dividing both sides of this equation by flo and transferring curl J to the left­

hand side, we obtain
curl (B/,...,o - J) = i, (38.20)

H == B/flo - J (38.21)
is the magnetic field strength. I t is not a purely field quantity, since it includes
vector J which characterizes the magnetization of the medium. Hence, the vec­
tor H plays in the magnetic field theory the same role as the vector D in the electric
field theory, and the term field strength applied to it is not quite correct. Never­
theless, this term is historically used for this quantity.
Equation for the magnetic field strength. Taking into account (38.21) we can
write Eq. (38.20) in the form

curl II == j. (38.22a)

This is a very convenient equation for calculating the magnetic field in the
presence of magnetics.

In the presence of magnetics, Ampere's circuital law is derived in the same
way as in the absence of magnetics, viz. by proceeding from (35.14) with a subse­
quent transition to (35.15):

) H.dl=I. (38.22b)
L

Relation between magnetization and magnetic field strength. For the same
historical reasons as those concerning the term magnetic field strength for the
vector .H, this vector and not B was assumed to be the source of magnetiz­
ation. Hence the relation between J and H is represented in the form

J = XH, (38.23)
where X is the magnetic susceptibility. The relation between Band H is usu­
ally written in the form

B = J.1H, (38.24)

where J.1 is the permeability of the medium. These quantities do not depend
on Band H in the case of dia- and paramagnetics. In order to find the relation
between X and f.L' we substitute (38.23) and (38.24) into (38.21) and cancel H
from both sides of the tobained relation:

1 = J-t/J-t, - X, (38.25)
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or
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x = (11 - 110)/1-10 = I1r - 1, (38.26)

where I-1r = ll/llo is the relative permeability of the medium. It should be noted
that in the Gaussian system of units, the permeability is expressed by a num­
ber equal to 1/4n of the corresponding value in SI.

Different mechanisms of magnetization lead to different dependences of J on H
(see Chap. 7). Here, it should only be noted that magnetization in diamagnetics
is directed against H. In diamagnetics X< 0 [see (38.23)], and hence, in accord­
ance with (38.26), the permeability f.1 < llo (u., < 1). This means that the field
generated by a diamagnetic is directed against the initial field, i.e. a diamag­
netic weakens the external field. The magnitude I X I of their susceptibility is
very small (of the order of 10- 5) . The magnetic susceptibility of diamagnetics
is independent of temperature. Diamagnetism is exhibited in all substances.

In paramagnetics, J coincides in direction with H. In this case, X> 0, II > llo
and I-1r > 1. The additional field in paramagnetics coincides with the initial
one. Consequently, a paramagnetic strengthens the field. The susceptibility 'X
of paramagnetics is temperature-dependent. At room temperature, the paramag­
netic susceptibility of materials in the solid state is of the order of 10-3 , t.e. is two
orders of magnitude higher than the diamagnetic susceptibility. Consequently, the
role of diamagnetic susceptibility in paramagnetic materials is small and can
be neglected.

In [erromagnetics, the vector J is directed along H and has a very large mag­
nitude. For these materials, 'X ~ 1 and II ~ 1-10. A typical feature of ferromag­
netics is that the values of X and 1-1 depend on the field and the past history of
magnetization. For this reason, they exhibit residual magnetization, i.e. the
magnetization of a sample, on the whole, is preserved even after the external field
has become equal to zero. In their formal properties, [erromagnetics are similar to
ferroelectrics (see Sec. 23).
Field in a magnetic. In vacuum, J = 0 and formula (38.21) allows us to: define
the magnetic field strength in vacuum by the equation Ho = B/Ilo. The con­
duction currents generate- a field H in an infinite homogeneous magnetic [see
(39.22)]. Equation (35.14) can be written in the form

curl H, = j. (38.27)

A comparison of (38.22) with (38.27) leads to the conclusion that identical
conduction currents excite identical magnetic fields in vacuum and in an in­
finite homogeneous magnetic

H = n, (38.28)

Consequently, the magnetic inductions B in a magnetic and Bo in vacuum are
connected through the following relation:

B = IlBo/l-1o = I-1rBo. (38.29)

This relation shows that the magnetic induction in diamagnetics is smaller
than its counterpart in vacuum (I1r < 1) and larger in paramagnetics (Ilr > 1).
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If all magnetics and conduction currents are located in a finite region of space
and both the conduction currents and magnetizations of all the magnetics are
defined as position functions [J = J (x, u, z)l, the magnetic induction may,
in principle, be found in a fairly simple way. The vector potential can be re­
presented in the form of formulas (38.3), (38.4a) and (38.4b) which can be writ­
ten in a more convenient manner. It can be said that the vector potential A
is the sum of the potentials created by conduction currents (38.4a), molecular
currents (38.10) and surface molecular currents (38.17). All these currents create
potentials in accordance with the same law (38.4a). Hence, the formula for the
potential has the form

(38.30a)

(38.30b)

where the last integral takes into account surface molecular currents, and S
corresponds to the sum of the interfacial areas between magnetics.

However, the simplicity of determining the potential with the help of (38.30a)
is apparent since the potential can be found if only J is known. This quantity
is, however, unknown in many cases and its determination is fraught with
considerable difficulties.
Permanent magnets. These materials are either ferro- or ferrimagnetics, and
hence the theory described above is inapplicable to them. Nevertheless, the for­
mulas obtained above can be formally used for calculating the potential of the field
created by permanent magnets in the surrounding medium. The magnetic prop­
erties of permanent magnets, as well as of magnetics, are characterized by their
magnetization Jp which generates the field in the same way as if it were the
magnetization of a dia- or paramagnetic. Consequently, using formula (38.30a),
we can write the following formula for the vector potential generated by a per­
manent magnet:

A =~ r curlJp dV+~ r JpXD as,
p 4n J r 4n J r

V B

In particular, if the magnetization of a permanent magnet is uniform over the
entire volume, the first term in (38.30b) vanishes, and the entire magnetic
field is as if created by currents flowing over the surface of the magnet in accord­
ance with the second integral. However, there are no real currents flowing
over the surface of a permanent magnet. In the case under consideration, they
are just auxiliary quantities for calculating the field strength. The physical
content of the auxiliary nature of these quantities can be grasped from the
following example. Suppose that we have a permanent magnet in the form of a
long cylinder, creating a certain field in the surrounding space. By an appropri­
ate choice of current in a cylindrical solenoid of the same length and diameter
with a sufficiently tight winding and a para- or diamagnetic core, we can create
a field in the medium surrounding a magnetic whose magnetic induction will
practically coincide with the induction of the field of the permanent magnet.
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The current flowing in the solenoid through thin
wires can be treated as a surface current flowing
over the surface of the permanent magnet. This is
the mathematical meaning of the second term
·on the right-hand side of (38.30b). The fictitious
nature of this current is revealed when the question
about the field in a magnet and in a solenoid is
considered. These fields turn out to be different.

When permanent magnets are considered, the
equation div B == 0 for magnetic induction re­
mains unchanged, while the equation relating Fig. 149. Magnetic field in the
the induction with the magnetic field strength presence of a ferromagnetic.
somewhat changes. A permanent magnet is an
additional source of the magnetic field, and hence we must write the equation

B = ~oH + ~oJ + floJp, (38.31a)

instead of (38.21), where Jp is the magnetization of the permanent magnet. Con­
ai der ing that ~oH + floJ = flH, we obtain

B = f.!H + f.!oJ p • (38.31b)

It should be noted that fl in this formula is only the diamagnetic and para­
magnetic permeability of a substance rather than the. ferromagnetic permeability
that has already been taken into account by the term floJp. Consequently, if
we treat J tot as the total magnetization (J t ot = J. + Jp) , it is more convenient
to represent (38.31a) in the form

B = floH + f.!oJ tot . (38.31c)

Let us consider, for example, a permanent magnet in the form of a plane plate
of a finite thickness and infinite area (Fig. 149). The permanent magnetization
J p is normal to the surface of the permanent magnet. Dia- and paramagnetic
properties of the permanent magnet are disregarded.

Suppose that outside the permanent magnet, a magnetic field of strength H,
is perpendicular to its surface. The magnetic induction of this field inside and
'Outside the magnet is the same: B = f.!oHo. Then [see (38.31c)], f.!oHo = f.!oH +
JtoJp. Hence the magnetic field strength inside the permanent magnet is
(see Fig. 149)

H = Ho - J p •

Boundary conditions for the field vectors. Vectors Band H undergo abrupt
changes at the boundary between magnetics with different values of f..t' which
are characterized by the boundary conditions. In order to derive these con­
ditions, we proceed from Eqs. (36.4) and (38.22) which are valid for vacuum as
well as for a medium filled with a magnetic. The procedure for deriving the
boundary conditions is precisely the same as in the case of an electrostatic field
[see Sec. 17, (17.21) and (17.30}l.
The boundary condition for the normal component of vector B. This condition
is derived in the same way as (17.21) is derived by proceeding from (17.17),
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but instead of (17.17) we now use the equation

div B = O. (38.32)
This gives

(38.33)

The boundary condition for the tangential component of vector H. It is derived
in the same way as (17.30) is derived from (17.29), but instead of (17.29), the
following equation should be used: -

J H.dl=1j·dS, (38.34)
ABCD~ B

which is obtained from (38.22) by multiplying both sides by dS and integrating
over the area bounded by the contour A BCDA (see Fig. 83), having transformed

A D
Fig. 151. Field of a very long
solenoid.

Fig. 150. Measurement of mag­
netic induction with the help of
Faraday's law.

B,.--...,C
H::= 0

H = 0

its left-hand side in accordance with Stokes' theorem. As a result, we obtain

I Hh-Hn=isurt, I (38.35)

where i sur t is the surface current density in the direction perpendicular to that
of the tangential components of the magnetic field strength. It should also be
kept in mind that these are surface conduction currents rather than surface
molecular currents i m [see (38.16)].
Refraction of magnetic field lines. At the interface between magnetics, the
lines of force experience refraction which is determined with the help of the
boundary conditions in the same way as it was done in the analysis of formula
(17.31).
The measurement of magnetic induction. The most visual and simple method
for measuring magnetic induction is based on the application of Faraday's
law of electromagnetic induction. If a small conducting loop (Fig. 150) con­
nected to a galvanometer is oriented in a plane perpendicular to B and then
rotated through 90° about an axis lying in this plane, the galvanometer will
register a current pulse which can be used for determining B in the region of
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the loop (see Chap. 8). This method is used for measuring the average magnetic
induction on the area bounded by the loop. Instead of rotating the loop, we can
switch off the field.
The fields of 8 very long solenold'and a uniformly magnetized very long cylinder;
Suppose that a field is created by a current flowing in the winding of a very long­
solenoid (Fig. 151). The number of turns per metre of the solenoid, the current
and the permeability of the core are denoted by n, I, and J.1 respectively. The­
magnetic field is axially symmetric and can only have a component parallel
to the axis of the solenoid (the turns are wound very tightly).

In order to find the magnetic field strength, we shall use Eq. (38.22a). Inte­
grating along the contour ABCDA , we get

) H· dl = 0, (38.36);
ABCDA

since the currents at the opposite ends of the solenoid flow in opposite directions.
Hence the total current through the surface stretched over the contour ABCDA
is equal to zero. The contribution to the integral from integration paths Be
and DA is equal to zero since the vector H can be only normal to segments AB­
and CD:

HBCl - HADl = 0, (38.37)

where HBc and HAD are the field strengths on BC and AD, l being the length
of these segments. The minus sign is due to the fact that the paths of integration
are opposite on these segments. Stretching the contour along AB and CD by­
moving, for example, AD away from the cylinder, we notice that for (38.37)­
to be identically equal to zero, H must be independent of the distance, i.e,
it must be constant outside the solenoid. At an infinitely long distance from­
the solenoid, the field is absent, and hence it is absent in the entire space out-­
side the solenoid.

In order to determine the field strength inside the solenoid, we apply law
(38.22a) to the contour AB]C1DA (Fig. 151). The integral differs from zero­
only on the segment BIC I, and hence

H BICll = «u, (38.38)-

since the surface bounded by the contour ABtCIDA is intersected by nl turns,
carrying current I. Formula (38.38) shows that the field inside the solenoid is"
uniform and its strength is equal to

H = nI. (39.39)'

This formula allows us to measure the magnetic field strength in ampere­
turns, which is widely used in electrical engineering. According to this formula,
the magnetic field strength inside the solenoid does not depend on its material'
and, other conditions being equal, is the same for all materials. Taking into­
account (38.24) and (38.39), we obtain the following expression for the magnetic"
induction of the field inside the solenoid:

(38.40), r
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which shows that it depends on the core material. The magnetic induction in
.a hollow solenoid is larger than for diamagnetics and smaller than for paramag­
netics.

The magnetic induction of the field of a very long uniformly magnetized
-cylinder can be found in a similar way, the only difference being that in this
-case there are no surface currents. Relation (38.37) remains unchanged, and
the magnetic field strength outside the cylinder is equal to zero as in the case
-of a very long cylinder. Instead of formula (38.38), we obtain HZ = 0 or H = O.
'This means that the magnetic field inside a very long uniformly magnetized

Fig. 152. Measurement of the
magnetic field strength in a
magnetic.

Fig. 153. ~easurement of th~

magnetic induction in a mag­
netic.

-cylinder is equal to zero, while for the solenoid it differs from zero. However,
the magnetic induction inside the cylinder is not equal to zero (B = floJ).
If the length of the cylinder is finite, the magnetic field strength has nonzero
values inside as well as outside the cylinder.

'The measurement of permeability, magnetic induction and the field strength
.inside magnetics. Suppose that we have a very long solenoid whose core has
a very narrow channel along its axis (Fig. 152). The field inside the solenoid
is created by passing a current in the winding. A measuring coil connected to
a galvanometer is introduced into the channel. Boundary condition (38.35)
shows that the magnetic field strength in the channel is equal to that in the
magnetic. The magnetic induction in the channel is given by B" = floH. It
-can be measured by rotating the coil through 90° or by switching on the field.
The field strength inside the magnetic is calculated by the formula

H = Bo/flo. (38.41)

In order to measure the magnetic induction in the magnetic, we make
a very small transverse cut in a very long solenoid (Fig. 153). Boundary con­
dition (38.33) shows that the magnetic induction B.L in this cut is equal to
the induction B in the magnetic. Consequently, it is sufficient to measure the
magnetic induction in the transverse cut.
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If we know the magnetic induction and field
strength in a magnetic, we can determine the
magnetic permeability:

!-t = B/H = !-toBl./BII· (38.42)

A magnetic sphere in a uniform field. Suppose
that a sphere of radius R made of a magnetic
having permeability f..Ll is placed in an infinite
medium having permeability f..L2' in which a uni­
form magnetic field of strength H, is created
(Fig. 154a, b). We shall determine the magnetic (a)
field strength in the sphere and outside it. It ~2

is assumed that conduction currents are absent. ~
In this case, Eq. (38.22) has the form ~---~

curl H = 0, (38.43)
i.e. in the space without conduction currents, the
tnagnetostatic field is a potential field. No con-
duction currents flow inside the sphere and outside Ill. > 112

it, and hence we have a potential field over the (b)

entire space. Let us denote the potential of this Fig. 154. A magnetic sphere in
field by CPm· Then a uniform magnetic field.

H = -grad <Pm. (38.44)
For a homogeneous medium (!-t = const), the equation div B = 0 is equiva­

lent to the equation
div H = O. (38.45)

Substituting (38.44) into (38.45), we obtain the following equation for all
points outside the sphere (fl2 = const) and for all points inside it (~ll = const):

V2<pm = o. (38.46)

Thus, the magnetic field potential satisfies the Laplace equation.
It should be noted that if the permeability is not constant, we obtain another

equation instead of (38.46). For its derivation, we take into account Eq. (38.21)
which can be written in the form

B = !-toH + f..LoJ. (38.47)

Taking the divergence of both sides of this equation, we obtain

div B = flo div H + !-to div J = -flo div grad <Pm + !-to div J = 0, (38.48a)

where we took into account relation (38.44) and the equation div B = O. Con­
.sequently, the equation for the potential <Pm has the form

V2<p m = div J, (38.48b)
which considerably complicates the solution of the problem for a magnetic with
a varying permeability.

Let us place the origin of coordinates at the centre of the sphere and direct
the polar axis of the spherical system of coordinates along H o• In view of the



268 ell. 6. Stationary Magnetic Field

Fig. 155. Magnetic screening.

(38.49)

(38.51)

(38.50)

axial symmetry, the Laplace equation (38.46)­
assumes the form (17.42). This equation should.
be solved under the boundary conditions (38.33)­
and (38.25) on the surface of the sphere, which
are completely identical to the boundary condi­
tions for D n and E'( [see (17.42)]. Since there are
no surface conduction currents, we can put~

isurf = 0 in (38.35). Consequently, the solution
of this problem is similar to the solution of the
problem about a dielectric sphere in a uniform

magnetic field. We must just make in the solution of Eq. (17.42) the fol­
lowing substitution: <P ~ <Pm' E -+ H, D ~ B, and e -+ fl.

The magnetic field strength inside the sphere is constant and in analogy with
(17.51) is given by

H 3~2 H
1z= +2 o·J.tl ~2

This is the sum of the external magnetic field strength H 0 and the magnetic
field strength created by the sphere as a result of its magnetization. The field
created inside the sphere due to its magnetization is called the "demagnetizing
field H d em". This term is conditional since there is no demagnetization at all ..
Rather, the magnetic is magnetized in an external field, thus leading to the
creation of an additional field which is added to the initial field. But since the
term for the field H d em has already been established, we have to use it. Then

H - H H - ~2 - J11 H
dem - tz - 0 - J11+2J.12 o·

This expression can be written in a different form. Combining (38.26) and
(38.23), we obtain

J 1 = (fll/flo - 1) H t z , J 2 = (~2/f.to - 1) H o'
whence

J -J - (J.t2-J.tl) (J.tO+2~2) H (38.52}
2 t - J.to (J.tl+2J.12) o·

Consequently, formula (38.50) can be written as follows:

H d em = [f.to/(f.to + 2fl2)] (J 2 - J t ) · (38.53)

In particular, if a sphere is in vacuum, f.t2 = f.to and J 2 = O. Hence

H dem = -J1/3.

Magnetic shielding. I t follows from (38.50) that for f.tl > ~2 the magnetic
field inside the sphere is weakened, i.e. the sphere as if screens its interior from
the external magnetic field. If we calculate the induction of the field inside the
cavity surrounded by the shell made of a magnetic with a sufficiently high per­
meability f.tl' it turns out that the magnetic lines are concentrated mainly
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in the shell (Fig. 155), without penetrating into the cavity. This means that the
shell made of a magnetic with a high f.1 operates as a screen which does not allou: the
magnetic field to penetrate into the space bounded by the shell.

In the literal sense, molecular currents may flow only within molecules. However, in the
continuous medium model we consider the quantities averaged over Infinitely small
volumes. For this reason molecular currents are visualized as flowing In the volume of a
-magnetic as a continuous medium.
In its content, the magnetic field strength plays the same role In the magnetic field theory
.as the displacement in the electric field theory.
In diamagnetics, the magnetization is direded against the magnetic field strength, and the
magnetic indudion of an external field decreases.
In paramagnetics, the magnetization Is dlreded along the magnetic field strength, and
1he magnetic Induction of an external field is enhanced.
The classical theory is unable to explain ferromagnetism, but It can explain the magnetic
field outside a ferromagnetic if its magnetization Is considered to be known.

Which quantity in the electric field theory corresponds io permeability 11 in the magnetic
field theory?
Why cannot molecular current be represented as flowing only inside the molecular volume?

Why is the diamagnetism of paramagnetics insignificant in comparison with their para­
magnetism? Give quantitative estimates.
How can the magnetic induction of the magnetic field inside a magnetic and the magnetic
field strength be measuredl

Explain why H in the theory of magnetic field plays the same role as D in the electric
field theory.

Fig. 156. To the calculation of
the magnetic field created by
the current flowing in a cir­
cular cylinder.

whence

I H.dl=H~nr=I,
L

H cp = I/(2nr) (38.54)
is the magnetic field strength directed along the tangent
to the circle. The lines of force are circles coneentric
with the current.

The magnetic induction is given by

Bm= { p.Hll'=::' (O<r<a),
't' '''''01 (38.55)

""oHcp= 2nr (a< r).

Example 38.1. A linear current I flows along the axis of a very long right circular cylinder of ra­
.dius a. The permeability of the material of the cylinder is 11. The cylinder is surrounded by a free
space. Find the magnetic field strength, magnetic induction and magnetization at all points in
space.

We direct the Z-axis of the Cartesian system of coordinates along the cylinder axis in the
direction of current I (Fig. 156). Let us take for the integration contour L a circle of radius r
.concentric with the cylinder and lying in a plane per- Z
pendicular to the current. Then the magnetic field
'Strength at all points can be determined from Ampere's
clrcuital law:
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It is convenient to find the magnetization from relation (38.21):

{

fl.-fl.o HfP= fl.-flo _1_ (O<r<a)
JfP=""o flo 2nr

o (a<r).
(38.56},

(38.57)

The volume density of molecular currents can be found with the help of (38.10). Consid­
ering that magnetization is given in cylindrical coordinates, it is convenient to calculate the­
curl in (38.10) also in cylindrical coordinates. We have

• I J · OJqJ +· 1 0 (J) 0lm = cur = -IT -0- I z - -0 r ql = ·z r r

Thus, there are no volume molecular currents. There is, however, a surface molecular
current whose density, on the basis of (38.17) and taking into account (38.56), is given by

imz= (38.58)

Sec. 39. Forces in a Magnetic Field

The forces acting on currents and body forces acting
on incompressible magnetics are considered.

Forces acting on a current.

IdF=jxBdV=IdlxB, I

F == Jj X B dV == j I dl X B.
v L

(39.1a)

(39.1b)

Lorentz's force. The force acting on a point charge q moving with a velocity v is

IF=qvxB, I (39.2)

where q includes the sign of the charge, i.e. can be a positive or negative quan­
tity. Formula (39.2) can be obtained from (39.1 b) if we take into account that
j = nqv dV = pv dV, where p is the volume charge density, and hence r dF
is the charge contained in the volume dV, while ) (> dV = q.

v
The force and the torque acting on magnetic dipole. Suppose that an elementary
circula.r current creating a magnetic moment flows along a square loop with



Sec. 39. Forces in a Magnetic Field 271

(39.3)

D~I--- _

side l. We place the origin of coordinates at the
centre of the square and direct the Z-axis perpen-
dicularly to the plane of the loop (Fig. 157). The
direction of current I in the loop is shown by
arrows. The magnetic field is arbitrary, and there
are no extraneous currents or ferromagneties in
the region of the loop (div B = 0, curl B = 0).
Let us determine the force and the moment of
force (torque) acting on the current-carrying loop
in terms of its magnetic moment. The loop is Fig. 157. To the calculation of
small in size, and we have to take into account the.force acting on a magnetic­
the variation of the magnetic induction within dipole.
the loop only up to the first-order terms in l.

In accordance with formula (39.1a), the forces exerted on the sides AB, HC;
CD, DA of the loop by the magnetic field are

FAB = tu, X B (ixl/2), F B e = Il [-i x X B (iy l/2)],

F CD = Il [-i y X B (-i xl/2)], FDA = Il fix X B (-i y l/2)],

where ix and i y are the unit vectors in the direction of the X- and Y-axes. The
arguments of B contain distances from the centre of the loop to the correspond­
ing side considering the direction. The total force acting on the loop is

F = FAB + FBc + FeD + FDA = Ili g X [B (ixl/2

- B (-i xl/2)] + Ili ; X [B (-i y l /2) - B (iy l /2)].

Considering that when only the first-order terms are retained, we have

B (± ixl ) = B (0) ± 2.- oR(~ and B (± i l/2) = B (0) ± J.... oB (0)
2 2 ox 1/ 2 iJy •

Equation (39.3) can be transformed as follows:

F= I l2(i X DB -i X~) (39.4)
1/ ox x ay •

Since Il2 = Pm is the magnitude of the magnetic moment of a current-carry­
ing loop, we transform (39.4) by taking into account the well-known relations
between the unit vectors (ix X i y = i z' i y X i , = ix, i z X ix = i y ) as follows:

F ( .) sn +( ,.) sn= Pm X Ix X ox Pm X 11/ X ay ,

(39.5)

where Pm = i zPm is the magnetic moment of the loop. Representing the double
vector product with the help of the formula A X (B X C) = B (A· C) ­
C (A· B) of vector algebra, we obtain

F · ( sn ) (· DB +. ( OB) (. aB)=Ix Pm· 'ox -Pm Ix·ax 11/ p.oy -Pm Iy.ay

. ( aB).. ( en ) ( es; + es; )
=I~ Pm·7fX -r 11/ Pm·ay -Pm 7fX -ay ,
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(39.6)

,vhere i x • (8B/ox) = 8Bx/ox, i y•(oB/8y) = aB y/8y. Since div B = 8Bx/ox +
oBI//oy + aB z/8z = 0, we get

( oe; + oBy ) es, (. OB) . ( en )
- Pm ---ax-' ay- = Pm az= Pm I ze liZ = I z Pm •7iZ '

whence

I F=ix (Pm·~) +iy (Pm·~) +iz(Pm.~). I
"This formula shows that an elementary circular current (magnetic dipole) is

acted upon by a force only in a nonuniform field. Since formula (39.6) expresses
this force in terms of the magnetic moment Pm' the special shape of the loop
chosen above is insignificant, and formula (39.6) is valid for an arbitrary mag­
netic dipole whose spatial dimensions are sufficiently small.

In order to calculate the moment acting on a magnetic dipole, we proceed
in a similar way. We place the origin of coordinates at the centre of the loop
and calculate the moment by the formula

M=I)rX(dIXB). (39.7)
L

In this case, however, calculations are simplified since the distance r is of
the order of.magnitude of sides l of the loop, and the quantity B should be taken
into account only in the zero order of smallness in the side l of the loop, i.e.
<considered to be constant. As a result, we have

(39.8)

This formula shows that the torque tends to rotate the magnetic dipole until its
magnetic moment coincides with the vector of the magnetic induction of the field.
Body forces acting on incompressible magnetics. Since the magnetic moment
of a volume element dV of a magnetic having magnetization J is given by

dpm = J dV, (39.9)

the force acting on this volume element is [see (39.6) 1
oB 8B oB

dFx=J· ax dV, dFlI=J.aydV, dF,,=Jeaz dV• (39.10)

Obviously, these expressions are always valid for rigid magnetics since for­
-mula (39.6) was obtained as a result of differentiation at Pm = const,

Let us represent (39.10) in vector form. Considering that

J= J1-J1o B (39.11)
J1JJ.o '

we obtain the following expression for the volume density of force:

/ = dFx _ J1-J1o B. 8B _1.. 1J-J1o 8B2 (39.12)
x dV - J1f.lo 8z -- 2 f.lf.lo OZ
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and so on. Thus, the volume density of the force acting on a magnetic is

f=..!. ""-J.Lo grad B2. (39.13)
2 ,... ....0

This means that
(a) in paramagnetics 1.1 > 1.10 and hence the volume density of force is directed

towards increasing magnetic induction.
(b) in diamagnetics fl < flo and hence the volume density of force is directed

towards decreasing magnetic induction of the field.
Different behaviour of para- and diamagnetics in the same field is visually

demonstrated in many experiments. Suppose that a magnetic field is created

F

Fig. 158. A diamagnetic body
pushed out of the region of the
maximum field

Fig. 159. A paramagnetic body
dra wn towards the region of
the maximum field

in vacuum between the poles of a permanent magnet (Fig. 158). Obviously, the
magnetic induction of the field between the poles of the magnet decreases as we
move from the central line connecting the poles to the periphery. A light bis-
muth ball which is a diamagnetic body is pushed F
out of the region with the maximum field induc­
tion (see Fig. 158). On the other hand, a para­
magnetic liquid, say, aqueous solution of ferric
chloride is drawn towards the regions of the field
having the maximum magnetic induction
(Fig. 159).

If the space bet\veen the poles is filled with a
material medium, the direction of forces depends Fig. 160. A paramagnetic body
on the ratio of permeabilities of the medium behaves as a diamagnetic in a
and the body. If the permeabiliuj of the body is paramagneticmedium whoseper-

meability is higher than that
higher than that of the medium, the body behaves as of the body
a paramagnetic, if it is lower, then the body behaves
as a diamagnetic. For example, if we place a paramagnetic liquid with a suf­
ficiently high permeability between the poles of a magnet (Fig. 160), the force
acting on a paramagnetic ball whose permeability is lower than that of the
liquid is simi lar to that acting on a diamagnetic ball in vacuum.

A force acts on an elementary circular current (magnetic dipole) only In a nonuniform
magnetic field.
The torque appearing 8S a result of the .dlon of • magnetic field on a magnetic dipole
tends to rotate It so that Its magnetic moment coincides In diredlon with the magnetic
induction vedor.

18-0290
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x

Fig. 161. To the calculation of
forces of interaction between
magnets.

Iocly forces Bcllng on a paramagnetic Be dlredecl towards the Inaeeslnl magnetic In­
duction, while In dlamagnetlcs they ere directed towards decreasing magnetic Induction.

Describe the variation of forces acting on a magnetic placed in a medium whose per­
meability differs from the magnetic constant and becomes higher or lower than the per­
meability of the magnetic.

Example 39.1. A current I flows in a ring 0/ radius ro made 0/a lJery thin wire. The tensile strength
0/ the wire is equal to 10. The ring is p laced in a magnetic field whose magnetic induction is per­
pendicular to the plane 01 the ring so that the [orces tend to break the ring. Find the magnetic
induction at which the ring will be broken, assuming that 10 = 1.5 N, r() = 15 em and I = 10 A.

The forces act on the ring in the radial directions. Denoting by dl an element of length of
the ring, we find that the element of force acting on the element dl in the radial direction is
dF = I dl X B. Let us draw the X-axis through the centre of the ring so that it lies in the
plane of the ring. The projection of the force dF onto the X-axis is dFx = dF cos a = IB dl
cos a, where a. is the angle between the X-axis and the radius drawn to the element dI.

Since dl = ro da., the expression for the force acting on a half-ring in the direction of
K/I

positive values of the X-axis has the form F:r, = 1Bro ~ cos a de = 2IBroo This force is
-n/2

distributed between two wire cross sections at the points of its intersection with the Y-axis.
Hence the breaking condition has the form 2IBro = 2/0 , and consequently, B = /o/(Iro} = 1 T.

Problems

6.1. A copper spiral of radius a has n turns per metre. The turns are wound so that
there are small gaps between them. The upper end of the spiral is fixed while its lower
end is connected to a conducting load of mass m, lying on a metallic table. In this posi­
tion, elastic forces exerted on the load by the spiral are equal to zero. Assuming that
the gaps between the spiral turns decrease uniformly, find the current that should be
passed through the spiral in order to lift the load from the table. The mass of the spiral
can be ignored.

6.2. Two small magnets having the same magnetic moment Pm and mass m are suspended
from light threads of the same length. The distance d between the roints of suspension
is very large. Prove that the magnets get oriented so that they wil attract each other.
Find the angle of deviation of the threads from the vertical, assuming that the effect

of the magnetic field of the Earth can be neglected.
6.3. A sphere of radius a, uniformly charged with the

surface charge density 0', rotates around the axis
passing through its centre at an angular velocity
00. Find the magnetic induction at the centro of
the rotating sphere.

6.4. Find the magnetic moment created by a point charge
q moving in a circle of radius ro at a constant
angular velocity 00.

6.5. A plate made of a magnetic with a permeability f.J.
is placed in the space between the poles of a per­
manent magnet where the magnetic field is
Ho (Fig. 161). Find the force acting on the
ma~etic plate.

6.6. Find the force in Problem 6.5 assuming that the
plate is a permanent magnet whose magnetization
J p coincides in direction with Ho•

6.7. Find the force with which a uniform surface cur­
rent of density i sur flowing over an infinite plane
acts over length l of an infinite linear conductor
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carnring current 1 parallel to the plane at a distance d from it. Denote by D the normal
to the plane in the direction towards the linear conductor.

6.8. A current 11 flows in a circular conductor of radius a, lying in the plane (x, y) with the
centre at the origin of coordinates and forms a right-hand screw system with the posi­
tive direction of the Z-axis. A current 12 flows in very long straight conductor parallel
to the X-axis in the direction of its positive values, intersecting the Z-axis at a point
z = d. Find the force acting on the rectilinear current.

6.9. Find the magnetic induction at the centre of a solenoid of length L with n turns, having
a square cross section with side a. The current in the solenoid winding is equal to I.

6.tO. A disc of radius r rotates at an angular velocity cu about the axis perpendicular to its
surface and :{lassing through its c~ntre. Find the .magnetic induction of the field on the
axis of rotation of the disc at a distance h from ItS surface. The surface charge density
is equal to a.

s.u. A p<?larized dielectric sphere of radluse r~tates ~t an angular veloc.ity.Q) about .an axis
passing through ItS centre. The polarization P IS constant and coincldes III direction
with cu. Find the magnetic induction at the points of intersection of the spherical sur­
face with the axis of rotation.

6.t2. A very long rectilinear cylindrical beam of circular cross section of radius a, having a
constant volume charge density p, moves along its axis at a velocity v. Find the'magnetic
induction.

6.t3. A current I flows in the positive direction of the Z-axis along a very long rectilinear cy­
lindrical conductor of radius a whose axis coincides with the Z-axis of the Cartesian sys­
tem of coordinates. Find the vector potential of the field created by this current.

6.14. Find the axial component of the vector potential at the centre of a spiral carrying cur­
rent I. The data on the spiral are given in Problem 1.7.

6.15. A dielectric sphere of radius a rotates at an angular velocity cu about an axis passing
J through its centre. A constant volume charge density of the sphere is equal to p, Find

the magnetic induction of the sphere on its axis of rotation.
6.t6. A uniformly charged circular cylinder of radius a and length l, whose charge is equal

to Q, rotates at an angular velocity cu about its axis. Find its magnetic dipole moment.
6.17. Find the mutual inductance of two circular currents of radii at and a2' lying in the same

plane, in the dipole approximation. The distance between the turns is r,
6.t8. The axis of a right circular cylinder coincides with the Z-axis of the Cartesian system

of coordinates whose origin is at the centre of the cylinder. The cylinder is uniformly
magnetized and the magnetization vector coincides with the positive direction of the
Z-axis: J = liz. Find the magnetic induction on the axis of the cylinder if the radius of
its cross section is a and the length is l,

6.19. A spherical layer of a magnetic, whose inner and outer concentric surfaces have radii rt
and r2 respectively, is uniformly magnetized. The magnetization vector is paralle
to the Z-axis of the Cartesian system of coordinates whose origin coincides with the centre
of the surfaces and is equal to liz. Find the magnetic field strength on the Z-axis for
positive values of z.

6.20. A right circular cylinder of length l and radius a is uniformly magnetized. The magne­
tization vector is parallel to the cylinder axis and is equal to J. Find the magnetic in­
duction at the centre ofj',the cylinder, assuming that l > a.

6.2t. A sphere with the surface charge density.o rotates about its diameter at an angular vel­
ocity cu. Find its magnetlcdipole mom.e~t.

6.22. A current 1 flows along a very long rectillnear conductor parallel to the plane interface
between a medium having permeability JA.o, in which the current-earrying conductor
lies, and a medium having permeability JA.. Find the force acting on a segment 1 of the
conductor. The distance from the conductor to the interface is equal to d.

6.23. A thin wire is wound very tightly in one layer on the surface of a wooden sphere. The
planes of all the turns can be assumed to be perpendicular to the same diameter of the
sphere. The turns cover the entire surface of the sphere. The radius, of the sphere is a
and the total number of turns is n, The current in_the winding is I. Find the magnetic
induction at the centre of the sphere.

,a·
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6.24. A cylindrical conductor of radius a has a cylindrical cavity of radius b, whose axis is
parallel to the axis of the conductor and is at a distance a from it. The current in the
conductor has the volume density [, Find the magnetic induction at the points on the
diameter of the cavity, coinciding with the diameter of the conductor.

Answers

Y
- - 2

6.t. 1=_1_ 2mg .6.2.8= 23 Pmd, _1_. 6.3• B=2/3 floaaID. 6.4. Pm=qIDr~/2.
na nJ.1o nflo mg

6.5. F:x=1/2 (fl-Jio) stu. 6.6. Fx= Jioln {Ho+ln} u. 6.7. F= -1/2 Jiotsurrlnl. 6.8. F=
,r- (2 a

2
)iyf.Lollla{1-dlyd2+a2). 6.9. B=f.Lonl 1--narcsin £2+a2 • 6.10. Bh=

(
h2+a2/2 )

aID h . 6.tt. B1 = 2/5 f1oPaw, B2 = -2/5 f1oParo. 6.12. B= 1/2 Jiopv X r
Yh2+ aZ

Ji 1 r2
for 0 < r < a, B= f/2 f1opa 2v X r/r 2 for a < r < 00. 6.13. Az = - 4~ as+const for r < at

Az=~lnr+const for a<r<oo, where r=yzl+y2. 6.14. ~~ In(nntance+

V1+n2n 2 tan2 a.}. 6.t5. o. 6.t6. Qa2ro/4. 6.17. L12=nf.Loa~ai/{4r3). 6.18. Bz=
h.. J (Z+l/2 Z-l/2). 6.t9. Hz=O for 0 < z < rl, Hz,=

2 Va2+(z+l/2)2 Va2+(z-l/2)2
J (z3+2rr) for rl < z < r2, H z=21 (r~-ri)/(3z3) for r3 < z < 00. 6.20. B=3z3

/lol (1-a2/l2) . 6.21. Pm= 4/31tCJa4w. 6.22. F = - :~~ ~+ ~: II. 6.23. f.LonI /(4a).

6.24. flojd/2.



CHAPTER 7

Magnetics

The phenomenological properties of a magnetic in a magnetic field
are taken into account through its permeability fl. The dependences
of f.1 on various. parameters are very diversified as well as magnetics
themselves. These dependences are interpreted by constructing
models of magnetics which allow for the peculiarities of their' be­
haviour in the magnetic field.

Sec. 40. Diamagnetics

The physical nature of diamagnetic susceptibility and
its properties are considered.

Larmor precession. The frequency of rotation of electrons in an atom
placed in a magnetic field differs from their frequency in the absence of the
field. In order to prove this, let us consider the simplest case when an elec­
tron rotates around a nucleus in an orbit of radius r in the absence of the field
at a frequency (00 (Fig. 162). Newton's equation for the motion of an electron
has the form

mco~r=Fc' (40.1)

where Fe is the centripetal force emerging as a result of attraction of the elec­
tron by the nucleus. This force is quite strong in comparison with the forces
which may be exerted on the electron by external fields, and hence the radii
of electron orbits do not change when an atom is introduced into external fields.
To a high degree of accuracy, an atom can be assumed to be rigid with respect to the
action of external fields.

Suppose now that an atom is in an external field whose magnetic induction
vector B is perpendicular to the plane of an electron orbit. The Lorentz force
is acting along the radius, and its direction either coincides with that of the
centripetal force or is opposite to it, depending on the relative orientation of the
angular velocity vectors of electron motion in the orbit and of the magnetic
induction. The magnitude of this force is

F= lei corB, ~40.2)

where e is the electron charge and (0 is the frequency of the electron circulating
in the orbit in the presence of a magnetic field, which differs from (00.
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The equation of the electron motion in 8 mag­
netic field has the form

mootr = Fc ± I e I rorB, (40.3)

where the radius r of the electron orbit is the
same as in (40.1) while the plus or minus sign
is chosen in accordance with relative orientation
of the angular velocity vector of the electron
orbital motion and the magnetic induction
vector. Naturally, the centripetal force F. in
(40.3) is the same as in (40.1) since it is the

Fig. 162. Emergence of an ad- force of attraction by the nucleus, and the distance
ditional angular velocity of an r has remained unchanged. Cancelling F ~ from
ron rotating in a magnetic v

field (40.1) and (40.3), we obtain
mCiJ2r-mro:r= ±leICiJrB. (40.4)

Considering that 002 - 00: = (00 - (00) (00 + (00) ~ 2~roro, where I ~ro 1 =
I 00 - 000 I~ 000' we get from (40.4)

~ro = ± leIB/(2m). (40.5)

Thus, an electron in a magnetic field acquires an additional angular velocity
characterized by the frequency

roL::a leIB/(2m). (40.6)

which is called the Larmor frequency. The direction of the angular velocity
vector can be easily determined. For example, if the magnetic induction B
(see Fig. 162) is directed against the angular velocity of the electron motion
around the nucleus, the force F is directed against FC' and hence the electron
velocity and frequency should decrease. This means that roL coincides with B
in direction. If B is directed against the initial orientation of the magnetic
induction, we shall arrive at the same conclusion. Hence we can write

ICJ)L= -eBj(2m), I (40.7)

where we took into consideration that the electron charge e is negative. The
appearance of this additional angular velocity without a change in the radius of the
orbit can be represented as an additional rotation of the atom as a whole at a fre­
quency OOL in the magnetic field. The total frequency of electron rotation is
equal to the sum of its frequency 000 of rotation in the atom and- the frequency
OOL of rotation of the atom. This is valid only for the case when the angular
velocity and magnetic induction vectors are collinear.

Since the electron velocity in an atom placed in a magnetic field varies, its
kinetic energy varies as well. On the other hand, since r remains unchanged,
the potential energy also does not change. The question arises: what is the
cause of the change in the energy of an electron in an atom if it is known that
the magnetic field is always acting perpendicularly to the velocity and does not
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perform any work? The answer to this question can be obtained only in the
framework of the theory of electromagnetic induction (see Chap. 8): the appear­
ance of a magnetic field gives rise to an electric field iohich. changes the velocity of
the electron motion in an atom.

In order to imagine the motion of an atom for an arbitrary mutual orientation
of the angular velocity of rotation of an electron around the nucleus and the
magnetic induction of the external field, let us extend the results obtained above
to the general case. An atom with an electron rotating in it can be visualized

(a)

at

(b)

= B1 sin wLt

Fig. 163. Larmor precession (a) and the emergence of paramag­
netic resonance (b)

as a gyroscope having a certain magnetic moment. The angular momentum of
the electron is equal to nusr". The electron moving in the orbit is equivalent
to a circular current elT = erof(2n), and hence the magnetic moment of the
atom is equal to nr2erof(2~it). Taking into account the directions of the angular
momentum and the magnetic moment of the atom due to the motion of the elec­
tron, we can write

(40.8)

(40.10)

Here we assumed that the electron charge e is negative, and the angular momen­
tum L and the magnetic moment Pm have opposite directions (Fig. 163a).

The equation of motion of an atom treated as a gyroscope has the form

dLCIt = M, (40.9)

where M is the torque [see (39.8)]. It follows from (40.8) that

Pm -:- eLf(2m)
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(40.13)(OL = -eB/(2m).

and consequently, Eq. (41.9) assumes the form
dL, ~
(It= 2m Lx B= - 2m B X L. (40.11)

A comparison of this equation with the equation
of motion for the points of a perfectly rigid body
rotating at an angular velocity

v = dr/dt = (0 X r (40.12)

z

x

shows that the tip of the vector L circulates around
the direction of the induction vector at a fre­y
quency

Fig. 164. To the calculation of
diamagnetic susceptibility Consequently, an atom precesses' in a magnetic

field like a gyroscope (Fig. 163b). This motion is
called the Larmor [preeessfon,
Diamagnetism. A circular current appearing as a result of Larmor precession
of each electron in an atom forms a left-handed system with the direction of
the magnetic induction vector. Consequently, an additional magnetic induction
due to this circular current is directed against the magnetic induction vector
of the external field. The magnetic moment of the atom, appearing as a result of
precession, as well as the magnetization are directed against the magnetic induction
of the external field. This mode of origination of the Larmor precession and the
magnetic moment and the additional magnetic field associated with it form
the basis of diamagnetism. Obviously, diamagnetism is inherent in any sub­
stance. The problem consists in estimating its magnitude.
Diamagnetic susceptibility. Each electron in an atom performs Larmor rotation
about the axis coinciding with the direction of the magnetic field (Fig. 164).
The resulting magnetic moment is

(40.14)

whence

J = /l1V ~ PIIll = - ~: BN <~ r i) , (40.15)
4V i

where N is the atomic concentration. Formula (40.15) uses the expression for
the Larmor frequency, and the quantity in the angle brackets which denote
averaging is the sum of the squares of the distances from the electrons in the
atom to the Larmor precession axis. Figure 164 shows that

Rl=xl+Yl+zt, (40.16)

where R i is the distance between an electron and the nucleus. Taking into
account random orientation of atoms in space, we have

(xl) = (yl) = (zl) = (Rl)/3 (40.17)
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and hence
(rl> = (xl +Yl> = 2 (Rl>/3 = 2 (R2)/3,

from which it follows that

(~ rl) = 2Z (R~)/3,
i
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(40.18)

(40.19)

where Z is the number of electrons in the atom. Hence, we finally obtain the
following formula for magnetization:

Comparing this formula with

J = 'XdH,

we obtain the following expression for the diamagnetic susceptibility:

(40.20)

(40.21)

(40.22)

where we took into account that f.1 ~ J-to since the permeability of diamagnetics
differs from the permeability of vacuum only insignificantly. This formula is
in good agreement with experiment if we treat (R2) as the mean square distance
between the electrons and the nucleus in an atom, calculated with the help of
quantum theory. The diamagnetic. susceptibility for solids and liquids is of the
order of 10-5 , while for gases it is considerably lower due to a smaller atomic
concentration (i ,e. smaller values of N in formula (40.22».
Temperature independence of diamagnetic susceptibility. Formula (40.22) shows
that 'Xd is independent of temperature since none of the quantities appearing in
this formula depend on temperature. This is due to the fact that the Larmor
motion of electrons stabilizes very quickly, viz. during a time typical of atomic
processes. Consequently, thermal motion as well as atomic collisions do not bring
the atoms out of the Larmor precession for any appreciable periods of time. This
was brilliantly confirmed by experiments. The independence of diamagnetic
susceptibility from temperature was experimentally discovered in 1895 by
P. Curie (1859-1906).

The variatoin of the frequency of an electron circuletlng In an atom, which is responsible
for diamagnetism, occurs upon e change In the magnetic Induction due to the Introduction
of the atom Into a megnetlc field or during' the .emergence of 8 magnetic: field. 11Ie
magnetic field itself does not perform work and cannot .Her the velocity of motion of
electrons In an .tom.
The diamagnetic susceptibility is Independent of temperature since the therm81 motion
and collisions of atoms are unable to draw them from the state of L8nnor precession for
any appreciable time.
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Sec. 41. Paramagnetics

Ch. 7. Magnetics

The physical nature and properties of paramagnetic
susceptibility are discussed. Magnetism due to free
electrons and the paramagnetic resonance are also
discussed.

Mechanism of magnetization. Paramagnetic materials are substances whose
molecules have a constant magnetic moment. The energy corresponding to
the magnetic moment in an external magnetic field is equal to

W = -Pm·B. (41.1)

The minimum value of energy is attained when Pm coincides with the direc­
tion of the magnetic induction vector. In this case, when a paramagnetic is
introduced into a magnetic field, a preferred orientation of magnetic moments
of paramagnetic atoms takes place in the direction of the magnetic induction
in accordance with the Boltzmann distribution, and the body is accordingly
magnetized. The induction of the additional field created due to magnetization
coincides in direction with the external magnetic induction and enhances it.
However, the angle between the direction of the magnetic moment of an atom and
the magnetic induction does not change with field: the magnetic moment just pre­
cesses around the magnetic induction vector, and the angle between the two remains
the same [see (40.11)]. A reorientation of magnetic moments in accordance with the
Boltzmann distribution takes place only as a result of collisions and interactions
between atoms.
Temperature dependence of paramagnetic susceptibility. The mechanism of
magnetization of paramagnetics is analogous to that of electrostatic charging
in polar dielectrics (see Sec. 22). The only difference is that we now use formula
(41.1) instead of (22.1). Thus, the formulas for paramagnetic susceptibility are
obtained by substituting Pm for p and B for E in the formulas of Sec. 22 pertain­
ing to dielectric susceptibility.

Instead of (22.10), we now get

(Pm,) = PmL (P), (41.2)

where L (~) is the Langevin function (see Sec. 22) for ~ = PmB/(kT). At com­
paratively high temperatures and weak fields, when PmB ~ kT, i.e. ~ ~ 1,
we obtain the following relation instead of (22.13): '

(Pmz) = p:nB/(3kT)~ P'tnl1oH/(3kT), (41.3)

where f:t ~ !lo' since the difference between the permeability of paramagnetics
and !lo is not significant. For magnetization, we obtain the formula

J = N (PmJ = [p:ONJ.to/(3kT)] H. (41.4)
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Comparing this formula with the relation

J = XpH,

we get the following expression for paramagnetic susceptibility:

Xp = p':nNl1o/(3kT) = CIT,
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(41.5)

(41.6)

where C is the Curie constant.
The dependence XP oc11T is called Curie'sj'law which was discovered ex­

perimentally by P. Curie in 1896.
The atomic magnetic moments are of the order Pm /"fV 10- 23 A·m2• Hence,

at room temperature, 'X,p /"fV 10-3, a value which is two orders of magnitude
higher than the diamagnetic susceptibility. This means that the diamagnetic
susceptibility in paramagnetics can be generally neglected.

Langevin's theory provides a fairly accurate description only for gases, where
the interaction between molecules is negligibly small in view of large distances
that separated them. This interaction can be significant in liquids and solids.
In most cases, a consideration of this interaction modifies the dependence
(41.6) of susceptibility on temperature. The new dependence is called the Curie­
Weiss law:

'X,p = const/(T - To), (41.7)

where the temperature To is a characteristic of the substance and is determined
by its properties.
Magnetic moments of free atoms. Two factors are responsible for the origin of
magnetic moments:

(1) the orbital motion of electrons. The total orbital magnetic moment of
an atom is the sum of orbital magnetic moments of individual eleotrons;

(2) the existence of an intrinsic magnetic moment in electrons, which is
associated with their spin, i.e. with the intrinsic angular momenta of electrons.

The magnetic moments of individual electrons are mutually related and form
the so-called total spin magnetic moment of an atom. Owing to the spin mag­
netic moment, each electron moving in a magnetic field created by the orbital
motion of all the remaining electrons interacts with this field. This interaction
is called spin-orbital interaction. Because of this interaction, the total orbital
angular momentum of electrons is associated with their total spin magnetic moment,
thus forming the total magnetic moment of an atom. This mode of formation of the
total magnetic moment of an atom is called an LS-bond. In principle, the total
magnetic moment of an atom can emerge in another way also: the spin magnetic
moment of each electron is first linked with the orbital magnetic moment of the same
electron, thus forming the total magnetic moment of the electron. After this, tke
IDtal magnetic moments of electrons are linked with one another to give the total
magnetic moment of the atom. With the exception of the heaviest elements,
however, this mode of formation of total magnetic moment is generally not
realized since the intensity of interaction of the spin magnetic moment of an
electron with its intrinsic orbital angular momentum turns out to be weaker
than its interaction with the spin magnetic moments of other electrons. Thus
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the total magnetic moment for an individual electron is not realized. In most
cases, the LS-bond is responsible for the total magnetic moment of atoms.

While adding the total orbital magnetic moment and the total spin magnetic
moment, we must bear in mind that the coefficient of proportionality in the
linear relation between the total orbital magnetic moment and the total orbital
angular momentum differs from the coefficient of proportionality in the linear
relation between the total spin magnetic moment and the total spin. The total
angular momenta in an atom are added according to the rule of summation of
vectors, while the addition of magnetic moments is obtained as a result of sum­
mation of angular momenta. Consequently, the total magnetic moment of an atom
may not be collinear with its total intrinsic angular momentum.

The problem of magnetic moments of free atoms is simplified on account of
the fact that it is advantageous from the energy point of view to fill the electron
orbits so that the total magnetic moment is minimum. Consequently, the total
orbital and spin moments of completely filled closed atomic shells and the total
moment of the completely filled shells are equal to zero. Hence, the magnetic
moment oj an atom is determined only by the electrons which occupy partially
filled shells. In most cases, these are the outer orbits of electrons. The situation
is further simplified in view of the fact that electron spins and orbital angular
momenta in an outer shell tend to orient themselves in opposite directions so
as to compensate each other to the maximum possible extent. Thus, the magnetic
moment oj a free atom is mainly determined by uncompensated spins of the outer
electrons.
Magnetic moments of molecules. The magnetic moment of a molecule is not
equal to the sum of the magnetic moments of the atoms constituting it, since
a chemical bond formed between the atoms requires a certain rearrangement
of the outer electron shells. For example, nitrogen molecules N2 form a covalent
bond, and two electrons participating in a covalent bond have antiparallel
spins. The orbital angular momenta also compensate each other and their sum
is equal to zero. As a result, we see that theN 2 molecules do not have a constant
magnetic moment or, in other words, nitrogen is not a paramagnetic. A similar
tendency towards mutual compensation of magnetic moments is also observed
in molecules having an ionic bond. For example, a NaCl molecule has an ionic
bond between Na+ and CI-. Both ions have closed electron shells and hence their
total magnetic moment is equal to zero. It can be stated that the general tendency
in the formation oj molecules is to ensure that the total magnetic moment isequal
to zero. The only gases with paramagnetic -properties among all commonly
encountered gases are oxygen (0 2) where the spins of collective electrons are
not compensated, and NO and N0 2 in which the total number of electrons is
odd and hence the spin of one electron is left uncompensated.

Most solids are composed of ions with closed shells, and hence they do not
possess paramagnetic properties. Solids are generally diamagnetics. The main
exception to this rule are compounds of transition elements. The electron shell
of these elements is only partially filled. Consequently, they are multivalent
and their ions have permanent magnetic moments. Thus, the paramagnetism oj
transition element compounds is due to the magnetic moments .of their ions. Ions
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whose outer electron orbits have similar configurations form compounds with
properties close to those of paramagnetics.
Magnetism due to free electrons. Although free electrons in a magnetic field
move in circular orbits under the action of the Lorentz force, the classical
theory predicts the absence of the diamagnetic effect due to the reflection of
electrons at the boundaries. Quantum theory, on the other hand, predicts the
existence of this effect. The diamagnetic susceptibility is found to be equal to

(41.8)

where m* is the effective mass of free electrons and n is their concentration. If
the magnetic induction is not very large, the diamagnetic susceptibility is
constant and does not depend on temperature.

Another magnetic effect associated with the conduction electrons is due
to the interaction of the spin magnetic moment of an electron with the magnet­
ic field. This results in the appearance of an excess of electrons whose spin
magnetic moments are aligned with the magnetic induction in contrast to
the electrons with opposite spin magnetic moments. This phenomenon is called
the paramagnetism of conduction electrons. Calculations show that the para­
magnetic susceptibility of conduction electrons under laboratory conditions
is practically independent of temperature. Paramagnetism of conduction elec­
trons is most pronounced in transition metals. Under laboratory conditions, the
diamagnetic susceptibility of conduction electrons is almost always lower than
their paramagnetic susceptibility (nearly by a factor of three), and hence their
total susceptibility is found to be positive (paramagnetic).
Paramagnetic resonance. Suppose that in a paramagnetic placed in a magnetic
field the induction vector of an additional periodic magnetic field is perpen­
dicular to that of the constant magnetic field. Under the action of the constant
magnetic field (Fig. 163b), the magnetic moments of atoms perform Larmor
precession. A torque M created as a result of interaction between the magnetic
moment Pm of an atom and the induction B of the additional periodic magnetic
field tends to change the angle between Pm and B. If the frequency of the periodic
magnetic field is different from the Larmor precession frequency, the torque
will strive to increase the angle between Pm and B for a certain duration of
time, and then strive to decrease this angle for some time. On the average, no
effect of the periodic field is observed. If, however, the frequency of the periodic
magnetic field coincides with the Larmor precession frequency, the torque caused
by the periodic magnetic field will strive either to increase the angle between
the magnetic moment of the atom and the induction of the constant field or
to decrease it all the time, depending on the phase difference between the Lar­
mor precession and the induction of the periodic magnetic field. As a result
of the prolonged action of such a torque, the magnetic moment of the atom is reorient­
ed, and its angle with the induction vector of the permanent magnetic field changes.
This phenomenon is called paramagnetic resonance. The reorientation of the
magnetic moment in accordance with formula (41.1) is associated with a change
in the energy of magnetic moment in a permanent magnetic field. In accordance



286 Ch. 7. Magnetics

with the law of conservation of energy, this is accompanied by an exchange
of energy with the periodic magnetic field. This field is realized in the form of
standing electromagnetic waves whose magnetic induction vector is perpen­
dicular to the induction vector of the constant magnetic field. Thus, energy is
exchanged with an electromagnetic wave.

This results in the formation of groups of atoms whose magnetic moments
are oriented parallel and antiparallel to the magnetic induction, i.e. which
have different energies of interaction with the magnetic field in accordance with
(41.1). The energy of atoms with antiparallel orientation is higher than that
of atoms with parallel orientation.

Besides being reoriented by a periodic magnetic field, the magnetic moments
of atoms are continuously subjected to thermal fluctuations and interactions
between atoms. The thermal motion and the interaction between atoms pre­
dominantly orient the magnetic moments in a direction antiparallel to the
magnetic induction vector. The energy liberated in this case is converted into
heat. The reorientation of magnetic moments parallel to the magnetic induction
takes place on account of absorption of energy of an electromagnetic wave. Hence,
the observation of paramagnetic resonance involves the measurement of the intensity
of an electromagnetic wave passing through a paramagnetic placed in a magnetic
field. From the experimental point of view, it is more convenient to use an
electromagnetic wave of constant frequency and to attain resonance condition
by varying the magnetic induction. When the Larmor frequency corresponding
to the magnetic induction will be equal to the frequency of the electromagnetic
wave, a sharp attenuation in the wave intensity will be observed, indicating
the onset of paramagnetic resonance.

Paramagnetic resonance can provide a great deal of diverse information on
the properties of a paramagnetic and is widely used in scientific research.

The classical picture presented here and concerning the emergence of para­
magnetic resonance is only of a qualitative nature. A more rigorous approach
is possible in the framework of quantum theory, which is based on the concept
of absorption and emission of quanta of electromagnetic radiation by atomic
systems characterized by an abrupt reorientation of magnetic moments which
ensure that the law of conservation of energy is obeyed. Within the frame­
work of these concepts, it is possible to obtain quantitative relations character­
izing paramagnetic resonance.

I t follows from formula (40.13) that if the magnetic induction is equal to
1 T, the paramagnetic resonance frequency is of the order of 1010 Hz. As the
magnetic induction decreases, this frequency also decreases accordingly and
one can expect to observe paramagnetic resonance at relatively low frequencies.
The resonance, however, cannot be observed at frequencies lower than 108 Hz,
i.e. when the induction of the constant magnetic field is of the order of 0.01 T.

This is in accord with the quantum theory of paramagnetic resonance which
predicts a significant decrease in the absorption of electromagnetic waves upon
a decrease in their frequency. Consequently, the resonance at comparatively
low frequencies is manifested very weakly. The most commonly used frequencies
in actual practice are of the order of 1010 Hz (at a wavelength of 3 em),
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Sec. 42. Ferromagnetics

is'

Basic experimental facts concerning ferromagnetism
are discussed and an elementary theoretical interpreta­
tion is provided. General concepts about ferromagne­
tism, antiferromagnettsm, [errtmagnettsm and ferro­
magnetic resonance are introduced.

Definition. Magnetics whose permeability attains large values and depends on an
external magnetic field as well as the past history are called [erromagnetics. They
possess a residual magnetization, i.e, their magnetization may differ from zero
in the absence of an external magnetic field. In this case, such materials are

J
J~~ .._"_.'._H '-

o H o

Fig. t65. Saturation magne'ila­
tion

Fig. 166. Magnetization curve

permanent magnets. Thus, the formal manifestation of ferromagnetics is anal­
ogous to that of ferroelectrics (see Sec. 23). It should be noted that ferromag­
netism was discovered and investigated a long time before ferroelectricity.
Magnetization of ferromagnetics was investigated in 1878 by A.G. Stoletov
(1839-1896). He constructed the permeability curve (see Fig. 168) which was
later called the Stoletov curve. Hysteresis was discovered in 1880 by Wahrburh
(1846-1931 ).
Magnetization curve and hysteresis loop. Magnetic susceptibility of ferromagnet­
ics is a function of the external field, and the J vs H dependence has the form
shown in Fig. 165. The magnetization does not increase indefinitely with magnetic
field, but has a limit called the saturation magnetization. By analogy with para­
magnetism, its existence indicates that the magnetization of ferromagnetics
is also associated with the reorientation of certain elementary magnetic mo­
ments.

Since
(42.1)

the B vs H curve does not show a saturation although J experiences saturation.
This dependence is called the magnetization curve (Fig. 166).
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If we carry out the alternating magnetization of a sample in a periodic mag­
netic field, the B vs H curve has the form of a loop called the hysteresis loop
(Fig. 167) by analogy with ferroelectrics. The segment OA is the magnetization
curve, since the field is switched on at zero induction, i.e. in the absence of per­
manent magnetization. The closed curve ACDFGKA is the hysteresis loop.

F

Fig. 167. Hysteresis loop

H

Fig. 168. Curve of relative per­
meability (Stoletov's curve)

This loop can be demonstrated with the help of a diagram similar to the one
used for demonstrating the hysteresis loop of ferroelectrics when the capacitor
is replaced by coils (see Sec. 23).

As the magnetic field H is reduced from a certain value (corresponding to
point A) to zero, the magnetic induction decreases only slightly to a value char­
acterized by the segment OC. This magnetic induction is called the residual
induction. A ferromagnetic in this state is called a permanent magnet.

In order to neutralize the residual field, it is necessary to apply a reverse
field whose strength is given by ODe This magnetic field strength is called
the coercive force of a ferromagnetic. The shape of a hysteresis loop, residual
induction and coercive force depend on the material of the ferromagnetic and
differ for different types of materials over quite a wide range.
Permeability curve. The relative permeability f.1r = f.1/f.1o = B/(f.1oH) can be
plotted as a function of H from the data of the magnetization curve (see Fig. 166)
and has the form shown in Fig. 168. With increasing H, f.1r attains its maximum
value after which it rapidly falls as the magnetic saturation is attained. Values
of f.1r of the order of 104 at the maximum are not a rarity for Ierromagnetics,
Classification of ferromagnetic materials. Ferromagnetics can be divided into
two groups:

(1) magnetically soft materials, which have a high permeability, can be
easily magnetized and demagnetized, and have a weak coercive force;

(2) magnetically hard materials which have a relatively low permeability,
are difficult to magnetize or demagnetize, and have a strong coercive force.

The materials belonging to the first group are mainly used in electrical tech­
nology of alternating fields, especially in transformers, while the materials
from the second group are used for making permanent magnets.
Interaction of electrons. Ferromagnetism can be analyzed only in the framework
of quantum theory. Classical theory of magnetism only describes the properties of
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[erromagnetics and qualitatively analyze the mechanism of emergence of ferro­
magnetism.

Einstein and de Haas were the first to establish experimentally that ferro­
magnetism is caused by the electron spins. Ferromagnetics have the property of
spontaneous magnetization, when the electron spins tend to orient themselves
inthe same direction in the absence of an external magnetic field. This [orienta­
tion is due only to internal reasons. However, from the energy point of view,
it is not advantageous for the sample to be magnetized as a whole. Hence the
material is split into small magnetized regions, or domains. Each domain is
magnetized in a certain direction, but the directions of the magnetization vector
in neighbouring domains are different and hence the magnetic moment of small
physical volumes is found to be equal to zero. In other words, the magnetic
material is not magnetized on the whole.

This means that the main question in the theory of ferromagnetism is to explain
the tendency of electron spins to orient themselves in the same direction. Since states
with the lowest energy are encountered in a system, our task is to find the inter­
action under which a parallel orientation of the spin magnetic moments of
different atoms is found to be advantageous from the point of view of energy.
For this purpose, the total energy must be minimum for a parallel orientation
of moments.

The emergence of such a situation is associated with the exchange interaction.
Since the electrons obey the Fermi-Dirac statistics and hence two particles
cannot exist in the same state, electrons with parallel spins as if move apart
in space. Consequently, their Coulomb interaction energy is lower than that
for electrons with antiparallel spins, in which case they can be arranged more
closely in space. The exchange interaction energy is the difference in the energies
corresponding to parallel and antiparallel spins.

Such a situation, however, does not ensure the emergence of ferromagnetism,
since a decrease in the Coulomb interaction in the case of parallel spins is accom­
panied by an increase in the kinetic energy. In most cases, this increase com­
pensates the decrease in the potential energy and the total energy corresponding
to the state with parallel spins is not found to be advantageous. Only in rare
cases, when the decrease in the potential energy for parallel spins is more than
the increase in the kinetic energy, the total energy is reduced. In this case the
configuration with parallel spins turns out to be more advantageous from the

. energy point of view and ferromagnetism is observed. An investigation of con­
ditions under which such a situation is possible is the main task of the theory
of ferromagnetism. The choice of the expression for the interaction energy
plays a very significant role in this case.
Basic theory of ferromagnetism. In the theory of ferromagnetism, the exchange
interaction energy is expressed through the formula

Wex = -21ex81 •8 2 (42.2)

where 81 and 8 2 are the spins of the interacting electrons, and 1 ex is the exchange
interaction integral. It can be seen from this expression that for 1 ex > 0, the
potential energy attains its minimum value for parallel spins. This energy is
18-0290
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due to the interaction of the magnetic moment of an electron with the magnetic
field and is expressed by a formula of type (41.1), where by B we mean the
induction De x of the exchange field. The intrinsic magnetic moment p~) of
an electron is connected with its intrinsic angular momentum, or spin, S through
a relation of type (40.10) but the value of the proportionality factor in this
case is twice as large:

p~)= (elm) S. (42.3)

Hence, expressing the interaction energy (42.2) as the energy corresponding
to the magnetic moment of the second electron which is in the magnetic field
created by the first electron due to the exchange interaction, we obtain

Wex = - 2Ie:s1m • ~ 82 = -p~~.Bex (42.4)

where
Bex = (2I~xm/e) St- (42.5)

The total magnetic induction is the sum of the induction B of the field in the
absence of an exchange interaction and the induction De x of the exchange field.
Taking (38.23) into account, we can write (38.21) in the form

l10 (1 + X) J = XB, or XoJ = [X/(1 + x)l B. (42.6)

When the exchange interaction takes place, this relation is generalized to the
following formula:

~oJ = [X/(1 + X)] (B + Hex). (42.7)

The magnetic susceptibility 'X in this formula is assumed to he equal to its
value in (42.6) for a paramagnetic in the absence of exchange interaction.

Subsequent analysis is carried out in the mean field approximation, whose
basic assumption is that the exchange magnetic induction is proportional to
magnetization:

Bex = AfloJ, (42.8)
where A is the exchange interaction constant. Substituting (42.8) into (42.7),
we obtain the relation

(42.9)

where

~oJ = [X/(1 + 'X - Axl) B,
which can be written in a form similar to (42.7):

~o.J = [X'/(f + 'X')] B, (42.10)

X'/(1 + 'X') = X/(1 + X - AX) (42.11)
characterizes the susceptibility taking into account the exchange interaction.
From (42.11) we obtain

, 'X.
X = 1-XA

c
T-iC' (42.12)

WM118 1 = CIT.
In the temperature range T > 'A,C, a body behaves as a paramagnetic with

a characteristic decrease in the magnetic s-usceptibility with increasing tem-
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perature. As we approach the temperature T == lC, the susceptibility X' tends
to infinity. This means that indefinitely weak fields cause a finite magnetization.
In other words, a spontaneous magnettzatton or a transttton to the ferromagnetic,
.te t. observed at T = 'AC. The elementary theory described above does not
permit a quantitative analysis of the change in spontaneous magnetization
upon a further decrease in temperature in the range T < 'AC. A more exact
theory shows that at T = 'AC, spontaneous magnetization increases abruptly
to a finite value and continues to increase further with decreasing T, although
the rate of decrease gradually drops. Thus, a magnetic is in the ferromagnetic
phase at T < 'AC.
Curie-Weiss law. For every ferromagnetic there exists a temperature above
which it undergoes a (second-order) phase transition and is transformed into
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Fig. 169. Idealized domain structures in a singl~crysta1

a paramagnetic. The magnetic susceptibility in the paramagnetic region in
the vicinity of the transition temperature (called the Curie temperature) is
described by a relation of the type (42.12), called the Curie-Weiss law. The
quantity 'AC = e is called the Curie-Weiss temperature. It has been shown
theoretically that the phase transition takes place not at the Curie-Weiss tem­
perature but at a temperature close to it.

Hence, the distinction between the Curie temperature at which the phase
transition takes place and the Curie-Weiss temp.erature is sometimes notempha­
sized.
Magnetization anisotropy. It was shown during an investig.ation of magne­
tization curves for ferromagnetic monocrystals that different magnetisatlon curv­
es are obtained for .different orientations of the magnetizing field with respect
to the crystal axes. In other words, the ferromagnetic properties of crystals
depend on the direction of magnetization. The direction in which the magnetiza­
tion is the strongest for a given value of the field is called the direction or uts of
eas1/ magnetization, while the direction corresponding to the lowest magnetisatton
for a given field is called the direction or axis of difficult magnetization.
Domains. Pigure 169 shows idealized structures of domains in a single crystal
(.the .arrows indicate the direction of magnetization):

(a) the external magnetic induction is strong;
(b) the external field is mainly concentrated near the upper and lower walls,.

and has a much lower energy than in case (a);
19·
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cA

.J

o

(c) there are no free poles and the field does not leave the domain,
(d) the same situation as (0) is encountered, but the structure is now split

into smaller domains.
Domain boundaries. To minimize the magnetic field energy it is advantageous
to reduce the domain size to the maximum possible extent. Tht«, however, t
prevented by the need to spend energy for the formation of domain boundartes
since magnetization on both sides of the boundary has different directions:
The domain boundary has a finite thickness d, within which the magnetization
slowly changes its direction from the orientation in one domain to the orienta­
tion in the other domain. In other words, the domain boundaries are the walls
of finite thickness. The walls are classified in accordance with the peculiarities

I_ d _I

rl1Il~i~:{[IIJ
~. d _I

t-~~~~7Tl
(b) . .

Fig. f 70. A change in the direc­
tion of magnetization in the
Bloch wall (a) and the Neel
wall (b)

Fig. 171. Regions of different
mechanisms of magnetic rever­
sal

of rotation of the magnetization vector in them. If the magnetization component
perpendicular to a wall does not change during its rotation, the wall is called
a Bloch wall. In other words, the rotation of magnetization in a Bloch wall
takes place in a plane parallel to the wall (Fig. 170a). If a change in the direction
of magnetization is accompanied by a change in its component perpendicular
to the wall, the wall is called a Neel wall (Fig. 170b).
Magnetic reversal. An increase in magnetization of a sample with increasing
field strength occurs at first due to a reversible displacement of domain bounda­
ries and rotations of the boundary walls (Fig. 171, segment OA). An irreversible
displacement of boundaries and the disappearance of some domains takes place
in the region AC. Finally, in the region CD preceding saturation, a change in
the direction of magnetization inside the domains is observed.
Antlferromagnetism. Under certain conditions, exchange interaction leads
to a situation in which the antiparallel orientation of the spin moments of neigh­
bouring atoms is more favourable from the point of view of energy. For this
purpose, it is necessary to create conditions which are identical to those under
which ferromagnetism occurs, but they now correspond to antiparallel spin
configurations. As a result, the spin magnetic moments of neighbouring atoms
are found to be oriented in opposite directions (Fig. 172).



Sec. 42. Ferromagnetics 298

(42.14)

Such a situation can be interpreted as a stmulta­
neous existence of two sublattices whtch are sponta­
neously magnetized in opposite dtrecttons and have
the same intensity. The total magnetization in this
case is equal to zero. This phenomenon is called
antiferromagnetism, and the materials in which
it is observed are called antiferromagnetics.

The exchange interaction vector in antiferro­
magnetics is directed against the magnetization
vector J. Hence the following relation is valid for
them instead of (42.8):

D.x = -AolloJ. (42.13)

Carrying out calculations identical to those which led from (42.8) to (42.12),
we obtain formula (42.12) for the susceptibility of a ferromagnetic, but in this
case A is replaced by -Aa :

~o = C/(T + AoC) = C/(T + 8),

where e = Aae is the Curie-Weiss temperature. As in ferromagnetics, the
transition to the antiferromagnetic state takes place at a temperature other
than the Curie-Weiss temperature. The temperature of transition to the anti­
ferromagnetic state is called the Nee) temperature. TN.

In the absence of a field below the Neel temperature, the total spontaneous
magnetization of an antiferromagnetic is equal to zero since opposite mag­
netizations of the sublattices completely compensate each other. The application
of an external magnetic field leads to the appearance of a small magnetization
associated with positive susceptibility. •

The two-sublattice model is good enougli to explain the emergence of anti­
ferromagnetism in most cases. However, in some cases when the situation is
not confined to collinear magnetic moments and it is necessary to ensure that
the vector sum of several magnetic moments is equal to zero (which is character­
istic of antiferromagnetism), we have to use a model of more than two sublat­
tices.
Ferrimagnetism. I t may so happen that sublattices have spontaneous magne­
tizations in opposite directions but with different intensities. Thus, the mag­
netization is not eliminated completely as in the case of antiferromagnetism.
Such materials have a spontaneous magnetization which is, however, weaker than
in materials whose magnetic moments are all oriented in the same direction. Such
materials have properties similar to those of ferromagnetics. In particular, they
have a residual magnetization, are characterized by a coercive force, and so on.
These materials are called ferrimagnetics or ferrites. Ferrimagnet ism is some­
times referred to as uncompensated anti ferromagnetism.

The significant advantages that [errites have over [erromagnetics are due to their
extremely low electrical conductivity. The ferromagnetics are good conductors
of electric current, and this is a serious drawback when these materials are
used in radio engineering.
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By a sublattice we mean an aggregate of all ions in a crystal which are
similar not only in their crystallographic structure, but also in their electro­
static and magnetic interactions with th-e surrounding ions. Consequently, the
necessary condition for the existence of ferrimagnetism is the existence of at
least two nonequivalent sublattices. The simplest situation in which ferrimag­
netism can emerge are shown in Fig. 173a-c.
Ferromagnetic resonance. This phenomenon is associated with the interaction
of the spin magnetic moments of electrons with a varying electromagnetic
field. In ferromagnetics, however, this interaction is much more eomplieated

(a) (b) (e)

Fig. 173. Simple cases of emergence of ferrimagnetism

than in paramagnetics. This is due to the fact that ferromagnetics have a spon­
taneous magnetization and a domain structure while the spins of electrons are
strongly connected through exchange interaction. Hence the phenomenon of
resonance in a ferromagnetic has a cooperative nature from the very beginning.
The precession of spins, however, is caused not only by the external field, but also
by an effective field which depends on the external field as well as on the internal
field of the ferromagnetic, for example, the anisotropy field.

Ferromagnetic resonance is observed at frequencies of several thousand mega­
hertz. If a microwave field has a uniform amplitude, a uniform precession
of spins is observed in the entire ferromagnetic sample, which leads to the ap­
pearance of a resonance peak. Simultaneously, other resonance peaks due to
domain boundaries (domain-boundary resonance) are also observed. The inho­
mogene ty of the microwave field leads to the appearance of additional reso­
nance peaks which depend on the shape and size of the sample. An analysis of
this fairly complicated ferromagnetic resonance pattern provides valuable in­
formation on the properties of the ferromagnetic and allows us to measure sev­
eral characteristics of its magnitude, such as saturation magnetization, gy­
romagnetic ratio, anisotropy constant, etc.

As in the case of ferromagnetism, only quantum theory can explain the phe­
nomenon of ferromagnetic resonance.

A typical feature of the m8lnetlz8tlon curve for ferrom8gnetlcs Is the presence of satura­
tion region. The curve describing the revena' of mlgnetlzatlon Is characterized by hys­
teresis.
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Sec. 43. Gyromagnetic Effects

Gyromagnetic effects and their experimental
manijestattons are described.

295

Relation between angular momentum and magnetic moment. The magnetiza­
tion of a magnetic mat.erial is always associated with a reorientation of mag­
netic moments in a certain direction. New magnetic moments which are oriented
in the same direction right from their origin are formed only in diamagnetic
phenomena. The magnetic moment due to the orbital motion of an electron is
connected with the angular momentum of this motion through relati on (40.10).
The intrinsic magnetic moment of an electron is also connected with i ts intrinsic
angular momentum through a linear relation. Hence it is clear that the mag­
netic moment of an atom is also connected with its angular moment um through
a certain relationship. This means that the reorientation of magnetic moments
takes place simultaneously with the reorientation of the corresponding angular
momenta.

The total magnetic moment of an atom is the sum of the magnetic moments
due to the orbital motion of electrons and their spin magnetic moments. The
angular momenta are summed up in the same way. However, since the pro­
portionality factors between magnetic moments and angular momenta corre­
sponding to the orbital motion differ from those corresponding to the spin, the
total magnetic moment of the atom, generally speaking, is not collinear with
its angular momentum and forms a certain angle with it (Fig. 174). The angular
momentum of an isolated system is conserved. Consequently, the direction of
L t for a free atom remains unchanged in space. Hence, as a result of the motion
of electrons in the atom, Pmt precesses round the direction of the total magnetic
moment; the angular velocity of this precession is determined by the duration
of intratomic processes, i.e. has very large values. Hence, when the magnetic
moment interacts with external fields, only the component Pm eft has an effective
value in the direction of total angular momentum of the atom. During interaction
with an external field, the effective magnetic moment of the atom is Pm eft,
which is collinear with Lt. Thus, the relation between the moments can be re­
presented in all cases in the following form:

Pm = geL/ (2m), (43.1)

where e and 'm are the charge and mass of an electron, and g is the gyromagnetlc
ratio. For the orbital motion of an electron, g = 1,- while for spin g = 2.
The value of g for atoms lies between 1 and 2 depending on the proportion and
the manner in which the orbital motion of electrons and their spins contribute
to the total magnetic moments. It should be recalled that in (43.1) by Pm we
do not mean the real tot.al magnetic moment of the atom, but its projection
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onto the direction of the total angular momentum. In Fig. 174, it is denoted by
Pm eft·
EiDSte~n-de Haas experiment. Let us consider a cylinder made of a magnetic
material and suspended from a~ elastic string (Fig. 175). Relation (43.1) between
angular. momenta and magnetic moments shows that during magnetization of
the cylinder ~long th~ axis, the atoms acquire not only a magnetic moment
along the cylinder aXIS, but also a corresponding angular momentum directed

Fig. t 74. Summation of magnet­
ic moments] and: angular mo­
menta in~'an atom

Fig. t 75. Einstein-de Haas ex­
periment

along the cylinder axis. The total angular momentum of a rod is the sum of the
angular momenta of individual atoms and the angular momentum of the rod
as a whole. Before magnetization, the total angular momentum of the rod is
equal to zero. The total angular momentum is conserved in an isolated system.
In the present case, the isolated system consists of a rod and the magnetizing
field created by the solenoid currents.

Without going into the proof (see Chap. 9), it can be mentioned that the an-
gular momentum of an electromagnetic field with respect to the cylinder axis
is equal to zero and hence does not affect the law of conservation of angular
momentum in this case. This means that the sum of the angular momenta of
all atoms and of the rod as a whole must be constant, i.e. it should be equal to
zero even after magnetization. But since the angular momentum of atoms changes
as a result of magnetization, the angular momentum of the rod as a whole also
changes. It follows from (43.1) that the following relation is satisfied during
magnetization:

i1prnz = g leI (2m)] i1Lz' (43.2)

where ~Lz and Sp ; are the angular momentum and the magnetic moment re­
spectively, acquired by each atom upon magnetization along the Z-axis. Sum-
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ming both parts of Eq, (43.2) over all the atoms, we get

VJ = ~ !1Pm1, = g [el(2m)] ~ ~Lz, (43.3)

where J is the magnetization of the rod and V is its volume. It follows from
the law of conservation of angular momentum that the angular momentum
acquired by the rod as a whole due to magnetization is equal to

L1, = - ~ ~Lz = - [2ml (eg)] VJ. (43.4)

The angular velocity co of rotation of the rod is connected with the angular
momentum L z along the axis of rotation and the moment of inertia I z through
the relation

L, = I zCO.

The kinetic energy of rotation is equal to
tW =21%0)2.

(43.5)

(43.6)

On the other hand, the torsion modulus D of the string is connected with
frequency COo of torsional vibrations of the rod through the relation

11,ro: = D. (43.7)

Upon acquiring the kinetic energy (43.6), the rod twists the string by an angle
a, which can be determined from the law of conservation of energy as follows:

t t
21%00%=2 D82• (43.8)

Taking into account (43.3), (43.4) and (43.7), we obtain from (43.8)

I"co = D82/co = - 2mVJI (eg), (43.0)
whence

g = - 2mVJro/(282D). (43.10)

All quantities on the right-hand side are either known, or can be measured
in principle. Thus the value of g can be determined with the help of this equa­
tion.

The twisting of the string upon magnetization is not large. Hence the exper­
iment was actually carried out not by a single magnetization as before, but
by multiple magnetic reversal of the sample at a frequency roo. This leads to
an increase in the torsional vibrations of the sample, the amplitude of forced
vibrations at resonance can be measured easily and reliably at a fairly high
Q-factor. In principle, a transition to resonance build-up does not introduce
any changes in the situation described above.

Einstein and de Haas carried out their experiments on ferromagnetic rods in
which the magnetization effect is especially noticeable. It was found experi­
mentally that

g = 2. (43.11)
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This value is twice that would be expected if the orbital motion of electrons
in an atom were responsible for the magnetism. When these experiments were
first carried out in 1915, nothing was known about the spin of an electron and
the results obtained were considered to be enigmatic. When spin was discovered
later, it was shown that i = 2 for it. It then became clear that the result of the
Einstein-de Haas experiments directly indicates the fact that ferromagnetism
is due to the intrinsic magnetic moment of electrons rather than to their orbit­
al motion.

For other magnetic materials, the gyromagnetic ratio obtained from similar
experiments is found to vary between 1 and 2. In all cases, the sign indicates
that magnetism is due to motion of electrons.
Barnett effect. Any magnetic material possesses a diamagnetism. If it is a para­
magnetic, its diamagnetism is caused by precession of the magnetic moments
of atoms around the induction vector of the magnetic field created in a system
of coordinates where the magnetic as a whole is at rest. In other words, its dia­
magnetism is a consequence of the precession of atoms with respect to the lattice.
Let us rotate the magnetic as a whole. The individual atoms behave as
small gyroscopes which tend to preserve the direction of their rotation axis in
space. Hence the direction of the magnetic moments of individual atoms in
space remains unchanged. Consequently, these magnetic moments will pre­
cess with respect to the crystal lattice of the magnetic with the frequency of
rotation of the latter. Such an ordered precession of atoms with respect to the
magnetic as a whole, however, leads to magnetization. Hence, a magnetic is
magnetized as a result of rotation. This effect was first discovered by Barnet in
1909.

It is clear from the above discussion that when a magnetic rotates at a fre­
quency 00, its magnetization is the same as for a diamagnetic introduced into
a magnetic field whose induction is

B = 2meoo/(I e I g). (43.12)

It should be emphasized that the rotation of a paramagnetic only creates a
diamagnetic magnetization in it. This magnetization is about two orders of mag­
nitude smaller than the magnetization resulting from the paramagnetic effect
(reorientation of magnetic moments).

Why are the total angular momentum and the total magnetic moment of .n atom non­
collinearl
Which quantity plays the role of the effedive total magnetic moment of an atom during
its interaction with external magnetic fleldsl
Why is the reversal of magnetization In a periodic external field used In the Einstein­
de Haas experimentl What requirements are imposed on the frequency of an external
fieldl
What is the nature of magnetization In the Sarne' eRedr

Problems

7.1. The diamagnetic susceptibility of copper (in solid state) is equal to Xd == -8.8 X 10-8 •

Find the mean distance of electrons from the nucleus in a copper atom.
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1.2. The .magnetlc moment of an oxygen molecule is equal to lm =- 2.6 X iO-- A .ml • Finel
the paramagnetic 8UlC8pUhilitJ of oxygen under normU coDdi~ioD8.

1.3. The magnetic dipole moment of molecules is of the order of one Bohr magneton f.L =
e1i/(2me) = 9.27 X 10-16 A ·ml • Considering that the molecules of an ideal p8 have a
permanent magnetic moment J.L, find the maximum possible magnetizatIon at t=
100°C and p:::l 101.3 kPa. .

Answers

7.1. V (HI) = V - 6mx. /(eI ZJ.LoN )= 0.9 X 10-10 m. 7.2. Xp = p':nNJlo/(3kT) = 18 X 10-'.
7.3. Jmax = 182 A/m.



CHAPTER 8

Electromagnetic Induction and Quasistationary
Alternating Currents

The quasistationary approximation is valid for describing electro­
magnetic fields In the regions whose linear dimensions are much
smaller than the wavelength and when displacement currents can be
neglected. The electric field generated due to a variation of the
magnetic field is taken into account, while the magnetic fleld gen­
erated by the variation of the electric field is discarded. The lines of
the condudion current density are closed since displacement cur­
rents are ignored. The magnetic field is determined by the instan­
taneous values of density of conduction currents at the same moment
of time. The condudion current densities depend on the variation 01
the magnetic field, and hence on the variation of the condudion
current density.

Sec. 44. Currents Induced in Moving Conductors

A quantitative description of currents induced in
moving conductors is given. Physical processes
occurring in a.c. generators are described.

Emergence of an e.m.I, in a moving conductor. Free electrons in a conductor
moving in a magnetic field are set in motion relative to the conductor under the
action of Lorentz' force, i.e. an electric current appears in the conductor. This
phenomenon is called the induction of currents in moving conductors.

Let us consider a rectilinear segment DG of a conductor (Fig. 176) which, mov­
ing at a velocity v, slides along conductors CK and AL, as along the guides so
that the loop AGDCA remains closed. The magnetic induction of an external
uniform magnetic field is normal to the plane containing the loop. The Lorentz
force acting on moving charges is

F = ev X B, (44.1)

This force is directed along DG. The forces acting on positive and negative
charges of the conductor are shown by vectors F(+) and F(-) respectively. Free
electrons are set in motion and form an electric current. Its direction is taken
as the positive direction of circumvention of the loopvConsequently, the vector
n shown in the figure is the positive normal to the surface containing the loop.
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The force F [see (44.1)] is equivalent to an
effective electric field acting on charges in the
conductor:

E~tt = FIe = v X B (44.2)

and hence the e.m.f. induced between certain A f---+-~'-+­

points 1 and 2 of the conductor is given by

<r (2) B
(d ~lncl)Gt = E

etf
• dl = r v X B. dl, (44.3) Fig. t 76. Currents induced in

(2; .. J moving conductors
<I) (t)

In the case under consideration, this e.m.I. appears between points D and
G:

(44.6)

(D)

(L\~lnd)DG = 1vB dl = »tn. {M.4}
(G)

On the fixed sections of the closed loop no e.m.f. is induced. Therefore, the
electromotive force induced in the closed loop AGDCA due to motion of its
section DG in the external field is

~lnd= ~ Eeu.dl=vBl. (44.5)
eJ

AGDCA

Expressing the velocity of the conductor DG in the form

v = dxldt

(44.7)

(44.8)<D = -xlB
Recall that

where x is the coordinate of its contacts with the guiding conductors at points
D and G, we present (44.5) in the form

~lnd = dx lBldt

(44.9)

is the magnetic flux through the surface bounded by the loop AGDCA. The
minus sign in this formula indicates that the directions of Band dS are oppo­
site. Consequently, formula (44.5) can now be written in the final form:

e1nd = _ dcI> ,
dt

I.e. the electromotive force induced in a closed conductor moving in an external
magnetic field is equal to the rate of variation of the magnetic flux of the external
magnetic field through the surface stretched over the closed loop.

Formula (44.9) was derived for a particular case when only a part of the con­
ductor moves in the plane perpendicular to the magnetic induction vector. If
several segments of a conductor move simultaneously, the electromotive force
induced in the closed conductor is equal to the algebraic sum of e.m.f.s induced
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in these sections. Therefore, without further cal­
culations, formula (44.9) is generalized for the
case of an arbitrary motion of a conductor in the
plane perpendicular to the magnetic induction
vector. Naturally, during this motion the loop
formed by the conductor may be arbitrarily de­
formed.
Generalization to an arbitrary case. Let us consi­
der an element of length dl of a conductor, mov­
ing at a velocity v = dr/dt (Fig. 177). In accor­
dance with formula (44.3), the electromotive

'force induced over this length is given by .
. d

d~lnd =V X B·dI =dt (dr X B.dI). (44.10)

The triple scalar product tin this formula is
transformed as follows:

dr X Bvdl = dl X dr-B = -dr X dl-B = -dS·B = -«5<1>, (44.11)

where cS<1> is the magnetic flux through the surface element dS = dr X dl formed
by the element of length dl during its motion. The positive direction of the
normal to this surface element is chosen so that it coincides with the positive
direction to the surface bounded by the closed loop.

Substituting (44.11) into (44.10), we obtain

d ~lnd = - «5<l>/dt. (44.12)

In order to find the total electromotive force induced in the closed loop, we
must sum up the e.rn.f.s induced in all olements of length dl of this loop:

~Ind= ~ d~lnd= - :t ~ l)<!>= - ~~ , (44.13)

where

(44.14)

is the variation of the magnetic flux through the surface bounded by the closed
loop.

Formula (44.13) coincides with (44.9). Thus we have proved that the latter
is valid for arbitrary motions and deformations of a closed loop.
A.c. generators. If a closed conductor moves in a magnetic field so that the
magnetic flux enveloped by it constantly varies, an electromotive force and
the corresponding alternating current are continuously induced in it. In other
words, such a closed loop is an a.e. generator. A simple diagram of an a.c.
generator is shown in Fig. 178a. If the magnetic field is uniform and the loop
rotates in it with a constant angular velocity, the e.m.f. ~lnd induced in the
loop is a harmonic electromotive force whose frequency is equal to the frequency
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of the loop rotation in the magnetic field. An alternating current of the corre­
sponding frequency appears in the closed loop (Fig. 178b).

If instead of one loop, two parallel series-connected loops move in a magnetic
field, the induced e.m.f. becomes twice as large as in the previous case. For
this reason, in real generators the windings containing a large number of turns
are used. The problems of optimization of the shape of windings, creation of a
magnetic field, removal of current from rotating windings, etc. are considered
in detail in electrical engineering. It should only be noted here that the removal

(a)

~ind.

(b) (c)

Fig. 178. Schematic diagram of an a.c. generator

of strong currents from moving windings is quite a complicated problem. For
this reason, instead of current-carrying conductors, the sources of magnetic
field are moved, and the conductors remain fixed. In the simple diagram
(Fig. 178c) this corresponds to the motion of permanent magnets around a fixed
current loop. The e.m.f. induced in the fixed loop is quantitatively the same
for identical relative velocities of the magnets and the loop. However, the phys­
ical nature of phenomena occurring in these two cases is different.

First generators employed permanent magnets, but even in 1866 a generator
was designed in which the magnetic field was created by an electromagnet.
After this the design of generators was perfected further.
The law of conservation of energy. When a current flows Ina circuit containing
an ohmic resistance, Joule's heat is liberated. The energy liberated in the form
of heat is obtained at the expense of the work of mechanical forces in a current
generator.

Of course, when the energy is transformed from one form to another, the law
of conservation of energy is observed. Let us illustrate this by using a simple
example (see Fig. f 76).

Let R be the resistance in the circuit AGDCA and I be the current in it. Con­
sequently, the energy liberated in the circuit in the form of heat is characterized



804 Ch. 8. Electromagnetic Induction

by the power
PI = ['R. (44.15)

On the other hand, when the section DG of the conductor with current I
moves, the Lorentz force

F = [lB. (44.16)

should be overcome. Consequently, the forces responsible for the motion of the
conductor must develop the power

P 2 = Fv = llB dx/dt = _I~tnd = -I2R
I (44.17)

where we take into account formula (44.9) and the fact that ~Ind = IR. The
minus sign in (44.17) indicates that the work is done on the system. A compari­
son of (44.15) and (44.17) shows that PI + P 2 = O. This means that the energy
liberated in the form of heat in the circuit is equal to the work of forces moving
the conductor. In other words, the extraneous electromotive forces in this case
are ultimately mechanical forces causing the motion of the conductor.

When a closed loop moves end Is deformed In Bn edernal megnetlc neld, the .....f. In­
duced in it is numerlcelly equal to the rate of variation of the magnetic flux of the edernal
field through the surfBe. stretched over the closed loop.
The entire work performed by the current Induced In B _owing conductor Is done .. the
expense of the work of the forces thadset the conductor In motion.

What physical phenomena form the basis of LC. generators? Describe the basic types of
generators.

Sec. 45. Faraday's Law of Electromagnetic Induction

The physical essence and mathematical formulation
of Faraday's law are discussed. The relationship be­
tween Faraday's induction and the induction of cur­
rent in moving conductors is analyzed.

Defmition. In 1831, Faraday experimentally discovered electromagnetic indue­
tion, manifested in the appearance of an electric current in a closed conductor
upon a change in a magnetic flux through the contour formed by the conductor.
The direction of induced e.m.f. is determined by the law formulated in 1833
by H.F.E. Lenz (1804-1865): induced current is in such a direction as to oppose
the magnetic flux variation causing it. In other words, the direction of current
induced in a loop forms with the direction of magnetic flux variation a left­
handed system (Fig. 179). In 1845, F. E. Neumann (1798-1895) formulated
the law of electromagnetic induction in its present form for a fixed loop:

~Ind = -d<D/dt, (45.1)
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Physical essence of the phenomenon. Formula
(45.1) is completely identical to (44.9) in its ap­
pearance, but has a quite different physical con­
tent. The induced e.m.j. described by formula
(44.9) is associated with the Lorentz force acting on
moving charges. On the other hand, no Lorentz force
participates in creating the e.m.j, described by for­
mula (45.1) since the conductors are fixed. An elec­
tric current, however, appears in the conductor,
and hence we may conclude that an electric field
is present in it. Consequently, Faraday's law
(45.1) expresses a new physical phenomenon: a vary­
ing magnetic field generates an electric field. Thus, Fig. i 79. Faraday's law of elec-tromagnetio induction
electric field is created not only by electric charges
but by a varying magnetic field as well.

Strictly speaking, the presence of current in a closed conductor indicates that
an electric field exists only inside the conductor. However, in the case under
consideration, the conductor detects an electric field. In the absence of the con­
ductor, a varying magnetic field also generates an electric field. This can be
confirmed, for example, by the fact that an electric force is acting on a charge
in a varying magnetic field (see Sec. 56). This proves that the law of electro­
magnetic induction is a fundamental law establishing the relation between
electric and magnetic fields. The difference in the physical content of phenomena
described by formulas (44.9) and (45.1) can be demonstrated by using the fol­
lowing example. Suppose that the conductor DG shown in Fig. 176 moves at
a velocity v and the magnetic induction B decreases simultaneously. As a result
of motion of the conductor, an e.m.f. is induced in the loop, which generates
a current (Fig. 176). In accordance with Faraday's law, the variation of B also
induces an e.m.I. in the loop, which is directed against the e.m.f. created due
to motion of the conductor DG. We can choose such a rate of variation of
B (aB/at) that these two e.m.I.s compensate each other. As a result, no current
will flow in the loop since the total induced e.rn.I. is equal to zero. However,
the mutual compensation of induced e.m.f.s occurs in the loop as a whole and
not at each point of the loop. The e.m.I. induced due to motion of the conductor
appears only in the segment DG, while the e.m.f, induced according to Faraday's
law .appears on the segment DG as well as on the remaining segments DC, CA
and AG. The e.m.I. induced in the element of length dl of the conductor as a
result of motion depends only on B and on the velocity v of motion of this ele­
ment but does not depend on aBlate On the other hand, the e.m.f, induced in
the element dl of the conductor as a result of the variation of the magnetic in­
duction does not depend on the induction B and on the velocity v of motion
of this element and is determined only by oB/ot. This shows that the physical
nature of e.m.I.s induced in these two cases is different.
A conductor moving in a varying magnetic field. If a closed conductor moving
in a varying magnetic field experiences arbitrary deformations, the e.m.f, in­
duced in it is due to the motion and deformations, taken into account by for-

20-0290
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(46.2)

mula (44.9), and as a result of the variation
of the magnetic induction, which is taken into
account by a similar formula (45.1). There­
fore, it can be shown that the e.m.f. induced in
the conductor is determined by formula (45.1),
where d<D/dt is treated as the total rate of
variation of the magnetic flux embraced by the
conductor, which occurs due to its motion and
deformation and as a result of variation of the
magnetic field.
Application of the law of electromagnetic in­
duction to a.c, generators. I t now becomes
clear why an electric current can be generated

Fig. 180. Demonstration of Fara- 1 b h . f d .
day's electromagnetic induction not on y y t e mot.ion 0 con uctors In a mag-

netic field but also by the motion of magnets
relative to fixed conductors. Figure 180 presents a schematic arrangement for
demonstrating electromagnetic induction.

~n electric field can be generated not only by electric charges but also by a varying
magnetic field.
Induced e.m.f. Is expressed by fonnule 145.t), where daJ/dt stands for the total rate of
variation of the magnetic nux through the loop due to motion and deformation of the
conductor as well as due to variation of the magnefic field.

Sec. 46. Differential Form of the Law of Electromagnetic
Induction

Differential form of Faraday's law is given and the
properties of vector and scalar potentials of a varying
electromagnetic field are discussed.

Differential form of Faraday's law. We shall write Faraday's law of electro­
magnetic induction [see (45.1)] in the form

~ E·dl= - :t JB.dS, (46.1)
L 8

where L is the contour and S the surface stretched over this contour. In this for­
mula, the following definitions are taken into account:

~Ind= Js.ai, <1>= JB·dS.
L B

It should be noted that the direction of circumvention of the contour Land
the vector dS form a right-handed system. It should also be emphasized that
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the surface S appearing in the definition of the magnetic flux <1> [see (46.2)],
through which the flux to be determined passes, is an arbitrary surface stretched
over the contour L. Such a definition presumes that the surface integral does
not depend on the shape of the surface. It is only required that the surface be
bounded by the contour L or, so to say, stretched over contour L. Let us
prove this. We choose any two surfaces stretching over the contour L. Their
combination forms a closed surface S = 8 1 + S 2' bounding a certain volume
V between them. The flux of B through the closed surface S is equal to zero
since, according to the Gauss theorem, it is equal to the integral of div B = 0
over the volume V bounded by the surface S. Hence we can state that the fluxes
through 8 1 and 8 2 are equal (the fluxes have the same signs for the same orien­
tation of positive normals to these surfaces r.elative to the direction of circum­
vention of the contour).

Let us transform the left-hand side of (46.1) according to the Stokes formula

This gives

) E·dl= Jcurl E·dS.
L B

) curlE·dS= - ) ~~ .as,
L B

(46.3)

(46.4)

(46.5)

where the time derivative is introduced into the integral since the integration
surface does not depend on time. Since 8 is an arbitrary surface, it follows from
(46.4) that

Icurl E = - aB/at·1

This equation is the differential form of Faraday's law of electromagnetie
induction. It describes the law of generation of an electric field at a certain
point due to a variation of the magnetic induction at the same point. The field:
E is often called the induced field.
Nonpotential nature of induced electric field. In an alternating magnetic field,
8B/8t =1= 0, and hence, in accordance with (46.5),

curl E =F O. (46.6)"

This means that unlike the electrostatic field created by fixed charges, the induced
electric field is not a potential field. The work done in this field on moving a charge­
q over a closed contour generally is not equal to zero:

A=-q~lDd=q IE·dl:;=O. (46.7)
L

Hence it follows, in particular, that this field cannot be represented as the'
gradient of a certain function, i.e, cannot be represented in the form (14.27) ..
For this field, some different representation should he used.

20*
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Vector and scalar potentials in a varying electromagnetic field. Since the law
of electromagnetic induction is not related to the laws of generation of a magnet­
ic field, Eq. (36.4) for the divergence of magnetic induction remains unchanged,
i.e, div B = O. Consequently, formula (37.2) relating the vector potential to
the magnetic induction remains in force:

B = curl A. (46 8)

The relation between the scalar potential with the electric field strength is.
however, altered. Expressing B in (46.5) with the help of (46.8), we obtain

a lJA
curl E = - at curl A == - curl 7ft' (46.9)

where the order of differentiation with respect to time and with coordinates is
changed in view of their independence. Equation (46.9) written in the form

curl (E+ ~ ) =0 (46 10)

shows that vector E + BAIBt is a potential vector and hence can be represented
in the form of the gradient of a certain function

E + BA/Bt = - grad cp, (46.11)

where cp is the scalar potential. Thus, for varying fields the electric field strength
is expressed not only in terms of the scalar potential but through the vector
potential as well:

IE= -grad cp-8A/at·1 (46.12)

The first term on the right-hand side of this formula takes into account the elec­
tric field generated by electric charges, while the second term describes the field gen­
erated in accordance with Faraday's law of electromagnetic induction.
~biguitI_of potentials and gauge transformation. As in the stationary case,
the scalar and vector potentials for varying electromagnetic fields are not unique.
In other words, the same electromagnetic field can be described by a large
number of scalar and vector potentials.

Suppose that a field E, B is described by potentials A and q> given by formu­
las (46.8) and (46.12), and there is a certain arbitrary function X (x, y, z, t). We
state that the potentials

A' = A + grad X, cp' = cp - BcplBt (46.13)

characterize the same field E, B as that characterized by potentials A and cp.
In order to prove this, let us find the fields E' and B' described by potentials A'
and cp' by using formulas (46.8) and (46.12):

B' = curl A' = curl A + curl grad X = B, (46.14)

where we took into account the fact that curl grad 'X = 0 and formula (46.8) ..
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Then we obtain the following expression for E':

E' = - grad q>~ - aA'lat = - grad q> - grad (oy/at)
- aAllJt - {} (grad X)/at = - grad q> - aAlat = E. (46.15)

Thus" potentials (46.13) indeed describe the same field as the potentials A
and q>. Transformations (46.13) are called gauge transformations. They make
it possible to "calibrate" potentials, i.e. to impose on them a certain condition
by using their ambiguity (see Sees. 14, 37, 63).,
Sec. 47. Magnetic Field Energy

The formulas for the magnetic field energy of
current loops and the expression for energy density are
derived. Expressions are given for the energy of a
magnetic in an external magnetic field and for body
forces acting on compressed magnetics.

Magnetic field energy for an isolated current loop. In order to create an electric
current in a fixed loop, it is necessary to connect an extraneous e.m.f. source to
the circuit. In a d.c. circuit, the energy supplied to the circuit from the source
of extraneous e.m.I, is spent as Joule's heat and for accomplishing work in the
load. In this case, the magnetic induction as well as the field energy remain
unchanged. The magnetic induction varies with current. Consequently, the
source of extraneous e.rn.f.s supplies energy to the circuit to create a magnetic
field with increasing current. Calculating the work done by the source of ex­
traneous e.m.f. required to increase the current from zero to a finite value, we
obtain the energy of the magnetic field associated with this current.

When the magnetic flux piercing a loop changes,
an e.m.f, is induced in the loop in accordance
with law (46.1). For an isolated loop, the magnetic
flux <1> appears due to a magnetic field generated
by current in the loop (Fig. 181). As the current
increases, the magnetic flux <D embraced by the
current also increases, and the e.m.f. induced in
the loop in accordance with Faraday's law is cal­
led the e.m.f. of self-induction (self-induced
e.m.f.). In accordance with Lenz's law, it is di­
rected so that it opposes an increase in the cur­
rent. For increasing current it is necessary that
the extraneous e.m.f, of the source be opposite Fig. 181. When the current in­
to the self-induced e.m.f. and equal in magnitude creases, a source of extraneous

e.m.f.s performs the work
to it. Thus, as the current increases, the source: of against the e.m.f. of self-indue-
extraneous e.m.j, performs work against the self-in- tion
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duced e.m.]. (sometimes called the back-electromotive force). If the quantity of
electricity passing through the circuit during time dt is Q = I dt, the work
done by the source of extraneous forces during this time against the self-induced
e.m.f. is

dA = - ~lnd I dt = (d<D/dt) I dt = I"d<D (47.1)

where ~lnd is given by formula (46.1). This work is done when the energy of the
:source of extraneous e.m.f.s is transformed into the energy of the magnetic

2,

Fig. 182. To the calculation of the magnetic energy of the
field of two current loops

field in the current loop. Hence the change in the magnetic field energy is con­
nected with the change in the flux through the relation

dW = I d<D. (47.2)

According to the Biot-Savart law (10.10), the magnetic induction of the
field is proportional to the current creating the field. Consequently, for an al­
ternating current flowing in a rigid fixed loop, the pattern of field lines remains
unchanged, and at each point the magnetic induction varies in proportion to
the current. This means that the magnetic flux through a fixed stationary sur­
face is also proportional to the current, and hence

<D = LI, (47.3)

where L is a constant proportionality factor which does not depend on current
and magnetic induction. This coefficient is called the inductance of the loop.

Substituting (47.3) into (47.2), we obtain

dW = LI dI === d (1/2 LI2). (47.4)

Integrating both sides of this equation between 1 = 0 and a certain value I,
we obtain the formula

W === 1/ 2 L12, (47.5)

which defines the energy of the magnetic field generated by the current I flowing
in the circuit with inductance L.
Magnetic field energy for several current loops. Similarly we can find the energy
of the magnetic field of two current loops (Fig. 182). It should be borne in mind
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(47.10)

(47.12)

(47.11)

(47.13)

that an e.m.j, induced in each loop increases not only at the expense of the variation
()f the magnetic flux of the field created by this loop but also due to the change in the
magnetic flux of the field created by the other loop. We denote by II and 12 the
'Currents in the first and second loops and by <1>11 and <1>12 the magnetic fluxes of
the fields generated by currents 11 and 12 and piercing the first loop. Similar
quantities for the second loop are denoted by <1>22 and <1>21. The total fluxes pierc­
ing each loop are given by

<1>] = <1>11 + <1>12' <1>2 = <1>21 + <1>22. (47.6)

"Let L]] and L 2 2 be the inductances of the loops. Then [see (47.3)]

<1>11 = LIlli' <1>22 = L 2 212 • (47.7)

From the same considerations as those used in deriving formula (47.3) we
conclude that the magnetic flux <1>12 through the first loop, created by the current
1 2 in the second loop, is proportional to current I 2 in the second loop:

<1>12 = L 1 212 , (47.8)

where L12 is a constant called mutual inductance of the first and second loops.
Similarly, for the second loop we obtain

<1>21 = L 2111 • (47.9)
Hence [see (47.6)]

<1>1 = LIlli + L 1 212 , <1>2 = L 2111 + L 221 2•

The e.m.I.s induced in the first and second loops are given by

~ind __ d<D1 __ (L dl1 +L dI2 )
1 - d t - lt dt 12 dt '

~ind= _ d<I>2 = _ (L dI1 +L dIs)
2 dt 2t dt 22 dt •

In analogy with (47.1), the entire work done by the sources of extraneous
e.m.f.s in the loops during the time dt is given by

dA = dA 1+dA2 = _~\nd/t dt-~~ndI2 dt

= (L 11/ 1 ar,+£{21{ d12 + L 2112ar,+L2212 dI2).t

where relations (47.10) are used.
For further calculations, let us prove that L1 2 = L 21- For this purpose, we

calculate <1>21 and <1>12:

<1>21 = ) B.. dS2• <1>12 = JB2 •as,
8. 81

where B1 and B2 are the magnetic inductions of the fields generated by cur­
rents II and 12 respectively, 8 1 and 8 2 are the integration surfaces stretched
over the loops. The magnetic induction at each point is equal to B1 + B2 •

Denoting by A] and A2 the vector potentials describing the fields B1 and B2 ,
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(47.14)

B1 = curl At, B2 = curl AI

and thus equations (47.13) assume the form

<1>2t = ) curl At' as, = ) At' dJ2•
81 LI

<1>t2= ) curl A2"dSt = ) A2· dJu
Bs LI

where L1 and L 2 are the current loops. The transition to the integration over
closed circuits is made in accordance with the Stokes formula. Formula (37.11b)
expressing the vector potential in terms of current assumes in this case the
following form:

A - J-lo I f dl 1 A _ J!o I r dl 2
1-41t tJ-r-' 2-41( 2J-r-·

Ll II

Substituting this formula into (47.14), we obtain

rn J-lo I r r d11·d12 m J!o r r dl 2 ·dl t
'V21 = 4n 1 J J r21 ; \.V12 = 41t 12 j J rl2

LI Lt Ll LI

(47.15a)

(47.15b)

(47.16a)

where T12 = r21 is the distance between the elements dl, and dl, of th-e first
and second loops. Comparing (47.15b) with (47.8) and (47.9), we get

L - J!o , f dl 2 ·dl1 L _ ~o r r d11·d12
12 - 4n J J rI2 ., 21 - 4n J J r21 •

Ll L LI Ll

These formulas show that mutual inductance depends only on geometrical char­
acteristics of the loops and on their mutual arrangement. Since dl, and dl, are
independent integration variables, the order of integration can be changed.
Considering also that r12 = r21 and dl1 • dl 2 = d1 2 • dl., we conclude that

L12 = L21 (47.16b)

In other words, the mutual inductance of the first and the second loop is equal
to the mutual inductance of the second and the first loop. Taking this into con­
sideration, we can write

£1211 dI 2 + L 2112 dl1 = d (1/2L121112 + 1/2 L21121~)

and, consequently, (47.12) can be represented in the form

dA = d (1/2Ll1I~ + t/2L 121112+ 1/2L2112/1 + t/2.L221:). (47.17a)

Considering that the work done in increasing the current is equal to the
energy of the generated magnetic field, and integrating both sides of Eq. (47.17a)
bet ween zero values of current in the loops (II = 0, 12 = 0) and the values II
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and 12 , we obtain

313

(47.19)

2

W = ~ (Lu/~+ Lf2/t/Z+LZt/Z/t + LZ2/ : ) = ~ ~ Lul,/,.. (47.17b)
t-l

This formula defines the energy of the magnetic field created by currents­
11 and 12• It can be easily generalized for N loops:

N

W = ~ ~ L,,,I,I,,. (47.18}
f=1
k=l

where L i k is called the inductance of the ith loop when i = k and mutual in-­
ductance of the ithand kth loops when i =1= k. The expression for these coeffi­
cients are given by formulas (47.16a) which now assume the form

L =~ \ r dlt·dlk (i=l=k),
'k 4", J J rtk

L,LII.

where dl" dl k are the elements of length of the ith and kth loops L, and LA, and
rtA is the distance between these elements. It follows from this equation that.

L •• = L Il . , (47.20}

which is the generalization of (47.16b) for the case of many current loops.
Magnetic field energy in the presence of magnetics. If the entire space is filled
by a homogeneous magnetic, the magnetic induction of the field created by giv­
en currents is fl/flo of that in vacuum [see (38.29)]. Consequently, the fluxes <1>­
and d<l> appearing in formula (47.1) change by a factor of fl/flo, all subsequent
calculations being the same. Formulas (47.7) and (47.8) lead to the conclusion.
that the inductance of the circuit and mutual inductances increase ~/Ilo times.
This means that formulas (47.16a) for mutual inductance in the presence of a
magnetic have the same form as in the absence of a magnetic if we replace­
flo by fl. The same substitution should be made in formulas (47.15a) and (47.15b).
Expressions (47.5) and (47.17) for the magnetic field energy remain unchanged,
but inductances and mutual inductances in them become ll/llo times larger.
Consequently, the energy of the magnetic field of currents {lowing in an unbounded"
homogeneous magnetic changes by ll/llo in comparison with the magnetic field
energy of the same currents in vacuum.
Magnetic energy density. The magnetic field of given currents is distributed
over the entire space. Let us express the field energy (47.5) of an isolated cur­
rent loop in terms of the field vectors. Using formula (47.3), we can write (47.5)
in the form

Here

<I> = JB· dS = Jcurl A· dS = 1A· dI,
s S L

(47.21).

(47.22)·
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(47.24)

(47.23)

(47.26)

where Land S are the contour loop and the surface stretched over this contour.
The potential A in (47.22) is due to the current I. Thus, the current loop in­
teracts with its own magnetic field. The physical meaning of this interaction
consists in that each current element I dl creates a magnetic field in space, with
which other current elements interact. Substituting (47.22) into (47.21), we

·obtain

w= ~ jrA.dl= ~ JA.j dV,
L v

where a transition to volume currents is made with the help of (9.26). Now
we transform the integrand so that it includes only the field vectors and the
vector potential. For this purpose, we make use of formulas B = curl A and

.j = curl H, as well as the relation obtained for the vector potential:
div (A X H) = Hv curl A - Avcurl H. This gives A·j = H·B - div (A X H)
and hence formula (47.23) assumes the form

1 r ..
W=T J H·BdV- Jdiv(AXH)dV.

In accordance with the Gauss theorem, the second integral is transformed into
.the integral over the surface bounding the integration volume:

) div A X H dV = JA X H·dS. (47.25)
v s

If all currents are concentrated in a finite region of space, then at large dis­
tances r from this region A ex: 1/r and H ex: 1/r2 , i.e. the integrand decreases
as 1/r3 • In this case, the integration surface grows in proportion to r2 , and hence
the integral decreases as 1/r. Consequently, for the entire space, as r -+ 00,

the second integral in (47.24) vanishes, and the total energy of the field is re­
presented by

I. W=+ JH.BdV·1

It can be said that the field energy is uniformly distributed over the entire
space with the volume density

I W=-} H.B, I (47.27)

I.e, the volume density of the magnetic field energy at each point is determined
by the values of the field vectors at this point. Naturally, it is immaterial by
which sources these fields are created.
Inductance. We represent the potential A in Eq, (47.23) with the help of (37.11a)
in the form

A=~ rLdV'
4n J r' (47.28)
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(47.30)

Fig. 183. To the calculation of
the self-inductance of a loop

(47.35)

(47.34)

(47.31)

where the current density and volume density are
primed to distinguish them from the same quanti­
ties in the integrand of (47.23): these are different
volume elements of the same current, the dis­
tance between which is denoted in (47.28) by r (see
Fig. 183). Substituting (47.28) into (47.23), we get

W=.!.L.. r f i·j' dVdV'
2 4n J J r

v v

=.!.[2--L_f r r J.:r...dVdV' (47.29)
2 4n 12 J l r '

vir
where the numerator and the denominator of the last expression are multiplied
by /2. Comparing (47.29) with (47.5), we obtain

L = ~_f_ r r i:.L.dV dV'
4n 12 JJr·

V V

As we go over to volume currents (I dl -+ j dV), formulas (47.16a) for mutual
inductance become

L Jl 1 r r ii·ill dV dV
ilt= 411: [,lit J J ru;- t AI

v,VIt

i.e. are similar to (47.30). Formula (47.30), however, cannot be expressed in
terms of rectilinear currents. If it is done formally, the integrand in (47.30)
assumes the form J 2dl · dI' /r and tends to infinity when the elements of integra­
tion coincide, viz. when dl == dI', since in this case r = O. Hence the integral
diverges and the formula for the inductance loses its meaning. This situation
is similar to that arising during the calculation of the intrinsic energy of the
charge, when the intrinsic energy of the point charge becomes infinite.
The field of a solenoid. By way of an example of application of formulas obtained
in this section, let us consider the field of a solenoid. It was shown that the
magnetic induction of the field outside a solenoid is equal to zero, while inside
the solenoid it is determined by formula (38.40), i.e,

B = ~n/, (47.32)

where n is the number of turns per metre of the solenoid length. The magnetic
flux through a turn of the solenoid is given by

<PI = BS = ~n/S, (47.33)

where S is the cross-sectional area of the solenoid. The flux through N turns
of the solenoid, which fill the length l == Nln, is equal to

<PH = <PIN = ~nISN = ~/SN2/l.

Consequently, the inductance of N turns of the solenoid is given by

L N = <PNI/ = !1SN2/l.
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The energy concentrated on the length l is

t 1 flN2]2 1 1
W =2 LN I 2= 2" -1-8=2 ~n212Sl=2: HBV. (47.36)

where ~n1I2 = HB, Sl = V is the volume of the part of the solenoid, in which.
the field energy is calculated. Formula (47.36) allows us to determine the field.
energy in terms of current and inductance as well as in terms of the field energy'
density.

Let us find the vector potential of the field of a very long solenoid. It is ex­
pedient to proceed from formula (47.22). In view of axial symmetry of the prob-­
lem, we shall make calculations in a cylindrical system of coordinates with:
the symmetry axis coinciding with the axis of the solenoid. We denote the axial
angle by q> and the distance from the axis to the point at which the potential
is being calculated by T. For the contour L in (47.22) we choose a circle of radi­
us T, lying in the plane perpendicular to the solenoid axis and with the centre­
on this axis. Then

<I> = ) B· dS = ~ A· dl = ~ Alfr drp= 2nrA".
8 L L

where we consider that A4p = const for T = const. Consequently, the vector
potential is equal to

A4 (r) = 2~r JB·dS
s

where S is the area of a circle of radius T. Hence

{
l1nlr/2 (0 < T < a),

A==
q> lin!a2/(2r) (a < r < (0).

Energy of a magnetic in an external field. Suppose that we have a fixed distri­
bution of currents, which creates in a free space a magnetic field of magnetic
induction B o (z, y, z) = J1 0H (x, y, z) and the energy

Wo= ~ JiHo.Bo~dV. (47.37)

Suppose that the entire space is filled with a homogeneous magnetic having
permeability J1 = const, and the field is created by the same distribution of
currents. As was shown earlier [see (38.22)], the magnetic field strength in the
magnetic remains unchanged (H = H o) , while its induction will now be
B = ~H. Consequently, in the presence of the magnetic the field energy is giv­
en by

W=~ )Ho·BdV (47.38'

This means that the energy of the field increases if the space is filled with a
magnetic. The sources of this energy are, for example, extraneous electromotive-
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10rces required for maintaining current at a constant value after the space has
been filled with the magnetic. Since all the sources creating an additional field
.after filling the space with a magnetic are identical to those which create ths
neld before introducing the magnetic, we can assume that the energy of the
magnetic in the external field H, is the quantity

Wm=W-Wo={ J(Ho·B-Ho·Bo)dV. (4739)

We can transform the integrand in this expression as follows:

where

J = XH = fl-J.1o -.!!..= J.L-f.10 B.
J.lo fJr J.1f.10

Consequently, the energy of a magnetic in a magnetic field is

(47 40)

(47.41)

(47.42)

This expression is similar to formula (18.30) for the energy of a dielectric in
an external field, but differs from it in the sign on the right-hand side.

Formula (47.42) was derived for the magnetic which filled the entire space
with f.1 = const. However, this formula has the form of the integral of energy
-density of the magnetic, and hence it can be expected that it is valid in an ar­
bitrary case. This conclusion can be confirmed by appropriate calculations which
.are not presented here in view of their cumbersomeness.

Now, we can calculate the energy of a magnetic having a permeability f.11
placed in a medium of a permeability 112. We shall again consider an infinite
magnetic and proceed from formula (47.42) as in deriving formula (18.30).
"The only difference is that in electrostatics the given charge distribution creates
in different media the same field D, while in the theory of stationary magnetic
field a given current distribution creates in different media the same field H.
Ihus,

where

Wm=i- ~ (BI·HI Bo·Ho)dV.
- &'

(47.43)

(47.44)

Expression (47.43) is similar to formula (18.31) but has the opposite sign in
the integral term. Although this formula was derived for an infinite magnetic, it
is valid for a bounded magnetic as well, In this case, the integral is extended
to the entire volume of the magnetic. The magnetic field strength H 2 is the
strength of the field that would be created at the points of the magnetic volume
if its permeability were equal to the permeability f12 of the medium and Hi
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(47.45)

is the actual magnetic field strength in the magnetic with permeability
J.!1' placed in the medium having permeability J.!2·

Suppose that the permeability of the medium changes by an infinitely small
quantity 6J.!. Then the energy of the magnetic placed in the magnetic field HI
changes by 6Wm • Putting in (47.43) 6f.1 = fJ.I - fJ.2' H2 = H, HI = H + 6H
and discarding the quantity 6fJ.6H· H as a higher order infinitesimal, we obtain

I cSWm = ~ J6f!/J2 dV,
1 1

where fJ. can be a position function and a function of other parameters. This
formula differs from the corresponding formula (18.36) for dielectrics only in
sign.
Calculation of forces from the expression for energy. Let us consider a system
of current loops. When the loops are moved and deformed, mechanical work is
performed at the expense of extraneous electromotive forces. The energy of
the source of extraneous electromotive forces is spent for generating a magnetic
field and performing a mechanical work. The work of extraneous electromotive
forces is determined by formula (47.2), while the mechanical work done upon
the variation of parameter ~i characterizing the configuration of the system is
by definition equal to Fid~h where F i is the generalized force referred to param­
eter ~i. The law of energy conservation is written in the form

(47.46)

Let us first consider virtual processes in which magnetic fluxes are conserv­
ed, i.e. d<p J = O. Equation (47.46) assumes the form

O=(dW)cI»+~F,d~it.· (47.47)
i

from which, in view of the independence of d~ft we obtain

( OW)F-- -,- o£i cI»'
(47.48)

where the subscript <P on the partial derivative shows explicitly that it is taken
at constant values of fluxes <pJ. In order to be able to use formula (47.48), we
must express the magnetic field energy as a function of Wi and ~i as independent.
parameters.

For practical applications, it is more convenient in many cases to, express
the generalized force in the form of the derivatives of energy with respect to­
generalized parameters at constant currents. Considering that [see (47.6)]

<l>, - ~ L'k1ltf ·'(47.49)
i
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the magnetic field energy can be expressed in the form

W = ~ ~ eD,Ii •

For constant currents (I i = const), this equation gives

(dW)r =i- ~ t, deD"
i

and hence formula (47.46) is reduced to the form

(dW)1 = ~ F, dS,.
i

319'

(47.50)-

(47.51)-

(47.52}

It should be noted that this formula is valid only for constant currents. Tak­
ing into account the independence Si' we find the expression for generalized
forces:

F -(~)i-oS, I'
(47.53)

(47.54)

where the subscript I on the partial derivative indicates that it is taken at
constant currents. In order to be able to apply (47.53), we should express W
as a function of currents and parameters ~i.

Let us consider, by way of an example, two coupled current loops for which
the magnetic energy is determined by formula (47.17). Using (47.53), let us­
calculate, for example, the x-component of the force exerted by the first loop
on the second one. For the generalized coordinate, we shall take the value of
the coordinate x at a certain point of the second loop, assuming the first loop
to be fixed. For a virtual displacement associated with this coordinate, we
should take the displacement of the second loop along the X-axis without de­
formations or rotations and express the magnetic energy in terms of this coor­
dinate and other independent parameters in which we are not interested now.
The entire dependence of the magnetic energy on x is contained in the mutual
inductance L 1 2 = L 21 , since the inductances L 11 and L 2 2 do not depend on vari­
ation of mutual arrangement of the loops. The generalized force associated
with the Cartesian coordinate z is the component F x of the conventional force ..
Hence Eq. (47.53) assumes the form

F I I OLl2
x= 12--a;-·

The other components of force are determined in a similar way. The induc­
tance £12 is a geometrical quantity, and its dependence on x can be found with
the help of formula (47.19).

Clearly, the value of force does not depend on the formula through which it
is calculated. Hence the value of force can also be obtained if we proceed
from formula (47.48). Let us do this here. We cannot use in (47.48) expres­
sion (47.17) for W since it contains currents explicitly. Let us exclude these
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forces with the help of formula (47.10), which give

I - L 22<I> 1 - L 12<I>2 I _ L 11<I>2 - L 2 1<I> 1

1 -- L11L2 2 - L¥2 ' 2 - L11L2 2 - L12 •
(47.55)

(47.56)

(47.58)

'Substituting these formulas into (47.17), we obtain

W - 1 [ Lll<I>~ L <I> <D + Lss<I>1 ]
- L

11L2S-Lls
-2-- 12 1 2 -2-·

Now, the magnetic energy is explicitly expressed in terms of fluxes, and we
can apply formula (47.48) for <l>i = const. The only quantity depending on x
in (47.56) is £12' and hence

F = -(~)x ax <1l

= (£ £ 1 £2 )2 [L1ZLzzcI>~ - (L11L22 + L:.) cI>1cI>z+ L1zLI1$ :1 °aL 1S = I tI 2 a~lS ,
11 22- 12 Z ox

(47.57)

where we have taken into account formulas (47.55). As should be expected,
(47.57) coincides with (47.54).

Formulas (47.48) and (47.53) should be used depending on the circumstances
and the formula involving simpler calculations should be preferred.
Body forces acting on compressible magnetics. Having obtained expression
(47.45) for the energy of a magnetic in a magnetic field, we can obtain the ex­
pression for forces from the relation between forces and energy in the same way
as it was done for dielectrics in Sec. 19. Proceeding from (47.45) and using the
same line of reasoning as during the transition from (18.36) to (19.41), we per­
form similar calculations. It should only be borne in mind that the force for
dielectrics is determined at constant charges, i.e. by formula (19.46), and
for magnetics, at constant currents, i.e, by formula (47.53). This means that
while calculating the derivatives, the energy should be taken with opposite
signs. As a result, we obtain the following formula instead of (19.41):

f = -i- HZ grad ~+ ~ grad (/PPm O~m ) •

It should be recalled that we are dealing with isothermal processes, and hence
the derivative 8't1/8Pm in (47.58) should be calculated at T = const.

It is expedient to write formula (47.58) in a different form:

f = i.- B2grad (i.-) _-.!.- grad [B2 p _0_ (-!-) ] (47.59)
2 J.l 2 m 8Pm ~ ,

where we have taken into consideration that /P = BI/~'I. and :z (~) =
~. :~ , etc. In this! form, (47.59) is a closer analogue of formula (19.41)

since B plays the role of a field vector in magnetism and 1/~ is a quantity
analogous to 8.
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Let us write formula (47.41) in the form

ttl (47.60)JL;-Ii=IJ"

Suppose that magnetization J linearly depends on density Pm' i.e. J ex: Pm.
Then it follows from (47.60) that

8· (i) i t
Pm 8pm J1 =J1-~.

Under these conditions, formula (47.59) becomes

f =.!. fJ.- fJ.0 grad B2
2 fJ.fJ.o '

(47.61)

(47.62)

which coincides with (39.13). Thus, formula (39.13) is valid not only for rigid
magnetics but for compressible magnetics as well, for which the magnetization
linearly depends on mass density. This is observed for gases and for some liquids.
Energy of a magnetic dipole in an external magnetic) field. Since the work re­
quired for increasing the magnetic flux through the surfaces stretched over a loop
carrying current I is equal to I d<D (d<D is the magnetic flux generated not by
the current I in the loop but by other sources of a magnetic field), the energy
spent for creating the flux <1> through the surface bounded by the loop with
current I is equal to [<D. For an infinitely small loop magnetic dipole,
<1> = B· S, 1<1> = Pm· B. where Pm = IS is the magnetic moment of current.
Consequently, the energy of a magnetic dipole in an external magnetic field
is given by

(47.63)

This quantity attains its minimum value when the directions of Pm and B
coincide. This means that an external magnetic field tends to rotate the magnetic
moment until it coincides with the magnetic induction vector [see (39.8)].

Why Is it possible to calculate the mutual Indudance with the help of a formula con­
taining linear currents, while self-inductance cannot be expressed In terms of linear cur­
rents!
Due to what property of • magnet~c field is..the self-indudance of • rigid current loop
constantl
The self-inductance and mutual Inductance depend only on geometrical charaderistics of
turrent loops and their mutu~1 arrangement.

Example 47. t .. Calculate the force with which one solenoid Is pulled into or pushed out 01 another
solenoid (Fig. 1M). The density of the solenoid winding and currents In it are n1' n2 and 11,
I It respectively, and the cross-sectional areas are the same. The solenoids are sufficiently long and
the winding is sufficiently tight so that the field far from the solenoid ends can be described by the
[ormulos for a very long solenoid. The value of :e is large, and hence the edge effects can be Ignored.

Let us find the mutual inductance with the help of formulas (47.48) and (47.49). The flux
created by the first solenoid through each tum of tlie second solenoid is equal to fJ.o n1118 t and

21-0290
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the total flux through nIx turns of the second solenoid in the rezion of their intersection is

<I>2i = J!onI I ISn2x,

whence we obtain the expression for the mutual inductance:

L 21 = <P21/1i c= J!Onln2Sx (L I1 =: L 21) (47.64)

Then the force is equal to

(47.65)

If the currents flow in the same direction, then I II2 > 0, Fx > 0, and hence the solenoids
repel each other. For oppositely directed currents, I II 2 < 0, and Fx < 0, which corresponds
to the attraction between solenoids.

I
IX
I,

Fig. 184. To the calculation of
the force of interaction between
two solenoids

Fig. 185. To the calculation of
the force of interaction between
a solenoid and a magnet

(47.66)

Example 47.2. A magnetic having a permeability J! is pulled into a solenoid with a circular cross
section of area S, length 1, having n turns per metre (Fig. 185). Find the force acting on the
magnetic (ignoring edge effects) if the current in the solenoid is I.

Since the magnetic susceptibility of the magnetic X~ 1, to a first approximation we can
assume that the magnetic field strength is everywhere equal to H!x°) = H x = nl. Consequently,
the magnetic energy of the system is given by

W= [HxBx/2+H~Q)B~O)(1-x)/2] S,

where B« and BAP) are the magnetic inductions in the magnetic and in vacuum respectively.
Considering that B x = JlHx , B~O) = J!oH±O), we obtain

W = (n2[2/2) [Jix + J10 (1 - x)] S

and hence the force is equal to

( OW) iFx = 8i: 1=2 (J1-f.1o) n2
/

2S = (w - wo) S,

where
w=J1n 212/2=HxB x /2, wo=J1on212/2=H~O)B~O)/2 (47.66)

is the magnetic energy density on different sides of the boundary on which the force is acting.
Thus, the surface density of force fx = Fx/S is the sum of two forces exerted onto the inter­
face from different sides. The surface density of each force is equal to the magnetic energy
density.
Example 47.3. Calculate the inductance of a coaxial cable of length l, whose central core is 01
radius rl and the sheath has the internal radius r2 and external radius rs (see Fig. 140). The per­
meability of conductors is Ji. The space between the core and the sheath is filled with a dielectric.
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Let us first find the magnetic induction. Obviously, the field is axisymmetric:8ndlthe~field
Lines are the circles with their centres on the cable axis. According to Ampere's:circuitallaw
(see Example 35.1), we have

~I-..!:....
2n rl

J-Lo I
2n r

J-L I r~-r2

2n 7 r§-r~

o (rs<r<oo).

(47.67)

In order to calculate the self-inductance of a segment of the cable, we shall use the relation

W = Ll2/2. Since W = ~ ~ H·B dV, we have [see (47.67)]

Tl T2

1 ~I2 r r 2 1 ~oI2 r 1
W=T (21t)2 J rr21trdr+T (211)2 J -;:;-.21tr dr

o ""I

TS

1 J-LJ2 ) 1 (r~- r 2 ) 2 d+- - - - 21tr r
2 (2n)2 r 2 r§ - r~

T2

_.!:-. flI2 +i- J-LoI2 In2:!...+.£. J-LJ2 [ r~ In-2--!'- 3r~-r~ ]
- 2 8n 2 21t r 1 2 2n (r~ - r~)2 r 2 4 r~ - r~ ,

whence

(47.68)

Sec. 48. Quasistationary A.C. Circuits

Basic calculation methods for quasistationary a.c.
circuits are described.

Definition. When studying alternating fields and currents, the following two
factors should be taken into account:

(1) the finite velocity of propagation of electromagnetic fields (see Sec. 61);
(2) the generation of a magnetic field by a varying electric field.
The quantity id = 8DI8t is called the volume density of displacement current

(see Sec. 57).
At moderate frequencies of a current, these factors can be ignored. In other

words, we can assume that electromagnetic waves propagate in space instan­
taneously and there are 110 displacement currents, i.e. the magnetic field is gen­
erated only by conduction currents. Currents and fields satisfying these condi-

21*
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tions are called quasistationary. Let us formulate the quasistationary criteria
in an analytical form.

1. If there is a periodic process propagating from the source at a velocity c,
the wavelength of this process, i.e. the distance corresponding to the time evo­
lution of the process over a period T, is given by

A = cT.

The spatial variation of a certain quantity characterizing a process can be
neglected only if this quantity is considered in the regions whose linear dimen­
sions 1 are much smaller than the wavelength (l~ A). This is the criterion deter­
mining the condition under which the finite velocity of propagation of electromagnet­
ic fields can be ignored.

2. If D = Do exp (i<dt), then j d == fJDI8t == iroD = iroeE. Hence the effect
of the displacement currents can be neglected in comparison with the effect of
the conduction currents when

lidlmax ~ lilmax·
Since j = ')'E and j d == u» eE, this condition can be written in the form

li~lmax _~~ 1.
111max Y

Considering that V~ 107 81m for metallic conductors where E ~ co' we con­
clude that displacement currents are insignificant in the frequency range

co~ -.L~ 1018 S-I,
eo

i.e. right up to the frequencies exceeding those corresponding to the ultraviolet
region of the spectrum. This is an approximate estimate since it does not take
into account the inertial properties of the medium, which play an essential role
at high frequencies. When inertial properties are taken into account, the above
estimates become several orders of magnitude lower. However, even after this
the frequency range for which displacement currents can be ignored in compar­
ison with conduction currents remains very wide.

However, for alternating electromagnetic fields in vacuum and in dielectrics, it
is necessary to take into account displacement currents as a source of a magnetic
field at all frequencies since conduction currents are missing here. The existence
of displacement currents stipulates the existence of electromagnetic waves
(see Chap. 9).

As regards the first criterion, its role is determined by the relative value of wave­
length and the spatial dimensions of the region in which the process is investigated.
For example, the wavelength Iv corresponding to commercial current at a fre­
quency of 50 Hz is about 6 X 106 m. Consequently, if \ve are interested in the
current distribution over the cables in a power plant or even within a city, we
may assume that the current is quasistationary. If, however, the current is
transmitted over thousands of kilometers, we must take into account its vari­
ation along the transmission line, and then the current cannot be considered
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quasistationary. At very high frequencies corresponding to the wavelengths
of several metres, the current cannot be considered quasistationary even within
a flat.
Self-inductance. The e.m.f. of induction (46.1) appears upon any variations
of a magnetic flux cI> through a current loop. In particular, a closed linear cur­
rent creates a magnetic flux through the surface bounded by its contour. Con­
sequently, when the current in a loop changes, an electromotive force is induced in
it. This phenomenon is called self-induction. Since the current generates a mag-

...-...
~s. ind

Fig. 186. Emergence of self-in­
duction. Lenz's law

R

Fig. 187. An RL-eireuit

netic field in the surrounding space in accordance with the right-hand screw
rule, and the electromotive force is related to the flux variation through the left­
hand screw rule, we conclude on the basis of Fig. 186 that the e.m.I, of self­
induction is directed so as to oppose the variation of current, causing it (Lena's
law).

The current in the loop is connected with its own magnetic flux through its
contour by formula (47.3):

cI> = LI, (48.1)

where L is the inductance of the loop. Hence, formula (46.1) for the e.m.I. of
self-induction assumes the form

~s. Ind = _ L ~~ . (48.2)

Connection and disconnection of an RL-circuit containing a constant e.m.I,
If a source of constant extraneous e.m.f., e.g. a battery, is connected to a cir­
cuit at the moment t = 0 (Fig. 187), the current in the circuit starts growing.
However, the self-induction e.m.f. appearing in the circuit due to increasing
magnetic induction opposes the extraneous e.m.f. As a result, the increase of
current in the circuit slows down. At each instant of time, Ohm's law is ob­
served, which in view of (48.2) can be written in the form of the equation

IR = Uo - L dI/dt, (48.3)
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where R is the total resistance of the circuit (including the internal resistance
of the source). This equation should be solved for the initial condition I (0) = O.
When we say that Ohm's law is observed at each instant, we assume that current
is the same in all parts of the circuit, i.e. the current is quasistationary. The
solution of Eq. (48.3) can be found quite easily:

I(t)= ~o [t-exp(- ~)J. (48.4)

The plot of I (t) is shown in Fig. 188. The steady-state value of current
I (00) = UoIR, corresponding to Ohm's law for direct current, is attained as
a limit for the time going to infinity. Considering the exponential dependence

I

t

Fig. 188. Increase in the cur­
rent in a circuit after a con­
stant extraneous e.m.f. is con­
nected

t

Fig. 189. Decrease in the cur­
rent in a circuit after a con­
stant extraneous e.m.f. is dis­
connected

of current on time, we can assume, as usual, that the time during which current
in the circuit increases has a value 't for which the exponent becomes equal to
~1, i.e.

't = LIR. (48.5)

In circuits with a large inductance the current increases very slowly. For
example, if a large induction coil and an incandescent lamp are connected to
the circuit, the time during which the lamp attains its full steady glow after
closing the circuit is quite long.

When the source of extraneous e.m.f.s is disconnected (see Fig. 187), say,
by short-circuiting it, we can see that the current does not immediately drop
to zero but decreases gradually. In this case, the equation for current has the
form

IR = - L dlldt

and must be solved for the initial condition I (0) = UoIR:
U

I (t) = If exp (-RtIL).

(48.6)

(48.7)

The plot of this function is shown in Fig.189. The time of current decrease
is given by the same formula (48.5). For a sufficiently large inductance, the
incandescent lamp goes out gradually for an appreciable period of time after
the extraneous e.m.f. is disconnected. The electromotive force maintaining the
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current in the circuit during this period of time is the e.m.I. of self-induction,
and the source of energy is the magnetic energy of the induction coil. The prob­
lem of connecting and disconnecting an RL-circuit containing an e.m.f. was
first considered by Helmholtz in 1855. .
Generation of rectangular current pulses. If there is a source of rectangular
pulses of voltage, the presence of self-inductance in the circuit hampers the
generation of rectangular pulses of current. Current pulses have the form shown

I

t·

Fig. 190. Shape of a current
pulse for a rectangular voltage
pulses

Fig. 191. An RC-circuit

in Fig. 190. In order to make their shape as close to rectangular as possible, the
inductance of the circuit should be made as small as possible.
Be-circuit. The presence of a capacitor in a circuit makes it impossible
for a direct current to pass through it. In this case, the potential difference be­
tween the capacitor plates on which appropriate charges are located fully com­
pensates the action of an extraneous e.m.f. However, an alternating current can
pass through an RC-circuit since in this case the alternating charge on the ca­
pacitor plates maintains the current in the circuit. Besides, the potential differ­
ence on the capacitor plates does not compensate for the extraneous e.m.f.,
and a certain current is maintained in the circuit.

Ohm's law for an RC-circuit (Fig. 191) is written in the form of the equation

IR = Uo - QIC, (48.8)

where Q is the charge on the capacitor plate and Qle is the potential difference
between the plates. This equation can be conveniently differentiated with
respect to t and written as follows:

R 2!.-- dUo _.!..]
dt - dt C t

(48.9)

where I = dQIdt.
Connection and disconnection of an He-circuit containing a constant e.m.I,
Suppose that a constant voltage U 0 is applied at a moment t = 0. It follows
from Eq. (48.8) that I (0) = UoIR, and, for t > 0, Eq. (48.9) assumes the form

dI 1
R dt= -C/o (48.10)
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The solution of this equation for the initial con­
dition I (0) = U0/R is given by

UI (t) = If- exp [- t/(RC)], (48.11)

i.e. the current in the circuit decreases with
time from its maximum value Uo/R to zero. The

Fig. 192. An LCR-circuit con- plot of J (t) is similar to that shown in Fig. 189,
taining a source of extraneous and the time of decrease in current is 't = RC.
e.m.f Thus, if the capacitance C is sufficiently large, the

current in the circuit may exist for a sufficiently
long time after the constant voltage is cut off. An incandescent lamp con­
nected into such a circuit first flares up and then gradually goes out.

After the current has dropped to zero, the capacitor acquires a potential
difference equal and opposite to the extraneous e.m.f., so that they compensate
each other. When the .extraneous e.m.f. is removed, say, by short-circuiting
the battery terminals, the potential difference between the capacitor plates is
found to be uncompensated. The current appearing in the circuit has the initial
value Uo/R, and the law of its decrease is completely identical to (48.11), the
time of current decrease being the same.
LeR-circuit containing a source of extraneous e.m.Ls, The diagram of this
circuit is shown in Fig. 192. In view of (48.8) and (48.6), the equation for cur­
rent in this circuit has the form

dl QI R = U - L - - -dt C·
(48.12)

Differentiating both sides of this equation with respect to t I we obtain the
following equation:

(48.13)

Various particular cases of the solution to this equation were considered
above.
Alternating current, It is most important to analyze a harmonic alternating
current, since any other current can be reduced to a harmonic current by using
the representation of an arbitrary function in the form of a Fourier's series or
Fourier integral. .

For further analysis, it is expedient to use the complex form of representa­
tion of harmonically varying quantities. We shall be considering steady-state
conditions.

If an extraneous e.m.I, varies in accordance with the law

U = Uoe icu t , (48.14)

then the current in (48.13) should also vary with time according to the law

I = Ioeicu'. (48.15)
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_i_I_I
we

iwLI
U = IR + iwLI - i_'l_ 1

_ UJC
\
\
\
\
\IR

Fig. 193. Vector diagram for
the voltage in an a.c. circuit

(48.18)

The quantities I, U, I 0 and U 0 in formulas (48.14)
and (48.15) are generally complex-valued quanti­
ties. It follows from (48.14) and (48.15) that

dU • U dI · I (48 16)(It == to) , crt== to) , •

and hence Eq. (48.13) assumes the form

(-oo 2L + iroR + 1/C) I = iooU. (48.17)

Dividing both sides of this equation by it», we
represent it in the form

IZ = U,

where the quantity

Z = R + i [ooL -1/ (roC)] (48.19a)

is called the impedance. Equation (48.18) has the form of Ohm's law in which
impedance is used instead of resistance. The impedance plays the role of resis­
tance for an alternating current. However, being a complex quantity, it allows
us to take into account through (48.18) not only the relation between the am­
plitudes of current and voltage but the relation between their phases as well.

All the quantities in Eq. (48.18) are complex in the general case. Taking the
moduli of both sides of this equation, we can find the relation between the am­
plitudes of current and voltage:

IIIIZI=IUI, (48.19b)

where

IZI = V R2+ [CJ)L-1/(wC)]~. (48.19c)

Thus, if we are interested only in the amplitudes of current and voltage, Eq.
(48.19b) is completely equivalent to Ohm's law for a direct current. However,
the quantity I Z I playing the role of resistance depends, in accordance with.
(48.19c), on the current frequency.
Vector diagrams. Let us present complex quantities by vectors on a complex
plane. A harmonically varying quantity is depicted by a vector rotating at
a frequency co about its origin in the anticlockwise direction. The length of this
vector is equal to the amplitude of oscillations of the corresponding physical
quantity.

A graphical method of the solution of Eq. (48.18) becomes clear from
Fig. 193 if we consider that multiplication of a complex quantity by i corre­
sponds to its rotation through :rr/2 in the anticlockwise direction without chang­
ing its length, while multiplication by (-i) corresponds to its rotation through
n/2 in the clockwise direction.

Figure 193 shows that the angle cp is determined from the following equation:

tan cp = roL-~/(roC) • (48.20)
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Consequently, cp varies between rt/2 and -rtl2 depending on the relation be­
tween the impedances of various elements of the circuit and the frequency.
The external voltage can change its phase between two extreme positions when
it coincides with the voltage on the induction coil and with the voltage across
the capacitor. It is more convenient to express this in the form of a relation
between the phases of voltages across the elements of the circuit and the phase
of the external voltage:

(1) The phase of the voltage across the induction coil (U L == iwLf) always
leads the phase of the external voltage by an angle lying between 0 and rt:

(2) the phase of the voltage across the capacitor [Uc = -if1 (wC)] always
lags behind the phase of the external voltage by an angle lying between 0 and
-1&;

(3) The phase of the voltage across the resistor may either lead or lag behind
the phase of the external voltage by an angle lying between +rt/2 and -n/2.
It lags behind for a predominantly inductive load, when wL > 1/(wC), and
leads at a predominantly capacitive load when wL < 1/(wC).

The diagram shown in Fig. 193 also allows us to formulate the following
statements concerning the relation between the voltages and currents in differ­
ent elements of the circuit. It is convenient to use the current as a reference
quantity since it has the same phase in all elements of the circuit:

(1) the phase of the voltage across the induction coil leads the phase of the
current by 1[/2;

(2) the phase of the voltage across the capacitor lags behind the phase of the
current by 1(/2;

(3) the voltage and current in the resistance coincide in phase;
(4) the external voltage may either lead or lag behind the current in phase,

depending on the load.
Kirchhoff's laws. Equation (48.18) makes it possible to solve all problems
concerning an alternating current in an LCR-circuit in the same way as the
corresponding problems are solved with the help of Ohm's law for a d.c. circuit
containing a resistance. The analysis of branched a.c. circuits is similar to that
of d.c. circuits (see Sec. 28). Since law (48.19) is valid for an alternating current
in a closed circuit, and the law of charge conservation is valid for each junction,
Kirchhoff's laws (28.4) and (28.5) for a direct current can be generalized for
alternating currents as follows:

(1) at each junction,

(48.21)

(2) for each closed circuit,

(48.22)

This generalization of Kirchhoff's laws for branched a.c. circuits was made
in 1886 by Lord Rayleigh (J .W. Strutt) (1842-1919). The following remark
should be made about the signs of the quantities appearing in (48.21) and (48.22).
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z~
Although each quantity I i or Uk appearing in
these formulas is complex-valued and contains
the phase (and hence the sign), appropriate signs
should be used while compiling the equations
since the same region may belong to different
loops and hence is circumvented in opposite
directions. A similar remark can be made about
the sign of Uk. Solving the equations, we can find
the amplitudes and phases of all currents. In
view of a complex nature of all quantities, the Z7

number of independent equations in this case is Fig. 194. The mesh-current
twice as large as in the similar case for direct method
currents.
Parallel and series connections of a.e, circuit elements. As for direct currents,
it follows from formula (48.18) that for series connection

while for parallel connection we have

1

_1 =_1 +_1 I
Z Zl Z 2 •

(48.23)

(48.24)

This circumstance makes an analysis of an a.c. circuit similar to that of a
d.c. circuit, so there is no need to consider this question in detail.

The reciprocal of impedance is called a.c. conductance:

Y = 1/Z. (48.25)

Thus we can say that for parallel connection a,c, conductances are summed
up:

Y = Y 1 + Y 2

In terms of conductance, Ohm's law is written in the form

I=YU.

(48.26a)

(48.26b)

Mesh-current method. The calculation of branched circuits can be considerably
simplified by using the mesh-current (loop) method which is a direct consequence of
Kirchhoff's laws. A branched circuit consists of a system of simple closed loops.
Figure 194 represents a branched circuit consisting of three simple loops. While
circumventing a closed loop, in Kirchhoff's law we take the actual cur­
rent flowing between two junctions. The currents in different branches are gen­
erally different. In the mesh-current method it is assumed that the same current
flows in all branches of each closed loop. These currents are called loop (mesh) cur­
rents. The total current passing through a branch of a circuit is equal to the
algebraic sum of loop currents for which this branch is common. Kirchhoff's
law for each loop is written by taking into account this circumstance, i.e. is
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(48.32)

(48.33)

expressed in terms of loop currents. The total impedance of each branch of the
circuit between junctions (Fig. 194) is denoted by the corresponding subscript..
The clockwise direction is taken as the positive direction of circumvention.

The equations for the loop currents, whose number coincides with the number
of simple loops have the form:

ZIIII + Zl212 + ZlsI a = U,
Z211I + Z2212 + Z2s1a = 0, (48.27)

ZSIII + ZS212 + Zs:I a = 0,
where Zll' Z22' and Zss are intrinsic impedances of the loops, which are equal to
the sum of the impedances of the branches of corresponding loops:

Zll = Zl + Z2 + Zs' Z22 = Z4 + Z5 + Za + Z2'
Z33 = z, + Ze + Z2' (48.28)

while Z12' ZIS' etc. are the mutual impedances of the loops, equal to the imped­
ances of the branches belonging to two loops. Their signs depend on the di­
rection (clockwise or counterclockwise) in which the corresponding branch is
passed by the current appearing as a factor of the mutual impedance, relative
to the loop current for which the equation is written. For example, .

Zl2 = - Z2' Z21.- - Z2' etc. (48.29)

I t can be easily seen that
ZiJ = ZJi. (48.30)

It is almost obvious from what has been said above that Eqs. (48.27) combine
the two Kirchhoff's laws. This can be proved more rigorously by obtaining
(48.27) from Kirchhoff's laws (48.21) and (48.22), going over to loop currents..
We recommend these algebraic calculations as an independent exercise.

The number of equations. (48.27) for loop currents is equal to the number of
unknown currents. The system of equations is solved by a general rule with the
help of the theory of determinants

I I = U (dilld), 12 = U (d 121d), 1 3 = U (~13/d), (48.31)
where

Zi1 Zi2 Z13
/1= Z2t Z22 Z23

Z31 Z32 Z33

is the determinant of the system; d l l , d 12 , ~13 are the cofactors of the elements
Zll' Zl2 and Zl3 in the determinant d:

I
Z22 Z23! IZ21 Z23] I ZZ1 Z22\

~11 = Z Z ,/112 = - Z Z ,/113 = Z Z ·
32 33 31 33 31 32

Thus, the problem is solved. The generalization of the loop method to an
arbitrary number of elementary loops is obvious. We should take care that all
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elementary loops are passed in the same direction and are taken into account
in the equations.

'The Indudance end cepBchnce charederlze the property of • circuH to .ccumulate energy
in the form of eledric and magnetic energy. They "smoothen" the curves of variation of
'Current with time in comparison with the corresponding voltage variation curves.

"he impedance takes account of not only the ohmic resistence of • circuit but .Iso Its
:jnductive and capacitive readances. Being a complex-valued quantity, the Impedance
allows us to describe not only the relation between the amplitudes of current and voltage,
but also the relation between their phases.

Although electromotive forces and currents in a,e, circuits are represented by complex
quantities and hence include phase (and sign), the signs of these quantities should be
taken info account while compiling equations since the same branch my be­
Jong to different loops and be circumvented in opposite dlredions.
The mesh-current method assumes that the same current, called the loop current, flows in
.all branches of each closed loop.
The total current flowing In a branch of the loop in this case Is equal to the algebraic
sum of loop currents for which this branch is common.

What is the physical meaning of quasistationary criterial
What determines the signs in the equations expressing Kirchhoff's laws for alternating cur­
t'entsl
What are the advantages of the mesh-current methodl When is it expedient to apply this
methodl

Example 48.1. Find the self-inductance of n turns of a winding on a toroid of a rectangular cross
section, whose inner and outer radii are equal to rl and r2 respectively, and the height is equal to
6, (Fig. 195).

Fig. t95. A toroid with a rectangular cross section

Taking as the path of integration L o a circle of radius r, which is concentric with the sym­
metry axis of the toroid, and applying Ampere's circuital law, we obtain

{

0 for r < Tt t

~ H.dl=Hlj>·2nr = nI for r1 < T < T2.

Lo 0 for r > T2'

where I is the current flawing in the winding of the toroid.
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The magnetic flux through a turn is given by

Ch. 8. Electromagnetic Induction

r! r2

<D - r H d - flanI r dr _ uan] I r2
I-fla J q> r-~ J-r--~ n~,

rl rl

whence the self-inductance is

L = (n<P1/I) = [flan2/(2tt}l In (r2/rl).

Sec. 49. Work and Power of Alternating Current

(48.34)

(48.35)

(49.1)

The formulas for the work and power of alternating
current are derived. Basic physical phenomena asso­
ciated with the operation of electric motors are dis­
cussed.

Instantaneous power. The energy of a source of external e.m.f.s in a circuit
with current undergoes the following transformations:

(a) It is transformed into heat as a result of Joule's heating of the conductor
[see (27.4)]. If the circuit has a load which performs mechanical work at the
expense of the energy of the source of extraneous e.m.f.s, its power is given by
a formula similar to (27.4). Hence we assume that the circuit contains only an
ohmic resistance R, and the power developed in this resistor is denoted by
Pt R = /2R.

(b) I t is converted into magnetic energy. Since the energy of a magnetic field
is defined by formula (47.5), the power developed by the source of extraneous
e.m.I.s and leading to a change in the magnetic energy is given by

dW dI
P t L =(I"t = u dt·

The inductive properties of the circuit are characterized by the inductance L.
Unlike PtR' the power P t L can be either positive (d//dt> 0) or negative
(dI/dt < 0). This means that the source of extraneous e.m.f.s gives off energy
for increasing the magnetic energy and receives energy when the magnetic
energy decreases.

(c) I t is transformed into electric energy during electric field variations. The
electrical properties of the circuit are characterized by its capacitance C. Since
the energy of a capacitor with a charge Q on its plates is given by formula
(i8.20d), the power of the source of extraneous e.m.f.s required for a change
in the electric energy of the field is

dW Q dQ Q
Ptc=~=cdt=cII (49.2)
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where I = dQldt is the current in the circuit. This power can be either positive
or negative: as the electric field strength increases, the energy of the source of
extraneous e.m.I.s is converted into electric energy, and when the field strength
decreases, the electric field energy is transformed into the energy of the source
of extraneous e.m.f.s.

The total power developed by the source of extraneous e.m.j.s in a circuit is given
by

r, = P t R + P t L + Pt c • (49.3)

The quantity P t is often called the power developed by the current, or simply the
power of current. We shall, however, use this expression bearing in mind its
conditional nature. Similarly, the quantities P t R , P t L , Pt c are respectively
called the powers of current in a resistor, an induction coil and a capacitor. For
the sake of clarity, we shall assume that the ohmic resistance, the inductance
and the capacitance are concentrated in different parts of the circuit (see Fig. 192).

The extraneous e.m.f. U is called the voltage.
The potential changes across an ohmic resistance by U t R = I R. Therefore,

U i R is usually called the potential drop across a resistance. The potential
difference between the capacitor plates is equal to Ut c = QIC. Hence the po­
tential of a capacitor in a circuit changes by U t c . The e.m.f. of self-inductance
appearing in an induction coil is ~fnd = -L dlldt. To compensate this e.m.f.,
the source of extraneous e.m.f.s spends a certain part of the external e.m.f.
(U t L = L dlldt is the change in voltage across the induction coil).

Consequently, formulas (49.1) and (49.2) assume the form

P t L = U ' L I, P t c = UtcI. (49.4)

In this case [see (49.3)], we obtain

Pt = UtIl I + UtL I + Ut cI = UI. (49.5)

(49.7)

(49.8)

(49.9)

Suppose that the current in a circuit varies in accordance with the law

I = 10 sin rot. (49.6)

According to Fig. 193, we can write the following expressions for the true
values of Ut L , u.; and Ut R :

Ut L = IoroL sin (rot + n/2),
U t c = [101 (roC)] sin (rot - n/2),

Ut R = loR sin rot.

Consequently, instantaneous values of the power developed by current in
various circuit elements are defined by the formulas:

P u. = I:roL sin rotsin (rot + n/2) = I:roL sin rotcos rot, (49.10)

Ptc = [I:/(roC)] sin rotsin (rot-n/2) = - [I~/(roC)] sin rotcos rot, (49.11)
P t R = I:R sin2 rot, (49.12)
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which show that the power is always positive only for resistance R, i.e. the cur­
rent performs a positive work in this branch. The instantaneous power developed by
current in inductance and capacitance is alternating in sign: for a part of time the
current performs positive work, i,e. transfers its energy to these elements. During the
remaining time the work is negative, i.e. the energy returns from these elements to
the source of extraneous e.m.j,s. Thus, the energy is exchanged between inductances,
capacitances and the sources of extraneous e.m.j.s. During this process, capaci­
tances and inductances play the role of sources of electromotive forces.
Mean value of power. In order to calculate the mean value of power developed
by the current during a period of oscillations, it is necessary to average the
expressions (49.10)-(49.12) over a period of current oscillations. Here we must
assume that

(sin rot cos rot) = 0, (sin2 rot) = 1/2. (49.13)

Using these expressions, we obtain from (49.10)-(49.12)

P L = (P t L ) = 0, (49.14)

Pc=(Ptc)=O, (49.15)
PR=(Ptn)=I:R/2. (49.16)

The mean value of power differs from zero only for resistance R. The mean value
of power for inductance and capacitance is equal to zero, i.e. no work is done
on these elements by the current. On the average, these elements are neutral from
the point of view of energy. Consequently, resistance R is called an active
element of the circuit (resistance), while inductance and capacitance are called
reactive impedances (reactances).
Effective [r.m.s.] values of current and voltage. It follows from Fig. 193 that

[oR = Uo cos rp, (49.17)

and hence formula (49.16) can he written in the form

Pn = 1/2I oIoR = 1/2I oUo cos qi, (49.18)

where 10 and U 0 are the amplitudes of current and external voltage, <p is the
phase angle between the current and voltage [see (48.20)], and cos q> is the power
factor which determines the effectiveness of power transmission from the source
to the load.

For a direct current, the instantaneous power coincides with the mean value
of power [see (49.2)]. Since for a direct current cos <p = 1, formula (49.18) can
be made identical to (27.3) if we write the r.m.s, values instead of the amplitude
values 10 and U 0:

This gives
I eff=Io/Y 2, Ueff=Uo/V 2. (49.19)

Pa = [eft U eft cos cp. (49.20)

The introduction of [eft and U eft allows us to consider formally the a.c.
power as if there were no power oscillations. Only the presence of cos cp indi­
cates that we are dealing with alternating current.
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When the values of alternating current and voltage are mentioned in electric­
al engineering, we mean their effective values. In particular, ammeters and
voltmeters are usually graduated in r.m.s, values. For this reason, the maximum
value of voltage in an a.c. circuit is almost 1.5 times larger than the value in­
dicated by the voltmeter. This should be borne in mind during calculation of
insulators and in the analysis of safety problems.
Power factor. A.c. circuits are mainly designed for transmitting power. Conse­
quently, in designing transmission lines, cos cp should be taken into account.

Suppose that a transmission line has only an ohmic resistance. Then cos q> = 1,
and the power supplied to the load at given values of I eff and U eff is maximum.
If a reactive load is connected to the circuit, say, in the form of inductance,

F 1 D G...--

@B Ii F
Uo

~ C K1
•
0 X

Fig. 196. An increase in the Fig. 197. Operation of a sim-
power factor pIe motor

cos fP becomes less than unity, and in order to ensure the transmission of the
same power, we have to correspondingly increase the value of I effUeff, i.e,
supply a stronger current to the load. This leads to an increase in energy losses
in the form of Joule's heat liberated in the transmission line. For this reason,
it is always desirable to distribute loads in such a way that q> ~ 0, i.e. cos q> ~ 1.

Let us consider, for example, a transmission line for a power supply to an
incandescent lamp (Fig. 196), when a large inductance and a variable capacit­
ance are connected in series with the lamp. Suppose that at the initial instant of
time the capacitive reactance is equal to zero (C = 00). In this case, for suf­
ficiently large values of Lt» in comparison with resistance R of the lamp, the
angle <p attains values close to n/2, and cos rp is very small. Hence, even if the
magnitude of U eft in the circuit is sufficiently- high, a very small power is sup­
plied to the lamp, and it glows either dully or does not glow at all. As the capa­
citance C decreases, the power factor grows (the angle q> decreases, tending to
zero) and the glow of the lamp gradually increases. The effective voltage at
the terminals of the generator remains unchanged, and the power transmitted
from the generator to the line increases. Thus, an increase in the power factor
by introducing in the circuit reactive loads which do not consume power makes
it possible to improve the efficiency of a transmission line.
Electric motors. A very important application of electric current is the trans­
formation of electric energy into mechanical work, which is realized in electric
motors. Their operation is based on the use of Ampere's force acting on a cur­
rent-carrying conductor in a magnetic field. The first electric motor which
22-0290
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formed the basis for using electricity to perform mechanical work was con­
structed in 1839 by B.S. Jacobi (1801-1874).

In order to demonstrate the principle of operation, let us consider a simple
d.c. motor (Fig. 197). A source of constant electromotive force V 0 is connected
to the circuit ACDFA. A rectilinear conductor DC can slide along the conductors
FG and AK. It is placed in a uniform magnetic field whose magnetic induction
is directed upwards from the plane of the figure. When a current flows in this con­
ductor, it is acted upon by the Lorentz force F = IlB. Under the action of this
force, the conductor moves and performs a mechanical work, i.e. operates as
a motor.

Let us consider the energy balance. The work done during the displacement.
of the conductor by dx is

dA = F dx = I lB dz,

and hence the power is given by

Pm = dA/dt = IBlv,

(49.21)

(49.22)

(49.23}lB dx
-dt=-lBv.

where v = dx/dt is the velocity of the conductor.
On the other hand, the electromotive force induced in the circuit due to mo­

tion of the conductor is
~ind _ -dcD
G - dt

I t is directed against the extraneous electromotive force which generates a current
and performs work for overcoming the force (49.23). The power spent by the
source of extraneous e.m.f.s is given by

Pext = ~indI = -lBvI. (49.24a)-

A comparison of formulas (49.24) and (49.22) shows that the entire power de­
veloped by a motor is due to the source of extraneous e.m.j,s. Besides the useful
power (49.22), the source of extraneous e.m.f.s generates power spent as Joule's.
heat in the ohmic resistance of the wires carrying the current and in the internal
resistance of the source. Denoting by R the total ohmic resistance of the wire
plus the internal resistance of the source, we obtain the following balance equa­
tions for voltages in a closed loop (Kirchhoff's second law):

IR = V o + ~ind = U« - lBv. (49.24b)

Multiplying both sides of this equation by I, we obtain

12R = Vol - IlBv = Vol - Pm, (49.25)

where expression (49.22) is used. It is expedient to write formula (49.25) in
the following final form:

P« = IV 0 = I2R + Pm, (49.26)

i.e. the power developed by a source of extraneous e.m.f. is spent partly as
Joule's heat (I2R) and partly as the work of electric motor (Pm).
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The calculation of energy balance for alternating current is a bit more dif­
ficult, but the physical meaning of the phenomenon is the same.
Synchronous motors. To ensure continuous operation of a motor, a certain
periodic regime must be chosen. A simple diagram of a synchronous motor is
shown in Fig. 197. The magnetic induction in this circuit varies periodically
with time.

After conductor CD has moved by a certain distance to the right and performed
a certain amount of work, the direction of magnetic induction is reversed.
For the same direction of current, the force F also reverses its direction. After
that the conductor slows down and starts moving to the left, again performing
work, and so on. As a result, we obtain an electric motor whose working part
(conductor CD) moves synchronously with a varying magnetic field. Such a

Fig. 198. Operation of a syn­
chronous motor

Fig. 199. Emergence of a torque
in an asynchronous motor

motor is called synchronous. In the above circuit, we can obviously leave the
magnetic induction unchanged and vary periodically the direction of current
in the moving loop. In this case, the conductor will move synchronously with
variations of current in it. Such a motor is also synchronous. We can also vary
the induction and the current in the conductor simultaneously. Then the motion
of the conductor CD will be synchronized with these variations accordingly.

Synchronous motors used in engineering operate on the basis of the same prin­
ciple as the simple motor. All three possible types of synchronous motors are
used in practice. However, the actual realization of these simple circuits in
principle involves quite complicated constructions. As a rule, rotary motion
is used in this case.

A simple diagram of the operation of a synchronous motor with a rotary motion
is shown in Fig. 198. A loop with an alternating current is in a constant magnet­
ic field. Lorentz forces acting on the conductors of the loop are perpendicular to
the magnetic induction and develop a torque which rotates the loop. In order'
to ensure the action of this torque permanently in the same direction', the speed
of rotation of the loop should be equal to the frequency of the alternating cur-
22*
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rent flowing in it, i.e. the synchronism condition should be observed.
There exist motors in which the speed of rotation of the loop is an integral
number of times less than the frequency of the alternating current supplied to
the motor.

The main drawbacks of synchronous motors are the difficulties associated
with starting, when the speed of rotation of the loop is synchronized with
the frequency of the alternating current, and the possibility of loss of syn­
chronism upon an abrupt change in the load. Methods of overcoming these dif­
ficulties have been successfully developed in engineering.
Asynchronous motors. In accordance with Faraday's law, a varying magnetic
field generates an electric field [see (46.5)]. If such a vorticity field exists
in a conductor, ths corresponding electric currents are induced in it. The
density of these currents at each point of the conductor is defined by
Ohm's law (j = yE). These currents interact with the magnetic field. Conse­
quently, a varying magnetic field not only induces currents in the conductor
but also acts on it with corresponding forces.

Suppose that a varying magnetic field is created by permanent magnets A
and C which are fixed to an axle and can rotate around it under the action of
an external torque (Fig. 199). A disc D made of a solid conductor is also fixed
on an axle and can rotate about it. Moving magnets generate at each point
of the disc D an alternating magnetic field, which induces a current of a certain
density. The interaction between the current and the magnetic field leads to the
appearance of Ampere's force. Thus, rotating magnets exert certain forces on
the disc D. Let us calculate the resultant of these forces. In accordance with
Lenz's law, the currents induced in a conductor in accordance with Faraday's
law tend to weaken the action of the factors that cause these currents. In the
case under consideration, the factor responsible for the currents induced in the
disc D is the relative motion of the magnets and the disc. This means that the
torque applied to the disc tends to rotate it in the direction in which the mag­
nets are rotating. Consequently, the disc starts rotating in the direction in
which the magnets rotate, as if entrained by the rotating field of the magnets.
The torque exists only until the speed of rotation of the magnets differs from
the speed of rotation of the disc, i.e, there is a "slip" between the rotating mag­
netic field and the disc. The smaller the slip, the smaller the torque acting on
the disc. Therefore, the slip increases with the load on the axle of the disc.
At a constant speed of rotation of the magnetic field and its magnetic induction,
this leads to a decrease in the speed of rotation of the disc.

This principle of setting a disc into motion is the basic feature of the opera­
tion of asynchronous motors. However, in order to be able to call this motor an
electric motor, it is necessary to ensure the rotation of the magnetic field without
a mechanical drive. For this purpose electromagnets fed by alternating current
are used.
Generation of rotating magnetic field. Two electromagnets creating crossed
magnetic fields (Fig. 200) are fed by alternating currents with the phase differ­
ence:of n/2. In the circuit shown in Fig. 200, this is achieved by including elec­
tromagnets of inductance L and resistance R into the circuits of electromagnets.
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As a result, two varying magnetic fields are generated in the space between the
poles of the electromagnets. The magnetic inductions of these fields with a phase
difference close to n/2 obey a harmonic law. The sum of the magnetic inductions
B1 and B 2 of these fields is a vector B rotating about the point 0 (Fig. 201).

If we place a bulky conductor in the space between the magnets (see Fig. 200),
e.g. a cylinder with the axis of rotation perpendicular to the plane of the figure,
it will be set in rotation in the rotating field so that its direction of rotation
coincides with that of the field. The physical processes occurring in this case

Fig. 200. Schematic diagram
for generating a rotating mag­
netic field

fl. 20t. Addi tion of two mu­
tually perpendicular harmonic
oscilla tiODS with \ the phase
difference of... 1£/2

are similar to those taking place when the field is created by rotating permanent
magnets. Squirrel-cage rotors are used instead of a solid cylinder (Fig. 202).

It is much more convenient to generate a rotating magnetic field with the help
of a three-phase current, since in this case there is no need to artificially create the
phase difference between currents that feed different electromagnets (see Sec. 52).

Clearly, the speed of rotation of an asynchronous motor may continuously
vary and there is no multiple proportion between this speed and the frequency
of the supplied current. For this reason, such a motor is called asynchronous,
and the possibility of a continuous variation of its speed of rotation is a signi­
ficant advantage of this motor.

The current in the windings of an electromagnet depends on the slip: the larger
the slip, the stronger the current. Hence, when a motor is started and the slip
is maximum, a very strong current passes through motor windings, which may
damage them. In order to avoid this, a starter rheo-
stat which at the starting moment is set at a suffi­
ciently high resistance is included into the feed cir­
cuit. As the speed of rotation of the motor increases,
the resistance of the rheostat is decreased.

As in the case of synchronous motors, practical
realization of asynchronous motors is a complicat­
ed technical problem. However, even in the most
complicated constructions the basic principles Fig. 202. A squirrel-cage rotor of
of operation remain the same. an asynchronous motor
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Asynchronous motors may operate not only with a rotating magnetic field
but with a pulsed field as well. This becomes obvious if we take into account the
fact that a pulsed field is equivalent to two fields rotating in opposite directions.
One field ensures the rotation of the rotor of an asynchronous motor, while the
field rotating in the opposite direction produces, on the average, no effect on the
rotor motion.
Load matching with a generator. An a.c. generator producing an e.m.f. has
a certain internal resistance, capacitance and inductance, i.e. has a certain im­
pedance

z, = n, + ix; (49.27)

where R g is the resistance and X g is the reactance which is equal to the differ­
ence between the inductive and capacitive reactances. The load fed by the
generator is also characterized by the impedance

ZI = R} + cc; (49.28)
The power is liberated only in the resistance R I • The generator and the load are
series-connected into the circuit, Ug being the electromotive force of the gen­
erator.

The power developed in the load R I is expressed in accordance with formula
(49.16):

PI = 1/2I~Rh (49.29)
where I~ is the square of the current amplitude in the load. On the basis of
(48.19b), we have

IUg l2 IUg l2
I~ = 1/1 2 = IZg+ZJl2 (Rg+RI)2+(Xg+XI)2' (49.30)

Using this expression, we write formula (49.29) as follows:
IUg l2 R1

PI = 2 (Rg+RI)2+(Xg+XI)2' (49.31)

Let us find the condi tions under which this power attains its maximum.
Reactances X g and Xl can assume positive or negative values. Clearly, the

expression (49.31) assumes the maximum value only if

(49.32)

This means that the power factor should have the maximum value (cos cp = 1).
When condition (49.32) is satisfied, expression (49.31) becomes

IUg l 2 R}
PI = 2 (R

g+RI)2'
(49.33)

The power varies with the resistance and attains the maximum value when
oPI/iJR1 = 0, i.e. if

(49.34)
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If conditions (49.32) and (49.34) are observed, the generator delivers the maxi­
mum power to the load. In this case it is said that the load is completely matched
with the generator.

Considering (49.34), we can write the expression for the maximum power de­
veloped in the generator load:

IUg l2 _1 (U~)
PI max = 2 4R - 4R ' (49.35)

where (U~) is the mean square amplitude of the generator voltage.
The matching between the generator and the load is always very important

when it is necessary to supply the maximum power to the load. For example,
an input resistance of a radio receiver should be matched with the resistance of
the aerial (generator) and of the transmission line (see Sec. 54).
Foucault (eddy) currents. The currents induced in bulky conductors in an
alternating magnetic field are called Foucault or eddy currents. Sometimes they
are useful and sometimes harmful.

Foucault currents playa useful role in the rotor of an a.c. motor driven by a
rotating magnetic field, since the very operation of an a.c. motor requires the
emergence of eddy currents. Being conduction currents, eddy currents partially
dissipate energy as Joule's heat. This energy loss in the rotor of an a.c. asyn­
chronous motor is useless but we have to put up with it, just avoiding overheat­
ing of the motor. However, along with these currents, Foucault currents also
appear in the cores of electromagnets of the asynchronous motor, which are
usually made of ferro magnetics (conductors). These currents are of no importance
for the operation of electromagnets, but they heat the cores, thus deteriorating
their characteristics. These currents should be eliminated as harmful
factors. This can be done by manufacturing the cores in the form of thin
plates separated by layers of insulators, arranged in such a way that eddy
currents cross the plates. Owing to this, eddy currents cannot develop in suf­
ficiently thin plates and have an insignificant volume density.

Joule's heat liberated by eddy currents is used in heating and even in melt­
ing metals, when it is advantageous and expedient as compared to other meth­
ods of heating. If a metal is heated by high-frequency currents only the sur­
face layer of the conductor is heated on account of skin effect (see Sec. 53).
The instantaneous power developed by the current in indudances and capacitances may
be alternating in sign, while the power developed In resistances Is always positive.

Sec. 50. Resonances in A.C. Circuits

Resonances in an a.c. circuit and properties of an
oscillatory circuit are discussed.

Voltage resonance. Let us consider a circuit in which R, Land C are connected
in series with a generator (see Fig. 192), and determine the frequency depend­
ence of the amplitude of current, lo' and the phase difference (f' between the cur-
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rent and the external voltage. On the basis of (48.18) and (48.20), we have

10 = VR2+[L~~1I(CJ)C)12 (50.1)

tanq>= CJ)L-~(CJ)C) • (50.2)

The dependences Io(ro) and cp(ro) are plotted in Figs. 203 and 204. The maximum
value of current lois attained at the frequency

roo = 1/VLt), (50.3)

called the resonance frequency of the circuit. In this case, the current amplitude
is equal to UolR and the phase difference cp = O. In other words, the circuit

w

---,----
I
I

2

1r

2·

Fig. 204. Frequency depend­
ence of the phase shift q> at
vol tage resonance

Fig. 203. Frequency depend­
ence ofcurrentat vol tage reso­
nance

(50.4)

as if does not contain a capacitor or an induction coil. Thus, at this frequency
the voltages across the capacitor and the induction coil completely compensate
each other, being equal in value (but always opposite in phase). Hence this
resonance is also called the voltage resonance. The vector diagram of voltage
resonance is shown in Fig. 205. At resonance (co = roo) the circuit behaves as
a pure resistor.

If a current of constant frequency ro is passed through the circuit, a change!
say, in the inductance, also causes a resonant variation of 10 • The maximum
value of lois attained at L = 11(ro 2C) [see (50.1) and (50.3)]. If an incandescent
lamp is included in the circuit, its brightness increases as the resonance is ap­
proached, attains' its maximum value at resonance and then decreases.
Current resonance. Let us consider the circuit shown in Fig. 206. Obviously,
the current flowing through the circuit is

l=h+1c=U (R+
1iCJ)L

+iwC)=U( ~+~~2 +iWC)

=U R2+~2L2 -i R2;!CJ)2L2 [coL-wC(R2+ W2L2»).
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Consequently, under the condition

roL - roC (R2+0)2L2)= 0,

a4~

(50.5)-

the circuit behaves as a purely ohmic resistance. The phase difference between
the external voltage and the current is equal to zero. Dividing all terms of Eq.
(50.5) by w2LC, we can write it in the form

f R2
- - roL = - (50.6}
mC wL •

In most cases of practical importance, the condition (uL» R is satisfied.
Hence the solution of Eqs. (50.6) and (50.5) can be written as follows:

roo = 1/ V LC. (50.7).:

At this resonance frequency, the impendance attains its maximum value;
while the current loin the circuit has its minimum value. Currents I L and I c-

iwLl

RI := t:

I-.. I
.---'

-i _1_ 1we
Fig. 205. Vector diagram of volt­
age at resonance

......----1~1-----...
U

Fig. 206. Circuit wi th current
resonance

Fig. 208. Vector diagram of cur­
ren ts at resonance

u

1 = U
L R + iwL

Fig. 207. Vector diagram of
currents in a circuit with a ca­
pacitor and an induction coil
connected in parallel.

,
Ie::: iwCCT Il . =U/(iwL.

however, are not at their lowest values in this case. A vector diagram of cur­
rents in the circuit is shown in Fig. 207. As~ esonance conditions are approached,..
the current diagram assumes the form shown in Fig. 208. Thus, much stronger
currents flow in the RLC-circuit as compared to the currents supplied to this
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circuit. The charge in the RLC-circuit passes from the capacitor to the induction
coil and vice versa, i.e. the current oscillates in this circuit. It can be seen from
Fig. 208 that the currents in the capacitor and in the induction coil are at re­
sonance and are mutually compensated. Hence this resonance is called the
current resonance.
'Oscillatory circuit. In both the cases considered above, the circuit shown
in Fig. 192 behaves as a resonance system performing forced oscillations under
the action of an external force. The oscillations of current in an LC-circuit were
first investigated by Thomson, who in 1853 obtained formula (50.7). This for-
mula was later termed Thomson's formula (T = 211: VLC). To analyze the
-current oscillations in a circuit, we can use the results of the theory of forced
mechanical vibrations of a material point. For this purpose, it is necessary to
find the quantities in electric oscillations corresponding to force, displacement
and velocity in mechanical vibrations. Let us write the equation for forced
mechanical vibrations:

~·+2,,;+ro:x=Flm, (50.8)

where x is the displacement of the point from its equilibrium position, m its
mass, F the external force, "y = b/(2m) the damping factor, and b the coefficient
.of friction. The dots over x indicate derivatives with respect to time.

Let us now transform Eqs. (48.12) and (48.13) for an electric eircuit. Consider­
ing that I == dQldt, we can write Eq. (48.12) in the form

d 2Q dQ 1
L dt2+R dT+cQ=U. (50.9)

Dividing both sides by L, we obtain the equation

Q+ (RIL) Q + [1/(LC)] Q= UIL, (50.10)

'\vhich is analogous to Eq. (50.8). The role of displacement in an electric circuit
is played by charge Q on capacitor plates, the inductance L serves as the mass,
the e.m.f. U replaces the force, while the coefficient of friction is replaced by
the ohmic resistance R. The natural frequency of the oscillatory circuit is equal
to We = 1/ VLC[see (50.3)]. Current I = dQ/dt plays the role of velocity.
.Since in mechanical vibrations of a point we usually consider its deviation
from the equilibrium position, amplitude of vibrations, etc., it is more con­
venient to use Eq. (50.10) instead of (48.13) while considering an electric cir­

-cuit. Besides, instead of charge Q on the capacitor plates it is more expedient
to use the voltage U c = QIC across the capacitor. In terms of this quantity, Eq.
'(50.10) assumes the form

ii c + 2"Uc + ro:Uc = 00 ~U,

where y = R/(2L) and (00 = 11 VLC. All properties of these oscillations are
.obtained from a direct comparison of the quantities y, (00' U and U c of an elec­
tric oscillatory circuit with the corresponding quantities characterizing mechan-
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ical vibrations of a point. In the absence of a resistance (R = 0), the natural
frequency of the oscillatory circuit is equal to 000 = (LC) -1/2. These oscilla­
tions are undamped. In the presence of an ohmic resistance in the cireuit, the
oscil lations become damped, and the damping time is

'td = 1/'\' = 2L/R. (50.12)

For the frequency of damped oscillations, it is customary to take the frequency

Q = -V O)~ -1'2. (50.13)

The damping factor (logarithmic decrement) is

e = ,\,T, (50.14)

where T = 2n/ooo is the period of natural oscillations.
The amplitude resonance curves and the phase resonance curves are similar

to the corresponding curves for mechanical vibrations.
The Q-factor is defined by the relation

Q = Uc res = Ucores ~_ IDoL -_1-1/ L (50.15)
Uc stat Uo 2)' - R - R C'

where U co res is the amplitude of voltage across the capacitor at resonance and
[7 0 is the amplitude of the external e.rn.I. applied to the circuit. Thus, in a
high-quality circuit, the amplitude of oscillations of the capacitor voltage may
be much larger than the amplitude of voltage applied to the circuit.

The width of the resonance curve is

2~ffi = ffiolQ = RIL. (50.16)

It should be recalled that the width 2~oo of the resonance curve is defined not with
respect to the amplitude of oscillations, but to the square of the amplitude.

Sec. 51. Mutual Inductance Circuits

The basic methods for calculating circuits are dis­
cussed. The operation of a transformer is described.

Mutual inductance. Any a.c, circuit is a source of a varying magnetic field.
In accordance with Faraday's law of electromagnetic induction, electromagnetic
forces are induced by this field in other loops lying within its range, thus chang­
ing the currant in these loops. Thus, the loops are mutually connected through elec­
tromagnetic induction.
Equation for a system of conductors taking into account the self-inductance
-and mutual inductance. The total maznetic flux through the kth loop is defined
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by the expression

which is a generalization of formulas (47.6) and:
(47.10) to the case of several current loops in
accordance with the principle of superposition.
Here L k k is the inductance of the kth loop, while·
L k i (for k =1= i) is the mutual inductance of the'

kth and ith loops. The total number of conductors is equal to N.
For the sake of simplicity, we assume that there are no capacitors in the cir­

cuits. Then, taking into account the electromagnetic induction for current in the­
ith loop, we obtain the Iollowing equation:

Fig. 209. Transformer

IkR k = Uk - d<1>k/dt , (51.2).'

where Uk is the extraneous e.m.f. in the kth loop. Substituting (51.1) into (51.2)
we obtain the Iollowing system of equations for determining the current in aIr
loops:

(k= 1, 2, ... , N). (51.3)1

This linear system of N equations in N unknown currents I k is complete and'
can, in principle, be easily solved. The only nontrivial problem is to determine­
the mutual inductances and inductances of the loops. These quantities are
assumed to be given in Eq. (51.3).
The. case of two loops. By way of an example, let us consider the system of
equations for two loops:

l 1R 1= U1- ( L u d~l +L12 dft ), (51.4)·

12R2=U2-(L21 dItl +L22 dIt ), (51.5}

where L 11 and L 2 2 are inductances of the first and second loops respectively, and'
£12' £21 are the mutual inductances of the loops.

Further calculations can be considerably simplified if we consider the opera­
tion of an a.c. transformer (Fig. 209).
Transformer. A transformer has two conductors in the form of coils wound
on a closed core made of a high-permeability material. Owing to this circum­
stance, the magnetic fluxes created by the currents flowing through the con­
ductors are concentrated almost completely inside the core. The conduc­
tors are called the transformer windings. The winding to which the extraneous·
e.m.f. source is connected is called the primary winding (or primary), while­
the winding to which the load is connected is called the secondary winding
(or secondary).
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Let us mark the quantities corresponding to the primary and secondary by
-subscripts 1 and 2 respectively. Equations (51.2) can be written in the form

I IRl = UI -deDl/dt, (51.6)

12R 2 = -deD2/dt, (51.7)

where R 1 is the ohmic resistance of the primary, R 2 is the sum of the ohmic re-
-sistances of the secondary and the load which is assumed to be purely resistive
for the sake of simplicity, eDl and eD 2 are the total magnetic fluxes through the
primary and secondary respectively, and U1 is the extraneous e.m.f. applied
to the primary.

The resistance R I of the primary winding is quite small and the voltage drop
across it due to the ohmic resistance can be assumed to be much smaller than
U I , i.e. 110R I ~ U10 ' where 11 0 and U1 0 are the amplitudes of current and volt­
.age in the primary. Hence we can neglect the product fIR} as compared to VI
in (51.6) and write it in the form

UI = deDt/dt. (51.8)

Under normal conditions, the ohmic resistance of the load is much higher
than the ohmic resistance of the secondary. Hence, to a great degree of accu­
-racy, R 2 in (51.7) is equal to the load resistance. Consequently, /2R2 on the
left-hand side of (51.7) is equal to the voltage U2 across the terminals of the
'secondary of the transformer. Hence we can write (51.7) in the following form:

U2 = -d<l>2/dt. (51.9)

'Since the extraneous e.m.f. varies exponentially [Ul ex: exp (irot)], all quanti­
ties 'vary according to the same law. Consequently, deDl/dt = iroeDl and deD 2/ dt =
iroeD 2 • Since the entire magnetic flux is concentrated in the core, each turn
of the primary and secondary is pierced by the same magnetic flux eDo. Hence
the magnetic fluxes through the primary and secondary are given by

eD l = eDoNI , (51.10)

eD 2 = <PoN2' (51.11 )

where N'; and N 2 denote the number of turns in the primary and secondary
respectively. Taking into account (51.10) and (51.11), we can write (51.8) and
·(51.9) in the form

U I = iroN1<P O' (51.12)
U2 = - iroN2<P O' (51.13)

Dividing the left- and right-hand sides of (51.12) and (51.13) termwise and
taking the moduli, we obtain

IUtl/lU2 1= N tIN2• (51.14)

Considering that I UI I = U1 0 and I U2 I = U20 are the voltages in the pri­
mary and secondary, we can write (51.14) in the form

UlolN I = U2 01N2 , (51.15)
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lI II
"-'I

Uind
I

i.e. the ratio of voltages in the secondary and in the'
primary is equal to the ratio of the number of turns in·
the secondary to the number of turns in the primary.

Neglecting the energy losses in the transformer, we­
can write the law of conservation of energy in the form

i.u, = 12U2. (51.16)·
Taking the moduli, we obtain on the basis of (51.1!)1

the following relation:

110N l = 12 0N 2 , (51.17)'
where 11 0 and 1 2 0 are the currents in the primary and'
secondary respectively.

Formulas (51.15) and (51.17) describe the law of
u~nd transformation of voltages and currents in a transform-

er. They are strictly valid for an ideal transformer
Fig. 210. Vector diagramA' in which there is no dissipation of the magnetic flux
of a transformer at no-. \.' and no energy losses. For a real transformer, these re­
load i'Jt.., lations are satisfied to a considerably high degree of

accuracy.
Vector diagram of a transformer at no-load. A transformer operates at no-load
when the secondary is open. We shall neglect the phase-lag of the magnetic
flux in comparison with the phase of the current in the primary on account of
a certain hysteresis in the reversal of magnetization of the core material. This
lag is negligibly small, and hence we can assume that the magnetic flux is in
phase with the current in the primary, called the no-load current. The current
in the secondary is equal to zero. From the formula

Ulnd = - d<D/dt, (51.18)

(51.19)1

(51.20).

it follows that Uind lags behind the flux <D by n/2. Hence the vector diagram
of a transformer at no-load has the formshown in Fig. 210: TJ1 is the external
voltage applied to the primary, Ufnd is the voltage in the primary due to self­
induction, u~nd is the voltage in the secondary due to mutual induction, I o
is the no-load current, and <Do is the magnetic flux per turn of the transformer
windings. As before, the losses and dissipation of the magnetic flux in the trans­
former are neglected.

According to the law of electromagnetic induction, we have

lnd d<J)o
U 1 =-~N1'

U ind _ d<I>o N
z - - ----ae- .2'

since the total magnetic fluxes through the primary and secondary windings.
are given by

(51.21)
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(51~28)

(51.22)

(51.23)Uind ~ U
1 ~- 1-

Dividing termwise the left- and right-hand sides
of Eq. (51.20) by the corresponding sides of Eq.
(51.19) and taking into account (51.23), we get

Fig. 211. Vector diagram of a
I U~d III Ut I~ N2INt - (51.24) transformer with a load con-

taining an inductive reactance-
Vector diagram of a transformer under load. In a element
transformer under load, the magnetic flux <1>0

through each turn of the windings is created by the primary as we'll as by the
secondary. The e.m.f. of self-induction in the primary must always compensate
the external voltage, i.e. the sum of magnetic fluxes <D(I) and <lJ(2) created by
the currents in the primary and secondary must be approximately equal to the
no-load flux <1>0 or, in other words, <1>0 = <:D(I) + <D(2). This means that the­
voltage in the secondary will also satisfy condition (51.24) for the transformer
under load.

It should be noted that the magnetic fluxes <D(I) and <lJ(2) are not the total
fluxes '<1>1 an d <1>2 through the primary and secondary. Actually, <D(I) and <D(2) are
the magnetic fluxes through a turn of each winding, created in the core by the
currents II and 12 respectively. The total magnetic fluxes through the primary
and secondary are given by <1>1 = N] (D(l) + <1J(2») , <D 2 = N 2 (1)(1) + (1)(2»).

The vector diagram of a transformer under load is shown in Fig. 211. The
currents II and 12 are much stronger than the no-load current 10 , Hence the
magnetic fluxes <lJ(l) and (1)(2) created by these currents are much denser than
the magnetic flux <1>0' Since <lJ(l) + (Jl(2) = <1>0 (complex numbers), we get

<l>(1)~-<I>(2), I $(1) I~ I <1>(2) I_ (51.25)

Let us consider the equations

I <1>(1) I = const 1 11 Is ; I <1>(2) 1= const I12 1 N 2 , (51.26)

which become obvious if we consider that (Jl(l) and <D(2) are magnetic fluxes creat­
ed by each winding. In this case (51.25) becomes the equality

111 I te,= I12 I N 2 - (51.27)

This equation can be written in the following more convenient form:

1/2 f s,
TI;T= N 2 '

which, as expected. is identical to (51.17)_

i.e.

It must be borne in mind that the no-load cur­
rent is very small, like the ohmic resistance of
the primary winding in comparison with its in­
ductive reactance. Hence (see Fig. 210)

U ~ U'~ Uind
1~ t~- 1 ,
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The first transformers were constructed by
P.N. Yablochkov (1847-1894) in 1877 and by
F.I. Usagin (1855-1919) in 1882.
Autotransformer. An autotransformer has an

u, u2 optimum construction, saving the winding ma-
--.;;.--_......._-.....-_- terial (Fig. 212). The physical principles of its

operation and formulas are analogous to those
Ftg. 212. Autotransformer considered above. The difference in operation

of an ordinary transformer and an autotransform­
er is that, in the latter case, the primary and secondary are connected elec­
trically, whi le the windings in the former are insulated. Hence, for example,
the static electric charges in an autotransformer can go over from the primary
to the secondary winding, which is impossible in an ordinary transformer. These
'peculiarities of transformers and autotransformers must be taken into considera­
tion in many cases.
Transformer as a circuit element. The current in a secondary circuit is (see
!Fig. 209)

/2 = U2IR. (51.29)

Considering that 11Nl = 12N2 and U1IN1 = U21N2, we obtain from (51.29)

Nt It =-!- N g u; (51.30)
N 1 R »,

Consequently, the resistance R in the secondary circuit of a transformer at
the input is represented by the effective resistance

R Ut ( », )2 R ~ 1 3eff=I;= N'}. -4 (5 • 1)

This means that a transformer can be used for matching a power source with
the load in order to obtain maximum power output [see (49.34)]. For example,
it can be used to match a high internal resistance of an amplifier with a low
resistance of a loud speaker. Complex impedances are transformed in the same
way as (51.31).
Real transformer. It can be seen from (51.31) that as regards primary, an ideal
transformer can be represented as a pure resistance. The inductance of the prima­
ry is not manifested in any way on account of the mutual cancellation of the
magnetic fluxes created by the currents in the primary and in the secondary.
In other words, a transformer in a circuit behaves as a transducer of the effective
resistance, having no inductance of its own.

The relations obtained above are valid for an ideal transformer. A real trans­
former has an inductance as well as a capacitance. The equivalent diagram
of a real transformer is shown in Fig. 213. The inductances £1 and £2 of the
primary and secondary are due to the dissipation of the magnetic flux, which
means that there is no complete compensation of magnetic fluxes created by
the currents in the primary and secondary. The resistances R1 and R 2 are the
ohmic resistances of the primary and secondary windings. The inductance L o
in the primary is due to the magnetic flux corresponding to the no-load current
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in the primary. The capacitancesC, and C2 in the windings appear due to the
capacitive coupling between the turns of these windings.

It can be concluded from the equivalent diagram of a transformer that at
very low frequencies the transformer ceases to operate on account of the fact

Fig. 213. Schematic diagram of a real transformer

that the inductive reactance CJ)Lo becomes very low and most of the current
passes through the inductance L o• At quite high frequencies also, the transform­
er does not work because the current mainly passes through the capacitor
C1 , by-passing the transformer windings. The limits of normal operation of the
transformer are always indicated in its specifications.

What are the physical conditions under which current resonance and voltage resonance
can be reaIizedl
What is the correspondence between the parameters charaderizing an RCL oscillatory
circuit and the parameters of a mechanical vibrational system with friction?
What is the physical meaning of matching the load to the generatorl
Give examples of the situations when eddy currents are useful end when they are un­
desirable.

Why must the core of an autotransformer be closedl
What are the main advantages and drawbacks of synchronous and asynchronous motors?
What is the role of "slip" in an asynchronous motor?
What does it depend on?
How should the transformer be connected to match the generator and the load if the load
resistance is extremely small?
What i sthe difference between an ideal and a real transformer?

Sec. 52. Three-Phase Current

The basic physical phenomena occurring in a three­
phase circuit are described.

Definition. The current considered so far was characterized by its amplitude
and phase, and was called single-phase current. The combination of three
identical single-phase currents, mutually displaced in phase by one third
of the period, constitutes a three-phase' current.
23-0290
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Generation of three-phase current. Let us consider an a.c. generator with three
isolated windings arranged at an angle of 1200 from one another in which cur-

Three-phase genera- Fig. 215. Schematic diagram of
the windings of a three-phase
generator

rent is generated (Fig. 214). A rotating magnetic field created by a rotating
permanent magnet generates identical voltages in the windings but with a phase
shift:

U1 = Uo sin rot, U2 = Uo sin (rot + 21[/3), U3 = Uo sin (rot - 2n/3).
(52.1)

The windings of the generator can be conveniently represented in the form of
the diagram shown in Fig. 215.
Star connection of generator windings. If three generator windings are used
independently of one another, the three-phase current generator will just be a
combination of three single-phase current generators and will contain no new
elements. In particular, the supply of electric power to the load will require
three pairs of conducting wire.

If the windings are interconnected in a certain manner, the three-phase cur­
rent acquires certain properties which are very useful for technical purposes.
There are two types of winding connection: the star connection and the delta
connection.

The star connection and the vector diagram for voltages in the windings
are shown in Fig. 216a and b. In this case, we have a common point 0 at the
same potential for all. the windings. The voltage across each winding is called
phase voltage. The conductor connected to the common-potential point is called
the neutral wire, while the conducting wires connected to the free terminals
of the windings are called phase wires. Thus, the phase voltage is the voltage be­
tween the phase wire and the neutral wire. The voltage between phase wires is
called line voltage. It can be seen from the vector diagram that the amplitudes
Uoland U 0 ph of the line and phase voltages are related as follows:

U01= 2Uoph sin 60° = Uoph V3. (52.2)
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In particular, if U0 ph = 127 V, U01 = 220 V. The current I ph in the winding
is called the phase current, while the current II in the line is called the line

(a) (b)

Fig. 216. Star connection of windings of a three-phase gen­
erator (a) and the corresponding vector diagram of voltage (6)

current. In a star connection, the phase and line currents are equal (I p h = I.).
If identical loads R are connected to each winding, the total current through
the neutral wire wi ll be equal to zero, since

t
It +12+13 = jf(Ut +U2+US) =0. (52.3)

This is so because, as can be seen from the vector diagram,

~ Ut=O.
i

The star connection of generator windings allows us to use four cables instead
of six in electric power transmission, which is an important achievement.

(a)

v;
L U

Ph
_

(b)

(52.4)
(52.5)

Fig. 217. Delta connection of windings of a three-phase trans­
former (a) and the corresponding vector diagram of voltage (b)

Delta connection of generator windings. Such a connection and the correspond­
ing vector diagram are shown in Fig. 217a and b. In this case, Uo ph = U o1•
From the vector diagram of currents (Fig. 218), it can be seen that

101 = 210 ph cos 30° == 10 ph V3.
II ph + 1 2 ph + Is ph = O.

23*
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When the generator windings are delta-connected without any load, there is
no short-circuit current in the windings. This, however, is true only for the

II

Fig. 218. Vector diagram of
currents for star-connected wind­
ings

Fig. 219. Star-star connection

fundamental harmonic. Higher-harmonic currents due to non-linearity of vibra­
tions always exist in the windings. Hence, as a rule, the windings of powerful
generators are not delta-connected.
Load connection. Loads can also be star- or delta-connected and applied to
a three-phase generator whose windings are also star-connected or delta-connect-

Fig. 220. Star-delta connec- Fig. 221. Delta-delta connec- Fig. 222. Delta-star connec-
tion tion tion

ed. Thus, we have four possible combinations in which a generator and a load
can be connected (Fig. 219-222).

Each of these combinations has its own peculiarities.
In a star-star connection, all loads have a phase voltage. In accordance with

(52.3), the current in the neutral wire is very small for nearly identical loads.
However, the neutral wire cannot be removed, since this would lead to a line
voltage U01 = U0 ph V3 between each pair of loads. This voltage would be
distributed between loads in accordance with their resistances. But such a de­
pendence of voltage on load is inadmissible, and hence the neutral wire must
be always retained and no fuses should be connected to it.

In the case of a star-delta connection (Fig. 220), a line voltage U01 = U0 ph Y3
is applied to each load irrespective of the load resistance.

A phase voltage independent of the load resistance acts on all loads in a delta­
delta connection (Fig. 221).

For a delta-star connection (Fig. 222), the voltage at each load is equal to'

u, phi VJ.
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Generation of a rotating magnetic field. If a three-phase,curre.nt is applied
to the windings of a generator (see Fig. 214), a rotating magnetic field corre­
sponding to the field of a rotating magnet generating current is produced
in the space between the windings. If a squirrel-cage rotor is used in place of
the magnet, it wi ll start rotating. In other words, the generator will operate
as an asynchronous motor. Thus the construction of electric motors is consider­
ably simplified if a three-phase current is used. This is also a significant advantage
of three-phase currents. .

Dolivo-Dobrovolskii (1862-1919) was the first to obtain a rotating magnetic
field. In 1889, he also-constructed the first asynchronous motor and then trans­
mitted electric power over large distances with the help of a three-phase current.
Three-phase' current has ensured a wide and effective application' of current in
engineering.

What are the main advantages of three-phase current over single-phase currentl
Draw the circuit diagrams for star- and delta-connedions of loads and generafors.~nume.r-

ate the relations between phase and line voltages and currents. '

Sec. 53. Skin Effect

The physical pattern of the emergence' of ..ski~ effect
is presented and the basic theory of skin effect and
its consequences are described. The concept of anoma­
lous skin effect is introduced.

Essence of the phenomenon. Direct current is distributed uniformly over the
cross section of a rectilinear conductor. Due to inductive interaction between differ­
ent current elements during the passage of an alternating current, the current den­
sity is redistributed over the cross section of the conductor so that the current is con­
centrated predominantly in the surface layer of the conductor. The tendency of
alternating current to flow near the surface of a conductor is called the skin
effect.
Physical pattern of the emergence of skin effect. Let us consider a cylindrical
current-carrying conductor (Fig. 223). A magnetic field is created around the
conductor, its lines of force being concentric circles whose centre lies on the
axis of the conductor. With increasing current, the magnetic induction also in­
creases while the shape of the lines of force remains unchanged. Hence, at each
point of the conductor, the derivative aB/at is directed along the tangent to the
magnetic field line and thus the lines aBIat are also circles coinciding with the
magnetic field lines. In accordance with the law of electromagnetic induction,
the varying magnetic field

curl E == - aB/at (53.1)
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Fig. 224. Skin effect in an in­
finite conductor with a plane
boundary

I
Fig. 223. Physical pattern of
the emergence of skin effect

z

y

x

induces an electric field, whose lines of force are closed curves around the mag­
netic field line (Fig. 223). Near the conductor axis, the vector of induced electric field
is directed against the vector of the electric field creating the current, while in
more remote regions the two vectors coincide in direction. Consequently, the current
density decreases in the axial regions and increases near the surface of the conductor,
thus leading to the skin effect.
Basic theory. To begin with, we must obtain an equation for the skin effect.
We start with the Maxwell equation

curl B = flj (53.2)

and Eq. (53.1). Substituting into (53.2) the expression for i in accordance with
Ohm's law,

j = ",E, (53.3)

and differentiating both sides of the equation thus obtained with respect to
time, we obtain

aD aE
cur1at=f.L"'ih

or, by taking into account Eq. (53.1),
lJE

-curl curl E = 111' ---at.
Since

curl curl E = grad div E - V2E

and
div E = 0,

we finally get

(53.4)

(53.5)

(53.6)

aE
V2E = "ill- at . (53.7)

In order to simplify the solution of this equation, we assume that the current
flows through an infinite homogeneous conductor occupying the half-space
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y > 0 along the X-axis (Fig. 224). The plane Y = 0 is the surface of the con­
ductor. Thus,

This gives [see (53.7)]

Ix = Ix (y, t), t, = Iz = 0,
Ex = Ex (y, t), E y = E z = O.

(53.8)

(53.9)

~:: = "'It iJ{J~1It • (53.10)

Since all quantities in (53.10) depend harmonically on t, we can put

Ex (y, t) = Eo (y) efOOf. (53.11)

Substituting (53.11) into (53.10) and dividing both sides of the equation thus
obtained by exp (irot), we obtain the following equation for Eo (y):

dlEo • -3 A2dyl = ~YJ1CJ)Eo. (5 •-I )

The general solution of this equation has the form

Eo = Ale-All + A 2e
AII. (53.13)

Considering that

k = V i-VJ1oo == ~ (1+ i), ~= VYJJ.m/2 ,
we obtain

(53.14)

Eo (y) = Ate-«ZlIe-l«ZtI+Aze«ZlIet«ZtI. (53.15)

As we move away from the surface of the conductor (y -+ 00), the second
term in (53.15) increases indefinitely, which is a physically inadmissible situa­
tion. Consequently, A 2 = 0 in (53.15) and only the first term remains as a phys­
ically acceptable solution. In this case, the solution of the problem has the
following form (if we take into account Eq. (53.11»:

Ez (x, t) == Ate-«Ztlef(OOl-«ZII). (53.1.6)

Taking the real part of this expression and going over to current density
with the help of the relation i = -VE, we obtain

j x (y, t) = -VAle-a.lIcos (rot - ay). (53.17)

Considering that ix (0, 0) = io is the amplitude of current density at the sur­
face of the conductor, we arrive at the following distribution of the volume cur­
rent density in a conductor:

j x (y, t) = j oe-a.1/ cos (rot - ex,y). (53.18)

Skin depth. At the surface of a conductor, the volume current density has its
maximum value. As we move from the surface, this quantity decreases and at
a distance ~ = 1/ex, it is equal to 1/e of its value at the surface. Hence, the entire
current is practically concentrated in the layer ~ called the skin depth. On
the basis of (53.14), it is equal to

~ = [2/ (Yf.1ro) ]1/2. (53.19)
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Obviously, the skin depth may be very small for very high frequencies. or.
For example, the skin depth ~ = 4 mm for a good conductor like copper
(,\, = 107 Q-1. m-1) and at w = 104 S-1. If the frequency is increased by a factor
of 100 and reaches w = 106 S-1, the skin depth decreases by a factor of
10 (~ ~ 0.4 mm). This means that at quite high frequencies, the entire current
in not very thin conductors flows only in a very small part of 'the conductor
cross section near its surface. Hence the situation will be the same if we remove
the material from the cylindrical region inside the conductor and leave only
a cylindrical shell of the thickness equal to the skin depth. If: the conductor is
quite thick and the frequency is not very high, the current flows through the
entire cross section becoming weaker only slightly near the axis. For example,
the skin effect is manifested; very weakly in.normal conductors in the domestic
power supply at' a frequency of 50 Hz.:
Frequency dependence of ohmic reslstanee of ~ conductor. Since the effective
cross-sectional area through which a. current flows decreases with increasing
frequency, the resistance of a conductor increases with frequency.
Frequency dependence of inductance of a conductor. The energy of a magnetic
field through which a current flows is equal to

Wm = 1/2L [ 2. (53.20)

If the current flows through a hollow cylinder, the field outside the cylinder
will be the same as for the same current passing through a solid cylinder. In­
side the hollow cylinder, there is no field.' Hence, the energy of the field created
by the current flowing through a hollow cylinder is less than that of the field
generated by the same current passing through a solid cylinder. This means
that the magnetic field energy W m decreases on account of the skin effect. Hence,
on the basis of (53.20) it can be stated that the inductance of a conductor decreases
with increasing frequency.
Hardening of metals by high-frequency currents. Owing to the skin effect, at
high frequencies Joule's heat is released predominantly in the surface layer.
This allows the hardening of a thin surface layer of a conductor without any
significant changes in the temperature of its interior. This phenomenon is used
in industry for hardening metals by the method which is quite important from
the technological point of view.
Anomalous skin effect.' The mechanism described above for the emergence of
skin effect assumes that a moving electron continuously loses its energy in
order to overcome the ohmic resistance of the conductor, thus leading to
liberation of Joule's heat. Obviously, such an idealization is possible only if
the motion of electrons takes place in regions whose linear dimensions are much
larger than the mean free path of an electron between collisions with the atoms
of the substance. Consequently, the above theory is valid only under the condition
that the skin depth is much larger than the mean free path of freely moving electrons.
Such a relation between the mean free path and the skin depth is observed over
quite a wide range. For example, even at a frequency of 10 GHz and a tempera­
ture of 300 K, the skin depth in copper is about 1 um , while the mean free path
is of the order of 0.01 um. However, the situation radically chan ges at very low
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temperatures, since the conductivity rapidly increases and so dces the mean free
path, while the skin depth decreases. For example, at liquid helium temperature
(4.2 K) the conductivity of pure copper increases about 104 times. 'Lhis leads to
an increase in the mean free path of electrons 1y a factor of 104 and a decrease
in the skin depth by a factor of V 104 = 102• Thus, the mean free path and the
skin depth become equal to 100 and 0.01 um respectively. Under these conditio.ns,
the mechanism leading to the emergence of the skin effect is no longer operative.
The effective',thickness of the layer in which the current is concentrated changes.
This phenomenon "is called the anomalous skin effect.

Under the conditions of anomalous skin effect, only electrons, whose veloc­
ity is parallel to the surface of the conductor can traverse the entire free path
within the normal skin depth. All other electrons manage to leave the "normal"
skin depth during their free motion and thus considerably change the direction
of motion. This leads to a decrease in the conductivity of the material and a
change in the effective "anomalous" skin depth S', In order to roughly estimate
the value of this quantity, it can be assumed that a fraction of conduction elec­
trons' has the order of ~'Il of the number of electrons which would ensure the
conduction in the framework of "normal" skin effect (1 is the mean free path of
electrons). A decrease in this fraction would lead to a decrease in the conduc­
tivity which can approximately' be taken into account by the substitution
"( -+ ~"( (~'Il), where ~ is the numerical coefficient of the order of unity. Mak­
ing this substitution in formula (53.19), we get

(53.21)

Owing to indudive interaction between different current elements in the case of an al­
ternating current, a redistribution of the current density takes place over the cross sedion
of a condudor. As a result, the current Is predominantly concentrated in the surface layer
of the condudor.

What is the physical reason behind the dependence of the resistance and indudance of a
conductor on the e.e, frequencyl
What are the conditions under which the skin effect appears?

Sec. 54. Four-Terminal Networks

The terminology and basic concepts of the theory of
[our-terminal networks are desertbed.

Definition. An electric circuit with two input and two output terminals through
which electric energy is transmitted is called a four-terminal network. Such a net­
work is schematically shown in Fig. 225. Examples of four-terminal networks
are mode transducers, frequency filters, transformers, etc. Our aim is to find
the relation between the voltages and currents at the input and output termi-
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nals of a four-terminal network. If such a network
does not contain any power sources, it is called
a passive network. In the presence of power
sources, the network is called active. It is as­
sumed t.hat the current at the output terminal 2 is
the same as the current at the input terminal 1.
Similarly, the current at the output terminal 3

Fig. 225. Four-terminal network is equal to the current at the input terminal 4.
Equations. Suppose that a four-terminal network

contains n independent loops. We can then compose n equations for the cur­
rent loops of the type (48.27):

n

~ Z2t l , = -U2,
i-1

(54.1)

(54.4)

(54.2)

n

~ ZIt,/ t =0 (k==3, 4, ... t n).
i=1

The minus sign of U2 in the second equation appears due to the fact that here
a certain direction of circumvention is chosen as positive, and relative to this
direction Ul and U2 are passed in opposite directions (see Fig. 225). The solu­
tion of this system of equations is

I ~11 U Ali U
1=~ 1---X- 2t

I ~lS U ~II UZ=T t---X- 2t

where ~ and ~iJ are the determinant and the corresponding complements of
the system of equations (54.1). Consequently, there exist linear dependences of
the type (54.2) between currents and voltages of a passive four-terminal net­
work. These dependences can be conveniently written in the form

II = BllUl + B12U2 , £2 = B 21Ul + B 22U2• (54.3)

The coefficients B i J have the dimensions of conductivity. Hence Eqs. (54.3)
are called the equations of a four-terminal network with coefficients in the form of
conductivities.

It is not difficult to solve Eqs. (54.3) for voltages

Ul = AllIl + A 1 21 2 , U2 = A 21Il + A 2212t

where coefficients Ai} have the dimensions of resistances (impedances). These
equations are called the equations of a four-terminal network with coefficients in
the form of resistances.
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Reciprocity theorem. Since the coefficients Z'j in Eqs. (54.1) are symmetric
for a passive four-terminal network [see [48.30)], Le,

(54.5)

we can show that the coefficients Ai j in (54.4) are also symmetric in this case:

A 1 2 = A 21• (54.6)
Hence

(U2/11)11- 0 = (U11/2)11-0, (54.7)

i.e. for a given input current, the output voltage at the open pair of terminals re­
mains unchanged if the input and output terminals of such a network are inter­
changed (reciprocity theorem for a passive four-terminal network).
Impedance of a four-terminal network. The impedance Ass is called the mutual
impedance of a four-terminal network, since it follows from the second of Eqs.
(54.4) for an open output circuit (12 = 0) that

A 21 = U 2II l • (54.8a)

Under the same condition, we get for the first of Eqs. (54.4)

All = UIIII. (54.8b)

This means that All is the input impedance of a four-terminal network when
the output circuit is open. In accordance with the reciprocity theorem, the terms
A l 2 and A 2 2 have the same meaning.
Simple four-terminal networks. With the help of Eqs. (54.3) and (54.4), we
can connect the input voltage and current with the output voltage and current
of a four-terminal network through the relations

a, = D 11U2 + D 121 2 , II = D 2lU2 + D 2 212 , (54.9)

where D i j can be easily expressed in terms of B i J and A i j , viz. the quantities
which appear in Eqs. (54.3) and (54.4); the coefficient D l 2 has the dimensions
of resistance; D 21 has the dimensions of conductivity, while the coefficients D I I
and D 2 2 are dimensionless.

A four-terminal network is called longitudinallu symmetric if interchanging the
input and output terminals leaves the currents and voltages in the circuits connected
to these terminals unchanged. Since such an interchange is possible, we obtain
the following expression for symmetric four-terminal networks:

D I I =D 2 2• (54.10)

Simplest forms of symmetric pi-section and T-section four-terminal networks
are shown in Figs. 226 and 227, while nonsymmetric networks are shown in
Figs. 228 and 229. The easiest way to find the coefficients D ij for a four-terminal
network is by using the mesh-current method. For this purpose, a system of
equations is first set up, and then the forces corresponding to the currents in the
internal loops are excluded from these equations. The two remaining equations
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containing VI' V 2 , .11 , and 1 2 are transformed into equations of the type (54.9)
and a comparison of these equations with (54.9) gives the values of D i j •

For a longitudinally symmetric pi-section four-terminal network (Fig. 226),.
we obtain

D11 = 1 + ZY/2, D1 2 = Z, D 11 == }T (1 + ZY/4). (54.11)

For a longitudinally symmetric T-section four-terminal network (Fig. 227),.
we have

D I I = 1 + ZY/2, D1 2 = Z (1 + Zr/4)~ D 21 == Y. (54.12)

As a result of direct verificatiori, we find that

D~l - Dt2D2t = 1, (54.13)

i.e. the determinant of the coefficients of transformation (54.9) is equal to unity
in the caseof-Iongitudiriallysymmetric pi- and Tvsection four-terrninal uet.works,

Fig. 226. Longitudinally sym­
metric pi-section four-terminal
network

Fig. 227. Longi tudinally sym­
metric T-section four-terminal
network

Fig. 228. Nonsymmetric pt-see­
tion four-terminal network

Fig. ~29. Nonsymmetric T-sec­
tion four-terminal network

(54.14)

(54.9)

(54.15)

The expressions for the coefficients of nonsymmetric four-terminal networks
are somewhat complicated and will not be given here.
Input and output impedances. For a four-terminal network, these quantities
are defined as the ratio of the corresponding voltages and currents:

Ztn = VI/II' Zout = V 2/12·

Taking into account Eqs. (54.10)-(54.13), we obtain from Eq.

Z - Zout+ D12/Dl l

ID - 1-t-ZoutD21/ D11•

Thus, a four-terminal network transforms the output impedance into input
impedance. When the output is short-circuited (Zout == 0), the input impedance



Sec. 54. Four-Terminal Networks

of a four-terminal network is

a6~

Zo in = D12/D 11 , (54.16)

while for an open output circuit (Zout = 00), the input impedance is defined
"by the expression

Zooln = D 11/D21. (54.17)

Gain factor. The transformation of currents and voltages is characterized by
the ratio of their values at the output to the values at the input. In the same
way as for (54.15), we obtain

U21U1 = Zout/(Zout D I I + D 12), (54.18)

/2 //1 = 1/(D11 + ZoutD21). (54.19)

If the four-terminal network does not transform the impedance, i.e. it the
III put and output impedances are identical, the output impedance is said to be
matched with the system. Substituting the value

ZCh = ZiD = Zout

of the impedance into (54.15), we obtain

(54.20)

ZCh = V D12/D2t • (54.21)

This quantity is called the characteristic (wave):impedance of a four-terminal
network. Consequently, a four-terminal network is matched with the transmis­
-sion line if its input and output impedances are equal to the characteristic im-
-pedance. In this case, Eqs. (54.18) and (54.19) assume the form

'Using the relation

U2/U1 = 1/(Du + VD12D21 ) ,

12/11 = 1/(Du +V D12D21 ).

(54.22)

(54.23)

cosh g = D I I , (54.24)

we can determine the gain factor g. In this case, we obtain on the basis of (54.13)

sinh g = V cosh- g-1 = V D12D21 • (54.25)

Using (54.24) and (54.25), we can transform formulas (54.22) and (54.23) as
-follows:

U 2 = Ule- I ,

/2 = Ule- i .

(54.26)

(54.27)

It should be noted that expressions (54.26) and (54.27) are valid only under the
,conditions of perfect matching. In the case of mismatching, formulas (54.18)
and (54.19) should be used.



866 Ch. 8. Electromagnetic Induction

(54.31)

L/21-/2

Fig. 230. Low-pass filter

With the help of the gain factor and characteris­
tic impedance, formulas (54.18) and (54.19) can
be represented in the form

V 21 VI = Zoutl (Zout cosh g + Zch sinh g) (54.28)

/2 //1 = Zchl (Zch cosh g +Zout) sinh g). {54.29)-

Like all other quantities appearing in formulas
(54.26)-(54.29), the gain factor is a complex
quantity:

g = ex + i~. (54.30}
It can be seen from (54.26) and (54.27) that under matching conditions, the

real part of the gain factor determines the change in the amplitudes of voltage
and current at the output of a four-terminal network as compared to their val­
ues at the input, while the imaginary part determines the phase shift. The rea)
part of the gain factor is just the logarithm of the ratio of amplitudes:

ex = In (U I/V2).

Since g depends on frequency, the spectral composition, and hence the shape of
a multifrequency signal, change as it passes through a four-terminal network. The
nature of variation of frequency and phase spectrum of a signal can be deter­
mined with the help of the formulas obtained in this section.

Sec. 55. Filters

The principle of operation and properties of filters
are described.

Definition. A filter is a device that changes the amplitude of oscillations depend­
ing on their frequency. If a filter is made in the form of a four-terminal network,
the transmission coefficient should noticeably vary with frequency.
Low-pass filter. Let us consider a bridged T-section four-terminal network
shown in Fig. 230. A comparison with Fig. 227 shows that in the formulas ob­
tained above we must put

Z = iial», Y = iroC. (55.1)

The characteristic resistance is given, according to (54.24) and (54.11), by

ZCh=V ; Vi + ~y =V ~ V 1 - ro
2fe . (55.2)

Taking into account (54.11), we obtain the following expression for the trans­
mission coefficient g [see (54.24)]:

cosh ~ = 1 - CJ)2LCI2. (55.3)
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Taking into account expression (54.30) for g, we can write Eq. (55.3) in the
form

cosh (ex + iP) = cosh ex cos P+ i sinh ex sin ~ = 1 - m2LC/2,

whence

(55.4)

(55.5)

(55.6)
cosh ex cos ~ = 1 - w2LC/2,

sinh a sin ~ = o.
Equation (55.6) has the following solutions:

p = 1tn (n = 0, 1, 2, ...), (55.7)

for which cos ~ = ± 1. However, the hyperbolic cosine is always greater than
or equal to unity, i.e. cosh a~ 1. Hence it follows from (55.5) that cos ~ = - 1
and we can put ~ = rr. Under these conditions, Eq. -(55.5) assumes the form

1 + cosh a = w2LC/2. (55.8)

Since cosh a ~ 1, Eq. (55.8) has a solution only for sufficiently high frequen­
cies:

(55.9)

(55.12)

(55.11.)

where

me = 2/V LC (55.10)
is the cut-off frequency. Taking into account (55.9), we conclude from (55.2)
that the characteristic resistance is purely imaginary:

Vy V mlLC /ry V ml
Z L=i - -1=i l - --1ou C 4 C CI)~ •

The real part of the transmission coefficient can be determined from Eq. (55.8).
It can be seen that it increases very rapidly with frequency. Hence on the basis
of (54.26) and (54.27) we may conclude that the amplitudes of oscillations at
the four-terminal network output for (0~ We rapidly decrease with increasing
frequency.

Another solution of Eq. (55.6) has the form

sinh a = 0, a = O.

Then Eq, (55.5) assumes the form

cos ~ = 1 - CJ)2LC/2. (55.13)

This equation has a solution only for cos ~ > - 1, i.e. at frequencies

ro~roe=2/VLC, (55.14)

for which the first solution did not fit. The characteristic resistance in this case
is real:

(55.15)
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Since r.J.. = 0 here, the frequencies w~ (Oc pass without attenuation. However,
there is a frequency-dependent phase shift determined by Eq. (55.13).

Figure 231 shows the dependence of the amplitude of oscillations at the out­
put on the amplitude at the input. The four-terminal network considered above
is a filter capable of passing low frequencies, less than a certain cut-off frequency

1~~ I

o

I~~ I

Fig. 231. Frequency characteris­
tic of a low-pass filter

Fig. 232. High-pass filter

o

L/2 L/2 L/2 L/2 L/2 L/2

Fig. 233. Frequency charac­
teristic of a high-pass filter

Fi~. 234. Iterative filter comprising T-section net­
works

roc. The oscillations with frequencies higher than the cut-off frequency atten­
uate very rapidly. The filter operates as a shutter for frequencies which consider­
ably exceed the cut-off frequency. The frequency range ro~ roc is called the pass
band.
High-pass filter. A four-terminal network shown in Fig. 232 is calculated as
in the previous case and operates as a high-pass filter with the frequency charac­
teristic shown in Fig. 233.
Iterative filter. If we connect the output terminals of a four-terminal network
shown in Fig. 230 to the input terminals of a similar four-terminal network
and continue the process, we shall obtain a filter shown in Fig. 234. It can be
analyzed with the help of the same methods. However, the basic properties
of such a filter can be outlined without a detailed calculation, since consecutive
units constituting the filter have identical characteristic resistances and operate
in matching mode at each frequency. The cut-off frequency for all units is the
same. Consequently, this filter will have the same pass band ro~ roc, and the
attenuation of frequencies ro~ roc will be more pronounced. The frequency
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characteristic of this filter has. the form similar to that shown in: Fig. 231 but
with a steeper decrease in amplitudes at co > COe (Fig. 235). -'

I~~ I

()

I~I

o
Fig. 235. Frequency charac- Fig. 236. Frequency charac- Fig. 237. Band filter
teristic of an iterative filter teristie of a band filter
comprising T-section net-
works

Band filter. This is a filter that passes only a certain frequency band betweena
certain minimum and maximum frequencies:

COc. mIn ~co~coc. max. (55.16)
The frequency characteristic of this filter is shown in Fig. 236.
Such a filter can, in principle, be realized in the form of a sequence of low-pass

and high-pass filters. The high-pass filter should cut off all frequencies below
roc . ma x and pass high frequencies, while the low-pass filter should pass all fre­
quencies below COc.max, and cut off all frequencies exceeding roc.max. In prac­
tice, however, more complicated networks are used (see, for example, Fig. 237).
Such a filter is also a four-terminal network and can be analyzed by. similar
methods.

What are the physical processes underlying the low-pess end high-pass filters'
Describe the construdion of a bend nlte,.

Sec. 56. Betatron

The operating principle of betatron is considered and
basic concepts of the theory of stability of electron mo­
tion in a betatron are analyzed. The energy limit. at­
tainable in betatrons is discussed.

Function. Betatron is a device in which an eddy induced electric field acts
on free electrons in vacuum. I t is intended for accelerating electrons to a high
energy (of the order of several hundreds megaelectronvolts). An acceleration to
higher energies is hampered by the energy losses due to bremsstrahlung appear-
2.-0290
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(56.1 )

....-
E

ing as a result of the accelerated motion of elec­
trons in circular orbits. The mechanism of accel­
eration used in a betatron is unable to compen­
sate these losses, and the acceleration cycle is
terminated.
Operating principle. The basic idea is to specify
the conditions under which an electron moving
in an increasing magnetic field would be accele­
rated by an eddy electric field and simultaneously
held by the magnetic field in a circular orbit of
constant radius.

r~~·~~:irJ:e~~di~i~~vation of It turns out that this condition can be met. It is
called the betatron condition.

The betatron condition. Let us write the equation of motion of an electron
in a circle of constant radius in an increasing magnetic field, assuming that such
a motion is possible. The solution of this equation will give us the conditions
under which this motion can be realized.

We denote the radius of the orbit by r o and the electron momentum always
directed along a tangent to the. circular orbit by p (Fig. 238). Faraday's Iaw
of electromagnetic induction used for determining the electric field strength in
the orbit gives the following equation:

2nroE = - d(J>/dt.

On the other hand, the equation of motion has the form

dp/dt = eE.

It follows from (56.1) and (56.2) that

/d • d<I>dp t==----.
2nro dt

(56.2)

(56.3)

Since r o = const, we can integrate both sides of this equation over t between
oand t:

(56.4)

where the subscripts t and 0 denote the values of the corresponding quantities
at the moment t and at the initial moment t = O. Newton's equation for the
centripetal acceleration has the form

mv2/r
o = - evB, (56.5)

where m is the relativistic mass. I t follows from this equation that
p = mv = - eBro• Then [see (56.4)]

(56.6)
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(56.7)

Since the magnetic induction vector B is perpendicular to the plane of the
orbit, and the magnetic flux is given by

<1'= JB· dS
s

(8 = nr3 is the area bounded by the orbit), then

(J)/ (nr~) = (B) (56.8)

is the average magnetic induction of the field over the area S bounded by the
orbit. Assuming that at the initial instant the magnetic field is absent (B 0 = 0,
<Do = 0), and combining (56.6) and (56.8), we obtain

s, == 1/2 (B t ) . (56.9)

This is the betatron condition: the magnetic induction on the electron orbit is equal
to half the average induction of the field piercing the orbit. Consequently, the
magnetic induction should decrease from the centre to the orbit in accordance

F

o ,.
o r

Fig. 239. Schematic diagram of
a betatron

Fig. 240. To the derivation of
radial stability condition for
electrons in a betatron

with a certain law such that condition (56.9) is observed. For this purpose, it
is necessary to properly select the shape of the poles of electromagnets creating
the magnetic field (Fig. 239). Since for a given shape of magnetic poles the shape
of the lines of force does not depend on the current and magnetic induction,
condition (56.9) is found to be fulfilled for any current in the electromagnet.
This means that there is no need to take care of the law of variation of current.
The only question we should be interested in is the stability of motion. If
some factors draw an electron out of the motion strictly along the circle of
radius r o, will the forces striving to hold it in the acceleration mode near the
circle appear, or will it no longer be accelerated and be lost?

There are two possible directions of deflecting an electron from its orbit: either
along the radius or along the vertical from the plane of its motion.
Radial stability. The magnetic induction of the field within the orbit is usually
represented in the form

B = const/r", (56.10)
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The rate of variation of magnetic. induction is
characterized by the quantity n, The centripetal
force F~~~ required to ensure the motion of the
electron in a circle of radius r and the actual cen­
tripetal force Fc.p at the same distance r from
the centre are given by

Fig. 241. Schematic diagram
for ensuring the vertical sta- F~~g=mv2/r=A1r, F c .p = evB = A2/rn

, (56.11)
~~\i:iro~ electron motion in a where At and A 2 are constants (v = const). The

plots of these quantities for n > 1 and 0< n «; 1
are shown in Fig. 240. When r=ro, equality (56.5)

is fulfilled, and the motion in a circle of radius r o takes place. If for somereason
or other the electron is displaced by r > r o, then for n > 1 the centripetal force
Fc •p < F~~~. This means that factors which tend to move the electron away
from the orbit of radius r o dominate. Therefore, for n > 1, the motion turns
out to be unstable. When n < 1, the centripetal force Fc.p > F~~~, and the
factors tending to return the electron to the orbit of radius r o dominate. As
a result, radial stability is attained. An analysis of the case when r < "» leads
to the same conclusion. Consequently, the radial stability condition has the
form

o< n < 1. (56.12)
Vertical stability. This stability is always ensured when the magnetic induction
of the field decreases towards the periphery (n > 0) since in this case the lines
of force are convex outwards (Fig. 241). When an electron deviates from the
midplane, a component of the Lorentz force tends to return it to this plane
(Fig. 241). Thus, when condition (56.12) is satisfied, vertical stability of motion
is also ensured, i.e. inequality (56.12) is the general condition of stability of
electron motion in a betatron.
Betatron oscillations. Upon small deviations of electrons from the equilibrium
orbit (r = r o) , they perform small harmonic oscillations about this orbit both
in the radial and in vertical directions. Such oscillations are called betatron
oscillations. Their amplitude determines the cross section of the vacuum toroidal
chamber in which electrons move. Usually, the linear dimensions of the cross
section of the chamber constitute about 5 % of the radius of the orbit.
Energy limit attainable in betatron. As was mentioned above, this limit is
determined by the electron energy losses for bremsstrahlung (see Chap. 10).
The maximum energy practically attainable in betatrons does not exceed
300 MeV.

.Problems

8.1. Calculate the inductance of a section of a two-wire line of length l, neglecting the in­
ternal inductance of the wires. The radii of the wires are equal to ro and the distance
between the wires is d.

·S.2. A current of density j passes through a straight infinite circular cylindrical conductor
having a cylindrical cavity of a circular cross section. The axes of the cylinder and of
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I

Fig. 243. Coaxial cable with a
movable diaphragm

x
Ot------.l------

Fig. 242. Mutual arrangement of
interacting linear and circular
currents

the cavity are collinear (Fig. 98). Find the magnetic induction of the field inside the
'; cavity (11 = J1o)· . .

Hint: See Problem 2.9. ,
8.3. A very long solenoid with the density of winding equal to n turns per metre length has

the cross-sectional area S. Current I passes through the winding. Two very long iron
rods having permeability J1 are pulled into the solenoid at beth its ends so that the rods
tightly fit, the winding and are separated by a .very small gap within the solenoid.
Find the force with which the rods attract each other. .

8.4. A U-shaped electromagnetic whose winding consists of n turns is characterized by the
following parameters: cross-sectional area.S, length l, permeability of the magnet ma­
terial u, and the distance between the poles d. A current I passes through the winding,
A strip of the same material is placed in contact with the magnet poles. Find the force
with which the strip is attracted by the magnet.. ",

8.5. A horizontal metallic rod rotates at a frequency v about a vertical axis passing at a dis­
tance equal to 11k of its length from one of its ends. The length of the rod is 1. Find the

·z

((nl{f.V2

lIt Y

potential difference between the ends of the rod if it rotates in a uniform vertical mag­
netic field with magnetic induction B. Assume that k = 3, I = 1.2 m, 'V = 6 S-1 and
B = 10-2 T.

8.6. A sinusoidal magnetic field with a magnetic induction amplitude B o = 0.5 T is formed
between the circular poles of a large electremagnetic fed by an alternating current of
frequency 'V = 1 kHz. Assuming that the magnetic field is uniform, find the maximum
electric field strength in the gap· between the poles at a distance r = 0.1 m from its cen­
tre.

8.7~ A short-circuited solenoid of radius b with n turns rotates at an angular velocity w·about
the diameter of one of the turns in a uniform magnetic field of magnetic induction B.
The axis of rota tion is perpendicular to the magnetic induction vector. The resistance
and inductance of the solenoid are equal to Rand L respectively. Find the current 'in
the solenoid as a function of time.

8.8. A superconducting ring which can move only in the vertical direction lies on a table above
a conducting loop. A current I is passed through the loop. As a result, the supercon­
ducting ring is lifted. The mutual inductance of the loop and the ring lifted to a height x
is L 12 (x). The inductance of the superconducting ring is L 11 , the mass of the ring is m,
the acceleration due to gravity is g. Find the height h to which the ring will be lifted

8.9. A current 10 sin IDt is passed through a coil Al and a corresponding current is induced
accordingly in coil A 2' The self-inductances and mutual inductance of the coils are
L1 , t.; and L]2' The resistance of coil A 2 is R 2 • SUPfose that Si is a certain generalized
coordinate which characterizes the position of coi A 2. Find the average generalized
force Pi associated with the coordinate Si'

8. to. A very long straight conductor and a circular conductor of radius a lie in a plane (Fig.
242). The distance between the centre of the annular conductor and the straight ODe
is equal to d. Find their mutual inductance.

8.t I , Currents II and 12 pass through the straight and circular conductors described in
Problem 8.10. Find the force acting on the circular conductor.
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8.12. Find the mutual inductance of a toroid winding
(see Fig. 195) and a straight infinite conductor
coinciding with the symmetry axis of the toroid.

8.13. Find the inductance of a toroid winding with a
circular cross section of radius r, having n turns.
The major radius of the toroid is R.

8.14. A coaxial cable whose cere and sheath have infinite
conductivity and radii rt and r2 is short-circui­
ted by a movable diaphragm (Fig. 243). Find the
force acting on the diaphragm when current I flows
in the cable.

8.15. A hollow cylinder of radius r2 and a cylindrical
conductor of radius rl having a very high conduc­
tivity and coaxial with the cylinder are immersed
in a conducting liquid magnetic having permeabil­
ity ,.., and mass density p (Fig. 244). The current
I passes through the circuit. Calculate the height

Fig. 244. Pulling a magnetic to which the liquid magnetic rises in the cylinder.
into the space between coaxial 8.16. A dielectric cylinder of radius a rotates about its
cables carrying current axis at an angular velocity ro in a constant mag-

netic field whose magnetic ind uction vector B is
parallel to roo Find the polarization of the cylinder and the surface charge density
of bound charges. The permittivity of the cylinder material is 8.

8.17. A thin conducting disc of conductivi ty y is placed in a varying magnetic field whose
magnetic induction is given by B = B cos (rot + tp) and directed at right angles to the
plane of the diss. Find the density of eddy currents induced in the disc.

8.18. Find the inductance of a toroid winding consisting of n turns of rectangular cross sec­
tion with side a if the major radius of the toroid is R.

8.19. A circular loop of radius a rotates about its diameter at a constant angular velocity ro
in a uniform magnetic field of magnetic induction B. The ohmic resistance of the loop
is R, the axis of rotation is perpendicular to B. Find the current I (t), the torque M (t)
decelerating the rotation of the loop and the average power (P) spent for maintaining
a constant speed of rotation of the loop. For the reference point t = 0, take the instant
of time when the plane of the loop is perpendicular to B.

8.20. A branch of a circuit consists of two cylindrical coaxial tubes of radii al and at (a2 > at)
of length l. At one end, the tubes are connected by a conducting plate. Ca culate the
inductance of the branch of the circuit.

8.21. Two plane closed circular wire loops of radii al and a2 lie in the same plane separated
by a distance d from each other. Assuming that d is sufficiently large so that dipole ap­
proximation can be used, find the mutual inductance of the loofs.

8.22. The magnetic induction B6 of the field between the plane paralle poles of an electro­
magnet can be considered uniform and constant. A plate of area S, made of a paramag­
netic having paramagnetic susceptibility Xp, is inserted into the space beween the poles.
The plate surfaces are parallel to the surfaces of the poles of the electromagnet. Find
the force acting on the plate.

8.23. Find the radial force acting on a toroid whose parameters are given in Problem 8.13,
if current I flows in it.

8.24. Two identical loops with inductance L = L 11 = L 22 are arranged so that their mutual
inductance L(l~) = O. Superconducting currents 10 pass through the loops. Then their
mutual arrangement is altered so that their mutual inductance becomes L 12 • Find the
currents in the altered state.

8.25. An electric circuit has four [unctions. Three of them coincide with the vertices of an
equilateral triangle, while the fourth junction coincides with its centre (the point of
intersection of medians and bisectors). The capacitances of the branches between the
vertices of the triangle are equal to C (R = 0, L = 0). The inductances connected be­
tween the vertices of the triangle and its centre are equal to L (R = 0, C = 0). Find
the resonance frequency of the circuit.
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Electromagnetic Waves

,,'"'

A .varying.magnetic field generates a varying electric field which, .in
turn, generates a varying magnetic field, and so on. As a resuH•

.coup~ed electric and magnetic fields. are created, which forman
electT'omagnetic wave. It is 66detached from" charges and currents
that have ge_nerated this wave. The mode of existence of an elec­
tro'magnetic wave excludes its immobility in space and the constancy
of, its field intensities in time.

Sec. 57. Displacement Current,

.The physical content of displacement current is con­
sidered. The role of displacement current in Maxwell's
equations is analyzed.

The nature of displacement current. There is no direct current in a circuit con­
taining a capacitor, while an alternating current can flow in it. The magnitude
of a quasistationary conduction current is the same for all series-connected
elements of the circuit. The conduction current due to the motion of electrons
cannot pass through a capacitor since its plates are separated by a dielectric.
Consequently, we have to conclude that in a capacitor a certain process closes
the conduction current, i.e. ensures in a certain sense the charge exchange be­
tween the capacitor plates without transporting a charge between them. The
current associated with this process is called displacement current.

Let us consider an a.c. circuit including a parallel-plate capacitor (Fig. 245).
An electric field of strength E = ale exists between the capacitor plates, where
C1 is the charge density on the plates and e is the permittivity of the medium
between the plates. The electric displacement between the capacitor plates is
given by D = a = QIS, where Q is the charge on each plate and S is the sur­
face area of the plate. The current in the circuit is I = 8Q18t. Hence it follows
that

(57.1)

i.e. a change in the electric displacement between the capacitor plates is the
process that closes the conduction current in the circuit. The quantity I in for­
mula (57.1) has a subscript "d" (displacement) in order to emphasize that this
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(57.3)

t aD.
3t

quantity is not the conduction current. between
the plates although I = I d. The density of the
displacement current in the space between the r
plates is given by j d = I diS = aDIat. Considering b
that the direction of j d at each point between the
plates of a parallel-plate capacitor coincides with
the direction of aDlat, we can write the following
differential equation instead of (57.1):

I I
Fig. 245. Displacement current

id=8D/8t.. (57.2)

Taking into account the local' nature of this relation, it should be expected
that it is independent of the nonlocal model (parallel-plate capacitor) for which
it was obtained. This is actually so: Formula (51.2)' defines the volume density
of the displacement current i d. The existence of displacement current was theo­
retically postulated in 1864 by Maxwell and subsequently confirmed in experi­
ments carried out by other scientists.
Why do we call the rate of variation of displacement the displacement current
density? The mathematical equality of the quantity saDlat, which character­
izes the process occurring between the capacitor plates, to the conduction
current outside the capacitor plates, i.e. the equality of two quantities refer­
ring to different regions of space and having different physical nature, generally
does not express any physical law. Consequently, we can call S aDlat a "current"
only formally. In order to attach to this term a physical meaning, it is necessary
to prove that S aDlat possesses properties typical of current although it is not
associated with the motion of electric charge as the conduction current. The
main property of the conduction current is its ability to generate a magnetic
field. Consequently, the decisive question is whether or not the displacement current
generates a magnetic field in the same way as the conduction current does or, to be
more precise, whether the quantity (57.2) produces the same magnetic field as the
volume density of conduction current equal to this quantity does. Maxwell gave an
affirmative answer to this question.

The experimental verification of the correctness of this answer consists in
the following. In accordance with Ampere's circuital law, the circulation of
vector B around a contour embracing the current is equal to floI. The circula­
tion can be measured with the help of a Rogovskii belt. Moving it along the con­
tour, we note that the circulation remains unchanged even when the Rogovskii
belt embraces a capacitor. This just means that the displacement current gener­
ates in the capacitor the same magnetic field as that created by the correspond­
ing conduction current. However, the most striking confirmation of generation
of a magnetic field by the displacement current is the existence of electromagnet­
ic waves. If the displacement current did not create a magnetic field, electro­
magnetic waves would not exist.
Maxwell's equations including displacement current. The generation of a mag­
netic field by a conduction current is described by the equation

curl H = j.
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(57.7)

+

Considering the generation of a field by the displacement current, it is necessary
to generalize this equation in the following form:

curl H = i + id. (57.4)

Then, taking into account (57.2), we finally obtain the following equation:

I curl H = j + aD/at, I (57.5)

which is one of Maxwell's equations.
Relativistic nature of displacement current. Upon a coordinate transformation
of fields, electric and magnetic fields generate each other (see Sec. 11). If there
is a nonuniform magnetic field in a certain system of coordinates, this field will
vary with time in another system of coordinates, and an electric field will
appear simultaneously. This is the evidence of the fact that a varying electric
field generates a magnetic field. This does not imply, however, that the gener­
ation of the magnetic field by a varying electric field is a new fundamental
phenomenon in electricity and magnetism. This situation is similar to that
considered in detail in connection with the electromagnetic induction in Sees. 45
and 46. The generation of a magnetic field by a varying electric field is a fundamen­
tal phenomenon in nature.

The formal equality of the displacement current In a capacitor and the condudion current
in the wires conneded to its plates does not express any physical law. A new physical
law states that the displacement current creates the same magnetic field as does the
conduction current corresponding to It.

Example 57.1. There are two layers of a weakly conducting material, having conductivities '\'1
and 1'2 and permittiuittes £1 and £2' between the plates of a parallel-plate capacitor. The thickness
of the layers are at and a2 respectively (Fig. 246). The area of capacitor plates is S. Investigate
the process of establishment of current in the circuit if at the moment t = 0 a constant potential
difference Uo was applied across the capacitor plates. Analyze the processes originating after inter­
ruption of the circuit and upon shunting the source of extraneous e.m.],«.

.At the moment when the voltage is applied, the surface charge cannot appear immedi­
ately at the boundary between the layers. Therefore, at the initial instant of time the system
under consideration behaves as if the conductivity of the substance between the plates were
equal to zero, i.e, as an ideal capacitor. Hence, the displacement appearing in the space be­
tween the plates is

D = £tEt = £2E2' (57.6)

where Et and E2 are the electron field strengths in the first and second layers respectively.
This formula takes into account the continuity of D. Since the potential difference between

the plates is U0' we have
(2)

.~. E.dl=a1E1+a2E2=UO,

(1)

where the path integral from the first plate to the
second is taken along the normal to the plates. It follows
from (57.6) and (57.7) that

D = £lE2 Uo/(E2al + £ta2). (57.8)

At the initial instant, the entire current is a displace­
Fig. 246. Two-layered parallel- ment current. It is equal to infinity since the potential
plate capacitor with a leak difference is applied instantaneously, and D instanta..
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neously grows from zero to a value determined from formula (57.8). The surface charge den­
sity on the plates also increases instantaneously from 0 to (11 = -(12 = D.

The instantaneous variations of electric displacement from zero to finite values are due
to a very high rate of generation of polarization of the substance under the action of an external
field. Polarization may appear during a time typical of intramolecular processes.

At the instants of time following the application of the voltage, the conduction current
starts to increase, and, after a sufficiently long period of time (t -+ (0), the equilibrium value
of the current density is established:

j = ylEI = Y2E2 = YIY2U0/(Y2al + Yta2), (57.9)

where relation (57.7) is taken into account. Since the conductivity is nonuniform, the boun­
dary between the layers is charged with the surface density

(1 = D 2n - Din = 82E 2 - 8l EI = (82"11 - 81"12) UO/(Y2al + Yla2), (57.10)

where we used the boundary condition (17.36), since the electric field strength does not de­
pend on time.

Under transient conditions, before stationary values of (57.9) and (57.10) have been at­
tained, the conduction currents in the first and second layers are different, and the charge den­
sity at the interface between the layers increases with time. Under such conditions, it is the
sum of volume densities of conduction and displacement currents (called the total volume
density of current) that has the same value in both layers:

8 •
It -"lEI+at (81E1) = Y2 E2+at (E2 E2) • (57.it)

Eliminating E 2 from (57.11), we obtain, using (57.7), the following equation for E 1 :

dEl +~ _ Y2UO (57.12)
dt 't' - 82a l +8Ia2 t

where
(57.13)

(57.14)

(57.17)

(57.16)

(57.15)

't' = (el a2 + 82a1)/(1'la2 + 1'2at).

A similar equation can be obtained for E 2 •

The solution of these equations under initial condition (57.8) has the form

E1 = Y2
U0 (1 _ e- til') + 82

U0 e- tIl' ,
1'2a1 + 1'1at 82a1+81a2 j

E VIUO (1_e-tll')+ E1
UO -tIl'

2= 'Y2aI +1'Ia2 82a1+81a2 9

A9 t -+ 00 these solutions assume the form (57.9) as expected.
The surface charge density between the layers varies according to the law

a = 82 Ea"' 81 EJ 821'1- e1Ya (1-e-t/~)Uo·
'V2a1+1'la2

For t = 0, the surface charge density (J = 0 as well. As t -+ 00, it tends to (57.10) as it
should be expected.

The total current density can be obtained from (57.11) by taking into account Eqs. (57.14)
and (57.15):

"a a [1'11'2 +( 81 )It='VI E I + at (Bt Et ) = 1'2E2 +at(B2E2) = Y2at+Yta2 1'1-~

X (82 1'2)" -t/'t+ 81Ba 6 (t)] U
E2al + eta! Y2aJ +1'IQ2 e B2al+81a2' 0'

where 6 (t) is the delta function. It appears due to the fact that at t = 0 the displacement in­
stantaneously grows from 0 to (57.8). In other words, while calculating the time derivative



8S0

in (57.17), we have
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(57.18)

(57.19)

(57.22)

(57.23)

while for calculating aEI/at in (57.18), we use expression (57.14) which is valid for all t > O.
The above analysis shows that the voltage 'distribution in various branches of the circuit

at the moment when the external voltage is applied may considerably differ from the distri­
bution under steady-state conditions. This circumstance should be taken into account while
calculating the circuits,

When the circuit is disconnected, it = 0, and hence Eqs. (57.11) assume the form

E + 0 (8I E l ) -,0 E + {J (82 E2) -0
'\'1. 1 at -, '\'2 2 at~ -.

, The fields are independent of each other. Under steady-state conditions, 'V~ obtain, in
accordance with (57.14) and (57.15), '

E10 = '\'2 UO/(Y2a +' 'Y1a2). ,E20 = y1UO/ ('\'2al + 'Yla2). (57.20)

The solution of Eq, (57.19) under initial conditions (57.20) has the form

E '1'2V 0 -i/'tl E 'VIVO - tl't2 57 21)
1 = '\'2al +'\'la2 e , 2 '\'2 a1 +'\'la2 e, ( .

where 'tl = 81/'\'1' 't2 = 82./'\'2. '.-
The potential difference across disconnected terminals varies in accordance with the law

Uo 1U - aE +a E - [""2ale-i/T,1+""la2e- 1't2 ] .
- 1 2 2- '\'2 0'1+ '\'la2 r r

The surface charge density at the interface between the layers in the capacitor is given by

V
a=E2E2- £l E1= 0 [8 '\' e- i / 't l _ £ '" e-II't2].

'\'2a1+'\'la2 2 I 1 r2

Upon shunting the source of extraneous e.rn.I,s, Vo = 0 and Eqs, (57.7) and (57.12) be­
come

a l E I + a2E 2= O,

dEl +~==O
dt l' '

(57.24)

(57.25)

where l' is defined by (57.13). The initial condition for t = 0 can be found from (57.10) com­
bined with (57.24):

8~tVl - 81 '\'2 V
'\'2 al + 'VI a2 o·

(57.26)

(57.29)

The solution of Eq. (57.25) for the initial value of E10 from (57.26) is

(£2'\'1 - £1 'V2) a2U0 - i/'t
Et=-E2a2/al = - (£2a1+£la2) ('\'2al+'\'la2) e. (57.27)

The current in the circuit and the surface charge density between the layers are given by

T=[( 1'1£2-'\'2
81 )2 a1a2UO e-t/'t £]£2

VO a(t)] S, (57.28)
£l a2+£2al (Y2at + '\'ta2) . 8 Ia2+ £2at

a = 821'1 - 81'\'2 U - tIT,
'V2al + '\'la2 oe .
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(58.1a)

The term in (57.28) containing the .delta function appears due to the fact that at the mo­
ment of shunting the source of extraneous e.m.f.s, the displacement vector D abruptly chan­
ges from the value corresponding to formula (57.9) for steady-state conditions to the value
corresponding to the initial conditions at t = 0, given by formnla (57.26).

Sec. 58. Maxwell's Equations

The physical meaning, conditions of applicability,
completeness and compatibility of Maxwell's equa­
tions are considered.

Maxwell's equations. Equations (57.5), (46.5), (36.4) and (17.30), obtained
in previous sections as a result of generalization of experimental facts, form the
system of Maxwell's equations:

curl H = i + aD/at, (I) div B = 0, (III)

curl E = - aB/at, (II) div D = p, (IV)

These equations, which are called the field equations, are applicable for
describing all macroscopic electromagnetic phenomena. While considering a
specific situation, we should take into account the electromagnetic properties
of material media. In many cases, this is achieved through relations (17.31),
(38.24) and (16.5)

D = eE, B = flH, i = yE (V), (58.1b)

which are usually called constitutive relations. There are, however, many phe­
nomena (for example, nonlinear phenomena) for which the constitutive relations
have a different form and the derivation of these equations is an independent
scientific problem.
Physical meaning of Maxwell's equations. Equation (I) expresses the law accord­
ing to which a magnetic field is generated by conduction currents and displace­
ment currents, which are two possible sources of a magnetic field.

Equation (II) expresses the law of electromagnetic induction and points to
a varying magnetic field as one of the possible sources of an electric field. The
other source of an electric field is associated with electric charges. The field gen­
erated by the charges is described by equation (IV) which expresses Coulomb's
law. The physical meaning of equation (III) was considered in detail in connec­
tion with (36.4).

The constitutive equations (V) express the relations between field vectors and
currents, which take into account the properties of a material medium. Dielec­
tric properties, which are described phenomenologically by polarization, are
taken into consideration in permittivity E. Magnetic properties which are phe­
nomenologically described by magnetization are taken into account in perme­
ability fl. The conducting properties of the medium are included in conductivity 'V.
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Field equations are linear equations based on the principle of superposition,
which is an independent experimental fact.
Conditions of applicability of Maxwell's equations. The substantiation of
Eqs. (58.1) shows that they are applicable under the following conditions:

(1) material bodies are at rest relative to the electromagnetic field;
(2) material constants e, fl and "( may depend on coordinates, but they should

be independent of time and field vectors;
(3) there are no permanent magnets and ferromagnetic bodies in the field.
The motion of the medium can be taken into consideration in the simplest

manner as follows. The presence of the medium in electric and magnetic phenom­
ena is ultimately reduced to the presence of charges in the medium and their
motion. Consequently, we may proceed from Maxwell's equations for vacuum
(e = eo, fl = flo) and take into account the medium in the same way as it was
done in Sees, 17 and 38 but considering the motion of charges as well. As a
result, the form of field equations (58.1a) remains unchanged, and the motion of
the medium is accounted for by modifying the constitutive relations (58.1b) which
become dependent on the velocity of the medium and are considerably compli­
cated. Moreover, they are no longer the relations between two quantities (say
D and E) but become "linked". For example, the conduction current density
now depends on the magnetic induction in addition to the electric field strength,
and so on.

The field outside permanent magnets and ferromagnetics can be described
with the help of Maxwell's equations if we assume that their magnetization is
known. However, it is impossible to solve the problem by using Maxwell's
equations in the presence of ferromagnetics in space if, for example, currents
are given. Maxwell's equations are inapplicable in this case.
Completeness and compatibility of Maxwell's equations. Using the constitutive
equations (58.1b), we can exclude the quantities D, H, and j from the field equa­
tions (58.1a), as a result of which they are transformed into equations in terms of
vectors E and B, i.e. in six unknown independent components of these quantities.
On the other hand, the number of scalar equations in (58.1a) is equal to eight.
It turns out that we have eight equations in six unknown quantities, i.e. the
number of equations exceeds the number of unknowns, which is inadmissible
since the system of equations seems to be overdetermined.

Actually, however, the system is not overdetermined and no difficulties of
such kind are encountered. This is due to the fact that equations (I), (IV) and
(II) and (III) have the same differential results and are not independent, al­
though we cannot say that some of them are obtained from other equations.

In order to prove the identity of differential results of equations (II) and
(III), let us apply to both sides of Eq. (II) the divergence operation and differen­
tiate both sides of Eq. (III) with respect to time. In both cases we obtain the same
equation a div Blot = O.

Let us prove that, taking into account the law of charge conservation

8p +d· · 0at IVJ=, (58.2)
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we can treat Eq. (IV) as the differential result of Eq. (I). For this purpose, we
apply the divergence operation to both sides of Eq. (I):

div i + a div Dlat = 0, (58.3)

where div curl H = O. Comparing (58.3) and (58.2), we find that the following
equation must hold:

div D = p, (58.4)

which coincides with Eq. (IV). Thus, we have proved that Eq. (IV) is the differ­
ential result of Eq. (I), taking into account the law of charge conservation.

The existence of two differential relations between Eqs. (I-IV) makes this
system compatible. A more detailed analysis shows that the system of equations
is complete, and its solution is unique for the given boundary and initial con­
ditions. The proof of the uniqueness of the solution generally boils down to the
following. If there are two different solutions, their difference will also be a
solution on account of linearity of Maxwell's equations but only for zero charges
and currents and zero initial and boundary conditions. Using the expression for
the electromagnetic field energy and the law of energy conservation, we con­
clude that the difference of the solutions is identically equal to zero, which
means that the solutions are identical. This proves the uniqueness of the solu­
tion of Maxwell's equations.

Sec. 59. The Law of Conservation of Electromagnetic
Energy. E'nergy Flux

The mathematical formulation of the law of conserva­
tion of energy is given and the conceptof electromagnetic
energy flux is analyzed.

Formulation of the law of conservation of energy. The electric and magnetic
field energy is defined by formulas (18.16) and (47.26). The forces responsible
for the 'York in electric and magnetic fields 'were investigated in Sees. 19 and
39. The work of alternating current was defined in Sec. 49, and the heating effect
of current was studied in Sec. 27. The law of con- s
servation of energy requires that all these processes
be represented in the form of the law of conserva­
tion and mutual transformation of different forms
of energy. Since the sources of electromagnetic
energy are separated in space from the energy con­
sumers, the concept of energy transport, character­
ized by the energy flux, is introduced.

Let us consider a certain closed volume V which
contains an electromagnetic field and currents Pig. 247. To the formulation of
(Fig. 247). Joule's heat liberated by the current in the law of conservation of energy
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this volume is given by
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p = 1i·E dV. (59.1)
v

In order to simplify the calculations, it is assumed that there are no other
energy transformations in this volume. Substituting into this equation the ex­
pressions for j from Eq. (58.1a), we obtain

p = JE·curl H dV- J E· :~ dV. (59.2)
v v

Using formula (A.15), we have

div (E X H) = curl E·H"- E·curl H (59.3)
and hence

p=- \ aB .HdV- IE. aD dV- \ div(ExH)dV, (59.4)J at J iJt .,
v v v

where curl E = -aBlate Considering that H. :~ = ~ a (~;B) and E~~D =

: a (:t· D
) and transforming the last integral in (59.4) into an integral

over the surface (J bounding the volume V in accordance with the Gauss theorem
we finally obtain

p=- :t [{ J (E.D+B.H)dVJ- JEXHe da (59.5)
v a

Here we denoted the surface by (J in order to use the letter S for designating
the flux density of electromagnetic energy.
Energy flux. The quantity

w= ~ .\ (E.D+B.H)dV (59.6)
v

characterizes the electromagnetic energy contained in volume V. The quantity

(59.7)

i.s the density of the energy flux through the surface bounding the volume V,
called Poynting's vector. This quantity was obtained by J.H. Poynting (1852­
1914) in 1884. However, ten years earlier, i.e. in 1874, N.A. Umov (1846-1915)
carried out a general analysis of the energy flow in bodies, which was character­
ized by the corresponding energy flux. (Therefore, vector (59.7) is also called the
Umov-Poynting vector.) It is more convenient to write Eq. (59.4) in the form

oW J-= -P- S·doat '
a

(59.8)
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i.e. a change in the electromagnetic field energy in a volume occurs at the expense
of the work of conduction currents in this volume and the energy flux through the
surface bounding the volume. If the electric field energy remains unchanged
(oW/ot = 0), then (see (59.8))

p= - JSvdo.
(J

(59.9)

Consequently, all the work performed in a closed volume is at the expense
fJ! the electromagnetic energy flux through the surface bounding the volume.

Equatiun (59.8) expresses the law of conservation of elecromagnetic energy.
It should be emphasized that Eq. (59.8) is just an expression for the energy

conservation law and not its proof.

The law of conservation of energy 8S a universal law of nature Is presumed to be known
while developing the theory of eledricity and magnetism. Proceeding from this law 85 a
universal Jaw, we can find the mathematical expression for the volume density of energy
of electric and magnetic fields and the energy density of these fields as well as the flux
density of eledromagnetic energy. It is also possible to establish the relation between
these quantities, which expresses the idea of transformation of electromagnetic energy.
The physical quantity P in formula t59.8) takes into account the possibility of intercon­
version of diUerent forms of energy.

Sec. 60. Transmission of Electromagnetic Energy along
Transmission Lines

The physical aspects 0/ energy transmission along the
transmission lines are discussed and the main character­
istics o/transmission lines are given.

Compensation of energy losses due to liberation of Joule's heat. Let us consider
a portion of a circular conductor of radius r, carrying a direct current of volume
density j (Fig. 248). In accordance with the differential form of Ohm's law,
the electric field parallel to the conductor axis is given by

E = j/y. (60.1)

On account of the boundary condition of continuity of tangential components
of electric field, the same field exists outside the conductor near its surface.

Let us use formula (59.9) for calculating the flux of electromagnetic energy
through a closed surface of a cylinder whose lateral surface coincides with the
surface of the conductor of length l and the bases are the circular cross sections
of the conductor.

The magnetic field strength on the surface of the conductor is directed along
a tangent to the surface and lies in the plane perpendicular to the axis of the
25-0290
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conductor (and to the vector i) (see Fig. 248). I ts value is given by

H = jnr2/ (21£r) = j/(2r). (60.2).

Thus, the Poynting vector (59.7) is directed along the radius to the conductor­
axis and its magnitude is

S = EH = j2r /(2"(). (60.3)-

This means that the electromagnetic energy flows into the conductor from the
surrounding medium through the lateral surface. There is no energy flow through

E

Fig. 248. Compensation of ener­
gy losses on liberation of Joule's
heat

Fig. 249. Transmission of elec­
tromagnetic energy along a
current-carrying cable

the cylinder bases. The amount of energy flowing per second into a portion of
length 1 of the conductor is given by

p = S. 2nrl = (j2/y) nr2l. (60.4)

According to Joule's law, the amount of heat liberated over the length 1 of"
the conductor per second is

P' = (j2/y) nr2l. (60.5).

A comparison of formulas (60.4) and (60.5) shows that the entire energy li­
berated in a conductor in the form of heat upon the passage of electric current.
is supplied from the surrounding medium through the lateral surface of the­
conductor. Consequently, the energy supplied by electric current flows in the"
space surrounding the conductor. The wires play the role of guides along which the
electromagnetic energy is transmitted. The flux density of electromagnetic energy
at each point of space is determined by the Poynting vector.
Energy transmission along 8 cable. A current passes in the core of a cable in one
direction and in its sheath in the opposite direction (Fig. 249). The space be-­
tween the core and the sheath is filled with a dielectric. In order to simplify
calculations, we assume that the resistance of the cable is negligibly small
and can be neglected, i.e. we can assume that the energy is transmitted without
losses. Then the potential is constant along the core and the sheath, and the
potential drop between them takes place in the energy consumer (load) and
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(60.8)

(60.9)

(60.11)

(60.12)

in the source (extraneous e.m.f.), Suppose that the potential drop across a load
is U. This means that the potential difference between the core and the sheath
is equal to U. Consequently, there exists an electric field between them. Since
the problem is axially symmetric and the current flows along the cable without
resistance, this field is directed along the radius, and tangential component Ea.
is absent. The Z-axis of the cylindrical coordinate system coincides with the
cable axis. The magnetic field lines are concentric circles with the centre on the
cable axis. The field strength has a nonzero value only in the space between
the core and the sheath and is equal to zero outside the cable. The radial com­
ponent of the Poynting vector is equal to zero. The Maxwell equation div D =
p for the space between the core and the sheath has the following form:

div E = -!. t. (rEr ) = 0, (60.6)r r

where we use the representation of the divergence operation in cylindrical
coordinates and take into account the fact that the axial and tangential com­
ponents of E are missing. It follows from this equation that

E; = ao/r, (60.7)

where ao is the integration constant determined from the conditions of the prob­
lem. The potential difference between the core and the sheath is given by

U = rs, dr = ao In (r2/r.).

'I

which allows us to determine the magnitude of the constant ao = U/ln (r2/r1) .

Using this value in formula (60.7), we obtain

E- U -!.
r - In (r'Jjrl) r "

The magnetic field strength in the cable is

Ha. = I/(2nr), (60.10)

in accordance with Ampere's circuital law and in view of the axial symmetry
of the problem. Combining (60.9) and (60.10), we obtain

S =E H =_1_ UI 1
z r a. 2n In (r2/rl) T2.

This quantity is the rate of flow of electromagnetic energy parallel to the
cable axis in the space between the core and the sheath. There is no energy flow
outside the cable or in the central core and sheath since there is no electric field
in them at all in the assumption of zero resistance. The electromagnetic power
flowing in 1 s through the cross-sectional area of the cable is given by

2n rl

p = ) s,d(J= ~ ) de I ~ ·In(~~riJ = UI.
~ 0 ~

25*
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The power developed when the current I passes through a load at a potential
difference U is

PI = IU. (60.13)

A comparison of formulas (60.12) and (60.13) shows that the entire energy
used by a consumer flows along the cable in the space between the coreand the sheath
in the form of electromagnetic energy.

The situation is basically the same if an alternating current of a moderate
frequency passes through a cable. When the current in the cable reverses its di­
rection, the components E rand H a. of the field vectors also reverse the direction,
the direction of the Poynting vector remaining the same. Therefore, although

Z ~x ~x
I-Z­2 I 2

Fig. 250. Equivalent diagram of an a.c, transmission line

the direction of current is reversed, the direction of transmission of electro­
magnetic energy remains the same: power is always transmitted from the source
to the consumer.

In other types of transmission lines, the mode of energy transmission does
not change in principle and only the configuration of the fields and the paths
along which the energy is transmitted become more complicated.
Transmlsslon'[Ilne for an alternating current. The methods presented in Sec. 8
can be used to describe the current in transmission lines for not very high fre­
quencies and sufficiently short distances, when quasi-stationary conditions
can be assumed to be satisfied. Otherwise, the situation becomes more com­
plicated, which can be seen clearly fromthe fact that the current in different
regions of the line is different at the same' instant of time. Any portion of a
conductor has a certain inductance and capacitance, which makes the entire
transmission line a circuit with continuously distributed resistances, capaci­
tances and inductances.
Equations for current and voltage. First of all, we must find the law according
to which the current and voltage between the conductors vary along the line.
The schematic diagram of distribution of inductance, capacitance and resistance
is shown in Fig. 250. We denote by L, C, and R the inductance, capacitance,
and resistance per metre of the transmission line. Impedances Zl and Z2 are
also referred to 1 m length. The branch lix of the line has a series-connected im-



Sec. 60. Transmission of Eledromagnetic Energy

pedance corresponding to the complex impedance

Zl~X = (R1 + iroL) ~x,

389

(60.14)

and a parallel-connected impedance Z2 corresponding to the complex con­
ductivity

_t_~x= (_1_+ iffiC) ~x. (60.15)
Z2 R'}.

Suppose that voltage U is applied to the beginning of the branch ~x of the
line, the current being equal to I. At the end of the branch, these quantities
are equal to U + fiU and I + iiI respectively. Here and below, the losses
through the insulation are neglected.

Let us apply Kirchhoff's second law to the entire external circuit, taking the
counterclockwise direction of circumvention as the positive direction:

Ax Ax
-Zt -2- (1+!lI) -Zt -2- 1 = U +tJ.V -V. (60.16)

Dividing this equation by lix, we obtain

-Zl IiI/2 - Z11 = ~U/~x. (60.17)

If fix -+ 0, the first term on the left-hand side of (60.17) tends to zero (~1 -+
-+ 0), and we get

dU
dz = - Zt1. (60.18)

Similarly, Kirchhoff's law applied to the subcircuit containing the impedance
Z2/~X gives

(60.19)

As ~x -+ 0, we obtain

~- __i_V (60.20)
dx - Z2 •

Differentiating both sides of (60.18) with respect to x and expressing dI/dx
with the help of (60.20), we obtain the following equation for U:

d
2U =-!!. V (60.2t)·

dx 2 Z2 •

Similarly, differentiating (60.20) with respect to x and using Eq. (60.18),
we arrive at the following equation for current:

d~I := ~ I (60.22)
dz 2.... Z2 •

Equations (60.21) and (60.22) are called the transmission line equations.
Characteristic impedance and propagation constant. The general solution of
the transmission line equations has the form (say, for U)

U = Ae-cu + sv-, (60.23)
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Substituting this equation into (60.21), we obtain the following expression
for ex which is called the propagation constant:

ex = VZI/Z2. (60.24)

The solution of Eq. (60.22) also has a similar form:

I = Ale-ax + Bleax• (60.25)

Substituting the solutions of (60.23) and (60.25) into (60.18) and (60.20), we
can find the relation between the constants A, B, Al and B1:

Al = AIZh BI = -BIZt , (60.26)
where

z, = VZlZ2 (60.27)

is the characteristic impedance of the line. In order to clarify the meaning of
this quantity, we assume that a line of length l terminates at a load whose
impedance is equal to the characteristic impedance (Fig. 250). Using Eqs.
(60.23)-(60.27) for the output voltage of the line, i.e. across the load Zh we can
write

(60.28)
or

Ae-al +Beal = z, (~e-al._..!!.- eal ) • (60.29)
Zl Zl

Hence it follows that B = 0, and A = Uln is the input voltage of the line
for x = O. Thus, the voltage and current in the line are defined by the following
expressions:

U = Ulne-ax, I = Ulne-axIZI. (60.30)

Consequently, the input impedance of the line is equal to the characteristic
impedance:

Zln = u.Jt.; = z, (60.31)

This means that if a line terminates in a load with the characteristic impedance,
its input impedance is equal to the characteristic impedance regardless of the line
length, i.e. in this case the current is transmitted along the line at a constant ratio
between the voltage and current.
Characteristic resistance. In most practical cases, ohmic resistances of the
elements of a line are much smaller than the corresponding inductive and capac­
itive reactances (RI ~ roL, 11R 2 ~ roC) and can therefore be neglected. Under
this condition, the characteristic impedance

ZI = VZ1Z2 = V 1i,~~~~C = V ~ (60.32)

is a real quantity called the characteristic resistance.
The characteristic resistance depends on the shape and size of conductors,

the distance between them and other factors which determine the capacitance
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and inductance of a branch of the line. For example, the characteristic resistance
of parallel cylindrical conductors of radius a, the distance between whose axes
is equal to D, is given by

Zl = 276 log (D/a). (60.33)

It is assumed that the conductors are in a medium whose relative permittivity
is close to unity (vacuum, air, and so on).
Velocity of propagation. We have considered the voltage and current distribu­
tion along a transmission line at a certain instant of time. If the input current
and voltage vary periodically at a frequency eo, they will vary at the same fre­
quency in all branches of the line. Under the conditions when the characteristic
impedance (60.32) is a real quantity, the propagation constant ex [see (60.24)]
is a purely imaginary quantity:

ex = ieo VLC. (60.34)

(60.35)

Therefore, assuming that the time variation of quantities follows the law
exp (irot), we can write on the basis of (60.30)

U (x, t) = Uo exp [i (rot - eo VLC x)],

I (z, t) = (Uo!vLIC) exp [i (rot - co V LC x)l.

This formula describes a wave having the frequency ro and propagating along
the X-axis at a velocity

v = 1!VLC. (60.36)

It should be recalled that Land C in this formula are the inductance and
capacitance per metre of the transmission line. The capacitances and induc­
tances per metre length of two thin cylindrical wires of radius a separated by
a distance D in a vacuum are given by

C = B o/[2 In (Dla)l, L = 2~0 In (D/a)

and hence the velocity of propagation of the wave is

v = 1/VLC = 1/VBo~0 = c.

(60.37)

(60.38)

Reflection. If the resistance of the load is equal to the characteristic resistance,
the entire power transmitted by the line is absorbed by the load. The load and
the transmission line are said to be matched in this case. If there is no such
matching, a part of energy is reflected from the load and transmitted along the line
in a direction opposite to the initial energy flow.

Let us consider by way of an example a transmission line short-circuited
at the end, when U1 = O. In this case, Eqs. (60.23) and (60.25) assume the form

O=Ae-HH+Beif,l, (60.39)

II = Ae-if,l/p-BeifU/p, (60.40)
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where the notation p = VLIC and ~ = ro VLC are introduced in order to sim­
plify the formulas. Solving these equations for A and B, we obtain

A = 11peffU/2, B = -/1pe- H3l/2. (60.41)

Consequently, expressions (60.23) and (60.25) for voltage and current in the
tr ansmission line are wri tten as follows:

U =/
0

~ [e- i f3(x - l ) _ e il3(x - l) j ,

1= /2 [e- i 13(x- I) + e i f\(x - l)J.

(60.42)

(60.43)

Since the time dependence of the quantities is characterized by the factor
exp (irot), we may conclude that the first terms on the right-hand sides of these
formulas describe a wave propagating in the positive direction of the X-axis,
while the second terms correspond to the negative direction (i.e. describe the
wave reflected at the end of the line). Thus, we can draw the conclusion that
the necessity of matching is dictated not only by the fact that in the absence
of matching it is impossible to transmit power to the load completely. If signals
are transmitted in the form of pulses, consecutive reflections from the load and
then from the input distort the signal to such an extent that it becomes difficult
to deal with it.

The energy transmitted with the help of electric current flows In the space surrounding
the conductors. The conductors play the role of guides along which electromagnetic energy
flows. Joule's heat is liberated In a conductor at the expense of electromagnetic energy
entering the conductor through its surface from the surrounding space.

Give the definition of the charaderistic impedance and the propagation constant of a
transmission line.
Describe the physical processes leading to the reflection of energy from the load. Under
which condition is the reflection absent and the entire energy transmitted through the line
absorbed by the loadl

Sec. 61. Electromagnetic Wave Radiation

The solution of the problem on radiation of a linear
oscillator is given. The obtained equation is general­
ized for the case of an arbitrarily accelerated non­
relativistic electron. Radiation reaction is considered-

Equation for vector potential. The magnetic induction and electric field strength
of varying fields are expressed in terms of the vector and scalar potentials
through formulas (46.8) and (46.12). For this purpose, we must have appropriate
equations.
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We proceed from the first of Maxwells equations (58.1a) which can be con­
venicutly written in the form

curl B = JLj + JLe ~~ , (61.1)

where for the sake of simplicity it is assumed that f.1 and 8 are independent of
coordinates. Substituting (46.8) and (46.12) into this equation, we obtain

curl curl A= JLj + fI8 :t (-grad <p- ~~ ) • (61.2)1

Considering that curl curl A = grad div A - V2A, we transform (61.2) as
follows:

V2A- JLe ~:~ = - JLj +grad ( div A+ JLe :i). (61.3)

Using the ambiguity of potentials defined to within the gauge transformation
(46.13), we can impose a certain condition on them. In order to simplify Eq,
(61.3) as much as possible, this condition is chosen in the form

div A+ JLe ~~ = 0, (61.4}

which is called the Lorentz equation. As a result [see 61.3)], we obtain
iJ2A

\72A-elL8t2= -~j. (61.5}l

This relation is called the D' Alembert equation.
The choice of gauge function 'X. When the Lorentz equation (61.4) is imposed
on potentials, the function 'X with the help of which gauge transformation
(46.13) of potentials is realized cannot be chosen arbitrarily: it is necessary
that the Lorentz equation (61.4) should remain unchanged under gauge trans­
formations. We have

a ' a
div A' + fIe : = div (A+grad X) + fIB 'at (<p- aX/at)

•
- di A LiJq> (2 iJ2X~)
- IV, +~e8t+ \lX-lL8 iJt2 •

Thus, the Lorentz equation is invariant only under[gauge transformations with.
the function X satisfying the following equation:

jV2X- 1t8 iJ2X =0. (61.6)
. ~J}t2

An equation of this type is called the wave equation, or the homogeneous
D' Alembert's equation.
Equation for scalar potential. Substituting (46.12) into Maxwell's equation.
(58.1a, IV), we obtain

div ( - grad Ip- ~~ ) = ~ . (61.7,
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(61.9)

(61.8)

(61.10)

Eliminating div A from this equation with the
help of (61.4), we finally obtain the following
equation for the scalar potential:

82cp p
V2cp - ef.1at2= -8-

1+61 X Thus, we have obtained the same equation for
the Cartesian projections of vector potential (61.5)

'Fig. 251. Time variation of the and for the scalar potential:
-solution of one-dimensional

. 1 a2~wave equation 02<I>- = - t (r t)
v v2 Bt2 "

where we can substitute Ax, AI" A z , cp for <I> and f.1jx, f.1jy, f.1jz, pie for t. re­
-spectively. Let us elucidate the meaning of the expression Ef.1 = 11v2 •

Solution of the wave equation, Let us first consider solutions of Eq. (61.9)
ior f = 0, i.e. the solution of the corresponding homogeneous equation. We
take the one-dimensional case <1> = <I> (x). Equation (61.9) has the form

a2~ f a2<I>
ax2 -VSat2=O.

It can be verified directly that any function <I> of the argument t - xlv or
.t + xlu is a solution of Eq. (61.10). Let us prove this, for example, for the func­
tion <1> (t - xlv):

a~ _ rr.' a2<I> m"
at -\.1-1, 8t 2 "-\.1-1 ,

a~ __ !<I>'
ax - v '

82<I> _ -.!.- <1>"
iJx2 - v2 ,

(61.11)

'where <I>, is the derivative with respect to the argument of the function. It
'follows from (61.11) that an arbitrary function <1> (t - xlv) indeed satisfies
Eq. (61.10). Similarly, we can prove that the function <1> (t + xlv) also satisfies
-this equation.

These solutions have a very simple meaning. The function <I> (t - xlv) is
.a wave moving in the direction of positive values of the X-axis at a velocity v.
.Indeed,

t - x/v = t + ~t - (x + ~x)/v (61.12)

-for ~x/~t = u. This means that if a function 'If (t - x/v) is represented by a
-certain curve at the instant t (Fig. 251), at the moment t + ~t it will be repre-
sented by the same curve but shifted in the direction of positive values of the
X-axis by v ~t, i.e. it is a wave propagating in the direction of positive values
-of the X-axis at a velocity u. This is the reason behind the introduction of the
notation 8J.t = f/v2•

Similarly it can be shown that the function <1> (t + x/v) is a wave propagating
-at a velocity v in the direction of negative values of the X-axis.
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Let us consider the solution of the wave equation in spherically symmetric
ease, i.e. assuming that in (61.9) f = 0 and <D = <1> (r), where r is the distance
from the origin to the point under consideration. In this case, <D is independent
of the angles, and the Laplace operator has the form

V2<1>=-.!..-~(r2 8<I»= 8
2

<I> +! 8<I>=~~(r<1». (61.13)
r 2 or or 8r2 r or r 8r 2

Hence, the wave equation for cD can be written in the form
82 1 0 2 (r<I» 0

a;:2 (r<1» - Vi"" ot2 =. (61.14)

As in the previous case, the solutions of this equation in rcD are arbitrary
functions of the arguments t - rlvand t + rlu, i.e. the general expression for C1>
is as follows:

<D (r, t) = '1"1 (t-r/v) + '1"2 (t+r/v) • (61.15)
r r

The function'!'1 (t - rlv) is a wave propagating in the radial direction from
the origin at a velocity v. This wave is divergent. Its shape does not change,
while its amplitude decreases in proportion to 1/r. The function'!' 2 (t + rlv)
represents a wave converging to the origin.

Returning to (61.5) and (61.8), we see that the field potentials, and hence the
fields themselves, propagate in free space (p = 0) at a velocity v = 1/V 8~.
In vacuum J.t = J.to and 8 = 8 0, and hence the velocity of propagation of fields
is equal to the velocity of light c = 1/V8 0J.t o' Thus, electromagnetic waves and
all variations of the electric and magnetic fields propagate in vacuum with the
velocity of light. This means that electromagnetic interactions propagate at
the velocity of light. For example, if two point charges are at rest at a distance r
from each other, and if one of the charges is displaced relative to its initial
position at a certain instant, the other charge will "perceive" this displacement
only after a time or = ric.
Retarded and advanced potentials. Considering the properties of solutions of
the wave equation, it should be expected that the solution of Eqs. (61.5) and
(61.8) for potentials of varying fields differs from the solutions of Eqs, (37.11a)
and (14.35) for potentials of constant fields only in that the finite velocity of
propagation of electromagnetic interactions should be taken into account in
the former case. In other words, a moving charge and an alternating current ele-
ment create at each point of the surrounding space the same potential which would
be created by the fixed charge and direct current, the only difference being that such
a potential is created at each point after a lapse of the delay time, i.e. the time
.required for the electromagnetic field to propagate from the source to the point oj
observation, Therefore, for charges and currents in a certain finite region of
.space, we obtain the following formulas instead of (37.11a) and (14.35):

A(r t)=L.f j(r',t-lr-r'l/v)dV' (61.16)
, 4n J I r-r' Ij ,

(r t)=_f_ r p(r', t-I r-r' I/v) dV' (61.17)
cp, 4118 J I r - r'Ii'
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where v = 1/V £f.1 and I r - r' I is the distance between the point at which
a potential is calculated and the element dV' of integration volume. i

A t a given instant and at a given point, the potential is determined not by the
position and magnitude of charges and currents but by their positions and mag­
nitudes at the previous instants of time which are determined by taking into account
the velocity of propagation of electromagnetic field. Suppose, for example, that
a certain electric charge is rapidly approaching a certain point. The scalar
potential created by the charge at this point is determined not by the distance
from the charge to the point at a given instant of time but by the distance at
a previous moment of time, i.e. by a larger distance. When the velocity of charge
is close to the velocity of light, the difference in these distances may beeome sig--
nificant. ~.

Here we do not formally verify that formulas (61.16) and (61.17) satisfy­
Eqs. (61.5) and (61.8). In principle, this can be done in the same way as for
solutions (14.35) and (37.11a).

Potentials of the form (61.16) and (61.17) are called retarded potentials since
they describe the potentials at a later instant t in comparison with the time
t - I r - r' Ilv for charges and currents which created these potentials. Solu­
tions similar to (61.16) and (61.17) are formally also the solutions of Eqs. (61.5)
and (61.8) if we replace the time argument t - I r - r' Ilv by t + I r - r' Ilv,
which corresponds to two possible signs of the arguments in solutions (61.15)
of the wave equation, The solution with the "plus" sign of the argument has no
clear physical meaning since it formally corresponds to the situation when
a potential is created first and then charges and currents corresponding to it
appear, i.e, the potential leads charges and currents. For this reason, it is
called the advanced potential. Advanced potentials are used along with retarded
potentials for solving boundary-value problems. This can be explained as follows.
Suppose that we have to find an electromagnetic field satisfying certain boundary
conditions. At the points inside the volume, the field must obviously be such
that when it reaches the boundary at a later moment, it has the values pre­
scribed by the boundary conditions. Clearly, while solving such problems one
should be guided not only by past events but also consider what is going to
happen in future, i.e. advanced potentials should be used. This, however, by no
means signifies the violation of the causality principle as can be directly seen from
the example considered above. From the point of view of physics, it simply
describes the events that occurred in the past in order to make the present as
it is, taking into account the known laws of evolution.
Hertzlan oscillator. It is an electrical dipole whose moment varies with time.
A system of two metallic spheres (Fig. 252) connected by a conductor may serve
as a real prototype of a Hertzian oscillator. If the spheres are supplied with
equal .@nd opposite charges and the system is left alone, an oscillatory process
of charge exchange will occur in the system. The current oscillations will be
damped. If the resistance of wires is small and the radiation losses per period
are low, damping can be ignored for a sufficiently large number of periods. Then
at distances considerably larger than l, the system can be treated as a dipole
whose moment varies with time. Such an oscillator was used by Hertz who
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was the first to obtain electromagnetic waves experimentally. This explains
the term Hertzian oscillator.
'The scalar potential of a dipole with a time-dependent moment. The potential
of a dipole is defined by formula (61.17) which can be written in the following
convenient form:

(() (r t) = _1_ r p (~, t- r' Ie) dV.. (61.18)
't" 4118 0 J r' ID ,

where it is assumed that the dipole is in vacuum (e = eo, fl. = fl.o). While cal­
culating the potential by this formula, it is expedient to place the origin in the
charge distribution region. The position of the origin within the limits of this

I

Fig. 252. Oscillator model Fig. 253. To the computation
of potential of a dipole

region is insignificant since the dipole size can be made as small as desired in
comparison with the distance to the points at which the field is analyzed. The
position of a point at which the field potential is being calculated is character­
ized by the radius vector r; ~ is the radius vector 'of the volume element dV;,
and r' is the distance between the volume element dV, and the point of obser­
vation (Fig. 253).

Let us consider the potential at large distances from the dipole (~/r ~ 1).
Taking into account that

(61.19)

we can expand the expression for r' into a series in sIr and confine ourselves
to the linear term of the expansion:

, (1 2 r·~ ~2 ) 1/2 r.~. '. 0r =r - -2--2 =r--+... (61.2 )r r r.

(61.21)p(;, t-rlc) _-!:l~ [p(~, t-rlc) ] + ..
r r ar r

Using this formula, we expand the integrand in (61.18) into a Taylor series
at the point r:

p(~, t-r'lc)
r'
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(61.22)

(61.25)

(61.27)

(61.29}

(61.28).

Substituting this expression into (61.18), we obtain
1 1 r 1 r iJ r

cp = 4n£0 r J PdV ~ - 4n£0 r· fir J 6P dVi'

where we took into account that r remains constant upon integration. The first
integral on the right-hand side of (61.22) is equal to zero due to electrical neu­
trality of the system. The second integral is the dipole moment [see (17.2)J;

~ £P (t - rIc) dV~ = p (t - rIc). (61.23)

Hence we finally obtain the formula for a dipole with a time-dependent mo­
ment:

(O(r t)= __1_!- . .!-[p(t-r/c)] (61.24)
't' , 4nEo r ar r •

Using the expression for divergence in spherical coordinates, we can represent
this formula as follows:

( t) - 1 di p (t-r/c)cp r, - --4-- IV ·n80 r

Vector potential. I t is calculated by expanding the integrand in (61.16) into
a series of the form (61.21):

A (r, t) = r~ :z [ p (t-;:- rIc) J. (61.26)

Electric and magnetic fields. In order to simplify the formulas for further analy­
sis, we introduce the following notation:

ll - p(t-r/c) - <D(t )
- r -Po , r ,

where Po is a constant vector characterizing the direction of dipole oscillations.
Proceeding from (61.25) and (61.26), we obtain

~ an ~ a
B= curl A = 4~ curl at= 4~ 7ft curl TI,

E d iJA 1 d di rr ~o iJ2D= -gra cp--=--gra IV ----at 4n80 4n 8t 2

t ( . t 82ll) t=-4- graddIvII--2 -iJ2 =-4-curlcurlII"n£o c t n80

where we took into account that f.loEo = 1/c2 and used formula (A.10). Vector If
satisfies the wave equation

1 a2n

V 2TI - C2 ---at2 = o.
The value of curl n is calculated by formula (A.16):

curl II curl Po<D = grad <1> x Po=..!.- iJiJ<I> r X Po.r r

(61.30}

(61.31}
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It is more convenient to carry out subsequent calculations in a sphericaljsys­
tem of coordinates. Let us direct the polar axis Z along the vector Po, placing
the origin at the centre of the dipole. We denote the polar and azimuthal angles.
by e and ex respectively (Fig. 254). Obviously,

(r X Po)r = (r X Po)o = 0, (r X Po)ct = -rpo sin a, (61.32}

and hence

curl; n = curl, n = 0, curl., n = - sin e ~~ . (61.33)-

(61.35)-

Using (61.28), we obtain

B B 0 B J10 o I n flo· a fJ2TI
r = 0 =, a = 4n at cur a = - 4n SIn fJt fJr • (61.34)·

The projections of vector E are calculated with the help of the Iormulasjfor
the curl in a spherical coordinate system:

1 1 fJ. n 1 cos e err
E; == 4neo r sin e as (sin ecurl , ) = - 2neo -r- or '

1 1 a 1 sin e fJ ( all)
Eo = - 4neo r tir (r curl., TI)= 4neo -r- tir r tfr ·

Formulas ,(61.34) and (61.35) show that the electric field vector lies in meridional
planes, while the magnetic induction vector is normal to the meridional plane passing­
through the corresponding point. The magnetic lines of force coincide with the"
parallels of the spherical coordinate system under consideration. The electric field'
and magnetic induction vectors are mutually perpendicular at each point.

Formulas (61.34) and (61.35) are valid for an arbitrary time dependence of
function cD (r, t) in (61.27). Assuming that the dipole moment varies in accor­
dance with the harmonic law

we obtain
(61.36)1

eiW(t-r/c)

TI=po •r
(61.37)

y

·z

Differentiating the expressions in formulas (61.34) and (61.35), we obtain the­
following expressions for the nonzero components
of the field vectors:

Ba;=~r~ u»sin e (++ i: )n.
1 (1 ioo )Er=-2-cos8 -2+- II, (61.38)neo r cr

1 . (1 ioo 00
2

)Ee= - - Sl n 8 -+--- II.4neo r2 cr c2

I n the immediate vicinity of the oscillator, at
distances shorter than the wavelength A = cT = Fig. 254. Choice of a spherical

syste~ of coordinates for conn-
2ncl (0, the field of the oscillator is identical to puting a dipole field
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the field of a stationary dipole and current. At distances considerably exceeding
the wavelength, the field of the oscillator differs in principle from the field of
.a permanent dipole and current. The corresponding region is called the wave
zone.
The field of an oscillator in the wave zone. By definition, the distance r from
the points of the wave zone satisfies the following inequality:

(61.39)

Consequently, in formulas (61.38) we can ignore 1/r and 1/r2 in comparison
with rolc and ro2/C2 • As a result, we obtain the following expressions for the com­
ponents of the field vectors:

~o 00
2

• •Ba = --4- --2 II sin 8, B, = Be = 0,
1t C

(61.40)

(61.41)

In these formulas, we can take either the real or the imaginary part of (61.37)
for II. For) example,

IT= pocosoo(t-r/c) •
r

(61.42)

Consequently, the electric field and magnetic induction of the electromagnetic
field in the wave zone of an oscillator can finally be represented in the following
form:

1 00
2 sin e (r )Ee=cBa == --4--2 --Po cosU) t - - ,

n80 ere

Er=Ea=O, Br=Bo=O.
(61.43)

These formulas show that in the wave zone the electric field vector and the
magnetic induction vector are perpendicular to each other and to the radius
vector r. The vectors E, B, and r form a right-handed system of vectors at each
point. The electric field strength decreases in inverse proportion to the distance.
The wave described by formulas (61.43) is called a spherical wave. It propagates
in the direction of the radius vector. The constant-phase surfaces of this wave
'are spheres. The (phase) velocity of the wave is equal to the velocity of light.
Since Eo = cB a , small portions of the surface of a spherical wave can be treated
as plane electromagnetic waves.
Power radiated by an oscillator. The flux density of electromagnetic energy
is characterized by Poynting's vector (59.7). Consequently, the electromagnetic
energy flux P through the surface S of the sphere of radius r, surrounding an
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oscillator, is given by

p- ) Ex H·dS-= ) EoRa. dS
8 S

n 2'1

=__i_ CJ)'p! COS2 (i) (t _.!:..) r sin38 d8 r de
i6n2so c8 c J J

• 0

i m'pi ( r )=---- COS2
(i) t - - .6nso c8 c
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(61.44)

(61.45)

This quantity is the rate of flow, i.e. the energy emitted by the oscillator
in 1 s, The emissive power averaged over a period is

T
i r i CJ)'pl

(P) = T J P dt = i21tso ca·
o

This formula shows that the emissive power of an oscillator strongly depends
on frequency and is proportional to its fourth power. This means that in order to
increase tho emissive power, it is expedient to operate on short waves.

Since Poynting's vector decreases in inverse proportion to the square of the
distance, -while the surface area of .he sphere increases in direct proportion
to the distance, the total energy flow crossing the surface of the sphere does not
change with distance, and hence the energy is transferred from the oscillator
to remote regions of space without losses in the form of electromagnetic waves.
The radiant flux density decreases in inverse proportion to the square of the
distance. The oscillations of an oscillator are damped due to loss of energy by
radiation. In order to obtain undamped oscillations, it is necessary to continu­
ously supply energy to the oscillator. An oscillator is the simplest emitter of
electromagnetic waves.
Radiation of a current-carrying loop. Another example of a simple electro­
magnetic wave radiator is a current loop which is characterized by a magnetic
moment Pm = IS (Fig. 255). Its radiation is similar to that of a dipole. We
shall give here just the result. The magnetic moment of a current loop varies
according to the law

Pm = Pmo cos wt. (61.46)

Let us place the origin of a spherical coordinate system at the centre of the
loop and direct the Z-axis along the magnetic moment. In Fig. 254, the current
is assumed to flow in the plane z = 0 and the magnetic moment Pmof the current
is arranged as p. The following formulas describe the radiation field of a current
loop:

Z6-0280

B Jlo CJ)2 sin a (r )Ea,== -c e=- 4:t c-r-Pmo cos (i) ., - c '
s, ..E.-O, Br=Ba,-O

(61.47)
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A comparison of formulas (61.47) and (61.43) shows that if the magnetic
moment Pm, of current and the dipole moment Po are related through (Fig. 256)

Pm, = CPOl (61.48)

the electric field strength and the magnetic induction of the dipole radiation
are equal in magnitude to the corresponding values of current loop radiation
but have different directions. The electric field of a dipole is directed along

b_

--..
I

Fig. 255. Current loop

1

b+

Fig. 256. Relation between the
displacement of elecric charges
creating an electric dipole mo­
ment and the current in a loop
producing a magnetic moment

meridians, while that of the current loop is directed perpendicularly to the
meridional planes along the parallels. The orientation of magnetic induction
vectors varies accordingly. It can be seen from (61.47) and (61.43) that there
exists the following relation between the field vectors of dipole radiation and
current loop radiation:

E~ (loop) = -cBa, (dipole), eBe (loop) = Ee (dipole). (61.49)

The emissive power of a current loop can be defined by formulas (61.44) and
(61.45) where the dipole moment is replaced by the magnetic moment in accord­
ance with (61.48).

An oscillator and a current loop are elementary radiators of electromagnetic
waves. Radiation of more complex systems can be reduced to that of elementary
radiators with the help of the superposition principle.
Radiation of an electron moving with an acceleration. Let us imagine a pos­
itive charge equal in magnitude to the charge of an electron placed at the
origin. It is fixed and according to Coulomb's law creates in the surrounding
space a constant electric field, whose strength decreases in inverse proportion
to the square of the distance, A system of a moving electron and a fixed charge
is a dipole whose moment varies with time. The field vectors of the dipole
radiation are varying quantities which decrease in inverse proportion to the
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distance. Clearly, the constant electric field of the fixea charge is compensated
by the electric field of the electron and has nothing in common with the radia­
tion field, i.e. the radiation field is the field of radiation of the oscillating elec­
tron. The positive charge was placed at the origin just mentally, which makes
it possible to use the above formulas for the radiation of a dipole with a time­
dependent moment.

The dipole moment appearing when an electron deviates from the origin by
z (t) is given by

P (t) = - I e I z (t) i z' (61.50)

(61.54)

where i , is the unit vector along the Z-axis. The minus sign appeared in view
of the fact that the additional moment is directed from the negative charge to
the positive one. Assuming that

z = b cos rot, (61.51)

where b is the amplitude of electron oscillation, we obtain the following for­
mula for dipole moment (61.50):

P = -i z I e I b cos rot. (61.52)

Comparing this formula with the real part of (61.36) for a dipole, we con­
clude that the moment Po in formula (61.36) is connected with the quantities
characterizing the motion of the electron through the relation

Po = -i z I e I b, Po = I e I b. (61.53)
Formula (61.43) characterizing the radiation field vectors now assumes the

form
0)'1 sin e (r )

Ee=cB~= - 4 'I --lei bcosCl) 't-- ,
nBoc r c

E~=Er=O, B,=Be=O,-
where 't is the time during which the wave arrives at the point of observation
on a sphere of radius r. The variable t = 't - rlc is reserved for the time charac­
terizing the motion of the electron. It follows from formula (61.51) that

--z = - Cl)2b cos rot, (61.55)
and hence Eq. (61.54) can be written in the form

lei sin e --IEe (r, 't) = cB~ (r, 't') = 4n 2 -- Z
BoC r t="C -rIc

lei sin e --,= - 4nBoc'I -r- Z '-*c-r/o' (61.56)

where we took into account that the electron charge is negative. Formula (61.44)
for the emissive power assumes the form

26*

I 1 e
l

• - Ip=---- Z26Reo C8 .,
(61.57)
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(61.59)

i.e. the emissive power is proportional to the square of the electron acceleration.
A uniformly moving charge does not radiate.

Formulas (61.56) and (61.57) were obtained for the model of an oscillating
electron. They depend, however, only on the electron acceleration at any in­
stant of time. Consequently, the radiation field described by these formulas
does not depend on the motion of the electron prior to a given moment and after
that. Therefore, they can be applied in all cases and represent the electric field
strength and the magnetic induction of the radiation field as well as the emissive
power as functions of acceleration for any motion. In this case, however, the
electron velocity should be small. Consequently, these formulas are applicable,
strictly speaking, for an electron at rest but having an acceleration, which is
obvious from the definition of -a dipole which occupies an infinitely small spatial
region and is at rest in it.

However, the generalization of these formulas to arbitrary velocities does not
present any difficulty. For this purpose, we should go over to the coordinate
system in which the electron moves at an arbitrary velocity and use the for­
mulas for the transformation of fields and accelerations. As a result, we obtain
formulas which are valid for arbitrary velocities and accelerations of a charge.
We shall not present these formulas here.
Decelerative force due to radiation. An electron loses its energy due to radiation
and is decelerated. In other words, a decelerative force acts on it. Let us find
this force. The equation for electron oscillations, taking into account the de­
celerative force, has the form

mz+mro2z = F, (61.58)
where (() is the natural frequency in the absence of a decelerative force due to
radiation. Multiplying both sides of this equation by Z, we obtain

d (m;1 mrol) •- __+_-Z2 =Fz
dt 2 2 •

The right-hand side of this equation is the work of the decelerative force due
to radiation per unit time. By definition, it is equal to the emissive power
[see (61.57)]' and hence

• f e2 ••
Fz= ---- Z2. (61.60)

6neo c8

This equation expresses the law of energy conservation for radiation. It can­
not be used in the general form for determining the force F as a function of z
and its derivatives. This can be done only approximately, assuming that

(1) radiation, and hence the damping of oscillations, are not very strong
so that the motion can be assumed to be practically periodic for several periods;

(2) from the law of energy conservation for. average quantities pertaining
to a small number of periods, we can conclude that the instantaneous values of
corresponding quantities are equal.

We proceed from the obvious equality:.. ... . ...
zl= - z z+(z z)·. (61.61)
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By averaging (zz)· over one period and using the first assumption, we have
.. · . t·· · · ..

«z z) ) = T [(z z),==r - (z z),==o] = o. (61.62)

Then Eq. (61.60) combined with (61.61) and (61.62) assumes the form

• 1 e2
• • • •(Fz) =-6- --a (z z). (61.63)

1t80 C

On the basis of the second assumption, we obtain
1 el •• •

F=-a--a z. (61.64)
1tEo C

This formula defines the decelerative force due to radiation. The equation
for the electron oscillations, taking into account the decelerative force can be
written as follows:

m-;+ mro2z- re2/(6nB~)]·~· o. (61.65)

In electrodynamics, the expression for the decelerative force is generalized
to an arbitrary motion. In this case too, this force is proportional to the third­
order time derivative of the corresponding quantities characterizing the motion
of an electron. The obtained equation is a relativistic invariant. For a long time
it was assumed that it correctly describes the radiation reaction. However, com­
puter calculations were recently carried out for a number of simple cases of
motion and the obtained results proved to be quite meaningless. Therefore, the
question of a relativistically invariant classical description of electron motion,
on account of the radiation reaction, cannot be taken as solved so far.

The presence of a decelerative force was experimentally confirmed in particle
accelerators. As was mentioned above, charged particles in accelerators undergo
small harmonic oscillations about an equilibrium orbit, which are called the
betatron oscillations (see Sec. 56). Besides, a moving charge radiates intensely.
The decelerative force due to radiation causes damping of betatron oscillations.

Sec. 62. Propagation of Electromagnetic Waves in Dielectrics

Basic properties and peculiarities of propagation of
electromagnetic waves in dielectrics are considered.

Plane waves. An electromagnetic wave is called a plane wave if the field vectors
of the wave have the same magnitude at all points of any plane perpendicular to the
direction of wave propagation. Naturally these vectors vary from plane to plane.
It can be said that constant-phase surfaces in a plane wave are planes perpen­
dicular to the direction of propagation. A wave is called monochromatic if the
time variation of the field vectors of the wave obeys a harmonic law with a certain
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constant frequency. For example, if a plane electromagnetic wave propagates
along the Z-axis, the field vectors of the wave have the form

E (z, t) = E (z) e i ro t; B (z, t) = B (z) ai ro t • (62.1)

If the constant-phase surfaces coincide with the surfaces of constant amplitude,
the wave is called homogeneous.
Equations for the field vectors of a wave. Unlike Sec. 61, we shall proceed directly
from the field vectors rather than from the potentials. Let us consider a homo­
geneous unbounded medium for which E = const and t..t = const. The electrical
conductivity of a dielectric is 'Y = 0. Maxwell's equations have the form

aE
curl B = ~8at ' (62.2)

aD
curl E = -lit. (62.3)

Differentiating both sides of Eq. (62.2) with respect to time and substituting
Eq. (62.3) for the derivative oB/ot, we get

a2E
-curlcurl E = 8"" ---ai2. (62.4)

Using formula (A.10) and considering that div E = 0, since there are no free
charges, we write the equation for E:

a2E
V2E - 8~ ---ai2 = O. (62.5)

Similarly, we can find the equation for B:
a2B

V2B-BJ.tfiiS = O. (62.6)

Thus, the field vectors satisfy the wave equation in which the velocity of
wave propagation is

v= iNBJ.t = eN8 rJ.tr. (62.7)

Formula (62.7) shows that the velocity of wave propagation in a dielectric is
smaller than in vacuum.
Field vectors of a wave. Let us direct the Z-axis along the velocity of propaga­
tion of an electromagnetic wave. In this case, the field vectors are defined by the
formulas of the form (62.1). Substituting into (62.5) the expression for E [see
(62.1)] and cancelling exp (iwt) from both sides of the equation after differenti­
ation, we write the following equation for E (e):

d2E (z)/ dt2 + k2E (z) = 0, (62.8)

where k = ro V Ef.1. The general solution of this equation is given by

E (z) = EOle-ikz -1- E02eikz, (62.9)

where Eo! and E 0 2 are constants. Substituting (62.9) into (62.1), we obtain
E (z, t) = EOtei(rot-kz) +E02e i(ro t + kz). (62.10)
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z

r
The first term on the right-hand side of this

equation describes a wave propagating in the di­
rection of positive values of the Z-axis, while the
second term corresponds to a wave propagating in
the negative direction [see (61.12)].

The solution for B is found in a similar way.
Suppose that a wave propagates in the positive
direction of the Z-axis. Then
E (z t) = E ei(rof-kz). B (z t) = Boei(rot-kz). (62.11)

, 0 , , Fig. 257. Constant phase sur-
This wave is plane, monochromatic and ho- face of a plane wave

mogeneous.
Phase velocity. Formulas (62.11) indicate that plane waves propagate in a homo­
geneous dielectric without a change in their amplitude, i.e. without absorption.
The velocity of motion of an equiphase surface is called the phase velocity.
It can be found by differentiating the condition of constant phase

rot - kz = const,

with respect to time. This gives
dz

ro-k dt =0,

(62.12)

(62.13)

whence
ds ffi 1 c

V="""dt=k= ye/1 = Y2
r

/1r • (62.14)

Formulas (62.11) are written for a special choice of the coordinate system,
when the Z-axis coincides with the direction of wave propagation. This restric­
tion can be eliminated by introducing the wave vector k directed along the vec­
tor of velocity of the wave. The magnitude of this vector is defined by (61.8).
By definition of a plane wave propagating in the direction of the vector k ,
vectors E and B are the same at any point of a plane perpendicular to this direc­
tion (in this case, to the Z-axis). Let r be the radius vector of a point on such
an equiphase plane. Obviously, k-r === kz (Fig. 257), and we can write the follow­
ing equations instead of (62.11):

E (r, t) = Eoei(rof-k.r); B (r, t) = Boei(rof-k.r). (62. 15a)

Wavelength. By definition, it is the distance over which a point on an equiphase
surface moves during a period of oscillations:

A === vT === wT/k = 2n/k, (62.15h)
where

k = 2n/A (62.15c)
is the wave number.
Properties of waves. In order to investigate the properties of plane waves, we
substitute expressions (62.15a) into (62.2) and (62.3). For the sake of simplic­
ity, it is expedient to use in calculations the symbolic representation of vector
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x

E

A = cTz..........- ---iil..,

operations. The initial operation is defined by
operator nabla:

..., • a +. .a +. a (62 16)
v = Ix ax I" 7iii 1%8% ' •

where ix, i y , i z are unit vectors in the directions
of coordinate axes.

It can be easily shown that the basic opera­
tions of vector calculus can be represented with
the help of this operator as follows:

Fig. 258. Plane harmonic elec-
tromagnetic wave grad cp == Vcp, div A == V· All curl == V X A,

(62.17)
where V· A and V X A are the scalar and vector products of operator V by
vector A. Note that

Va- i t . r = - ike- i t · r • (62.18)

Using Maxwell's equations and expressions (63.15a), we can investigate the
properties of plane waves. Maxwell's equation div E == 0 gives

div E == V·E == -ik·E == O. (62.19)

(62.21)

(62.22)

This means that the electric field vector E of the wave is perpendicular to k,
i.e. perpendicular to the direction of its propagation. Similarly, Maxwell's
equation

divB==V·B==-ik·B==O (62.20)

shows that vector B is also perpendicular to the direction of wave propagation.
Substituting (62.15a) into (62.2) and (62.3), we obtain

-k X B == E!J-roE,

k X E == roB.

Let n be a unit vector in the direction of wave propagation. Then, using
(62.8), we can write

k = ncoV Bf..' = tuol», (62.23)

Consequently [see (62.22)],
n X E == vB. (62.24)

It was shown by using (62.19) and (62.20) that vectors E and B are perpendicular
to D. Formulas (62.21), (62.22) and (62.24) indicate that these vectors are also
mutually perpendicular. Writing Eq. (62.24) for the magnitudes of the quan­
tities, we obtain

E == vB. (62.25)

We may conclude from relation (62.24) that in a homogeneous dielectric
vectors E and B vary in phase. All formulas of this section are valid for vacuum
as well if we put e == eo, !J- == !J-o and v == c (velocity of light). The spatial
variation of the field vectors in a plane wave is shown in Fig. 258.
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Energy flux density. This quantity is defined by Poynting's vector whose magni­
tude for a plane wave is given by

ISI=IExHI=IEIIHI= jell ~ (eE2+ :1 B2)
1 t= Veil "2 (E.D+B.H). (62.26a~

where 1/V Ell = v is the velocity of wave propagation and

1w=T(E.D+B.H) (62.26b)~

is the volume energy density in it. The expression for the energy flux can be
written in the form

s = wv. (62.27)

This means that the rate of energy transfer by a plane wave in a homogeneous:
dielectric is equal to the phase velocity of the wave.

Eledromagnetic waves are emitted only by aHernatlng currents and electric charges moving
with acceleration. Dlred currents and charges that are moving uniformly and redilinearly
do not emit waves.

Describe the physical processes which make the existence of electromagnetic waves
possible.
What is the structure of a plane waver At which velocity does it propagate in a vacuuml

Sec. 63. Propagation of Electromagnetic Waves in
Conducting Media

Basic properties and peculiarities of the propagation.
of electromagnetic waves in conducting media are con­
sidered.

Complex permittivity. We consider a homogeneous medium: f..t = const, e =
const, and 'V = const (y =1= 0, i.e. we have a conducting medium). In this;
case, Maxwell's equations have the form

• BE oE
V X B=J.LJ +p,8 7ft=J.tyE+J.t8 7ft'

oB
VxE=--at '

(63.1):f

(63.2)~

where we used the symbolic notation for vector operations and took into account
that j = 'VE. Substituting into these equations expressions (62.15a) for the-
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field vectors, we obtain

-k(O X B = co~ [8 + 1'/(iro)) E,

k co X E = coB,

(63.3)

(63.4)

where for k from (62.15a) we use the notation k co = kCO)k co , k(O) being the unit
vector.

For l' = 0, Eq. (63.3) coincides with Eq. (62.21) for dielectrics. Equation
{63.4) is the same as the corresponding equation for dielectrics. Thus, in mathe­
matical sense, a conducting medium differs from a dielectric only in that the

..corresponding expression contains the complex permittivity

8(0 = e + 1'/(ico) = 8 - i1'/co (63.5)

instead of permittivity E.

All subsequent calculations are identical to those for dielectrics where Bca>
is used instead of B. Thus, instead of the real wave number, the complex-valued
-quantity kfJ) appears, such that

k~ = C028ca>~ = co2e!! - ico1'~. (63.6)

Representing km in the form of a complex number

kca> = k - is,

-we can write Eq. (63.6) in the form

k2
- 2iks - S2 = w2e!! - iw1'~.

Equating the real and imaginary parts of (63.8), we get

k2 - S2 = C02E~ == a,

2ks = co1'~ == b.

The solution of this algebraic system of equations has the form

(63.7)

(63.8)

(63.9)

(63.10)

(63.11)

(63.12)

.Penetration depth. Let us investigate the amplitude of a plane wave propagating

.In the direction of positive values of the Z-axis:

E == Eoef(mt-k(j)z) = Eoe-szef(ca>t-kz). (63.13)

It can be seen that the amplitude of the wave decreases during its propagation,
i.e. the electromagnetic wave propagating in a conducting medium is damped.

__Along the path
~ = 1/s (63.14)
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(63.18)

the amplitude of the electric field of the wave decreases to 1/e of its initial
value. The quantity ~ is called the penetration depth of a plane wave into
a conducting medium.

Let us estimate the penetration depth for waves of different wavelengths.
The wavelength of visible light is

A= (0.4 -7- 0.75) 10-8 m, (63.15)

which corresponds to the frequency 00 of the order of 5 X 1015 S-l. The electric
conductivity of metals is of the order of 10" Q-l· m-l and the value of e can be
assumed to be equal to eo. Thus,

y/(eoo) ~ 2.102 ~ 1. (63.16)

For waves longer than light waves, this inequality becomes even more strin­
gent. Consequently we may ignore unity in formula (63.12) in comparison with
l/(ero) and write the expression for s in the form

8 = V CJ)y~/2. (63.17)

Consequently, the penetration depth is given by

~ = 1/8= V2/(CJ)Y~).

Since the wavelength A is connected with frequency 00 through the relation
<0 == 2n/(A Vell), formula (63.18) can be written in the form

~= .. / A V 8 , (63.19)V ny J.'

where V t-t/e has the dimensions of resistance and is the characteristic resistance
of the medium. For vacuum, it is equal to

V !-to/eo = 377 Q. (63.20)

Let us consider, for instance, copper for which "I = 5 X 107 Q-l· m-l, II ~ llo
and e ~ eo. For A = 1 m, the penetration depth is ~ ~ 4 X 10-6 m. This
means that essentially we cannot speak of any penetration of the wave into
the conducting medium since absorption takes place only in a very thin surface
layer. This conclusion remains valid for very short waves. For example, for
wavelengths of the order of that of light waves (At ~ 10-6 m), the penetration
depth ~ is about 4 X 10-9 m.
Physical grounds for absorption. The physical reason behind such a rapid
attenuation of electromagnetic waves in a conducting medium is the conversion
of the electromagnetic energy of the wave into Joule's heat: the electric field of
the wave induces in a conducting medium currents which, in accordance with Joule's
law, heat the material of the medium.
Interpretation of the skin effect. Now, we can present the interpretation of the
skin effect. Formula (53.19) for the thickness of the skin depth coincides with
formula (63.18) for the penetration depth of an electromagnetic wave into a
conductor. This coincidence has deep physical grounds.
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The energy transported by a current propagates in the space surrounding the
conductors in the form of electromagnetic energy. This energy partially
penetrates the conductor surface to sustain the motion of electrons. In the
conductor it is converted into the kinetic energy of electrons which, in turn,
is transformed into Joule's heat. For this reason, the current is maintained
in the parts of the conductor which receive electromagnetic energy from the
surrounding space. Since this energy can penetrate the conductor only to the
depth 11 [see (63.18)], current may exist near the surface of the conductor only
within the limits of this depth, i.e. ~ is the thickness of the skin layer.
Phase velocity and the wavelength in a conducting medium. Taking into account
(63.13) and (63.11), formula (62.14) can be written in the form

(0 f { 2 } 1/2
v=7C= V 118 {1+1'l'/(CJ)8))2}1/2+1' (63.21)

This velocity is lower than the velocity of waves in a nonconducting medium
with the same values of f.1 and e, i.e. the conductivity of the medium reduces
the phase velocity in it. The wavelength in a conducting medium is given by

2ft 2n { 2 } 1/2
A=T= CJ) V 118 {1+1'I'/(CJ)8)J2P/2+1' (63.22)

i.e. is smaller in comparison with the wavelength in a nonconducting medium
with the same values of f.1 and c.

Formula (63.22) shows that the phase velocity in a conducting medium de­
pends on frequency, i.e. dispersion takes place in this case. Therefore, a con­
ducting medium is always dispersive. A most typical feature of propagation
of signals in a dispersive media is the variation of their form during propagation.
Relation between the phases of field vectors. A complex quantity kro in (63.7)
can be represented conveniently in the exponential form:

k.., == IkmI e tfP•

Formula (63.4) can be written as follows:

B= Ik.1 eifPk(O) X E,
(0

(63.23)

(63.24)

where k(O) is the unit vector in the direction of the wave propagation (in our
case, the direction of the Z-axis). Vectors E and B are perpendicular to this axis.

Suppose that in accordance with formula (63.13) the electric field vector of
the wave is given by

E = Eoe- 3Zei (rot - kl ), (63.25)

where, without loss of generality, we may assume that vector Eo is real since
the choice of the reference point for time t is always arbitrary. Substituting
(63.25) into (63.24), we obtain

B =~ k(O) X Eoe-szei(wt-kz+q». (63.26)
(0
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Having determined the real parts of expressions (63.25) and (63.26), we can
find the formulas for actual oscillations of the field vectors in a plane wave
propagating in a conducting medium:

E = Eoe-az cos (rot - kz).,·

B=~ k(O) X Eoe-az cos (rot- kz +q». (63.27)w .
Consequently, the electric and magnetic vectors oscillate in a plane wave in

different phases. Using (63.7) we find

tan q> = -slk = VeJ!/y- V 1+ {811/1')2., (63.28)
i.e. the angle cp is negative. This means that B attains a certain value later
than E. This is manifested in two ways.

If we consider the oscillations of the field vectors of a wave at a fixed point
which the wave travels by, B attains, say, its maximum value later than E
does. In other words, B as a function of time lags behind E.

If we consider a wave at a certain fixed instant of time, B attains its maximum
value for smaller values of z than E does, since B as a function of z leads E.

These statements complement one another and are united in the fact that
a running electromagnetic wave moves in the direction of its propagation (in
the case under consideration, in the positive direction of the Z-axis).
Relationship between the amplitudes of field vectors. It follows from (63.25)
and (63.26) that

::: = 1';:1 = V JLB {1+ [Y/(BJL)]2)1/'. (63.29)

Comparing this relation with (62.25) we conclude that the ratio between
1Bland I E I in a conducting medium is larger than that in a nonconducting
medium with the same values of f.1 and. c.

Sec. 64. Invariance of a Plane Wave

The invariants of electromagnetic field transformations
are considered and the results of an analysis of the
invariants are discussed.

Field transformation. The strengths of fields vary as we go over from one inertial
reference system to another. Field transformations are described by formulas
(11.15).

It may so happen that one inertial reference system contains electric and
magnetic fields while another system contains only an electric field.

A plane electromagnetic wave is characterized by quite definite properties:
vectors E and B are mutually perpendicular and their magnitudes are connected
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through the relation E = cB. Do these properties of the field vector remain
invariant as we go over to another inertial reference system? If the answer is
affirmative, the concept of a plane electromagnetic wave is a relativistic invar­
iant reflecting the intrinsic properties of the electromagnetic field of the plane
wave. Otherwise, this concept depends on a random choice of a certain inertial
reference system and does not describe any actually existing physical object.
Using formulas (11.15), it can be easily verified that the field vectors of an
electromagnetic field satisfying the condition of plane wave in one coordinate
system satisfy this condition in any other coordinate system, i.e, a plane wave
is a relativistically invariant concept that determines an actually existing physical
object. Instead of verifying directly a particular statement about the invariance
of the plane wave, it is more expedient to analyze a wider problem on the invar­
iants of electromagnetic field transformations and then substantiate the plane
wave invariance as a particular conclusion along with which many other impor­
tant conclusions, however, are obtained.
Invariants of electromagnetic field transformations. This term is applied to
quantities composed of field vectors and remaining unchanged as we go over
from one inertial reference system to another. The field vectors in different coor­
dinate systems are related by formulas (11.15).

There are several ways of determining the invariants of transformations.
Using formulas (11.15), it can be shown by direct calculations that the follow­
ing quantities remain invariant upon a transition from one inertial reference
system to another:

II = c2B2 - E2, It = J[2 - c2D2; (64.1)

Is = B·E, I~ = H·D; (64.2)
1 3 = H· B - D·E. (64.3)

By way of an example, let us verify that the quantity 12 is an invariant.
In accordance with formulas (11.15), we have

E -vB B +(v/c)2E
B' ·E' = B' E' +B' E' +B'E' = B 11 + Y % Y %

% % JI JI % % ~% Y1-~2 Y1-~2

E%+vBy B%-(v/c2) E y
+ Y Y = BxEx+ BlIElI+BzEz= B .E. (64.4)

1-~2 1-~2

The invariance of other quantities can be proved in a similar way.
A plane wave is defined by the equality to zero of invariants II and 12 , and

its invariance does not require any further proof since II and 12 are invariants.
However, the invariance of the quantities given by (64.1)-(64.3) allows us to
draw some other important conclusions as well, concerning the behaviour of
electromagnetic fields upon a transition from one reference system to another.
Analysis of field invariants. The invariance of quantities (64.1)-(64.3) lead
to the following conclusions.

.(1) If c2B2> E2 and B -L E in a certain inertial reference system, we can
choose an inertial reference system in which there is no electric field, while
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the magnetic field is other than zero. If, however, B is not perpendicular to E,.
such an inertial system does not exist.

(2) If c2B2< E2 and B -L E in a certain inertial reference 'system, we can
choose an inertial reference system such that there is no magnetic field in it,
while the electric field differs from zero. If B is not perpendicular to E, such.
an inertial reference system does not exist.

(3) If either an electric or a magnetic field exists in a certain inertial reference­
system, upon a transition to another inertial reference system we generally will
have both an electric and a magnetic field which are perpendicular to each
other.

(4) A plane wave for which E = cB and E .L B remains a plane wave in all
inertial reference systems.

Sec. 65. Pressure of Electromagnetic Waves.
Photon Momentum

The emergence of electromagnetic wave pressure' is­
described. The volume density of electromagnetic wave
momentum is calculated and the photon momentum is:
defined.

Emergence of pressure. If a plane wave. propagates in a conducting medium,
in accordance with Ohm's law, its electric field induces in the medium a conduc­
tion current of the volume density

i = l'E. (65.1}

The force exerted on the current element j dV by the magnetic field of the­
wave (Fig. 259) is given by

E

Fig. 259. Emergence of pres­
sure of an electromagnetic wave

(65.3)

where we used the relation between the magni­
tudes of the field vectors in a plane wave (E = vB)
and took into account Joule's law dP = jE dV.
It is worth noting that the quantity dP in for­
mula (65.3) is the energy absorbed per unit time.

dF = j X B dV = '\'E X B dV. (65.2)

This force acts along the vector E X B, i.e. along the direction of wave prop­
agation. Denoting the unit vector in the direction of wave propagation by n,
welcan write

dF = '\'E X B dV = Dl'EB dV

=njE dV/v = n dP/v,
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Pressure, Suppose that an energy flow of electromagnetic waves is incident
from vacuum on a conducting medium and is entirely absorbed. In accordance
with formula (62.27), the energy absorbed by the surface element dB in 1 s is

dP = vw dB. (65.4)

"This energy gives rise to force (65.3) directed along the normal and equal to

dF = nw dB. (65.5)

Consequently, the pressure along the normal to the surface is given by
dF

p== dS -DlD. (65.6)

The quantity
w = 111 (E.D + B.H) (65.7)

is the electromagnetic wave energy per unit volume.
'The momentum of an electromagnetic wave train. Suppose that the energy W
-contained in a certain volume in an electromagnetic wave train is absorbed by
a certain volume of a conducting body during the time ~t. Then, in accordance
with (65.3), the force exerted on this volume of the body is

W 1F=D-- (65.8)At 11·

According to Newton's second law, the force acting on a volume is connected
to the momentum acquired by the volume through the following relation:

F = pIAt. (65.9)

Substituting (65.9) into (65.8), we obtain
W

P=Dp . (65.10)

This formula contains a statement of fundamental importance: an electro­
magnetic wave train, having an energy Wand travelling at a velocity v, has the
momentum p connected with the energy through relation (65.10). The momentum
is directed along the line of wave propagation.
Electromagnetic wave momentum per unit volume. Dividing both sides of
(65.10) by the volume, in which the energy W is contained, we obtain the follow­
ing formula for the electromagnetic wave momentum per unit volume:

G = plV = nw/v, (65.11)

where w = WIV is the electromagnetic energy of a plane wave per unit volume.
Using (62.27), we can write Eq. (65.11) in the form

G = S/vI, (65.12)

where S is Poynting's vector and v is the velocity of wave propagation.
The electromagnetic wave pressure can be calculated from the change in the

wave momentum. For example, if electromagnetic waves are incident on the
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surface along the normal and are completely absorbed, then, according to
(65.12), the pressure is

p = vG = Siv = ui, (65.13)

which naturally coincides with (65.6). On the other hand, if a wave is completely
reflected, the momentum imparted to the body is twice as large, and the pres­
sure is

p = 2vG = 2w. (65.14)

Similarly we can calculate the pressure in the case of partial absorption, an
oblique incidence on the surface, and so on.

The pressure of light waves was experimentally observed for the first time
in 1900 by P. N. Lebedev (1866-1912). It can be seen from (65.14) that this
pressure is very small. For instance, for a flux of 1.4 kW/m2, which is approx­
imately equal to the flux of solar radiation on the Earth orbit, the light pres­
sure amounts to about 5 f.1Pa. For this reason, very fine methods of measure­
ments were required for detecting this pressure.
Momentum of a photon. According to quantum-mechanical concepts, light
is a stream of energy quanta called photons. The energy of a photon is connected
to the frequency of light through the Einstein relation:

(65.15)

where 1i is Planck's constant. The existence of light pressure indicates that a photon
has a momentum. In accordance with (65.10), the photon momentum is given by

p = nnro/c, (65.16)

where c is the velocity of light in vacuum. Let us write this formula, taking
into account (62.23):

(65.17)

Along with (65.15), this relation is a fundamental equation in the quantum
theory of light.

The electric neld of a plane wave Induces conduction currents In 8 conducting medium.
As a result of interadion of these currents with the magnetic field of the wave, a
LorE:ntz force appears, which is manifested In the form of pressure of the electromagnetic
wave.

What in the classical model. is the nature of force leadin9 to the emergence of pressure
when an electromagnetic wave is absorbed by' a c;onducting medjuml
What does the momentum density of an electromagnetic wave depend onl

Example 65.1. Find the force with which photons having a flux density S of electromagnetic
energy act on a perfectly reflecting sphere of radius r (Fig. 260).

In view of the axial symmetry of pressure distribution, the only nonzero component of
force will be that in the direction of the initial flow of photons. In accordance with formu­
la (65.13), the force dF = (2Slc) cos edo exerted on a surface element do (Fig. 260) is direct-

27-0290
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ed towards the centre of the sphere. The component of
this force along the Z-axis is given by

dF z = -(2S/c) cos" e do.
The area of the surface element in the spherical sys­

tem of coordinates is da=r2 sin e de d«, where a is the
axial angle in the plane perpendicular to the Z-axis. In­
tegrating this expression, we obtain the formula for the
total force acting along the Z-axis:

2n ret2

Fz = - ( 2; )r2 Jde ~ cos28sin8dS =
o 0

4n S
=-3-7r2,

Le, the force is 4/3 times greater than in the case when the entire energy of the flow is absorbed
by the sphere.

Fig. 260. Calculation of pres­
sure of electromagnetic radia­
tion on a perfectly reflecting
sphere

Sec. 66. Waveguides and Resonators

Basic characteristics of waveguides and the peculi­
arities of propagation of electromagnetic waves in
them are considered. The classification of waves in
waveguides is given. The principle of operation of
resonators is discussed.

L
~.

(c)

(a)

Subelrcult, Any subcircuit has an ohmic resistance, capacitance and inductance.
Figure 261a presents an equivalent diagram of a subcircuit. Ohmic resistance R
always differs from zero since wires have a resistance. Capacitance appears due
to surface or volume charges which are always present in the subcircuit and due
to electric fields in which the electric field energy is stored. When a current
passes through a subcircuit, a magnetic field is generated 'and a certain amount

R L " of energy is stored in it. Consequently, a subcir-m cuit also has an inductance. The role of R, C,
c; and L depends on specific properties of the sub-

o 0" , circuit and frequency.
A section of a conductor. A small rectilinear sec­
tion of a conductor contains a very small surface
charge and a low magnetic field energy. This means
that its capacitance and inductance are quite
small. Therefore, at low frequencies the capaci­
tive reactance of the section is larger than its
ohmic resistance, while the inductive reactance
is smaller than the ohmic resistance, i.e, the in­
equality 1/(roC)~ R ~ roL is valid. Hence in the

c
-Ir--

(d)

Fig. 261. Schematic diagram
of a subcircuit'Tat various fre-
quencies - - .
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circuit shown in Fig. 261a, the current mainly flows in the RL-branch as if the
capacitor is disconnected. Since roL ~ R, the inductive reactance is insig­
nificant, and for low frequencies the section of the conductor is depicted as
shown in Fig. 261b.

The resistance R increases with frequency. Since the thickness of the skin
layer decreases as 1/V ro, we can assume that the resistance grows in proportion
to V co. The inductance L decreases only slightly with increasing frequency,
and hence the inductive reactance roL increases in proportion to ei. Consequent­
ly, with increasing frequency the relative role of the inductance in the conduc­
tor section increases, and it can no longer be treated as a section with a purely
ohmic resistance. The capacitive reactance 1/(roC) decreases with increasing
frequency. For this reason, at sufficiently high frequencies a considerable
fraction of current is realized in the form of displacement currents. This .means
that for high frequencies the equivalent diagram of the section of the conductor
has the form shown in Fig. 261a, where R as well as Land C should be taken
into account. Their importance depends on frequency. At extremely high fre­
quencies, the capacitance plays the decisive role.
Induction coil. At low frequencies, 1/ro(C)~ roL ~ R for a coil. The current
mainly flows through Rand L (see Fig. 261a), and since R ~ «L, the equiva­
lent diagram for the coil has the form shown in Fig. 261c.

As the frequency increases, the inductive reactance of the coil grows while
the capacitive reactance drops. Therefore, an increasingly large fraction of
current passes in the form of displacement current through the capacitors con­
nected between individual turns of the coil. Capacitance starts to playa sig­
nificant role along with inductance and ohmic resistance. As a result, the equi­
valent diagram of the induction coil coincides with that shown in Fig. 261a,
where the importance of R, Land C depends on frequency. At a very high fre­
quency, almost the entire current flows in the form of displacement current,
as if the induction coil is disconnected from the circuit.
Capacitor. At low frequencies, the capacitive reactance of a capacitor is smaller
than the ohmic resistance and the inductive reactance [1/(roC) ~ R, 1/(roC) «
~ roLl. As a result, the RL-branch of the circuit shown in Fig. 261a is as if
disconnected. The equivalent diagram of the capacitor has the form shown in
Fig. 261d.

As the frequency increases, the situation changes. In order to analyze this
situation, let us consider a parallel-plate capacitor.

An increase in frequency leads to a deviation of the electric field in a parallel­
plate capacitor from the uniform field. The reason behind this is the interaction
between the electromagnetic induction and the displacement currents. It seems
at first sight that the pattern should be the same as that leading to the skin
effect (see Fig. 223), but this is not so. The difference is due to some other phase
relations between the field vectors.

Let us consider the vector diagram of fields and currents in the case of skin
effect (see Fig. 223). The magnetic induction is in phase with the current and
the strength of the electric field generating the magnetic field. The derivative of
the magnetic induction leads them by n/2, while an additional electric field L\E
27*
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aE
curl B = ue7ft '

generated by the change in magnetic field and
leading to the skin effect lags behind the electric
field E by n/2. Consequently, with a more stringent
approach, we should take into account in Fig. 223
not only the spatial distribution of the fields but
also the phases of the electric field variation.

The vector diagram describing the appearance
of the skin effect is shown in Fig. 262a.

Computational formulas automatically take
into account the relation between the phases of
the vectors.

A different relation exists between the phases
of the field vectors in the case of a capacitor
(Fig. 262b). Since the magnetic field is generated
by displacement currents in accordance with the
law

r
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the magnetic induction is in phase with aE/at,
and hence leads the electric field strength E by
n/2 (Fig. 262c).Consequently, the field l\E, appear­
ing according to the law of electromagnetic in­
duction and leading to a redistribution of the
electric field E in the capacitor, is in phase with
the electric field E (Fig. 262c). The principal differ­
ence between these phenomena and the skin
effect consists in the different relations between

Fig. 262. Relation between field the phases of E and B: in the skin effect their
strengths in a capacitor at high phases coincide while in a capacitor the magnetic
frequencies induction leads the electric field strength by '11/2.

Consequently, if, for example, the electric field
strength is equal to zero, the magnetic induction is also equal to zero in the case of
skin effect, while it has its maximum value for a capacitor. When the electric field
strength increases from the zero value in the skin effect, the magnetic induction
also increases and the vector aB/at forms a right-handed system with vector E
(see Fig. 223). In a capacitor, the magnetic induction decreases, and hence vec­
tor oD/at forms a left-handed system with E (see Fig. 262b). Consequently, the
strength l\E of the vortex electric field is directed so that it enhances the elec­
tric field at the centre of the capacitor and weakens this field at the periphery.
In other words, the field in a capacitor decreases from the centre to the pe­
riphery. At a certain distance from the centre, the electric field vanishes and
then reverses its direction (Fig. 262d).

We can obtain a quantitative characteristic of this phenomenon by proceeding
from (62.5) and solving the equation for the electric field strength E. In the
ease under consideration, we have only one component of vector E and the prob-
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y

Fig. 263. Rectangular waveguide

lem is axisymmetric, i.e. E = E (r), where r is
the distance from the capacitor axis to the point
at which the electric field is determined. Putting,
as usual,

E (r, t) = Eo (r) ei wt

and assuming, for the sake of definiteness, that
e = Eo and J.1 = J.10 between the capacitor plates,
we obtain the following equation for Eo (r):

d
2Eo +-!- dE o +~ E = 0
dr2 r dr c2 0 ,

which is written in cylindrical coordinates. This equation is called the zero­
order Bessel equation, and its solution is written in the form J 0 (ror/e). Bessel
functions are well known. Figure 262c shows the function J 0 (ror/e). The smallest
roots of the zero-order function are ~1 = 2.40, ~2 = 5.52, ~3 = 8.65, · . · ·
We take into account the fact that ro/e = 2n/A, where A is the wavelength of
an electromagnetic wave of frequency co in vacuum. Consequently, the dis­
tances at which the electric field in a capacitor vanishes are given by

r , = A~i/(2n).

In particular, the field vanishes for the first time at a distance r1 == A~I/(2n) =
O.38A. On account of such a behaviour of the electric field, the capacitor
no longer plays the role of a pure capacitance. Clearly, the magnetic fields
in the capacitor become significant, which means that inductance comes into
play. In other words, the capacitor also loses the property of capacitance at
high frequencies.
Radiation. I t was shown in Sec. 61 that the emissive power of an oscillator
increases in proportion to the fourth power of frequency (..--. ro4 ) , i.e. very rapidly.
This means that when high-frequency currents pass through the wires, strong
electromagnetic radiation appears. At high frequencies, the losses become so
significant that transmission through the wires becomes inexpedient and it is
necessary to find some other method of transmission of electromagnetic energy
since the methods of generation and transmission of electromagnetic oscillations
worked out for low frequencies are inapplicable at very high frequencies.
Waveguides. The main purpose of a waveguide is to direct electromagnetic
waves along a certain channel, reducing possible losses during propagation
to the minimum. Obviously, for this purpose we must avoid, if possible, the
excitation of conduction currents and exclude penetration of electromagnetic
energy behind the channel walls. A simple model of a waveguide is a hollow
tube inside which electromagnetic waves propagate. We shall consider the
basic properties of such electromagnetic waves by using a rectangular rectilinear
waveguide as a simple example.
Rectangular waveguide. The walls of the waveguide are assumed to be per­
fectly conducting. The dimensions of the waveguide and the arrangement of the
coordinate axes is shown in Fig. 263. Generally speaking, many types of waves
may propagate through waveguides. Let us consider one of them.
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Let us suppose: that the electric vector of the wave is directed along the
Y-axis. To simplify the situation, we assume that the length of the waveguide
along the Y-axis is infinite. This allows us to disregard the boundary conditions
for the vector E on the surfaces of the waveguide which are parallel to the
XZ-plane and considerably simplifies the solution of the problem. Besides, in
the case of an infinitely long waveguide oriented along the Y-axis, the problem
can be solved by the image method, which allows us to clarify the physical
situation and the essence of processes occurring during the propagation of waves
in the waveguide.

The problem is thus reduced to two dimensions. The wave equation for the
electric field strength has the form

(66.1 )

where E = Ey (x, z, t).
Since the walls of the waveguide are perfect conductors, the boundary con­

dition for E has the form

E (x, 0, t) = 0, E (x, a, t) = O.

We shall seek the solution of the equation in the form

E = Eo sin kzzei(CJ>t-kxX),

(66.2)

(66.3)

where in order to satisfy the boundary conditions (66.2), we must put

kza = nn (n = 1, 2, ...). (66.4)

I t is also clear that solution (66.3) satisfies the condition of absence of free
charges in the waveguide: div E = BEy/By = 0, Ex = E z = O. Substituting
(66.3) into (66.1), we obtain

( - k~ - k~+CJ)2/C2) E = O. (66.5)

This equation can be satisfied only if

-k~-k~+CJ)2/C2=0, (66.6)

from which it follows that

k% = VCJ)2/c2 - n2n2/a2. (66.7)

Cut-off frequency. An electromagnetic wave propagates in a waveguide without
attenuation if the quantity k% in (66.3) is real. This means that the radicand in
(66.7) should not be negative. Hence we can obtain the condition for waves
propagation in a waveguide:

or
1te

CJ)~a n,

(66.8)

(66.9)



Sec. 66. Waveguides and Resonators

Thus, there exists a cut-off frequency fora given value of n characterizing
the shape of the wave. Electromagnetic waves having a lower frequency cannot
propagate in the waveguide. The value of this frequency is obtained from (66.9)
for n = f~ ,

roo = ncla, (66.10)

In other words, the existence of the cut-off frequency indicates the existence
of the maximum wavelength of a wave which can propagate in the waveguide.
Considering that Iv = cT = 2nc/ro, we obtain the following expression for the
boundary wavelength:

"'0 = 2:rtclroo = 2a. (66.11)

This expression has a clear geometrical meaning: in a waveguide under con­
sideration, only waves with a wavelength smaller than twice the transverse dimen­
sion of the waveguide can propagate.

The existence of the cut-off frequency is a typical feature of all waveguides,
although its value is different for different waveguides.
Phase velocity. According to (66.3), this velocity can be found from the condition

wt - kx:x = const, (66.12)

whence
dx (I) (I) (I)

V h=-=-= =c.....,-:===:::::;,,>c, (6613)
P dt k« y ro2/c2-n2/a2 y ro2 _ 1t2CI / Q,1 •

This means that the phase velocity of electromagnetic waves in a waveguide is
higher than the velocity of light. This is another typical feature of waveguides,
although the concrete value of phase velocity depends on the properties of a wave­
guide and the type of waves.

Considering Eqs. (66.10) and (66.11), formula (66.13) can conveniently be
written in the form

c
vph= Y1-(ro

O/ro)2

t: (66.14)

Consequently, ro > roo, and Iv ~ Ivo' since otherwise the phase velocity be­
comes imaginary, i.e. the propagation of waves becomes impossible.
Wavelength in a waveguide. By definition of a wavelength, we have

x, = VphT = V1-~A/AO)2 > A, (66.15)

where Iv = cT. The wavelength in a waveguide is always larger than the wave­
length in free space. Squaring both sides of (66.15) and taking the reciprocals,
we obtain

1/Afr = 1/lv2-1/A:. (66.16)

This relation is valid for waveguides of any shape in spite of the fact that
it was derived here for a particular case.
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a

Application of the method of images to the analy­
sis of waveguides. To clarify the physical nature
of propagation of waves in a waveguide and the
meaning of the relations obtained above, let us
analyze the above example by the method of
images. For an elementary radiator we shall take a
very long straight conductor carrying an alternat­
ing current of frequency <0. Like a Hertzian di­
pole, this radiator emits waves whose electric
vector is parallel to the conductor. In the case of
a very long conductor the waves will obviously be
cylindrical. However, at a sufficiently large dis­
tance from the radiator, they can be assumed to
be plane.

Figure 264 shows the projections of waveguide
walls onto the XY-plane, the electric vector of the
waves being perpendicular to the plane of the
figure. We arrange the first radiator at the middle

Fig. 264. Analysis of a rectan- of the waveguide at a distance a/2 from its wall
gular waveguide by the method perpendicular to the plane of the figure. The phase
of images of oscillations of the radiator is shown by a dot,

i.e. at a given instant of time the current flows
towards us. The oscillator emits waves in all directions, and hence the field
strength on the waveguide walls differs from zero. The problem consists in
selecting a system of radiators such that the total strength of their fields at the
waveguide walls is always equal to zero. The field satisfying this condition
will be the required field in the waveguide. Naturally, when the waves propagate
from imaginary radiators, waveguide walls are also assumed to be imaginary,
and imaginary waves freely pass through them.

In order to nullify the field generated by radiator 0 at the wall A I of the
waveguide, we must place radiator 1 at a distance a/2 from this wall, which
oscillates with a phase shift of half a period relative to radiator O. Consequently,
the phase of oscillations of radiator 1 should be opposite to that for oscillator 0,
which is shown by the sign "+" (current flows away from us). The waves emitted
by radiator 1 arrive at points of wall At after the same period of time as from
radiator O. Since the phases of the waves from 0 and 1 at wall At differ by n,
the sum of field strengths of these waves is equal to zero. In a similar way,
radiator 2 neutralizes the radiation from radiator 0 at wall A 2'

However, radiator 1 creates a field at wall A 2' while radiator 2 creates the field
at wall At. We must add some more radiators that would quench these fields. In
order to neutralize the radiation emitted by 1 at wall A 2' it is necessary to use
radiator 4, radiator 3 serves to quench radiation from 2 at wall AI' and so on
and so forth. The field strength created by an infinite system of these rad ia tors
at walls At and A 2 is equal to zero. Consequently the obtained field satisfies
Maxwell's equations since it is a superposition of the fields each of which satis­
fies these equations, and is the required electromagnetic wave in the waveguide.
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The field outside the waveguide has an auxiliary meaning and is of no interest
to us.
Discrete nature of directions of propagation of plane waves from system oscilla­
tors. Plane waves from an individual radiator propagate in all directions.
However, plane waves emitted by a system of radiators may propagate only in
quite definite directions. These are the directions in which the plane waves
from individual radiators enhance each other. This is possible only when the
path lengths differ for the waves emitted by neighbouring radiators by an inte­
gral number of wavelengths and a half, since neighbouring radiators emit in
antiphase. As a result, it turns out that in a certain selected direction the
waves emitted by different radiators have a phase difference equal to an integral
number of periods, and hence these waves enhance each other. In Fig. 264 the
direction of propagation of waves is characterized by an angle 8. The condition
of mutual augmentation of waves has the form

a sin 8 == A (m + 1/2) (m == 0, 1, 2, ...). (66.17)

A similar condition can be written for waves propagating in the opposite
direction along the waveguide axis, i.e. for negative values of 8.
Boundary wavelength. Condition -(66.17) indicates that for each wavelength
there exists a minimum angle between the direction of propagation and the
waveguide axis, which is attained for m === O. There also exists a maximum value
of m for which the angle 8 is equal to n/2, i.e, the wave propagates at right
angles to the waveguide length. For a sufficiently large wavelength, even at
m == 0 we arrive at the condition sin 8 == 1, i.e. this wave can propagate only
in a direction perpendicular to the waveguide axis. This means that the waves
with such and larger wavelengths cannot propagate in the waveguide. This
is the boundary wavelength Ao determined from (66.17) for sin 8 === 1, m == 0:

a == Ao/2, (66.18a)

which coincides with (66.11). This wavelength corresponds to the boundary
frequency (66.10).
Wavelength and phase velocit.y in a waveguide. Phase velocity is the velocity
of points on an equiphase surface of a wave propagating along a waveguide, i.e.
the velocity of the point of intersection of the waveguide walls with the front
of the plane wave. Figure 264 shows that this velocity is equal to

vph == c/cos 8. (66.18b)

Taking in (66.17) a wave with m == 0, we obtain sin 8 == A/(2a) and represent
formula (66.18h) in the form

(66.19)cc c
V h == == ---;::-==:::::;:===-

p Y1-sin28 V1-[A/(2a)]2 Y1-(A/Ao) 2 Y1-(WO/W)2'

which coincides with (66.14). Thus, the phase velocity is not associated with the
motion of any physical object and energy in space. We can imagine that the X-axis
in Fig. 264 depicts the edge of a desk, while the line depicting the wave-front
is a ruler. Then for an angle 8 sufficiently close to n/2, low velocities of motion
of the ruler perpendicular to its length lead to the velocities of the point of
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contact between the ruler and the edge of the desk .exceeding the velocity of
light. Obviously, the existence of this velocity does not contradict the limita­
tions imposed by the theory of relativity on the velocity of motion of physical
objects and on the velocity of propagation of interactions.

The wavelength A is also determined with the help of geometrical construc­
tion in Fig. 264:

Iv )..,
Aw = cos e = V 1-(A./A.O)2 ' (66.20)

which coincides with (66.15). Equation (66.16) also follows from this equation.
Group velocity. I t is clear that the phase velocity does not represent the velocity
of propagation of the wave energy along a waveguide. The energy of a plane
wave propagates in vacuum at the velocity c at right angles to the wave-front.
The velocity of propagation of energy in the direction of the waveguide axis
is determined by the projection of the velocity c onto this axis. This quantity
is called the group velocity. It can be seen from Fig. 264 that it is given by

vg = c cos e= c V1- (A/Ao)2 (66.21)

The group velocity is always smaller than the velocity of light. The term used
for this quantity is explained by the fact that it is equal to the velocity of the
peak value of the total amplitude of a group of waves having close frequencies
and propagating with different phase velocities which depend on frequency.
An aggregate of waves with different frequencies in a waveguide forms such
a group of waves for which the frequency dependence of phase velocities is
determined by formula (66.14). The most important physical property of the
group velocity has already been formulated: this is the velocity of propagation
of the energy associated with waves.
Relation between the group velocity and phase velocity. Multiplying Eqs. (66.21)
and (66.19) termwise, we obtain

(66.22)

This relation is of fundamental importance in the theory of propagation
of waves and is of universal nature, although is was obtained for a particu­
lar case by a special method.
Magnetic field. The magnetic induction of the field of a plane wave is perpen­
dicular to its' electric field strength. Consequently, the vectors of magnetic induc­
tion lie in planes parallel to the plane of Fig. 264. Since plane waves propagate
at an angle to the waveguide axis, the magnetic induction of the field of each
plane wave has components directed along the waveguide axis and at right
angles to it.

The same applies to the magnetic induction of the field of superposition of
plane waves that form a wave in the waveguide. This means that electromagnet­
ic waves propagating in the waveguide are not purely transverse waves. They
also have magnetic induction components in the direction of their propagation.
In other cases, there may exist waves with an electric field component along the
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direction of their propagation, and so on. It should also be noted that waves
in a waveguide are generally inhomogeneous.

Classification of waves in waveguides. The following classification of waves
in waveguides is generally adopted.

1. Transverse magnetic waves (TM-waves) defined by the condition H x = 0,
i.e. the magnetic field strength component along the direction of propagation
of waves is equal to zero. I t can be shown that in this case all characteristics
of waves are expressed only in terms of Ex.

2. Transverse electric waves (TE-waves) defined by the condition Ex = O.
In this case, the solutions are expressed only in terms of H x.

3. Transverse electromagnetic waves (TEM-waves) defined by the require-
ments Ex = 0 and H x = O. -

4. Hybrid waves for which H x ==1= 0 and Ex =1= 0 simultaneously. They appear
when the boundary conditions require that E x and H x are simultaneously differ­
ent from zero, which can be realized in real waveguides with a finite electric
conductivity of walls.
Resonators. Let us consider a capacitor whose electric field strength varies
with distance at high frequencies as shown in Fig. 262d. There is no electric
field on the cylindrical surface of radius r1 • This means that Poynting's vector
on this surface is equal to zero, and hence the electromagnetic energy flux through
this surface is equal to zero. We shall assume that this cylindrical surface is
a perfect conductor connecting the capacitor plates. The electric field on its
surface remains equal to zero. The magnetic field differs from zero, and its lines
of force are circles concentric with the points on the cylinder axis. The currents
flow along the cylindrical conductor from one capacitor plate to the other, as
it follows from the boundary condition (38.35) for the tangential component of
vector H. Now the entire closed cylindrical volume bounded by perfectly con­
ducting walls can be insulated and left alone. The electric field in it will oscillate
at a frequency (0 which is equal to the rate of recharging the capacitor plates.
A closed volume in which electromagnetic field oscillations occur is called a re­
sonator. The frequency of field oscillations in the absence of electromagnetic
energy losses is called the natural frequency of the resonator. The resonator
of this type is called the cylindrical resonator. In resonators, as well as in wave­
guides, different types of oscillations and standing waves may exist. They have
different resonance frequencies. For the type of oscillations in a cylindrical
resonator considered above the resonance frequencies (i)i of oscillations are
given by (i)i = 6ic/rO' where 6i are the roots of the zero-order Bessel's functions.
Thus, for this type of oscillations the resonator has a countless number of
resonance frequencies rather than one resonance frequency. For other possible
types of oscillations other resonance frequencies are obtained. In a real resonator
there are always energy losses and oscillations are damped. The terms and
concepts associated with oscillations in resonators are completely identical to
those used while considering mechanical oscillations.

A characteristic feature of any wavguide is the existence of the cut-off frequency••In
any waveguide, the phase velocity of electromagnetic waves is higher than the velOCity
of light.
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Problems

Ch. 9. Electromagnetic Waves

9.1. Find the average emissive power of a loop with current 1 = 10 cos rot. The area of the
loop is equal to a. Assume that 10 = 10 A, a = 100 em" and ro = 108 S-I.

9.2. lJsingthe data of Problem 9.1, calculate the maximum radiant flux density in the
plane of a current loop at a distance of 200 m from it.

9.3. Find the dipole arm if its emissive power is the same as that of the current loop in Prob­
lem 9.1. The frequency of dipole oscillations is equal to the frequency of current oscil­
la tions in the loop and each dipole charge is equal to I q I = 10-4 c.

9.4. Electrical breakdown in air oc-curs at an electric field strength E ~ 30 kV/cm. What
flux density of plane electromagnetic wave energy corresponds to this breakdown at a
moderate frequency?

9.5. A plane polarized electromagnetic wave with a cyclic frequency ro = 106 S-1 is inci­
dent from the edge of a conducting loop so that the magnetic induction vector of the
wave is perpendicular to the plane of the loop. The linear dimensions of the loop are
small in comparison with the wavelength. The area of the loop is a == 100 cm 2 and the
average energy flux density in the wave is (8) = 1 W/m2 • Find the maximum e.m.f
induced in the loop.

9.6. The solar energy flux on the Earth orbit is approximately equal to 8 = 1.4 kW/m2 •

Find the radius of a black spherical particle of density p = 5 g/cm" for which the light
pressure in the interplanetary space is equal to solar attraction. The mass of the Sun
is ms = 2 X 1030 kg, the gravitational constant G = 6.7 X 10-11 N .m2/kg2 . The
distance between the Earth and the Sun is R = 150 X 106 km.

9.7. A parallel-plate capacitor with circular plates of radius a is connected to a source of
constant extraneous e.m.f.s ~ext. The distance between the plates varies slowly accord­
ing to the harmonic law d = do + ~ sin wt. Find the magnetic field generated be­
tween the plates by displacement currents.

9.8. A loop of n turns having an area S lies in the plane XZ. A plane electromagnetic wave
propagates along the X -axis, The electric field vector of this wave is parallel to the
Y-axis: E,/ = Eo cos (rot - kx). Find the electromotive force induced in the loop.
The wavelength is much larger than linear dimensions of the loop.

9.9. The solar energy flux on the Earth orbit is equal to S = 1340 W/m2 • Find the ampli­
tudes Eo and Bo of a plane electromagnetic wave having such an energy flux density.

9.10. I t follows from formula (65.14) that the pressure exerted by an electromagnetic wave
on a perfectly reflecting surface at the angle of incidence e is Po = 2w cos" e, where w
is the electromagnetic energy density of the incident wave. Suppose that an isotropic
radiation is incident on the surface, Le. the density of energy fluxes arriving from
different directions is the same. Find the wave pressure on the surface.

9.11. Find the amplitude of the electric field strength of an electric dipole radiation in the
plane passing through a dipole at right angles to its direction at a distance of 10 km
from the dipole for the dipole emissive power of 10 kW.

9.12. The medium between the plates of a parallel-plate capacitor has a permittivity e and
a low electric conductivity 'V (nonideal dielectric). The capacitance of the capacitor
is C. A potential difference U is applied to the capacitor plates, after which they are
insulated. Find the law of time-variation of charge on each capacitor plate and the
displacement current flowing through the capacitor.

Answers

9.1. (P)=~oro415a2/(12nc3)=0.124 W. 9.2. Smax==~oro4Iijo2/(16jt2c3r2)=0.47·10-5 W/m2 •

9.3. I=Ioo/(IQlc)=3.3·10-4 m==O.33 mm. 9.4. (S)==[eo/(4~0)P/2E~=-=1.2·103kW/cm2 =

12 GW1m2 • 9.5. .g::::x = V2 (8) Ilo (eollo)l/4 aCJ)=9 mW. 9.6. r= 4sgR 2
=--:0.5· 10-7 m,

mcp
9.7. Hcp= -eo~extro ~r cos wt/[2 (do+~sinwt)2]. 9.8. ~ind =:: nkSEo sin et: 9.9. Eo=
1005 W/m, Bo=3.35·10-6 T. 9.10. p=Wtot/3. s.u, Eo=0.095 W/m. 9.12. Q=

CUe-Vile, 1drs = - (-vIe) cc-:r'!»,



CHAPTER 10

Fluctuations and Noises

Noises in a current loop are due to a discrete nature of charge car­
riers and current fluctuations. Noises cannot be completely eliminated
in principle, but they can be reduced. Under certain conditions, it is
possible to deted signals below the noise level. '

Sec. 67. Fluctuations in a Current-Carrying Loop.
Resistance Noise

The physical reasons behind the existence of noise are
discussed. Quantitative characteristics of noise in
current-carrying circuits are considered.

Theorem on equipartition of energy. The conclusion that each degree of freedom
of a system in thermodynamic equilibrium corresponds to the same energy equal
to kT/2 (k is the Boltzmann constant and T is the thermodynamic temperature)
plays an important role in statistical physics. The Brownian movement illu­
strates the validity of this statement. The mean kinetic energy «(mv2/2) of
translational motion of a Brownian particle satisfies the relation (mv2/2 ) =
3 kT/2, since there are three degrees of freedom of translational motion.
Application of the equipartition theorem to a freely suspended mirror. If a small
mirror is freely suspended from an elastic string, it cannot be completely at rest
in accordance with the equipartition theorem. As a result of interaction of the
mirror with thermal motion of the air molecules, torsional vibrations are excited
and each degree of freedom in this case must have an energy kT/2. It should be
recalled that the theorem on equipartition of energy is applicable not only to
the kinetic energy of an oscillator, but to its potential energy as well.

Let us denote the torsion modulus of the string by D, and the angle of its
deflection from the equilibrium position (Fig. 265) by rp, The equation for the
torsional vibrations can be written in the form..

Jcp= -DfP, (67.1)

where J is the moment of inertia of the mirror with respect to the torsion axis.

Multiplying both sides of (67.1) by ~ and integrating the expression thus ob­
tained, we can find the law of conservation of energy:

1/2 Jq>2 +1/2D fP2 = const, (67.2)
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Since the energy corresponding to each degree of freedom is equal to kT/2
we obtain from (6712) ,

Consequently,
(1/2 Jcp2) = (1/2 Dcp2) = 1/2 kT. (67.3)

(cp2) = kT /D. (67.4)

This means that the mirror cannot be in its equilibrium position, but oscillates
about it with a mean square deflection given by (67.4). Thus, (67.4) charac­
terizes the deviation of the angle from the mean value, i.e, describes the flue-

Fig. 265. Fluctuations of tor­
sional vibrations

Fig I 266. Fluctuations in an os­
cilIatory circui t

tuations. Obviously, if there is a certain torsional vibration, we can conclude
in accordance with the superposition principle that Eq. (67.4) characterizes
the fluctuation of the square of the amplitude.
Fluctuations in an oscillatory circuit. Oscillations with a frequency w = 1rV LC
are generated in the oscillatory circuit shown in Fig. 266. Physically, these
oscillations cause the mutual conversion of the electric energy in the capacitor
and the magnetic energy in the induction coil. The law of conservation of energy
has the following form in this case:

Q2/(2C) + L12/2 = const. (67.5)

where Q is the charge on the capacitor plates and I is the current in the circuit.
I t is impossible to imagine a circuit in which there is absolutely no current

at all and the capacitor plates carry no charge at all. To be more precise, such
a situation can be imagined only at 0 K. At any other temperature, the thermal
motion of electrons leads to the appearance of a charge on the capacitor plates
and a current in the circuit. From the theorem on equipartition of energy, we
have

(Q2/(2C)} = (L1 2/2) = kT /2. (67.6)

Consequently, the mean square charge on the capacitor plates and the mean
square current are given by the formulas

I{(Q)2) = kTC, {(I)2) = kTIL. I (67.7)
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On the basis of the principle of superposition, it can be stated that (67.7)
represents the mean square fluctuations of charge and current in an oscillatory
circuit.
Frequency distribution of fluctuations. Formula (67.7) describes only the total
mean square value of fluctuations and does not give any idea of its frequency
distribution. In order to solve this problem, we must solve the equation de­
scribing oscillations in an oscillatory circuit subjected to random forces which
are expressed in the form of a Fourier series (integral) in frequencies:

(67.8)

Equation (50.10) for the oscillations of the capacitor charge in this case
assumes the form

whence

LQ+RQ+ otc = "Jj UCJ)eiwt ,
co

(67.9)

(67.10)

which can be verified by differentiation. For mean square amplitude, we have
(I QQ* 1>=< 1Q 12 ) whence

(IQI 2
) = (QQ*) = <~

(a), w·

U U* eioote- iw't

(-LW2+iRW~17~)(-LW2_iRw+1/C)J >. (67.11)

T-he electromotive forces generating oscillations of different frequencies are
independent and not mutually correlated. Hence terms .with (0 =1= (0' are not
considered while averaging in (67.11) and we get

. (U 2 )

(Q2}=(IQI2)=~ (LW2-1/011+R2W2 • (67.12)
(a)

where (Q2) and (U~) are the average values of the real squares of amplitudes
of the respective quantitles.

Let us now turn to the continuous frequency spectrum, since the above cal­
culations were carried out for a discrete spectrum just for the sake of simplicity.
Actually, the spectrum of frequencies is continuous. We must go over from the
mean square values of frequencies in a discrete spectrum to the densities of the
corresponding quantities.

The mean square value of the total charge is the sum of the contributions
from individual frequencies. Hence

d <Q~)
dw do>, (67. 13a)
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where d( Q~ }/doo is the density of the squares of charge oscillations amp litudes
and d( Q~} is the mean square value of the amplitude of charge oscillations
in the frequency interval (00, co + dro), We make the following substitution
on the right-hand side of (67.12):

2 d (U~)
(Uw)~ dw dro, (67.13b)

where by d( U~ )/doo we mean the density of frequency distribution of the squares
of voltage amplitudes. Having made such a substitution, we can go over from
summation to integration in (67.12). This gives

(67.14)
r d (Q~)
J dro doi,
o

[d (U~)/dw] doi

(Lw 2-1/C)2 + R 2ro2

00

(Q2) = ) --.;...~__
o

whence
d (U~)

d (Q~~) = (L 2 1 (67 15)
UJ w - /C)2+R"J.w2 • •

Resistance noise. The mean energy of harmonic oscillations is proportional
to the square of the amplitude. Hence the density of the mean square amplitude
of oscillations characterizes their energy density. Subsequent analysis is based
on the assumption that the mean density of the squares of amplitudes

( d ~~~) = A)
is independent of frequency. The validity of this assumption stems from the
random nature of electromotive forces. Consequently, we can write (67.14)
in the following form:

d (U~)

A= dro . (67.16)

The integral is evaluated by elementary methods and leads to the equality

r dw
J (Lw 2 - 1/C)2+ R 2ro 2

o

1tC
2R •

(67.17)

Taking into account (67.16) and (67.17), we obtain from (67.7)

d (U~) = (2/n) kRT do, (67.18)

On the basis of (67.15) we get from (67.18)

2 (2/1t) kTR dw~ 6 19
d (Qw) = (Lw2 - 1/C)2+ R 2w2 • (7. )

It should be noted that d( U~ }/dro defines the density of the mean square
value of the amplitude, divided by the interval of cyclic frequencies to, Quite
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frequently, we use the density of mean square value of the amplitude divided
by the frequency 'V = 1IT instead of the cyclic frequency ro = 2n1T, i.e. by
the quantity d< U~ }/dv. Considering that ro = 2n'V and d o = 2n dv, we get

d <u~) f d (U~) (67.20)
dro 2'1 dv •

In this case (see (67.18», we get
d <U~} = 4kTR a-, (67.21)

This relation is called the Nyquist formula: the mean square value of the noise
voltage amplitude is proportional to the frequency interval and depends only on the
resistance of the circuit and;on~temperature.The existence of this noise was exper­
imentally discovered by Johnson. This noise is called the noise of a resistor
or the Johnson noise.
Equivalent noise generator. Noise due to the resistance R, whose mean square
voltage is determined by formula (67.21), can be represented as a result of the
action of the source of e.m.f. U" and the internal resistance R. The equivalent
current generator is shunted by resistance R and is characterized (in accordance
with Ohm's law) bYithe:mean square value of current:

d <I~) = 4kT dv/R. (67.22)

Power of noise generator. An aerial which receives radio signals and passes
them on to a receiver is equivalent to a generator having a corresponding
internal impedance. Its matching with the receiver means that the sum of the
reactive components of the impedance of the aerial and the receiver is equal
to zero, while their resistances are equal (see Sec. 49). The maximum power
which a generator (aerial) can transmit to the receiver [see (59.35)1 is)

P max = <U2)/(4R). (67.23)

where (U2) is the mean square value of the e.m.f. of the aerial and R is its
internal resistance, equal to the load resistance.

Suppose that the load resistance R does not produce any noise by itself and
is, say, an ohmic resistance maintained at 0 K. We can also imagine the load
in the form of an ideal receiver which does not have any internal noise. Neverthe­
less, the signal received from the aerial will contain noise whose power, in
accordance with (67.23) and (67.21), is

d (U~)
dPn = 4R =kTd'V. (67.24)

Upon a sufficiently large amplification, this noise will be audible in the
headphones and cannot be eliminated by any modifications of the receiver. It
can also be seen on the screen of .an oscilloscope. An increase in the amplification
factor of the receiver will proportionally amplify the legitimate signal at the
output and the noise (67.24) supplied to the input, without altering their ratio.
Maximum sensitivity. A signal can be detected if its power is higher than that
of the noise. Hence, we obtain the following expression from (67.24) for the
28-0290
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minimum power of a detectable signal:

dPo = kT dv,

Ch. to. Fluduatlons and Noises

(67.25)

This relation is valid for an ideal receiver, and the power dPo represents the
sensitivity threshold of the receiver.

The only way to increase the sensitivity (at a fixed temperature) is to decrease
the bandwidth dv of the frequencies being used. This, however, reduces the
information carried by the signal, and in every case there is a limit to which
the bandwidth can be reduced. For example, a band of the order dv = 10 kHz
is necessary for transmitting a speech over radio with the help of amplitude
modulation without significant distortions. This gives the following value of
the minimum detectable signal at room temperature (T = 290 K):

dPo = 1.38 X 10-23 X 290 X 104 W = 4 X 10-17 W. (67.26)

In order to transmit television pictures, the minimum bandwidth must be
of the order of 4 MHz since the information required to reproduce an image
is much more than that required to reproduce a speech. In this case, the minimum
power of the signal that can be detected by an ideal receiver is 1.6 X 10-14 w.
Equivalent noise temperature of a receiver. In actual practice, a receiver itself
is a source of additional noises which are superimposed on the aerial noise.
Hence the power dPI of the minimum signal that can be detected is higher than
dP 0 by an amount dPr corresponding to the internal noise of the receiver:

dP I = dP o + dP J • (67.27)

The power dP r of the internal noise of the receiver is usually expressed
through formula (67.25) in terms of equivalent noise temperature T eq.n in
the following form:

dPra=kTeq.ndv (67.28)

In an ideal receiver, Teq.n = 0 K. However, there is no need in practice
to approach this limit very closely. It is sufficient to make the equivalent noise
temperature about one-tenth of the temperature of the generator (aerial). In
this case, additional noise generated by the receiver is practically insignificant.
Noise factor of a receiver. In accordance with (67.26), the power corresponding
to the frequency interval dv = 1 Hz at room temperature is dP ol = 4 X 10-21 w.
The noise characteristic of a receiver is described by the noise factor

F= ~PI
n POI (67.29)

This factor is usually expressed in decibels.
Signal-to-noise ratio. The reliability of signal detection depends on the extent
to which the signal exceeds the noise level. This is especially important, for
example, for the quality of transmission and reception of musical compositions.
This characteristic of receivers and reproduction equipment is defined by the
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ratio of the signal voltage to the noise voltage.
Since this ratio is usually very large under nor..
mal conditions, it is expressed in decibels ac­
cording to the formula

O Us u: 6 30N-=2 logU=10log u'" (7. )
n n

where Us and Un represent the signal and noise
voltage respectively.

As an example, let us consider the signal-to­
noise ratio in a triode (Fig. 267). The signal is
supplied to the circuit input between the grid Fig. 267. Calculation of noise
and the cathode. The signal generator is character- on the grid of a triode
ized by an e.m.f. U g and an internal resistance
R 1 • The noise power due to the generator resistance can be written on the basis
of (67.21) as follows:

4kTd'V=U~1IRl' (67.31)
where Um is the e.m.f. of the equivalent noise generator connected in series
with R1 and the generator Ug.

Another source of noise is the resistance R across which the voltage is meas­
ured. The noise power of this source is equal to

4kT dv = U~2/R, (67.32)
where Un 2 is the e.m.f. of the equivalent noise generator.

To calculate the noise at the grid, we consider that the resistance R 2 is the
load for the noise generator Un l , while R1 is the load for the noise generator Un 2•

Obviously, the noise generators operate independently, and hence the mean
square value of the total noise voltage is equal to the sum of the mean square
voltages of the noises produced by each generator.

Hence, we obtain the expression for the mean square value of noise voltage
at the grid.

U:. = ( R:'+~I R2r+( Rlr:t~1 R t )

=4kT dv [ (R~+R~II)1I + (R~+Rt)1I ] = 4kT dv R~t~1I (67.33)

It should be noted that the mean square value of amplitude of the signal at
the grid is equal to

t (U g )2U 8 = R] +R" R2 • (67.34)

From (67.33) and (67.34), we obtain the ratio of the mean square signal voltage
to the mean square noise voltage at the grid:

U: U~ R'}, 1 P n; 35)
u~ = 4kTdv R1+R2 R1 = kTdv R1+RII ' (67.
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where P = U:/(4R 1) is the maximum signal power supplied by the generator
to the external circuit [see (67.23)]. I t can be seen from formula (67.35) that
for a perfect matching of the load and the generator (R 2 = R t ) , the signal-to-noise
ratio is not the best possible. On the contrary, a mismatching attained by increasing
the load resistance R 2 can double the signal-to-noise ratio.

The same conclusion can also be drawn by estimating the sensitivity. The
minimum power of the generator signal at the grid which can be distinguished
from noise is obtained from (67.35) if U~/U~ = 1:

p 1 = kT dv R1;tRz • (67 36)

Obviously, the minimum detectable power in the case of a matching of the
load with the generator (R 2 = R t ) is equal to 2kT dv, while in the case of mis­
matching (R 2 ~ R 1) , this value is equal to kT dv, In other words, the sensitivity
increases when the load is mismatched with the generator.

If an aerial is the generator in the above case, the above reasoning is valid
for the aerial-receiver system as well.

When the load and the generator are perfectly matched, the signal-to-noise ratio is not
the best. This reflo can be nearly doubled upon a mismatching of the load and the gen­
erator by increasing the load resistance R2• The same conclusion can be drawn by es­
timating the sensitivity: a mismatch between the load and the generator, attained by in­
creasing the load resistance R2, leads to an increased sensitivity.

Sec. 68. Schoffky Noise and Current Noise

The physical reasons behind the emergence of Schottky
noise are considered and its frequency distribution is
analyzed. Basic properties 01 current noise are dis­
cussed.

Source of Schottky noise. Electric current is the motion of discrete elementary
charges and not a continuous flow of charge. Hence it gives a sequence of cur­
rent pulses, each of which is associated with the arrival of an individual elec­
tron at the point under consideration. The current through an area element is
identical to the passage of shots which are emitted through it from a certain
device and have a random distribution in time. It is obvious that the number
of shots crossing the surface in identical successive small time intervals will
experience a considerable fluctuation. Similarly, the current will also fluctuate
in view of the random nature of charges. These fluctuations are called the Schot­
tky noise.
Frequency distribution of noise. The arrival of an electron at a point is equiva­
lent to a current pulse of extremely .small duration. If an electron is treated
as a point charge, this duration is taken equal to zero and the current pulse is
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assumed to be infinite, i.e. the pulse is treated as a delta-function. Since the
charge in the current pulse is equal to the electron charge e, we can express
the current associated with the arrival of an electron at the instant t i in the
form

(68.1)

Let T be a large interval of time during which N electrons arrive on the
average. The mean current generated by an electron arriving during this inter­
val of time is equal to (i) = elT; while the mean current due to N electrons is
given by the expression tL) = N (i) = NeIT. However, electrons arrive at
random, thus leading to current fluctuations which are responsible for the noise.
In order to determine the spectral composition of noise, we express the current
i(t) in the form of a Fourier series in the interval (-T /2, T/2):

where

00

i (t)=ao/2+ ~ (an cos nwt+bnsin nwt) (w=2nfT),
n=l

(68.2)

2 Tt
2

an = T ) i (t) cos tuot dt (n = 0, 1, 2, ... ). (68.3a)
-T/2

T/2

bn=: ~ i(t) sin tuat dt (n=1, 2, ... ). (68.3b)
-T/2

Taking into consideration the rule for integration involving a delta-fuction

~ j(t)()(t-ti)dt=j(t i),

and (68.1) we obtain from (68.3a) and (68.3b)

2e
an. = T cos nwth

In this case [see (68.2)],

b
2e.

n = ySln nwt,. (68.4)

00

i (t) = ; + ~ ~ cos tu» (t- t,).
n=l

(68.5)

The mean square value of current for the nth component is equal to

( 02) _ 4e
2 < 2 2nn t)_ 2e

2 (68.6)
In - T2 cos T - T2 •

Since individual electrons move at random and are not mutually correlated,
their contributions to the Fourier expansion for current will differ in phase.
In calculating the square of current fluctuations, the phase averaging will make
all terms with different frequencies vanish, and the series will contain only
terms with identical frequencies. Hence, for the mean square fluctuations of
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the nth Fourier component of the current due to N electrons arriving during
time T, we obtain

(T~) = N (i~) = 2e2N /T2= 2elolT , (68.7)

where 10 = eNI T is the mean current.
The number of components in the Fourier series whose frequencies lie be­

tween 'V and" + dv is equal to Tdv, since successive components are separated
from each other on the frequency scale by 11T. The interval T can be assumed
to be quite large and hence the interval between neighbouring frequencies
[(n + 1)/TJ - (nIT) = 11T will be quite small.

Summing the contributions of these components in the frequency interval dv,
we obtain the following expression for the mean square values of current fluctu­
ations on the basis of formula (68.7):

d (12) = (I~) T dv = 2elo". (68.8)

This formula describes the Schottky noise and is called the Schottky formula.
If negative values are included in the spectral interval of frequencies v the
factor 2 in formula (68.8) disappears. This approach is usually followed when
the exponential form of Fourier series or integrals is used.
Current noise. At very low frequencies, noise is generated due to various inhomo­
geneities of resistances. The mean square voltage of this noise decreases in
inverse proportion to frequency.

An experimental investigation of this noise, called the current noise, leads
to the following formula

(68.9)

where a is an empirical constant which depends on the geometry of the resistor
and its material. In large metallic conductors, there is practically no noise. In
various types of compound resistors, however, the noise is quite high.

The reason behind this noise is not clear so far. However, its role becomes
negligibly small in practically all cases with increasing frequency.
Methods of reducing noise. Noise distorts the shape of a true signal and should
therefore be suppressed. The signal-to-noise ratio provides a quantitative meas­
ure of the relation between a signal and noise. Our task is to find the ways in
which this ratio can be increased.

The amplification of a signal does not lead to the desired result, since the
amplifier increases both the signal and the noise supplied at its input to the
same extent and, besides, the internal noise of the amplifier is also added to
the signal as it passes through the amplifier. Hence the amplification decreases
the signal-to-noise ratio, i.e, deteriorates this characteristic and cannot be
used as a method for decreasing noise.

Resistance noise can be decreased by decreasing the temperature at which
the equipment operates. This method is widely used, but has its own lim­
itations. Firstly, it considerably complicates the operation and, secondly,
circuit elements change their electrical properties upon intense cooling, some­
times irreversibly.
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Schottky noise and current noise can be decreased by decreasing the current
while the current noise can also be decreased by increasing the signal frequency:
The increase in the signal frequency is limited by the high-frequency charac­
teristics of the circuits and circuit elements.

All kinds of noise are reduced upon decreasing the bandwidth. The band­
width, however, is limited by the signal properties, since every signal has a
finite width and a decrease in the bandwidth below the signal width consider­
ably distorts the signal, i.e. introduces a new noise.

Thus, the signal-to-noise ratio of devices can be improved by improving
their technical characteristics, although this approach is fraught with its own

~ I J

(0) (0)

to
\

(0) t

A
(a) (b)

Fig. 268. Isolation of a signal from a strong background noise

limitations. Hence methods- have been worked out to receive the signal in
such a way as to overcome these limitations. One of the most frequently used
methods consists in the following.

Suppose that we have a periodically repeating signal which is strongly dis­
torted by the background noise (Fig. 268a). The signal period can be determined
quite accurately, since noise does not distort the period. We can then synchron­
ize the moment of measurement of the signal with the periodicity of its vari­
ation, i.e. to measure the signal several times at the same point of its period,
say, at point a in Fig. 268a. Due to superposition of the noise, each measure­
ment gives a different result, but the mean value of a large number of measure­
ments yields the value of the signal at this point with an appropriate degree of
accuracy. In principle this accuracy can be improved indefinitely by correspond­
ingly increasing the number of measurements. Carrying out such measurements
for different points of the period, we obtain the shape of the signal for one period
without any noise distortions (Fig. 268b).



Appendices

I. SI Units Used in This Book

Quantity Unit

name Inotation I dimensions name I notation

Basic Units

Length l L metre m
Mass m M kilogram kg
Time t T second s
Current I I ampere A
Temperature T 8 kelvin K
Amount of substance 'V N mole mole
Luminous intensity I J candela cd

Derived Units
Velocity v, u LT-l metre per second m/s
Acceleration a LT-2 metre per m/s2

second per
second

Force F LMT-2 newton N
Pressure p L-IMT-2 kascal Pa
Momentum p LMT-l ilogram-metre per kg-mrs

second
Energy W,U,E L2MT-2 joule J
Power P L2MT-3 watt W
Moment of inertia J L2M kilogram-metre- kg·m2

squared
Moment of Iorce M L2MT-2 newton-metre N·m
Angular momentum L L2MT-l kilogram-metre kg·m2/s

sq uared per second
Electric charge Q, q TI coulomb C
Volume charge density p L-3TI coulomb per cubic C/m3

metre
Surface charge den- a L-2TI coulomb per metre C/m2

sity squared
Linear charge density If L-ITI coulomb per metre C/m
Absolute permittivity 8 L-3M-IT41 2 farad per metre F/m
Dielectric constant 80 L-3M-IT41 2 farad per metre F/m
Relative permittivity 87" dimensionless

Electric field strength
quantity

VImE LMT-3I-l vol t per metre
Flux of electric field N L3MT-31-1 volt-metre V·m

Electric potential cp L2MT-3I-l volt V
Di~ole electric moment p LTI coulomb-metre Cvm
Po arization P L-2TI coulomb per metre C/m 2

Electric displacement
squared

C/m2D L-2TI coulomb per metre

Displacement flux
squared

'I' TI coulomb C
(electric flux)

FElectric capacitance C L-2M-IT41 2 farad
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(Continued)

Quantity Unit

name Inotation I dimensions name notation

Volume energy density w L-IMT-2 joule per cubic J/ms
of electric and mag- metre
netic fields
Voltage U L2MT-3I-l volt V
Electric resistance R L2MT-31-2 ohm Q
Mobility of charge b M-IT 21 square metre per m2/V-s
carriers volt-second
Volume current den- i L- 21 .ampere per metre A/m2

sity squared
Magnetic moment of Pm L2I ampere-metre A-m2
current squared
Magnetic induction B MT-2I-l tesla T
Magnetic Dux <I> L2MT-2I-l weber Wb
Magnetic field H L-I1 ampere per metre AIm
strength
Inductance L L2MT- 21-2 henry H
Absolute magnetic J.L LMT-21-2 henry per metre HIm
permeability

henry per metreMagnetic constant I flo LMT-21-2 HIm
Relative magnetic IJ.r dimensionless
permeabllity quantity
Magnettzatton J L-1l ampere per metre AIm
Oscillation frequency 'V T-l hertz Hz
Cyclic frequency of (a) T-l second inverse S-1
oscillations
Electromagnetic field S MT-3 watt per metre W/m2

energy flux density squared

II. Relation between Formulas in SI and Gaussian System of Units

Although SI system of units is introduced almost everywhere, some­
times a transition from one system of units to another is still required.
This table is used for the conversion of formulas from SI to the Gaus­
sian system of units

Quantity I 51 IGaussian Qstem II Quantity I51 IGaussian system

Current I (4neo)1/21 Electric field E (43180) -1/2E

Current density j (431eo)1/2 j strength
(80/4n)1/2 DElectric dis- D

Electric charge Q (4neo)1/2Q placement
(4nIJ.0)-1/2 H

Charge density p (4neo)1/2p Magnetic field H
strength

Conductance y 4neoY Magnetic indue- B [1J.0/(4n)] 1/2 B
Capacitance C 4neoC tion
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Continued

QuantitY
1

51 IGaussian system ~ Quantity I51 IGaussian system

Magnetic flux <I> l flo/4n)] 1/2<1> Velocity of c {flo/so}- 1/2
Inductance L (4n8o)-lL light
Polarization p 41tEoP Magnetic sus- X 4nx

Magnetization J (4n/f.10) 1/2J
ceptibility
Dielectric sus- x 41tx

Electric resis- R (41tSO)- lR ceptibility
tance Permittivity
Electric dipole (4n80)1/2p

S S80
P Permeability Ji J1J1omoment

Magnetic mo- Pm (4n/flo) 1/2Pm Relative per- E,. e/80
ment of current mittivity

Scalar potential q> (4n80)-1/2q> Relative per- ....r ..../J10
meability

Vector poten- A [flo/(4n)]1/2A
tial

Bow to use the table. In order to convert a relation written in 81 into the corresponding
formula in the Gaussian system, each symbol from the "SI" column should be replaced by the
symbol from the column "Gaussian system". Using this rule in the reverse order, we can con­
vert formulas written in the Gaussian system into those in SI. Upon these transitions, me­
chanical and other nonelectric and nonmagnettojquantitles remain unchanged, as well as the
derivatives with respect to coordinates and time.

Examples illustrating the use of the table.
t. Write the Maxwell equation

curl H = J+ aD/at (SI)

in the Gaussian system. We have

curl [(4nJLotl / 2B] = (4nso)1;2 j + :, [( ~ )1/2 D] ,

i.e.
4n. t en

curlH=-J+---c c at
2. Write Poynting's vector

S = [c/(4n)] E X H (Gaussian system)
in SI. We have

s= (J.lo~t/2 [(4nsO)1/ 2 E X (4nJLo)1/2 B] = E X H.

Remark. A transition from SI to the Gaussian system always leads to correct results.
In the reverse transition (from the Gaussian system to SI), errors are possible if the formula
in the Gaussian system is written for vacuum. In this case, D = E, B = H, and one of the
quantities in the formula may turn out to be replaced by the other quantity, and the conver­
sion factors for these quantities are different. Therefore, before converting a formula from
the Gaussian system into SI, we should take care and write it so that it is valid for a medium
as well as for vacuum.
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The conversion of numerical values of quantities from one system of units to another is
made with the help of tables contained in the books on the systems of units.

(A.i)

(A.6)

(A.5)

(A.2)

(A.4)

(A.3)

III. Formulas of Vector Algebra and Calculus

1. The property of the scalar triple product of vectors:

A-(B X C} = (A X B)-C,

2. Decomposition of the vector triple product:

A X (B X C) = B (A-C) - C (A-B)

3. The definition of the vector nabla operator:

.., • iJ +_ 0 +_ a
v =lx- ly - lz-ox oy OZ

where i~t Iy , i z ar the unit vectors of the Cartesian system of coordinates.
4. The definition of the gradient operation:

grad <p = V<p.

5. The definition of the divergence operation:

div A = V-A_
6. The definition of the curl operation:

curl A = V X. A.
7. Vector identities:

02~ 02~ 02~

V -VqJ = V2cp = az2 + oy2 + OZ2 (A_7)

V X V 4P = 0, (A.8)

V ·(V X A) = 0, (A.9)

V_ X (V X A) = V (V -A) - V2A, (A.fO)

V (cp'l') = q>V'I' + 'i'Vq> (A.ff)

V-(cpA} = ~ (V-A) + A.Vcp (A.f2)

V (A-B) = (B-V) A + (A-V) B + B X (V X A) + A X (\' X B), (A.f3)

V (A-B) = B (\1.A) + A (V-B) + (B X V) X A+ (A X V) X B, (A.f4)

V·(A X B) = B-<V X A} - A-<V X B), (A.f5)

V X (cpA) = cp (V X A) + (Vcp) X A, (A.f6)

V X (A X B)=(B-V) A - (A-V) B + A:<V-B) - B <V-A) (A.f7)

8. Gauss' theorems: the closed surface S envelopes a volume V. The vector dS of the sur­
face area element is directed along the outward normal to the surface:

J(VoA)dV-pA.dS.
V s

i (Vcp) dV==p cpdS,
V B

j (V X A) dV = WdS X A.
v 8

(A.i8)

(A.i9)

(A.20)



444 Ch. 10. Fluduations and Noises

9. Stokes' theorems: the closed contour L bounds a surface S. The vector dl of the element
of the contour L coincides in direction with the positive circumvention which is connected
with the direction of the positive normal to the surface S through the right-band rule:

~ (V X A).dS-~ A.dl, (A.21)
B L

JdSxV<p= ~<pdl, (A.22)
S L

J(dS X V) X A==~ dl X A. (A.23)
S L

fO. Green's theorems:

I (<pV2.¢-"!'V2<p) dV = ~ (<pV"!'-1jJV<p)·dS,
V s

J(V<p X V1jJ) dV = -} ~ dS X (<pV1jJ-1jJV<p),
V B

J(V<p X V1jJ).dS= -} ~ (<pV"!'-1jJV<p)·dl.
B L

(A.24)

(A.25)

(A.26)
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Accumulator, 201
Anttrerroejectrfcrs), 186
Antiterromagnetic(s), 186
Antiterromagnetism, 2921
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Band, conduction, 220
Betatron, 369ff

stability, 371ft
Bohr magneton, 299
Boundary conditions tor field vectors, 263f

capacitance, 112, 118t, 127, 140, 152, 168, 170,
213, 333

Capacitorts), 118, 183, 419
cylindrical, 119, 170

two-layer, 155
parallel-plate, 119, 140, 143, 163, 167, 169f,

183, 377
spherical, 119

Cell(s),
Daniell, 200
galvanic, 197
polarization or, 200
voltaic, 198
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bound, 135f, 138, 147, 173

density of, 135
mobility ot, 231
polarization, 135
space, 107, 193
surface, 193

Charge concentration, 32
Charge density,

surface, 32, 106, 129
volume, 31, 121, 238

Charge invariance, 81
Circuit,

branched, 207
linear, 206
LCR, 327, 345
mutual Inductance, 347
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RC, 327
RL, 325
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betatron, 370
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Hall, 221
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propagation, 389
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elementary, 249t
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Foucault (eddy), 34~

molecular,
surface density ot, 259
volume density ot, 256t

non-setr-suatatned, 228, 230
saturation, 233, 238

density of, 230, 235
self-sustained, 228, 230
single-phase, 353
three-phase, 353
unit of, 57
volume, 62

Curie point, 184
lower, 184
upper, 184, 187

Curl of vector, 83t

Damping factor 347
Diamagnetics, 256, 273t, 277ft
Diamagnetic susceptibility, 281
Diamagnetism, 280
Dtelectrtcts), 101, 172

anisotropic, 134
linear, 13.4
nonpolar, 175ff
polar, vnn, 180

Dielectric domains, 185
Dielectric polarization, 132
Dielectric susceptibility, 134, 175, 184

tensor of, 185
Dipole, 123,

arm ot, 123
fIeld of, 123

Dipole moment, 123, 129t, 132,~153, 158, 170,
174, 182, 185 .

induced, 182
ot molecules, 175, 178t, 181
permanent, 182

Distribution, Boltzmann, 178
Divergence, 36
Domain, 291

boundaries or, 292

Effect,
Barnett, 298
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.gyromagnetic, 295,
Hall, 220ft

anomalous, 222
Meissner, 224
photoelectric, 23
piezoelectric, 188

inverse, 188f
longitudinal, 188
transverse, 188

pyroelectric, 189
direct, 189
inverse, 189

skin, 357ff,~411t
anomalous, 360f

ElectricIcbarge, 15ff
Electric conductivity, 101, 218ff

of gases, 228ff
ot liquids, 225

calculation ot, 226
Electric currentJ.. 30, 34

In vacuum, ~32ff
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Electric displacement, 139, 144, 147
Electric field strength, 121, 129, 131
Electric motor, 337

asynchronous d.c., 340t
synchronous, 339, 341

Blectrclyteta), 228
Electromagnetic induction, 300ff
Electrometer, 108
Electron(s), 15ff

conduction, 285
energy spectrum of, 20
tree, 285

Electroscope, 108
Electrostatic charging, 25
Electrostatic induction, 103, 115,.125, 130
Elementary charge, 26, 28t
Energy,
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ot charged conductors, 152

interaction, 149, 151t, 155
intrinsic, 151, 155
kinetic, 151, 155
potential, 151, 155, 158

ot dielectric in external field, 153
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ot electrostatic field, 148ff
exchange interaction, 289
Fermi, 22t
tree, 162, 164
ot magnetic dipole, 321
ot magnetic in external field, 316t
magnetic, density ot, 313
ot magnetic field, 309t

in presence ot magnetic, 313
total, 153, 155

Energy density, 150t
Energy flux, 383t

density ot 409
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Equation(s),

continuity, 41, 143, 212
D'Alembert, 393
tor field vectors ot electromagnetic wave, 108
Laplace, 96, 143t
Lorentz, 393
Maxwell, 47, 80, 245ft', 377ft'. 381ff
Newton, 277
Poisson, 96f, 144. 237
Richardson-Dushman, 235
tor scalar potential, 393
tor vector potential, 392
transmission line. 389
wave. solution or, 394

Experiment,
Einstein-de Hass, 296t
Millikan oil-drop. 26
Tolman and stewart, 218

Fermi level 23
Ferrimagnetlc(s) (territes), 293
Ferroelectric(s). 134, 187
Ferromagnetic(s), 259. 287ff
Ferromagnetism, 293
Field,

inside conductor, 191
outside conductor, 193
Coulomb, 83, 94, 123
critical, 223
electric, 48

constant, 76ft
strength ott 48

eIectrostatic, 82
in dielectric, 129
in presence ot conductors, too
in vacuum, 94ft
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Field,
external, 172, 176, 181
Hall, 222
local, 172, 176, 181
magnetic, sse, 426

in presence of magnetics, 254ft
of rectilinear current, 62
relativistic nature ot, 56
stationary, 240ft

In magnetics, 26t
saturation, 179, 181
ot solenoid, 315

Field lines, 81
Filter(s), 366ft

high-pass, 368t
iterative, 368
low-pass, 366ft'

Fluctuation(s), 427
in oscillatory circuit, 430

frequency distribution of, '31
Forbidden bandwidth, 22
Forcete),

acting on conductor, 160
Ampere, 58ft', 61, 161, 340
body, 272

acting on compressible magnetic, 320
coercive, 288
elastic, body (volume), 161
electromotive, 191
in electrostatic fjeld, 156ft'
extraneous, 194ft'
of interaction

between current-carrying conductors, 56
between rectilinear currents, 66
mechanical, 195

long-range, 182
Lorentz, 58ft, 61, 69, 338t
magnetic, 56
in magnetic fjeld, 270ft'
surface, 161
surface density of, 164
volume, 157, 165

Formula,
CIausius-Mosotti, 177
Stokes, 27
Thomson, 346

'Frequency,
cut-off, 422
Larmor, 278
resonance, 344

Function, Langevin, 179

Gain factor, 365
Generator(s), 35'ff

a.c., 302
equivalent noise, 433

Gradient, 87

Hall angle, 222
Helmholtz ring, 68
Hysteresis loop, 183t

Impedance, 329, 364t
characteristic, 365, 389t
input, 364
output, 364

Inductance, 310, 314, 321
mutual, 311, 347

Induction coil, 419
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Interaction,
Coulomb, 91
long-range, 47
short-range.. 47, 130
spin-orbital, 283

Joule heat, 197, 228, 337, 385

Larmor precession, 279ff
Law(s),

Ampere, 61, 64
Amp~re circuital, 240, 323

differential form, 242f
experimental verification of, 244
integral fOrIn, 240

Biot-Savart, 63ft, 66, 249
of conservation, 303

of angular momentum, 297
of charge, 35, 103, 193, 199

differential form, 41
integral form, 36

of electromagnetic energy, 383ft
of energy, 151, 155, 166
of mass, 165

Coulomb, 42ff, 50, 64, 72, 81, 94, 88, 186, 381
differential form, tt«, 80
t'Jeld form, 47

Curie, 283
Curie-Weiss, 185, 283, 291
Faraday, 340

of electrolysis, 227
of electromagnetic Induction, 195, 306ff

differential form, 306f
Joule, differential torm of... 202ff
Kirchhoff, 206, 208ft, 33011
Lenz, 325, 340
Newton,

gravitational, 46
second, 203
third, 65

Ohm, 100ff, 127, 202ff, 216, 222. 227, 840
in differential torm, 190, 195
in local form, 191

three-halves power, 236, 238

Magnet(s), permanent, 262
Magnetic dipole, 270ff
Magnetic field strength, 260
Magnetic induction, 61, 67

measurement of, 264
Magnetic moment, 118, 251, 284
Magnetic shielding, 268
Magnetics, 277
Magnetization, 255f, 260, 282
Magnetization curve, 287
Magnetoresistance, 222
Method(s),

Cavendish, 43, 45
depolarization, 200
of image charges, 123ft, 162, 470
mesh-currentL 331
resonance, 2"/

Model, Onsager, 182
Molecules,

nonpolar, 132
polar, 132

Moment ot torce, 157, 169
Momentum ot electromagnetic wave train, 618
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Network, four-terminal, 361ff
Neutron, 17f
Noise(s), 429ft

current, 436, 438
resistance, 432
Schottky, 436

Noise factor, 434

Oscillator, Hertzian, 396

paramagnetic(s), 255, 273f, 282
Permeability, 266, 273
permittivity, 139, 142, 147, 153f, 158ff

complex, 409
relative, 139, 177, 180ff, 184f, 189

Photon, momentum of, 415, 417
Piezoelectric(s), 187ft

polar axis of, 187
transducers, 188

Polarization, 146, 158, 166, 172f, 175, 180ff, 185
188

of dielectric, 129, 131ff
dielectric, 137f
ionic lattice] 133
residual, 18li
spontaneous, 184
temperature dependence of, 177

Potential, 144f, 148f, 152, 164, 166, 194
advanced, 395f
ealculatton of, 94
of conductor, 111
electrochemical, 198

absolute, 198
of t'Jeld of point charge, 89
of t'Jeld of surface charges, 90
normalization of, 88
retarded, 395
scalar, 88, 397
of system of point charges, 89
thermodynamic, 161
vector, 247ff, 252, 256

gauging of, 248
potential difference (drop), 199, 209, 212f.221

contact, 23f
Power of alternating current, 334

mean value, 336
Power tactor , 337
Poynting, vector, 384
Principle of superposition, 50, 81

field form, 51t
Process, isothermal, 161
Proton, 15ft
Pyroelectrics, 189

Q-tactor, 297, 347
Quark(s), 28

Radiation, electromagnetic wave, 392
Ratio,

gyromagnetlc, 295
signal-to-noise, 434

Resistance, 213
characteristic, 390
Internal, 199
ohmic, 195, 198f, 202
temperature dependence of. 220

Resonance,
In a.c, circuit, 343ft
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Resonance
current, 344ft
ferromagnetic, 294
paramagnetic, 279, 285
voltage, 343ft

Resonator(s), 418, 427

Scburnnann resonances, 46
SeU-energy, 149, 155

of point charge, 150
Self-Inductance, 315, 325, 347
Semiconductor(s), 101
Skin depth, 359
Spin 18
StabIlity,

radial, 371
vertical, 372

Statistics
Bose-Einstein, 224f
Fermi-Dirac, 20, 224

Step voltage, 215
Superconductivity, 223
Superconductor(s), 224

hard, 224
soft, 224

Surface, equipotential, 124ft
Susceptibility,

diamagnetic, 277, 280
temperature dependence of, 281

dielectric,
atomic 177
molecuiar, 177

Temperature,
critical, 223
Curie-Weiss, 184, 187, 291
N~el, 293

Theorem,
Earnshaw, 82, 91
of equipartition of energy 429
Gauss, ssrr, 77, 79

1
81f, 91, 95, 98, 103f, 110,

121, 137, 139, 147, 150, 155, 165, 210
reciprocity, 114
Stokes integral, 86f, 92
uniqueness, 124, 143
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Theory,
band, 219
of electric conductivity, 180

classical, 205
quanturnn, 180, 205, 219

of ferromagnetism, 289
potential, 83
of superconductivity, 225

Thermionic emission, 232
Thermionic work function, 19, 23
Time,

mean free, 206
relaXation

l
102

Transformat on,
fteld, 413

invariants, 414
gauge, 308f·
Lorentz, 72

Transfonner,
real, 348, 352
vector diagram, 350ft

Transmission line, 337, 385ft
Triboelectriftcat ion, 25

Vector diagram, 329
Velocity,

drift, 226f
group, 428
phase, 407, 412, 423, 426

Wave(s),
electromagnetic, 376ft

In conducting media, 409
in dielectric, 405
pressure of, 415

plane, invariance of, 413ft
Waveguides, 418ff, 421

regular, 421
Wavelength, 407

boundary, 425
in waveguide, 425

Wave number, 407
Wlmshurst machine, 198
Work,

of alternating current, 334ft
In electric fIeld, 82ft
In terms of potential, 89
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