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Preface

This course reflects the present level of advancement in science and takes into
account the changes in the general physics curriculum.

Since the basic concepts of the theory of relativity are known from the course
on mechanics, we can base the description of electric and magnetic phenomena
on the relativistic nature of a magnetic field and present the mutual correspon-
dence and unity of electric and magnetic fields. Hence we start this book not
with electrostatics but with an analysis of basic concepts associated with charge,
force, and electromagnetic field. With such an approach, the information about
the laws of electromagnetism, accumulated by studentsfrom school-level physics,
is transformed into modern scientific knowledge, and the theory is substantiated
in the light of the current state of experimental foundations of electromagnetism,
taking into account the limits of applicability of the concepts involved. Some-
times, this necessitates a transgression beyond the theory of electromagnetism
in the strict sense of this word. For example, the experimental substantiation of
Coulomb’s law for large distances is impossible without mentioning its con-
nection with the zero rest mass of photons. Although this question is discussed
fully and rigorously in quantum electrodynamics, it is expedient to describe its
main features in the classical theory of electromagnetism. This helps the stu-
dent to acquire a general idea of the problem and of the connection of the mate-
rial of this book with that of the future courses. The latter circumstance is quite
significant from the methodological point of view.

This course mainly aims at the description of the experimental substantiation
of the theory of electromagnetism and the formulation of the theory in the local
form, i.e. in the form of relations between physical quantities at the same point
1n space and time. In most cases, these relations are expressed in the form of
differential equations. However, it is not the differential form but the local
natu,re which is important. Consequently, the end product of the course are Max-
we!l S equations obtained as a result of generalization and mathematical formu-
latl.on of experimentally established regularities. Consequently, the analysis is
mainly based on induction. This, however, does not exclude the application of
the deductive method but rather presumes the combination of the two methods
of analysis in accordance with the principles of scientific perception of physical
laws. Hence, Maxwell’s equations appear in this book not only asa result of
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mathematical formulation of experimentally established regularities but also as ,
an instrument for investigating these laws.

The choice of experimental facts which can be used to substantiate the theory
is not unique. Thus, the theory of electromagnetism is substantiated here with
and without taking the theory of relativity into account.The former approach
is preferable, since in this case the theory of relativity appears as a general space-
time theory on which all physical theories must be based. Such a substantiation
has lbecome possible only within the framework of the new general physics cur-
riculum.

An essential part of the theory is the determination of the limits of its ap-
plicability and the ranges of concepts and models employed in it. These ques-
tions, which are described in this book, are of vital importance. In particular,
the analysis of the force of interaction between charges in the framework of the
classical theory (i.e. without employing any quantum concepts) shows that the
classical theory of electricity and magnetism cannot be applied for analyzing
the interaction between isolated charged particles.

The author is grateful to his colleagues at Moscow State University as well
as other universities and institutes for a fruitful discussion of the topics covered
in this book. He is also indebted to Acad. A. I. Akhiezer of the Academy of
Sciences of the Ukrainian SSR, Prof. N. I. Kaliteevskii and the staff of the
Department of General Physics at the Leningrad State University who care-
fully reviewed the manuscript and made valuable comments.

A. Matveev
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Introduction

At present, four types of interactions between material bodies are known to
exist, viz. gravitational, strong, weak, and electromagnetic interactions. They
are manifested on different three-dimensional scales and are characterized by
different intensities.

‘Gravitational interaction is noticeable only for bodies on astronomical scale.
Strong interactions can be observed only between certain particles when they
approach each other to quite small distances (10-'®* m). Weak interactions are
exhibited during mutual conversion of certain kinds of particles and become
insignificant as the particles are separated by large distances. Only electromag-
netic interactions are manifested in our everyday life. Practically, all “forces”
which are involved in physical phenomena around us, except for gravitational
forces, are ultimately electromagnetic forces. Naturally, all diverse relations
and phenomena due to electromagnetic interactions cannot be described by
the laws of electrodynamics since on each level of a phenomenon there exist
specific features and regularities that cannot be reduced to regularities on an-
other level. However, electromagnetic interactions on all levels are to a certain
extent an elementary link with the help of which the entire chain of relations
is formed. This makes electromagnetic phenomena important from a practical
point of view.

The theory of electromagnetic phenomena plays an extremely important role.
This theory is the first relativistically invariant theory, which played a decisive
role in the creation and substantiation of the theory of relativity and served
as the “training ground” on which many new ideas have been verified. Quantum
electrodynamics is the most elaborate branch of quantum theory, whose predic-
tions are in astonishingly good agreement with experiment, although at pres-
ent it is still not complete and free of internal contradictions. The philosoph-
ical aspect of electromagnetism is also very important. For example, specific
features of the field form of existence of matter are clearly manifested within
the framework of electromagnetic phenomena. The mutual conversion of differ-
ent forms of matter and energy is also clearly reflected in these phenomena.

The substantiation of the theory is presented in the book in two ways. When
the theory is substantiated without taking into account relativistic effects, the
experimental basis of the theory of electricity and magnetism is formed by the
invariance of an elementary charge, Coulomb’s law, the principle of superposi-
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tion for electric fields, the Biot-Savart law, the superposition principle for mag-
netic fields, Lorentz force, Faraday’s law of electromagnetic induction, Maxwell’s
displacement currents, and the laws of conservation of charge and energy.
When relativistic effects are taken into account for substantiating the theory,
the Biot-Savart law, the principle of superposition for magnetic fields, and the
Lorentz force no longer serve as independent experimental facts in the formula-
tion of the theory. The second way of substantiating the theory of electricity
and magnetism is presented not as the main line but as a side track chosen so as
to simplify the mathematical aspect of the problem. It includes the following
stages.

The relativistic nature of the magnetic field is demonstrated in Sec. 8, where
the formula for interaction of currents flowing in infinitely long parallel conduc-
tors is derived and Lorentz force is obtained from electric interaction of charges.
The field interpretation of these results allows us to find the magnetic induction
of current passing through an infinitely long conductor. The principle of super-
position for a magnetic field now becomes a corollary of the principle of super-
position for an electric field. The transition to magnetic induction for arbitrary
currents and the derivation of the corresponding equations are given in Sec. 35,
where the independence of local relations from the values of physical quanti-
ties at other points is effectively used. After this, the Biot-Savart lawistheoret-
ically derived in Sec. 37, thus concluding the analysis of the connection ex-
isting in the relativistic concept of space and time between the invariance of an
elementary electric charge, Coulomb’s law, the principle of superposition for an
electric field and the Biot-Savart law, as well as between the Lorentz force and
the principle of superposition for a magnetic field.



CHAPTER 1

Charge. Field. Force

Charge is the source and the object of action of an electromagnetic
field.

Field is the material carrier of eleciromagnetic inferactions between
charges, and is a form of the existence of matter.

Force is a quantitative measure of the intensity of inferaction between
charges.

Charges, fields, and forces are inseparably linked with space, time,
and motion of matter.

Their interrelation cannot be understood without taking info account
the connection with space, time and motion.

Sec. 1. Microscopic Charge Carriers

The properties of basic microscopic charge carriers
are described. The distribution of electric charge
in a proton and a neutron is discussed, and the phys-
ical meaning of electric charge is analyzed.

Classification. By microscopic charge carriers we mean charged particles and
ions which can carry both positive and negative charge. The numerical value of a
charge can only be an integral multiple of the elementary charge

|e| = 1.6021892(46)-10-1° C. (1.1)

In spite of persistent experimental attempts, it has not been possible so far to
detect microscopic carriers with a fractional charge (see Sec. 3).

About 200 particles and an enormous number of ions, atoms, and molecules
are known at present. A large number of particles exist only for a short time
after their creation and then disintegrate into other particles. In other words,
particles have a finite lifetime. In most cases, this lifetime is extremely small
and is of the order of a very small fraction of a second. Only a small number of
charged particles have an infinite lifetime. These are the electron, the proton, and
their antiparticles. Atomic nuclei contain protons, while the electron shells of
atoms contain electrons. It is these particles that are responsible for almost all
phenomena analyzed in a course on electricity and magnetism. In addition to
protons, nuclei also contain neutrons. These are electrically neutral and have
an infinite lifetime in nuclei. However, their average lifetime outside nuclei is
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about 17 min, after which they disintegrate into protons, electrons, and anti-
neutrinos.

The charge of ions is due to the fact that the electron shell of the corresponding
atom or molecule lacks one or several electrons (positive ions) or, on the con-
trary, has extra electrons (negative ions). Consequently, the treatment of ions
as microscopic charge carriers boils down to an investigation of electron and
. proton charges. :

Electron. An electron is the material carrier of an elementary negative charge.
It is usually assumed that an electron is a structureless point particle, i.e. the en-
tire charge of an electron is concentrated at a point. Such a representation is
intrinsically contradictory since the energy of the electric field created by a point
charge is infinite, and hence the inertial mass of the point charge must also be
infinite. This is in contradiction with the experiment since the electron rest
mass is m, = 9.1 X 10-3! kg. However, we must reconcile ourselves with this con-
tradiction in the absence of a more satisfactory and less contradictory view on the
structure (or absence of a structure) of electron. The difficulties associated with
an infinite rest mass can be successfully overcome in calculation of various effects
with the help of mass renormalization which essentially consists in the following.
Suppose that it is required to calculate a certain effect and an infinite rest mass
appears in the calculations. The quantity obtained as a result of calculations
is infinite and is consequently devoid of any physical meaning. In order to
obtain a physically reasonable result, another calculation is carried out, in
which all factors, except those associated with the phenomenon under con-
sideration, are present. This calculation also includes an infinite rest mass
and leads to an infinite result. Subtraction of the second infinite result from the
first leads to the cancellation of infinite quantities associated with the rest mass.
The remaining quantity is finite and characterizes the phenomenon being con-
sidered. Thus, we can get rid of the infinite rest mass and obtain physically
reasonable results which are confirmed by experiment. Such a method is used,
for example, to calculate the energy of an electric field (see Sec. 18).

Proton. A proton is the carrier of a positive elementary charge. Unlike an
electron, a proton is not considered as a point particle. The distribution of the
electric charge in a proton has been thoroughly investigated in experiments.
The method of investigation is similar to that used at the beginning of this
century by Rutherford in investigations of the atomic structure, which led to
the discovery of the nucleus. The collisions between electrons and protons are
analyzed. If we assume the proton to be a spherically symmetric distribution of
charge in a finite volume, the electron trajectory which does not pass through this
volume is independent of the law of charge distribution, and is the same as if the
entire charge of the proton were concentrated at its centre. The trajectories
of electrons passing through the volume of the proton depend on the specific form
of charge distribution in it. These trajectories can be calculated. Hence, by
carrying out quite a large number of observations of the results of collisions
between electrons and protons, we can draw conclusion about the charge distri-
bution inside the proton. Since very small volumes in space are involved, elec-
trons with very high energies are required for experiments. This necessity is
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Fig. 1. Electromaguetic structure Fig. 2. Electromagneticstructure
of a proton. Almost the entire of a neutron. The positive charge
charge is concentrated in a sphere is located near jthe centre, while
of radius r,. the negative charge is at the pe-

riphery. The positive and negative
charges compensate for each other,
and hence the neutron is electri-
cally neutral as a whole.?

dictated by the quantum theory. According to the de Broglie relations material
particles have wave properties, and the wavelength of a particle is inversely
proportional to its momentum. In order to perceive a certain part in space, it
is obviously necessary to use particles whose wavelengths are less than the
corresponding spatial dimensions of this part. This involves quite high momenta
of particles. Therefore the investigation of the electromagnetic structure of a
proton became possible only after the creation of electron accelerators with an
energy of several billion electron-volts. The result of these experiments is shown
in Fig. 1a. Here, the ordinate represents not the charge density p at a distance r
from the centre of the proton but the quantity 4nr?p which is the density of the
overall charge in all directions at a distance r from the centre. This is so be-
cause 4mr?p (r) dr is the total charge in a spherical layer of thickness dr. It can
be seen from the figure that the entire proton charge is practically concentrated in
a sphere of radius of about 10-'® m. After the first maximum, 4nr2p (r) does not
decrease monotonically, but another maximum exists.

2=0290
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Neutron. Similar experiments, carried out on scattering of electrons by neu-
trons, showed that the neutron has an electromagnetic structure and is not an
electrically neutral point particle. The distribution of electric charge in a neu-
tron is shown in Fig. 2a.

Obviously, a positive charge is located near the centre of the neutron, while a

negative charge exists at its periphery. The areas bounded by the curves and the
abscissa axis are equal. Consequently, the positive charge is equal to the negative
charge, and the neutron is electrically neutral as a whole. The sizes of the regions
in which electric charges are concentrated are approximately the same in a proton
and a neutron.
What does the continuous distribution of an elementary electric charge mean?
The area bounded by the curve and the abscissa axis (see Fig. 1a) is numerically
equal to the proton charge, while the shaded area is equal to the charge inside
a proton in a spherical layer of thickness dr at a distance r from the centre of
the proton. Clearly, this charge is just a small part of the total proton charge,
i.e. a small part of an elementary charge. However, it has not been possible to
discover in nature physical objects whose charge is a fractional part of the elemen-
tary charge. What, then, is the meaning of the statement that a small part of
an elementary charge is located in the volume 4nr2dr?

At present, it is assumed that a proton consists of two point quarks with a
charge 4-2|¢|/3 and one point quark with a charge—|e |/3 (see Fig. 1b). The quarks
move inside a proton. Their relative duration of stay at different distances from
the proton centre can be effectively represented as a spreading of the charge
over the proton volume, as shown in Fig. 1a. A neutron consists of two quarks
with a charge —| e |/3 and one quark with a charge +2| ¢ |/3 (Fig. 2b). The
charge distribution in a proton can be explained similarly.

Quarks have not been observed in free state in spite of considerable experi-
mental efforts. At present it is assumed that it is practically impossible to detect
quarks in free state since it requires an infinite energy. They do, however, exist
inside a proton. Such an assumption provides an explanation for a large number
of phenomena and is therefore accepted by physicists as a possible hypothesis.

There is no direct evidence of the presence of quarks inside a proton.

Spin and magnetic moment. In addition to charge, particles may possess angular
momentum, or spin. Spin is not due to the rotation of a particle since for such an
explanation under reasonable assumptions concerning the particle size, linear
velocities exceeding the velocity of light would have to be admitted. This, how-
ever, is impossible. Consequently, spir is considered as an intrinsic property of a
article.

P Spin is associated with the magnetic moment of a charged particle. This also
cannot be explained by the motion of the charge and is considered as a fundamen-
tal property.

In classical electrodynamics, magnetic moment appears only due to motion of
charges along closed trajectories. Consequently, the spin magnetic moment of
particles cannot be described in the classical theory of electricity and magnetism.
However, the magnetic field created by the spin magnetic moment can be described
phenomenologically if necessary. As a rule, the strength of this field is very
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small and attains large values only in the case of permanent magnets. The clas-
sical theory is unable to explain the mechanism of creation of this field, although

the field itself outside permanent magnets can be completely described by the
classical theory (see Sec. 38).

Electron Is considered as a point particle, although it leads to difficulties. If has not been
possible to experimentally determine the infernal electromagnefic structure of an elecfron.
Confinuous distribution of an elementary electric charge Is not connected with Hs

division info parts and only means that the law of motion of this charge in space Is taken
info account.

There is no charge smaller than an elementary charge. What, then, is the idea behind the
distribution of charge in a proton if the total charge in it is equal to an elementary charge?.
What is the main difficulty associated with the representation of an electron as a point
particle? What artificial method is used for overcoming this difficulty?

Sec. 2. Charged Bodies. Electrostatic Charging

The physical nature of processes resulting in electrostat-
ic charging of bodies in contact is elucidated. Some
information on the energy spectrum of electrons in
solids is given.

Thermionic work function. The forces that keep neutral atoms in a molecule
and neutral molecules in a solid are considered in the course on molecular physics.
The very fact of the existence of solids indicates that there are forces confining elec-
- trons inside asolid. In order to extract an electron from the solid, a certain work
against the forces retaining the electrons inside the solid must be performed.
Suppose that a solid body together with the surrounding medium is enclosed
in an adiabatic shell and is kept at a constant temperature T. Owing to thermal
motion and the velocity distribution of electrons inside the body, there will be electrons
whose kinetic energy is sufficiently high to allow them to overcome the forces keeping
them inside the body and thus leave the body. As a result, an electron “gas” is formed
near the surface of the body. In the course of their motion, the electrons of this
gas approach the surface of the body and are captured by it. If the number of
electrons leaving thevolume of the solid is, on the average, equal to the number of elec-
trons entering the volume of the solid from the layer of the electron “gas” adjoining
its surface, thermodynamic equilibrium is attained. In this case, the electron con-
centration near the surface of the solid has a definite value n,. This electron gas

is non-degenerate, and its density can be represented in the form of the Boltz-
mann distribution:

no = A exp [—®/(kT)], (2.1)
2
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n=oo where A depends only on the temperature 7', and
-0 n=5 @ is the thermionic work function.
Y :g According to the content of the Boltzmann dis-

tribution, the work function is the difference in
Y =L ? energies of an electron outside a solid and inside
it. However, electrons in a solid have different
energies, and only an analysis of their energy
spectrum clarifies what energy is meant while
-8 determining .

Energy spectrum of electrons. The laws of motion

I
)
I

—101— of microparticles aregiven in quantum mechan-
Ty ics, which allows us to calculate the energy spec-
1 trum of electrons if we know the law of variation

-1 g . _ 1 of their potential energy. These calculations are
o n= complicated by the fact that we must also take

into account the mutual interaction of electrons.
Fig. 3. Energy spectrum of a The exact solution of such problems cannot be
hydrogen atom. obtained even with the help of modern computers

and will hardly be possible in future. But there
is no need for them, since it is possible to work out approximate methods
which meet practical requirements sufficiently well. It is important to
establish that this spectrum exists and is discrete for electrons contained in a
finite region of space. It determines various properties of a body. Experimental
investigation of these properties allows us to reveal the peculiarities of the energy
spectrum. Consequently, the energy spectrum can be studied both theoretically
and experimentally.

The energy spectrum of electrons in solids is investigated in detail. Its basic
features consist in the following. Energy levels in an isolated atom form a dis-
crete set of energies.

Figure 3 represents idealized energy levels of a hydrogen-like atom. In ana-
lytical form, the electron energy on the nth level is given by

W, = —Aln?,

where A4 is a positive quantity expressed in terms of an elementary charge, mass
of the nucleus and electron, and Planck’s constant. Electrons on the leveln =1
have the lowest energy. The separation between the levels amounts to several
electron-volts, these distances decreasing with increasing n.

Since electrons obey the Fermi-Dirac statistics, only one electron can exist
in each quantum-mechanical state. The quantum state is characterized not only
by energy. In a hydrogen-like atom, itlis also characterized by the angular mo-
mentum of the electron in its orbital motion in an atom, its orientation in space,
as well as by the orientation of the electron spin. These two latter characteristics
are also quantized, i.e. have a discrete set of numerical values. As a result, it
turns out that each energy level contains not one but several electrons. Calculations
show that the level » = 1 may contain two electrons which differ in the spin orien-
tation (only two spin orientations are possible). The angular momentum on this
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level may only be equal to zero. On the next level n = 2, the angular momentum
of the electron may have, in addition to the zero value, a value differing from
zero. For the zero value of the angular momentum, there is no sensein determin-
ing its spatial orientation, in contrast to the case when the angular momentum
has a nonzero value. For n = 2, the angular momentum has three possible orien-
tations. Consequently, there are four quantum-mechanical states on the level
n = 2 corresponding to different magnitudes and spatial orientations of the
angular momentum. In each of these states, the electron spin may have two orien-
tations, and hence in total there are eight quantum-mechanical states on the
energy level n = 2. This means that this level may contain eight electrons alto-
gether. It turns out that the next levels may contain 18, 32, 50, etc. electrons.
Since the stable state of an atom (ground state) corresponds to the state with
the lowest energy, the energy levels must be filled starting from the level n = 1,
and the filling of the next level starts only when the previous level is completely
filled by the electrons. A complex of electrons with a certain value of »n is called
an atom shell. Atom shells are usually denoted by the letters K, L, M, N, etc.
according to the following array:

n 1 2 3 4 5
Electron
shell K L M N O

For example, instead of saying “an electron on the level n = 2" we say “an electron
of the L-shell”.

The situation changes for the atoms constituting the crystal lattice of a solid.
The very existence of crystal lattices indicates that there is an interaction be-
tween atoms, which substantiates the lattice formation. Consequently, the atoms
in a lattice cannot be considered isolated. We must, therefore, consider the
entire crystal lattice as a single system and speak about the energy levels of this
system. It turns out that the energy spectrum of the crystal lattice is connected
with the energy spectrum of isolated atoms through a simple relation, viz. as a
result of interaction between the atoms, each of the energy levels n = 1,2, ...
splits into a large number of closely spaced sublevels on which all the electrons, which
were initially on the corresponding level of isolated atoms, can be arranged. For
example, the K-shell of an isolated atom is occupied by two electrons. If atoms
constitute a crystal lattice consisting of N, atoms, the level n = 1 splits into N,
sublevels each of which contains two electrons with different spin orientations,
i.e. 2N, different quantum-mechanical states occupied by 2N, electrons which
formerly belonged to the K-shells are formed in total in the crystal lattice.

A set of closely lying energy levels formed as a result of splitting of a certain energy
level of an isolated atom is called the energy band, or simply the band. We can speak
of the K-,L-, etc. bands corresponding to the K-, L-, . . . shells of isolated atoms.
The schematic diagram of band formation is shown in Fig. 4. As was mentioned
above, the separation between different levelsinside the bands is extremely small.
On the other band, the distance between different bands remains considerable
and is equal, in order of magnitude, to the distance between the energy levels
of isolated atoms. The spacings between the energy bands occupied by electrons
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are also called bands. These bands are termed for-
bidden bands since electrons cannot exist in these
n bands.

Thus, the energy spectrum of electronsina sol-
id consists of allowed and forbidden bands. The
distance between the energy levels within each al-
lowed band is extremely small in comparison with the
forbidden bandwidth. The energy level diagram
considered above for an isolated atom is idealized.
If we take into account the interaction between
Fig. 4 Formation of emergy  the electrons in greater detail, it turns out that
bands. the energy of electrons in a shell is not the same

but depends, for example, on the angular mo-
mentum. The energy of the electron with a higher value of n may be not
higher but lower than the energy of electrons on the preceding level. As
a result, the sequence of filling shells with electrons may change. The struc-
ture of the energy bands in a crystal and their filling with electrons will change
aﬁcordingly. However, the general nature of the spectrum of a solid remains un-
changed.
Fermi energy. The ground state of a solid is the state with the lowest possible
energy. Consequently, at the temperature 0 K all quantum states of electrons must
be filled successively, without gaps, starting from the level with the lowestenergy.
Since the number of electrons is finite, there isa finite filled level corresponding to
the highest energy, while the upper-lying levels are vacant. Thus, at 0 K there
erists a distinct boundary between the filled and unoccupied levels.

At a temperature other than 0 K, this boundary is blurred, since as a result of
thermal motion, the energy of some electrons turns out to be higher than the
boundary energy corresponding to 7' = 0 K, while the energy of some other elec-
trons is lower than the boundary energy. Thus, some energy levels which were
free at 0 K will be occupied, while some of the previously occupied levels will
become empty. The width of the transition region from almost completely filled
levels to almost completely unoccupied energy levels is of the order of kT. In this
case, the energy distribution of electrons is described by the Fermi-Dirac function

F(E, T) = {1 + exp [(E — W/(:D), (2:2)

where E is the electron energy and p the Fermi energy which depends on tem-
perature. The Fermi energy is defined as the energy for which the Fermi-Dirac
function is equal to 1/2.

The concept of the Fermi energy for metals is quite obvious. I'n this case, the
Fermi energy is the energy of electrons on the level which is filled at T = 0 and
above which the levels are empty. This definition is exact for 7 = 0 K and fairly
accurate for all temperatures at which “blurring” of the Fermi distribution is
slight (for most metals, this statement is valid up to the melting point and even
higher).

The Fermi energy for dielectrics corresponds to the middle of the forbidden band
(for T = 0 K) lying above the uppermost completely filled band. Since no elec-
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Fig. 5. Potential well for an electron in a metal (a) and
in a dielectric (b). The thermionic work function @ is the di-
ference hetween the energy E, of an ‘electron at rest in vacuum
and the eneréy p of the Fermi level.

tron can occupy this level, the Fermi energy does not correspond to the energy of
any real electron in a dielectric. This, of course, does not make it less important
for the description of statistical properties of electrons in dielectrics by using
formula (2.2).

The theory shows that the thermionic work function ® appearing in for-
mula (2.1) is connected with the energy p of the Fermi level through the relation

® = Ey —p, (2.3)

where E, is the energy of an electron at rest outside the conductor in a vacuum.
Thus ® is the work performed in shifting an electron from the Fermi level to beyond
the limits of the solid. For metals, this statement has a literal meaning, while for
dielectrics it is conditional to a certain extent since there are no real electrons
on the Fermi level. I'n both cases, however, it is the work done to extract an electron
from a solid against the forces confining electrons in it. The existence of work func-
tion is manifested, for instance, in photoelectric effect, when the energy of a pho-
ton absorbed by a metal is completely transferred to an electron. The work func-
tion can be directly determined from the photoelectric threshold. Hence we
can say that electrons inside a solid are in a potential well of depth ®. The form
of potential wells for metals (a) and for dielectrics (b) is shown in Fig. 5 (the
energy levels occupied by electrons are hatched). The gap between the levels E4
and E, is the forbidden band. It should be noted that the work function for di-
electrics strongly depends on the degree of purity of the material. Even slight im-
purities can considerably change the work function. Besides, the work function
depends on even very low contamination of the surface. The work function for
pure metals is of the order of several electron-volts. For example, it is equal to
4.53 eV for tungsten, 4.43 for molybdenum, 4.39 for copper, etc.

Contact potential difference. The forces confining electrons to a solid are elec-
tric in origin. They are due to the potential difference between the points outside
a body and its inner points. In other words, the electron gas near the surface is
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dielectric (b), and dielectric-dielectric (c) surfaces.
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subjected to the action of electric forces that tend tog pull [ electrons into the body.
These forces are the stronger, the larger the work function @. They act in a very
thin layer of molecular dimensions (d ~~ 10-1° m). Consequently, the effective
intensity of the electric field due to which these forces appear is very high:

Eqg ~®/(| € | d) ~ 10 V/m, (2.4)

where we took into account the fact that in order of magnitude, the work func-
tion is equal to several electron-volts.

Let us bring together the surfaces of two solids so that the layersof the electron
gas near these surfaces overlap in the gap between them. Consequently, the
bodies will exchange electrons. Since the forces pulling electrons into a body are
stronger in the body with a larger work function, the electrons of the body with a
smaller work function will go over to the body with a larger work function when
two bodies approach each other. As a result, the former body will acquire a positive
charge, and the latter a negative charge. Hence an electric field arises between the
surfaces and prevents the motion of electrons which generated this field. The
intensity of this field attains a certain value, after which a further transition
of electrons from one body to the other is terminated, and equilibrium state
sets in. The surfaces turn out to have charges opposite in sign but equal in mag-
nitude. A potential difference, called the contact potential difference,
appears between these surfaces, as between the plates of a capacitor.

The contact potential difference can be found from the following considera-
tions. Since electron equilibrium sets in between the bodies, the Fermi energies
of these bodies must be equal, and hence the upper points of the potential wells
are displaced relative to one another. Consequently, a potential difference and
electric field intensity appear between the surfaces of the bodies.

Figure 6 illustrates the contact potential difference across a gap between
two metals (Fig. 6a), between a metal and a dielectric (Fig. 6b) and between two
dielectrics (Fig. 6¢). The difference in the formation of contact potential diffe-
rence between a metal and a dielectric consists in that the electric field does not
penetrate the metal but penetrates the dielectric to a small depth (in Fig. 6b, c,
the penetration depths are denoted d, and d,). Consequently, a potential drop
in dielectrics occurs not only between the surfaces but partially in a thin layer near
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its surface as well. The thickness of this layer, however, is usually small in com-
parison with the distance between the surfaces, so that this circumstance can
be ignored to a high degree of accuracy.

Figure 6 shows that the"difference in energies corresponding to upper points
of the potential wells is equal to ®, — @,. Hence, the contact potential differ-
ence between the surfaces of bodies in electron equilibrium is given by

[Ap | =]®; — D, |]e] (2.9)

It should be noted that the potential decreases in the direction from positively
charged bodies to negatively charged ones. Therefore, the change in potential is
opposite to the change in the potential energy of an electron, i.e. the potential
decreases in the direction from the first body to the second.

Electrostatic charging. If flat surfaces of two bbdies between which a contact
potential difference exists are moved apart and kept strictly parallel, the charges
on the surfaces will remain, and the bodies will carry unlike charges. However,
it is practically impossible to move the surfaces apart in such a way that they
remain strictly parallel, since different regions move apart with different veloc-
ities. The results of moving conductors and dielectrics apart are different in prin-
ciple.

When flat surfaces of conductors are drawn apart, the charges on them can
move over the surface. If some regions of the surfaces are drawn apart before
the others, the charge density on them will decrease at the same potential differ-
ence as in the case of a capacitor. As a result, the bodies will exchange charges
in order to restore the electron equilibrium. This exchange occurs through the
electron cloud at a given region of the surface and as a result of motion of charges
over the surface in other regions. The regions of the conductor surface, which
were drawn apart to a sufficiently large distance and thus lost contact through
the electron cloud near the surface, turn out to be practically uncharged. The
charge is retained only on those regions of the surface which. are still in electron
contact. Finally, a moment.comes when the electron contact is observed only
on an infinitely small surface area containing very small charge. For this reason,
no electric charge remains on the conductors when they are drawn apart completely.

The situation is different when dielectrics are drawn apart. The charges on
the dielectrics cannot move along the surfaces, and the potential itself may be
different in different regions of the surface. When these regions of the surface
are drawn apart, the potential difference then increases in the same way as the
potential difierence between the capacitor plates when the charge on the plate is
constant and the distance between the plates increases. The charge density on
the surfaces does not change significantly. After the electron contact through
the electron cloud near the surface has disappeared, electric charges remain on
the regions of the surface. As a result of complete separation of the dielectric sur-
faces, they tecome carriers of equal but opposite charges. This process is called elee-
trostatic charging.

In order to ensure a closer approach of dielectric surfaces and the formation
of a contact potential difference, the bodies are usually rubbed against each
other. This process is called triboelectrification. However, friction in this case
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has nothing in common with electrostatic charging. It would be more correct
to call this effect charging by contact. The terminology was established before
the physical nature of the phenomenon was clarified.

The work function of dielectrics depends on the purify of composition and the state of
the surface.

When two dielectrics are brought in contact, elecirons are fransferred from the body with
a smaller work function fo the body with a greater work function.

The separation between energy levels inside each allowed energy band is extremely
small in comparison with the width of the forbidden band. The Fermi energy in a dlelectric
does not correspond to the energy of any real eleciron in the dlelectric.

The thermionic work function is the work required fo fransfer an electron from the
Fermi level outside the solid.

What is the relation between the energy levels of an isolated atom and the energy bands
of a solid? Which factors are responsible for the formation of energy bands?

How can the Fermi energy in metals be visually interpreted?

Why is this interpretation inapplicable to dielectrics?

How can the signs of charges of bodies in contact be determined? Why cannot metals be
electrically charged by contact?

Sec. 3. Elementary Charge and Its Invariance

The experiments proving the existence of an electric
charge and the absence of charges that are fractions
of an elementary charge are described. The experimen-
tal evidence on the identity of positive and negative
charges as well as the invariance of these charges are
discussed.

Millikan oil-drop experiment. Although the idea of discrete nature of electric
charge was put forth in a clear form by Franklin as< early as in 1752, it was
rather speculative. The discreteness of electric chargs was established as a fun-
damental experimental result following the discovery of the laws of electrolysis
by Faraday (1791-1867) in 1834. However, such a conclusion was drawn only
in 1881 by Helmholtz (1821-1894) and Stoney (1826-1911). Soon afterwards,
Lorentz (1853-1928) developed in 1895 the theory of electromagnetism which is
based on the existence of elementary charges (electrons). The numerical value of
an elementary charge was theoretically calculated from the laws of electrolysis,
since the value of the Avogadro constant was known. A direct experimental
measurement of the elementary charge was made in 1909 by Millikan (1868-
1953).

The experimental set-up used by Millikan is shown in Fig. 7. Minute spherical
particles move in a viscous liquid in a uniform electric field E.The particle
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is subjected to a lifting force acting against the
force of gravity (the density of the particle is
higher than that of the liqyid), and to the force fg,
of viscous friction acting against the velocity.

According to Stokes’ formula, the force of vis-
cous friction is proportional to velocity. At a ’
constant particle velocity, the sum of forces acting . / / 2
on it is equal to zero.

All forces, with the exception of the force == - = = -
acting on the particle due to the electric field, Fig. 7. Schematic diagram of
can be measured experimentally as the particle Millikan’s experiment.” -
moves in a medium in the absence of an electric '
field. Having studied the motion of the particle in the electric field we calcu-
late the force gE. This allows us to calculate the particle charge g, since the
field strength E is known.

We can also change the field strength and ensure that the particle is in a state
of rest. In this case, there is no friction and the other forces are known. Conse-
quently, we can calculate the value of ¢ if we know the value of E.

The charge of a particle changes with time. This is reflected in the motion of
the particle. Having determined the charges ¢, and g, of the particle at differ-
ent instants of time, we can determine the variation of charge

Ag =g, —qpe 3.1)

After carrying out a large number of measurements of charges, Millikan found
that Aq is always an integral multiple of the same quantity | e |:

Aq=nle|, n =41, £2, e e (3.2)
' le| =1.6.10"1C. (3.2a)

Resonance method for measurement of charge. The methods used for directly
measuring an electric charge were later perfected. At present, measurements can
be made with such precision that it is possible to detect decimal fractions of an ele-
mentary charge. The most effective method used for such measurements is the
resonance method shown in Fig. 8. A sphere of a very small mass m is fixed to a
very thin elastic rod. Under the action of elastic forces resulting from bending
of the rod, the sphere oscillates about its equilibrium position with a natural
frequency wo which can be measured experimentally. If the sphere carries a
certain charge ¢, it undergoes forced vibrations under the action ~f an alternat-
ing electric field. The amplitude of these vibrations depends on the ratio of the
frequencies @ and wy. The maximum amplitude of vibrations is attained at res-
onance (@ =~ w,). In the resonance state, the amplitude of vibrations of the
sphere is equal to

Ares = qEQ/(ma?), 3.3)

where Q is the quality of the system and E, is the amplitude of the electric;field.
Let us estimate the potentialities of this method. Suppose that m = 1 mg =
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P 10-¢ kg; E, ~ 10° V/m; ¢ = 1.6 x 10" G;
0o = 1071 s71; and Q =~ 100. In this case,

40-19. .40%
\ Apgg o 18T ACAR 1)~ 1.6.40 m =160 pm.

/ \\ (3.4)

/ 1\ The value of Ares (160 pm) is quite large and
/ I \ we can easily measure a small part of this quan-
/ \ tity. Consequently, this method can be used for
_ y measuring electric charges that are much smaller
3 oy than 1.6 X 10~'* C. This method has attained
7z <_/ such a degree of perfection that it can be used
m,q for measuring, in principle, a fraction of an ele-

«— > mentary charge, if only it existed.
E = E,cos wyt As the charge on the sphere changes by Ag, the
amplitude of resonance vibrations changes ab-

Fig. 8. Resonance method for ruptly:
measuring electric charge.

Adres = AGEQl(ma?). (3.5)

As a result of measurements, it was established with a very high degree of pre-

cision that the charge on the sphere always changes by an integral multiple of an
e’llementary charge, and that there are no charges that are fractions of an elementary
charge.
Nonexistence of fractional charges. Following the predictions concerning the.
existence of quarks, many serious attempts were made to detect fractional charges
It is assumed that quarks are particles which constitute most of the heavy
elementary particles (protons, etc.). It was predicted that quarks must carry
an electric charge of 1/3 and 2/3 of an elementary charge (with appropriate sign).
Various methods, including the resonance method, were employed by many
scientists to detect quarks. All these attempts proved unsuccessful. Thus, at
present it has been experimentally established to a sufficiently high degree of accu-
racy that fractional charges do not exist in free state.

The words “in free state” are quite significant, since the experiments were di-

rected at quests for free quarks. This, however, does not mean that quarks do not
exist in bound states inside elementary particles. A direct experimental verification
of this statement, however, has not been made.
Equality of positive and negative elementary charges. Negative, as well
as positive, elementary charge was measured in the experiments described
above. The results of these experiments proved their equality to the same degree
of accuracy as the precision with which the values of a charge were measured.
This is not a very high degree of accuracy. For example, it can be stated that a
positive and a negative elementary charge differ in their absolute value by not
more than one-tenth of their magnitude, i.e.

llesl — el 1
teitel <. e
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This accuracy is quite unsatisfactory since the theory presumes an exact equal-
ity of absolute values of negative and positive elementary charges.

The accuracy of estimation can 4e immensely improved if we do not di-
rectly measure the value of an elementary charge. It is well known that equal
numbers of protons and electrons are present in atoms. Bodies also contain the
same number of electrons and protons, and hence the equality of a proton and
an electron charge can be estimated by measuring the neutrality of bodies.
This can be accomplished with an extremely high degree of accuracy since even
a slight violation of neutrality results in enormous forces of electric interaction
between bodies, which can be easily detected. Suppose, for example, that two
iron balls of mass 1 g each are separated by 1 m and are not neutral because the
charge of a proton differs from that of an electron by a millionth part of the
absolute magnitude of the charge. Let us estimate the repulsive force between the
spheres. Each gram of 2$Fe contains 6 X 10% X 26/56 charges of each type.
Consequently, a departure from neutrality just by 107¢ results in a charge

gq=1[1.6.10"1.10°.6 . 10% . 26/56] C = 4.46 - 10~ C (3.7

on each sphere. The repulsive force between these spheres is equal to

F= -g—:—: (4.46-107%)2.9.10° N=1.8-10? N=18 MN. (3.8

1

43'[00

This means that the repulsive force between the spheres is equal to the force
exerted on the railway track by a goods train weighing 2000 tonnes. And this
is the force resulting in just 2 grams of iron if the proton and electron charges
differ by a millionth part! It is obvious that forces between two iron spheres
which are extremely small in comparison with (3.8) can be easily measured. If
such forces are not detected experimentally, this indicates a corresponding in-
crease in the accuracy with which the absolute magnitude of the charge of an elec-
tron is equal to that of a proton. At present, it has been experimentally established
that the magnitude of the negative elementary charge of an electron is equal to the
positive charge of a proton with a relative accuracy of 10-2!, i.e.

lewl—1lel < 10-21, (3.9)

legl

The proof described above for the equality of absolute values of positive and
negative elementary charges may appear to be not quite rigorous. We can imag-
ine a body consisting of atoms or molecules, in which the elementary charges
are not equal in magnitude, although their number in each atom or molecule
is the same. In this case, atoms or molecules must have a charge. But the body
as a whole may remain neutral if, in addition to these atoms or molecules, it
contains the required number of electrons or positive jons (depending on the
sign of the charge on atoms or molecules). Such an assumption, however, leads
to complications which are difficult to reconcile with. For example, we have
to discard the notion that bodies have a homogeneous structure, and accept that
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their structure depends on their size, etc. Nevertheless, it is desirable to have
a more straightforward and direct proof for the equality of absolute values of
positive and negative elementary charges in atoms. Such a proof has actually
been obtained.

The neutrality of individual atoms was verified by direct experiments. The devia-

tiorn of a beam of neutral atoms in electrostatic fields was investigated. From the
magnitude of deviation, we can determine the charge of the atom and draw
conclusions about the equality of electron and proton charge in an atom. In-
vestigations carried out on cesium (Z = 55) and potassium (Z = 19) beams
have proved that the absolute values of the charge of an electron and a proton
are equal with a relative accuracy of 3.5 x 10719,
Invariance of charge. The independence of the numerical value of an elementary
charge of velocity is also proved by the fact that an atom is neutral. The differ-
ence in masses of an electron and a proton suggests that electrons move much
faster in an atom than protons. If the charge were dependent on velocity, the neutral-
ity of atoms would be violated. For example, electrons in a helium atom move
about twice as fast as in a hydrogen molecule, while the neutrality of a helium
atom and a hydrogen molecule has been proved to a very high accuracy. It can
be concluded that with the same accuracy the charge is independent of velocity
right up to the velocities of electrons in a helium atom, which is approximately
equal to 0.02c. In heavier atoms, whose neutrality has also been proved, elec-
trons in inner shellsmove with velocities that are about half the velocity of light.
Thus, it has been proved that the elementary charge is invariant up to 0.5c.
There are no reasons to believe that this is not so at higher velocities. Hence, the
invariance of electric charge is taken as an experimental foundation of the theory
of electricity.

The quest for quarks proved with high accuracy that fractional charges do not exist In
nature. The absence of quarks in free stafe does not prove their nonexistence in bound
state inside elementary particles.

What is the principle underlying the resonance method of measuring an elementary charge?
What is the precision of this method at present? Give quantitative estimates.

Sec. 4. Electric Current

Basic concepts and values characterizing the distri-
bution and motion of electric charges are discussed.

Motion of charges. The motion of electrons and protons involves the motion
of their charges. Therefore, we can simply speak about the motion of charges
without stipulating their carriers each time. This is not only convenient but
also makes the consideration more general, since many phenomena depend only
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on the charges and their motion and do not depend off the properties of charge
carriers, say, their mass. When the properties of a charge carrier (for example,
the mass of the carrier) are also important, besides the charge itself, we must
take into account not only the charge but other characteristics of the charge
carrier as well.

In the theory of electricity an elementary charge, including the charge of a
proton, is assumed to be a point charge. The position of a charge, its velocity
and acceleration have the same meaning as in the case of point particles.
Continuous distribution of charges. An elementary charge is very small. For
this reason, most macroscopic phenomena in electricity involve a huge number of
electric charges, and their discrete nature is not manifested in any way. For in-
stance, each plate of a parallel-plate capacitor with a 10 uF capacitance contains
about 7 X 105 elementary charges at a potential difference of 100 V. About
6 x 10'® elementary charges pass each second through the cross-sectional area
of a conductor carrying a current of 1 A. Hence in most cases we can assume the
charge to be continuously distributed in space and disregard its discreteness.
Volume charge density. The volume density of a continuous distribution of
charges is defined as the ratio of the charge to the volume occupied by it:

1 _AQ
P=Zvmm 2 € =Zy.s (4.1)

AVopn

[}

where e; are the ele! entary charges in the volume AV, (taking into account
their sign) and AQ is the total charge on AVpy,. The volume AVyy, is small but
not infinitely small in the mathematical sense. We speak of the volume AV,
as an infinitely small volume in the physical sense. This means that it is very
small and hence its position in space is characterized with a sufficiently high
accuracy by the coordinate of a point lying inside this volume. In other words,
for the argument of p on the left-hand side of (4.1) we can take the coordinates
(z, y, z) of any point inside AV, and write p (z, y, z). However, the volume
AV,n must contain a sufficiently large number of elementary charges so that
a slight variation of this volume will not lead to a significant variation of den-
sity p calculated by formula (4.1). Consequently, AVp, depends on specific
conditions. In some cases, a small volume AV may satisfy the required conditions
and be considered as an infinitely small physical volume, but inother casesit may not.
Finally, under some conditions there does not exist avolume AV which could be called
an infinitely small physical volume. In this case, the concept of continuous dis-
tribution of charges cannot be used, and p in formula (4.1) canrot te defined as the
volume density. However, in most cases considered in the classical theory of elec-
tricity, the concept of continuous distribution of charge is valid.

When determining the volume density p with the help of formula (4.1), it
can be considered as an ordinary mathematical function and the charge can be
assumed to be continuously smeared over the volume. Then it follows from (4.1)
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that the charge on the volume V is equal to
¢=[eav, (4.2
v

where dV is the differential of the volume.
Charge concentration. The concentration of charges of a certain sign is defined as
the ratio of the number of charges to the volume occupied by them:

An
n_t = A—.th; 9 (4.3)

where An, is the number of charges of the appropriate sign in the volume AV,
Then [see (4.1)] we can write

- 1 (+) 1 =)
= ZVm 2 e + m 2 e

AVpn AVpp
e(MAn(,) e(-)An(-) - -
) =& T AV = P T eOn=pM 400, (4.4)

where e(*) is the elementary point charge of the corresponding sign and p¥) =
e®neyy is the volume density of charges. An infinitely small physical volume
must contain a sufficiently large amount of charges for the definition of con-
centration to be meaningful.

Surface charge density. Sometimes, charge is distributed in a very thin layer
near a certain surface. If we are interested in the action of the charge at dis-
tances much longer than the thickness of the layer rather than in the processes
within this layer, we can assume that the entire charge is concentrated on the
surface. In other words, this very thin layer may be assumed to be the surface.
The surface charge density is defined as

__1 — Ao
C= S o= ASpn (4.9)

where AS,y, is an infinitely small surface area in the physical sense, and AQ
is the charge on the surface area ASpy, of a thin layer adjacent to it.

For the argument of ¢ we can take the coordinates of points of the surface
and treat it as a function of these coordinates. The substantiation and the mean-
ing of this procedure are the same as for the volume charge density p in (4.1).
Consequently, the total charge on the surface § is

Q= | oas, (4.6)

8

where dS is the differential of the surface area.

Currant density. The charges contained in a volume AV,, move with velocities
which differ in magoitude and in direction. The motion of a charge
results in a transport of the charge in the direction of its velocity. Con-
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sequently, various movements of charges contained in the volume AV, result
in a certain average transport of the charge contained in this volume. The inten-
sity of this transport is characterized by the current density defined as

2 vy, (4.7

® avp

where v; is the velocity of the charge e;.

Dividigg the sum in (4.7) into the sums over positive and negative charges, we
obtaln

: ) g ¢+ Oy = e viP e() -
j= Ze vi? + AV Ze phZ“, +3 Z‘v,. (4.8)

Formula (4.8) becomes more clear if we express the quantities appearing in
it in terms of average velocities and concentrations of charges:

2 viP =An® ——— (+) 2 viP = An® (v(¥),
i

where

1
(V) =gy 2 Vi,
1

since An(*) is the number of charges the sum of whose velocities appears under
the summation sign =. The sum over the velocities of negative charges is trans-
formed in a similar way. As a result, formula (4.8) becomes

] (+) An() ( (+)>+e(_) An()

(v(')) = e(Mn¥) (v(“)) 4 eCInt) (v

= p("’) (v("')) + p(') (v('))’ (4.9)
where we took into account relations (4.3) and (4.4). Thus, negative and positive
charges generate their own current densities

j("’) = p("') <V(+))’ j(-) = p(-) <v(-)>’
j=i" 4§ (4.10)

The direction of current density of positive charges coincides with the direction
of their average velocity, while for negative charges, the current density has a di-
rection opposite to that of the average velocity.

For the sake of simplification, formulas (4.10) are usually represented in the
form

j =pV, (4. 11)

where p and v are the volume density and the velocity of the charges of the cor-
responding sign. If current is generated by charges of both signs, then the right-
8-0290
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Fig. 9. Calculation of current Fig. 10, Electric current
through a surface area element, through a surface.

hand side is assumed to contain the sum of two terms corresponding to positive
and negative charges. However, in most cases considered in the theory of elec-
tricity, the current is due only to the motion of negative charges (electrons),
and hence the right-hand side of (4.11) contains only the product of the negative
volume charge density of electrons and their average velocity. The transfer of
a negative charge against the velocity is equivalent to the transfer of an equal posi-
tive charge in the direction of the velocity. While analyzing various situations, it
is more convenient to assume that the current is due to the motion of positive
charges since their displacement in space coincides with the direction of the
current density.

Current through a surface. An infinitely small surface element is characterized
by the vector dS whose magnitude is equal to the area of the surface element and
which is directed along the positive normal to the surface.

Let us calculate the charge which crosses the surface element dS during
the time dt (Fig. 9). The displacement of the charge during this time is equal to
v dt. Consequently, the charge crossing dS is equal to the volume charge density
multiplied by the volume of the oblique cylinder (Fig. 9). The area of the base
and the height of this cylinder are equal to dS and 2 = v At cos0. Consequent-
ly, the charge crossing the surface dS is equal to

dg =pvdtdScos® =dtjdScos® =dtj - dS, (4.12)

N
where j . dS = j dS cos (§, dS). The current through a surface is defined as
the charge crossing the surface per unit time. Hence an infinitely small current
dI crossing the surface element dS [see (4.12)] is given by

dI = dQ/dt = j - dS. (4.13)

The current flowing through a finite surface S (Fig. 10) is equal to the integral
of the current elements (4.13) over this surface

I= SdI= SjodS. (4.14)
S 8
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If a direct electric current flows in a conductor, formula (4.14) defines the

current as the quantity of electricity flowing per second through the conductor
cross section.

Most of the macroscopic phenomena investigated in elecirlcity Involve an enormous number
of electric charges and their discreteness is not manifested in any way.

In some cases, a cerfain small volume can be considered as an infinitely small physical
volume, while in some other cases this assumption Is not frue. Under cerfain conditions,
no volume can be freated as an infinitely small physical volume. In this case, we cannot
go over to a representatiof of a continuous charge distribufion in a volume.

Sec. 5. Law of Charge Conservation

Two aspects of the concept of charge conservation are
discussed. Integral and differential formulations of
the law of charge conservation are given.

Two aspects of the concept of charge conservation. The concept of “charge con-
servation” includes two groups of entirely different facts: (1) electrons and protons
are material particles with an infinite lifetime, their elementary electric charges
are invariant and do not depend on velocity. Censequently, these charges remain
unchanged as long as an electron and a proton exist, irrespective of the way in
which they move. In other words, the charge is conserved under any type of mo-
tion. In this aspect the law of charge conservation is just a consequence of the inde-
structibility of charge carriers as physical objects, and of the invariance of charge;
(2) besides protons and electrons there exist a large number of other charged elemen-
tary particles. All these particles are created, create other particles and are anni-
hilated in various interconversion processes. The entire multitude of!experimental
data indicates that whatever the process of interconversion of particles, the total
charge of the particles before interconversion is equal to the total charge of the par-
ticles after the conversion. For example, in the case of B-decay, the nucleus has
a certain positive charge Ze(*). After the emission of an electron, the positive
charge of the nucleus increases by one elementary positive charge and becomes
equal to (Z 4 1) e(*). However, together with the negative charge of the emit-
ted electron, the system “nucleus - electron” has the same chaige as before:

(Z + 1)ekd — | e | = Zet.

By way of another example, we can consider the creation of an electron-
positron pair by a gamma-ray photon. The initial particle, viz. the gamma-ray
photon, is electrically neutral and is transformed into a pair of particles whose
total charge is again equal to zero. This has been proved to a high degree of accu-
racy during the measurement of positive charge on a positron. A vast number of
cases of interconversion of elementary particles have been investigated and the
8e
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Fig. 11. The outward normal is Fig. 12. Flux of vector A
th§f positive normal to a closed through a surface.
surface.

total charge in each case before and after the process remains the same. In other
words, the law of conservation of charge is obeyed. Consequently, the charge
acquires its individual existence in a certain sense independently of its carrier,
and the law of its conservation can be formulated as follows: I'n all processes
associated with the motion of charge carriers, the charge is always conserved.

In spite of its relative independence, however, a charge cannot exist without
a charge carrier, or beyond space and time. This means that a charge is not an
independent entity, capable of existence without matter. Rather, it is a
property of matter. Finding the nature of this connection is one of the most dif-
ficult problems of modern physics. It is not yet clear as to why there exists just
one elementary charge and why it is equal to | e | and not to some other value.
Integral form of charge conservation law. Considering charge conservation as an
experimental fact, we can express it as the statement that the charge in a cer-
tain volume V can change only if charge flows into, or out of, a closed contour S

bounding the volume V:

9
ar |

pdV=—{j-ds. (5.1)
v 5

The left-hand side of this equation defines the rate of variation of charge in
the volume, and the right-hand side is the strength of current flowing through the
surface bounding this volume. The negative sign indicates that if the positive
charge inside the volume V decreases, the current density is directed outwards from
the volume. It should be recalled that the outward normal is considered posi-
tive for closed surfaces. Consequently, vector dS in (5.1) is directed along the
outward normal to the surface (Fig. 11).

Divergence. The mathematical concept of divergence plays an important role
in the description of processes associated with the creation, annihilation and
conservation of physical quantities.

Suppose that a certain vector A (z, y, z)_is defined at all points in space.
We consider a surface S{(Fig. 12). The integral

O, = S A-dS (5.2)
S
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is called the flux of the vector A across the sur-
face S. This term is due to the following reason.
Suppose that we have a fire whose smoke has a
density p and a velocity v at different pointsin
space. We choose the quantity pv as the vector
A. In this case, integral (5.2), together with
Fig. 10, gives the mass of smoke passing ti#ough
surface S per second. A similar concept was ap-
plied to an electric charge in Eq. (4.14). In anal-
ogy with (5.1), we conclude that the flux of
vector A through a closed surface characterizes Fig. 13. The flux of a vector
the intensity of creation or annihilation of A through’ the surface of a cube
inside the volume bounded by the surface. Thus, ;:sﬂ}i:;m of the fluxes through
the vector flux pv across the closed surface charac- )
terizes the intensity of smoke created within
the volume bounded by the closed surface. When applied to electric charge,
Eq. (5.1) can be interpreted in the same way. It can be stated that the integral
(5.2) describes the total power of the sources of vector A inside the volume.
Divergence characterizes the power of sources and is defined by the formula

g; A.dS

div A—Alviﬂ L (5.3)

where AS is an infinitely small closed surface bounding an infinitely small vol-
ume AV.

Let us find an expression for div A in Cartesian coordinates. For this purpose,
we calculate the flux of vector A across the surface of a cube with sides Az, Ay,
Az (Fig. 13) having its centre at the point (z, y, z). The coordinates of the mid-
points of the faces are (z 4+ Az/2, y, z), (x — Az/2, y, 2), (z, y + Ay/2, 2),
(z, y — Ay/2, z), (x, y, 2 + Az/2), (2, y, z — Az/2). The integrand of Eq.
(5.3) in coordinates has the form

A+dS = 4,45, 4+ 4,45, + A4.,dS,, (5.4)
where
dS; = +dy dz, dS, = +dz dz, dS, = +dz dy. (5.5)

The sign of these quantities is determined by the direction of the outward nor-
mal to the face with respect to the positive direction of the corresponding axis.
For example, dS, has a positive value over the right face (z, y + Ay, z) and
a negative value over the left face. The integral over the surface of the cube is
reduced to the sum of integrals over its faces.

Let us calculate, for example, the integral over the faces parallel to Y-axis.
On these faces, dS, = 0, dS, = +dz dz, dS, = 0 and, consequently, the sum
on the right-hand side of (5.1) is reduced to a single term 4,dS,. Denoting the
surface area of the left and right faces by AS,, and AS,,, respectively, we can



38 Ch. 1. Charge. Field. Force

write
L= & Ads= | 445+ | 445,
A8, +A8,, a8, a8,
= S—A,, (z, y—Ay/2, 2)dxdz+ S Ay (z, y+Ay/2, z)dzdz. (5.6)
a8, a8,

The negative sign of the first integral on the right-hand side of this equation
takes into account the fact that the outward normal to the left face AS,, is di-
rected toward the negative values of y. For further calculations, we express 4,
in the form of a Taylor series in Ay:

Au (z’ y+ Ay/zr Z) =A (I, Y Z)
+ (Ay/2) 04, (=, y, 2)/dy + 0 [(Ay)?],
Ay (x, y — Ay/2, z2) = A (z, y, 2)
—(Ay/2) 04, (x, y, 2)/oy + 0 [(Ay)*], (.7
where O [(Ay)?] are terms of highest order of infinitesimals in Ay. Substituting
(5.7) into (5.6), we get

24y (z, v,
I,=Ay S ”—(’;y”—’)—dz dz+0 [(Ay)?], (5.8)

ASU

where we have taken into account the fact that the surface areas AS;; and AS,
are equal and have the same coordinates along X- and Z-axes.

The integral in (5.8) can be calculated by expanding the integrand into a se-
ries assuming z and z as variables of integration rather than the coordinates
of centres of the cube faces. If z and z denote the coordinates of faces of the cube,
it is convenient to replace the variables according to formulas

z—>z+E& z>z4+1, dz dz - dE dy, (5.9)
04y (z, ¥, 2) 04y (z+8§, v, 3+M)
Ai e dz=A§I e dg dn, (5.10)

14 y

where z, y and 7z on the right-hand side of (5.10) are the coordinates of centres
of the faces and remain constant in calculations of (5.10). The expression 94 ,/dy
can be expanded into a series in § and m:

aAy (z'l'g’ Y, Z+TI) . aAy (3, Y, z) a’AV (z' Y, z)

dy - dy +E dz dy
924 y Yy
+nZBED Lo, (5.11)

where £ and n vary from 0 to +=Az/2 and 4 Az/2 during integration and, conse-
quently, have the same order of infinitesimals as Az and Az. Substituting (5.11)
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into (5.10), we get

24y (z+E, yFz4n) o4y ¢ a4y ¢

{ - dgdn=—2 | dgdn+ 52 | Eazdn

AS” ASy AS"

24 04
S S ndtdn+... =L AzAyAz+0[(A2)?, (A2, (5.42)
ABy
This gives the following expression for (5.8):
dA

=200 D Ay As40[(Ax Ay Az, (5.13)

The flux across other pairs of faces is calculated in a similar manner:

04
%A-dS= (%= + e+ 24, ) Az Ay Az+0[(Az Ay Azp).  (5.44)

Substituting (5.14) into (5.3) and considering that the volume AV of the cube
is equal to Az Ay Az, we obtain

. " 0A 2
divA= lim { %= e+ 2% +0[(Az Ay Az2)/(Az Ay As)}

AV-+0
94 04y 94
= az" + % + az’ , (5.15)

since the term depending on (Az Ay Az) vanishes as we proceed to the limit.
The formula

| . 24 a4
diva=24= | o+ 25 (5.16)

allows us to calculate the divergence in Cartesian coordinates.
Gauss' theorem. This theorem relates the power of the sources to the fluxes of vec-
tors generated by them, and plays an important role in the theory of electricity.
We divide the volume V bounded by the surface S (Fig. 14a) into a large num-
ber of volumes AV; with surfaces AS;.

Formula (5.3) can be written in the form

(div A), AV, ~ <§ A.ds, (5.17)
A8,
where (div A); denotes div A in the ith volume. The approximate equality

used in (5.17) indicates that although AV, is small, it has a finite value. Upon
an indefinite decrease in AV;, the relation (5.17) becomes an exact equality.
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[T/f: Su{nminlg/ both sides of (5.17) over all the cells of
—\ volume V, we get
A7 T T TN g
L/ v 1) 2 @ivA) AV, ~ X § A-dS.  (5.18)
(/] / _ [ P2 1 AS,
(L / / / The sum on the right-hand side can be trans-
- formed as follows. The adjacent cells have a com-
mon surface of contact. The entire surface of inner
cellsisin contact with the adjoining cells. Hence,
@ each surface integral in the volume V appears
twice as the integral over adjacent parts of the

neighbouring cells (in the sum on the right-hand
side of (5.18), see Fig. 14b; dS; is opposite to dS;).
Since the normals in each pair of these integrals
are in opposite directions, and the vector A has
the same magnitude, these integrals are equal in
absolute value and opposite in sign. Consequently,

(b) . .

. their sum is equal to zero, and hence the sum of
Fig. 14. To the derivation of the all integrals on the right-hand side of (5.18) over
Gauss theorem. the contact surface of cells within the volume V is

equal to zero. This leaves only the sum of the in-
tegrals over those parts of cells on the boundary of volume V which are not in
contact with other cells. The sum of the areas of these outer surfaces of cells lying
on the boundary of volume V is equal to the surface area § bounding the vol-

ume V. Consequently,
S § aas=[A.as. (5.19)
1 A8, 5

This is an exact equality which is valid for any division of the volume V into

cells AV,'.
For AV; — 0, the left-hand side of (5.18) can he expressed in the form of the

integral:
lim ) (divA),AV,= 3 divAdv. (5.20)
AVi-»O AVi v

Substituting (5.19) into (5.18) and proceeding to the limit, we obtain the
formula

5 divA dV = 6‘; A-dS. | (5.21)
v S

This is the formulation of Gauss’ theorem. It connects the volume integral of diver-
gence of a vector with the flux of this vector across the closed surface bounding this
volume. The conditions of applicability of this theorem are indicated in mathe-
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matics and will not be specified here since they are automatically satisfied in
most real physical systems.

Differential form of charge conservation law. Volume V and surface area &
in formula (5.1) do not change with time. Consequently, the time derivative
on the left-hand side of (5.1) can be included in the integral. On the other hand,.
the right-hand side of this equality can be transformed into a volume integral

in accordance with Gauss’ theorem: a
a a e ..
a—t§ pdV,= 5 % gy, @;,.ds - § divjdv. (5.22)

Transposing all terms in (5.1) to the left-hand side and taking into con-
sideration (5.22), we get

i (2-+divj) dv=0. (5.23)

This equality is valid for any volume. The integrand is obviously equal to-
zero. The proof is obtained by contraction. If the integrand is not equal to zero
at some point, we can take for V a small volume around this point in which the:
sign of the integrand remains unchanged. This, however, is in contradiction to
Eq. (5.23). Consequently, the integrand is equal to zero at all points. In this case,

% 1 divj=0. (5.24)

This is the differential form of the law of charge conservation. It is also
called the continuity equation,

Charge is conserved in all motions and Interconversions of charge carriers.

The power of a source is characterized by divergence. The Gauss theorem connecis
the tofal power of sources in a volume with the flux of the vector generated by the
sources through the surfaces bounding this volume.

Charge is not a concept independent of matter. Rather, it is a property of matter.

What requirements must an infinitely small physical volume meet?

Under what conditions can the concept of continuous charge distribution be used? Is it
always possible to determine the volume charge density? Give examples.

Under what conditions can the concept of surface charge be used?

What is the relation between the direction of the current density vector and that of the
charge velocity vector? '

Which two groups of different facts are described by the concept of charge conservation?
What is the physical meaning of the equation expressed by the Gauss theorem?

What condition must be satisfied so that vanishing of an integral results in vanishing of
the integrand?
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Example 5.1. Calculate the fluz of the radius vector across

V4
the surface of a right circular cylinder (Fig. 15). The calcu-
-\ lations should be carried out directly and with the help of
Gauss’ theorem.
3 _,/ [ - We take the centre of the cylinder base as the origin
S = and direct the Z-axis along the axis of the cylinder (Fig.
S % 15). In this case,
= M S r-dS= S r-dS-|-S r-dS+ S r-ds,
: = § 8 8
3 =" s 1 u lat
S = where”S| and Sy are the areas of the lower and upper
N > bases of the cylinder, while Sj5t is its lateral surface
I ON= area. We have
= S r-dS=0, S r-dS=hnat,
X 5 8,
Ffig. 15.dCalculation 1(1)5 tht;1 ﬂllxlx since /N
of a radius vector through the _.a _
3urface of a right circular cylin- and r-dS=rds cos (r, dS)=0,
der.

/\
r-dS=rdScos(r, dS)=rdS
for points on the lower and upper bases. Finally, for the integral over the lateral surface, we
have S r-dS = a2nah, sincer.-dS = a dS for points on the lateral surface. Consequently,

S)at

§ r-dS=3na2h, (5.25)
According to Gauss’' theorem, we have
S r«dS= S div r dV=3nath, (5.26)
s \4

where divr = 3 and V = na?h (volume of a right circular cylinder).

Sec. 6. Coulomb’s Law

The accuracy of experimental verification of Coulomb’s
law is discussed.

Experimental verification of Coulomb’s law. Coulomb’s law for the force F
of interaction between two point charges q; and ¢, separated by a distance r
has the form

F=— 019 (6.1)

4“80 re ?
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where ¢, = 1/(4n X 9 X 10° F/m. This law was established by Coulomb (1736-
1806) in 1785 from direct measurement of forces of interaction between charged
bodies whose dimensions are much smaller than the distance between them.
The accuracy of these experiments was not very high and it was only on the
basis of general concepts emerging from an analogy with the forces of attraction
that the absolute accuracy of this law could be believed.

Coulomb’s law (6.1) is one of the fundamental experimental facts on which
the study of electricity is based. The verification of its validity and the deter-
mination of the limits of its applicability are significant problems and consider-
able efforts were devoted to these investigations by experimental physicists.

A verification of the law (6.1) with a very high degree of accuracy is difficult
through a direct measurement of the forces of interaction on account of the-fact
that the scientists do not have at their disposal point charges at rest. Conse-
quently, the experimental results can be associated with corollaries of Coulomb’s
law, and this serves as the basis for ascertaining the limits of applicability and
the accuracy of this law.

The first experimental verification of this law was made in 1772 by Cavendish
(1731 1810) thirteen years before it was actually discovered by Coulomb. How-
ever, Cavendish did not publish his results and thus lost his claim to this discov-
ery. The manuscript containing a description of his experiments was found in
the archives only in 1860’s. The Cavendish method was widely used and has re-
cently led to the experimental verification of Coulomb’s law with a high degree
of accuracy.

The problem of experimental verification is formulated as follows. The law
of interaction is expressed in the form

const
F= —r (6.2)

It is required to find the order of smallness of . The smaller the value of | & |,

the closer the law of interaction to Coulomb’s law. Hence the experimental result
is expressed in the form of a constraint on a: | a | <C 6. The aim of the experi-
ment is to find the value of 8.
The Cavendish method. Free charges in a homogeneous conductor are located
on its surface. At first glance, it seems to be a consequence of the repulsion of
like charges, which makes them move apart to the maximum possible distances,
i.e. to the surface. This, however, is not true. Such a situation arises due to the
fact that the force of interaction between point charges decreases exactly in inverse
proportion to the square of the distance between them, and in no other manner.

It is known from the theory of gravitation that a spherical homogeneous layer
of a substance does not create any force in a cavity surrounded by this layer.
Consequently, if point charges interact in accordance with the inverse quadratic
law, a spherical layer of charges does not create any force in this cavity.

Suppose that a charge is distributed uniformly over a sphere with a surface den-
sity o (Fig. 16). At apoint Pinside thesphere, the charges on the surface elements
dS, and dS, create forces dF; = o dS,/(4neyr?) and dF, = o dS,/(4neyry)
Whl(‘h are directed oppositely. It follows from the property of tangents
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Fig. 16. To the theory of the Fig. 17. Emergence of a force
Cavendish method. due to a spherical layer at points
inside the sphere.

at the ends of a chord that angles 6, and 6, between the perpendiculars to the
chord and the surface elements dS, and dS, are equal. In this case. dS; =
dS,/cos 6 and dS, = dS;/cos 8. Consequently, dF, = o dS;/(4neyr? cos 6), and
dF, = 0 dS,/(4ne,rs cosB), where dS;/r} =dQ, and dS,/r} = dQ, are the solid
angles at which dS,; and dS, are seen from the point P (they are equal by
construction). Thus, forces dF; and dF, are equal in magnitude but are direct-
ed oppositely, since the charge on dS, is the same as the charge on dS,. This
results in a mutual compensation of forces from all pairs of opposite surface
elements, and the total force acting on a test charge at the point P is equal to
zero.

A charge imparted to a conducting sphere is distributed uniformly over its
surface due to spherical symmetry. The absence of charge inside the volume is
proved in the following manner. Suppose that certain charges exist inside the
sphere. In view of spherical symmetry, the distribution of these charges must
be spherically symmetric. Let us consider a spherical layer of charges. These
charges are not acted upon by any force from charges located outside the cavity
bounded by the spherical layer but they are influenced by the repulsive forces
from the charges located inside such a cavity. This means that the spherical layer
of charges starts moving from the centre to the periphery. Consequently, under
equilibrium distribution, there are no charges in a conducting sphere.

The situation is quite different if the interaction between charges does not obey
Coulomb’s] law. In this case, the following forces act at point P due to charges
o dS, and ¢ dS, located on the surface elements dS, and dS,:

dF, =const

dS;0 _ const.g 1
P2+a  cosB dQ‘?’
dSs0c __ consteg do 1 (6.3)

2 "o

2+a T
ra cos 5

dF,=const
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The resultant

AF=4 (rL?__:?_) (6.4)

of these forces is not equal to zero. In formula (6.4)
A denotes equal coefficientsof 1/r# and 1/r¢in (6.3).
The existence of the force AF facilitates a uni-
form distribution of charges over the entire volume  Fig. 18. The Cavendish method
of the conducting sphere. This is so because the foF verifying Coulomb’s law.
charge inside thesphereis subjected not only to
forces from theinner spherical layers but also to external forces whose nature
depends on the sign of a.

Let us consider the case when oo > 0. Here, the force due to a charge (6 > 0)
located at a more distant surface element from point P (Fig. 16) is smaller than
the force due to a charge located at a nearer surface element. Consequently the
force is directed towards the more distant surface element. Adding possible pairs
of surface elements, we conclude that the resultant force F is directed towards
the centre O (Fig. 17). Consequently, we can distribute a charge inside a sphere
of radius OP so that the force due to this distribution at point P compensates
the force due to charges in the outer spherical layers. As a result, the layer
of charges on a sphere of radius OP may be in equilibrium. We should choose
the radial distribution of charge density so that the force at each point inside the
sphere is equal to zero. This is the equilibrium distribution. Hence, for & > 0,
charges in a charged conducting sphere are located not only on the surface as for
o = 0, but also inside the sphere. A similar result is obtained for o << 0. We
can carry out a more detailed numerical analysis and determine the charge in
the volume of the sphere as a function of a. The Cavendish method involves the
measurement of charge in the volume of a sphere and a subsequent calculation of
the value of a.

A conducting spherical shell consisting of two hemispheres tightly clasps a
conducting sphere (Fig. 18) thus imparting an electric charge to the system.
The shell is then detached from the sphere with the help of insulated handles, and
the charge remaining on the sphere is investigated.

If Coulomb’s law holds, the entire charge is located on the shell and is removed
together with it. The charge remaining on the sphere is equal to zero.

If Coulomb’s law is violated, a part of the charge is concentrated in the volume
of the sphere, while the remaining charge is located on the shell. After the removal of
the shell, some charge is left on the sphere. By finding the value of this charge, we
can estimate o.. Of course, we can measure the potential instead of the chargein
actual experiments. This, however, does not alter the state of affairs.

Cavendish found that | & | << 0.02. Similar experiments carried out by Max-
well about a hundred years later gave a value of | & | << 5 X 10-%. The Cavendish
method was perfected in 1971. The experiment was carried out not under static
conditions but with potentials varying in time. The apparatus consisted of two
concentric conducting spheres. An alternating voltage of 4-10 kV with respect to
the earth was supplied to the outer sphere. If Coulomb’s law were violated, the
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potential on the inner sphere would vary relative to the earth. The researchers
were able to detect potential differences less than 1 pV. Since no potential os-
cillations were observed on the inner sphere, it could be assumed that | o | <<
2.7 & 3.1 ] x 1018,

These experiments confirmed the validity of Coulomb’s law, for distances from

several millimetres to tens of centimetres with an extremely high degree of accuracy
indicated above.
Verification of Coulomb’s law for large distances. It is difficult to apply the
Cavendish method to verify Coulomb’s law for distances of several metres and
larger. In this case, indirect methods are used, whose substantiation is beyond
the scope of the classical theory of electricity. They are based on{quantum-me-
chanical concepts about the interaction between particles, taking into account
their wave properties. Each interaction involves a certain type of particles.
The law of interaction depends on the properties of particles responsible for
this interaction and, above all, on their mass. If the rest mass of particles re-
sponsible for an interaction is zero, the force of interaction is inversely propor-
tional to the square of the distance, while the interaction potential isjinversely
proportional to the distance. If, however, the rest mass of interacting particles
differs from zero, the interaction potential varies in proportion to~(1/r) exp(—pr),
where p depends on the rest mass of the particles. For the zero rest mass, n
is equal to zero, and the potential varies in inverse proportion to the distance,
as it should be when the Coulomb law and Newton's gravitation law are valid.
According to modern concepts, electromagnetic interactions are due to photons.
Consequently, the verification of the validity of Coulombd’s law is reduced to proving
that the rest mass of photons is equal to zero.

Besides corpuscular properties, all particles possess wave properties. The
energy e,n of photons is connected with their frequency and mass through the
relations ey, = %o and epy = m,c?, where z = 1.05 x 10-3* J.s is Planck’s
constant and m, is the photon mass. This mass is larger than the rest mass, if
a photon had one. Consequently, having found the upper limit for*m,, we obtain
the constraint for the photon rest mass. Having proved the existence of electro-
magnetic waves with a sufficiently large wavelength experimentally, we can
state that the value of m, is quite small. If we could verify the existence of elec-
tromagnetic waves with an infinite wavelength, we would be able to state that
the photon rest mass is equal tofzero, and that Coulomb’s law is valid.

The longest electromagnetic waves that can be observed at present are formed
as standing waves in the space between the surface of the Earth and the iono-
sphere. They are called the Schumann resonances. The smallest Schumann
resonance corresponds to -the frequency v, = 8 Hz. Hence, from this fact and
on account of the distance from the surface of the Earth to the ionosphere and
from the conditions of formation of standing waves, we obtain that the photon
mass m, << 10~ kg. This estimate shows that Coulomb’s law is observed to an
extremely high degree of accuracy, since the inequality | o | <C 10-26 is equiv-
alent to m, < 10-% kg.

Experiments on the investigation of the magnetic field in Earth’s atmosphere
have been carried out with the help of satellites. These experiments made it
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possible to determine the accuracy with which Coulomb’s law is satisfied at
large distances. It was established that Coulomb’s law is valid to a very high
degree of accuracy up to distances of the order of 107 m. Undoubtedly, Coulomb’s
law is satisfied for larger distances as well, although there is no direct experimental
evidence for it so far.
Verification of Coulomb’s law for small distances. The validity of Coulomb’s
law for small distances is verified in experiments on interaction between ele-
mentary particles. Even Rutherford’s experimentsihave led to the conclusion
that Coulomb’s law is valid to a high degree of accuracy down to distances of
the order of 10-1® m. Subsequent experiments on elastic scattering of electrons
having energy of the order of several billion electron-volts have shown that
Coulomb’s law is valid down to distances of the order of 1017 m.

These experiments are interpreted with the help of quantum electrody-
namics.
Field form of Coulomb’s law. Before Faraday's experiments, Coulomb's law
was interpreted as a long-range interaction, i.e. it was assumed that one body
acts on another as if without intermediaries. For this reason, this phenomenon was
termed a long-range interaction. Another point of view on the mechanism of in-
teraction appeared in the second half of the 19th century, according to which
bodies interact only due to a continuous “transfer of forces” in the space between
them. This phenomenon was called a short-range interaction. It was introduced
by Faraday (1791-1867) in a number of works published between 1831 and 1855.
Together with the idea of short-range interaction, the concept of the field as an inter-
mediary in interactions was introduced. Initially, the role of an intermediary was
assigned to the medium pervading the entire space. This medium was called
the ether. The state of the ether was characterized by certain mechanical prop-
erties such as elasticity, tension, motion of some parts of the medium relative
to others, and so on. According to this treatment, the force acting on a body is
the result of interaction of the body with the medium at the point where the
body is located. Thus, the mechanism of interaction was formulated in the form
of local relations. An attempt to provide a mathematical interpretation of this
mechanical mode of interaction was made by Maxwell in 1861-1862. Maxwell
(1831-1879) endeavoured to represent the forces of electromagnetic interaction
in the form of mechanical forces caused by stress and pressure in the ether. He
then went over to a phenomenological formulation of the interaction, character-
izing . the state of the medium with the help of vectors E, D, H, and B without
giving, however, any mechanical interpretations to these vectors. It should be
noted that Maxwell did not exclude a possibility of the mechanical interpreta-
tion of phenomenological equations. In 1864, he formulated the equations for
an electromagnetic field, viz. Maxwell’s equations. Later on it was found that
mechanical properties could not be ascribed to the ether and motion relative to
it was also ruled out. The hope of the mechanical interpretation of electromagnetic
interaction was lost, but the ideas of local formulation of interaction and of theexis-
tence in space of a field through which this interaction could be realized were retained.
The field is considered to be a primary concept and is characterized by the quan-
tities that cannot be interpreted within the framework of mechanical concepts.
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This statement was formulated in the most clearcut form in 1889 by Hertz
{1857-1894) who experimentally discovered electromagnetic waves and formu-
lated the Maxwell equations for vacuum in the modern form. Obviously, the
field, along with matter, exists in space and time, in the form of atoms, mole-
«cules, etc.

Consequently, the field is also a form of matter, which possesses properties
like momentum and energy, characteristic of all types of matter.
Electric field. Let us denote by F,, the force exerted by charge g, on charge
¢, and by F,, the force exerted by charge ¢, on charge g,. Correspondingly, r,,
and r,, are the vectors drawn from the point of location of the first charge to
that of the second charge and vice versa. Accordingly, Coulomb’s law can be
written in the form

__1 41 I
Fiz—m 3 g 12 (6.5a)

1 r
in = m -gﬁ:—], T—:; 4. (6.5b)

These formulas differ in their physical content and define the forces acting
on the second and first charges at the points of their location, i.e. they describe
the forces at different points in space. However, the mechanism of emergence of
these forces is the same. The charges q, and q, create in the space surrounding them
a field which is characterized by the strength E. The field strength is a local concept
and has a definite value at each point in space. The electrie field strength at a point
is the quantity defined as the ratio of the force with which the field acts on a positive
charge placed at this point to the charge itself. This, however, does not mean that
the field at any point in space can be measured just by placing a positive charge
at this point and measuring the force acting on it.

Frequently, imparting a charge to a given point entails a sharp change in the
electric field at this point, and the results of measurement appear to be consid-
erably distorted (see Sec. 7).

Taking this into account, we can represent formulas (6.5) in the form

=1 9 s
.= ) ’91}3 "i: ’ (6.62)
Fp=F,=gFE, . (6.6Db)
1 qs T
B = Ty Th (6.72)
Fy=F,=qE, (6.7b)

Formula (6.6a) describes the strength of the electric field created by the point
charge ¢, while formula (6.6b) characterizes the force with which a field of
strength E, acts on a charge located at a point in this field. Formulas (6.7a) and
(6.7b) have a similar meaning.

Thus, the action of one charge on another can be divided into two stages.

1. A point charge q creates in the space surrounding it an electric field

E(t)=—-2 I (6.8)

4“80 re T ?
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where r is the radius vector drawn from the point E@ < 0) E(g > 0)
of location of the charge to the point where the / /v .
field strength is measured (Fig. 19). v )

2. The point charge q located at a point where
the field has a strength E is subjected to a force

F=g¢E, (6.9) ¢
Fig. 19. Field form of
exerted by this field. Coulomb’s law.

The statement (6.9) for the second stage of interac-

tion is of a local nature: field strength E, charge g, and force F are determined
at the same point. The statement (6.8) for the first stage of interaction, however,
is not local: field strength E on the left-hand side depends not only on the point
where it is determined, but also on the point where the field source is located.
In other words, Eq. (6.8) is a relation between quantities pertaining to different
points in space, and thus is of a nonlocal nature. The local formulation of this
interaction will be given in Sec. 13.

On the limits of applicability of the classical concept of field. It was assumed
above that the field strength E varies continuously and quite smoothly in space
and time. However, in accordance with quantum concepts, the force of interac-
tion between charged bodies appears as a result of an exchange of photons.
This leads to the discreteness of interaction, and hence the field E cannot be re-
presented as a continuous quantity which varies smoothly in space and time.
It can be asked: under what conditions can the field be still treated as a contin-
uously varying quantlty? Clearly, this is possible only if the action of indi-
vidual quanta is weak in comparison to their combined action, i.e. if the phe-
nomenon under consideration is determined by the simultaneous action of a
huge number of quanta. Such a situation is encountered most frequently. For
example, the photon flux of visible light from a 200 W electric lamp at a distance
of 2 m isabout 10'® photons/(cm?2.s). The pupil of the eye has an area much smal-
ler than 1 cm?, and yet the number of photons impinging per second at the eye
is quite large. Hence the photon flux is perceived as continuous. However, by
decreasing the intensity of light we can arrive at a situation when a small num-
ber of photons is incident on the eye per second. Under special conditions, a
human eye is capable of perceiving photons as separate flashes. In this case,
we cannot use the concept of continuous light flux. Short-wave transmitters in
the USSR operate at frequencies of 60-70 MHz. The electromagnetic flux from
a 200 W transmitter of this type at a distance of 10 km is about 4 X 104 quan-
ta/(cm?.s), which correspondsto a density of 10* quanta/cm3. Consequently, more
than 10! radiation quanta are present in a volume equal to the cube of the wave-
length (~64 m?®). Under such conditions, the detection of the field of a single
quantum is quite difficult. Classical description can be used in cases where the
action of individual quanta is not manifested. This is possible when the number
of quanta is large and the momentum of an individual quantum is small in
comparison with the momentum of a material system. For example, the radia-
tion from an individual atom cannot be analyzed classically, since there are no
photons before the emission, while only one photon is present after the emission.
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If Coylomb’s law is strictly safisfied, the charge of a conducting sphere is distributed over
its surface. If this law is violated, a charge also exists Inside the sphere.

The concept of a classical continuous interaction Is valld only when the effect of individual
quanta is small in comparison with their collective effect, l.e. when the phenomenon under
consideration depends on the simultaneous action of a huge number of quanta and the
action of individual quanta is not manifested.

The determination of electric field strength is not connected with the smallness of fest
charges.

What physical principle lies behind the Cavendish method of verification of Coulomb’s
law? What is the accuracy with which Coulomb’s law can be verified by the Cavendish
method with the help of modern facilities? For what distances are the verifications valid?
What is the essence of the method for verifying Coulomb’s law for large distances? Up to
what distances are the results of direct verification available? What are these results?

How is the validity of Coulomb’s law verified for very small distances? What are the
results of these verifications?

What is the difference between the concept of an electromagnetic field and that of ether?

Sec. 7. Superposition Principle

The physical meaning of the superposition principle is
analyzed and the limits of its applicability are dis-
cussed.

Superposition principle for interaction of point charges. The forces of interaction
between two isolated point charges are defined by Coulomb’s law (6.1). Does
this force change if a third point charge is brought in the vicinity of two interact-
ing point charges? In order to give a unique meaning to this question, we must
specify the forces of interaction between two point charges in the presence of a
third charge (all charges are assumed fixed).

If by the forces of interaction we mean the forces directed along the line con-
necting the two interacting charges, these forces will depend on the third charge
and will not fulfill the requirement that action and reaction be equal. The dif-
ficulty stems from the fact that we can measure the force acting on a charge, but
we cannot distinguish between the forces due to separate charges. However, the
third charge does not differ in any way from the two point charges under con-
sideration and all three charges are equivalent. Hence the question can be for-
mulated in a different way. Suppose that we have three interacting point charges.
The experimentally measurable quantities are the forces acting on each of these
charges. We know the law of addition of forces according to the parallelogram
rule. It can be asked whether the measured force acting on each charge is equal
to the sum of the forces exterted by the other two charges, if these forces are
calculated in accordance with the Coulomb law (6.1). It should be noted that
we are speaking of experimental measurement of a force and the mathematical
calculation of forces in accordance with the law (6.1), as well as their addition
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in accordance with the parallelogram rule. Under
such a formulation, the question has a quite defi-
nite meaning and the answer can be obtained exper-
imentally. Investigations have shown that the
force being measured is always equal to the sum of
forces exerted by the two separate charges and cal-
culated in accordance with the Coulomb law. This
experimental result can be expressed in the form
of the following statements:

(a) the force of interaction between two point "
charges does not change in the presence of other q, q
charges;

(b) the force exerted on a point charge by two g _— .
point charges is equal to the sum of forces exerted by ﬁ?,;, 20. Principle of superposi
each point charge separately in the absence of the
other.
~ This statement is called the superposition principle, and reflects an experi-
mental fact which is one of the fundamental principles of electricity. This prin-
ciple is as significant in electricity as, say, the Coulomb law. Obviously, this
rule can be generalized to the case of many charges. ’

Field form of the superposition principle. Let us consider a force F; acting on
a point charge g5 in the presence of two other point charges ¢, and ¢, (Fig. 20).
We denote the forces exerted on charge g3 by charges ¢, and g, by F,5 and Fyg
respectively, assuming ¢ to be the only charge present. In accordance with the
superposition principle, we have

F; = Fi3 + Fys. (7.1)

Let us denote by E;; and E,; the strengths of the field created by charges ¢,
and g, at the point charge g; assuming it to be the only charge present. According
to formula (6.9), we get

Fis = qsEjsy  Fys = g5Eqs. (7.2)
Expression (7.1) can be written in the form
F3 = g3E;3 + ¢5Eas. (7.3)

The force in an electric field appears as a result of the action of the field on
a charge. Consequently, force F; in (7.3) shows that an electric field of strength
E, is set up at the point of location of charge g, [see (6.9)], i.e.

F3 = ¢;Es. (7.4)
Substituting (7.4) into (7.3) and cancelling out the common factor g, we get
Es = Ey3 + Eys. (7.5)

This expression is the field form of the superposition principle: the field
strength of two point charges is equal to the sum of the field strengths dueto each sep-
arate charge if it acted alone. This formulation is of a local nature, since all the
quantities involved are referred to one point in space.
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The generalization of this principle to the case of many charges is obvious:

E = 2 E', (7°6)

i.e. the field strength of any number of point charges is equal to the sum of field
strengths due to each separate charge if it acted alone.

Test charges. It follows from the definition of the electric field that its measure-
ment is reduced to the measurement of the force acting on a point charge. The
point charge used for measuring the strength of an electric field is called a
test charge. The magnitude of a test charge remains to be specified. If we assume
that all point charges whose total field strength is calculated are fized at certain points
in space. the test charge can be of any magnitude. If, however, the positions of the
point charges are not fixed in space, the action of the test charge on these charges
may lead to their displacement in space. In this case, instead of the field at the
point of location of the test charge for the initial position of all charges, we shall
obtain the field created due to the displacement of charges to their new positions
under the influence of the test charge. In order to avoid this, we must decrease
the effect of the test charge on the charges creating the field under investigation,
Hence the test charge must be quite small. It should, however, be noted that
this requirement has nothing to do with the principle of superposition, but simply
ensures the conditions under which the strength of the field under consideration does
not alter due to measurement.

Limits of applicability of the principle of superposition. The agreement between
the results obtained by applying the principle of superposition and the experi-
mental vresults serves as an experimental verification of the principle. It has
been established that the principle of superposition is valid up to very high fields.
Its accuracy is verified in engineering for field strengths up to several million
volts per metre (electrical engineering, particle accelerators, high-voltage dis-
charge, etc.). Atoms and nuclei possess stronger fields. The strength of fields on
electron orbits of atoms attains values E 2¢ 10''-101? V/m. The differences in atom-
ic energy levels calculated by using the superposition principle are confirmed
experimentally to a very high degree of accuracy (the relative error is not higher
than 10-%). This means that the principle of superposition is also obeyed to a
high degree of accuracy for intra-atomic field strengths. Extremely high field
strengths are attained (E o~ 10?2 V/m) at the surfaces of heavy nuclei. Experi-
mental results indicate that the principle of superposition is obeyed even for
such strong fields. However, this is accompanied by the appearance of some other
effects; to be more precise, the creation of electron-positron pairs leads to a pola-
rization of vacuum at field strengths of about 1020 V/m. This brings about a non-
linearity in quantum-mechanical interactions.

The force of inferaction between two point charges does not vary In the presence of other
charges but, generally speaking, the force of Inferaction befween charged bodies varles In
the presence of other charged bodies. A test charge Is assumed fo be quite small. This
requirement, however, has nothing to do with the principle of superposition which remains
valid for all values of the test charge.
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Why does the force of interaction between two charged bodies generally vary in the
presence of a third charged body? Is it a violation of the superposition principle?

What experimental facts help judge about the validity of the principle of superposition
for very strong electric fields?

Sec. 8. Magnetic Field

The relativistic nature of magnetic field is analyzed.
The law of interaction between parallel conductors
is derived from Coulomb’s law with the help of rela-
tivistic transformations.

Inevitability of magnetic field generation due to motion of charges. The inter-
action between fixed point charges is defined completely by Coulomb’s law.
This law, however, is incapableof describing the interaction between moving charges.
Such a conclusion is based on relativistic properties of space and time and
the relativistic equation of motion rather than on the specific features of Cou-
lomb’s interaction. ‘

This statement stems, in principle, from the following considerations. The

relativistic equation of motion
dp/dt = F ° 8.1)

is invariant and has the same form in all inertial coordinate systems, including
the system K’ which moves uniformly and rectilinearly relative to the system K:

dp’/dt’ = F'. (8.2)

The quantities with primes pertain to system K’. The left-hand sides of these
equations contain purely mechanical quantities whose behaviour under a trans-
formation from one coordinate system to another is known. Consequently, the
left-hand sides of Egs. (8.1) and (8.2) can be interrelated through a certain for-
mula. But this means that the forces on the right-hand sides of these equations
are also interrelated. Such a relation stems from the requirement of relativistic
invariance of the equation of motion. Since the left-hand sides of Eqs. (8.1) and
(8.2) contain velocities, we can conclude that the force of interaction between
moving charges is velocity-dependent and cannot be reduced to a Coulomb force.
This proves that the interaction between moving charges is due not only to a Cou-
lomb force but also to another kind of force called the magnetic force. The existence
of such a force can be revealed by considering the following example of charge
interaction.

Interaction between a point charge and an infinitely long charged filament.
The Coulomb interaction between two point charges which are at rest in the coor-
dinate system K’ is, of course, the simplest type of interaction. In another coor-
dinate system K moving relative to K’, however, these charges move with
the same velocity, and their interaction becomes more complicated since the
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oy electric field at each point in space vaties due to
cajﬂ the motion of charges. Hence it is expedient to

choose a situation which is quite simple for the
N : coordinate system K’, where the charges are at
* N rest, and for the system K, where the charges are
in motion. A relatively simple interaction is that
5 >, between a point charge and an infinitely long
, dx charged filament.
dIn ic,he syﬁtem’K "the (ﬁlament isatrest and direct-
. ed alongthe X’-axis (Fig. 21). A point charge ¢
g;féezgf' i(l)lltle::&i‘(:)anlcll)%::vigel:l °: is located on the Y'-axis at a distance yg from
foint charge and an infinitely the filament. We denote the cross-sectional area
ong charged filament. of the filament by S; and assume that its linear
dimensions are very small in comparison with the
distance from the point charge. If p’ is the volume charge density, a charge dq’
p'Sy dz’ exists on the element dx’ of the filament. For the sake of definite-
ness, we assume that the charge on the filament as well as the point charge is
positive. In this case, the forces exerted on the point charge by the charge on
the element of the filament are directed as shown in Fig. 21. In accordance
with Coulomb’s law, we have

, ISI dzl

dF;=—WCOS a, (8.3)
____gp'Spdz’

= Ty e

Considering that cos a = —z'/(y2+ z'?)2, sin a = y,/(y2 + z'%)Y?, we ob-
tain the following expressions for the projections of the force:

sin o,

oo

, qpis' z' dz'
x= = lme: S [PRER DT (8.4)

0o
F’ = qP'S6y6 S dz’
v 4ne, (yo2+='2)3% °
- 00
The first integral is equal to zero since the integrand is an odd function, but
to calculate the second integral, it is expedient to carry out the following sub-
stitution of variables: z' = —y, cot o, dz’ = y, da/sin® &, 1 + cot® a =
1/sin? a.. This gives

k14
" y __ gp’Sg : __3p'So
=0, Fy=-fni Ssmada— o, (8.5)

Besides, F; = 0. Considering that the charge is at rest at a given instant and
denoting the mass of a charge carrier by m,, we obtain the following expression
for the acceleration of charge in the system K':

ax=0, ay=Fy/my=qp'S,/(2negysm,), ag=0. (8.6)



Sec. 8. Magnetit Field 88

Let us now consider this interaction in the coordinate system K moving rel-
ative to K’ towards negative values of the X'-axis with velocity v. We direct
the X-axis along the filament so that its positive direction coincides with the
positive direction of the X’-axis and assume that this system is fixed. In the
coordinate system K, the filament, the charge, and the system K’ move with
velocity v in the direction of positive values of the X-axis.

Let us calculate the repulsive Coulomb force exerted by the moving filament
on the moving charge. The point charge g is constant in view of the charge in-
variance. Due to areduction of moving scales, the number of charges per metre
length of the moving filament is larger than that of the fixed filament. In other
words, the charge density of the moving filament is higher than that of the fixed
filament. The charge density of the fixed filament was denoted by p’ in the above
calculations. Hence, the charge density of the moving filament in the coordinate
system K is

p=p' [V 1I—=vct, (8.7)
where /1 — v?/c? takes into account the relativistic variation of moving scales.
All further calculations are exactly thesame as for the fixed filament. Since the di-
mensions in a direction perpendicular to the velocity v remain unchanged, the
cross-sectional area of the moving filament and the distance between the fila-
ment and the point charge remain unchanged. Hence, we obtain instead of (8.5)

fr = 0, fy = qu0/(2neoyo), f.=0. (8'8)

Here, the Coulomb force is denoted by a small letter in order to distinguish it
from the total force which acts on the charge and cannot be reduced to a Coulomb
force. Substituting (8.7) into the second of Eqs. (8.8), we obtain

fy.= 20" ol (2ieoye V T—0%ct) = gp' Syl 2otV T—0%c%) S FplV T—=77%,  (8.9)

where S, = S;, yo = y,.| and formula (8.5) is taken into account.

Let us find the total force acting on a point charge in the coordinate system K.
Due to symmetry, the force is directed along the Y-axis and is connected with
the momentum through the following equation of motion:

F, = dp,/dt. (8.10)
In the coordinate system K', this relation has the form
Fy = dpy/dt’. (8.11)
Using the transformation formulas of the theory of relativity, we get
, rdy 1—p2
r=ry = B=vp), (8.12)

where uy is the component of the particle velocity in the coordinate system K'.
In our case, uz = 0. Taking (8.12) into account, we obtain from (8.10)

F,=dp,/dt = (dp}/dt’) (d¢'/dt) = F, )V T—Pr. (8.13)
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1, A comparison of (8.13) with (8.9) shows that
F = < = (1 — 8% fy» (8.14)
l \ 2 i.e. the Coulomb repulswe force f, is larger than
the force F, exerted on the moving charge by the
T I, (_"\ moving ﬁlament Consequently, besides the Coulomb
= di X repulsive force, a non-Coulomb force, which in the
1

present case is attractive, also acts on the charge.
Fig. 22. Interaction between This force appears as a result of the motion of
two parallel currents. charges and is called the magnetic force. The field
form of interaction for the magnetic force is simi-
lar to that for the electric interaction: a moving charge creates a magnetic field in
the surrounding space. The magnetic field exerts a force on the moving charge.
Relativistic nature of magnetic field. Formula (8.14) shows that the mag-

netic force is
Fup =Fy, —f, = —v¥f,lc% (8.15)

The ‘minus’ sign indicates that the force is directed towards the charged fila-
ment, i.e. is attractive in nature. It can be seen from this formula that this force
is described by a quantity of the second order of smallness in v/c relative to the
Coulomb interaction. Consequently, the magnetic interaction is comparable to
the electric interaction only for quite large velocities of particles. Nevertheless, it
is also perceptible for small charge velocities if Coulomb interaction does not mani-
fest itself for some reason or other. Such a situation may arise, for example, when
an electric current flows in a conductor. In this case, the electric field of moving
charges is neutralized by the electric field of the opposite charges of the conductor,
i.e. it is screened. As a result, only the magnetic force remains, which is negli-
gibly small in comparison with the Coulomb force if the latter were not screened.
For instance, for typical electron drift velocities in a metallic conductor
(see Sec. 31), the magnetic force is less than Coulomb’s force by a factor of 1020,
but nevertheless it is sufficiently large and is manifested in the form of interac-
tion between current-carrying conductors. Therefore, a purely relativistic effect
of the emergence of magnetic field is exhibited not only at very high velocities but at
any velocity.
Forces of interaction between parallel current-carrying conductors. Suppose
that charges move in a thin cylindrical wire which is electrically neutral as a
whole. Then Coulomb’s forces exerted by moving charges which create an elec-
tric current are screened by the opposite charges of the wire, and only a magnetic
force (8.15) is acting outside the wire. Consequently, in the space surrounding
the current-carrying conductor only the magnetic force acts on moving charges
that generate an electric current. This leads to a magnetic interaction between
currents. This result was obtained from the relativistic analysis of interaction
of moving charges. However, the magnetic interaction between currents was
discovered long before the theory of relativity was developed.

Let us assume that moving charges create a linear current in a conductor
parallel to the initial current flowing along the X-axis and arranged at a dis-
tance rfrom it (Fig. 22). We shall use subscripts 1 for the quantities pertaining
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to the initial current and[2 for those pertaining to the linear current. Each charge
of current I, is acted upon by the magnetic attractive force Fy, (8.15) due to
current I,. Taking into account (8.8), it is convenient to represent this force in
the form

. v? 901 Soi __ 1 P1vSo1 —_—— 1 I_l
Froy= — v e = " T V7 = " T ¥y (8.16)

where p,vSy = I, [see (4.11) and (4.14)] and r = y, [see (8.8)].
Let us denote the linear charge concentration on the second conductor by n,.
The element of length dz, contains n,dz, charges acted upon by the magnetic

force
dFm = menzdxzc (8-1.7)
Substituting (8.16) into this expression, we find
1 I dz
AFp=— s e e, (8.18)

where qun, = I,. Besides, in the theory of magnetism, the magnetic constant
po = 1/(g4c?) is commonly used instead of the constant g,. Then we obtain [see

(8.18)]
Fp= —do Ifa gg, (8.19)

This force characterizes the interaction between linear currents in infinitely
long parallel conductors. It should be noted that formula (8.19) can only be ap-
plied when the cross sections of the conductors are small in comparison with
the distance between them (thin conductors and linear currents).

Unit of current. It immediately follows from formula (8.49) that the force
acting per unit length of a conductor is

A LA (8.20)

The ‘minus’ sign indicates that when currents I, and I, have the same direc-
tion, the force acting between the conductors is attractive. If, however, the
currents I, and I, have opposite directions, a repulsive force appears.

Equation (8.20) can be used for defining the unit of current: the ampere (A}
is the constant current which, if maintained in two very long parallel conductors of
negligibly small cross-section one metre apart in vacuum, produces a force of
2 X 10-?"N on each metre of the conductors. Putting I, = I, =1 A, r =1 m,
ly,=1m, and F,; = —2 X 10-7 N in (8.20), we obtain

Bo = 4x-10-7 N/A2 (8.21)
It has been noted that [see (8.19)]
Bogo = 1/c, (8.22)

where ¢ is the velocity of light in a vacuum. This expression reflects a relation
existing between electric and magnetic fields which is characterized by the
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fundamental physical constant ¢ equal to the velocity of light. The nature of
this relation will become clear from the analysis of electromagnetic waves (see
Chap. 9).

Magnetic field. In complete analogy with the field form of Coulomb’s inter-
action (see Sec. 6), we can represent the process of creation of force (8.18) in
two stages: generation of a magnetic field by current 7, in the space surrounding
it, and the action of the magnetic field on a moving charge or current. However,
the laws governing the generation of a magnetic field and the action of force turn
out to be more complicated than Coulomb’s law, since they depend
on the mutual orientation of currents and the velocity of the charge. Besides,
current /, flowing in a very long conductor cannot be considered as an elementary
object whose interaction with a point charge could be considered as an elementary
act. For this reason, we should return to the analysis of the action of forces on
moving point charges and current elements.

Coulomb’s law is insufficient for describing the Interaction between moving charges. This
conclusion is based on the relativistic properties of space and time and the relativistic
equation of motion rather than on the specific features of Coulomb’s interaction.

Magnetic interaction can be compared with electric interaction only at sufficiently high
velocities of charged particles. If, however, Coulomb’s interaction is absent due to some
reasons, magnetic interaction can manifest ifself at very low veloclities.

Sec. 9. Lorentz Force. Ampére Force

Relativistic properties of Lorentz and Ampére forces
are discussed. R

Transformation of forces. It was shown in Sec. 8 on the basis of a specific example
that if we assume the relativistic invariance of the equation of motion, it is
possible to define the law of transformation of a force upon a transformation
from one system of coordinates to another. Let us extend this method to a more
general case.

As usual, the coordinate system K’ moves relative to the system K with a
velocity v in the positive direction of the X-axis. Let us consider the motion of
a material point under the action of given forces. Let (Fz, Fy, F;) and (F,,
F,, F,) be the components of forces in the coordinate systems K’ and K re-
spectively. In the general case, the corresponding components of these forces
in different coordinate systems are not equal. However, these components are
connected through quite definite relations which ensure the invariance of equa-
tions of motion, i.e. the identity of their forms in different coordinate systems:

dpy/dt=F,, dp,/dt=F,, dp,/dt="F,, (9.1)
dps/dt’ =Fyy dp)/dt’ =F), dpl/dt'=F:, (9.2)
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We transform the left-hand sides of these equations by using formulas from
the theory of relativity for momentum, and the Lorentz transformations:

Pzt (E'[c}) v
P:=—x‘/?ﬂ—,_’ Dy Puv DPz= Dz, (9.3)

where E’ = m/c? is the total energy of the material point, and § = v/c. Formu-
las (9.1) are reduced to the form

F . dEx dpx dt’ d p +(E /c’)v de’
=4 —ar at  dar T Vi—p K

, vu,/c? , vu/e? ,
=Fz+ 1+vu /c2 F”+ 1+vzu'/c’ Fa (9-4)
dpy, dp, ar VIi=p: .,
F”=—dt__T'y KT AT Fy, (9.5
F,= dp. _4p: dv _ VI-F L (9.6)

dt — dt' d: 14-vuljer ~ %t

where (u,, uy, u;) are the components of the velocity of the point in the sys-
tem K'. The quantities F, Fy, F, appear on the right-hand sides of Eqs. (9.4)-
(9.6) as a result of the application ‘of the equation of motion (9.2). While calcu-
lating Eq. (9.4), we have taken into consideration the formula

L 9.7)
which expresses the law of conservation of energy in the system K'. With the
help of the formulas for summation of velocities

u, VI—F u, VI—p

u”=T-iTv_u;7’—’ uz=—1—_'_v-u—;—,c—’—v (9.8)
we can transform Eq. (9.4) as follows:
vuyle? _vual g 9.9)

=ty vt yicE

In order to simplify (9.5) and (9.6), we require an important relation which
is obtained from formulas for velocity transformation. By way of an example, let
us write the direct and inverse transformations of the y-components of the veloc-
ity:

' Vl—ﬂz ’ uy Vi—_-—ﬂ’

i+vu Je2 ! Uy = 1—vuy/c?

Multiplying the left- and right-hand sides of these equations termwise and
dividing the equations thus obtained by the common multiplier u,u,, we obtain

(14 = Y | ) (1—22)=1—p2 (9.10)
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With the help of this equation, we can transform formulas (9.5) and (9.6):

i‘_ x/ 2 ’
Fy=—7=5 Fun 9.11)

1_ X, 2 ’
F,=—V%F,. (9.12)

Thus, a force in the system of coordinates K can be expressed in terms of a
force in the system K’ with the help of equations (9.9), (9.11) and (9.12). The
formulas for inverse transformation can be easily obtained by using the rela-
tivity principle.

In the derivation of the above formulas, no assumptions were made about
the properties of the initial forces which may depend on coordinates, time and
velocity. Besides, it was not assumed that in some coordinate system the particle
will be at rest, since no constraints were imposed on the particle velocities.
The formulas thus obtained show that in the relativistic theory, the dependence of
forces on velocity is unavoidable: even if the force is independent of velocity in
some coordinate system (say, Fx, Fj, F;), the dependence inevitably appears
in other coordinate systems (in the present case, Fy, Fy, F, depend on the parti-
cle velocity (ux, uy, u,).

Let us write the formulas for the transformation of forces in vector form. For
this purpose, we introduce the notation

o= (Fi, FyV1=F, FIVT=P), (9.13)
G =10y — W/ FiY T=F, (u/et) Fy/V T—Fl, (9.14)

It can be easily verified that in terms of these quantities, formulas (9.9),
(9.11) and (9.12) can be written in the form of the vector equation

F=®+4uXG. (9.15)

Since F is a vector, the entire right-hand side is a vector. This equality is
valid for any u; consequently, each term on the right-hand side is a vector. Since
u X G and u are vectors, we conclude that G is also a vector. This shows that
the quantities @ and G defined by equalities (9.43) and (9.14) are vectors.
Lorentz force. We assume that only an electric field exists in the coordinate
system K’, and hence the force (Fg, Fy, F;)isindependent oftheparticle veloc-
ity u’. In this case, ® [see (9.13)] is independent of the particle velocity u and
represents the electric force in the coordinate system K.

Similarly, it can be concluded that the vector G is also independent of the
particle velocity u and can depend only on coordinates and time. Consequently,
'zhe dependence of force on particle velocity is expressed by the second term of
9.15):

m=u X G. (9.16)

This is a magnetic force directed perpendicular to the particle velocity and
vector G which represents the magnetic field acting on the moving particle.
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Since @ in formula (9.15) is the electric force acting on a point charge g,
we can write the electric field strength in the form

E = ®/q, 9.17)
Similarly, the magnetic induction is given by the formula
B = G/q. (9.18)

Taking these formulas into account, we can rewrite formula (9.15) for the
force acting on a point charge in the following form:

F=g¢E+qu xB. (9.19)

This is the Lorentz force. The first term on the right-hand side characterizes the
force exerted on a point charge by an electric field, while the second term expresses
the force exerted by a magnetic field.

Magnetic induction. Since the force exerted on a moving charge by a magnetic
field is denoted by B, it is but natural to term this vector as the magnetic field
strength. However, historically the term magnetic field strength was used to de-
scribe another vector which is denoted by H. This vector is not a property of the
magnetic field, but just takes into account the properties of the material medium
in which the field exists. In particular, for a given H, the vector B, and hence
the force acting on a moving charge, can have quite different values (see Sec. 38).
The vector B is called the magnetic induction.

Ampére force. Suppose that we have an aggregate of point charges with a con-
centration n. Then there will be n dV charges in a volume element dV. If the
velocity of each of these charges is u, and if each charge is acted by a magnetic
force defined by the second term in (9.19), the force acting on the charges in the
volume element dV will be

dF, = ngdVu X B, (9.20)

Henceforth, we shall omit the subscript “m” on the force, which only indicates
the magnetic nature of the force. The force exerts the same action on a charge
irrespective of its origin. Considering that

ng = p, nqu = pu = j, (9.21)

where p and j represent the charge and current densities [see (4.4) and (4.11)],
we can write formula (9.20) in the form

dF = pu x B4V, (9.22)
or

dF=jx BdV. (9.23)

This relation is called the Ampdre law and defines the force acting on an
element of electric current with density j, enclosed in volume dV,
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5 Transformation from steady volume currents to lin-
\ ear currents. Formula (9.23) can be represented
—> in another form also. Suppose that an electric cur-
\w rent flows in a thin conductor of cross-sectional
area S,. Consider a line element dl of the con-
d/ _ ductor (Fig. 23). The volume dV of this element
is §, dl. Since the cross-sectional area of the con-
Fig. 23. Transformation from ductor is small, we assume that the density j of
steady volume currents tolinear {ho current flowing through it is constant, and

currents: j dV = jS,dl = I dl. hence
I=3S,. (9.24)

Suppose that the direction of dl coincides with the density vector of the cur-
rent flowing through this region of the conductor. In this case,

§dV = §S, dl = I dl. (9.25)

Generally speaking, the electric current flowing through each point in space
has a different density and is therefore called the volume current. The force
acting on such a current in the volume element dV is defined by formula (9.23).
If, however, the current passes through thin conductors (having infinitely small
thickness in the limit, in the physical sense), it is called linear current. In
this case, we can speak of a current element on the length dl of the conductor.
A transformation from formulas derived for volume currents to formulas for lin-
ear currents is accomplished through relation (9.25) which can be represented

in the form

jav =14l (9.26)

The arrows indicate that the transformation can be made from formulas for
volume currents to formulas for linear currents, and vice versa.
In particular, formula (9.23) for linear currents assumes the form

dF=17IdlxB. (9.27)

This formula reflects the basic idea of Ampére, viz. to reduce the interaction
between current circuits to the interaction between very small current elements.
Magnetic field of a rectilinear current. Comparing formulas (9.27) and (8.19),
we conclude that the current flowing through a long straight conductor generates
a magnetic field whose lines of force are concentric circles around the current and
lie in a plane perpendicular to it. The magnetic induction at a distance r from
the centre of a current-carrying conductor is given by the formula

I
B= % e (9.28)
This formula is obtained from Coulomb’s law with the help of the theory of re-
lativity and by taking into account the principle of superposition for the elec-
tric field strength and the invariance of charge. From the superposition principle
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for the electric field strength, we can conclude that the superposition principle is
also valid for magnetic induction.

Formula (9.28) can be expressed in vector form as follows. We direct the
X-axis of the Cartesian system of coordinates along the line current. Denoting
by

r =iy (.’1:—.2") + iyy + i,z
the radius vector directed from point (z’, 0, 0) to the point (z, y, z), and tak-
ing into account the value of the integral in the expression (8.4) for Fy, i.e.

dz’ ¢ dz’ 2
_S,, PR _Sw AT E—2 T i (5.29)
we can express (9.28) in the following form:
I T dexr 4,
B= b 5 XY da, (9.30)

where we have considered that
liex x| =V 2+ 22

The transformation formulas for force are obfained from the requirement of invariance of
the relativistic equation of motion.

.The dependence of force on velocity is inevitable in the relativistic theory. Even if the
force is independent of velocity in some coordinate system, this dependence appears In
another coordinate system moving with respect to the first system.

The formulas for force transformation are obtained from the requirement of invariance of
the relativistic equation of motion. Does this mean that the law of force transformation
is a statement devoid of any physical meaning, and is just the tautology of the require-
ment of relativistic invariance?

Why are we unable to conclude directly from formulas (9.13) and (9.14) that ® and G
are vectors?

Sec. 10. Biot-Savart Law

The field form of the interaction between currents and
the Biot-Savart law are discussed.

Interaction between current elements. The law of interaction between currents
was discovered experimentally long before the theory of relativity had been
created. It ismuch more complicated than Coulomb’s law describing the interac-
tion between fixed point charges. This explains why so many scientists took part
in the investigation of this phenomenon. A considerable contribution to the
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discovery of this law was made by Biot (1774-1862),  Savart (1791-1841), Am-
pdre (1775-1836), and Laplace (1749-1827),

In 1820, Oersted (1777-1851) discovered the action of an electric current on
a magnetlc]needle In the same year, Biot and Savart formulated this law for
the force dF with which the current element I dI acts on a magnetic pole at a
distance r from this element:

dF ~I dig (&) f (r). (10.1)

where a is the angle;characterizing the mutual orientation of the current element
and the magnetic pole The function ¢ () was soon found experimentally.
The function f (r) was theoretically determined by Laplace in the form

f@) ~1/r, (10.2)

Thus, the efforts of Biot, Savart, and Laplace led to the formula describing
the action of current on a magnetic pole. In the final form, the Biot-Savart-
Laplace law was formulated in 1826 as an expression for the force acting on a
magnetic pole, since the concept of field strength has not yet been introduced.

In 1820, Ampdre discovered the interaction (attraction or repulsion) between
parallel currents. He proved the equivalence of a solenoid and a permanent mag-
net. This made it possible to clearly formulate the problem, viz. to reduce
all magnetic interactions to the interaction between current elements and to
find the law of their interaction as a fundamental law which plays the same role
in magnetism'as Coulomb’s law in electricity. By his education and inclinations,
Ampdre was a theoretician and mathematician. Nevertheless, while investigating
the interaction between current elements, he fulfilled scrupulous experimental
work and constructed a number of intricate devices. Ampdre’'s bench for demon-
strating the forces of interaction between current elements and their dependence
on angles is still used as a teaching aid. As a result, Ampére discovered the law
of interaction between current elements. Unfortunately, the way that has led
him to this discovery is reflected neither in publications nor in his notes. How-
ever, Ampére’s formula for the force differs from (10.3) in that it contains a total
differential on the right-hand side. This difference is insignificant when the force
of interaction between current loops is calculated, since the integral of the total
differential around a closed path is equal to zero. Considering that the force
of interaction between current loops is measured in experiments rather than the
force of interaction between current elements, we have all grounds to assume
that Ampére was the author of the law of magnetic interaction of currents. In
its present form, the law of interaction between current elements was obtained
in 1844 by Grassman (1809-1877). In modern notation, this law is written as
follows:

dF,— Po Iydl, X (I, d1y X l'u) (10.3)

ris

where dF,, is the force with which the current element I,dl, acts on the current
element 7,dl,, and r;, is the radius vector drawn from current element I,dl,
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to I,dl, (Fig. 24). The dashed circles in the figure
denote closed loops in which the interaction of
current elements is not considered.

The force dF,, with which current element
I,dl, acts on I,dl,is naturally given by the same
formula (10.3) in which subscripts 2 and 1 are
interchanged:

dF2i=h' Ildllx(tg dl,)(ru) . (10.4)

4n 1?1 / \
The unit vectors n,; and n,, in Fig. 24 show the | ]
directions of forces dF,, and dF,, perpendicular \ /
to the corresponding current elements. Generally, \
these forces are not collinear. Consequently, the \~//
interaction of current elements does not obey New-
ton’s third law: Fig. 24. Interaction between

current elements.

dF,, +dFy 50, (10.5)

The force with which current I, flowing in closed loop L, acts on closed loop L,
carrying current I,, according to (10.3), is

F., — Bol1ls S £ dlg X (dly Xryg)
127 " 4n ‘ i,
Ly Ls

(10.6)

The currents I, and I, are taken out of the integral since they are constant at
all points of integration paths L, and L,. The formula for the force F,, acting on
the closed loop carrying current I, has a similar form. Newton’s third law is 0b-
served for the forces of interaction between closed current loops (see Sec. 39):

Fy+F;3=0. (10.7)

On experimental verification of the law of interaction. Strictly speaking, the
law (10.3) of interaction between current elements cannot be verified experimentally,
since there are no isolated current elements I dl the force of interaction between
which could be measured. Each current element is a part of a closed current,
loop, and hence only the law (10.6) of interaction between closed current loops
can be verified experimentally. However, the validity of (10.6) does not imply
the validity of (10.4), since we can add to (10.4) any function which, when sub-
stituted into (10.6) vanishes upon integration over closed path.

The electric current is due to motion of charges. Hence, formula (10.4) also
expresses the law of magnetic interaction between moving charges, which can be
easily obtained from it and verified experimentally, since the force of interaction
between moving charges can be measured. The agreement hetween numerous co-
rollaries of this formula and experimental results provides its most convincing
verification.
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Field form of interaction. In complete analogy with electrostatics, the inter-
action between current elements occurs in two stages: current element 7,dl,
creates a magnetic field at the point of location of current element I,dl,. The
interaction of element I,dl, with this field leads to a force dF;,. The action of
the magnetic field with induction B on I dl is described by formula (9.27). Tak-
ing this formula into account, the two stages of interaction are described as
follows:

(1) current element I,dl, creates at the point of location of current element I,dl,
a magnetic field characterized by induction

I,dl
dBy=fo Xt (10.8)

(2) current element I, dl,, located at a point where the magnetic induction is
dB,,, is acted upon by the force

dF;=1I,dl, X dB. (10.9)

Biot-Savart law. Relation (10.8), describing the generation of a magnetic field
by a current, is called the Biot-Savart law. For a closed loop with current 7,
we have

Idl
B=—+o § X0 (10.10)

where r is the radius vector drawn from the current element I dl to the point
at which the magnetic induction B is being calculated. The integration in (10.10)
is carried out over the closed path. The current is assumed to be linear. A tran-
sition to volume currents is accomplished in accordance with rule (9.26). For
volume currents, the Biot-Savart law (10.10) assumes the form

B=

Ho_
4 r3

S 1Xr gy, (10.11)
v

Here, the integration is carried out over all regions in space where volume cur-
rents exist and are characterized by the current density j.

Force of interaction between rectilinear currents. The magnetic induction dB,,
created by the current element I,dz, at the point of location of the current ele-
ment I,dz, (Fig. 22) is directed along the outward normal to the plane of the
figure. Its magnitude is

dBlz=% Ildzisina ) (10012)

ris
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Consequently, the magnetic induction of the
field created by a rectilinear current I, flowing in
an infinite conductor at the point of location of
the current element I,dz, [see (10.10)] is expres-
sed by the formula

Bo=tgr | MEE=T - 013

where the substitution of variables for evaluating
the integrals is the same as in formula (8.5).

< 1
Ampére’s formula leads to the conclusion that Fig. 25. Magnetic induction of a
in a magnetic field with induction (10.13), the 5"“%}“ wire segment of finite

force dF,,, acting on the current element I,dl,, lengt

is perpendicular to the conductor carrying current 7, and is directed towards
current I;, i.e. is attractive:

Py =-to DI g, (10.14)
Formulas (10.13) and (10.14) coincide with (9.28) and (8.19) respectively.

The experimental verification of formulas for a magnefic field obtained from the correspond-
ing formulas for an electric field through relativistic transformafions not only serves as a
proof of the existence of a magnetic field, but also confirms ifs relativistic nature.

The forces of interaction between current elements do not obey Newton’s third law.
The forces of interaction between closed current-carrying loops obey Newton's third law.

Current elements do not exist in an isolated form. What, then, is the idea behind a direct
experimental verification of the formula for interaction between current elements?

What conclusion can be drawn from the fact that forces of interaction between current
elements do not obey Newton's third law, while the forces of interaction between closed
current-carrying loops obey this law?

Example 10.1. Find the magnetic induction of the field created by a straight wire segment of
length 1 carrying a current I (Fig. 25).

The magnetic induction of the field created by each element of the conductor is perpen-
dicular to the plane of the figure and, in accordance with the law (10.10), is

i dixr
dB:Ho 3

since dl X r is perpendicular to the plane of the figure. Then

N
|dl X r| =dirsin (tﬁ, r)=dlr sin p=dyd,
and hence

a
_ Bold dy rol . .
B= Zn S ) IO 4,‘,’“1 (sin i sin a).
=(l-a
Using this formula, we can calculate the magnetic induction for any current loop con-
sisting of rectilinear segments. :

B
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z

To

I

Fig. 26. Magneticinductionalong Fig. 27. To the calculation of
the axis of a current-carrying interaction between two circu-
loop. lar currents.

Example 10.2. Find the magnetic induction on the azis of a circular current I of radius ro (Fig. 26),
Let us use the law (10.11):
_ ped g dlxr
B= § o
L

where r=r,+ h, dl X r=4dl X ry+ dl X h. The magnitude of r does not change
in integration, and hence

wol
B= £ (Haixr+Harxn). (10.15)
L L

Since h is a constant vector, we find

c§d1xh=(¢§dl)xh=o,
L L

because §dl =(. The other integral in (10.15) is calculated as follows:

§ dlXry= & nrodl=nr, §) di=nry2nr,,
L L L

where n is a unit vector perpendicular to the plane containing the current loop.

Then we obtain

ol 3
Bp= 2 R n. (10.16)

Example 10.3. Helmholtz rings are two coazial circular conductors of the same radius arranged
in parallel planes so that the distance d between them is equal to their radius.

Prove that the magnetic field on the azis of Helmholtz rings at the midpoint between them
is uniform to a high degree of accuracy.

Let us place the origin of the Cartesian system of coordinates at the centre of one of the
rings and direct the Z-axis along the axis of the rings (Fig. 27). The magnetic induction on
the axis of the rings at a point with coordinate z is given, in accordance with (10.16), by
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— pﬁlr(’) B 1 1 ] z

Be= 2 | e e L
(10.17) ; ]

where I is the current in a ring. €

In a first approximation, the nonuniformity of B, is
characterized by the first derivative

=
L
9B, __ 3polr} [ —z z—d ] Y
% 2 @FE  [G—drFral” ' |
10.18) 5
For z = d/2, we obtain 8R,/gz = 0, which gives JL_'& d
9B, _ 3u,Ir} { 522 1 ! !
93 2 @E4ry7r (B2 Fig. 28. A solenoid of finite
5 (z—d)? 1 } length,
R e U e T

(10.19)

Since for Helmholtz rings d = r,, for z = d/2 we obtain *B,/dz* = 0. This means that the
field in the vicinity of the point z = d/2 on the axis of Helmtoltz rings is actually uniform
to a high degree of accuracy. i

Example 10.4. A straight circular solenoid of length L consists of n turns of a tightly wound
thin wire. Find the magnetic induction on the solenoid axis assuming that current I flows
through its turns.

Since the turns are wound tightly, we can assume with a sufficiently high accuracy that
each turn creates on the solenoid axis a field defined by formula (10.16). The number of
turns })er unit length is n/L. We can assume that the current over the length dz of the solenoid
is (In/L) ds. Placing the origin of coordinates at the midpoint on the solenoid axis (Fig. 28),
;:e éiind, uiing formula (10.16), that the magnetic induction at the point z on the solenoid ax:

ven by

L/2
B, — ponril S ds’
oL [(z—2")2+r§]3
-L/2
__bond —z+L/2 0 z+4+L/J2 } (10.20)
2L [(z—L/2)2+r§)/2 T [(z+L/2)2+r3]'/
For a very long solenoid (L — o), for points z < L/2, we obtain from formula (10.20)
Llim B,=penl/L. (10.21)
-+00

The magnetic field of a very long soleroid is not only constant along its axis
but is also uniform over its cross section [see (8.38)].

Sec. 11. Field Transformation

The law of field transformation is derived proceeding
from the invariance of the equation of motion of a
charge in an electromagnetic field.

Invariance of the expression for force in an electromagnetic field. Expression
(9.19) for the Lorentz force acting on a point charge in an electromagnetic field
has been obtained from the requirement of the invariance of the relativistic
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equation of motion. Consequently, this expression must also be relativistically
invariant, i.e. must have the same form in all systems of coordinates. Thus,
the expressions for forces in the coordinate systems K and K’ have the form

F =¢q (E + u X B), (11.1)
F'=qE 4+ u x B). (11.2)

Using the relativistic invariance of these expressions and taking into account
9.9), (9.11) and (9.12), we can obtain a relation between electric and magnetic
field vectors in various coordinate systems.

A particular case of transformation of field vectors was considered earlier,
when it was shown that while an electric field only exists in the coordinate sys-
tem K, a magnetic field also appearsin the system K. Similarly, it can be shown
that if, a magnetic field only is present in one system of coordinates, the electric
field also appears in another system. Let us consider the relation between elec-
tric and magnetic fields in the general case.

Transformation of fields. Substituting the expressions (11.1) and (11.2) for
F, and F; into formula (9.11), we obtain

Byt (4B — uyB) = 7L (B4 (4B —uiB). (11.3)

Eliminating ux and u; from this formula by using the formulas for addition
of velocities,

’ Ux—DV

Us =TT Vuy/c? ’

B VI-p (11.4)

’
Uz = —vuyfe? ?

and transposing all the terms in (11.3) to the left-hand side, we get

Ey vB;
(%_-Vbﬁ’—vﬂ—m)
vE; B, o
+(—B.+ =t l/1_62)u,,+(3,c-3,,)u,_.o. (11.5)

This equality is valid for any values of u, and u,. Consequently, the expres-
sions in the parentheses in Eq. (11.5) are separately equal to zero. Equating
these expressions to zero, we obtain the transformation formulas for field vec-
tors:

E' 4B, , B!+ (v/c?) E
y=Vy1——-—T:’ (11.6) Bx= Bx, ('11..7) Bzﬁ'—zwy—-

The formulas for transforming other components can be obtained in a similar
manner by proceeding from (9.12):

(11.8)

Ei— B’ , B, —(v/c") E,
E,=——Y (119 B,=B; (11.10) B,= v}/i—-ﬁa =

=T (11.11)
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It is convenient to derive the transformation of the z-projection of a force
through formula (9.4) which can be written in the form
1 4 14 i’ ’
F,=W[F,+-c—,- (F-w)]. (11.12)

Proceeding in the same way as before, we can reduce Eq. (11.12) to the form
vu,

(1 + =) (Bat (B, —u, By — [Ex+ (B, —uiB) = o5 (B -w),  (11.13)

where F’ « u’ = qE’ . u’. With the help of formulas (11.8) and (11.11), we
find that

E, = E;. (11.14)

Thus, the transformation formulas for the electric and magnetic field vectors
have the form

E.=E, B, =Bz,

g - EytvB: _ B E
YT p vVT Viep (11.15)
_ E—vB; _ Bt E,
TYT=R ' Y Vi-B

The inverse transformation formulas for the field vector in accordance with
the relativity principle can be obtained by replacing v by —v, the primed quan-
tities by unprimed ones, and vice versa.

Application of formulas (11.15). Formulas (11.45) can be used to find the elec-
tromagnetic field vectors in any inertial system of coordinates if their value is
known in any such system.

As an example, let us consider the field of a very long charged filament. The
filament is fixed and lies along the X’-axis in the coordinate system K’. Conse-
quently, this coordinate system only contains an electric field whose strength
is given by formula (8.5) by taking into consideration the definition of the field

strength. Hence, instead of (8.5), we obtain the following expression for the
electric field strength: "

E:=0, Ej=p'Sol(2new,), E;3=0. (11.16)
The Y-axis may have any direction perpendicular to the filament. From for-
mula (11.16) we find that the electric field strength of a very long charged fila-
ment is perpendicular to the filament and decreases in inverse proportion to the
distance from it. Since the charges are fixed, there is no magnetic field in the
coordinate system K’.
In the coordinate system X, the filament moves along its length in the posi-

tive direction of the X-axis with a velocity v. On the basis of (11.15), the electric
field strength is

E,=0, E,=E,//T—pi=p'S}/(2ne,V T—B?), E,=0, (11.17)
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which is equivalent to (8.8),since;the field strength
is the ratio of force to charge.

Formulas (11.15) show that in addition to the
electric field, the moving charged filament also
generates a magnetic field in the space surround-
ing it. The induction of this field is

(v/c?) E;
Vi—p:

_ vp’So .
T 2negcty; YV 1—p2 (11.18)
. 29, Magnetic field lines of Which is equivalent to formula (8.15) if we take
ed filament moving along into account (8.9), and go over from force f, to
lts length. the magnetic field induction in accordance with
formulas (9.18) and (9.16), i.e. if we divide f, in
(8.15) by gv. Obviously, the magnetic field lines are concentric circles in
planes perpendicular to the filament (Fig. 29), the centre of the circles lying on
the filament.
While solving specific problems, we must choose the coordinate system in such
a way that the electromagnetic field in it has the simplest form. This consider-
ably simplifies the solution of the problem. It should not be thought that there
always exists a coordinate system in which the field can be reduced either to an electric
field or to a magnetic one. There are configurations of electromagnetic fields for
which electric and magnetic fields exist simultaneously in any coordinate system.
A general analysis of this question is carried out by considering the invariance
of an electromagnetic field withrespect to the Lorentz transformation (see Sec. 62).
Field of a point charge moving uniformly in a straight line. To begin with,
we fix the origin of the coordinate system K at the point charge ¢. In this sys-
tem, the electric field strength is described by Coulomb’s law, and the magnetic
field is absent:

B,=0, B,=0, B,=

’ q r [

E = 47‘:80 ?’ B —01 (11.19)
where r'? = z'2 | y'? 4 2’2, In the coordinate system K the charge ¢ moves
with a velocity v in the positive direction of the X-axis. The coordinate axes
of the system K’ are oriented so that they coincide with the corresponding axes
of the system K at the instant t’ = ¢t = 0. Substituting (11.19) into (11.15)
and using the Lorentz transformation, we obtain

: LA gy (@—vt)° ,
E.=E.= lme T8 T Thme, [v2 (z—vi)3 -y 220R (11.20)

where ] "
Y=-(—1:;-,/‘c,_)ll,— (11.21)
Denoting by z, the coordinate of the charge g in the system K at the instant ¢
when the field 1s determined at the point (z, y, z), we can rewrite (11.20) in
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the form

_q Y (z—zq)
E: =T We—spitarn (11.22)
since z, = vt is the law of motion of the charge in the system K.
The other two components of the electric field strength are obtained in the
same way:

=1 vy
E, = ne, V2 @—zq) '+ 02+ 221 , (11.23)

__49 Ye

E.= 4rey [y (z—zg)+y2+281%% (11.24)

The magnetic induction is calculated with the help of formulas (11.15).
The result can be written in the vector form as follows:

B=(1/c*) v XE, (11.25)

where E is defined by formulas (11.22)-(11.24). It can be seen that the field lines
of B are concentric circles with their centre on the X-axis along which the chargegq
moves.

The field configuration of a charge moving uniformly and rectilinearly does:
not change with time. Only the position of this configuration changes relative
to the fixed coordinate system K. In other words, the invariable field configura-
tion moves along with the charge. Let us consider this configuration at the in-
stant when the charge is at the origin of the system K, i.e. when z, = 0. In
this case, we have [see (11.22)-(11.24)]

___4 yr

E= Ty (AT T (11.26)

where r is the radius vector from the point of location of the charge g to the

point, where E is being determined. Thus, the field strength is directed along

the radius vector, although its value depends on the direction of the latter.

We denote by 0 the angle between the direction of the velocity v of the charge

and the radius vector. In this case, z = r cos 0, y% 4 22 = r?sin? 0, ya? +

f+ y: 4+ 22 = riy? (1 — p%sin®0), B = v/c and formula (11.26) assumes the
orm

E= q9 T 1—p®
T 4me, r3 (1—P?sinz0)3/2°
The difference between the field of a moving charge and that of a fixed charge
is manifested in a strong dependence of the field strength on the direction of the
moving charge. The field strength along the line of motion of the charge (6 = 0,
8 = 7) and in a direction perpendicular to this line (8 = +n/2) is given by

Ey=—4is (1—59), (11.27)
E g ! (11.28)

1= Zneort Vi-p °
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v For relativistic velocities (B ~ 1), the field of a moving charge at a given distance
is weak along the line of its motion and strong in the direction perpendicular to it.
In other words, the field is as if concentrated in the vicinity of the plane passing
through the charge perpendicularly to its direction of motion.

1f an electric field exists in a certain coordinate system, a magnefic field also appears in
another system, and vice versa. Through an appropriate choice of a reference system, we
can strive to obfain simple configurations of electric and magnetic fields, or even eliminate
one of them. However, it is not always possible to find a reference system in which the
field can be reduced either to an electric field or to a magnetic one.

Proceeding from formulas for the transformation of quantities from the system K’ to the
system K, how can we obtain formulas for the transformation of the same quantities from
the system K to the system K’? Verify by using formulas (11.5) as an example that the
results obtained in both cases are the same.

Is the field of a rapidly moving point charge central? centrally symmetric?
Problems

1.1. Calculate div r.

1.2. Calculate grad (r-A), where A is a constant vector.

1.3. Calculate div (o X r), where @ is a constant vector.

1.4. Calculate div (r/r).

1.5. Calculate div[A X (r X B)], where A and B are constant vectors.

.6. What is the value of the magnetic induction at the centre of a square loop with side a,
if a current I flows in it?

.7. A wire is wound to form aspiral around a cylindrical insulator of radius a and makes n
complete turns. The helical angle of the spiral is equal to «. Find the magnetic induc-
tion at the centre of the cylindrical insulator if a current I flows through the winding.

1
b

Fig. 30. Two finite-length con- Fig. 31, Notation of angles in a
ductors. chosen coordinate system.

1.8. Two point charges g and —q are located at the points (s, 0, 0) and (—a, 0, 0) respec-
= tively. Find the electric field strength at the point (z, y, 2).
A charge is distributed with a linear density t over the length L along a radius vector
drawn from the point where a point charge q is located. Tghe distance between g and
(9 the nearest point on the linear charge is R. Find the force acting on the linear charge.

0) Two'{char%es are distributed with the same linear density tover a length L and are loca-
ted paral

o el ;to each other at a distance ! (Fig. 30). Find the force of interaction between
them.
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1.11. A disc has a surface charge density 0 = or?, where r 13 the distance from the centre of
the disc. The radius of the disc is equal to ry. Find the field strength at a height & along
the normal passing through the centre of the disc.

1.12. Two uniformly charged surfaces are parallel to the plane X, Y and intersect the Z-
axis at the points z; = g, and z, = a; > a;. The surface charge densities are equal in
magnitude but opposite in sign (0, = —0,). Find the electric field strength at all points
in space.

1.13. Find the strength of the electric field created at a point P by a charged filament of

-4 length L (Fig. 31). The linear charge density is t. The point P lies in the (Y, Z) plane;

A  this, however, does not involve any loss of generality of the solution since the field is
axisymmetric.

1.14. A very long uniformly charged circular cylinder has a surface density o. A verylong
filament charged to a linear density t is arranged along the cylinder axis. Find the
condition under which the electric field strength outside the cylinder is equal to zero.

1.15. A charge is uniformly distributed with the volume density p = o}/ r inside a spnere of
radius a. Find the electric field strength.

1.16. A proton beam of circular cross section of radius 1 mm is accelerated by the potential

‘ difference of 10 kV. Assuming that the density of protons is constant over the cross sec-
tion, find the volume charge density in the beam for the current of 5 X 10-% A.

Answers

1.4 3. 1.2. r-A/r. 1.3. 0. 1.4 2/r. 1.5. 2(A-B). 1.6. 2V 2 pI/(nd)s 1.7. ““—&f"-x
b e () e
W%-l-m" a0 \ra 7 [(1+—f‘,’—)“z—1]f. 111 E,.=—::—o —(% -

lr 2ne,
2h:| o 42, E,=0 fof z<a, and z>ay; E,=ay/e, for 6, <z <age 1.3, E=
T

[(sin &y +sin ay) iy — (cos &ty —cos ay) i,]. 1.14. T= —27nr0. 1.15. Emm —3: Vrr,
0

20a7/% r
T for r >a. 1.16. p=1.15X10-% C/m3.

4”80"

O0<r<aea; E=




CHAPTER 2

Constant Electric Field

Constant electric fields do not exist in nature since there are no fixed
elementary charges. However, if the sum of elementary charges of
each sign is nearly constant in an infinitely small physical volume, and
if their average velocity is close to zero, the field generated by
them at a sufficiently large distance from this volume element is-
nearly constant. It is called a constant electric field. A fixed point
charge serves as the model of the charge generating this field. An-
aggregate of point charges may form space charge, surface charge
or linear charges. As we go over to the continuous charge distribu-
tion model these aggregates are characterized by volume, surface,
and linear charge densities.

Sec. 12. Constant Electric Field

The ideal model of a constant eleciric field and the limits of its
applicability are discussed.

Fixed charge. Electrostatics studies electric fields of fixed charges. It is assum-
ed that charges are held at various points inspace by the forces of nonelectrostat—
ic origin, whose nature is not specified in the framework of electrostatics. For
example, electrostatics studiés charge distribution over the surface of a conduc-
tor, the electric field created by these charges, the forces acting in the field,
but does not explain why these charges remain on the surface of the conductor..
The nature of forces holding the chargesonthesurface of conductors is not stud-
ied in electrostatics. The expression “a charge ¢ is at the point (z, y, z) in vac—
uum” has a similar meaning. It is assumed that the charge ¢ is as if fixed at the:
point (z, y, 2) in space, and that there are no material particles in the vicinity
of this charge (vacuum). Such a representation is obviously an idealization.
The essence of the model. There are no fixed elementary charges in nature,
and hence constant electric fields also do not ezist. However, in most of the phe--
nomena studied in the classical theory of electricity, a superposition of fields:
created by many charges is observed rather than the field of an individnal ele--
mentary charge. The contribution of thefield of anindividual elementary charge:
to the superposition of fields is rather small. Moreover, the electric field:
strength is defined as the quantity averaged over a certain physically smalk
volume and a physically short interval of time. The fluctuations from the mean
value of the field strength are quite small. It is these mean values that are studied
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4n the classical theory of electricity and magnetism. Hence, strictly speaking, the
constancy of electric field in time rather than the immobility of charges is essential
for electrostatics. In other words, in the model of constant fields the idealization
is associated not with the constancy of the field but with the immobility of
<charges creating this field.

Limits of applicability of the model. Since the model is based on the existence
-of fields with very small fluctuations of mean values and not on the existence of
fixed charges, the limits of its applicability are determined by the requirement that
the contribution of individual elementary charges to thé observed field should be
small. Hence it follows, for example, that electrodynamics is inapplicable to
the description of motion of individual electrons in an atom. Their motion is
described by the quantum theory.

Sec. 13. Differential Form of Coulonib’s Law

The physical factors responsible for the validity of the
Gauss theorem are analysed. The differential form
of the Coulomb law is given and its corollaries are
discussed.

Gauss’ theorem. The Gauss’ electrostatic theorem establishes a mathematical
relation between the electric flux through a closed surface and the charge located
in the volume bounded by this surface.

Suppose that a point charge ¢ is inside a volume V bounded by a closed sur-
face S (Fig. 32). Let us consider the flux NV of the field E across this surface:

N=<§E.ds (13.1)
S

It should be recalled that the outward normal is always taken as the positive
direction for closed surfaces. This means that the surface area element dS in
(13.1) is directed outwards from the volume (Fig. 32). According to Coulomb’s
law, we have

1 qr
E= Ty 77 (13.2)

Consequently, the integral in (13.1) can be expressed in the form

N=Tze—°<§:—,(i-ds). (13.3)

r

Let us consider the relation

/\
L.d8|L|dScos (s, d9)=ds", (13.4)
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where dS’ is the projection of the surface area element dS onto a plane perpen-
dicular to the radius vector r. It is well known from geometry that

dQ = dSs4r. (13.5)

where dQ is the solid angle at which the surface area element dS’ is seen from
the origin of radius vectors, which coincides in the present case with the point
where charge ¢ is located. Taking (13.4) and (13.5) into consideration, we can
write Eq. (13.3) in the form

__4q
N=-L § dQ. (13.6)

The total solid angle at which a closed surface is seen from points inside the
volume bounded by this surface is equal to 4m, i.e.

§ dQ = 4n. (13.7)
S

Consequently, we get from (13.6)

N = gle,, (13.8)

The flux of E through a closed surface when a point charge is located outside
the volume bounded by it is calculated in a similar manner (Fig. 33) and is

Fig. 32. Calculation of the elec- Fig. 33. Calculation of the elec-
tric flux through a closed sur- tric flux through a closed sur-
face when a point charge is in- face when a }ioint charge is out-
side the volume bounded by the side the volume bounded by

surface. the surface.

defined by formula (13.3), The integrand, however, can now assume positive

as well as negative values: if the angle (r, dS) is acute at some points on the sur-
face, the integrand will be positive at these points. For points where the values
of this angle are more than n/2, the integrand will be negative. This means that
the integrand is positive on the surface ADB and negative on ACB. Hence the
elements of the solid angle (13.5) on the surface ADB are positive, while on
ACB, these elements are negative. We denote by Q, the solid angle at the vertex
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of a cone formed by the tangents from the point O to the surface under consid-
eration (Fig. 33). In this case,

§ 5 (5 as)= | ae— | d@=0—a=0, (13.9)
8 ADB ACB

since the surfaces ACB and ADB are seen from point O at the same solid angle Q,,
but appear in the integral with different signs. When a point charge is outside
the volume, the flux of field E through a closed surface is

N =0. (13.10Y

Combining results (13.8) and (13.10), we can write (13.1) in the following final
form:

gley, when ¢ is inside the volume bounded
by the surface S;

0, when ¢ is outside the volume

§ E-d5=
8 bounded by the surface S.

(13.11)

The statement expressed in (13.11) forms the content of the Gauss electrostatic
theorem for a point charge.

The generalization of this theorem to a system of point charges is made with
the help of the principle of superposition. For point charges g;, the field strength E
at each point is the sum of fields E; created by each of the point charges:

E=)E,. (13.12)
Consequently,
$E ds =3 §E ds. (13.13)
8 t 8

While calculating each integral in the sum on the right-hand side of
(13.13), we must take into account Eq. (13.11): the integral is equal to g¢;/¢,
for a point charge contained inside the volume, while it is equal to zero for a
charge outside the volume. Consequently, Eq. (13.13) assumes the form

1 1
§ E'dS=W§ @i ==-0s (13.14)

where V under the sign 3 rﬁeans that the summation is carried out only over
the charges located inside the volume V. The total charge inside this volume is
denoted by Q in (13.14):

Q"=§ a. (13.15)
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Taking into account definition (4.1) for the volume density p for a continuous
charge distribution, we can write formula (13.14) in the form

1 1
(&E-d8=?o-‘5pdV=KQ, (13.16)

where

Q0= S pdV (13.17)
\4

is the total charge in the volume bounded by the closed surface S. The state-
ment expressed in formula (13.16) forms the content of Gauss’ electrostatic theo-
rem for a continuous charge distribution. Obviously this formula also contains
expressions (13.14) and (13.11) as particular cases.

Measurement of charge. Gauss’ theorem allows us to find the total charge
contained in a volume by measuring the field flux through the surface bounding
this volume. Other methods of determining the charge do not give satisfactory re-
sults. Forexample, it is impossible to find this charge by measuring the force
exerted by it on a test charge outside this volume, since the force depends not
only on the total charge, but also on its distribution over the volume which
is, generally speaking, unknown. The charge can be determined by measuring
the force acting on it in a known uniform external electric field. In this case,
the field must be uniform. Clearly, this method is applicable only when the ex-
ternal uniform field does not significantly change the charge distribution inside
the volume.

Physical foundation of the validity of Gauss’ theorem. It can be seen from the
derivation of Gauss’ theorem that its validity stems from the possibility of re-
ducing the integrand in (13.3) to the differential dQ of the solid angle with the
help of (13.4) and (13.5). This is possible only when E (r) decreases in inverse
proportion to the square of the distance from the point charge. For any other de-
pendence of E on r, the integrand in (13.6) must contain, besides the differen-
tial of the solid angle, a certain function of r which makes it impossible to express
the electric flux through a surface as a function of charge. This is a violation of
the Gauss theorem. Hence, Coulomb’s law forms the physical foundation of the
Gauss theorem or, in other words, the Gauss theorem is the integral form of Coulomb’s
law.

Differential form of Coulomb’s law. Maxwell’s equation for div E. With the
help of the divergence formula (5.21), the flux of E through a closed surface can
be transformed into the volume integral of div E:

$E-as = S divEdV, (13.18)
8 v

Consequently, formula (13.16) assumes the form
S (div E—p/eg) dV =0. (13.19)

172
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This equality is satisfied for any volume V. Consequently, the integrand is
identically equal to zero, i.e.

div E=ple,. (13.20)

The validity of (13.20) and of the Gauss theorem depends on the validity of
Coulomb’s law. Consequently, (13.20) is the differential form of Coulomb’s law.
The linearity of Eq. (13.20) reflects the validity of the principle of superposition
for field strength. It has been derived here for fixed charges, although it is assumed
that this equation is valid for an arbitrary motion of charges. '

Lines of force. An electric field line (line of force) is a line the tangent to which
at any point coincides with the field strength E. The lines of force are a convenient

Fif' 34. Lines of force for a Fiﬁ' 35. Lines of force for two
field whose strength increases unlike charges
from right to left

way in which a field can be graphically represented. The field strength is conven-
tionally characterized by the number of field lines intersecting 1 m? of the sur-
face perpendicular to the direction of the field lines at the corresponding point:
the higher the density of the lines of force, the stronger the field. Figure 34
shows an electric field whose strength increases from right to left.

Sources and sinks of field E. It can be seen from Eq. (13.20) that the field lines
start where div E > 0 and terminate where div E << 0. In other words, the field
lines originate at positive charges and terminate at negative ones. Consequently,
the positive and negative charges are respectively called the sources and sinks
of field E. Such a distinction between charges is, of course, arbitrary and stems
from the definition of the direction of a field. Positive and negative charges
play an exactly identical role in the creation of an electric field. Figure 35 shows
the lines of force for two unlike charges.

Charge invariance. Let us find the flux of E through a closed surface surrounding
a point charge ¢ which is moving uniformly and rectilinearly. The field created
by this charge is given by formula (11.26). The electric flux is

N=§E.ds=§ Er=d9=§Er2sin 0.de de, (13.21)

where the surface of integration is taken in the form of a sphere having the
moving point charge as its centre at a certain instant of time. It is considered
6—0290
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that E and dS are collinear with the radius vector r; 0 and ¢ are the polar and
the axial angle respectively of a polar coordinate system whose polar axis coin-
cides with the X-axis of the fixed coordinate system. Substituting (11.26) inte
(13.21), we get

4
_ q(1—B? sin0do
N=20- § e (13.22)
where the integration has been carried out over the angle dg on which the inte-
grand in (13.21) does not depend. Since sin2 6 = 1 — cos? 6, and sin 6 d6 =

—d cos 6, we get

S sinde dz _2 z 12
) T—psme 0777 — g u—w+ﬁ%Wﬂ"ﬁS[ﬁvﬁt;ﬁ]f"i—w’

where a® = (1 — B?%)/p2%. In this case, relation (13.22) assumes the form
N = qle,, (13.23)

which is identical with (13.8). This proves that the Gauss theorem is also valid
for a point charge moving uniformly and rectilinearly. If the charge in a volume
is determined by means of the flux of E through a closed surface bounding this
volume, Eq. (13.23) expresses the invariance of charge.

The Gauss theorem expresses a relation between the electric field flux through a closed
surface and the charge in the volume bounded by this surface. Coulomb’s law serves as
the physical foundation of the Gauss theorem. In other words, the Gauss theorem is the
infegral form of Coulomb’s law.

A line the tangent to which at each point coincides with the eleciric fleld vector is
called the line of force of this field.

Positive charges are the sources and negafive charges are the sinks of the electric field.
This distinction between charges, however, is purely arbitrary. They play identical roles
in generating an electric field.

-

Sec. 14. Potential Nature of Elecirostatic Field

The integral and differential forms of the definition
of the potential nature of field are discussed. The sca-
lar potential is introduced and its properties are ana-
lysed. The potential of charges distributed in a finite
region of space is calculated. The Earnshaw theorem
is proved.

Work in an electric field. Since the force acting on a point charge ¢ in an elec-
tric field is F = ¢E, the work done to displace the charge by dl is

dA = F-dl = gE-dl. A4.1)
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The work performed per unit charge in displacing the charge is defined as the
ratio of the work to the charge:

d4A’ = dA/g = E-dl (14.2)

and is measured in joules per coulomb. It follows from (14.2) that the work
performed by the field is assumed to be positive while the work done by the forces
external relative to the field is assumed to be negative. This sign rule is similar to
that used in thermodynamics for the work of a system.

When a charge is displaced from point I to point 2 along the trajectory L
(Fig. 36), the work per unit charge is

2)
A= S E-dl. (14.3)
('l_)

Potential nature of a Coulomb field. A force field is called a potential field if
the work done upon a displacement in this field depends only on the initial
and final points of the path and does not depend on the trajectory. An equivalent
definition of the potential nature is the requirements that the work must be equal
to zero upon a displacement along any closed contour.

It is well known that the force of gravity of a mass, which is inversely pro-
portional to the square of the distance, is a potential force, its potential nature
being determined precisely by this dependence on distance. Since the Coulomb
force of a point charge decreases with distance according to the same law, it is
a potential force. The entire mathematical part of the concept of potential was
developed in the theory of gravitation. This concept first appeared in 1777 in
the works of Lagrange (1736-1813), although he did not apply this term to the
function representing the potential. The term “potential” was introduced in
science in 1828 by Green and independently by Gauss (1777-1855). Laplace
(1749-1827) and Poisson (1781-1840) also made significant contributions to the
theory of potential.

According to the principle of superposition, the potential nature of an arbitrary
electrostatic field follows from the potential nature of the field of a point charge.
Mathematically, this statement is proved as follows:

§E.d1=§(§‘, E,).d1=2§E,-d1=20=0, (14.4)

where

E=DE, @Ei.d1=0. (14.5)

Curl of a vector. The criterion of the potential nature of the field used by us
so far does not have a differential form and for this reason cannot always be ap-
plied easily and effectively. Its application boils down to the verification of the
statement that the work over any closed contour is equal to zero. This means that
(1]
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we must investigate an infinite number of closed paths, which is generally im-
possible. This criterion can be applied only when the general expression for the
work over any path is given in an analytic form. Such a formula can be obtained
only in rare cases. Hence it is desirable toobtain another criterion for the poten-
tial nature, which could be easily and conveniently applied in practice. The
differential form given with the help of the curl of a vector serves as such a cri-
terion.

First of all, let us consider the definition of the curl of vector A (denoted by
curl A) in vector form. A vector is specified by three components which do not

4 curl A
An
E / €
.-"‘.
E _ 2
- dl AS
P L
4 —
! L
Fig. 36. Work performed in an Fig. 37. To the vector defini-

electric field during the displa- tion of curl
cement of a point charge

lie in the same plane. We choose a certain direction characterized by a unit vec-
tor n. In the plane perpendicular to n we bound a surface area element AS by
a very small closed contour L (Fig. 37). As usual, the direction of the positive
circumvention of the contour L is connected with the direction of n by the right-
hand screw rule. The curl is a vector whose projection onto the direction of n
is defined by

A.d
curl, A= lim (ﬁ ! .

14.6
as-0 AS ‘ (14.6

The curl characterizes the vorticity of a vector, which is reflected in the name
of the operation. Suppose, for example, that the vector A is equal to the velocity
v of the points of a rigid body rotating at an angular velocity @ about an axis
collinear with n. We shall find curl, v for points lying on the axis of rotation.
For the contour L, we choose a circle of radius r having its centre on the axis and
lying in a plane perpendicular to this axis. Obviously, we have v = or, AS =
ar?, and A-dl = v dl, where dl is the scalar value of an element of the circle.
Hence, using (14.6), we obtain

curl, v lim 2708 _ ji 0rnr o (14.7)
r-0 ar r-0
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where § dl = 2nr is the circumference of the

circle. Thus, the curl of the linear velocity of ) Y
the points of a ,perfectly rigid rotating body is D&Y T Ay
equal to twice the angular velocity of its rota- =
tion. It can be shown that this statement is x/ 4
valid not only for the points lying on the axis
of rotation but for all points.

For a practical computation of a curl, it is
more convenient to use formulas written in Fig. 38. To the definition ‘of curl
terms of coordinates instead of (14.6). Let us in terms of coordinates
find the projections of curl A in a rectilinear
Cartesian system of coordinates. We take, for instance, the Z-axis (Fig. 38).
The contour L is a rectangle with the sides Az and Ay. The direction of posi-
tive circumvention is shown in the figure. In this case, we obtain

&+ Ax,7,2) (x+ Ax,y + Ay, 2)

(x+Ax, y, 2) (x+Ax, y+4y, 2)
§A~dl= S A, (z, y, 2)dz+ S A, (z+Az, y, 7)dy
L (x, ¥, 2) (x+Ax, y, 2)
(x, y+A4y, z) (x ¥, 2)
+ | Acw ytay e+ | 4,y 9 dy, (148)
(x+Ax, y+Ay, 2) (x, y+Ay, 2)
where the integration is performed along the sides of the rectangle between its
vertices whose coordinates are used in (14.8) as limits of integration. Consider-
ing that Az and Ay can be as small as desired, in the integrands of the second

and third integrals we can expand A, and A, into a series in Az and' Ay and
confine ourselves to the linear terms:

A (z, y+Dy, 5)=A4,(z, ¥, z)+Aym£)-+... (14.92)

Ay (e+Az, v, D=4y (@, y, D+Aec 2B 0D 4 (t49m)

Let us calculate the sum of the first and third integrals:
(x+A4x, y, 2) (x, y+Av, 2)

L= | Aeyade+ | A@y+bngde
(x, ¥, 2) (x+Ax, y+Ay, 2)
(x+Ax, y, 2) (x+Ax, y, 2) 4z ( )
z, ¥,
= | d@pad— | [d@yo+ray 2B,
(=, ¥, 2) (%, ¥, 2)

(14.10)

where in calculating the second integral in (14.10) we use formula (14.9a),
and the minus sign appears as a result of the reversal of the order of integration.
In this formula, the terms containing A, (z, y, 2) in the integrands are cancel-
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= led out, and hence
o WD 94z (2, y,
B e T I,=———";y—y”)AyAx. (14.11)
AN _:_:“ =N\ Similarly, we calculate the sum of the second
7 it W Wl and fourth integrals in (14.8):
7wl 04
' H‘:H =/ Iz—MA Ay, (14.12)
I l It x\\/ Using formula (14.6), we find
= = 24
it it (curl A),=—2 — 2= (14.13)
~ - i y i
S The projections onto the other axes of coordi-
d nates are calculated in a similar way:
Fig. 39. To the proof of Stokes’ 94 94 a4
thgorem ? P (curlA), = —z_ ,y » (curl A)y='a_:— %‘:z .
(14.14)

Denoting, as usual, the unit vectors of the coordinate axes by i, iy, and i,
we can write the vector curl A in the form

. (04, OAyy\ . 104, 04\ , . (%Ay A,
cul'].A=lx(—W—T)+ly(w—?)+lz(?—w). (14.15)
Stokes’ integral theorem. This theorem relates the circulation of a vector around
the contour bounding a surface to the flux of its curl through this surface. Its
derivation is based on definition (14.6). Let us calculate the flux of the vector
curl A through the surface S bounded by a contour L (Flg 39), dividing the
surface into elements AS;:

feuna.as=3 { curlA.as. (14.16)
3 i AS;

Since AS; are very small, we obtain, accordmg to (14.6), the following expres-
sion for each element

S curlA.dS= 5 (curl A), dS ~ (curl A), AS ~ @ A.dl, (14.17)
as; AS; L

where L; is the contour bounding AS;. Hence Eq. (14.6) can be represented in the
form

feurlA-ds~ 3 § Al (14.18)
i

S L;

The parts of the contours L;, which are the boundaries between AS;’s, appear
in two terms of the sum (14.18): once in the integration along the contour of a
given area element AS;, and for the second time, in the integration along the
contour of the neighbouring area element. These integrals are equal in magnitude
but opposite in sign, since the paths of integration along the boundary have op-
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posite directions. Thus, in (14.18) all parts of the integrals over the boundaries
between AS; cancel out, and we are left only with the sum of integrals over those
parts of the contours L; which do not form a boundary between AS;. In other
words, we are left with the integral over the contour L bounding the surface S.
As AS; —0, the approximate equality (14.18) becomes exact:

feurna.as=§ a-a1 (14.19)
S L

This relation is known as Stokes’ integral theorem.

Differential form of the potential nature of the field. The fact that the work
performed during the displacement of a charge in an electrostatic field is inde-
pendent of the path is expressed by the equality

B B
S E-dl= S E-dl, (14.20)
A
L, L,
where L, and L, are different paths between points A and B. Considering that
B A
S E-dl = — “. E-dl, we can represent (14.20) in the form
A B
Ly Ls
B A
SE-d1+SE-d1=§E.d1=0, (14.21)
A

where L = L, + L,. This formula is a mathematical expression of the state-
ment that the work done in displacing a charge over any closed contour in an
electrostatic field is equal to zero.

Using (14.19) and (14.21), we get

ScurlE-dS=0,
S

(14.22)

where S is the surface bounded by the contour L Since S is arbitrary, it fol-
lows from (14.22) that
curl E = 0. (14.23)

This equation is the differential form of the statement that the electrostatic
field is a potential field.
Gradient. Let ¢ (z, y, z) be a scalar position function. The gradient of ¢ is
defined as the vector

grad ¢ =i, a"’ +i, 22 a,, LA LA A (14.24)
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In order to elucidate the meaning of this vec-
tor, let us calculate the total differential of the
function ¢ upon a displacement by dr = i, dz+
i, dy 4 i, dz:

a a d
de =a_:’ dz + -a—:ﬁdy+ a—f—dz:grad @-dr.
¢ = const (14.25)

Thus, an infinitely small increment d¢ due to
a displacement in a certain direction is equal to
the component of grad ¢ in this direction, multi-
plied by the magnitude of the displacement. We construct a family of sur-
faces ¢ = const (Fig. 40). As we move over the surface ¢ = const, dp=0. Hence
[see (14.25)], grad ¢ _|_dr, i.e. thevector grad @ is normal to the surface @=const.
The magnitude of this vector is equal to the derivative of ¢ with respect to the
direction perpendicular to the surface ¢ = const.
Scalar potential. Since the work done in displacing a charge in a potential
field does not depend on the path and depends only on the initial and final points
of the trajectory, it can be expressed in terms of the coordinates of these points.
This can be done with the help of potential.

It can be directly verified that the following identity always holds:

Fig. 40. The direction of grad ¢

curl grad ¢ = 0. (14.26)
Consequently, Eq. (14.23) will be satisfied if E is represented in the form
E= —grad ¢. (14.27)

The sign is chosen so that the field strength E is directed towards decreasing
values of @. The scalar function ¢ related to the field strength E through for-
mula (14.27) is called the scalar potential of electric field.

Field strength can be measured experimentally. The potential ¢ does not have
any definite numerical value, and it is meaningless to speak about an experimental
measurement of its value.

Ambiguity of scalar potential. Formula (14.27) shows that if a certain con-
stant is added to ¢, the field described by this potential does not change since
the derivatives of a constant quantity with respect to coordinates are equal
to zero. Consequently, the potential @ of a given electric field is defined only to
within an additive constant.

Normalization. In view of the ambiguity of scalar potential, we can ascribe
to it any preset value at any preset point. After this, the potential at all
other points has a quite definite value, i.e. it will be single-valued. This proce-
dure of making the potential single-valued by ascribing to it a certain value at
one of the points is called potential normalization. When electric fields are inves-
tigated near the Earth surface, the potential of the Earth is usually taken as
the zero potential. When general questions are analysed, and the charges are
located in a finite region of space, it is more convenient to assume that the po-
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tential is zero at an infinite distance from the charges. Such a normalization
will be frequently used in this book.

Expression of work in terms of potential. If a charge moves between points
1 and 2, the work per unit charge is

@ @ @
A= |E-dl=— S grad p-dr = — S dop=@(N)—¢(©2),  (14.28)
(1) (1) (1)

where we have used formula (14.25) and the fact that dl = dr. It follows from
this equation that the work indeed depends on the initial and final points of
the path and does not depend on the shape of the trajectory. It also shows that
the potential difference between two points has a clear physical meaning and
can be measured experimentally. Thus, it is not the potential itself but the poten-
tial difference between different points that has a physical meaning.

Field potential of a point charge. We shall normalize the potential to zero
at infinity. Assuming that point 2 in formula (14.28) is at infinity, we put ¢ (2) =
¢ (o0) = 0 and obtain the following expression for the potential at point I:

o()= 5 E.dlL (14.29)
(1)

The path from point 7 to infinity can be arbitrary. However, we must choose
it so as to simplify the calculations as much as possible.

The field of a point charge is spherically symmetric. In accordance with
formula (14.29), the potential at a distance r from the point charge ¢ is given by

® ) =75 (& (£a). (14.30)

Since for any dl the equality (r dl/r) = dr is observed, it follows from (14.30)
that

g Tdr_ g 11o_ 1 g
00 =g | T = [~ 7). =mr v (14.31)
We recommend to the reader to verify that Coulomb’s law
1 1

can be obtained from this formula.

Field potential of a system of point charges. According to the principle of super-
position, the field potential of a system of point charges is equal to the sum of the
potentials created at a given point by each of the charges. This is obvious since

E =E, + E, = —grad ¢, — grad ¢, = —grad (¢, + ¢,).
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Consequently, using formula (14.31) we can write the following expression for
the potential created by a system of point charges ¢;:

T

1 i
9 (@ Y, 8) =g X £, l (14.33)

where r; =V (x — z;)® + ( — 4:)® + (z — z;)° is the distance from the point
charge ¢; located at the point (z;, y;, 2;) to the point (z, y, z) at which the po-
tential is calculated.

Field potential of continuously distributed charges. As before, we assume that
all charges are located in a finite region of space and that the potential is normalized
to zero at infinity. Denoting the volume charge density by p (z’, y’, 2z’), we ob-
tain the following expression for the potential instead of (14.33):

p(z', y’, z')dz’ dy’ dz’

This formula can be written in a more compact form (without detailed speci-
fication of variables):

® (@ ¥y 2) =g | . (14.34)

_ 1 pdv |-
o= | &, (14.35)

r

where dV is the volume element over which the integration is performed. This
brief form will be often used in further analysis.

Field potential of surface charges. If a charge is located on the surface, the
charge distribution is characterized by the surface charge density ¢. On the area
element dS (which is a scalar and not the vector of area element), there isa
charge o dS, and hence the potential at a certain point is given by a formula
similar to (14.35):

_ 1 (oads ;
(p——équg e (14.36)

where r is the distance between the area element dS and the point at which the
potential is calculated. Integral (14.36) is valid for all surfaces carrying surface
charges.

Infinite value of the field potential of a point charge. It follows from (14.31)
that as r —0, the potential ¢ (r —0) — oco. This is due to the fact that the
volume density of a point charge is formally equal to infinity since its volume
is equal to zero. It is the infinite volume charge density that is responsible for the
infinite value of the potential.

Finite value of the potential for a continuous charge distribution with a finite
density. If a charge is distributed continuously with a finite density, the po-
tential does not assume infinite value anywhere. This can be verified by calcu-
lating the potential with the help of formula (14.34). We take the point (z,
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Y, z) as the origin (z = y = z = 0) and carry out calculations in a spherical
system of coordinates. In this system, the volume element is expressed by

dz’ dy’ dz' =r'%sin0’ d6’ da’ dr’, wherer’ =V 1’2 + y’2 + 2’2 Then [see (14.34)]

(0, 0, 0) =4,+% S o(r, o', 0')r' sin @ 40’ da’ dr'. (14.37)

Consequently, if p is finite, the potential ¢ is also finite, Q.E.D.
Continuity of potential. The derivative of the potential with respect to a Car-
tesian coordinate gives the corresponding component of the electric field strength.
Obviously, the intensity cannot be infinite. Therefore, the derivatives of the
potential with respect to coordinates must be finite. This means that the poten-
tial is a continuous function. Thus, the potential ¢ is a continuous and finite func-
tion with finite coordinate derivatives. These conditions are important for solv-
ing differential equations for potential.

Earnshaw’s theorem. This theorem states that there exists no configuration of
fixed charges, which would be stable in the absence of forces other than the forces of
Coulomb’s interaction between the charges of the system.

The proof of the Earnshaw theorem follows from the Gauss theorem. Suppose
that the equilibrium is stable. Then the displacement of any charge from the
equilibrium position in any direction will give rise to a force tending to return
the charge to the initial position. And this means that the field created in the
vicinity of each fixed charge by all other charges is directed along the radii
emerging from the point of location of this charge. The flux of this field through
a closed surface around the chacge differs from zero, since the field has the same
direction along the radii (in the vicinity of a positive charge it is directed to
the charge, while near a negative charge, it is directed away from it). In accor-
dance with the Gauss theorem, the flux through a closed surfaceis created by the
charge located in the volume bounded by this surface. This is in contradiction
with the initial assumption according to which the flux is created by the charges
located outside the volume. Thus, the assumption about the equilibrium con-
figuration of fixed charges is rejected and the Earnshaw theorem is proved.

Stable configurations of fixed charges may exist only when, in addition to
the forces of interaction between them, there are some extraneous forces holding
the charges in equilibrium positions. Stable states of moving charges are pos-
sible, for example, in the form of the motion of two unlike charges in ellipses
around the centre of mass (naturally, if we ignore radiation).

The sign rule: the work done by the field is assumed to be positive while the work done
by the forces external to the field is assumed to be negative.

The differential form of the statement that the electrostatic field is of a potential nature:
curl E=0.

The minus sign in the expression E = —grad ¢ is chosen conventionally to show that E
is directed towards decreasing .

The application of Poisson’s equation for solving a problem is not based on the assump-
tion that the potential is normalized in a cerfain way and that there are no charges at
infinity. The potential is a continuous and finite function having finite derivatives with
respect to coordinates.
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What methods do you know for determining the field strength for a given charge distribu-
tion? What determines the choice of the method of solving the problem in each specific
case?

What are the advantages of determining the field strength by solving the Laplace and
Poisson equations in comparison with other methods?

What are the properties of the potential as a solution of the corresponding differential
equations?

Which forms of the statement of the potential nature of an electrostatic field do you know?
What are the advantages of the differential form?

What physical factors determine the possibility of the normalization of the scalar potential?
What normalization conditions are used more frequently and when are they most expedient?

Example 14.1, Calculate grad ¢ (7).
We have

. 0 . 0 . @
grad¢=lx%+lya—:+lza—?'

(7] o ar , or —
a_r=%%=“’ 22 T=Va@+ita
Similarly, we calculate d¢/dy and dg/oz. The prirg: denotes the derivative with respect
o _ 2«
%—2]/;;2+y2+zz
do . .o . _d
grad @ (")=-—d§,3 (a2 + iy +izs) = b —.

dr r

T .
s we obtain

to the argument r. Considering that

In particular, grad r = r/r, for ¢ (r) = r, while grad (1/r) = —r/r® for ¢ (r) = 1/r.
Example 14.2. Calculate the circulation of the vector ® X v around the circle L of radius ry,
lying in the plane perpendicular to the constant vector ®, both directly and with the kelp of Sto-
kes' theorem. The centre of the circle coincides with the origin of coordinates.

The veotor ® X ry at each point is directed along the tangent to the circle. Consequently,

«§ o xr-dl = or, S dl=2n0r3. (14.38)
L L

The direction of circumvention is chosen so that the vectors X r and dl are collinear at
each point. If the direction of circumvention is reversed, the integral will have the opposite sign.
With the help of Stokes’ theorem, the problem is solved in a different way.

@ o Xr-dl = S rot (@ Xr)-dS,
L 8

where S is the surface bounded by the circle L. For ® = const, curl (@ X r) = 20 and

S curl (@ Xr)-dS=2 S_m-dS: 20 S dS = 2nor}, (14.39)
s 8 8

which, as expected, coincides with (14.38).
In can be easily seen that the surface S can be any surface stretched over the circle and
not only a plane surface. We have

S curl (@ X1)-dS =2 3 ©-dS= 20 S as. (14.40)
8, Sy 83
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We take into account that L}z -

b dS=0, 14.41 dz! .
§ ( ) Z [(z — z;)z + ',2]“
where S’ is the closed} surface consisting of the surface z (2 2)

S, from (14.40) and "the "surface § of the circle from M o~
(14.39), i.e. 8’ = Sy 4 S. Form (14.41) we obtain

S dS= —nnr}, (14.42)
8,

where n is a unit vector perpendicular to the plane of
the circle. In (14.42) we took into account the fact that —L\
the elciment gs il{ (1§.41)fis dilgclt’ed along 2]112 Zg;ward '
normal to the closed surface. Substituting . into . .
(14.40), we obtain a formula identical to (14.39). glgi; 411' Aihhnear charge of a
Example 14.3. Find the potential and the strength of the field U1t l1eNg

created in the space surrounding a uniformly charged

filament of a finite length 2L. The linear charge density of the filament is <.

We place the origin of the Cartesian system of coordinates at the middle of the filament
(point 0{ and direct the Z-axis along the filament (Fig. 41). In view of axial symmetry, the
potential depends only on r and the coordinate z.

Figure 41 shows the plane passing through the point (r, z) and the Z-axis. The charge
7 dz’ located on the element of length dz’ creates at the point (r, z) the potential

1 Tdz’
dop= —_— |
¢ dne, YVrrx(z—z)2

Consequently, the potential created by the entire charged filament is

o1 'S” tde’ % ln(z—L+Vr3+(z—L)“
neo 3 VritG—s)? e\t L4V rfGE+I)

) . (14.43)

The components of electric field are given by the following formulas:

—_%9__ = 1 1
N e (1464
= -- ﬂ: T z—L . Z+L
E, ar 4ne,r ( Vrtec_L?® VrPrGrLp ) . (14.45)

For L — oo, we obtain
E; =0, E, = t/(2neyr).
As L — oo, the potential also tends to infinity:

T
P=— Treg (ln r—In (2L)] - oo.

This is a consequence of the fact that the charge is not concentrated in a finite region of
space, and hence formula (14.43) cannot be used for calculating the potential when L — oo.
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For very large distances from the middle of the filament[(R = VB F 2> L), for-
mula (14.43) gives
2L 1 Q

?= 4ﬂ80R = 4“80 .I_?- ’

where Q = 12L is the total charge of the filament. Thus, at distances that are large in com-
parison with the linear dimensions of the filament, the field is ¢lose to the Coulomb field.

Sec. 15. Electrostatic Field in Vacuum

The basic methods for calculating the potential and
strength of an electrostatic field are described and
examples of calculations are analysed.

Formulation of the problem. Let us solve the following problem of electro-
statics:

Determine the electric field created by a given charge distribution.

This problem can be solved in several ways. All these methods are equivalent
in principle, but different in practice, depending on the circumstances, since
they involve different amounts of computational work. It is expedient to choose
the method which leads to the required result in the simplest manner.
Direct application of Coulomb’s law. In this case, the field strength at a point
is determined as the sum of the fields created by all the elements p dV and
o dS of the volume and surface charges. This is the most natural method, though
not the simplest one since it involves the addition of vectors which considerably
complicates the calculations. An example of using this method was considered
in Sec. 8 while calculating the forces of interaction between a point charge and
a very long charged filament.

Calculation of potential. Formulas (14.35) and (14.36) can be used only for
charge distribution in a finite region of space and when the potential is nor-
malized to zero at infinity.

By way of an example, let us consider the field at the points on the perpen-
dicular passing through the centre of a uniformly charged disc of radius a
(Fig. 42). The total charge on the disc is equal to Q. For the potential at a dis-
tance h from the surface of the disc, we have [see (14.36)]

1 odzdy
h)= —_—
® () 4me, § V222 he ’

where 0 = Q/(na?) is the surface charge density of the disc. It is convenient
to calculate this integral in polar coordinates by putting z? + y® = r? and
dz dy = dS = r dr da. This gives [see (15.1)]

2n a

__c© rdar 1 Q T
cp(h)—magdag VT, ;—(Va2+h2—h). (15.2)

(15.1)
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From the axial symmetry of charge distribution it follows that the electric
field vector is directed along the axis of the disc and is equal to

%9 __ 1 0/ b
Ev=— =g w1 Vorm ). (15.3)
For & > a, it can be assumed that
h 1 41
VarE S Ve ~1 7 g e (15.4)
Consequently,
1
Ehwmh—g ’ (15.5)

as could be expected even without calculations, since at large distances the
field due to a charged body is equal to the field due to a point charge.

Application of Gauss’ theorem. In the presence of symmetry, Gauss’ theorem is
sometimes found to be the most effective means for determining the field strength.

Sl
W |

'Fig. 42. Field along the axis of Fige, 43. To the calculation of

a uniformly charged disc the electric field of a very long
charged filament with the help
of the Gauss theorem

For example, suppose that it is required to find the field strength due to a very
long straight charged filament with linear density t. We construct a right cir-
cular cylinder of radius r, whose axis coincides with the filament (Fig. 43).
We denote the height of the cylinder by ~. Applying the Gauss theorem to the
volume of the cylinder, we get

| E ds=0re, (15.6)
S

where Q is the charge in the volume of the cylinder and S is the cylinder surface.
Obviously, Q = th. The flux of E through the bases of the cylinder is equal to
zero, since the vector E is parallel to the bases. The flux of E through the lateral
surface can be easily calculated, since in this case the vector E coincides with
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the normal to the surface, and its absolute value is constant. This gives
S E-dS= | E-dS=E-2mrh. (15.7)
8 S1at

Thus, Gauss’ theorem leads to the equality

E.2arh = thle,, (15.8)
whence
1 =
E= Smeg T (15.9)

In a field of this strength, the force acting on a point charge is equal to (8.5),
which is obtained directly from the Coulomb law.
Laplace’s equation and Poisson’s equation. In order to find the field strength
it is preferable in many cases to reduce the problem to the solution of the differ-
ential equation for potential. In order to obtain this equation, we substitute
into

div E = p/e, (15.10)
the expression
E = —grad ¢. (15.11)
This gives
div grad ¢ = —ple,. (15.12)
We consider that
divgrad p=—2 4 g;‘f + 22— v, (15.13)

where V2 is the Laplace operator, equal to the sum of the second derivatives
with respect to coordinates. Sometimes, this operator is denoted by A =V?2.
With the help of (15.13), we can write Eq. (15.12) in the form

Vo = —pl/e,. (15.14)

This equation is called Poisson’s equation. In those regions of space where
charges do not exist (p = 0), this equation is reduced to the form

Vi =0 (15.15)

called Laplace’s equation. v

After the potential ¢ has been determined as the solution of (15.14), we can
calculate the electric field strength by using formula (15.11). The solution must
satisfy the requirements formulated for the potential (see Sec. 14): the potential
@ is a continuous and finite function with finite derivatives with respect to coor-
dinates.

If all the charges are concentrated in a finite region of space, it follows from
the uniqueness of the solution of problems of electromagnetism that (14.35)
will be the solution of (15.14) (see Sec. 58).
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The biggest advantage in finding the field strength with the help of Poisson’s
differential equation for potential is that this method is quite general and it
can be widely applied. Formulas (14.35) and (14.36) assume that all charges
are located in a finite region of space, and hence it is reasonable to normalize
the potential to zero at infinity. Poisson’s equation, however, does not assume
any definite normalization of the potential and the absence of charges at infinity.
A very long uniformly charged circular cylinder. Using Poisson’s equation,
let us determine the potential created by a very long circular cylinder of radius
a and the volume charge density p = const.

We direct the Z-axis along the axis of the cylinder. In view of the axial sym-
metry of the charge distribution, the potential ¢ is also axially symmetric, i.e.
¢ = @ (r). Itistherefore convenient to use acylindrical system of coordinates,

whose axial angle is denoted by a. In this system of coordinates, the Laplace
operator has the form

_ 0% , 1 3¢ 1 9% %
Vo=Gnt T o T e e (15.16)

Since in this case the potential ¢ depends only on r, Eq. (15.16) can be sim-
plified as follows:

d2 1 d d
vig=dle  1do 14 (r d“’), (15.47)

rdr_rdr\"dr
while Poisson’s equation (15.14) can be written in the form:
d
1d (r dq;_‘ ) = —pleg, O<r<a),

%—r(r ‘31?.’)=0 (r>a).

(15.18)

The general solutions of this equation are obtained by integration:

Py = —%‘% r’+ A Inr+B,,
@y=A;Inr+ By, (15.19)

where A, A,, B, and B, are integration constants. Since the potential must be
finite at all points in space, and Iln r — o0 asr — 0, we must put 4, = 0 in the
solution (15.19). It is convenient to normalize the potential by the condition
@, (0) = 9, which gives B, = 0.

Since there are no surface charges, the electric field strength on the surface
of a sphere is continuous. In other words, the derivative of the potential is
continuous. The continuity conditions for the potential and its derivative at

r = a give two algebraic equations for determining the two remaining unknown
constants A, and B,:

Azlna-l-B2=—i P g2, ﬁl:—-;—La (15.20)

4 8_0 a €y
7—0290
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Consequently,
1
u)=—72r O<r<a),
' _p Lo, (15.21)
q)z(r)=§-?o'a nT'—'Ze—oa (r>a)'
This gives
a
,,=—T‘f'l=-%--%r (O<r<a),
oy 1 p ab (15.22)
E’=—6_r=7-57 (r>a).

Considering that pna® = 7 is the charge per meter length of the cylinder, the
second equation in (15.22) can be rewritten in the form

1 =
Er = r (15.23)

<A comparison of (15.23) and (15.9) shows that the field outside a uniformly
charged cylinder is the same as if the entire charge were concentrated on the

axis.

Direct application of Coulomb’s law for calculating the electric field strength from a given
charge distribution is the most natural, although not the simplest approach.

For a symmetric charge distribution, it is usually expedient to determine the electric field
strength with the help of the Gauss theorem.

What is the physical meaning of the potential within the framework of electrostatics?
What is the physical meaning of the potential difference?

Example 15.1. Find the field strength for a uniformly charged finite straight filament with linear
charge density t (Fig. 44). The parameters have the following values: T = 10~ C/m, ! = 1 m,
d=0.5m and a = 0.5 m.

According to Coulomb’s law, we have

dE.— tdycosa dvdy
7 4ney (y2+d?)  4me, (y2+4-d?)%/8°

AdE, = tdysina wydy
V= T, (434 47)  dme, (34 d0R

whence
e d ‘i dy B, = T E ydy
7 dneg @ia?Pr’ TV dme, W +aa*
--a) -(l-a)

Carrying out the substitution of variables y = d tan o, dy = d da/cos® @, 1 -} tan® @ =
1/cos® o, and evaluating the integrals, we get

1 . i
Ex= Zrgoa (S0 @atsine,)=1.27 V/m, (15.24)

T
E”=-4—J'Eo—d. (cos 0.3 —cos a,)=0.
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Fora verzy long filament (I > o), a; = a; = x/2, and hence E, = 0and E =1/(2neyd).
Example 15.2. With the help of the potential, find the field strength at points on the perpendicular
to the plane of a disc on which a charge Q is uniformly distributed. The radius of the disc is equal

Fig. 44. To the calculation Fig. 45. To the calculation Fig. 46. To the calculation
of the electric field of a linear of the electric field of a of the electric field of the sur-
charge of a finite length charged disc face charge of a sphere

to a (Fig. 45), and it is assumed that Q = 10-1° C, a = 10 cm, & = 20 cm (the distance between
a point and the plane of the disc).
In accordance with formula (14.36), we have

4 ¢ odedy 0
cP(h)— 4“80 S V‘m ’ o Ta? *

S

In order to calculate the integral, we go over to polar coordinates in the plane of the disc:
z? 4 y? = 13, dz dy = r dr da. This gives

2n a
dr 1 Q -
cP(h)=4—“- S de S T = oo - (V a*Fhi—n), (15.25)
ﬂzo : ) Vrﬂ_'_h? €y A
whence
__ %% _ 1 Q( _ h _
En=— = ot (! VaE ) =18V/m. (15.26)

This formula is similar to (15.3).
Example 15.3. Find the strength of the electric field created by the surface charge of a sphere of
radius R. The total charge on the sphere is Q, and the surface charge density is,0c = Q/(4siR3).
. The potential created by a charged surface element at a point characterized by r (Fig. 46)
is
do=—1 oR2sin 6 d6 da
¢= 4nie, P

where R2 sin 0 dO da is a surface element of the sphere in spherical coordinates whose polar
axis coincides with the vector r, and o is the axial angle. It can be seen from the figure that
F = R — r. Squaring both sides of this equation, we get p? = R® + r* — 2Rr cos . Dif-
erentiating both sides, we obtain

2p dp = 2Rr sin 0 d6,

, (15.27)

T*
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whence R2sin 0 d0 = (pR/r) dp. In this case [see (15.27)]

__1 oR
T 4ne, T

dp de. (15.28)

Integrating this equation over the entire surface of the sphere, we get

oR? 1 Q
r+R —_—— R B
OR Sd _1 oR [ R, = gor  4mey, r (r>R) (15.29)
4ne _7 Ir=RI )
0 0 |riR) r oR __1 Q0 .

€ 4“80 R

This leads to the following expression for the electric field strength:

1 0
N ) (r<R),

f.e. the field strength outside a uniformly charged sphere is the same as if the entire charge
were concentrated at its centre. There is no field inside the sphere.

Sec. 16. Electrostatic Field in the Presence of Conductors

The effect of conductors on an electric field is con-
sidered. Basic physical phenomena due to charge
distribution over the surface of a conductor (such
as charge leakage from a point) are described. Quan-
titative characteristics of electrical propertiesof solitary
conductors and systems of conductors are analysed.
The essence of the image method is discussed.

Differential form of Ohm’s law. Conductors are material bodies in which the
motion of ¢harges, i.e. electric current, appears due to an electric field. The
law connecting the current created in a conductor when a potential difference
is applied across its ends was discovered experimentally in 1827 by Ohm (1787-
1854). This law has the form

I = UIR, (16.1)

where R is called the resistance of the conductor. In differential form, Ohm’s
law is obtained if we write this relation for the current density. Let us consider
a very small element of a conductor (Fig. 47; Al is the length and AS is the
cross-sectional area of the conductor and A¢ is the potential difference across
its ends). Let y be the electric conductivity of the substance, viz. the reciprocal
of the electric resistivity. The electric resistance of the conductor element and
the current in it are respectively given by

=LA 16.2a) I,=}.AS, (16.2b)

7AS’
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where the subscript v indicates that the current Ae .
density component is taken along the conductor '|= s
element. For this element, Ohm’s law is written .
in the form \ AS
. 1 Al o
Ap=r,as AL ct.3) N

Al

Considering that (A@/Al) = E. is the electric
field component along the element under inves-
tigation, we obtain from (16.3)

jx = vEs. (16.4)

This relation is valid for any orientation of the conductor element, and
hence can be written in vector form:

Fig. 47. To the derivation of
Ohm'’s law in differential form

j=1E. | (16.5)

This equation is called the differential form of Ohm’s law.

Classification of materials according to conductivity. Electric conductivity
vy depends on the properties of a material. Depending on conductivity, the
materials are divided into three classes: dielectrics, semiconductors, and con-
ductors. There is no sharp boundary between them. According to their con-
ductivity, these materials are specified as follows.

(a) Dielectrics are substances with low electric conductivity. An ideal di-
electric is characterized by the absence of conduction. This, however, can be
observed only at 0 K. At temperatures other than 0 K, all materials have a
certain conductivity, and hence ideal dielectrics do not exist. Dielectrics are
the materials whose electric conductivity y << 10-°® S/m.

(b) Semiconductors have electric conductivity between 10-% and 10°® S/m.

(c) Conductors are characterized by an electric conductivity higher than
10% S/m. Mainly, these are metals. The best conductors among them are copper
and silver which have electric conductivity of the order of 107 S/m.

Absence of electric field inside a conductor. In electrostatics, we consider the
case when charges are fixed, i.e. j = 0. Equation (16.5) gives for this case

E =0, (16.6)

i.e. there is no electric field inside a conductor in electrostatic equilibrium.
Absence of volume charges inside a conductor. The equation

div E = p/g, (16.7)

o =0, (16.8)

i.e. there are no volume charges inside a conductor. This means that the charge
of the conductor is concentrated on its surface in a layer of atomic thickness.
Of course, both positive and negative charges exist inside the conductor, but
they compensate each other, and the interior of the conductor is neutral on the
whole [see (16.8)].

for E =0 gives
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The neutrality is established very quickly. Let us suppose that in a certain
volume inside a conductor the density of free charges differs from zero (p (0) 5= 0)
at the instant ¢ = 0. The continuity equation (5.24) combined with (16.5) as-
sumes the form

a . 7] .
%> +div (YE) = 57 +vdivE=0,

where y = const (for a homogeneous conductor). Taking into account (16.7),
we obtain from this expression the equation for time variation of p:

The solution of this equation has the form
p(t)=p (0) o=tviean,

i.e. the charge density decreases exponentially. In accordance with the general
rule, we can assume that the space charge in the conductor “is assimilated”
during the time 1 = g,/y, which is called the relaxation time. For metals, this
time is extremely short. For example, for copper (y = 6 X 10?7 S/m), © &~
10-1% 5. This interval of time is extremely short even on the scale of intra-
atomic processes. Consequently, in nonstationary cases, when fields vary with
time, we can assume with a high degree of accuracy that for moderate fre-
quencies free charges in a conductor are distributed over its surface and space
charges are absent. This conclusion remains valid even if we take into account
the dependence of the conductivity y on frequency, although in this case the
relaxation time increases by several orders of magnitude.

The establishment of neutrality is associated with currents which, however,
do not create a charge in the regions through which they flow. Let us illustrate
this by a simple example. Suppose we have a sphere of radius a,, made of a
material with the permittivity & and electric conductivity y. At the initial
moment ¢ = 0, the spherical region of radius a, << a, is uniformly charged with
the charge density p,. The spherical layer between radii e, and a, is neutral.
Let us consider,the process of charge neutralization in the volume of the sphere.

The time variation of charge density at different points of the sphere is given
by the formula

pe=tt (r<<ay),
1) =
e a={5" (Sa
where © = &/y. The total charge of the sphere Q, = (4/3) majp, remains con-

stant, while the charge of the spherical region of radius a, decreases in accord-
ance with the law

Qi ()= '%‘ naypee % = Qo= t/%,

Conduction current carries this charge through a spherical layer between
radii @, and a, to the surface of the sphere, where it is concentrated in the form
of a surface charge.
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At any instant of time, the charge distribution is spherically symmetric, and
hence the Gauss theorem gives the following expression for the electric field
strength:

=i/t
e 0<r<a)
-t/T
Er = oz;;er’ (ai < r < az)'

s (r>a).

The surface charge of the sphere increases. It can be calculated with the help
of the law of charge conservation or from the boundary conditions. In the former
case, we obtain

0 =7 [Qo— Qi (0] = g2 (1 —o=*1%),

In the latter case,

Qo

O |rma, = Dy |rma,+0 — Dr | rma,-0 =2¢Er |rma,+0—2E} |rma,-0= Gnal (1—c~th),

where the values of the function with the argumentsr = a, + Qandr = a, — 0
are taken from the inside and outside of the surface of the sphere.
The conduction current density is given by

-t/x
YT (0<r<a)),

i =vE, = -t/
]l' ? r %’_ (ai<r<az)’

0 (B <r < oo).

The conduction current through a spherical surface of radius r is determined
from the formula

/A
W — & O<r<a),

—i 2 Al
I, =jar 7_0208__ (@ <r<ay),

0 (@ <r << o0).

Thus, the total current in the region 0 << r << @, increases with the radius.
This is due to the fact that each point in this volume is a source of conduction
current. In the region a, << r << a, there are no sources of conduction current,
and hence the total current through the spherical surface does not depend on the
radius.

Electrostatic induction. If a neutral conductor is placed in an external electric
field, the surface charges are redistributed over its surface in such a way that
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the field created by them inside the conductor
completely compensates the external field. As a
result, the total field strength inside the conduc-
tor is equal to zero. The redistribution of surface
charges on a conductor placed in an external electric
field is called the electrostatic induction. If the con-
ductor is charged, its charges are also redistribut-
ed under the action of the external field.

The field near the surface of a conductor. Let us
isolate an area element AS on the surface of a
conductor and construct aright cylinder of height
h so that it crosses the surface (Fig. 48). We apply
the Gauss theorem to this cylinder:

S E-dS = Q/ey, (16.9)
8

.
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fl:g f?r}nt’fl‘:l tlflc(:r d:ﬂ?“f&-':n:f where S is the surface of the cylinder and Q is the
component of the electric field charge in the cylinder volume.
vector near the surface of a Inside the cylinder, the charge exists only on
conductor the surface of the conductor and ischaracterized by
the surface charge density ¢. Hence Q = oS. The
field inside the conductor is equal to zero, and hence the flux of E through the part
of the cylinder surface located in the volume of the conductor is equal to zero.
The flux through the part of the cylinder lying outside the conductor is the
sum of the fluxes through the cylinder base and the lateral surface. In the limit,
we take the height k2 of the cylinder as small as desired (- —0), and hence
the area of the lateral surface of the cylinder and the flux of E through it will
be as small as desired. Therefore, in the limit 2 — 0, only the flux through the
cylinder base is left:

S E.dS=E,AS, (16.10)
A8

where E, is the normal component of E. It should be recalled that in the Gauss
theorem, the positive direction of the normal is that of the outward normal to
the closed surface. In the case under consideration, this means that the positive
normal is directed outwards from the conductor surface. As ~ — 0, expression
(16.9) combined with (16.10) becomes

E, AS = o AS/¢,, (16.11)
whence
E, = alsg,. (16.12)

Thus, the normal component of the field strength at the surface of a conductor is
uniquely determined by the surface charge density.

Let us consider now the tangential component of the field strength. We shall
show that it should be equal tc zero proceeding from the fact that a perpetual
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motion machine cannot exist. We consider a closed loop L crossing the surface
of a conductor so that its upper part is parallel to the surface of the conductor
outside it, while the lower part is inside the conductor (Fig. 49). The electric
field strength E is equal to zero inside the conductor, and hence the tangential
field component is absent. Suppose that outside the conductor the tangential
component is not equal to zero. We take a positive charge and move it along
the closed loop in the direction shown in Fig. 49 by arrows. On the section 4B,
the field performs a positive work. The section BC can be made in the limit
as small as desired since the sections AB and CD can be arranged as close to
the conductor surface as desired. Consequently, the motion on the section BC
is associated with the work which can be as small as desired. The motion of the

/3',
2 A —>

t
7
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\Nht

Fig. 49. To the proof of the ab- Fig. 50. Emergence of an elec-
sence of the tangential compo- tric field near the surface of a
nent of the electric field outside conductor

a conductor

charge in the section CD does not involve any work since the field inside the
conductor is absent. The work associated with the motion of the charge along
the section DA, as in the case of the section BC, can be as small as desired.
Thus, as a result of motion of the charge along the closed loop, the electric
field performs a; positive work, and no changes occur in the system. We can
repeat this cycle and obtain the same work, and so on. Thus, we have realized
a perpetual motion machine of the first kind, which is impossible. This per-
petual motion machine performs work at the expense of the tangential com-
ponent of the electric field near the surface of the conductor. Hence, this com-
ponent must be equal to zero. In other words, the fact that the tangential com-
ponent of the electric field near the surface of a conductor is equal to zero is a con-
sequence of the potential nature of electrostatic field and of the absence of the field
inside the conductor.
The equality
E.=0 (16.13)

indicates that the electric field strength near the surface of a conductor is perpen-
dicular to the surface and is equal to ole, [see (16.12)].

Mechanism of creation of the field near the surface of a conductor. Electric charges
are the only source of electric field in electrostatics. Hence the field in the
vicinity of the surface of a conductor is created by all surface charges of this
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conductor and all charges outside it. Let us iso-
late a verysmall area element AS of the conductor
surface (Fig. 50). The field strength E near the
surface of the conductor is the sum of two compo-
nents, viz. the strength of the field E, created by
the charges contained in the element AS and
the field E, created by the remaining charges
outside the element AS. Clearly, the charges of
the area element AS create the field on both sides
of the element. Since both sides of the element AS
are equivalent, we may conclude that the vec-
tors E, and E; are oppositely directed and equal
g, e in magnitude: |E, | = |E] |. The field E, is
, (b'). created by all charges located outside the element
AS. Obviously, these charges create not only the
- . field E, outside the conductor, but also a field
fx:gé zli‘arD:pgggﬁrtn;:’e&f :ﬁﬁ 23;. E, inside the conductor. Since this field is in the
vature of the surface space outside the charges and is created by them,
it must be continuous, and hence E, = E;. The
total field strength inside the conductor is equal to zero, i.e. E'=E; + E;=0.
Hence it follows that E; = —E,. Taking into account the equality | E, | =
| E{ |, we conclude that

[E(|=|Eg|.
Hence it follows that

0 =

E=E-=1E, (16.14)

i.e. the field near the surface of a conductor is the sum of two equal components,
one of which is created by the surface charges of the adjoining surface element, while
the other is created by all the remaining charges located outside this surface element.
Dependence of thesurface charge density on the curvature of thesurface. The charge
on the surface of a conductor is distributed nonuniformly, and the surface
charge density depends on the curvature of the surface. In order to verify this,
let us analyse the distribution of the field strength near a certain element of the
surface (Fig. 51). If the surface is slightly curved (Fig. 51a), the charges lying
outside dS create a small normal component of the field E; near this element.
Therefore, to compensate the normal component, the charges located on this
area element must create a comparatively weak field E; = —E;,. In accordance
with formulas (16.14) and (16.12), we conclude that the surface charge density
o = 2¢g,E; on this element must be comparatively low. On the other hand, if
the curvature of the surface near the element under consideration is large,
the field E, created by the charges located outside the area element dS is strong,
and accordingly the field created by the charges located on the area element
must be considerably stronger. This means that the surface charge density
on this element must be higher. Thus, we can conclude that the surface charge
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Fig. 52. Charge leakage ‘rom Fig. 53. Electrical “Segner”
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density increases with the curvature of the surface, i.e. increases with decreasing
radius of curvature.

Similar arguments can be used to show that the surface charge density on the
concave surface of a conductor is lower in comparison with the flat surface.

An increase in the surface charge density on convex surfaces is manifested

most visually in the leakage of charge from a tip.
Charge leakage from a tip. Let us analyse the phenomenon occurring near the
tip of a charged conductor (Fig. 52). The field E near this point is very strong.
The surrounding air contains charges (ions and electrons) which are acted upon
by a force in the field E. In accordance with Newton’s third law, an equal and
opposite force acts on the charges on the tip. Consequently, as a result of in-
teraction, the charges in the air in the vicinity of the tip and the tip itself
receive equal and opposite momenta. The charges in the air, which move towards
the point under the action of the force, transfer their momentum and charge to
the point upon impingement. This momentum is equal in magnitude to the
momentum received by the point as a result of interaction with the correspond-
ing charge, but is opposite in direction. Consequently, as the point is hit by
the charges, these momenta compensate each other, and the net result of inter-
action is equal to zero.

Thus, the interaction between the charges on the tip with unlike charges in the
surrounding air does not lead to a force acting on the point.

A different situation arises for like charges: the force acting on the
charges at the tip is always directed inside the conductor (in Fig. 52, this force
is denoted by —F(.,)). If the tip is positively charged, negative charges hitting
the tip (as shown in Fig. 52) neutralize the corresponding positive charges.
Thisjlooks as if positive charges leave the tip or, as is usually said, leak from
the tip. The force —F(4) acting in this case on the tip is equivalent to the
reactive force due to the leakage of charges from the tip. If the tip is
negatively charged, the electrons in fact leave it, i.e. actually leak from the
tip. The mechanism of appearance of “reactive force” in this case is completely
identical to that described above.

This means that the “reactive force” appears not only at the moment the
electrons start leaking from the surface of the conductor, but at all subsequent
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Fig. 54. Schematic diagram of Fig. 55. Demonstration of the

an electrometer surface charge density depen-
dence on the curvature of the
surface with the help of an elec-
trometer

instants of time, when an electron is accelerated by the field of charges left on
the point.

An effective demonstration of the appearance of “reactive force” as a result
of leakage of charges from a tip is the rotation of the electrical Segner wheel
(Fig. 53). The dashed arrows show the direction of charge leakage, as a result
of which a “reactive force” appears and the horizontal segment of the conductor
is set into rapid rotation around the vertical axis.

Electroscopes and electrometers. The simplest device for detecting electric
charges is a vertical metallic rod or plate with a light conducting foil or pointer
attached to it at one end (Fig. 54). If there is no charge on the metallic rod
and foil (pointer), the latter hangs vertically, parallel to the rod. In the presence
of charge, the repulsive forces acting between like charges on the rod and on the
foil (pointer) deflect the foil from the vertical position by a certain angle. Thus,
the device may serve as an indicator of the presence of charge, i.e. an electro-
scope. The angle of deflection of the pointer from the vertical is the larger, the
larger the charge on the rod. This makes it possible to graduate the electroscope
and to determine the amount of electricity on it by the angle of deflection.
Such an electroscope, adapted for quantitative measurement of charge is called
an electrometer. The charge depends on the potential of the rod and of the
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pointer. Consequently, an electrometer can be used for measuring the potential
difference. The device is enclosed in a case (Fig. 54).

The dependence of the surface charge density on the curvature of the con-
ductor surface can be illustrated with the help of an electrometer as follows.
A small conducting ball fixed on a nonconducting handle touches a part of the
surface of a conductor (Fig. 55). The charge on the ball is the larger, the higher
the surface charge density on the part of the surface touched by the ball. After
this, the ball is separated from the surface of the conductor and brought in
contact with the rod of an electrometer. The charge transferred to the electro-
meter depends on the charge on the ball. Consequently, the deflection of the

Fig. 56. A metallic screen for Fig. 57. A charge surrounded by
external fields a closed conducting shell

pointer indicates the surface charge density of the part of the surface from
which the charge was transferred to the electrometer. The ratio of the surface
charge densities of the corresponding parts of the surface of the conductor can
be judged by the ratio of the angles of deflection of the pointer. Depending on the
curvature of the surface, the surface charge density may vary significantly.
Metallic screen. The annihilation of the field inside a conductor by the charge
distribution on its surface indicates that the inner parts of the conductor have
nothifig to do with the field and hence can be done away with. As a result, we
are left with a closed conducting shell (Fig. 56). I'n the space surrounded by the
shell, the electric field is equal to zero. The closed shell is called a sereen. It shields
the internal space from the external electric field. The screens (shields) are used
for protecting technical devices from the influence of external electric fields.
They are usually made from a mesh with small cells rather than from a solid
conducting material. Experiments and calculations show that the screening
effect of such a mesh is slightly inferior to that of a solid screen, but the material
expenditures are much smaller and the construction is much simpler.

Does a closed conducting shell screen the external space from the charges
located inside a cavity? In other words, does the field of charges in the volume
surrounded by a closed conducting shell penetrate the surrounding space? Yes,
it does. In order to verify this, we have to analyse the situation in greater detail.



110 Ch. 2. Constant Electric Field

Suppose that the charge

Q0= S pdv (16.15)
\ 4

is distributed in the volume V inside a cavity. In accordance with the law of
clectrostatic induction, an opposite charge appears on the inner surface of the
shell (Fig. 57). In order to find its magnitude, we shall apply the Gauss theorem
to the volume inside the closed shell:

| Eas=21 [pav, (16.16)

€
Sin °
where S, is the inner surface of the shell.
Denoting by o the surface charge density on the inner surface, we obtain the
following expression for the field E near the surface [see (16.12)]:

ag
E= B_o n, (16.17)
where n is the normal to the inner surface of the shell, directed inside the volume
bounded by the shell. We consider that dS in (16.16) is directed along the out-
ward normal to the volume V, i.e. oppositely to n, and hence

\
n-dS=dS cos (n, dS) = dS cos = —dS. (16.18)

Using (16.17) and (16.18), we can write the integral on the left-hand side of
(16.16) in the form

S E-dS=—% | oas. (16.19)
sln Sin

Then the Gauss theorem (16.16) assumes the form

- S cdS= S pdV =0, (16.20)
\ 4

sln

Consequently, the charge formed on the inner surface of the shell is equal and
opposite to the charge inside the cavity.

The field strength inside the shell is equal to zero since the shell is a con-
ductor. The charge on the outer surface has a sign opposite to that of the charge
on the inner surface, its magnitude being equal, in accordance with the law of
conservation of charge, to the magnitude of the charge on the inner surface.

In order to prove the existence of an electric field in the surrounding space,
we shall use the Gauss theorem. The dashed line in Fig. 57 shows the closed
surface surrounding the shell. The total charge in the volume bounded by this
closed surface is equal to the charge inside the cavity bounded by the shell
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since the charge of the shell is equal to zero.
Consequently, the Gauss theorem has the form

[E.ds=L [pdv=0re=0, (16.21)
S

€
\ 4

i.e. the field strength E in the space surrounding
the shell differs from zero.

Let us “earth” the shell, i.e. connect it by a

conductor with a very large remote conducting
body. Usually, the Earth serves as such a body
(Fig. 58). In order to simplify the analysis, we
represent this body in the form of aninfinite con- Fig. 58. An earthed closed shell
ducting medium that fills the entire space outside ’g‘eld]: the e?tefé‘al spa(ie from
the shell and is in contact with it. All the charges the charges Inside a volume
will go from the outer surface of the shell to
infinity, and only the charges inside the cavity and on the inner surface of the
shell will remain. The field strength in the conducting medium surrounding the
shell is equal to zero. In this case, the medium ensures the removal of the charge
from the outer surface of the shell to infinity. Hence, at a finite distance from the
shell a thin wire conductor will ensure the charge exchange between the shell
and sufficiently remote regions of the medium. Obviously, after the removal
of the conducting medium from the region surrounding the shell, the field
strength at the points of this region is, as before, equal to zero. Thus, the earthed
closed shell shields the external space fromthe chargeslocated inthe volume surround-
ed by this shell. An unearthed shell does not provide such a screening.
Potential of a conductor. The fact that the field strength E inside a conductor
is equal to zero means that the potential at all points of the conductor has the
same value, i.e. the. potential difference between points I and 2 of the conduc-
tor [see (14.28)] is

(2)
¥ —o ()= | E-d1=0. (16.22)
o)

The potential, whose value is the same at all points of a conductor, is called
the potential of the conductor.

Suppose that we have an isolated charged conductor. In the space surrounding
the conductor, there is an electric field created by the charge of the conductor.
We shall normalize the potential to zero at infinity. Then [see (14.29)] the
potential of the conductor can be expressed by the formula

©o
~

o= E.dL (16.23)
(conductor
surface
In this formula, the integration path starts at any point of the conductor

and terminates at infinity.
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Capacitance of an isolated conductor. What determines the potential of an
isolated conductor? It follows from formula (16.23) that in accordance with the
principle of superposition, the potential must be proportional to the charge since
E in the integrand of (16.23) is proportional to the charge. Further, it is clear
that the potential depends on the size and shape of the conductor, which are
taken into account by its capacitance.

The capacitance of a conductor is defined as the ratio of the charge Q of an
isolated conductor to its potential ¢:

C=0Qlg. (16.24)

The capacitance of a conductor is measured in farads (F). Formula (16.24)
gives
1 F=1C/V. (16.25)

In the CGS system, the capacitance is expressed in centimetres and the for-
mula for capacitance coincides with (16.24). Since 1 V = (1/300) CGS units,
1 C =3 x 10° CGS units, it follows from (16.24) that

1 F=9 x 10" cm. (16.26)

A farad is a very large unit. Let us calculate, for example, the capacitance
of a sphere of radius R carrying a charge Q. Since the strength of the electric
field created by such a sphere in the surrounding space is

E=-_1_ Qr (16.27)

4ng, 13 1 ¥
the potential and capacitance are expressed by the formulas

1
R
C = Q/p = 4ne,R. (16.29)
For the radius of the sphére equal to 1 cm, we obtain
C =10"%/(9 x 109 ~ 10-1? F. (16.30)

For this reason, the capacitance is usually expressed in fractional units.
A system of conductors. If we have several conductors, the potential of each
of them depends not only on the charge of the conductor but also on the strength
of the fields created by other conductors or, in other words, on the cliarges of
other conductors. In accordance with the principle of superposition, the poten-
tial is proportional to these charges.

Let us consider, for the sake of definiteness, two conductors (Fig. 59). It
follows from what has been said above that

¢ = 0,0, + °‘12on Qs = 0501 + %3204 (16.31)
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where a;; are the potentlal coefficients which de-
pend on the shape and size of the conductors and
on their mutual arrangement. The theoretical cal-
culation of these coefficients is a complicated
mathematical problem. Usually, they are deter-
mined experimentally.

The potential coefficients are not independent
of each other. This can be shown as follows. Let
o, and o, be surface charge densities, r;; the distance from the surface element
dS, of the first conductor to a certain fixed point inside it, and r;, the distance
from the area element dS, of the second conductor to the same point. Then
the potentials of the first and second conductors are given by

Fig. 59. A system of conductors

1 g,dS 1 g, dS
(p‘= 4“80 SS :‘11 : + 4“80 S :'1’ : ! (16.32)
1 gy dS 1 0;dS;
P2 = 4meg SS 2"22 : + 4me, S ;'n ‘ (16.33)

(the meaning of r,, and r,, is similar to that of r;; and ry,). The charges of the
conductors are

Q0= S 0,dS;, Q= g 0, dS,. (16.34)
S 8,
Let us suppose that the charges of the conductors have changed:
Q= 3 o/ dS, Q)= S o, dS,. (16.35)
8 S,

We multiply both sides of (16.32) by ()l and (16.33) by @, and add the obtained
equalities termwise:

0iou+Qlor =g | oras, [odiy L S" s, | <25
8

i T12
Sy 84 8

+ﬁja;dszgﬂ+,m So,dszg 0145,
S

T2a Ta1
s 1dS
=—_87 So‘ ds; S 01 =+ 4ne, SozdstS 61rn ;
ogdS ¢ o5dS
+— lme S 0,dsS, S et Lis N 4m Sa, dS‘g‘ ;n 2
= Q49 +qu>2, (16.36)

where the order of integration has been changed since the integration is carried
out with respect to different independent variables. The quantities ¢; and @,
are the potentials of the conductors when their charges are equal to Q; and Q,.

8—0290
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The relation

Q.91+ Q392 = Q19 + Qxp, (16.37)

obtained in (16.36) is called the reciprocity theorem. From this theorem, we
can obtain the condition that must be satisfied by the potential coefficients a; ;.

If the charge of the second conductor is equal to zero (Q, = 0, Q, == 0), then
[see (16.31)]

¢ = apln @ = anly (16.38)
If the charge of the first conductor is equal to zero (Q; = 0, Q¢ == 0), then
[see (16.31)] J
@1 =040y, @y =00;. (16.39)
The reciprocity theorem (16.37) for these two cases assumes the form
Q392 = 019, (16.40)

Substituting into this expression the expressions for ¢, and ¢, [see (16.38)
and ([16.39)] and cancelling the common factor Q;Q, on both sides of the ob-
tained equality, we find

CL,2 == CL.n. (16-41)

i.e. the potential coefficients are symmetric relative to their indices.
These calculations can be easily extended for any number of conductors by
writing the initial relations (16.31) for n conductors in the form

Py = jgl ;0 (16.42)

All further calculations are similar to (16.32)-(16.37) and lead to the following
formula instead of (16.37), which expresses the reciprocity theorem in the
general case:

Z Qio= 2 Quoi- (16.43)

Instead of (16.41), we obain from this equation the general condition for
the symmetry of potential coefficients:

ai,- = Qjj. ('1644)
The system of equations (16.42) can be solved for Q;:
n
Qi = jgi Cu(pj. (16.45)

Here C;; = A;;/D, where D isthe determinant of the coefficients of the system
of equations (16.42), 4;; being the complement of the element o;; in this deter-
minant. On the basis of (16.44) we conclude that the coefficients C;; satisfy
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the condition
Cij=Cy, (16.46)

where C;; are the capacitance coefficients, C;; is the capacitance coefficient of
the i-th conductor and C;; the capacitance coefficient between the i-th and
j-th conductors. The capacitance coefficient of an isolated conductor is called
the capacitance of the conductor. ‘

Since a positive charge creates in an isolated conductor a positive potential,
we may conclude that all capacitance coefficients with similar indices (Cyy, Cos, . . .)
are positive. In order to verify this, let us earth all the conductors with the

sz (23
Ql, (3]
r
¥ >
Fig. 60. To the determination Fig. 61. To the calculation of
of capacitance coefficients for capacitance coefficients for two
the case of two spheres conducting spheres

exception of the i-th conductor, retaining on it a positive charge. In other
words, we shall assume that Q; > 0. Obviously, in this case ¢; > 0 and ¢; =0
for j == i. Consequently, Eq. (16.45) for Q assumes the form

Qt = Ciiq)i' (16.47)

Since ¢; >0 and Q; >0, C;; > 0 as well, Q.E.D.

Similarly, we can prove that the capacitance coefficients with unlike indices
cannot be positive. They are either negative or equal to zero. Let us consider, for
example, two conductors one of which is earthed while the other is isolated and
positively charged. On account of electrostatic induction, this positive charge
will induce a negative charge on the earthed conductor. Formula (16.45) assumes
the following form for the charge on the second conductor:

Qs = Cy ;- (16.48)

Since Q, << 0 and @, > 0, C,; << 0. This result does not exclude that the
coefficient can be equal to zero, but by no means can this coefficient be positive,

Let us consider three conducting spheres (Fig. 60). We denote their poten-
tials and charges by ¢,, @, @; and Q,, Q,, Q5 respectively. For determining C,,,
we have Eqs. (16.45) which in this case have the form

Q1 =Cy 9+ Cy302+ C 395, -
Q2= C2191 4 Co92 4 C303, (16.49)
Q3= C39; + Cg92 + Cysps.
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In order to calculate the coefficients C;;, it is necessary to have a sufficient
humber of equations (16.49) with known Q,’s and ¢; s, from which C;; can be
found.

Let us assume that Q; = 0 and that the second sphere is earthed. Then ¢; =
¢, = 0, and equations (16.49) become

01 =Cuoy,y, Q =Cpoyy 0 =Cyo;. _ (16.50)

This gives C5; = C;3 = 0, i.e. the capacitance coefficient (mutual capacitance)
for screened conductors is equal to zero.

Suppose now that the first and second spheres are earthed, i.e. ¢, = 0 and
@, = 0, while the charge Q; = 0. In this case, Eqs. (16.49) assume the form

01 =0, Q;=0Cyp;5 Q3= Cs30;. (16.51)

It was shown above that the charge induced on the inner surface of an earthed
conducting shell is equal in magnitude to the charge in the cavity bounded by
the shell but has the opposite sign, i.e. Q, = —Q;. Equations (16.51) give

023 = —Csso (16.52)

Thus, the capacitance coefficient for a conductor which completely envelopes
another conductor is equal and opposite to the capacitance coefficient of the
inner conductor. This fact is very important for the theory of capacitors.

Suppose that we have two spheres at a distance r from each other, this dis-
tance being large in comparison with their radius a (Fig. 61) (we denote by r
the distance between the centres of the spheres). Since a <« r, we can ignore the
redistribution of charges on the spheres due to mutual electrostatic induction
while calculating the field strength at large distances from the spheres. Then
the formulas for the potentials of the spheres become

Py = 4;80 ('Qa_l+%) v P2= 4::% (%'-i'%) ! (16.53)

where Q, and Q, are the charges on the first and second spheres. These equations
can be solved for Q, and Q,:

Qy=4mney 5—3 2ar3'2 —4meg a’raa P2,
(16.54)
Qz = - 4:";80 rz—a2 (pi‘l' 4:!1',80 r”—a’ P2.
Then
C“_sz-4neoT——C>0 (16.55)
CiZ = Czi - - 4“80 ar_ = ? < O (16.56)

Taking into account (16.55) and (16.56), let us represent (16.54) in the form
Q1 = Coy + V93 Q2 = v, + Cpoe (16.57)
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For r — oo, we obtain C,; = C,, = 4nega, C,3 = Cy; = 0, i.e. the electric
coupling between the spheres vanishes, and each of them behaves as an isolated
conductor. The capacitance coefficient for each of the spheres simply becomes
the capacitance of an isolated sphere.

Let us now consider a typical problem.

It should be recalled that the capacitance coefficients are constant for an
invariable configuration of conductors and their_ mutual arrangement, reégard-
less©of the change in their charges and potentials. Therefore, we must analyse
different situations equal in number to the unknown capacitance coefficients
and then solve the system of equations.

Suppose that the spheres receive certain charges as a result of which their
potentials become @, and ¢,. After this, the second sphere is earthed. What will
be the charges and potentials of the spheres after earthing?

Before we earthed the second sphere, the charges and potentials of the spheres
were related through Eqgs. (16.57). Since the potentials are known, the charges
can be calculated with the help of these formulas. After earthing, the potential
of the second sphere becomes equal to zero (¢, = 0), and the charge Q; is un-
known. The charge of the first sphere, as before, is Q; = Q, since the sphere is
isolated. Its potential ¢, is unknown. Let us write Egs. (16.57) for the case
when the second sphere is earthed:

Q=Co; Q=719 Q=0 (16.58)
The solution of these equations has the form
oi=@="Ut_ ot Lo G=vE. (16.59)
It follows from (16.55) and (16.56) that
y/C = —alr. (16.60)
Consequently, expressions (16.59) become .
Q. =91 —(alr) @, Qy= —(a/r) @y, (16.61)

i.e. after we earthed the second sphere, the potential of the first sphere changed
by a fraction a/r of the potential which primarily was on the second sphere.
The induced charge remaining on the second sphere is equal to the fraction a/r
of the charge on the first sphere and has a sign opposite to that of the first sphere,

Let us remove the earthing of the second sphere and then earth the first sphere,
Now we determine the potential of the second sphere and the charge of the
first sphere.

Obviously, after earthing, the potential of the first sphere will be equal to
zero (p; = 0), while the charge Q; is unknown. Since the second sphere is now
isolate(i, its charge remains unchanged upon the earthing of the first sphere
(Q; = Q). Equations (16.57) assume the following form in this case:

Qi=v9; Q:=Co;, Q=0 (16.62)
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whence

[

Q; a a a\2
P=a=—=mO=——¢+ (=) o

c rC r (r) (16.63)

X

c

G=—(%)"e.

These examples illustrate the methods of calculating capacitance coefficients,
gh'ilrges, and potentials for a system of several conductors in an electrostatic

eld. -

Capacitors. A capacitor is a system of any two conductors carrying charges
equal in magnitude and opposite in sign. These conductors are called the capacitor
plates. Putting @, = Q and Q, = —Q in (16.31) we obtain ¢, = Q (&t;; — &;,)
and ¢, = Q (a5, — y,). Then the potential difference between the plates is

Ap = @3 — @ = Q (g + %gg — Uyp — Qyy)- (16.64a)

This means that the potential difference between the capacitor plates is
proportional to the charge on a plate and, hence, the capacitor is characterized

by a single parameter called the capacitance. The capacitance of a capacitor is
defined by

9 ‘
C=% (16.64b)

and is assumed to be positive by definition, i.e. Q and Ag in (16.64b) must
have the same sign. A comparison of (16.64b) with (16.64a) shows that the
capacitance of a capacitor is expressed in terms of the potential coefficients
through the formula

C = (ay + gy — 204,)7%, (16.64¢)

where a,, = a,,. Since a,, and a,, are negative, the capacitance C in (16.64c)
is always positive [see (16.64b)]. Taking into account the meaning of the potential
coefficientsin (16.64c), we conclude that the capacitance of a capacitor depends only
on the geometrical characteristics of the capacitor plates and their mutual arrange-
ment.

Proceeding from (16.45) and using definition (16.64b), we obtain the following
expression for the capacitance in terms of the capacitance coefficients:

_ CuC—Ci
€= C11+Cas+2C1s” (16.64d)
In most cases, the shape of the capacitor plates and their mutual arrangement
is chosen in such a way that the external fields do not significantly affect the
electric field between the plates and the field lines emerging from one plate
necessarily terminate on the other. Owing to this, the equality of magnitudes
of the charges on the plates is always ensured.
A capacitor can be represented in the form of a conductor placed into the
cavity surrounded by a closed shell (Fig. 62a), If the inner conductor is a ball
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or a sphere and the closed shell is the sphere concentric to it, we get a spherical
capacitor (Fig. 62b). If the inner conductor is a straight solid cylinder and the
shell is a hollow straight cylinder coaxial with it, we obtain a cylindrical ca-
pacitor (Fig. 62c). A system of two parallel plane conducting plates forms
a parallel-plate capacitor (Fig. 62d).

The calculation of the capacitance of a capacitor boils down to determining
the potential difference between the capacitor plates for a known value of
charge on the plates. If, for example, the inner plate of a spherical capacitor

~

i//! ‘

[

i//
i’z! % 4 !
m
|
V? t‘é\
(c),

(d)

Fig. 62. Capacitors: general (af, spherical (b), cylindrical (c),
and parallel-plate (d)

has the charge Q, the field strength in the gap between the inner and outer plates
is equal to E = Q/(4rneyr?) and is directed along the radius. Hence, the potential
difference between the plates is

_Cpa_ 0 far_ o (1 1
‘PZ‘-‘PI—_\Edr—@wo SL"' = Zne, ?—?) (16.65)

T Tt
Using formula (16.64b), we obtain the following expression for the capacitance
of a spherical capacitor:
C = 4negryr,/(ry — ry). (16.66)

Similarly, we can find the capacitances of a cylindrical and a parallel-plate
capacitor:
C = 2ngyl/ln (ry/ry), C = g,S/d.

Let us calculate the capacitance of a parallel-plate capacitor with the area
of the plates equal to 41 cm? = 10~* m? and the distance between the plates
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d=1mm =103 m:
C=-1 10
 4m.9.10° 103
Capacitors can be connected in series (Fig. 63a) or in parallel (Fig. 63b). In
the case of a series connection, the potential differences are added, while for a parallel
connection, the charges on the plates are added.
For a series connection, we have

U=U,+ U, U=0QIC, U =QIC,, U,=0Q/IC,  (16.68)

where U is the potential difference between the outer plates of the capacitors,
U, and U, are the potential differences between the plates of each capacitor,

F~ 102 F=1 pF. (16.67)

Q

®

Fig. 63. Series (az and parallel Fig. 64. Field inside a uniform-
(b) connection of capacitors ly charged sphere

Q is the magnitude of charge on each capacitor plate (the charges on all the
plates are modulo equal), C is the capacitance of the two capacitors, and C, and
C, are the capacitances of each capacitor. It follows from (16.68) that

11 1

o (16.69)

Thus, with a series connection, the reciprocal values of capacitances are
added.
For a parallel connection, we have

Q=0,+0Q, Q=UC, Q =1UC,, Q,=UC,. (16.70)
In this case,

|C=C,+Cz, (16.71)

i.e. the capacitances of the capacitors are added.

A conducting sphere in a uniform field. The field which appears when a con-
ducting sphere is introduced into a uniform external electric field can be deter-
mined with the help of elementary methods.
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First of all, let us find the field strength inside a uniformly charged sphere
of radius R (Fig. 64), which, of course, is not a conductor. Suppose that the
volume charge density inside the sphere is p. Then the charge contained in the
spherical volume of radiusr << R is equal to Q, = (4/3) nr® p. Using the Gauss
theorem for this spherical volume, we obtain (¢, is the permittivity of the
material from which the sphere is made)

E(r) 4ur® = Q,/E, = 4nur® p/(3g,) (16.72)
and hence the field inside a uniformly charged sphere at a point characterized

by the radius vector r is
E(r) = [(o/Bey)l T, (16.73)

the origin of the radius vector coinciding with the centre of the sphere.
Now suppose that we have two spheres of the same radius and with the same
volume density of unlike charges (Fig. 65). Let the negatively charged sphere

_/_/\

Fig. 65. To the calculation of Fig. 66. A conducting sphere
the electric field of two spheres in a uniform electric field
displaced relative to each other

be shifted to the left. The vector drawn from its centre to the centre of the
other sphere is denoted by 1. We shall find the electric field strength at the
inner points of these spheres. The fields created by the charges of each sphere are

Ewy=I[lp1/(3e)lr+y Ey= —I[]p|/(3e)]l ), (16.74)

where E(4) and E) represent the fields created by the charges of the corre-
sponding sign, and r¢4) and r are the radius vectors drawn to the point under
consideration from the centres of the spheres with charges of the corresponding
sign. The total electric field strength is given by

E=Eunw+Eo=I[lp /()] (r»y—r)=—1[lp|/(Be]1,  (16.75)
where

ro=1+4+r4) (16.76)

(see Fig. 65). Thus, the electric field inside the spheres is constant and directed
along the line connecting their centres.
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At the points where the volumes of the spheres intersect, the charge density
is equal to zero, since the positive and negative charge densities compensate
each other. Only the crescent-shaped nonintersecting parts of the spheres are
charged (see Fig. 65). The maximum width of these regions, equal to I, can be
as small as desirgd.

Suppose now tMat a conducting sphere is placed into a uniform external
electric field of strength E,. The electrostatic induction will lead to the appear-
ance of surface charges. The signs of these charges and the direction of the
external field are shown in Fig. 66. Inside the sphere, the electric field must be
equal to zero, i.e. the surface charge distribution will be the same as in Fig. 65,

and the field appearing in this case compensates the external field. Then [see
(16.75)]

(l P |/380) 1=E°. (16.77)

Thus, the centres of the imaginary charged spheres are shifted relative to
each other along the line of force of the external field. Since 1 in (16.77) coincides
in direction with E;, for scalar quantities we can write

[ p | 1=23e.E,.

Obviously, the shift 1 of the spheres can be as small as desired if | p | is suf
ficiently large. Hence, the charges appearing in this case can actually be con-
sidered as surface charges with varying surface density.

Let us find the distribution of the surface charge density as a function of the
angle 6. The distance between the surfaces of the spheres in the direction of the
angle 0 is § = I cos 0 (Fig. 65). If the volume charge between the surfaces of
the spheres is treated as the surface charge and if its surface density is denoted
by o, we obtain

oAS = pASS, (16.78

where the left-hand side contains the expression for the charge contained in the
area element AS in terms of the surface density while the right-hand side expres-
ses the same quantity in terms of the volume density. Consequently [see (16.78)],

o = p0 = pl cos 8 = 3ey,E, cos 8, (16.79) -
where § = [ cos 0.
We can now find the field strength at the surface of the conducting sphere:

E, = ole, = 3E, cos 0, (16.80)

from which it follows that it varies between zero and thrice the value of the
uniform field strength. Naturally, at all points of the spherical surface the field
is directed along the normal to the surface.

Outside the sphere, at a finite distance from its surface, the field strength is
the sum of the strengths of the external field and the fields created by the charged
spheres shifted relative to each other or, which is the same, by the corresponding
surface charges. The field outside a uniformly charged sphere is the same as if
the entire charge were concentrated at its centre. Thus, we must find the field
created by two unlike point charges of the same magnitude, located at a small
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distance from each other. Such a system of charges o Lo
is called a dipole (Fig.67). The vector 1 drawn P=gql
from the negative charge to the positive one is
<alled the dipole arm. The vector Fig. 67. A dipole
p =4l (16.81)

is called the dipole moment. In this formula, ¢ indicates the magnitude of each
of the dipole charges. In order to find the electric field outside the conducting
sphere, we must find the field of a dipole whose charges are located at the centres
of displaced spheres. It follows from (16.77) that the dipole moment is equal to

p = (4/3)nR3 pl = 4ne,R°E,, (16.82)

where R is the radius of the sphere.

‘The field of a dipole. The electric field of a dipole is the sum of the fields created
by dipole charges. The dipole arm is as small as desired, and hence it can be
assumed much smaller than the distance to the points at which the field is cal-
culated. Let us find the potential of the dipole. At the point P (Fig. 68), the
potential is given by

O (P) =g (s — ) =g (), (16.83)

ra) T )T 4mey \ rre)

Since I « r, we can assume that r—) — r(y) o~ lcos 0 and r—y(4) >~ r2. We
can characterize the position of the point P by the radius vector r with the
origin at any point of the dipole, since the dipole has as small geometric dimen-
sions as desired.

Then [see (16.83)] we can write

1 p
o) = B (16.84)
where gl cos 8 = (p-r)/r, whence
3(p-
-— grad(p:m;% [%—% ) (16.85)

The electric field of a dipole decreases in inverse proportion to the third power of
the distance, i.e. more rapidly than the Coulomb field of a charge. The lines of force
of the dipole field are shown in Fig. 69.

Formula (16.85) allows us to construct the field lines when a conducting
sphere is placed in a uniform external field. At each point, the field strength
is equal to the sum of the strengths of the uniform external field E, and the
field E created by the charges induced on the surface of the conducting sphere.
The field lines for this case are shown in Fig. 66.

Method of image charges. While solving the problem about a conducting sphere
in a uniform external field, we made an assumption whose validity was not
proved. Namely, we constructed a certain field satisfying all the conditions of
the problem and assumed that there is no other field that would satisfy the same
conditions. In other words, wa assumed that the solution of the problem is
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unique. Otherwise, the obtained concrete solution would not necessarily be
the solution which is realized in fact. It is proved in the theory of electricity
and magnetism that the solution of a problem, which satisfies all necessary
conditions, is unique. Later we shall consider the conditions mentioned here:
and give a rough proof of this statement. At the moment, we shall admit without
proof that this statement is correct. This allows us to find the solution of the
problem with the help of some conjectures or constructions and then conclude.
(-) g

-q +q:

Fig. 68. To the calculation of Fig. 69. Field lines in the vie
a dipole field cinity of a dipole

on the basis of the uniqueness theorem, that the field found in this way is the
solution of the problem. The solution of the above problem about a conducting
sphere in a uniform external electric field may serve as an example of a successful
conjecture.

There exists a visual method of constructing the field satisfying the conditions
of the problem, which is called the method of image charges. The essense of this
method consists in the following. The field of a point charge is well known. Hence,
a system of charges is sought whose total field satisfies all the conditions of the
problem. On the basis of the uniqueness theorem, we conclude that this field.
gives the required solution. Mathematically, this problem is reduced to deter-
mining the potential satisfying the conditions of the problem. The field vector E
is normal to the equipotential surfaces and is calculated as the gradient of
potential, taken with the opposite sign. The shape of equipotential surfaces:
of the system of point charges can, in principle, be easily obtained. Let us con-
sider, for example, the field of two positive point charges ¢ located at a distance
2d from each other (Fig. 70). Since the potential of a point charge at a distance r
from it is ¢ = g/(4neyr), the potential of the system of two identical point.
charges (see Fig. 70) at a point (z, y, z) is defined by

— 1 -
v =g (et veTETs ) (1699

From this equation, we can obtain the equation for equipotential surfaces:

1 1 _ "
Viz—ad2+yi+z° + Veraitote = const. (16.87)
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Each of them is characterized by the corresponding potential ¢; = const,
¢, = const, etc.

Figure 70 shows the lines of intersection of the plane XY with equipotential
surfaces. The equipotential surfaces proper can be obtained by rotating the
pattern depicted in Fig. 70 around the X-axis.

Suppose that an isolated conducting surface coincides with one of the equipo-
tential surfaces, whose potential is equal to ¢,. If we assume that the charge
on this surface is 2¢ and the surface potential isequal to ¢, the system of equipo-
tential surfaces and the field corresponding to it completely satisfy the conditions
of the problem about the field of a charged surface. At all points external relative

Y
L
"’
d q, X
=
d d
Fig. 70. Equipotential sur- Fig. 71. Equipotential surfaces
faces of two like point charges o]f:l two unlike and unequal point
charges

to this surface, the potential is determined by formula (16.86). Thus, the deter-
mination of the characteristics of the field created by the charged conductor is
reduced to the determination of the characteristics of the field created by two
like and equal point charges. This is the essence of the method of image charges.
The examples considered below will clarify the origin of the name given to this
method.

The potential of two unlike point charges is determined in a way similar to
(16.86):

_q 1 _ 1
= T ( Vie—di+y+22  Vietatitsd )- (16:59)
The shape of equipotential surfaces in this case is shown in Fig. 71. The
Ppotential along the Y-axis is equal to zero, and hence it is equal to zero in the
plane X = 0. :
Suppose now that the entire infinite half-space X << 0 ds filled by a conductor
bounded by the plane YX and suppose that the charge +q is located as shown
in Fig. 71. Obviously, on account of electrostatic induction, this charge will
induce on the surface of the conductor the charge —gq. In this case, the potential
¢ of the conductor must be equal to zero, and the lines of force at each point of
the surface must be normal to it. It is clear that the pattern of the lines of force
in the half-space X > 0, shown in Fig. 71, completely satisfies these conditions.
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Hence, the problem of determining the characteristics of the field of the point
charge 4 g, located at the distance d from a plane surface of the conductor filling
the half-space X << 0, is reduced to finding the characteristics of the fields of
two point charges g and —g. The charge —g is located at the point which would
be the image of the point charge g if the plane X = O were a mirror. Hence the
name of the method of image charges (method of images). Instead of the con-
ducting body filling the half-space X << 0, we could take an earthed conducting
plate parallel to the plane X = 0. The method of calculation and the field
remain unchanged. If the plate is not earthed, at the surface of the plate facing
the negative values of the X-axis positive surface charges are induced, which.
completely alter the nature of the field. In this case, the field is no longer the
superposition of the fields created by the charge ¢ and by its image.

Let us find the field due to a charge ¢ located at a point x = d in the presence
of the earthed conducting plane X = 0. At all points z > 0, the field potential
is given by formula (16.88). The electric field strength in the plane Z = 0 is

— _a_(P__ q z—d _ z4d
Ex’_ o 411,30 {[(z—d)2+y2]8/z [(x_’_d)a_l_yg],Iz} ’ (16.89)

E,——9%2__4 { y _ y }
4 dy ~ 4ney, \[(z—d)2+y2)3/2  [(z+d)2+y2]3/2) °

In the plane X =0, the component E, vanishes, while

— q9 d
E.=— one, (22 y?1a2)s/? (16.91)

In the plane X = 0, the surface charge density is given by [see (16.12)]
d

(16.90)

-1 _ &
0= — o W¥rF I (16.92)
The total surface charge on the plane X = 0 is
> _ qd > dzdy _
JJodsdy=—30 | | Gpidmm=—0 (16.93)

- 00 -00

i.e. the charge induced on the conductor is equal to the inducing charge with
the opposite sign [see (16.20)].

The force of interaction between the point charge g and the charge on the
surface z = 0 is equal to the force of interaction between the charge ¢ and
its image:

F = —q*/(16me,d?). (16.94)

The minus sign indicates that the point charge is attracted to the conducting
earthed surface.

Of course, the method of images is not reduced in all cases to finding the
mirror image of charges in the literal sense. Let us consider a pattern of equipo-
tential surfaces created by two charges of different magnitude. For the sake
of convenience, we introduce the polar system of coordinates with the origim



Sec. 16. Electrostatic Field in the Presence of Conductors 127

at the point O (Fig. 72). The polar axis passes
through the point charges g, and g,. The polar
coordinates of ¢, and g, are 8, = 0, r;, = d, and
0, = 0, r, = d, respectively. The potential at
the point P is given by

1 9
o (r,0) = 4ie, ( V r*+di—2rd, cos 6

92 - .
+ . (16.95) Fig. 72. To the determination of
V r*+dj—2pds cos 6 ) equipotential surfaces of two

If d, = a¥d, (a < d,) and g, = —ag,/d,, then pgtmg charges of different mag-
¢ (a, 0)=0, i.e. on the sphere of radius a, the po- nitude
tential is equal to zero. Consequently, this sphere
is an equipotential surface with the zero valueof the potential. If wereplace it
by a real conducting earthed surface, the field will remain unchanged. Thus,
if we have a conducting earthed sphere of radius a and a point charge g, outside
it at a distance d, from the centre of the sphere, the fiel¢ outside the sphere is
the same as that created by the charge g, and its “image”, viz. the charge ¢, =
—ag,/d,, placed at the point with the coordinates d, = a?/d,, & = 0 inside the
sphere. The force of interaction between the charge g, and this sphere is given by

— e - dqag}
F= 4me, (dla:‘dl)’ T 4me, (c’igla’)' . (16.96)

In electrostatics, there is no field inside a conductor, and volume charges do not exist.
Near the surface of a conductor, the electric field vector Is normal to the surface and is
proportional to the surface charge density.

On the convex surface of a conductor, the surface charge density and field strength iIn-
crease with the curvature of the surface, i.e. with decreasing radius of curvature. On the
concave surface of a conductor, the surface charge density decreases.

In differential form, Ohm’'s law is valid for the varying as well as for a constant elec-
frical conductivity, regardless of the causes and nature of ifs variation.

The capacitance of an isolated conductor depends only on its shape and size. The
potential and capacitance coefficients are determined only by geometrical characteristics
of conductors and their mutual arrangement.

Capacitance coefficients with identical indices are always positive, while those with dif-
ferent indices are either equal fo zero or negative.

Due to which property of the elecirostatic field is the tangential component of the field
near the surface of a conductor equal to zero?

Examle 16.1. Find the force of interaction between a conducting sphere of radius a and a point
chargehqz located at a distance dy from the centre of the sphere, if the charge Q is distributed over
the sphere.

The mutual arrangement of the sphere and the charge is shown in Fig. 72. The charge g,
induces on the sphere its image in the form of the charge g, = —g,a/d, at a distance d, = a?/d
from the centre of the sphere. However, now the interaction is not reduced to the force of at-
traction between the charge g, and its image since, by assumption, the sphere has the charge
Q and not g,. Consequently, in order to describe the interaction, we must add one more “im-
age” of the charge which creates a constant potential on the sphere and is equal to Q — ¢;.
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Hence, we must place at the centre of the sphere the charge
Q — g1 = Q + gsald,. The interaction of the point charge
g, with the sphere carrying a charge Q is the sum of interac-
tions of g, with the “images” ¢, and Q + gya/d,. Thus,
the force of interaction is

4 Q- gza/d gdxa
F= 4, [ d3 o dy (dzm—dﬂ2 ] . (18.97)

Example 16.2. Find the force of interaction between a con-
ducting sphere of radius a, maintained at a constant poten-
Fig. 73. To the calculation of tial @, and a point charge g, at a distance d, from the centre

the field of a capacitor with of the sphere.
nonparallel plates The mutual arrangement of the sphere and the charge

is shown in Fig. 72. The potential created by the charge ¢,
and its image g, on the sphere is equal to zero. In order
to make it equal to ¢, it is necessary to place the “image” Q = 4me,aq, at the centre of the
sEhere. The force of interaction between the point charge g, and the sphere maintained at
the potential ¢, is given by

_ 9 [Q _ 920 ]
F= e L " G @ —ap* J- (16,98

Example 16.3. Two plane conducting plates form an angle oy (Fig. 73). These plates are perpen-
dicular to the plane of the figure and are infinitely long. A constant potential difference U, is
applied between the planes. Find the field strength between the plates and the capacitance over a
length 1. The width of the plane is b — a. We assume that the plates do not touch each other at
the point O but are separated by a sufficiently small distance so that edge effects can be neglected.

\The field is axisymmetric. Consequently, it is convenient to use the cylindrical system
of coordinates, where the Z-axis is normal to the plane'of the figure. We denote the axial angle
by o and the distance from the axis by r. Then the Laplace equation becomes

1 @ ap L 9%p
T (rar )t o 1699

where we took into account that 3%g/dz2 = 0 due[to the cylindrical symmetry of the field.
We seek its solution in the form

o @) =R() O (a). (16.100)
Substituting this equation into (16.99), we find
® d dR R d4:0 _
+ & (ra )t
Multiplying both sides of this equation by r3/R®, we obtain
r d dR 1 d20
1= -Jr—)=—3r“2. (16.101)

The left- and right-hand sides of this equation contain different independent variables.
Consequently, the equality is possible only if its left- and right-hand sides are separately equal
to the same constant. Hence we put

rd ( dR\_, 1 d@_
T ,d_r)_,, O N Bt (16.102)
where n? is a constant. The solution of the equation for @ is obvious:
_ [ Bya+B, for n=0
®= { Ay sinna+ A4, cosna. for n==0. (16.103)
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We shall seek the solution of the equation for R in the form R = Ar® (B = 0).
Substituting this expression into the first equation of (16.102) we obtain the equality

B2 = n2, . (16.104)
from which it follows that § = +4n. For n = 0, the first of Eqs. (16.102) is simplified:
r£=const
dr

and can be satisfied by the function
R=D,Inr+ D,.
Consequently, the solution of (16.102) can be written in the final form as follows
DyInr+D, for n=0, .
R“{ Cyrm+Cyrn for n = 0. (16.105)

Let us try to find the solution of the problem which would be independent of r. In other
words, for n = 0, D; = 0 we have [see (16.103)] @ (@) = Bya + B,. The boundary conditions
for ¢ have the form ¢ (0) =0, ¢ (ag) = U,, i.e. 0 = B,, U, = Bya,. Consequently,

¢ (@) = Uyala,. (16.106)
The electric field strength is given by
1 4
Eq=—— 6_0‘1: = —Uy/(rag) (16.107a)

The surface density of charges on the plates is

0y = eEq (@ = 0) = —eUy/(ray), 0, = —€Eq (@ = atg) = eUy/(rai). (16.107b)
The charge on the length ! of each plate (in magnitude) is expressed by
b

Q=1 S odr=(lggUy/atp) In (b/a) (16.108)

The capacitance corresponding to the length ! is equal to

C=i= leg In (b/a) )

i = (16.109)

Sec. 17. Electrostatic Field in the Presence of a Dielectric

The influence of a dielectric on an electrostatic field
and various mechanisms of polarization are discussed.
The relations between the volume and surface densities
of bound charges and polarization are introduced. The
phenomena occurring at the interface between dielectrics
are discussed.

Dipole moment of a continuous charge distribution. The effect of matter on the
electric and magnetic fields was experimentally discovered and investigated
by Faraday. The results of these investigations led Faraday to put forth the idea

9-0290
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of short-range interactions and the concept of a
field. The electrostatic induction was discovered
by him in 1837, when he also introduced the terms
“dielectric” and “dielectric constant”.

Suppose that in a certain volume V (Fig. 74) we
have a continuously distributed charge with a
volume density p and that the volume is electri-
cally neutral as a whole. This, however, does not
o o’ mean that the positive and negative charges com-
Fig. 74. To the determination Pensate eachother ateach point inside this volume.
of the dipole moment of a con- If positive and negative charges are distribut-
tinuously distributed charges ed in the volume according to different laws, the

overall charge density p will be positive at some
points in the volume and negative at some other points. Mathematically, the
condition of neutrality of volume V can be expressed as follows:

SpdV=0. (17.1)
\ 4

If p = 0 at all points in the volume, the material system is electrically neutral
inside the volume V: it is acted upon by an external electric field and it does not
generate any electric field on its own. However, if the charge density p is positive
at some points of the volume V and negative at some other points, the system will
have electric properties even though the total charge in the volume V is equal to
zero: the system is acted upon by an external electric field and it itself generates an
electric field. To a first approximation, the electric properties of a neutral system
are characterized by its dipole moment. Formula (16.81) serves as the definition
of dipole moment for two point charges. For a continuous charge distribution,
the dipole moment (Fig. 74) is defined by the formula

p={prav. (17.2)
14

In this equation, the radius vector r is measured from any point O which can
be taken as the reference point. Obviously, the form of the expression (17.2)
is independent of the choice of this point. In order to prove this, let us take
point O’ as the reference point from which measurements are made, and suppose
that the position of this point relative to O is characterized by the radius vector
r, (see Fig. 74). Formula (17.2) has the following form for point O":

p= S or’ dV. (17.3)
‘/
This. equation can be transformed as follows:

p'= Sp(r—ro)dV= SprdV— SropdV= “prdV=p, (17.4)
v v v “,
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Q.E.D. Here, r =r, +r’, and [see (17.1)]

5 rpdV =r, S pdv=0. (17.5)
\4 L4

Let us use formula (17.2) for calculating the dipole moment of two point
charges which can be treated as charges lying in indefinitely small volumes
AV, and AV, (Fig. 75): '

p=SprdV= S prdV 4 S lor dV
v av, AV,
=1, S pdV + 1p | p.dV= r,Qi+1,0;. (17.6)
AV, AV,
where Q; and Q, are charges in volumes AV, and AV, respectively, and r, and r,
are the radius vectors of these volumes. For example, suppose that a positive

Ql ] Qz'

AV,

o -

Fig. 75. To the calculation of the Fig. 76. Polarization of nonpo-
dipole moment of two point lar dielectrics in an electric
charges with the help of the field

formula for continuous distri-

bution of charges

charge Q, = Q is located in volume AV,. In view of the electrical neutrality
of the system, in this case Q; = —Q, and formula (17.6) assumes the form

p=0(r;—r)=0l, (7.7

which is analogous to (16.81).

The field strength of a neutral system with a dipole moment p is given by
formulas (16.84) and (16.85). .
Polarization of dielectrics. Dielectrics are materials in whi¢h the application
of an electric field does not lead to a displacement of charges ‘as, for example,
in conductors. This, however, does not mean that charges in a dielectric do not move
at all when an electric field is applied. The charges do move in such a case, but are.
not displaced by large distances. '

Let us consider an electrically neutral volume of a dielectric (Fig. 76). An
external electric field tends to displace positive charges in the direction of the
o
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field and the negative charges in the opposite direction. Hence an excess charge
is accumulated in the direction of the field, while a deﬁclency of charge is created
in the opposite direction. Consequently, the dielectric acquires a dipole moment.
This process is called polarization.

The extent of polarlzatlon of a dielectric is characterized by the dielectric
polanzatlon which is defined as the ratio of the dipole moment Ap of a dielectric
to its volume AV:

___Ap
P==—T-. (17.8)

Molecular pattern of polarization. A dielectric consists of atoms and molecules,
and any infinitely small physical volume element of a dielectric is electrically
neutral. The positive charge is concentrated at the atomic nuclei, while the
negative charge is distributed over the electron shells of atoms and molecules.
Positive and negative charges are located at different points in space and hence
atoms and molecules can have electric dipole moments which vary with the
frequency of electron oscillations in atoms, which is of the order of 10® s-1.

If in the absence of an external electric field the distribution of the electron
tloud is spherically symmetric with respect to the nucleus, the atom does not possess
an electric dipole moment. Similarly, the positive and negative charges in a mole-
cule may have such a symmetry of distribution that the molecule does not have a
dipole moment. Such molecules and atoms are called nonpolar and include,
among others, the helium atom, diatomic molecules consisting of identical atoms
(H,, N,, O,, . . .), and symmetric polyatomic molecules like CO, and CH,. In
the absence of an external electric field, such a dielectric is not polarized.

Molecules and atoms which possess an electric dipole moment in the absence
of an external electric field are called polar, and include CO, N,0, SO, etc.
The permanent dipole moment in such moleculesisof the order of 10-2%-10-30C.m.
This corresponds to a dipole consisting of two elementary charges of 1.6 x 10-1° C
separated by a distance 1071 m, i.e. of the order of atomic dimensions.

In the absence of an external electric field, the permanent dipole moments of
individual molecules are oriented at random and hence their sum in an infinitely
small physical volume is equal to zero. In other words, the dielectric is not
polarized.

When an electric field is applied to a dielectric, the positive charges tend to
move along the field vector, while the negative charges tend to move in the
opposite direction. As a result, nonpolar molecules acquire a dipole moment and
the dielectric is polarized. Polar molecules also acquire an additional dipole
moment induced by the external field and also get polarized, although this
polarization is insignificant. The basic polarization mechanism for polar mole-
cules is different: in an external electric field, the permanent dipole moments of
molecules are acted upon by the moments of force [Fig. 77, see (19.7)] which tend
to orient the dipole moments along the field vector. Consequently, the molecules are
reoriented in such a way that infinitely small physzcal volume elements of the di-
electric acquire dipole moments, i.e. the dielectric is polarized. The polarization
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due to the reorientation of molecules is much E F4)'
stronger than due to the formation of additional -_— s
dipole moments induced by the external field.
Besides these mechanisms of polarization, there
exists another. I'n ionic crystals, the positive ions
under the action of an external electric field are dis- F(..) ~ b
placed along the field, while the negative ions are L
displaced in the opposite direction. This results §3g1‘ 17: P qlanznatulm to.f Pglﬁ'
in a certain deformation of the crystal lattice or lelectrics In an electric fie
a relative displacement of sublattices, which
leads to the emergence of dipole moments in the dielectric, i.e. to the polariza-
tion of the dielectric. Such a polarization is called ionic lattice polarization.
The quantitative measure of polarizationin all cases is the dielectric polariza-
tion P. The polarization mechanism is revealed only as a result of the investiga-
tion of the dependence of P on the strength of the applied electric field and
other factors (see Chap. 3). The formula which relates the electric field strength,
the electric displacement and polarization remains unchanged [see (17.29)].
The polarization of nonpolar molecules is

1
P=— > pi=Np,, (17.9)
AV

where AV under the symbol ) means that the summation is extended to all

molecules in the volume AV, N is the concentration of molecules; p, is the in-
duced dipole moment (its value is the same for all molecules) whose direction
coincides with that of the external electric field E. In the absence of an external
field, p, = 0, and hence P = 0, i.e. there is no polarization.

The principal mechanism of polarization in polar molecules is the reorienta-
tion of the direction of permanent dipole moments under the action of an external
field. The formula for polarization has the form

1 \
P=—KV— 2 pi=N<p) ) ('17.1.0)
AV

where (p) is the average value of the dipole moments which are equal in mag-
nitude but are oriented in different directions in space. In isotropic dielectrics,
the direction of the average dipole moments coincides with that of the external
electric field. In anisotropic dielectrics, which have different properties in differ--
ent directions, such a coincidence is not observed. The relation between the
polarization and the field strength is more complicated in such dielectrics
(see Chap. 3). In polar dielectrics, the contribution from induced dipole moménts
to the polarization is much smaller than the contribution from the realignment
of permanent dipole moments and is usually not taken into account. If necessary,
this contribution can be taken into account by adding the right-hand side of
Eq. (17.9) to the right-hand side of formula (17.10).

Ionic lattice polarization is defined by formula (17.10) in which (p) is the
average value of the dipole moments created in volume AV due to a displace-
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ment of ions at the crystal lattice sites. In most cases, this polarization is aniso-
tropic.

Dependence of polarization on the electric field strength. In electrets and ferro-
electrics, the polarization may be nonzero in the absence of electric field
(E =0, P=£0). The. polarization in other dielectrics in the absence of
electric field is equal to zero. In the general case, the dependence of polarization
on field strength can be expressed in the form

Pg=802 %uE,-'-Eo 2 ”UhElEh"' ceny
i Jok

where the indices i, j, k. . . enumerate the components of the quantities along
the Cartesian coordinate axes. (i =, y, 2, ] = 2, ¥, 3, . . .). Hence, in the
general case, polarization depends not only on the first power of the electric
field strength, but also on its higher powers. If the dependence on the higher powers
is significant, the dielectric is called nonlinear. Such a nonlinearity is usually
manifested only in very strong electric fields, although there are some special
materials in which nonlinearity is observed in comparatively weak fields.

If the nonlinearity is insignificant, the polarization is expressed in terms of
first powers of the field components:

P¢=802 “UEI'
i

Such a dielectric is called linear. If the properties of such a dielectric are
different in different directions, the dielectric is called anisotropic. The set of
nine quantities %,; constitutes the dielectric susceptibility tensor which com-
pletely characterizes the electric properties of a dielectric. If the properties
of a dielectric are identical in all directions, it is called a linear isotropic dielec-
tric. Its dielectric properties are then characterized by a scalar quantity called
the dielectric susceptibility.

For a linear isotropic dielectric, we have

P = x¢(E, (17.11)

where % is the dielectric susceptibility. In the Gaussian absolute system of units

the dielectric susceptibility »’ is a quantity 4n times smaller than % in formula
(17.11):

W = wl(4n). 17.12)

For most solid and liquid dielectrics, the dielectric susceptibility is expressed
by numbers of the order of several units. The dielectric susceptibility of most
gases is a fraction of a thousandth part of unity and in most cases need not be
taken into consideration. However, there are dielectrics whose susceptibility
reaches very high values. For example, » = 80 for water, 25-30 for alcohol,
while in ferroelectrics (Rochelle salt, barium titanate, etc.), the dielectric sus-
ceptibility attains values of several thousands.
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Fig. 78. Mechanism of field Fig. 79. Calculation of the
weakening during polarization charge crossing a surface area
element upon polarization

The effect of polarization on electric field. In accordance with formula (17.8),
the dipole moment of a volume element dV is

dp = P dV = xe,E dV, (17.13)

i.e. coincides in direction with the electric field E, since x > 0. Hence, the
field created by the dipole moment is directed against the external field and
weakens it (Fig. 78). Thus, the field inside a dielectric is weakened as a result of
polarization. The role of polarization is reduced just to a separation of positive
and negative charges, leading to the appearance of charges in the volume and
on the surface of the dielectric. These charges are called polarization charges
or bound charges, since they are as if attached to different places in the di-
electric and cannot move freely in its volume or on its surface. Bound charges
giverise to an electric field in the same way as free charges, and are in no way different
from them in this respect. Thus, the presence of a dielectric is taken into account
by considering the electric field created by bound charges induced as a result
of polarization. Hence it is necessary to find an expression for bound charges.
Volume and surface density of bound charges. Let us consider a surface element
dS (Fig. 79) inside a nonpolarized dielectric. As a result of polarization the
charges move across this surface element. Let us calculate the charge inter-
secting the element dS when a polarization P appears. In order to simplify
the formulas, we shall assume that only positive charges are displaced. We
denote the dipole charge by g, the dipole arm corresponding to the polarization
P by ! and the charge concentration by N. The area element dS (see Fig. 79)
is intersected upon polarization P by all positive charges which were present
in volume dV = h dS = lcos 6 dS of an oblique cylinder with base dS
before displacement was caused by polarization. Consequently,

dQ =Nﬁ‘l cos 0 dS = P dS cos 6 = P-dS. (17.14)

Let us now consider a certain volume V (Fig. 80). As a result of polarization,
the surface S bounding this volume is crossed by charges. Depending on the
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Fig. 80. To the derivation of Fig. 81. To the derivation of
the expression for the bound the expression for the surface
space charge density of bound charges

balance of charges entering and leaving the volume, a bound charge of volume
density py, appears. Taking (17.14) into account, we can write the law of charge
conservation in volume V in the form

{opav=— | Ppuas. (17.15)
A\’ S

The minus sign indicates that the charge induced in the volume is opposite in
sign to the charge flowing through the surface bounding it. Applying Gauss’

theorem to the right-hand side of Eq. (17.15), we can write it in the following
form:

S(pb—div P)aV =0. (17.16)
v

If Eq. (17.16) is identically satisfied for all values of V, the integrand will be
identically equal tp zero. Consequently,

lph= —div P. (17.17)

Thus, bound space charges appear only in the case when the polarization P
changes from point to point. This is clear even without calculations since in
the case of a uniform polarization the charges moving on to new places occupy
the vacancies created by the same number of charges. As a result, the correspond-
ing volume of the dielectric remains electrically neutral.

Surface charges appear at the interface between two different dielectrics. This
is apparent from the following considerations. The dielectric polarization is
different at different points for the same electric field strength. Consequently,
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a different number of polarization charges cross the boundary surface from
different dielectrics. As a result, a certain bound charge, called the bound surface
charge, is concentrated near the interface between two dielectrics. Let us
denote the surface density of this charge by oy. In order to find this charge, it
is best to proceed from formula (17.17). We construct at the interface between
the two dielectrics a right cylinder with a base of area AS and height & (Fig. 81),
and integrate both sides of Eq. (17.17) over the volume of this cylinder:

S ppdV = — S divPav. (17.18)
A\ \’4

The left-hand side of this equality represents the total charge in the cylinder,
i.e. the surface charge o, AS. With the-help of the Gauss theorem, we can
transform the right-hand side of this equation into a surface integral:

S divPdV = S P.dS— S P,-dS,+ S P,-dS,, (17.19)
\a S 2 S:

where subscripts 1 and 2 correspond to the first and second dielectrics on
different sides of the interface. The polarization flux of the vector P is the
sum of fluxes through the bases and lateral surfaces of the cylinder. The
flux through the lateral surface of the cylinder is taken equal to zero, since in
the limit the height & of the cylinder tends to zero. For the positive normal to the
interface, we choose the direction from the first dielectric to the second. Conse-
quently, dS, is directed along the positive direction of the normal, while dS,
is along the negative direction. Consequently,

S P.dS—=P,, AS—P,, AS. (17.20)
S

It should be recalled that the integral over the lateral surface is not taken into
account. Considering the value of the integral on the left-hand side of Eq. (17.18),
we finally obtain

| 0p = — (Pyn— Pyn)- (17.21a)

Hence, denoting the unit normal vector directed towards the second medium
by n,, we can represent formula (17.21a) in the form

0b= —nz’(Pz_'Pi). (17.21b)

It is worth noting that vacuum can also be treated as a dielectric with a
polarization equal to zero. Formula (17.21a) can be applied to the boundary
between a dielectric and the vacuum. In this case, we consider the outward
normal to the dielectric as the positive normal, i.e. we assume the dielectric in
(17.21a) to be medium 7 and put P,, = 0. Consequently, we get [see (17.21a)]

op = Pn, (17.22)
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where P, is the normal component of the dielectric
polarization on its boundary with vacuum.

With the help of formulas (17.17) and (17.21),
we can completely take into account the influence
of a dielectric on an electric field. The strength of
the field created by bound charges is calculated
Fig. 82. Field in a capacitorin by the same formulas that are used for determin-
the presence of a dielectric ing the strength of the field created in vacuum

by free charges. In particular, the potential ¢4,
created by the bound charges in a dielectric, is given by formulas (14.35) and
(14.36) where the free charges have been replaced by bound charges:

1 [ ppdV , 1 [ opdS
Pa= 4me, S + e, S
v S

r r

1 —divPdV |, 1 Pin—P
~ me, S r T Zme, S 1nr *-dS. (17.23)

This potential is added to the potential created by free charges.

It is worthwhile to formulate once again in an explicit form the basic idea
behind the influence of matter on field, which was traced by considering the
example of conductors and dielectrics: in the presence of an external electric
field, the matter itself becomes the source of an electric field; consequently, the
external field undergoes a change.

Let us consider this process by taking the example of the field formation in
a capacitor the space between whose plates is filled with a dielectric (Fig. 82).
We shall assume that the capacitor plates carry a charge with surface density o.
If the capacitor plates are in vacuum, we get E' = o/¢, [see (16.12)]. As a result
of polarization of the dielectric, the field strength decreases. We determine the
dielectric polarization with the help of formula (17.11), considering that £ ==
o/g,. In view of the homogeneity of the dielectric and the uniformity of the
field between the charged parallel plates, we conclude that the dielectric polariz-
ation is uniform, i.e. there are no bound space charges. There are only bound
surface charges with a surface density [see (17.22)]

op = ek, (17.24)

where E is the component of the field vector along the outward normal to the
dielectric. It is well known that the field vector is directed from the positively
charged plate to the negatively charged plate of the capacitor. Hence, it follows
from (17.24) that the surface density of a bound charge is negative on the bound-
ary with the positively charged plate and positive on the boundary with the
negatively charged plate. Consequently, the strength of the field in a dielectric
hetween the plates of a capacitor is identical to that between the same plates in
vacuum, but with a surface density of charge equal to 0 — oy. Thus, we can
write the following equation for determining the unknown quantity:

E = (0 — op)/ ey = (60 — ngyE)/ e, (17.25)
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The solution of this equation has the.form
E = olleg (1 + %) (17.26)

Electric displacement. Considering that bound charges are responsible for the
field, we can obviously write Eq. (13.19) in the form

div E = ple, + pyp/eo- (17.27)
Substituting into this equation the expressien (17.17) for p,, we get
' div (eE + P) = p. (17.28)
* The vector | T
| D=¢,E+P (17.29)

is called the displacement vector. It is not purely a field vector since it takes
into account the polarization of the medium. With the help of this vector, we
can write Eq. (17.28) in the form

divD=p. (17.30)

Recalling the meaning of the divergence of a vector, it can be concluded from
(17.30) that it is advantageous to use D. It can be seen that the only source of D
are the free charges at the head and tail of this vector. This vector is continuous at
points without free charges, including points with bound charges. The varia-
tions in the field introduced by bound charges have already been taken into
consideration in the vector D [see (17.29)].

Expressing P in (17.29) with the help of formula (17.11), we get

D= (g + %) E=¢E, & = (1 + %) €, (17.31)

where e is the dielectric constant or permittivity. The use of D considerably
simplifies the analysis of the field in the presence of a dielectric. In addition to e,
another dimensionless quantity

e, = eley, (17.32)

called relative permittivity is also used.
Gauss’ electrostatic theorem in the presence of dielectrics. Multiplying both
sides of (17.30) by dV and integrating over the volume V, we obtain

S divD dV= S odV. (17.33)
v 4

The right-hand side of this equation represents the total charge Q inside the
volume, while the left-hand side can be transformed into a surface integral with
the help of Gauss’ theorem. As a result, we get the formula

S D.dS=0, (19:84)
) .
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called Gauss’ theorem for electrostatic fields in the presence of dielectrics. It is
valid for any arrangement of dielectrics and boundary surfaces: a part or the
entire volume may be filled with different dielectrics, and the surface S may
either be in vacuum or cross the dielectrics.

Let us apply formula (17.34) to a point charge ¢ located in an infinite homo-
geneous dielectric medium, and taking a sphere of radius r with its centre at
the point where the point charge is located as the integration surface, we obtain
Coulomb’s law for a homogeneous dielectric medium:

1 g r
E"R?T’ (17.35)
The intensity of the field in a medium is &, times smaller than in vacuum.
The potential of the point charge behaves in the same manner. Formula
(17.26) shows that in the presence of a dielectric, the field strength between the
plates of a capacitor also drops to 1/¢, of its value in vacuum. The capacitance
of the capacitor increases ¢, times.
Boundary conditions. Boundary conditions are relations between field vectors
on different sides of the interface between two regions. This surface may separate
substances with different properties, be the boundary between a body and
vacuum or, in general, may just be an imaginary surface in a homogeneous
medium. In all cases, boundary conditions can be used to determine the change
in the field vector upon crossing this boundary. These conditions are derived
with the help of field equations.
Boundary conditions for the normal component of vector D. Let us derive this
condition in the same way as the boundary condition (17.21). In this case,
however, we must proceed from Eq. (17.30) rather than from (17.17):

D,, — Dy, =0, n,-(D,—Dy) =o, (17.36)

where ¢ is the surface charge density at the boundary. The normal n, is directed
towards medium 2. In particular, Eq. (17.36) can be used to obtain the field
strength on the surface of a charged conductor. Taking the outward normal
to the surface as the positive one, we must consider vacuum as medium 2 and
conductor as medium I in formula (17.36). The field E inside the conductor is
equal to zero, i.e. D;, = 0. Consequently,

D, =o¢ (17.37)
or
E, = ole. (17.38)

This formula is identical with formula (16.12) for vacuum, where &, has been
replaced by e, i.e. the field strength on the surface of a conductor decreases in
the presence of a dielectric to 1/¢,, i.e. g¢/€ of its initial value.

Formula (17.38) also provides a solution to the problem of the field in a
parallel-plate capacitor, which is expressed by relation (17.26). In this case,
it is not necessary to explicitly take into account the bound surface charges in
the dielectric between the capacitor plates, as was done while deriving Eq. (17.26).



Sec. 17. Electrostatic Field in the Presence of a Dielectric i41

Boundary conditions for the tangential component of vector E. Let us construct
a closed contour near the interface between dielectrics 7 and 2 (Fig. 83). In view
of the potential nature of the electric field, the circulation of E around the
«closed circuit is equal to zero:

E-d1=0. (17.39)
ABCDA

The integrals over the segments BC and DA are arbitrarily small, since 4B
and CD are infinitely close to the interface. The signs of integrals over AB and

LA

E

Fig. 83. To the derivation of the Fig. 84. Refraction of field lines
boundary condition for the tan- at the interface between two
gential component of vector E dielectrics

CD are opposite in view of the fact that the integration is carried out in opposite
directions. Hence [see (17.39)]

E,.—E, =0. (17.40)

Refraction of field lines at the interface between dielectrics. Suppose that there
are no free charges at the interface between two dielectrics. In this case,

8lElln = 82E2n7 E11: = E21:- (174'1)

If ¢, > &,, then E,, << E,,, and hence the field lines behave as shown in

Fig. 84. It can be seen in this figure that the field lines deviate from the normal
when entering the dielectric with a higher permittivity.
Signs of bound charges at the interface between dielectrics. Let us consider the
normal components of field and polarization vectors at the interface between
dielectrics. With the help of formula (17.31) we can write formula (17.11) for
dielectrics on both sides of the boundary in the following form (Fig. 85):

Py, = (e, — &) Eyny, Pin = (8; — &) Eqp- (17.42)

Let us write formula (17.21) for surface charge density by taking into account
Eq. (17.32):

Op = Pip — Pyp = By — €,E5, — &g (E1n — Ean)- (17.43)
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If there are no free charges on the surface, we get ¢,E;, — e,E,, = 0, and
formula (17.43) can be simplified as follows:

Oy = _80 (E]n -_ E2n)’ (17.44)

For the sake of definiteness, we shall assume as before that ¢, > ¢, and E
is directed from the first medium into the second. It should berecalled that the
normal directed towards the second medium is taken as the positive normal. In
this case, E,, and E,, in (17.44) are positive and E,, > E,,. Hence the bound

&> ¢ P,

Fig. 85. Sign of the surface charge and the behaviour of normal
components of the electric field and polarization vectors when
the interface is crossed in opposite directions

(b

charge at the boundary is negative (Fig. 85a). The quantities P,, and P,, are
also positive and, consequently, P,, > P,,, as can be seen from (17.43) for
o, << 0 (Fig. 85a).

Similar arguments can be applied to study the variation of normal components
of the field and polarization vectors, as well as the sign of the surface charge
density when the field vector is directed towards the dielectric with lower
permittivity (Fig. 85b).

Method of images. When applied to dielectrics, the idea of this method is the
same as for conductors (see Sec. 16).

Suppose that we have two very long dielectric media (having permittivities
¢, and &,) with a plane interface. A point charge g is located in the first medium
at a distance d from the interface. It is stated that the potential in the first
medium is the same as due to charge g and its image ¢' =.¢ (¢; — &,)/(g; + ¢&,)
located in the second medium at a distance d from the interface (see Fig. 86a).
The calculations are carried out as if the permittivity of the media were equal
to g;. The potential in the second medium is equal to the potential due to the
charge q" = 2¢&,9/(e; + &,) located in place of charge g in the first medium
(Fig. 86b), the calculations being carried out as if the permittivities of both
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media were equal to €,. Thus, the potentials in the first and second media are

— q 1 81—52 1
o= (e + —
17 "4ne, Vz+dr+ gyt e1tes YV iz—detyE/’
2 1 (17.45)
P q9 €9

2T e, uten Vataits

It can be easily verified that ¢, and g, satisfy the Laplace equation and the
boundary conditions

g, _ . 09, 0y __ 09s| _
©1 2 om0 = 82 Bz leo’ By |xmo— 3y |x=0—0’ (17.46)

which express the continuity of the normal components of D and of the tan-

Y Y
£ & & €3
Pix < 0)- q’ q cp’z(x >0)
@ @®)

Fig. 86. Method of images applied to dielectrics

gential components of E. Besides, the requirement that the potential be finite
is also met:

(Pilx-'—oo_*()’ q)zlx-+ao_>0- (17.47)

In accordance with the uniqueness theorem, formulas (17.45) give the required
solution.

The force acting on charge g is equal to the force of interaction of this charge
with the image [(e; — &,)/(g; + &,)] g, located at a distance 2d from g:

_ 1 e1—ey \ ¢
lF_ 41'[81 ( 81+32 )-/td—" (17.48)
For &, << &,, F is negative, i.e. g is attracted towards the interface between
the dielectrics. If ¢, > &,, F is positive and hence g is repelled from the inter-
face.
Dielectric sphere in a uniform field. With the help of the Laplace equation,
let us find the field strength when a dielectric sphere is brought into an initially
homogeneous electric field. If the linear dimensions of the plates in a parallel-
plate capacitor are quite large, the field will be homogeneous to a high degree of
accuracy in the inner parts away from the edges even for large separations
between the plates. If the size of the plates is increased to infinity and at the
same time the distance between them is also increased to infinity for a constant
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surface charge density on the plates, a uniform electric field is created in the
entire space. We place a conducting dielectric sphere in this space. It is clear
that as a result of polarization the field strength near the sphere will change
while it will remain unchanged at infinity. Let us determine the electric field
strength in the entire space including the region inside the dielectric sphere.

We assume that a sphere of radius R consists of a dielectric with permittivity
€;, and its surrounding space is filled with a dielectric with permittivity e,

Fig. 87. Orientation of the coordinate system for a dielectric
sphere in a uniform field

(Fig. 87). A homogeneous fieid is directed along the Z-axis. In view of the axial
symmetry of the problem, it is convenient to use a spherical coordinate system
with the polar axis along the Z-axis.

For a homogeneous dielectric with permittivity &, the Poisson equation

(15.14) has the form
Vi = —ple. (17.49)

This is obvious from a comparison of Eq. (15.10) for vacuum with Eq. (17.30)
which has the following form for a homogeneous dielectric:

divE = p/e. (17.50)
In spherical coordinates, Poisson’s equation can be written as follows:
1 0 s 0Q 1 0 . a9 1 e _ p
5 (o) + rme aw (310058 ) sy =~ (175)

where o is the axial angle. There are no free charges (p = 0) in this problem,
and d@/da = 0 on account of axial symmetry. Hence the problem is reduced
to the solution of the Laplace equation

1 0 [ o 09 1 9 . 09\ __
797 (™ 55) + e (i 05 =0 (17.52)
in the entire space under the following conditions:.
(1) potential @ is continuous and finite everywhere;
(2) the normal components of ‘vector D = —e grad ¢ are continuous at the
interface, i.e. on the surface of the sphere;
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(3) the tangential components of vector E = —grad ¢ are continuous on
the surface of the sphere.

The quantities corresponding to the inner region of the sphere are denoted by
subscript 1, while those corresponding to the space outside the sphere are
denoted by subscript 2. The general solution of Eq. (17.52) is well known in
mathematics. In the present case, it becomes much simpler. It can be found as
a result of direct verification that the functions

¢, =A;rcosO+ A,r2cos0, g,= — EgrcosO+ B,r~2cos®  (17.53a)

satisfy Eq. (17.52), where A4,, 4, and B, are constants, and E, is the absolute
value of the strength of the uniform field (at infinity).

Since ¢, and @, satisfy Eq. (17.52), they represent the potential if they satisfy
all the conditions of the problem. The potential ¢, corresponds to the inner
region of the sphere, while ¢, corresponds to the space outside it. It can be seen
from (17.53a) that ¢, — oo as r —0. Hence, it can be assumed that 4, = 0.
The continuity equation for ¢ at the boundary has the form

AR cos ® = —E,R cos 0 + B,R2cos 6, (17.53D)
whence

Al = B2R-3 _— EO' (17.54)

The tangentlal component of the electric field vector E on the surface of the
sphere is

E,—Eg— — [_1_ 2] . (17.55)

The condition E,;g = E,g is satisfied if Eq. (17.53b) is valid, i.e. 4, and B,
are connected through relation (17.54).

The normal components of the electric field vector are given by
Eln = Eu- = (a(p‘/ar),.=a = o Ai cos 9,
Eyy=Ey = — (09y/0r),—g = Ey cos 0+ 2B,R3 cos 6.

(17.56)
It follows from the condition &,F,, = &,E,, that

A, = —(e/e)) (Eo + 2B,R7®). (17.57)
The solution of the system of equations (17.54) and (17.57) is

= 38: &1—8
A= — o E,, B,= ¥ e, R3E,, (17.58)
The potentials inside and outside the sphere are
Py=— +2e Eyrcos®, (17.59)
—_ __R_s €1—8s
Pp= ( -5 i ) E,rcos®. (17.60)

10-0290
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5. &
~ ,,_-%;N . g <¢&y
(@ (b)

Fig. 88. Field lines of displacement vector D for a dielectric
. sphere in a uniform external field

Obviously, the field inside the sphere is constant and parallel to the Z-axis:

—_ 09 0p ___ 3e

E,= 67.1 T 9(rcos®) — ey+2e, Eo. (17.61)

This field is the sum of the external field and the field created by the bound

charges appearing on the surface of the sphere. Consequently, the strength of the
field created inside the sphere by bound charges is

Ey =E,; — Ey = (e, — &) Eo/(e, + 2¢,). (17.62)

This field is constant and parallel to the Z-axis. The charge distribution on the
surface of the sphere, which leads to a constant field strength inside the sphere,
is given by formula (16.75). Hence it can be concluded that the field (17.62) is
created by bound charges on the surface of the sphere. the charge density varying
with angle 0 in the same way as in formula (16.79), i.e. ¢ oc cos 0.

It can be seen from (17.62) that for &, > ¢, the field E, is directed against E,.
Consequently, the field inside the sphere is less than the initial uniform field.
If e, > €,, the field E, is in the same direction as E,, and the field inside the
sphere is stronger than in the surrounding medium. The lines of vector D for
the case (a) &, > &, and (b) &, << &, are shown in Fig. 88, as well as the signs
of the bound charges appearing on the surface of the sphere. It should be
noted that Fig. 88 shows the lines of vector D rather than E, since it is the vector
D that is continuous in the absence of bound charges. While plotting the lines of
vector E, we must change their density on the surface of the sphere where bound

charges exist.

Polarization [or bound) charges appear at the sites where the polarization changes.

In the presence of an external electric field, material bodies themselves become the sources
of an electric field, as a result of which the field changes. In this case, electric fields
behave with respect to their sources as if the latter were in vacuum and there were no
material bodies.

Polarization is the process of formation of dipole moments in macroscopic volumes of a

dielectric.

The normal component of an electric field vector undergoes a discontinuity at the inter-
face between different dielectrics. Hence, the field lines break.
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Example 17.1. Find the bound charges, polarization and the field induced by a point charge
q placed at the centre of two concentric spheres of radii a, and ap respectively. The spherical
layer is filled with a substance having permittivity & (Fig. 89).
The field is spherically symmetric. Choosing for S the surface of a sphere of radius r
lflavin its centre at the point where charge gis located, we determine from the Gauss
ormula

S D.dS= D 4nr2=q

5
the electric displacement

1 4
Dr=gmz e~
Ehis displacement is continuous in the entire space. The strength of the electric field is given
y
D, . 1 q
Er= &0 4me, r? forr<a,,
E,=£L=-1——q— fora; <r <<a,, (17.63)
e 4ne  r2 “
_ D, . 1 q
Er—?—— Tneg - fora, <r
and under%oes a discontinuity at the surfaces of the spherical layer for r = a; and r = a,.
The polarization is given by the expressions
= ., 0 for r <a,, -
e—e
P,=D,—eoE,= —(%8:'# for ey <r <a,, (17.64)
0 foray <r.

Consequently, the surface density of bound charges is
Op1= —Pr (r=a;)= —(e—g,) g/(4nea}),
Ope= P, (r=ay) = (e —¢,) q/(4nea}).
The bound charges on the surface of the spherical layer are calculated from the fcrmula

(17.65)

gb, = 4na3op; = — (e—8y) 9/8, gho = 4magop, = (e —g,) g/e.

These charges are equal in magnitude but opposite in sign.
The volume density of bound charges is equal to zero
everywhere, since

op= —divP=—— 2 epy—0.  (17.66)
ry or
The field inside the spherical layer is created by the
oint charge ¢ and the bound charge gy, on the inner sur-
ace of the layer. The bound charge on the outer surface of
the layer does not create an electric field in the volume
bounded by it. Hence the field strength of the point charge
g in the spherical layer is reduced by the value of the ﬁe%d
created by the bound charge qp; = —(e—g,) g/e. Asa;—0,
we find that the point charge ¢ in the dielectric behaves as
an effective point charge

) _ ett =g+ go1 = egle. (17.867)  Fig. 89. A point charge surround-
This results in a weakening of the electric field in the ed by a concentric layer of a
dielectric. dielectric

10+
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Sec. 18. Energy of Electrostatic Field

The interaction energy is considered as well as the seljf-
energy of charges and its relation with the energy
density of an electric field. Formulas for the energy of
charged conductors and of a dielectric in an external
field are derived.

Energy of interaction between discrete charges. Let us suppose that we have
charged spheres of a very small diameter which is less than the distance between
the centres of the spheres. The charge distribution in the spheres is spherically
symmetric. From the physical meaning of formula (14.32) we may conclude
that the quantity

W= o 10 (18.1)

T 4ne, r

is equal to the work done upon increasing the distance between the charges Q,
and Q, from r to infinity. This work is positive when the charges have the
same sign and repulsive forces are acting between them. Unlike charges attract
each other, and the work is negative. In the latter case the work must be accom-
plished at the expense of external energy sources. Consequently, in accordance
with the general definition, (18.1) is the energy of interaction between the
charged spheres. Since both charges appear in formula (18.1) symmetrically,
it is expedient to write it in the form

N | 1 1 1., ’
W= (g 20+ L 0) =7 010+ 70), (189

where @, is the potential created by the second charge at the centre of the first
sphere, while @; is the potential due to the first charge at the centre of the second

sphere.
Formula (18.2) can be easily generalized for the case of several charged spheres

with charges Q;:

’ 1 1 0i0Q ___,1 o4
W=TZE§TJ—7§%® (18.3)
is=)

It gives the interaction energy of a system of charges.

Energy of interaction for a continuous distribution of charges. Suppose that
a volume element dV contains a charge dQ = p dV. In order to find the energy
of interaction between elements of charge dQ, we can apply formula (18.3),
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going over from the summation to the integration in it:

1
W=-? S epdV, (18.4)
\4

where ¢ is the potential at a point in the volume element dV.
Self-energy. At first sight, formula (18.4) seems to be similar to (18.3). How-
ever, these two formulas differ in principle. Formula (18.3) takes into account
only the energy of interaction between charged spheres and disregards the energy
of interaction between elements of charge in each sphere. Formula (18.4) takes into
consideration hoth the energy of interaction between the spheres and the energy
of interaction between elements of charge in each sphere, called the self-energy
(intrinsic energy) of a charged sphere. In calculating the energy of interaction
between charged spheres, formula (18.4) is reduced to the integrals over volumes
V; of the spheres:
. 1
W=% S ppdV="> = [ o av. (18.5)

J

v iV

At any point in the volume of the ith sphere, the potential @; is the sum of
two components: the potential ¢ created by the charges of other spheres and

the potential (p?“t) created by the charges of the ith sphere:
R (18.6)
In this case, [see (18.5)]
1
=3 5 loPpav+ 3 + [ et av. (18.7)
iV v
Since the charge distribution in the spheres is spherically symmetric, we have
| o0 av =gi0s, (18.8)
vy
where @} is the potential at the centre of a sphere and Q; = | p dV is the total

charge of the sphere. The proof of (18.8) is similar to that of {he equivalence of
the electric field generated by a spherically symmetric charge distribution in
a sphere and the field created by the corresponding point charge located at the
centﬁ‘e ;)f the sphere (for the region outside the sphere). Now we can write (18.7)
in the form

1 ’ 1 ’
Wt S0t 53 | ot par= w4 W (189
i iv, i

where Wj is given by formula (18.3).
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The self-energies W) of the spheres depend on the laws of charge distribu-

tion in the spheres and on the magnitudes of the charges. Let, for example, the
charge Q be uniformly distributed over the surface of a sphere. In this case, the
potential is defined by formula (16.28), and hence

n__1 0
Wisell) — e, K (18.10)

As {R — 0, the value of Weel) —» co. This means that the self-energy of
a point charge is equal to infinity. This creates serious difficulties when the
concept of point charges is being used.

Thus, formula (18.3) can be applied for analyzing interaction between point
charges since it does not contain their infinite self-energies. Formula (18.4) for a
continuous charge distribution takes into account the entire interaction energy,
while formula (18.3), only a part of this energy. Therefore, formula (18.4) is
more complete and informative in comparison with formula (18.3).

Energy density of a field. Using the equation

div D = p, (18.11)
we write (18.4) in the form
W= 5 pdivDdv. (18.12)
v
Taking into account the formula
¢ div D = —D grad ¢ + div (¢pD), (18.13)
of vector calculus, we represent (18.12) as the sum of two integrals:
W=t S E-DdV 4+ S div (¢D) dV, (18.14)
v 4
where E = —grad ¢. The second integral in (18.14), in accordance with the
Gauss theorem, is written as
S div (¢D) dV=S ¢D-dS, (18.15)
v 8

where S is a closed surface enveloping the volume V. It is assumed that all
charges are located in a finite region of space. At large distances r from the
charges, ¢ oc 1/r, D oc 1/r%, i.e. D oc 1/r3. The area S of the surface increases
in proportion to r2. Consequently, integral (18.15) is of the order of ¢DS oc 1/r
and tends to zero as the surface of integration approaches infinity. Hence, for the
entire space, formula (18.14) becomes

W=t S E.DdV. (18.16)

The energy W calculated by formulas (18.16) and (18.4) has the same value,
but the physical contents of these formulas are quite different. Suppose that the



Sec. 18. Energy of Electrostatic Field 151

charges are located in thin surface layers of the spheres. In this case, integral
(18.4) is reduced to the sum of integrals over the surface layers of the spheres,
since in the space between the spheres it is equal to zero. On the other hand,
integral (18.16) is reduced to the integral over the volume between the spheres
where the field E is contained. Consequently, in (18.4) the carriers of energy are
charges, and the energy is assumed to be localized on charges. In (18.16), the
carrier of energy is the electric field, and the energy is assumed to be localized
in the entire space containing the electric field. The density of electric energy
{see (18.16)] is given by

1

|w=7E41( (18.17)

Thus, the energy density in (18.17) is positive since E-D = e¢E? > 0. Con-
sequently, the total energy in (18.16) and (18.4) is positive. However, the
interaction energy (18.3) of discrete charges can be either positive or negative.
The reason behind this is clear from equality (18.9), which can be represented
in the form

W =W —3 Wi, (18.18)

1

Thus, the interaction energy of discrete charges is positive if their intrinsic energy
(which is always positive) is less than the total energy of the field and negative if
their intrinsic energy is higher than the total energy of the field.

Suppose that all charges, with the exception of one, are fixed at their places.
Then the energy of interaction between this charge and the remaining charges
is called its potential energy. It follows from what was said above that it is
a part of the energy of the electric field. A change in the potential energy is
associated with the change in the energy of the field. The law of conservation of
energy for a particle in a potential field, which states that the sum of its kinetic
and potential energies is constant, indicatesthat a decrease in the kinetic energy of
the particle is accompanied by the corresponding increase in the energy of the field,
and vice versa.

Expression. (18.17) is formulated in the local form and defines the energy

density as a function of the electric field strength and properties of the medium
at a given point, which are taken into account by the displacement D. Obvious-
ly, the validity of this formula cannot depend on the way in which the field is created
at a given point. Hence, expression (18.17) is valid not only for constant fields but
also for varying fields. In other words, this formula expresses the energy density
of an electric as well as an electrostatic field.
Energy of the field of surface charges. Since formula (18.17) does not depend
on the nature of charges which are the sources of the field, it is also vaiid for
surface charges. Formula (18.16) also gives the total energy of the field irrespec-
tive of the nature of the charges creating this field. Therefore, formula (18.16)
takes into account surface charges as well as volume charges.
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For surface charges, formula (18.4) assumes a somewhat different form. This
change, however, is self-evident. The integrand in (18.4) is equal to @p dV =
¢ dg and has the meaning of the potential energy possessed by the element of
charge dg located at a point with potential ¢. This potential energy does not
depend on whether dg is the element of a volume charge or a surface charge.
Consequently, expression (18.4) is applicable to surface charges as well, but in
this case dg = o dS, and we must integrate over all surfaces S which contain
charges. Thus, for surface charges, formula (18.4) becomes

1 1
W=+ S ppdV +— S o dS. (18.19)
\4 S

All that has been said about the interaction energy and self-energy is also
valid for surface charges. We must only take into account their contribution
to the total as well as to the intrinsic energy. This circumstance has already been
used in deriving the formula for self-energy [see (18.10)].

Energy of charged conductors. Since there are only surface charges on conductors
and the potential at different points on the surface of a conductor has the same
constant value, formula (18.18) assumes the form

W=% ScpodS:%Z Sqa,o,dS,

8 i 8,
1
=72%S
i

0; dSi=% 2 (piQi' (18.203)
8§, i

Substituting expression (16.42) into this formula, we obtain the relation

W=+ ) Q0 (18.20b)
i,
Using (16.45), we transform (18.20a) as follows:
W=% iZ; Ci;919;. (18.20c)
From (18.20a), we have -
W=a Qo= ) =92, (18.20d)

where C = Q/(p, — @,) is the capacitance of a capacitor and Q is the charge
on one of the pla zs.

Energy of a dipole in an external field. This energy is equal to the sum of
the energies of dipole charges (see Fig. 77):

W=qlopc+1) —o®l T (18.21)
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Let us expand ¢ (r 4 1) into a seriesin I:
a 7} [/}
QU+ =0@®) +lgh+1yGo+l Gt
=) + (=Bt L,E,+LE) =0 (M —1-E, (1822

where we retained only the first-order terms in ! due to an extremely small value-
of . Formula (18.21) assumes the form

W= —p-E. (18.23)

Energy of a dielectric in an external field. The dipole moment of the volume
element dV of a body is dp = P dV. The energy of this element in an external
field E is [see (18.23)] dW = —P-E dV. It may seem that the energy of a di-
electric body is equal to the integral of dW over the volume of the body. This,
however, is wrong. As a matter of fact, each polarized volume element dV of a
dielectric body becomes a source of electric field and thus appears twice during
the calculation of energy: once as a dipole in an external field and the second
time as a source of the field in which other dipoles are located.

Hence, in determining the energy of the field, it is convenient to proceed from
its total energy. Besides, let us assume that the dielectric is homogeneous and
fills the entire space, which considerably simplifies mathematical calculations.

Let an electrostatic field be created by a certain charge distribution in free-
space. As usual, we assume that the charges are located in a finite region of
space. We denote by E, and D, = ¢,E, the vectors of the field created by the
distribution of charges in free space. The total energy of the field [see (18.16)] is:

Wo=—p S E,+D, dV, (18.24).

where the integral is extended over the entire space. Let us now suppose that
the entire space is filled with a dielectric medium, the charges as the sources of
field remaining unchanged. The field in the entire space varies. We denote by e,
E and D = ¢E the permittivity and the field vectors in the medium. After the:
space has been filled with the dielectric, the total energy becomes

W=1 3 E.-Ddv. (18.25).

Consequently, the energy of the dielectric placed in an external field E,
is given by

WomW—Wy=4 | ®-D—E, D) av. (18.26)

Upon filling the entire space with a homogeneous dielectric having permit-
tivity e, the field strength at all points of the field decreases by a factor of &/e,.

Consequently,
E = eoEo/e- (18-27)‘
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Hence, the integrand in (18.26) can be transformed as follows:
E-D—E,-Dy=sE?—g,E} = — (e — &) > E} = —P-E,, (18.28)
where
(e—&0) - Eq=(e—eo) E=P. (18.29)
Then [see (18.26)]
Wo=—3 | P-Eyav. (18.30)

It can be shown that formula (18.30) is also valid for the energy of a dielectric
of a finite size in an external field E,.

Formula (18.30) can be used to obtain the energy of a dielectric body of per-
mittivity e,, located in the medium whose permittivity is ¢,. Let us write for-
mula (18.30) for the energy of a dielectric body with permittivity e,:

Wo=— S (61— eg) EyEy dV, (18.31)
where E, is the field strength in the body. In order to simplify calculations, we
assume that the dielectric fills the entire space. The energy of the dielectric
having permittivity e, is expressed, by analogy with (18.31), by

We=—3 S (63— o) E,-Eq dV. (18.32)

Hence it follows that the difference in the energies of dielectrics having per-
mittivities €, and e, is

Weas=Waos—War= — 5 | [(ea—e0) Ea By (es—e0) E-Eol dV.  (18.322)
Transforming the integrand with the help of formulas
Ez = EoEo/Bz, El = 80E0/817 (18-33)
we find
(82— e0) Eo-Ey— (8 — e0) Ey-Eo= -2 (e — £0) — o> (e, — o) | £
2
= (ea—e1) 5 o B =(e2—e) E;-Ey. (18.34)

Then (18.32) becomes

Wa = —— S (e2—&y) Eo-Ey dV, (18.35)

where W 4,, is the energy of the dielectric of permittivity €, placed in the medium
-of permittivity e;, in which the field E; is created by fixed free charges. It can be
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shown that this formula is valid for a finite di-
electric as well, ifin (18.35) we assume that inte-
gration is performed over the volume of the di-
electric. In this case, E, is the strength of the field
which would exist in the volume of the dielectric
if its permittivity were equal to the permittivity
¢, of the surrounding medium, and E, is the field
in the volume of the dielectric after it has been
introduced into the field provided that the charges
creating the field are fixed. Formula (18.35) is
important for understanding the nature of forces
acting on dielectrics.

Formula (18.35) leads to the following impox-
tant conclusion: an increase in the permittivity of
the medium leads to a decrease in the total energy

168

Fig. 90. A two-layer cylindri-
cal or spherical capacitor

of the field. The proof of this statement can be obtained as follows. Suppose
that the strength of the initial field is E;, = E and the permittivity of the me-
dium is g,. If the permittivity of the medium increases by ¢ = ¢, — ¢;, the
field strength becomes E, = E + 8E, and hence the change in the energy is

given by

1
W= —+ 5 SeE2 AV

(18.36)

{we neglected the term §e8E-E of the higher order of smallness). Formula (18.36)

proves the above statement.

The intrinsic (self-] energy of a charge is the energy of inferaction of different elements
of the charge with each other. The intrinsic energy of a point charge is infinite.

The energy of inferaction of discrete charges is the total energy of the field minus the
infrinsic energy of the charges. It is positive when their intrinsic energy [which is always
positive) is less than the total energy of the field and negative in the opposite case.

The law of conservation of energy for a particle in a potential field, which establishes the
constancy of the sum of its kinetic and potential energies, indicates that a decrease in
the kinefic energy of the particle is accompanied by the corresponding increase in the
field energy, and vice versa. An inctease in the permittivity of the medium leads to

a decrease in the tofal energy of the field.

‘What determines the difference between the coefficients in the formulas for the dipole
energy [see (18.23)] and the energy of a dielectric [see (18.30)]?

Example 18.1. Find the energy accumulated in a cylindrical two-layer capacitor over length .

The parameters of the capacitor are given in Fig. 90.

Assuming that the inner capacitor plate contains the charge Q over the length I and ap-
plying the Gauss theorem to the cylindrical surface of radius r, coaxial with the capacitor,
we find the expression for the radial component of the field:

1
nle; T form<r<a,
Er= 1 Q
onle, fora<<r<r,,

0 for r, <r < oo.
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The energy of the field is found by the formula

W=% SE-DdV

which in this case assumes the form

l a ] r
_1 Q 21 1 T g_q_ui
W= oSsz(zm ) o dr g odl (=) o v 2ar dr
r1 a

Sec. 19. Forces in an Electric Field

Forces acting on charges, conductors and dielectrics
in an electric field are considered. The emergence of
volume and surface forces is analyzed.

Nature of forces. All forces in an electrostatic field are ultimately forces acting
on a charge.
Force acting on a point charge. This force is equal to

F=¢E= —qggrad ¢. (19.1)

Force acting on a continuously distributed charge. This force is equal to
l dF =pEdV. l (19.2)

Consequently, the volume ',charéé) density is equal to

A — .
f=ﬁ—=pE= —p grad ¢. ‘ (19.3)

Force acting on a dipole. This force is equal to the sum of forces applied to the
dipole charges (Fig. 91):

F =Fu)+F=q[E (r+1)—E (). (19.4)
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Here, we can express E (r 4 1) asaseries in [,
i,, 1,, confining ourselves to linear terms only:

E(r+)=E @+, 20 4 B0

dy
+1, iig_z(_ﬂ_Jr coo=E@+(1-V)E(), (19.5)
where

a /] 14

Taking (19.5) into account, we can write for-
mula (19.4) in the form

F—(p-V)E. ‘ (19.6)

The force acting on a dipole in a uniform field is Fig. 91. Force and the moment
equal to zero, since the dipole charges are subjec- of force acting on a dipole
ted to equal and opposite forces.

Moment of force acting on a dipole. Forces applied to the charges of a dipole
(see Fig. 91) form a couple with moment

‘0

M=pxE. (19.7)

Volume forces acting on a dielectric. The forces applied to a volume element
dV of a dielectric is equal to the sum of forces acting on the elementary dipoles
in this volume. Conseguently, formula (19.6) assumes the form

dF=2Fi=2 (p,.V)E,, (19.8)

where AV indicates that the summation is carried out over all the elementary
dipoles in the volume AV. On the macroscopic scale, field strength E is assumed
to be a slowly varying quantity. Hence we can replace E; in the sum (19.8)
by the quantity E which is the same for all the terms in the sum. In this case,
the summation in (19.8) is reduced to the computation of

AEVP,=PAV. (19.9)

Consequently, we get from (19.8) the following expression for the volume
density of the force acting in a dielectric:

dF
Considering that
P=xegE = (e —¢gy)E
and using the well-known vector identity
(E-V)E = 1/2 grad E2 — E X curl E, (19.11)
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in which curl E = 0 in view of the potential nature of the electric field, we get

f= % grad E2, (19.12)

This formula is valid both for absolutely rigid dielectrics and compressible ones
under the condition that their polarization is a linear function of their mass density,
i.e. the dipole moments of individual molecules and atoms do not change due to
compression or extension of a volume element, while the dipoles due to displace-
ment of ions are either absent or do not contribute significantly to the polariza-
tion. These conditions are satisfied for gases and for most of the liquids.

This formula is quite illustrative, since it shows that the volume elements of
a dielectric are subjected to forces which tend to displace these elements towards:
the highest rate of increase in the absolute value of the electric field. This is
sometimes expressed in the form of the statement that the volume element of
a dielectric is drawn towards the increasing field strength.

The formula for the volume density of forces, which is valid for isotropic
compressible dielectrics, has the form [(see (19.41)] )

1 1 a
f= —TEZ grad,e—l-T grad [p’”(ﬁn_)rEz]’ (19.13)
where p,, is the mass density of the dielectric. This formula is also valid wher
& 5= const. If P depends linearly on p,,, we get ¢ = D/E = g, + P/E, P X pp,

whence p,, (a%e-) = & — &, and formula (19.13) is transformed into (19.12).
m

If a dielectric has]free charges inside it and is subjected to a hydrostatic pressure,
Eq. (19.13) is supplemented by the volume density pE of forces acting on the
free charges, and by the hydrostatic pressure.

Let us apply these formulas for determining the forces acting on a dielectric
sphere in a uniform field (see Fig. 88). In order to apply formula (19.12), we
must assume that the transition from the external region having permittivity
e, to the internal region of permittivity ¢, is accomplished not abruptly on the
surface of the sphere, but continuously over a certain thin spherical layer. In
this layer, field strength E changes continuously from its value outside the
sphere to its value inside the sphere. Formula (19.12) can he used to calculate
the force at each point in the spherical layer.

If &; > e,, the field inside the sphere is weaker than outside it. Hence the
force at each point of the layer is directed outwards. In view of symmetry, the
resultants of these forces on opposite sides of the sphere tend to stretch it along
the external field vector (see Fig. 88a). However, the resultant of all the forces is.
equal to zero and the sphere as a whole remains at rest. For &; << ¢,, the forces
in the transient spherical layer are directed inwards and their resultants on both
sides of the sphere tend to compress this sphere along the external field vector.
As before, the resultant force acting on the sphere as a whole is equal to zero
(Fig. 88b).
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If, however, the external field is not uniform, the resultant force acting on
the sphere as a whole is not equal to zero. It can be easily seen that for e, > e,
this force is directed towards increasing field strength in the medium. This
explains why light dielectrics are attracted by electrified bodies: for air &, = &,,
and the condition e, > ¢, is always satisfied. If, however, ¢; < ¢,, the resultant
force is directed oppositely, i.e. towards decreasing field strength in the medium.
Hence in a medium with a fairly high permittivity, dielectrics with low per-
mittivity are repelled by electrified bodies.

While investigating the behaviour of the electric field at the interface bet-
ween two dielectrics (see Figs. 84 and 85), it was remarked that E? always
increases towards the dielectric with a lower permittivity. Hence, by applying

Fig. 92. Emergence of a force Fig. 93. A dielectric body having

of attraction due to a charge on the shape of a prolate ellipsoid

neutral dielectric bodies is oriented so that its major axis
is along the field

arguments similar to those considered in the case of a dielectric sphere, we con-
clude from Eq. (19.12) that at the uncharged interface between two dielectrics,
the force is always directed towards the dielectric with lower permittivity.
This explains several phenomena. For example, dielectrics (pieces of paper,
etc.) are attracted by a charge. Of course, the forces in any part of the surface
of the object (a piece of paper, etc.) are directed outwards, but these forces are
larger in the regions in the vicinity of a charge. This results in an overall force
of attraction (Fig. 92).

Such a behaviour of dielectrics can be understood by proceeding from
Eq. (18.35) for the energy of a dielectric having permittivity &,, placed in a
medium of permittivity &,. It is obvious that this energy is negative if ¢, > e,.
It decreases with increasing €, and E; and with decreasing ¢,. Since the system
strives to attain minimum energy position, the body will be drawn for &, > ¢,
towards the region with a higher field strength or the lower permittivity e,.
If, however, e, << ¢,, the dielectric with permittivity e, will be repelled from
the region with a higher field strength to a region where the field is weaker.

Let us assume that a dielectric body in the form of a prolate ellipsoid is placed
in a field shown in Fig. 93. Since at all points of the ellipsoid surface the forces
directed outwards are stronger at points where the square of the field strength
has a larger gradient, a moment of force is created and tends to rotate the ellip-
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soid in such a way that its major axis is parallel to the field lines. This becomes
especially clear if we recall that all parts of the dielectric are drawn towards
the region with the highest field strength.

If the permittivity of a body is lower than that of the medium, the forces
in the surface layer are directed outwards. Consequently, the direction of the
resultant force changes. Instead of being attracted by an electrified body, di-
electrics (pieces of paper, etc.) are now repelled by it. The pattern of forces in

Fig. 94 Emergence of the re-
pulsive force exerted by a
charge on a neutral dielectric
body placed into a dielectric
medium  with  permittivity
higher than that of the body

Fig. 95.7A prolate ellipsoid in a
medium with permittivity high-
er than its own permittivity
is oriented so that its major axis
is transverse to the electric
field

this case is shown in Fig. 94. A prolate dielectric ellipsoid, when placed in a
medium whose permittivity is higher than its own, is oriented with its major
axis not along the field lines, but perpendicular to them (Fig. 95). In this case,
parts of the dielectric are repelled from the region with a stronger field to regions
with a weaker field.

Forces acting on a conductor. The charge dg = 0 dS on the surface element
dS of a conductor is acted upon by only half the field at the surface of the con-
ductor, since the other half is created by the charge of the surface element itself
and cannot act on it (see Sec. 16, Fig. 39). Consequently, the surface density of
force is equal to

(19.14)

where n is the unit outward normal to the surface of the conductor, and ¢ is the
permittivity of the medium adjoining the conductor [see (17.28)]. Thus, the force
on the surface of a conductor always acts in the direction of the outward normal and
as if tends to increase its volume.

The resultant force acting on the conductor as a whole [see (18.24)] is

F_LS"T'ndS=-;—S°T’dS, (19.15)
8

-2
8

where S is the surface area of the conductor.
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This expression can be used to calculate the force on the surface element S
of the plate of a parallel-plate capacitor filled with a dielectric:

1 o2
F=-2—? S, (19.16)

since the field is uniform in this case, i.e. 0 and & in the integrand of (19.15)
are constant. This force is directed into the capacitor.

Surface forces acting on a dielectric. In the equilibrium state, volume (body)
forces of electrostatic nature do not lead to a displacement of the corresponding
volume element. Such forces cause a deformation of the medium, thus creating
elastic body forces which completely balance the volume forces of electrostatic nature.
A similar balancing takes place in the volume of a liquid in a gravitational
field. Each volume element is acted upon by a force of gravity due to the liquid
in this volume; this force, however, is balanced by the force generated by the
pressure exerted on the surface of the volume element by neighbouring regions.
Electrostatic volume forces lead to a displacement of volume elements only for
quite rapid variations of the fields, when elastic forces do not balance electric
forces at each instant of time. The resultant of all volume elements is applied
to the dielectric as a whole and may cause its displacement if it is not balanced
by some other force.

Besides volume forces, a dielectric is also subjected to surface forces which
emerge in its surface layer. These forces act together with the volume forces.
We shall derive these forces from the first law of thermodynamics.

The thermodynamic potential in isothermal processes is the free energy F
which is connected with work through the relation

d4 = —dF. (19.17)

Since the thermodynamic relations in the absence of an electric field were
described in molecular physics, we shall now take into account only those quan-
tities which depend on the electric field. Hence, we consider in (19.17) only the
work and change in the free energy due to the electric field. The work and change
in the free energy due to deformations and elastic forces are not taken into
account, i.e. the dielectric is assumed to be nondeformable. Besides, we confine
the analysis to isotropic dielectrics only.

The part of the internal energy which is not bound in the system and is avail-
able for obtaining work is considered as the free energy. Its magnitude depends
on the conditions under which a process is carried out.

Let us consider the plane interface between two dielectrics having permittivi-
ties ¢, and ¢,. By way of a specific model for the physical system, we can con-
sider a parallel-plate capacitor, the space between whose plates is filled
with liquid dielectrics with a plane interface. The interface may be parallel or
perpendicular to the capacitor plates. This model can be used to obtain an
expression for the surface density of forces acting at the interface between
dielectrics. Since the relations obtained in this case are of a local nature, they
will be independent of the specific shape of the nonlocal model under which they
have been obtained. In other words, these relations will be of a general nature.

110290
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Let us consider the plane interface parallel to the capacitor plates (Fig. 96).
The field vector E is perpendicular to the interface. The normal directed towards
the second dielectric is taken as positive. Upon an infinitely small displacement
of the interface, work is performed due to a change in the free energy. Having
independently calculated the work and the variation in the free energy, we can

dx
s
— _K.\ —+ —_ 1
—— NS 5
55\na 17 E,D, N
2  \\ dx { o8
&\\\\ _ %2 E\D) Y4 E,D,
3 AN lDl
= S s
Fig. 96. Emergence of Maxwel- Fig. 97. Emergence of Maxwel-

lian stresses lian pressures

find the surface density of forces from (19.17). Of course, the displacement dz
should be considered as a virtual displacement, i.e. not necessarily realizable

in practice.
The work done in displacing the surface element AS by dx along the normal is

dA = ASf, dz, (19.18)

where [ is the surface density of the force.

In order to calculate dF, we consider that D, = D, at the interface between
the dielectrics, i.e. at D = const the interface is displaced. This corresponds to
the condition that the charge at the plates of the capacitor is constant, since
D = ¢. Consequently, we must calculate dF at a constant charge gon the plates,
i.e. (dF)r,q4- As aresult of the displacement of the interface by dz, the volume
AS dz, which was initially filled with an electric energy of density E,D,/2, will
now be filled with energy whose density is E,D,/2. There are no other energy
factors participating in doing work. Consequently, the difference in energy in
the volume AS dz before and after the displacement of the interface is just the
variation in the free energy:

1 1
(dF)1,q= (5 DinEin— 5 DonFan) AS da (19.19)
where the subscript » means that the normal components of D and E are con-

sidered.
Taking (19.18) and (19.19) into account, we can write (19.17) in the form

1 1
.fs=7 E2nD2n —TEinDin' (19’20)
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The surface density of force is directed along the normal to the interface.
It can be seen from (19.20) that the surface force density fs is composed of two
parts:

(1) the surface density

fa= "5 EznDans (19.21)

of the force emerging under the effect of the electric field of the second medium
and directed towards the second medium;
(2) the surface density

fs= —'%' E3Dyny (19.22)

of the force emerging under the effect of the electric field of the first medium and
directed towards the first medium.

Thus, in this case the electric fields on both sides of the interface as if attract
the interface with a surface density of force equal to the volume density of the electric
energy along the normal component of the field.

The resultant of the two forces applied to the interface from both sides of the
fields is the total force acting on the interface. Since D,, = D, = D,,, we get
[see (19.20)]

1 1 1
h=g D (sr—<)- (19.23)
For e, << &,, the surface density fs of force is greater than zero. This means
that the force at the interface acts in the direction of the dielectric having a lower
permittivity, i.e. in the direction of the higher volume density of the electric
energy. It should be noted that the volume density of the force [see (19.12)]
is also directed towards increasing volume density of the electric energy.
Let us now consider the dielectrics the plane interface between which is
perpendicular to the plates of a parallel-plate capacitor (Fig. 97). In this
case, the condition E,, = E;, = E, is satisfied, since the field vector is parallel
to the interface. The subscript t indicates the components of the vectors tan-
gential to the interface. The displacement of the boundary takes place under the
condition Ex = const, i.e. at a constant potential difference. Consequently, it is
necessary to calculate the variation in the free energy (dF)r,e. In order to
maintain a constant potential difference, we must change the charge density
in that part of the capacitor plates which corresponds to a displacement of the
interface by dz. This involves an expenditure of energy equal to dg (p, — ¢;) =
dg E.l, where E;andlare the field strength and the distance between the capa-
citor plates. The surface charge densities in the region where the plates come
in contact with the first and second dielectrics are respectively equal to o, =
g E, = ¢,E.and 0, = €,E, = €,E,. The depth of the dielectric in the direction
perpendicular to the plane of Fig. 97 is equal to AS/l. Consequently,

11
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Under the conditions described above, work can be performed only due to the
difference between the field energy and the energy spent to keep the potentials
constant. Consequently, the change in the free energy is equal to

(dP)r, o= (5 EscDye— 7 EacDac) AS dz—(0,—0y) (AS/l) dz Eql. (19.25)
Since o, = €,E, and o0, = ¢,E,, we get
(AF)r, o= — (5 FscDse— 7 EauDz:) AS da. (19.26)
Taking (19.18) and (19.26) into account, we can write (19.17) in the form
fa= — 3 E3Dyet 5 ErDis. (19.27)

This surface density of force is also directed along the normal to the interface.
It can be seen from (19.27) that it is composed of two parts:
(1) the surface density

for = — 5 ExcDiey (19.28)

of the force exerted at the interface by the electric force of the second medium
in the direction of the first medium. It should be recalled that the positive
normal is chosen in the direction from the first medium to the second, and hence
the minus sign in (19.28) indicates that the force is directed from the second
medium to the first;

(2) the density

fiu= EiDiss (19.29)

of the force exerted at the interface by the electric field of the first medium in
the direction of the second medium.

Thus, the tangential component of the electric field strength as if exerts a pressure
on the interface in contact with it. This pressure is equal to the volume density of
the energy corresponding to the tangential component of the field strength.

The resultant of the pressure forces exerted by the fields on both sides of the
interface is the total force applied to it. Since E,; = E,, = E., formula (19.27)
assumes the form

fo=5 B% (e — e, (19.30)

For e, << &,, the force density fg > 0. Conséquently, the surface density of
the force is directed towards the dielectric having lower permittivity. Thus,
irrespective of the orientation of the field with respect to the interface, the surface
density of the force is always directed towards the dielectric with lower permittivity
[see (19.12)]. The validity and generality of this statement follows also from
Eq. (18.36) if we consider that the system tends to go over to a state with mini-
mum energy.
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VYolume forces acting on a compressible dielectric. We proceed from formula
(18.36) in which 8¢ is due to the strain which changes the mass density. The
processes are assumed to be isothermal (T = const). The permittivity changes
from point to point, being a function of r. Besides, it may be a function of the
mass density p,, of the dielectric, i.e. € = ¢ (r, pp). Suppose that as a result
of deformation, the volume element dV is displaced by 1 and that the mass
density of the dielectric changes in the process. The volume element which is
at the point with radius vector r after displacement was at the point r — 1
before displacement. Hence,
de= —Ilgrade +#— 0pm, (19.31)
: Pm

where 8pp, is the change in the mass density of the dielectric.

It can be shown that after deformation the volume element dV’ becomes
equal to

dV = (1 + div 1) dV’. (19.32)
The law of mass conservation has the following form for the volume element:
Pm dV = pp, AV’ (19.33)

or
Pm (14divl)dV’' =pp dV’, (19.34)

where pn and pp are the mass densities after and before deformation. From
(19.34) we obtain the following expression for an infinitely small displacement:

0P =Pm—Pm= —pPm div L (19.35)
Substituting (19.31) and (19.35) into (18.36), we obtain

1 a .
oW = | [E71-grad e+ Eopp oo div1] av. (19.36)

From formula (A.12), we have
2 [ TAR T de 1.
Bty 5 divl=div (Ezpm S 1) 1-grad (Ezpm
This gives [see (19.36)]

6W=-;—S [£2 grad e — grad  E2py, az; )]-1av

j‘fm ). (19.37)

+ 4 | div (B, 1) dV. (19.38)

On the basis of the usual assumptions about the continuity of integrands, we
can transform the second of the above integrals into an integral over the surface
bounding the volume under consideration with the help of the Gauss theorem.
Assuming for the sake of simplicity that the dielectric occupies the entire space
while the charges generating the field are distributed over a finite region of space,
we find that the second integral is equal to zero, since E2 OC 1/r%, r being the
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distance between the charge and the integration surface. Consequently,

S div ( E%py,

de — 2 de .
1) v s L E*pp, o148 0. (19.39)

The volume density f of the forces describes the action of an electric field on
a dielectric. The volume density of the work done by this force upon deformation
is equal to f-1. Consequently, the law of energy conservation for deformation

cfél?ge) expressed in the following form if we take into account Egs. (19.38) and
(19.39):

S f1dV=—1 S [£2 grad & — grad (B2, aﬁi, )]-1av.  (19.40)

Since this relation is valid for any displacement 1, we obtain

1 1 9
l f= —— E*grad e + - grad (Ezpm ap; ) (19.41)

This formula is valid for isotropic compressible dielectrics for any dependence
of & on the mass density pp [see (19.13)].
If polarization depends linearly on the volume density of the mass, we get

a

and Eq. (19.41) is transformed into (19.12). Consequently, formula (19.12) is
valid not only for rigid dielectrics, but also for compressible dielectrics with
P X py.

Although for the sake of simplicity in transformation of (19.39) formula
(19.41) was derived under the assumption that the dielectric occupies the entire
space, it is actually valid under any condition, since it is a differential relation
whose validity is independent of the processes occurring at other points in space.
Calculation of forces from the expression for energy. In order to transfer a charge
dg to a point with potential ¢, we must perform work ¢ dg. Consequently,
the total change in the energy of a system of charges upon a change in the
charge by dg; is

2 ; da;. (19.43)

This change is accompanied by a change in the energy of the electric field by
dW and by performance of work by the charges. If the system configuration is
characterized by the parameters &; then, by definition, the generalized force
connected with this parameter is the quantity F;, such that F; d§; is the work
done by the system when the parameter &; changes by d&;. The law of conser-
vation of energy has the form

29y dgy=dW + 2 F, dt,. (19.44)
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To begin with, let us consider virtual processes in which charges remain con-
stant, i.e. dg; = 0. In this case, Eq. (19.44) assumes the form

0=(dW)q+ 2 F, a&,. (19.452)
Here, (dW), depends only on §;. Consequently,
@W)g=> (aTng:). dt,. (19.45b)
1

Considering that d&; is an independent quantity, a comparison of (19.45a) and
(19.45b) gives

Fi=— (%)q (19.46)

where the subscript g on the partial derivative in an explicit form indicates that
the force is calculated at a constant value of the charges. In order to use this
formula, we must express the energy W asa function of charges and parameters §;.

The generalized force can also be expressed in terms of the derivative at a
constant potential. For this purpose, we take into consideration the expression

W=+ o (19.47)
4

The change in energy under a constant potential is equal to

(@W)o=3 3} @i das. (19.48)
Consequently [see (19.45a)], {
0=(@W)o—2 F, dt;. (19.49)
Taking into account the independence of} dE;, we obtain

Fi=(55), (19.50)

where the subscript ¢ on the partial derivative in an explicit form shows that
differentiation is carried out at a constant potential. In order to use this for-
mula, we must express the energy W as a function of potentials ¢ and para-
meters &;. Obviously, formulas (19.46) and (19.50) are equivalent and are ob-
tained from each other. The choice of a particular formula depends on the cir-
cumstances.

For example, suppose that it is required to calculate the force of attraction
between the plates of a parallel-plate capacitor. The energy of such a capacitor
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is equal to
W = Q%¥(2C) = (Ag)? C/2,

where C = ¢,S/z, S and x being the surface area of a plate and the distance
between the plates respectively.
Calculation of the force from formulas (19.46) and (19.50) gives

—_ (@Y ___eQ 9 (1) _ @ o,
Fx"'"az(zo)q—— 2 0z (c)—zc2 oz’ (19.51)
, 8 [ (Ap2C T _ (Ap? oC

=g [ = (19.52)

Taking into consideration the definition of the capacitance C = Q/Ag, we
conclude that F,, = F,.

The forces in an electric field are ultimately the forces acting on the charges, although
the value of charges does not always appear in the expression for the force.

The formula for the force acting on perfectly rigid dielectrics Is also valid for compressible
dielectrics provided that their polarization depends linearly on the density of the material.
The forces acting on a dielectric depend on the ratio of the permiffivity of the body and
the permittivity of the surrounding medium. At the interface between dielectrics, the
force is always directed towards the dielecfric having lower permittivity.

The field component normal to the interface between dielectrics as if atfracts the surface
with the surface density of force equal to the volume density of electric energy of the
field associated with this component.

The field component tangential to the interface between dielectrics as if exerts a pressure
on the surface, the pressure being equal fo the volume density of electric energy of the
field associated with this component.

The surface force acts fowards the dieleciric with lower permitfivity in all cases, ir-

respective of the field orientation.

Example 19.1 Proceeding from the solution of Example 16.3 find the moment of the force of at-
traction between the plates of the capacitor shown in Fig. 73.
The energy of the capacitor is equal to [see (16.109)]

_ U3¢ _ U}leln (bja)
- 2 - 2@0 C

The generalized force for the angle of rotation is the moment 3/ of the force with respect
to the axis coinciding in the present case with the line of intersection of the capacitor plates.
Hence, taking into account Eq. (19.50), we obtain

oW \ _  Ujleln(b/a)
e )o_ a3 (19.54)

w (19.53)

-

where the minus sign indicates that the moment of force tends to reduce the angle o,. In oth-
er words, forces of attraction exist between the plates of the capacitor. Of course, attractive
forces always exist between the capacitor plates and formula (19.54) just states that the mo-
ment of force is obtained with the minus sign. Such a verification of the correctness of the
result is useful when generalized coordinates and generalized forces are used, in which case
these variables cannot be interpreted graphically.

We can obtain this result in angther way. The surface density of the force acting on a con-
ductor is f = o%/(2¢). Consequently, a'layer of length ! between r and r -+ dr is subjected to
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a force ;

eUj
where the value (16.407b) is used for 6. The minus sign indicates that this {orce tends to
reduce the angle cy. The resultant force acting on the plate is equal to

b b
_ _ eU} (dr _eU3l 11 1
r=far—— ot ) = (v (19.56)
a a

The line of application of forces is at a distance r, from the axis of rotation, which is de-
termined from the condition

b
_ _ Uy b
roF = S raf=—5& (19.57)
a
whence
ab b
To= b—a ln—a-. (19.58)
The moment of force with respect to the axis of rotation is equal to
__p eUy b

M=ryf=— %0 ln—a-, (19.59)

which is identical to (19.54).

Problems

2.4,7Find the strength of the electric field in a s%herical cavity of radius ¢ inside a uniformly
charged sphere of radius R. The volume charge density is equal to p}(Fig. 98).

7272 *

d

- ¢

Fig, 98, A cylindrical cavity in Fig. 99. A conducting plate in
a cylinder or a spherical cavity a parallel-plate capacitor
in a sphere

4 .
2.2/Find the field strength in an infinite cylindrical cavity whose axis is parallel to the
N\ axis fni a ver};? long9 8uniformly charged circular cylinder. The volume charge density is
- ggual to p (Fig. 98). . ; .
2.3./The distane:e between the plates of a parallel-plate capacitor is equal to d. A metallic
strip of thickness §, with its surface parallel to the capacitor plates, is brought into
the space between the plates whose potentials are @, and @, respectively (Fig..99).
Find the potential of the metallic strip.
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'24, Find the force acting on a charge g placed at a distance d from the centre of an un-
-~/ charged isolated conducting sphere of radius r, (ry << d).
?.5. Find the force acting on a charge ¢ placed in a metallic sphere at a distance r from

its centre. The radius of the sphere is equal to a.

. A point charge ¢ is placed between two concentric conducting spheres of radii r; and
rg (r; << 1g) at a distance d from their common centre (r; << d << ry). Find the charges
induced on the spheres.

.7. A point charge g is placed at a distance d from the centre of a grounded sphere. Find

the ratio f of the charge induced on the part of the sphere seen from the point of location
of the charge ¢ to the charge on the part which cannot be seen from this point. The ra-
dius of the sphere is equal to a, d > a.

}c& Two capacitors having capacitances C, and C% and charges ¢, and ¢, (g; and g, are the

absolute values of the charge on the plates of the first and second capacitors) are con-
nected in parallel. Calculate the change in the energy of the capacitors and explain
the reasons behind the result.

%9. The permittivity of the medium between the plates of a parallel-plate capacitor (sur-

face area of plates is equal to S) changes uniformly from €, to &,. The distance between

A cylindrical capacitor with plates of radii r, and r, is immersed vertically into a

2\7( the plates is equal to d. Find the capacitance of the capacitor.

dielectric liquid having permittivity e. The bottom of the capacitor is in the liquid
while the top is in the air whose permittivit¥ is taken as €,. The mass density of the
liquid is p. Find the height & to which the liquid rises between the capacitor plates
if the potential difference between them is U.

« A conducting sphere of density p, floats in a liquid of density p, (ps > 2p,) and per-
mittivity e. The sphere is submerged in the liquid to less than half 1ts diameter. What
charge must be imparted to the sphere so that it is half submerged into the liquid?
The radius of the sphere is equal to a.

difference between the plates are respectively equal to d and U. A square strip with

i?z. A parallel-plate capacitor hassquare plates with side a. The distance and the potential

side a and thickness A is partially introduced into the space between the plates. The
surfaces and edges of the strip are parallel to the surfaces and edges of the plates, and
its permittivity is equal to e. Find the force with which the strip is drawn into the space
between the capacitor plates.

2.13. A uniformly charged verylong filament is placed at a distance d from the axis of an in-

finite conducting cylinder of radius r, the cylinder axis being parallel to the filament.
The linear charge density of the filament is tv. Find the force acting on the length !
of the filament (d > r).

2.14. Using the method of images, find the force acting on length I of each of two infinite

conducting cylinders the distance between whose parallel axes is equal to d. The radii
of the cylinders are equal to r; and r,, and one of the cylinders is charged and has a li-
near charge density 7.

2.15. Find the dipele moment of a charge distributed uniformly over the surface of a sphere

of radius a. One hemisphere has a charge Q while the charge on the other is equal to —Q.

2.16;,A point dipole with a moment p lies at a distance d from the centre of a grounded con-

~

ducting sphere of radius . Find the induced dipole moment of the sphere.

2.47. A constant potential difference U¥ is ap%liied to the square plates of a parallel-plate
o

air capacitor with side /. Find the force which must be applied in order to displace one
of the plates parallel to itself in a direction perpendicular to any side of the square so

There is a conducting sphere of radius r, and a concentric spherical conducting layer

% that the distance d between the plates remains unchanged.

whose inner surface has a radius r, (r; > ry), while its outer surface has a radius equal
to rg (r3 > ry). The space between the spheres of radii r, and ry is empty. The stphere and
the alayer carry charges equal to Q; and Q, respectively but, unlike the case of a capac-
itor, Q; and —Q, are not equal in this case. Find the energy of this system of charges.

£.19. Find the electric field strength at the centre of a right circular cylinder of length
7/20 and radius €, whose polarization P is uniform and parallel to the axis.

The polarization P in Problem 2.19 is perpendicular to the axis of the cylinder. Find
the field strength at the centre of the cylinder.
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2.21. An infinite conducting cylinder of circular cross section of radius a« and a conducting
plane at a distance d from the axis of the cylinder form a capacitor. Find the capacitanee
of such a capacitor of length I.

2,22, Using the solution of problem 2.21, find the force exerted by an earthed infinite plane
on a segment of length ! of a rectilinear charged filament parallel to the plane. The li-
near charge density of the filament is equal to 7.

2.23. A molecule is represented by a charge —2 | g | at the origin and two charges | ¢ | at
the points characterized by the radius vectorsry and r,, where | r; | = | ry | =_. The
angle between r, and r; is denoted by®. Find the effective charge | ¢ loy for a water
molecule for which I = 0.958 X 10-1° m, 6 = 105° and p = 6.14 X 10-%° C.m.

2.24. A point charge ¢ is placed between two infinite earthed parallel conducting planes sep-
arated by a distance d. The distance between the point charﬁe and one of the plates
is equal to z. Finding the images of the charge g, calculate the force acting on it.

Answers
24. E= A g*r3
A. E=pr/(3e). 2.2. E=pr/(28). 23. 9=q1— g5 @(—P). 24 F=— 75X
242 —r2 _ q%ar _ ri(ra—d)  rld—ry
- 25 P 26 o= — TR g, g= — =T,
27, f=V @F0/@—a). 28. AWi=(Cagy— C143)%/[2C:Cs (C1+Ca)]. 2.9. C= % v
G = (—E)U? 1 - B2 (Pa—2py)
In (eo/e,) * 240. R (rg—rd1n(ry/r)) pg - 201, C=dn(e+eo) ‘/ 3 (e—ey)
.__E._ (E—EO)A i - _ _T’dl
212, F= 3 ——(d—A)e+Ae., 3 U2, 243, f= —12dl/[2ne, (d2—rD)]. 2.14. f= 2:;—a.x

(d2—(ry+r9) 22 [@3— (ry—rg)?1 V2. 245, p=Qa. 2.46. pyog=pe¥/d®. 247, F=-—
ek g, 248 w= [(l—i+%)(2{+20—&$ﬂ]o 2.9. E= —

2 d 8ne, T rg
PERWT [1/(2e0)] 1P ' 2ne,l
1/eg) PA—YV 42?4 15). 2.20. E=— =0 221, C= =
(1/e0) P (4 —1/V 4a1-15) Vg PYEERTg T
__ 2meyl _ (W _(ow\ _ 1 .9 _ U}
fora dwe have €~ oy 222 F= ( ~ )Q—(W)o— o Ut 5o =~ X
ney L Uac? T2

(In 2d/a)% = 4ne,d = Griegd ® 2.23. p=lQ|gﬂ(’1+r3)v p=21q|eﬂlc°5(e/2)’ IQIQﬂ=

o
«40—-20 -— = _—.q2 -i. 1 — 1
52611070 C=0.328]el. 224 F= — {2 + [ i — = ]}
n=1




CHAPTER 3

Dielectrics

The electric dipole moment of atoms and molecules is the basic
physical factor defermining the nature of interaction between a
dielectric and an electric field.

The principal mechanisms of polarization are associated with the ap-
pearance of induced dipole moments of atoms and molecules or with
the spatial reorientation and rearrangement of available dipole
moments.

lonic lattice polarization also takes place.

Sec. 20. Local Field

The reasons behind the difference between the local
and external fields are discussed, and the local field
strength is calculated for simplest conditions.

The difference between a local field and an external field. As a result of polariz-
ation, a dielectric placed in an external field becomes a source of an electric
field. Consequently, the field inside a dielectric, which acts on dielectric molecules,
differs from the external field. This field is called local field. The difference be-
tween the local field and the external field is especially significant for dielectrics
with a high density, viz. liquids and solids.

Calculation of local field strength. Let us isolate in the volume of a dielectric
a physically small sphere at whose centre the local field strength is being cal-
culated (Fig. 100). The field appearing at the centre of the sphere as a result of
polarization of the dielectric consists of the field E; generated by the part of the
dielectric located outside the volume bounded by the sphere and the field E,
cr(}e}ated»by, the part of the dielectric contained in the volume bounded by the
sphere.

While calculating E,, we can assume that the dielectric is a continuum because
the distance from the centre of the sphere at which the local field strength is
being calculated to the sources of the field is comparatively large. Since the
volume of the sphere is physically small, we can assume that the medium near
its outer surface is polarized uniformly. In the volume bounded by the sphere,
we should take into account the atomic structure of the dielectric, i.e. calculate
the contribution of the dipole moment of each individual atom to the local field
strength and assume that the sphere is the interface between the surrounding
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medium and the vacuum in the volume bound-
ed by it.

At the centre of the sphere, the field is created
by bound charges at its surface as on the interface
between two media with different permittivities.

The surface density of bound charges is given by
[see (17.21)]

Op = (Pzn - Pln) = —Pyn, (20'1)

where P,, is the normal component of polariza-
tion from the outer side of the surface of the Fig. 100. To the calculation of
sphere and P,, = 0 from the inner side. In this local field

formula, the outward normal of the sphere is posi-

tive. Directing the Z-axis along the vector P of constant polarization, we obtain

oy, = —P;, = —P cos 6. (20.2)
The surface charge contained within a solid angle dQ is given by
dQ = o2 dQ, (20.3)

where r is the radius of the sphere. At the centre of the sphere this charge creates
a field

1 d
dE, = — g7 <L cos 6 (20.4)

in the direction of the Z-axis.

It can be seen that only the component of the field along the Z-axis differs
from zero. Combining (20.4) and (20.3), we obtain

E,= E,_—— 3 cos?0dQ = E,
T 1
,meo da § c0s*6 sin 0 d=—5— P (20.5)
or, in vector form,
| 1
E,=——P. (20.6)

This formula is valid only for an infinite homogeneous dielectric. If a dielectric
is finite, the field in it generally depends on its size and shape. In homogeneous
dielectrics, volume polarization charges are equal to zero since py, = —divP =
—uxgg div E = 0. Therefore, the difference between the field of a finite di-
electric and the field E; of an infinite dielectric is due to the field created by
bound charges appearing on the outer surface of the body. This field is some-
times called a depolarization field since it reduces the field strength.
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The field E, depends on the distribution of dipole moments of molecules
inside the small isolated sphere and cannot be represented by any universal
formula. Let us calculate the field for the case when molecules are located at
the sites of a cubic crystal lattice and all dipole moments are oriented along the
same direction in space. This condition is satisfied for induced dipole moments.
We must find the field E, at the point of location of a molecule, i.e. at a lattice
site. We fix the origin of coordinates at this point and direct the X-, Y-, and
Z-axes along the edges of the lattice. Let us use formula (16.85) which has the
following form for the z-component:

2 2
___Px —ri+ 3z} Py 3zyy; Pz 323,
EZx— 4nteg rg + 4mie, 2 r; + 4ie, - rg . (20.7)

The summation is carried out over all molecules in a small volume inside the
sphere. Similar formulas can also be written for the y- and z-components of
the field.

In formula (20.7), we can first calculate the sum over all molecules contained
in a small spherical layer of radius r and then calculate the sum over the spheri-
cal layers corresponding to different r’s. In view of cubic symmetry, for the
first summation we have

SaA=Su=Ns=53r
i i i

i

(20.8)
Z iy = 2 Yiz;= 2 5z =0.
i i i
Consequently, expression (20.7) assumes the form
E,x =0. (20.9)

Similarly, we can prove that E,, = E,; = 0. Hence, we finally obtain

E, =0. (20.10)
Thus, the strength of the local field acting on a molecule inside a dielectric is
E* = E + P/(3e,). (20.11)

This formula must be treated only as a first approzimation, since a real dielectric
differs from the model used for obtaining this formula. In particular, electric
fields of molecules may considerably differ from the fields of dipoles, the crystal
lattice of a dielectric may have a different symmetry, dipole moments of the
molecules may have different directions, etc.

The local field acting on the molecules of a dielectric differs from the external
field because the dielectric placed in an external field itself becomes a source of
an additional field.
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Molecular dielectric susceptibility does not depend noficeably on the density of the
material or on temperature.

The permittivity of a nonpolar dieleciric may depend on temperature only implicitly,
through the temperature dependence of molecular concentration.

The local field acting on the molecules of a dielectric differs from the external field since
the dielectric itself in the external field becomes a source of an addifional field.

Which basic factors are responsible for the difference in dielectric properties of rarefied
and dense gases? What are these differences?

What physical factors determine the independence of the permittivity of nonpolar dielectrics
from temperature over a sufficiently wide range?

Sec. 21. Nonpolar Dielectrics

Basic properties of nonpolar dielectrics are described.

Molecular dielectric susceptibility. It follows from the mechanism of creation
of the induced dipole moment of a molecule (see Sec. 17) that its direction coin-
cides with the direction of the electric field. To a first approximation, the dipole
moment of a molecule can be considered proportional to the field strength:

p = ag.E*, (21.1)

where o characterizes the “polarizability” of a molecule (or atom) and is called
the molecular (or atomic) dielectric susceptibility. It is determined by the
intrinsic properties of the molecule. In view of strong intrinsic electric fields
in the molecule, the molecular dielectric susceptibility is small and does not
noticeably depend on the density of the substance and temperature. The magni-
tude of o can be estimated by proceeding from the following model of molecular
polarization. A molecule is represented in the form of a conducting sphere whose
radius is approximately equal to the molecular radius (@ = 10~ m). In a
constant field E*, this sphere acquires a dipole moment [see (16.82)] given by

p = 4neya’E*. (21.2)

Comparing (21.2) with (21.1), we obtain the following expression for the
dielectric susceptibility:

o = 4mnad. (21.3)

If for molecular radii we use the values, obtained in the kinetic theory, formula

(21.3) gives aslightly exaggerated but still correct (in order of magnitude) value of .

Hence, this model of molecular polarization is quite suitable for order-of-magni-

tude estimates.
Using (21.1), we find the polarization

P=—1- ) aecE® = agB* <0 3 1 =ae NE*. (21.4)
AV AV
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Here
N 1=AVN, (21.5)
AV

where NV is the molecular concentration.
Rarefied gases. In this case, the local field strength E* differs but slightly
from the external field strength E. Hence [see (21.4)], we have

P = ag,NE. (21.6)
Comparing (21.6) and (17.11), we conclude that the dielectric susceptibility is
x = alN. 21.7)

Taking (17.31) into account, the relative permittivity e, = &e/e, can then be
presented in the form

e, =1 + aN. (21.8)

The value of ¢, differs from unity by the value of a/N, which is very small
for gases. For example, the molecular concentration of air under normal con-
ditions is N = 2.6 X 10% m-3. Considering, in accordance with (21.3), that
a ~ 1072 m® for molecules, we find

aN =~ 10-3, (21.9)

The value of &, and hence a/V, increases with molecular size, remaining small
in order of magnitude.

The value of €, may depend on temperature only implicitly through the tem-
perature dependence of N. We denote by N, pp and M the Avogadro constant,
gas density and molar mass respectively and write the obvious equality

N = Nppn/M. (21.10)
Using this relation, we can write (21.8) in the form
(e, — 1) M/pp = aN 4. (21.11)

Consequently, (e, — 1)/pm is a constant quantity independent of temperature
and pressure only if the pressure is sufficiently low. As the pressure rises, the den-
sity increases, and we must take into account the difference between local and
external fields.

Dense gases. In this case, we must use expression (20.11) in formula (21.4) for E*:

whence
ag,N

Substituting (21.13) into (17.29), we obtain

D=eE=eB+ 24— E, (21.14)
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whence

3(ep—1)
e_rr_l_-z-——aN. (21.15)

This expression is called the Clausius-Mosotti
formula. It can be used to represent (21.10) in
the form

e, —1) M _
—_3r+2 om _aNA. (21.16)

The left-hand side of this expression does not de-
pend on temperature and pressure within the limits Fig. 101. To the calculation of
in which the molecular susceptibility remains con- a}'°}?‘3 dielectric }susceptibility
stant. For gases, such pressures can be high (of - ydrogen
the order of 100 MPa). In liquids and solids having
high densities, the value of & depends on pressure. Formula (21.16) was experi-
mentally verified for a wide range of pressure. For example, for carbon dioxide,
which is a nonpolar gas, the validity of the Clausius-Mosotti relation (21.16)
was checked to a high degree of accuracy up to pressures of the order of 100 MPa
at 100°C. Over the entire pressure range, the relative deviation of the left-hand
side from the constant value does not exceed a few hundredths. In this case up
to pressures of about 20 MPa, a small increase is observed in the value of the
left-hand side of (21.16), while above this value, the left-hand side of this expres-
sion slightly decreases. The relative permittivity &, here varies considerably
(by a factor of 1.5) in the pressure range from 1 to 100 MPa.

Example 21.1. Estimate the atomic dielectric susceptibility o of a hydrogen atom. The electric
field is directed normally to the plane in which the electron moves (Fig. 101).
We write the equilibrium condition for an electron moving in an external field:

e? e? z
eF = 4:1,30 (zﬂ.l_ ;-2) 4,130 (zg+rg)a/3 . (21. .1.7)

For r <« r, we obtain z/(z® 4 r2)32 = z/r®, and hence [see (21.17)]]
ex = 4neyr*E = p,
o = 4nr® ~ 1.57.10-30 m3,
which gives the correct order of the dielectric susceptibility of a hydrogen atom.

cos f=

whence

Sec. 22. Polar Dielectrics

Basic properties of polar dielectrics are described.

Temperature dependence of polarization. The constant dipole moment for most
molecules is of the order of 10-2%-10-%0 C.m. For example, it is equal to 0.36 X
10-%0 C.m for CO, 5.3 x 10-%¢ C.m for SO,, and 3.5 x 10-2* C.m for KCI.

12—-0290
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The dipole moments of many molecules have been
measured and compiled in tabular form.

The potential energy corresponding to a dipole
with a dipole moment p in an electric field E
is given by

W = —p-E. (22.1)

This quantity attains its minimum value when
the direction of the dipole orientation coincides
with the direction of the electri¢ field. Since the
state of a system with minimum energy is stable,
Fig. 102. Dipole orientation in  the dipole moments of polar molecules tend to orient
a spherical coordinate system tp,omcelves along the electric field vector. The re-

quired rotation is realized by the couple acting
on the dipole (see Fig. 91). Thermal motion, however, disturbs the ordering
action of the electric field. As a result, a certain equilibrium sets in.

Let us direct the Z-axis along the electric field E (Fig. 102). The potential
energy (22.1) of molecules depends on the angle between the directions of their
dipole moment and the field vector:

W = —pE cos 6 = —p,E (22.2)

and hence the angular distribution of dipole moments is characterized in this
case by the Boltzmann distribution The number dn of molecules whose dipole
moments are contained within the solid angle dQ is given by

pE cos 6 pE cos 0
dn=4de * dQ=4Ade *T dasin6de. (22.3)

Then the average value of the Z-component of the dipole moments is

2% Hg
Ap { da § ePc%59cos05in0 do
0 0

pzdn
(pg) = SS ;n = — , (22.4)
Af da { eBo%® sinpdo
o 0
where p, = p cos ® and the notation
B = pE/(kT) (22.5)

has been introduced.

Fi4r)st of all, we must calculate the internal integral in the denominator of
(22.4):

I=\ eBcosbgin 6 do, (32.6)

(LSS |
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since the internal integral in the numeracor 1s given by
n

{ 8030 cos 0 5in 6 40 = 21/5. (22.7)
0

Integral (22.6) can easily be evaluated:

T
I={epeososingdo— —%eﬁ°°selg‘=%sinhﬁ, (22.8)
0
whence
%:-ﬁ— (eoshﬂ—%sinhﬂ) . (22.9)
Thus, formula (22.4) combined with (22.8) and (22.9) assumes the form
(p2) = pL (B), (22.10)

where L () = coth f — 1/p is the Langevin funection (Fig. 103).
For not very strong fields, when pE < kT, i.e. p <« 1, we expand the hyper-
bolic cotangent into the series

cothp =1/p 4 B/3 — B3/45 + ... (22.11)
and confine ourselves to the term linear in § in the expression for L (8):
L (B) = p/3. (22.12)
This gives
(p,) = p*E/(3kT). (22.13)

Saturation field. As the field strength increases, the dipole moments are oriented
in the direction of the field more and more intensely, and when pE > kT, i.e.
for p > 1, we can assume that all dipole moments are parallel to each other
and are directed along the field. Consequently,

(p:) =P (22.14)

This relation can be obtained from (22.10) if we take into account that, for
B > 1, the function L (B) is close to unity:

L(p — o00) >1. (22.15)

Mazimum posszble polarigation is attained when condition (22.14) is satisfied,
and any further increase in the field does not lead to
a higher polarization. The field at which the maxi-
mum possible polarization isreached is called the
saturation field. Considering that the order of
magnitude of dipole moments is equal to 10-2°
C.m, we conclude that for 7 = 300 K the satu- :
ration field strength is B

Fig. 103. The L in func-
E, ~ kT/p & 4.2.10° V/m.  (22.16) tiea ¢ hangevin Tne

12«
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Hence it follows that the condition pE « kT under which formula (22.13)
is valid is fulfilled up to field strengths of the order of million volts per metre.
Therefore, in most practically important cases, we can use formula (22.13).
Rarefied gases. In this case, the local field strength can be assumed to be equal
to the external field strength and the polarization [see (22.13)] can be represented
in the form

P = Np?E/(3kT). (22.17)

Further, in complete analogy with the calculations carried out by formulas
(21.6)-(21.8), we find that the relative permittivity is

e, =1 + Np*(3kTe,). (22.18)

In addition to polarization due to a reorientation of constant dipole moments,
polar dielectrics also possess polarization due to induced dipole moments, de-
scribed by formula (21.8). Hence, taking into account both polarization mech-
anisms, we obtain the following expression for ¢, of polar gaseous dielectrics
under a moderate pressure:

e, =1 + N [a + p(3kTey)l. (22.19)

It can be seen from (21.3) that ¢ = 10-%° m3. On the other hand, at room tem-

perature kT ~ 4 X 10-?21], and hence for p ~ 10-2C-m p%/ (3kTe,) =~ 10727 m3,
i.e. the contribution from induced dipole moments to polarization amounts to about
1/100 of the value due to constant dipole moments and hence can be ignored. How-
ever, it is possible at present to make precise measurements which allow us to distin-
guish between the contributions to polarization from constant and induced dipole
moments. For this purpose, €, is measured over a wide range of temperature and
formula (22.19) is employed. The &, vs. 1/T dependence is represented on the
graph by a straight line. Its intersection with the axis of ordinates for 1/7 = 0
gives ¢, =1 + aN. Hence we can calculate a = (e, — 1)/N. After this, we
can use the results of measurement for other values of 1/T and calculate the
constant dipole moment with the help of formula (22.19) since all other quantities
in this equation are known.
Quantum interpretation of polarization of polar gaseous dielectrics. In quantum
theory, as well as in the classical one, the polarization of polar dielectrics is
explained by the predominant orientation of constant magnetic moments of
molecules in the direction of the electric field. The permittivity of dielectrics
is described by formula (22.19). However, there is an essential difference in the
interpretations of the reorientation of constant dipole moments according to classical
and quantum theories.

In the quantum theory, it is necessary to take into account the rotation of
molecules. The angular momenta of rotating molecules are oriented in various
directions in space and their projections onto any particular direction form a
discrete set of values, the mean value of the projection being equal to zero.
The electric dipole moment is rigidly connected with a molecule and changes its
spatial orientation as a result of molecular rotation. '
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The dipole moment of a molecule can be decomposed into two components:

along the axis of rotation and normal to it. As a result of rotation, the latter
component changes its spatial orientation in the plane perpendicular to the axis
of rotation of the molecule. In the coordinate system in which this molecule
rotates, the mean value of this component is equal to zero. The mean value of
the dipole moment component along the axis of molecular rotation is also equal
to zero due to the fact that the moment of inertia of the molecule is quantized,
and the mean value of its projection onto any direction is equal to zero regardless
of whether or not the electric field is present. Consequently, molecules with
nonzero angular momentum do not contribute to polarization. Polarization is
created only by nonrotating molecules with zero angular momentum as a result of
reorientation of their constant electric dipole moments. The projections of dipole
moments onto the direction of the electric field form a discrete set of values with
a nonzero mean, which explains the appearance of the polarization.
Dense gases. In this case, we must bear in mind the difference between the local
field and the external field and different orientations of dipole moments, which
depends on the interaction between dipoles. This considerably complicates
the calculations.

Assuming that the local field is much weaker than the saturation field, it is
expedient to write the following formula for polarization instead of (22.17):

—p
P= T E*, (22.20)

However, the local field E* in it cannot be expressed in terms of the external
field through formula (20.11). This can be verified by the following considera-
tions.

Suppose that we place a dipole p at the centre of a spherical cavity of radius a,
formed in a dense dielectric having the relative permittivity e,. The field of
this dipole polarizes the medium outside the sphere. Thus, an additional field

2(e,—1) p

Eaaa= 2e,+1 4ne,d® (22.21)
appears in the spherical cavity, i.e. there appears a constant field coinciding
in direction with the dipole moment. This additional field creates an additional
induced dipole moment which coincides in direction with the constant dipole mo-
ment, and hence cannot reorient it. Consequently, polarization cannot be inter-
preted as a reorientation of dipole moments in the local field.

Considering (20.11), we can give formula (22.20) the form

__Np? P
P=gf [E+5-] (22.22)
whence
P=__NPUGKD) g (22.23)

1— Np?/(9kTeg)

When T, = Np?/(9ke,), the denominator on the right-hand side vanishes.
For T > T,, the polarization P has a finite value, while for T = T, it tends to
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infinity. This means that for T <C T, the corresponding quantity must possess
a spontaneous polarization. For example, analyzing formula (22.23) we can
expect that water vapour should be spontaneously polarized, which is obviously
wrong. Similar erroneous results are obtained for other materials also. Con-
sequently, different models are required for the description of dense gases with polar
molecules and polar liquids.

Polar liquids. Onsager proposed a model for polar liquids which is in better
agreement with experiment although it gives rather approximate numerical
results. In this model, each dipole is assumed to be at the centre of a real spheri-
cal cavity whose volume is equal to the mean volume per molecule. The model
takes into account the dipole orientation by long-range forces and the appear-
ance of an additional dipole moment under the effect of the field (22.12). As a
result, the following relation was obtained:

(er—eind) (28 +&r1nd) ___ Np?
; srrzer lndr"l‘z); = 9kTe, (22.24)

where ¢, is the relative permittivity, and e, ;5q is the relative permittivity
due to induced dipole moments. For water, €, ;4 = 4.9, p = 2.16 X 1072 C.m,
and formula (22.24) gives ¢, = 105 at T = 273 K. The experimental value of
e, = 88. We can hardly expect a better agreement with experiment.

A better quantitative agreement with experimental results was obtained for
highly dilute solutions of polar dielectrics in a nonpolar solvent. In this case,
polar molecules of a dissolved substance are located at sufficiently large distances
from each other, and the interaction between them can be ignored. Using the
Onsager model, it is possible to take into account the interaction between polar
molecules and a nonpolar solvent. This leads to the theory which is fairly in
agreement with experiment.

Ionic crystals. These materials can be represented as combinations of two sub-
lattices with positive and negative ions. Under the action of an external electric
field, these lattices are displaced relative to each other, as a result of which
a considerable polarization appears. This gives comparatively high values of
the relative permittivity ¢,. For example, ¢, = 6 for common salt, 5 for KCI, etc.

Under usual conditions, the saturation fields (viz. the fields at which the polarization of
a polar dielectric atfains the maximum possible value) amount to hundreds of millions volts
per mefre.

The confribution from induced dipole moments to the polarization is about one hundredth
of that from permanent dipole moments and in most cases can be ignored.

Taking intfo account the local field, the mechanism of polarization of dense polar gases
and liquids cannot be interpreted as the reorientation of dipole moments in this field.

Why do the dipole moments of polar molecule tend to align with the electric field?
Under what conditions does the polarization of polar dielectrics attain saturation?

To what distances between elementary charges do the permanent dipole moments of
molecules correspond?

Do the modern experimental techniques allow us to separate the contributions of perma-
ne.nf.all'ud induced dipole moments to the polarization? Explain how this can be done in
principle.

What physical factors make it impossible to treat the polarization of dense polar dielec-
trics as the result of reorientation of dipole moments in the local field?
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Sec. 23. Ferroelectrics

The physical properties of ferroeleetrics and the nature
of ferroelectricity are considered.

Definition. Ferroelectrics are polar dielectrics which are spontaneously polarized
in a certain temperature interval. In other words, they possess polarization
in the absence of electric field. As a result of phase transition, a ferroelectric is
transformed into a polar dielectric at the boundaries of this temperature inter-
wval. ’

Relative permittivity of ferroelectrics is extremely high (e, ~ 10%) and
depends on the field strength, although it is not a single-valued function of the field.
The value of &, depends on the variation of the field strength before a given
value has been attained.

The term “ferroelectrics” is explained by a formal analogy existing between
their properties and the properties of ferromagnetics. Examples of ferroelectrics
are Rochelle salt NaKC,H,04-4H,0 and barium titanate BaTiO,.

Lot

Uy

&§E v

U

Fig. 104. Schematic diagram of Fig. 105. Hysteresis loop
the circuit for eliminating the

hysteresis loop: tan ¢ = efe, =

D GQE

Hysteresis loop. Since ¢ depends on E, D = eE depends nonlinearly on E.
Besides, since ¢ is determined by the past history of variation of E, D depends
ambiguously on E. Let us place a ferroelectric between the plates of a capacitor
and measure & depending on the field strength £ which varies according to a
harmonic law.

The schematic diagram of the circuit is shown in Fig. 104. The outer ter-
minals of two series-connected parallel-plate capacitors are connected to a
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generator which creates a harmonically varying potential difference across the
terminals. The potential difference is distributed between the capacitor C con-
taining a ferroelectric and the capacitor C, with no material between its plates.
Assuming that the areas of all capacitor plates are equal and denoting by d the
distance between the plates, we have

E = ole, E, = aley, (23.1)
whence
U =Ed=oadle, U, =Ed=qadle, (23.2)
and
tan ¢ = U,/U = e/ey = eE/(gyE). (23.3)

Therefore, if the voltage U is applied to the horizontal sweep and U, to the
vertical sweep of an oscillograph, the variation of E will be registered on the
screen by a curve the abscissa of whose points is equal to &,E on a certain scale,
and the ordinate is equal to e£ = D on the same scale. This curve is called the
hysteresis loop (Fig. 105). The arrows on the curve indicate the direction of
motion of a point along the curve upon the change in the field strength. The
segment OA characterizes the residual polarization, i.e. the polarization of the
sample for zero external field. The segment OB characterizes the field vector
directed against the polarization, at which the sample is completely depolar-
ized, i.e. itsresidual polarization vanishes. The larger the magnitude of | O4 |,
the higher the residual polarization of a ferroelectric. The larger the value of
| OB |, the better the residual polarization is retained by the ferroelectric.
Curie point. As the temperature of a ferroelectric exceeds a certain value Tg,
typical of each material, its ferroelectric properties vanish and it becomes an ordi-
nary polar dielectric. The point marking the transition between ferroelectric
phase and polar electric phase is called the Curie point, and the temperature T'¢
corresponding to it is known as the Curie temperature. In certain cases there are
two Curie points, i.e. ferroelectric properties vanish with decreasing temperature
also. For example, Rochelle salt has two Curie points corresponding to the
temperatures T'¢ yp = 24°C and t¢, = —18°C. The number of ferroelectrics
with two Curie points is comparatively small. Most ferroelectrics have only the
upper point which is simply called the Curie point.

At the Curie point, a dielectric goes over from the ferroelectric state to the state
of a polar dielectric. The permittivity in this process varies continuously from the
value corresponding to the ferroelectric phase to the value corresponding to the
phase of polar dielectric. The law of variation of dielectric susceptibility x in
the vicinity of the Curie point has the form

(23.4)

where A4 is a constant and T, is the Curie-Weiss temperature which is close to
the Curie temperature T¢ (in formula (23.4), TG is often used instedd of T,,
which does not introduce any significant error in the value of % for temperatures
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differing from 7Tg). The law expressed by formula (23.4) 1s called the Curie-
Weiss law.

If the lower Curie point also exists, the Curie-Weiss law in the vicinity of this:
point has the form

A
T —T *

As was mentioned above, crystals exhibit different dielectric properties in
different directions, and hence their dielectric susceptibility is characterized
by the dielectric susceptibility tensor x%;; instead of the scalar dielectric suscep-
tibility ». However, the temperature dependence of tensor components is the
same as in (23.4) and (23.5).

Molecular mechanism of spontaneous polarization. The theory of ferroelectricity
is beyond the scope of the course of general physics. For this reason, we shall
confine ourselves to only a qualitative description of processes on molecular
level. A very strong interaction between dipole moments of molecules may lead
to the appearance of a finite polarization P at as small a field strength E as desired
or, which is the same, the polarization P may exist in the absence of an
electric field. In other words, a very strong interaction between dipole moments
of molecules causes spontaneous polarization which is characterized by the same
orientation of separate dipole moments. Taking into account the fact that perma-
nent dipole moments are much larger than the induced ones [see (22.19)], we
conclude that spontaneous polarization is characterized by a very high polariza-
tion. Consequently, the corresponding susceptibility » and permittivity e
have considerably higher values than those observed for polar and nonpolar
dielectrics. The state of spontaneous polarization is precisely the ferroelectric state.
A transition from the ferroelectric phase to the polar dielectric phase is the
transition from the state of spontaneous polarization to the state when spon-
taneous polarization vanishes and the substance becomes an ordinary dielectric
whose molecules have permanent dipole moments. In other words, this is the
transition to the polar dielectric state. The physical factors responsible for this
transition ultimately weaken the interaction between the dipole moments of mole-
cules.

Dielectric domains. Spontaneous polarization is a source of strong electric
fields. Consequently, if a macroscopic volume of a ferroelectric is polarized
spontaneously in a certain direction, a very strong electric field appears arround
this volume, and a high energy is associated with it. Sucha state is disadvanta-
geous from the point of view of energy. Thesystem tends to go over to a state charac-
terized by a spontaneous polarization on the one hand and the minimum field energy
on the other. This can be realized as a result of division of the volume of the ferro-
electric into small regions each of which is spontaneously polarized in a certair
direction. These directions are different for different regions. The average polariza-
tion of the volume containing a sufficient number of small regions with differ-
ent direction of spontaneous polarization is equal to zero, and hence the strength
of the external electric field created by this volume is close to zero. Small regions
of spontaneous polarization are called dielectric domains, or simply domains. Thus,

=

(23.5)
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P a nonpolar ferroelectric is an aggregate of do-
mains with randomly oriented spontaneous po-
larizations.

2 Obviously, in order to decrease the eleetric
energy, it is expedient to decrease the volumes of

. domains. However, the process of decreasing the

domain size is hampered by another factor associat-

7 ed with the presence of the surface energy at the

boundary between neighbouring domains. Obviously,

the total surface area of domain boundaries in-
creasltles upon a decrease in the domain volume,
. . and hence the surface energy also increases. For

E;f‘f&?}&&ﬁi&ﬁs&?ﬁgﬁoiﬁ this reason, the volumes of domains may decrease

come ferroelectrics in strong only to certain limits corresponding to a decrease

fields in the total energy of the system. Upora further

decrease in the domain volume, the total energy
increases rather than decreases at the expense of the surface energy. This determines
the domain sizes. These sizes are of the order of thousands of intermolecular
distances. The existence of domains is proved in experiments involving direct
observations with the help of polarized light, as well as in the experiments on
etching of a ferroelectric, since different parts of a domain are destroyed at
different rates upon etching.

The variation of polarization of a ferroelectric in an external electric field

involves the reorientation of dipole moments of individual domains, a change
in the domain volumes, and displacement of domain boundaries. These processes
are thoroughly investigated since ferroelectrics nhave wide practical applica-
tions. More than one hundred pure ferroelectrics and a very large number of
ferroelectric solid solutions are known to date.
Antiferroelectrics. Under certain conditions, two spontaneous polarizations
with opposite orientations appear in a crystal. One of them appears due to the
orientation of dipole moments of molecules of one crystal sublattice in a certain
direction, while the other is due to the orientation of dipole moments of the
-other crystal sublattice in the opposite direction. Inthiscase, the total polariza-
tion of any physically small volume of such a crystal is equal to zero. Thus,
there are no domains with different orientations of spontaneous polarization,
although spontaneous polarization exists in any physically small volume. Such
materials are called antiferroelectrics. In their structure, they are similar to
antiferromagnetics.

In sufficiently weak fields, antiferroelectrics behave as ordinary dielectrics
with a linear dependence of polarization on the external field strength. In suf-
ficiently strong fields, the substance may go over to the ferroelectric phase with
all the consequences following from this. In particular, a hysteresis loop is ob-
served. The transition occurs in a strong electric field. For this reason, if we
replace an antiferroelectric by a ferroelectric in the circuit depicted in Fig. 104,
two hysteresis loops will be observed (Fig. 106) at large amplitudes of voltage
oscillations.
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The Curie-Weiss temperature does not coincide with the Curle femperature but Is close
fo if. In many cases, there Is no need fo distinguish between them.

Most ferroelectrics have only one {upper) Curle point. However, there are several ferro-
electrics with two Curle points,

Sec. 24. Piezoelectrics

The mechanisms of piezoelectric and inverse piezo-
electric effects are described. The relationship between
inverse piezoelectric effect and electrostriction is ana-
lyzed. Basic information on pyroelectric materials is
given.

Properties of piezoelectrics. There are many crystals whose surfaces acquire
electric charges upon deformation. Such crystals are called piezoelectries. Since
deformation itself cannotj alter the total charge of the crystal, the surface charges
induced as a resuls of deformation have opposite signs on different parts of the
surface. Piezoelectrics include quartz, tourmaline, Rochelle salt, and many
other materials.

Experience shows that charges appear on the surface of a piezoelectric as
a result of a uniform compression or extension in quite definite directions
called the polar axes of the piezoelectric. On opposite faces perpendicular to
a polar axis, charges of opposite signs appear under a uniform strain. The signs
of the charges are reversed together with the sign of the deformation. If, for
example, the compression along a polar axis has resulted in the appearance of
a positive charge on a given face, this face will acquire a negative charge as a
result of extension along the same axis. Piezoelectric effect is observed not
only due to a pure compression or extension along a polar axis, but also upon
any deformation of the crystal, which is accompanied by an extension or com-
pression along a polar axis.

Since charges of opposite sign appear on different faces perpendicular to a
polar axis, different directions along the polar azis are not equivalent. This means
that if a crystal is rotated through 180° around an axis perpendicular to the
polar axis, the polar axis will coincide with itself but the crystal will not.
Consequently, crystals having a centre of symmetry cannot be piezoelectrics.
The necessary condition for the piezoelectric effect to exist upon uniform de-
formation is the absence of a centre of symmetry in the crystal. Polar axes are
determined by the symmetry properties of the crystal lattice. Generally, a crystal
has several polar axes. :

Diezoelectric properties depend on temperature. If at a certain temperature the
crystal lattice is rearranged so that a centre of symmetry is formed, piezoelectric
properties of the crystal vanish at this temperature. For example, piezoelectric
properties in quartz change insignificantly up to the temperature of 200 °C.
Then, up to the temperature of 576°C, these properties slowly become less and
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less pronounced. At 576 °C, the crystal lattice in quartz is rearranged, as a result
of which piezoelectric properties disappear. As the temperature decreases, the
piezoelectric properties of quartz change in the reverse order.

Longitudinal and transverse piezoelectric effects. The appearance of charges
on the faces perpendicular to a polar axis upon uniform deformation along
this axis is called the longitudinal piezoelectric effect. However, the charges
can be induced on the same surfaces by compressing or extending the crystal
in a direction perpendicular to the polar axis only if extension or compression
along this axis is observed. This phenomenon is called the transverse piezoelectric
effect. 7t owes its existence to the relation between longitudinal and transverse
deformations of a rigid body.

Mechanism of piezoelectric effect. Only ionic crystals may possess piezoelectric
properties. Piezoelectric effect appears when the crystal sublattice of positive ions
is deformed by external forces not as the crystal sublattice of negative ions. As a re-
sult, the positive and negative ions are displaced relative to each other, which
leads to the polarization of the crystal and the appearance of surface charges.
To a first approximation, the polarization is directly proportional to the strain
which, in turn, is proportional to the force. Consequently, polarization is pro-
portional to the applied force. The potential difference appearing between op-
positely charged faces can be measured, and its value can be used to estimate
the strain and applied forces. This relation finds numerous practical applica-
tions. For example, piezoelectric transducers are used for measuring rapidly
varying pressures. Piezoelectric microphones are well known and piezoelectric
transducers are widely used in automation and telemetry.

Inverse piezoelectric effect. It consists in the deformation of a piezoelectric
introduced into an external electric field. This effect owes its existence to the
direct effect and to the law of conservation of energy. When a piezoelectric is
deformed, work is required to increase the energy of elastic deformation and
the energy of the electric field appearing as a result of the piezoelectric effect.
Consequently, in deforming a piezoelectric, it is necessary to overcome besides
the elastic force of the crystal an additional force, which hampers the defor-
mation and is a factor responsible for the inverse piezoelectric effect. In order
to compensate for this additional force, we should apply an external electric
field opposite to that appearing as a result of the piezoelectric effect. Con-
sequently, in order to deform the piezoelectric to a certain extent by an external
field, this field must be equal and opposite to the field that would appear under
the given deformation due to the direct piezoelectric effect. For example, if a
certain potential difference appears between the faces of a piezoelectric, which
are perpendicular to its polar axis, upon a deformation along this axis, a poten-
tial difference of the same magnitude but of opposite sign must be applied to
;hese faces in order to attain the same deformation without applying mechanical
orces.

The mechanism of the inverse piezoelectric effect is similar to that of the
direct effect: under the action of an external field, the crystal sublattices of
positive and negative ions are deformed differently, which causes a deformation
of the crystal.
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The inverse piezoelectric effect also has numerous practical applications. In

particular, quartz ultrasonic vibrators are widely used.
Pyroelectrics. A sublattice of positive ions in some piezoelectrics turns out
to be displaced relative to the sublattice of negative ions in the state of ther-
modynamic equilibrium. As a result, such crystals are polarized in the absence
of an external electric field. Thus, these crystals possess a spontaneous electric
polarization.

Usually, the presence of such a spontaneous polarization is masked by free
surface charges induced on the surface of the crystal from the surrounding me-
dium by electric field due to spontaneous polarization. This process occurs until
the electric field is completely neutralized, i.e. until the presence of spontaneous
polarization is totally masked. However, as the temperature of the sample
changes, for example, as a result of heating, the ionic sublattices become dis-
placed relative to one another, which causes a change in spontaneous polariza-
tion, and electric charges appear on the surface of the crystal. The appearance
of these charges is called the direct pyroelectric effect, and the corresponding
crystals are called pyroelectrics.

Every pyroelectric is a piezoelectric, but the converse is not true. This is due to
the fact that a pyroelectric has a preferred direction along which spontaneous
polarization takes place, while a piezoelectric generally does not have such
a direction,

The inverse pyroelectric effect is also known to exist: a variation of the electric
field in an adiabatically isolated pyroeleciric is accompanied by a change in
its temperature. The existence of the inverse effect can be proved on the basis
of a thermodynamic analysis of the process and be demonstrated experimentally.

When conditions are sultable for sponfaneous polarization, a dieleciric tends to go over
to such a state in which, on the one hand, spontaneous polarization exists and, on the
other, the field energy is minimum. Under these condifions, domains are formed.

The factors that weaken the Inferaction of dipole moments of molecules cause the disap-

pearance of sponfaneous polarization and the fransition from the ferroelectric state fo the
state of a polar dielectric.

What is the difference between the Curie and the Curie-Weiss temperature?

What is the mechanism behind the domain formation? Why cannot domains be very large?
What materials are called antiferroelectrics?

Problems

3.1. Calculate the relative permittivity of helium at p = 101.3 kPa, t = 15 °C, if its atomic
dielectric susceptibility & = 2.48 X 10-2° m3. The experimental value of e, is 1.000074.

3.2. Calculate the permittivity of ammonia at ¢ =27 °C, for & = 1.37 X 10-22m3, and the
dipole moment p = 0.46 X 10-2® C.m. .
Hint. Use formula %22.19).

3.3. The permanent dipole moment of water molecule is 6.2 X 10-%° C.m. Find the polar-
ization of saturated water vapour at ¢ = 100 °C under atmospheric pressure.

3.4, Air mainly consists of N, and O, molecules. Using the Clausius-Mosotti formula, cal-

culate their atomic susceptibilities assuming for simplicity that they are equal. Find
the radius of molecules.
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3.5. Taking the values of o and r, obtained in Problem 3.4 for nitrogen molecules, calculate

ithe cl}ange in the distance between the charges forming the dipole in a field of strength
MV/m.

Answers

3.4. &, =1.000067. 3.2. e,=1.0076. 3.3, 1.2X10~% C/m2. 3.40 az=1.1 X 10 0 m3, ry==
0.96 X 1010 m, 3.5, 0.87 X 10-16 m.



CHAPTER 4

Direct Current

A direct current cannot be generated by forces which are of purely
electrostatic origin. In order to create a direct current, we must have
nonelectrostatic forces called extraneous eleciromofive forces. The
basic law for direct current is Ohm's law in local forms.

Sec. 2.5. Electric Field in the Case of Direct Currents

The peculiarities of the electric field created by direct
currents and the role of surface and volume charges
are discussed. The part played by various factors in
ensuring the existence of direct current is analyzed.

The field in a conductor, In differential form, Ohm’'s law (see Sec. 16) can be
written as follows:

j = yE. ©25.1)

If a current is flowing, j = 0 and hence E % 0. Thus, an electric field exists
inside a current-carrying conductor. It should be recalled that in electrostatics,.
there is no field inside a conductor.

Generally speaking, the distribution of direct current density over the conductor
cross section is not uriform. In order to verify this, let us consider a segment of a
bent conductor with a circular cross section (we are considering a homogeneous.
conductor for which y = constant). We assume that the curved part of the
conductor is cut from an undeformed piece of a material, since a bent conductor
is under strain and, strictly speaking, the homogeneity condition is not satisfied
for it. This complicates the entire pattern of the distribution of eurrent density.

Near the surface of the conductor, the current density can be directed only
along the tangent to the surface. This means [see (25.1)] that the field E near
the surface of the conductor is tangential to the surface. Consequently, the
equipotential surfaces are perpendicular to this surface. If the part of the con-
ductor under consideration is bent, two close equipotential surfaces obviously
cannot be at a fixed distance from each other at all points inside the conductor.
For example, if the conductor is in the shape of a ring of circular cross section,
the distance between the equipotential surfaces at the inner part of the ring will
be smaller than at the outer part. Since the distance between the neighbouring
equipotential surfaces changes, the electric field strength at the corresponding
points on the equipotential surface also changes. Hence [see (25.1)], the density
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of the direct current in a uniform conductor generally varies over its cross
section. The equipotential surfaces in a very long right circular cylindrical
conductor are the planes perpendicular to the cylinder axis. Consequently,
the electric field strength and the current density are constant over the entire
cross section of such a homogeneous conductor.

We shall be considering conductors with a very small cross-sectional area,
called linear conductors. To a fairly high degree of accuracy, we can neglect
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Fig. 107. Field inside a conduc- Fig. 108. Demonstration of the
tor and the tangential compo- presence of the normal field com-
nent of the field near the outer ponent near the surface of a con-
surface of the conductor ductor

the variation in the current density over the cross section of such a conductor
and assume that it is constant in magnitude at each point of this cross section
and is directed along an element dl of the conductor. In this case, the current
flowing through the conductor will be equal to I = j AS, where AS is the
cross-sectional area of the conductor.

Thus, the question of the electric field and density of direct current in thick
conductors is quite complicated in general. The distribution of current density
over the cross section depends on several factors and, in particular, on the shape
of the conductor. More definite statements can be made for the field in the
vicinity of the surface of a conductor. Near the surface, the field as well as the
-current density are directed along the tangent to the surface. There are no
components of these quantities inside the conductor that are normal to the
surface. From the boundary condition (17.30), we can conclude that in the
vicinity of the surface outside the conductor there exists an electric field whose tan-
gential component E. is equal to the tangential component E. of the field inside
the conductor (see Fig. 107). However, it is impossible to draw any conclusions
about the normal component of the field outside the conductor from here.
‘The sources of a field. What creates an electric- field inside a conductor? In
other words, what is the source of this field? Since the existence of a direct
current in a circuit is ensured by a current source in the circuit, say, a galvanic
cell, it has obviously got something to do with the generation of the electric
field. However, this source cannot generate the field directly. Such a statement
is quite obvious for a very long conductor.and for parts of the circuits which are
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at a very large distance from the cell, say, several hundred kilometers. The
field which can be created by the charges across the terminals of this cell at
such a distance is infinitely small. Consequently, the cell cannot directly act
as the source of the electric field in a conductor.

The electric charge can be the only source of the electric field in a conductor.
Hence, the problem under consideration is reduced to determining the charges
which generate an electric field inside the conductor, as well as their location.
Field outside a conductor. In order to investigate this problem, we must con-
sider the field outside the conductor. We place a current-carrying conductor in
a plane tray with a thin layer of dielectric powder (Fig. 108). In this case, the
grains of the powder are aligned in chains along the lines of force of the electric
field (see Sec. 19). The figure shows two parts of the current-carrying conductor
and the lines of force between them.

It can be seen that field lines are not tangential to the surface of the conductor.
This means that outside the conductor near its surface, we have the tangential
component E, of the field as well as the normal component E,. Inside the con-
ductor, however, E, = 0. Hence, we can conclude on the basis of (17.26) that
the surface of the conductor must bear charges whose surface density is given by

o = g.E,. (25.2)

Here it is assumed that the conductor is in vacuum. If the conduetor is in
a dielectric medium, we must replace g, by €, the permittivity of the medium.
Surface charges. Thus, the surface of a conductor through which a direct current
is flowing bears electric charges. These charges are sources of the field which exists
in the conductor and ensures direct current in the conductor. The surface density
of the charge may have different signs in different parts of the conductor. For
example, the left and right parts of the conductor in Fig. 108 have positive and
negative surface charge density respectively.
Volume charges. Only surface charges exist in homogeneous conductors. In
nonhomogeneous conductors, where the electric conductivity varies from point to
point, charges appear in the bulk of the conductor also. This follows directly
from the law of charge conservation (5.24). In the stationary case under con-
sideration (9p/dt) = 0, and Eq. (5.24) assumes the form

divj = 0. (25.3)

In principle, the volume charge in matter can be free or bound. We are in-
terested in the total volume charge density p + py, which is responsible for
variation of the electric field along the conductor. Consequently [see (17.27)],
the total volume charge density is equal to

p + pp = div (e,E) = ¢, div (i/y), (25.4)
where E = j/y. Considering (25.3) and the expression
div (j/y) = (1/y) div § + j-grad (1/¥), (25.5)

we obtain from (25.4) .
p + pp = eei-grad (1/y). (25.6a)
13-029¢
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Directing the X-axis along the rectilinear part
of the conductor and assuming that its properties
vary only in this direction, we can write formu-
la (25.6a) in the form

p+pp =0 51D (25.6b)

¢(2)

If the conductivity decreases in the direction of
the current flow, the volume charge density is pos-
itive. This is due to the following reason. For a
constant cross-sectional area of the conductor, the
Fig. 109. To the calculation of current density along the conductor must be con-
:l;%poti;:;gmlf g‘ﬁ:;l?‘;":g:tw‘i*;n stant. If the conductivity decreases in the direc-
conduotor, | & eurrent-cartyiig - 4ion of the current, we must increase the field

strength to keep the current constant. It is this in-
crease in the field strength that is responsible for the positive volume charges.
The emergence of negative volume charges when the conductivity increases imn
the direction of the current flow can be explained in the same way.
Mechanism of generating direct currents. The current source is called the source
of extraneous electromotive forces (extraneous e.m.f.s; see Sec. 26). According
to the results of its action, such a source is a process or a device separating
positive charges from negative ones. After being separated, these charges move
towards the electrodes and act, in accordan- e with Coulomb’s law, on the charges
of the conductor in the vicinity of the electrodes. In turn, these charges act on
other charges, and so on. As a result of these collective interactions, charges are
distributed on the conductor surfaces in the circuit so that the corresponding
electric field appears in the conductor. Thus, the charges at the terminals of the
source of extraneous e.m.f.s do not directly create an appropriate electric field in
all conductors, but ensure a surface.charge distribution on the conductors such that
it generates the required electric field inside them. This is what creates a direct
current. Since the interaction between charges takes place through electro-
magnetic forces, the flow of a direct current after the circuit is closed is charac-
terized by the velocity of propagation of electromagnetic waves, which in turn
depends on the distribution of capacitances, inductances, and other characteris-
tics of the circuit. In the free space, the velocity of propagation of electro-
magnetic waves is equal to the velocity of light.
Change in potential along a current-carrying conductor. Since E =~ 0 in a con-
ductor carrying direct current, the potential varies along the conductor. In
other words, unlike in electrostatics, the potential is not constant at all points
of the conductor. However, the field inside the conductor is created by immobile
surface charges which do not vary with time. Consequently, as in electro-
statics, this field is a potential field, and the potential difference between two
points on the conductor (Fig. 109) is given, in accordance with formula (14.28), by

\ @
?@—9t)=—[E-d, (25.7)
(1)
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where the integral is calculated along any path joining points I and 2. For the
sake of convenience in calculations, it is expedient to choose for this path one
of the current lines joining a certain point in the cross section I to the corre-
sponding point in the cross section 2. Along such a line, E and dl are collinear
and hence E-.dl = Edl, the positive sign indicating that the current flows in
the direction from a higher to a lower potential. Besides, if the cross-sectional
area of the conductor is constant, £ = const along the conductor. Consequently

[see (25.7)],
(1) —o () =EL (25.8)

where [ is the length of the conductor between the cross sections I and 2. The
potential difference between the cross sections is called voltage and is denoted
by U, = ¢ (1) — @ (2). From the differential form of Ohm’s law (j = yE),

we get
E =jly =jSIKS) = I/(xS), (25.9)

where I is the current Taking this relation into account, we can write (25.8)
as follows:

Uys = I(3S) = IRy, (25.10)

where R,, = I/(yS) is the ohmic resistance of the part of the conductor between
1 and 2. This formula represents Ohm’s law for a subcircuit.

Sec. 26. Extraneous Electromotive Forces

The role of extraneous e.m.f.s in current-carrying
circuits is discussed and specific sources of extraneous
e.m.f.s are described.

The origin of extraneous e.m.f.s. An extraneous e.m.f. cannot be of electrostatic
origin for the simple reason that electrostatic field is a potential field. Con-
sequently, the work done by the field in a closed current-carrying loop is equal
to zero. Under such a condition, there can be no current, since it must perform
work in order to overcome the ohmic resistance of the conductors. The existence
of a direct current proves that extraneous electromotive forces are of a nonelectro-
static origin.

In particular, an extraneous e.m.f. can be mechanical or electrical, but not
electrostatic. An example of such an e.m.f. is the force acting on a charge in an
electric field resulting from Faraday’s law of electromagnetic induction (see
Chap. 8). -
Mechanical extraneous e.m.f. Figure 110 shows the circuit for the simplest
current source in which the extraneous e.m.f. is of mechanical origin. The space
between electrodes A and B is filled with a neutral medium having the same
number of positive and negative charges. A nonelectrostatic extraneous force

13+
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draws positive charges to electrode B and negative charges to electrode A. As a
result, electrode A acquires a negative charge, while electrode B becomes posi-
tively charged. In the outer circuit, a current flows from B to A and performs
a certain amount of work. The energy required for this purpose is provided by
extraneous forces which perform work to distribute the charges between elec-
trodes A and B and to bring these charges to the respective electrodes against
the forces of the electric field of strength E existing between the electrodes. The
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Fig. 110. Schematic diagram of Fig, 111. Schematic diagram of
extraneous e.m.f.s of mechani- the Wimshurst machine
cal origin

current between electrodes A and B inside the e.m.f. source closes the external
circuit. If the direction of current is determined relative to the electrodes, the current
in the external circuit flows from a positive to a negative electrode, while inside the
source, the current flows from a negative to a positive electrode.

A mechanical extraneous e.m.f. can be created with the help of the Wimshurst
machine shown in Fig. 111. Charges Q* and Q- generate an electrostatic field
in the space between them. Mutually insulated conducting plates C and D
move in a circle around an axis perpendicular to the plane of the figure
under the action of extranesus mechanical forces. In the position 7, the plates
are connected through a fixed conductor (solid line with arrows at the ends). As
a result of electrostatic induction, the plates C and D acquire negative and po-
sitive charges respectively in this position. Upon further rotation, their contact
with the conductor is broken and they become isolated from each other in the
position 2, carrying at the same time unlike charges. In the position 3, these
strips come in contact with the electrodes 4 and B, and impart their charge to
these electrodes. An electric current flows in the circuit BGA between the elect-
rodes. If we have one pair of rotating conductors CD, the current in the circuit
flows in pulses at the rate of two pulses per revolution. If, however, we take
quite a large number of pairs of plates'like C and D, so that they come in contact
with the electrodes 4 and B successively at negligibly small time intervals, a
nearly direct current will flow in the external circuit. Such a machine produces
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an extraneous e.m.f. of mechanical origin, generated by mechanical forces
that ensure the motion of the plates C and D in the circle.

The chain of mutual conversions of energy in this case looks like this. The
extraneous mechanical forces which move the plates C and D perform work
against the forces of an electrostatic field existing between the charges Q+ and
Q- and transfer the charge from the plates to the electrodes A and B. This
results in a change in the energy of the electric field, i.e. in conversion of me-
chanical energy to the electrical field energy. As the current flows in the circuit
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Fig. 112. Emergence of a poten- Fig. 113. Voltaic cell
tial difference between a solid
and a liquid

BGA, this energy is converted into Joule's heat and other forms of energy on
account of the work performed by the current in the external circuit.
Galvanic cells. Galvanic cells and accumulators are the most widely used
sources of direct current. Electric current was discovered in 1791 by L. Galvani
(1737-1798). However, Galvani could not provide a correct explanation for his
experimental results. This was done by A. Volta (1745-1827) in 1792. The direct
current cells which we shall be describing here were named after Galvani.
A potential difference (see Sec. 2) is created not only when two solids are
brought into contact, but also when solids come in contact with liquids. This
may be accompanied by chemical reactions. For example, if a zinc plate Zn
(Fig. 112) is immersed in a solution of H,SO,, it is dissolved in the acid solution.
However, not neutral zinc atoms but positive Zn** ions pass into the solution.
As a result, the solution becomes positively charged while the plate acquires
a negative charge. A potential difference is thus created between the plate and
the solution. At a certain potential of the metal with respect to the solution
(called the electrochemical potential), zinc ions no longer pass into solution.
This potential depends on the properties of the metal, liquid, and on the con-
centration of ions in the solution. Upon coming in contact with water, a metal
acquires a larger negative charge than in contact with a salt solution con-
taining ions of this metal. For a large concentration of ions in the solution, the
reverse process may take place, when positive ions start depositing on the plate
which thus gets positively charged. Thus, for different combinations of metals,



198 Ch. 4. Direct Current

solutions and different concentrations of ions in solutions, different electrochemical
potentials can appear.

Since the electrochemical potential depends on the concentration of metal
ions, it is customary to take a solution whose one litre contains a mole of metal
ions divided by the valency of the ions. The electrochemical potential of a
metal relative to such a solution is called absolute (normal) electrochemical
potential. For example, the absolute electrochemical potential for Zn in a
sulphuric acid solution is equal to —0.5 V, while for Cu this value is equal to
+0.6 V.

If two different metals are immersed in a solution, a potential difference
equal to the difference in their electrochemical potentials is created between

Fig. 114. Change in potential in a circuit containing a voltaic cell

them. The set of two metals in a solution is called a galvanic cell, and the potential
difference between the metals is called the electromotive force of the cell.

Voltaic cell. A voltaic cell consists of a zinc plate and a copper plate immersed
in a solution of sulphuric acid (Fig. 113). Taking into consideration the electro-
chemical potentials of zinc and copper, we conclude that the e.m.f. of a voltaic
cell is equal to [0.6—(—0.5)] V =1.1 V.

Range of action of extraneous e.m.f.s. It should not be thought that extraneous
e.m.f.s are generated in the space between the zinc and copper plates. In this
case, we have two extraneous e.m.f.s concentrated in the surface layers of contact
between the zinc and copper plates and the solution. The thickness of these layers
is of molecular size. There are no extraneous e.m.f.s in the remaining volume
of the solution. 1f the two plates are connected by a metallic conductor, a current
will flow through the latter from the copper plate, which is a positive electrode,
to the zinc plate which serves as a negative electrode. Inside the solution, the
current flows from the zinc plate to the copper plate. Thus, the lines of direct
current are closed, as expected.

Let us consider the variation of potential in a current-carrying circuit. The
potential drops across the ohmic resistance of the conductor in the direction of
the current. Figure 114 shows the change in potential over a closed circuit con-
taining a voltaic cell as the source of extraneous e.m.f. The points 4 and B
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respectively correspond to the surface layers of the copper and zinc plates in
contact with the solution over which extraneous electromotive forces act.The
difference between these forces constitutes the extraneous e.m.f. of the cell and
is equal to the total potential drop acrogs the ohmic resistance of the external
circuit in the section AGB and across the ohmic resistance of the electrolyte
in the section BDA. The ohmic resistance of the electrolyte is called the internal
resistance of the cell. We denote by &.yq» R and r the extraneous e.m.f. of the
cell, the resistance of the external circuit and the internal resistance of the cell
respectively. For the entire circuit, Ohm's law can be written in the form

€oxe = I (R +71). (26.1)

The extraneous e.m.f. of a cell is determined by the properties of the cell

and is independent of the current passing through the circuit. It can be seen
from formula (26.1) that the voltage droP in the external circuit (U = IR) is
not equal to the electromotive force of the cell and is always less. This is the
voltage between the terminals of the working cell when a current flows in the
circuit. As the current increases, the voltage in the external circuit decreases,
the decrease being the more significant, the higher the internal resistance of the
cell. While using a cell it is always desirable that the voltage in the external
circuit should depend on current, i.e. on the load as little as possible. Hence
the internal resistance is an important characteristic of a cell. The lower the
internal resistance, the better the quality of the source of extraneous e.m.f.,
other conditions being equal.
Law of conservation of energy. Let us analyze the law of conservation of energy
in the circuit with current shown in Fig. 114. We denote by A, the work done
by the electric field as a charge g moves in the closed circuit, and by 4, the
work done by the extraneous e.m.f.s. The electric field performs work in the
sections where the potential drops from @ to @, (external circuit) and from @
to @, (due to the ohmic resistance offered by the solution to current in the cell).
‘This work is

A = (¢ — @) g + (@5 — @) ¢ (26.2)

The work done by extraneous e.m.f.s in layers of molecular thickness leads
to an increase in potential from ¢, to @, (on the copper plate) and from @,
to @; (on the zinc plate). Hence the work done by the extraneous e.m.f.s is
given by

Ay=(@1— 0 g+ (@5 —92) g = @1 — P2) ¢ + (@5 — P @ (26.3)

where the second equality is obtained as a result of regrouping the terms. It
can be seen from a comparison of (26.2) and (26.3) that

A, = A (26.4)

i.e. the work done in the circuit as the current flows in it is equal to the work done
by the extraneous e.m.f.s.
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Let us derive once again Ohm’s law for the entire circuit by using Ohm'’s
law (25.10) for a part of the circuit:

¢ — @, =1IR, @3 —q@, =1Ir, (26.5)
whence

IR 4+ Ir = (9, — @3) + (@3 — @) = (@1 — @) + (93 — @) = &exe- (26.6)

Polarization of a cell. As a current flows through a circuit containing a voltaic
cell, Zn** ions pass into solution where they combine with negative SO;~ ions,
liberated along with H}* ions as a result of dissociation of sulphuric acid. The
reaction Zn** 4 SO;~ = ZnSO, takes place in the solution and the reaction
products precipitate from the solution. The positive hydrogen ions rush towards
the copper plate where they are neutralized by the electrons of the conduction
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Fig. 115. Daniell cell

current in the plate. Thus a hydrogen film is formed on the copper plate. On the
one hand, this film increases the internal resistance of the cell, while on the
other hand, it creates an additional electrochemical potential directed[against
the potential which existed there before the formation of the hydrogen film.
As a result of these processes, the e.m.f. of the cell drops. Such processes are
called polarization of the cell.

Methods of depolarization. Various methods of depolarization are used to avoid
a drop in the e.m.f.

1. Two liquids are selected in such a way that no new materials are deposited
at the electrodes. A suitable liquid is chosen for each electrode. The liquids are
separated by a porous partition which, on the one hand, prevents them from
mixing and, on the other hand, does not obstruct the ion exchange. For example,
the two liquids chosen for a Daniell cell are CuSO, and ZnSO, solutions (Fig. 115).
The copper plate is immersed into the CuSO, solution while the zinc plate is
immersed into the ZnSO, solution. Zinc passes into the H,SO, solution in the form
of Zn** ions. Electrons from the copper plate pass into the copper sulphate solu-
tion and neutralize Cu** ions, as a result of which copper is deposited from the
solution on the copper plate. The SO;~ ions remaining in the solution pass
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through the partition to the other part of the cell where they combine with Zn**
to form an excess of ZnSO,, which precipitates at the bottom. Thus, no polariza-
tion takes place during the operation of the cell, but the copper sulphate solu--
tion is slowly depleted and must be replenished from time to time.

2. Strong oxidizing agents, which combine hydrogen and oxygen to form

water, are also used.
Accumulator. This is a galvanic cell in which the substances consumed during:
its operation as a current source are accumulated when a direct current is
passed through it. Such a procedure is called the charging of the accumu--
lator.

The most widely used accumulator is a lead-acid cell consisting of two lead:
plates immersed in sulphuric acid solution. In this case, PbSO, is formed at.
the electrodes and saturates the entire solution. The passage of current through-
the accumulator during charging is accompanied by the oxidation of the lead
of the electrode connected with the positive terminal of the battery charger to-
PbO, and the reduction of the other electrode to pure lead. Thus, a charged'
accumulator has one plate with PbO, and the other plate made of pure lead,
the electrolyte being the solution of H,SO; saturated with PbSO,. During
operation of the accumulator, the plate with PbO, serves as the positive elec-
trode and is gradually reduced, yielding PbSO,. The negative plate, made of
pure lead, is gradually covered by a layer of lead sulphate. As a result, the-
accumulator is discharged. The e.m.f. of a fully charged lead accumulator is-
about 2.7 V. However, it drops to about 2.2 V after a brief period of discharging,
and remains at this level for quite a long time, dropping very slowly during the-
operation. The lowest permissible e.m.f. required for complete restoring of the
properties of the accumulator as a result of charging is 1.85 V. The accumulator
gets spoiled when discharged to lower values of e.m.f.

An important characteristic of an accumulator is its capacity, defined as the-
total charge released by the accumulator during discharging and measured im
ampere-hours.

A nonelecirostatic force capable of separating charges Is called an exiraneous e.m.f.

The work performed in a circuit during the passage of an electric current Is equal fo the
work of exiraneous electromotive forces. Generally speaking, the distribution of direct
current over the cross section of a conductor is not uniform.

The surface of a current-carrying conductor contains charges which are the sources of an
electric field. The field exists in the conductor and ensures the passage of a direct current.

Surface charges on different parts of a conductor may have different signs.

The role of the charges at the ferminals of an exfraneous e.m.f. source is not fo directly
create a corresponding field in all the conductors, but to ensure a distribution of surface
charges on the conductors which generates the required field in them. Volume charges are
induced only in nonuniform conductors.
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Sec. 27. Differential Form of Joule's Law. Work Done during
the Passage of Current and Power Developed

The formulas for the work done during passage of cur-
rent and for the developed power are introduced. The
differential form of Joule's law is given. The classical
electron pattern of electric conductivity is described
and its disadvantages are discussed. General features
of quantum-mechanical treatment of electrical con-
ductivity are considered.

Work performed during passage of current. Power. The amount of work per-
formed in transferring a charge dQ between two points with a potential difference

U is
d4 = UdQ. 27.1)

Suppose that a current I flows through a conductor. Let us consider a part of
this conductor, the potential difference between whose ends is equal to U. During
the time dt, a charge dQ = I dt is transported over this part of the conductor.
Consequently, the work done in this case is

dA = IU dt. (27.2)

Hence, the power developed by the current in this part is defined by the for-
mula

| P=d4/dt=1U. | (27.3)

The form of energy liberated in this case depends on the nature of physical
factors responsible for the potential drop. The potential drop across the ohmic
resistance of wires is accompanied by liberation of heat, the potential drop
across the terminals of a d.c. motor is due to the mechanical work performed in
this case, and so on. Forumla (27.3) gives the total power developed by the cur-
rent in the part of the circuit with the potential drop U. If the entire potential
drop takes place on the ohmic resistance of the conductor, then, according to
Ohm’s law, U = IR, where R is the resistance of the subcircuit. In this case,
the entire energy is liberated in the form of heat with the power

| P=1U=1IR. (27.4)

Formula (27.4) expresses Jouly’s law, discovered by J. P. Joule (1818-1889)
in 1841 and subsequently investigated in detail by F. A. Lenz.
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Differential form of Joule’s law. Applying law
427.4) to a very small cylinder (Fig. 116) whose

A ; P AS) ——> E
o obtapg - " the direction of the curment: Y I
Al

\

. A AL
Ap =(]AS)2T AS (27.5) Fig. 116. To the derivation of
Joule’s law in differential form
where I = jAS, j being the current density. The
resistance of this cylinder AR = Al/(yAS). Considering that ASAl = AV
is the volume of the cylinder, we obtain from (27.5)

P, = AP/(Al AS) = j*/v, (27.6)

“where P  is the volume density of the thermal power liberated in the conductor,
i.e. the heat liberated in 1 m3 of the conductor in 1 s. Formula (27.6) is the dif-
ferential form of Joule’s law, since all quantities refer to the same point.

VfVith the help of the differential form of Ohm’s law, we can transform (27.6)
-as follows: ’

Py — j2ly=yE*=j.E. (27.7)

Any of these equalities with P on the left-hand side is the differential form
of Joule’s law. Although formula (27.6) has been derived for a very small cy-
lindrical segment of a conductor, its validity is not related to the shape of the
very small volume since the quantities appearing in it depend only on their
values at the point and not on any other factors.

‘The source of energy for the work done by current. The potential drop in the
circut with current is compensated by the corresponding increase in the poten-
tial as a result of the action of extraneous electromotive forces on the charges
(see Sec. 26). The current passing in the circuit performs work, and energy is
liberated, for example, in the form of heat. Extraneous electromotive forces per-
form work over the charges, imparting a certain energy to them. Hence it fol-
lows that the entire work of current is performed at the expense of the energy of ex-
traneous electromotive forces.

Derivation of Ohm’s law from the electron pattern of electrical conductivity.
In the framework of classical concepts, the mechanism of passage of current
through a conductor and its heating are described as follows.

A free electron is accelerated by the field in a conductor. For a moving elec-
tron, Newton's law has the form

ma = eE, (27.8)

‘where m, a and ¢ are the mass, acceleration and charge of the electron respec-
tively. The actual motion of the electron is quite complicated since electrons are
in a random thermal motion. Under the action of an external field, all electrons
acquire the same acceleration and an additional velocity in the same direction.
‘This results in an ordered motion of electrons, i.e. an electric current.We are
interested only in this ordered motion of electrons which is superimposed on the
random thermal motion. Moving electrons interact with one another and with
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the atoms of the crystal lattice of the conductor. During their interaction with
the atoms of the crystal lattice, electrons exchange with them a small part of
their energy. On the average, this energy is acquired by the electrons from the:
electric field, since, in the absence of an electric field, free electrons and atoms:
are in thermal equilibrium. This complex pattern of electrons acquiring energy
from an electric field and subsequently transferring it to atoms upon interaction:
can be represented in the following form. Suppose that an electron is accelera-
ted during time T in accordance with Eq. (27.8), collides with an atom and im-
parts to it all the kinetic energy acquired during the motion. After this the elec--
tron is again accelerated during time 1, again collides with an atom, and se on.
In other words, 7 is the relaxation time of the nonequilibrium distribution of’
electrons to thermal equilibrium with the crystal lattice. It is assumed in the-
model that the mean kinetic energy of electrons increases during this time un-
der the action of an external electric field to values higher than thir mean ther-
mal energy. The excess energy is imparted to the crystal lattice, and thermal
equilibrium is restored once again. In actual practice, however, this process
takes place continuously, and its gradation is introduced in order te simplify
mathematical calculations. The relaxation time T characterizes the velocity at
which the aggregate of electrons and the crystal lattice of the conduetor return
to thermal equilibrium if the electron equilibrium is somehow disturbed (not
just by the external electric field).

In this model, the result of numerous acts of energy transfer from an electron:
to atoms is replaced by a single act, and hence T has the sense of the mean inter-
val of time between collisions. If / is the mean free path between collisions and’
v is the mean velocity of the electron due to its thermal motion, then, by defini--
tion,

T =l (27.9)-

The path traversed by an electron from its state of rest as a result of accelera--
tion by an electric field is equal to

_ a2 __ 1 eE , )

S—T_?-m_e- T, (27.10);
This is the path traversed on the average by an electron between collisions
during time t in the direction of the electric field. This ordered motion of elec-

trons causes a drift with the velocity
vq = 5/t = eEl/(2mg). (27.11)

The drift velocity is inversely proportional to the collision frequency v/l
and therefore decreases with increasing temperature.
If n is the electron concetration, we get

i = envg = e:n/E (2my). (27.12):
A comparison of this formula with Ohm’s law j = yE leads to the following
expression for the electrical conductivity:

_ 1 €in
Y= mev

(27.13)
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Thus, we have obtained the correct dependence of current density on electric
field strength and the expression for the electrical conductivity in terms of the
parameters of motion of free electrons.

Derivation of Joule’s law from the electron theory of electrical conductivity.
"The velocity lost by an electron as a result of a collision is
eE |

me v °

VLi=art=

(27.14)

“Therefore, the kinetic energy acquired by the electron between collisions and
transferred to the conductor atoms upon collision is

mevi __ 1 eEN?
Wy=——=~ i (27.15)

The frequency of collisions of each electron with atoms is equal to v/l, and
thence the collision frequency of n electrons is equal to nv/l. Consequently, the
‘volume density of thermal power is given by the expression

nv 1 e?n

Py=Wy 2= ‘;;::- E?=vyE?, (27.16)
‘where we took into account Eqs. (27.13) and (27.15). Thus, we have obtained
the correct expression for the differential form of Joule’s law by proceeding
from the electron theory of electrical conductivity.
Drawbacks of the classical theory of electrical conductivity. The classical theory
-of electrical conductivity is quite visual and gives a correct dependence of cur-
rent density and the amount of liberated heat on the field strength. However,
2his theory does not lead to correct quantitative results. The main discrepancies
between the theory and experiment consist in the following:

(1) In order to obtain the correct value of y from formula (27.13), we must as-
:sume a very large value of ! (exceeding the interatomic distance in the conductor
by thousands of times). Classical theory fails to explain the existence of such
large mean free paths.

(2) Experimental investigation of the temperature dependence of electrical
«conductivity y leads to the law y oc 1/T. This cannot be explained by formula
{27.13) since the kinetic theory of gases gives v oc Y/ T. The dependence ! oc
4/VT cannot be accepted in the classical model of interaction.

(3) According to the law of equipartition of energy among the degree of free-
-dom, a very large contribution to the specific heat of conductors sho.ild be ex-
pected from free electrons. This, however, is not observed in experiments.
Main features of quantum-mechanical interpretation of electrical conductivity.
The above drawbacks of the classical concepts could be eliminated only in
quantum theory. Quantum theory takes into account wave properties of microparti-
cles. The diffraction of waves at obstacles is the most important characteristic
of wave motion. Consequently, moving electrons as if undergo diffraction at
atoms without collisions, and their mean free paths may become quite long.
Since electrons obey the Fermi-Dirac statistics, only an insignificant part of
electrons near the Fermi level can participate in the formation of the electronic
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specific heat. Therefore, the electronic specific heat of conductors is insignificant.
The solution of the quantum-mechanical problem on the motion of an electron
in a metallic conductor leads to the dependence y oc 1/T, which is observed ir
actual practice. Thus, a consistent quantitative theory of electrical conductivity
was constructed only in the framework of quantum mechanics.

The work done during the passage of current is not the result of a conversion of the
kinetic energy of electrons into other forms of energy. The energy spent in accomplishing
the work is carried by the electromagnefic field and not by electrons. Only in a particular
case involving the liberation of Joule’s heat is the kinetic energy of electrons the inter-
mediate form of energy through which the energy of the electromagnetic field is converted
info heat. In other cases, the kinetic energy of elecirons does not play any role.

What is the meaning of the mean free time between collisions in the classical theory of
electrical conductivity?

What are the principal difficulties of the classical theory of electrical conductivity?

How are they eliminated in general?

Sec. 28. Linear Circuits. Kirchhoff's Laws

The laws for calculating linear circuits are formulated.

An isolated closed loop. We have already considered this case in Sec. 26 and
obtained the result in the form (26.1): if an isolated closed loop contains a source
of extraneous e.m.f.s, the current in the loop must be such that the total voltage drop
across the external and the internal resistance of this source is equal to the extrane-
ous e.m.f. If there are several sources of extraneous e.m.f.s., we must take their
algebraic sum, having chosen a certain direction for the positive e.m.f.

In order to avoid confusion in signs, the following approach is usually adop-
ted. Either clockwise or counterclockwise direction of circumvention of the cir-
cuit is taken as positive. In Fig. 117, the clockwise direction of circumvention
is considered positive. The electromotive forces of the sources are denoted by
&, €,, &, The direction in which the current flows is unknown beforehand.
Hence, any direction can be chosen for the current. In Fig. 117, for example, it
coincides with the positive direction.

Now we must adopt a sign convention. The e.m.{. is considered to be positive
if on moving along the loop in the positive direction, we first arrive at the nega-

tive terminal. If, however, the positive terminal
is encountered first, the corresponding e.m.f. will

&
én
\(—7 be negative. The current is assumed to be positive
f if its direction coincides with the direction of cir-
1 cumvention. In the opposite case the current is
6>

negative. The electromotive force and current are
therefore algebraic quantities that can assume ei-
Fig. 147. Isolated closed loop ther positive or negative values. We can now easily
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generalize Eq. (26.1) to an arbitrary number of extraneous e.m.f. sources in an
isolated closed loop: the product of the magnitude of current and the sum of exter-
nal and internal resistances of all parts of a closed loop is equal to the sum of the
magnitudes of eatraneous e.m.f.s in this loop:

i1§m=§i& (28.1)

where the -+ symbol in front of I and &; indicates that the sign must be cho-
sen in accordance with the above rules. For example, for the case depicted in
Fig. 117, Eq. (28.1) has the form

I(R+rl+r2 +r3)=gl_82+83, (282)

where ry, r,, r; are the internal resistances of the sources of extraneous e.m.f. s
and R is the total resistance of all the parts of the circuit containing no e.m.f.
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Fig. 118, Electric network Fig. 119. To the determination

of closed loops and junctions
in a network

sources. If the arrow showing the direction of current were oriented oppositely
for the same direction of circumvention which was taken earlier as positive,
we would obtain the following equation instead of (28.2):

—I(R+r+ro4r)=8§ —§& +&,. (28.3)

This equation must be solved for I. If the obtained value of I is positive, the
current flows in the direction indicated by the arrow. Otherwise, it will flow in
the opposite direction.

Branched circuits. The electric circuits encountered in most cases of practical
importance are much more complicated as shown in Fig. 118. However, any
complex circuit contains the elements of two simplest types:

(1) junctions where more than two conductors meet (Fig. 119, points C and

)
(2) closed loops (Fig. 119, loops ABDCA, CDFEC, ABFEA).
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Kirchhoff’s laws. Kirchhoff's laws can be used to write a system of equations
from which we can obtain currents for any complex branched circuit. They express
the law of charge conservation at each junction and Ohm’'s law (28.1) for each closed
loop. The sign convention adopted for currents and e.m.f.s for each closed loop
is the same as for an isolated loop [see (28.1)]. The direction of positive circum-
vention for all loops must be the same. The law of chaige conservation at a junc-
tion requires that the sum of currents entering the junction must be equal to
the sum of currents leaving it. In other words, the algebraic sum of currents at
a junction must be equal to zero. While composing the sum, the currents shown
by arrows pointing away from the junction are assumed, say, to be negative,
‘while the currents shown by arrows pointing towards the junction are taken as
positive. Of course, we can choose the opposite signs, but this will ‘not alter
the corresponding equations. The main thing is that the same sign rule should
be applied to all the junctions.

Thus, Kirchhoff’'s laws state that

(1) the sum of algebraic values of currents at each junction is equal to zero:

Z (@) I =0; (28.4)

(2) the sum of products of algebraic values of currents and the resistances of the
corresponding parts of each closed loop is equal to the sum of the algebraic values
of extraneous e.m.f.s in each closed loop:

Eh?i IR, = 211 (+) &,. (28.5)

It can be shown that the system of equations thus obtained for any branched
circuit is complete and can be used to determine all currents.

These laws were derived by G.R. Kirchhoff (1824-1887) who obtained the
general solution of the problem on branched d.c. circuits in 1847, although the
laws themselves were formulated in 1845.

Let us apply Kirchhoff’s laws to the circuit depicted in Fig. 119.

1. In accordance with Kirchhoff's first law, we have

(8 —I, —I,—I, =0 (junction C);

() I, +1I,+1I,=0 (junction D).

2. In accordance with Kirchhofi's second law, we obtain

(a) Ilr!. + IlRl - IQRQ - Izrz = 81 + 82 (lOOp ABDCA)'

(b) I,Ry + I,rg — IRy — Igrq = — &y — &3 (loop CDFEC).

(¢) Iyry + LRy — IRy — Igry = &, — &, (loop ABFEA).

Here, r;, 1y, ry are the internal resistances of the extraneous e.m.f. sources.

‘The equations for junctions are identical, while only two of the three equations
for loops are independent. For example, the sum of the first two equations yields
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the third equation. Thus, we have got a system of three equations in three un-
known currents /,, I, and I,. The values of the currents and their actual direc-
tions can be found by solving this system of equations. However, even without
solving it, we can conclude that we were obviously wrong in choosing the direc-
tions of currents in Fig. 119, since the law of charge conservation at the junc-
tions cannot be satisfied for the chosen directions of current: a negative charge
must be accumulated at the junction C. and a positive charge at the junction
D. This. however, should not worry us, since the solution will automatically
indicate the direction of current.

Thus, the above example shows that if Kirchhoff's laws are written for all
junctions and all loops, we get a larger number of equations than required since
not all the equations are independent. In order to avoid additional work, it
is desirable not to write superfluous equations. For this purpose, the following
rule is adopted. While writing an equation for a closed loop, we must ensure
that it contains at least one quantity that did not appear in the previous equa-
tions. If all the quantities appearing in this equation have been encountered be-
fore, the equation is superfluous. The same rule is observed while writing equa-
tions for junctions. For example, in the above equations expressing Kirchhoff's
second law, there is no need to write Eq. (b) since all the quantities appearing in
it were already encountered in Eq. (a). Similarly, in the equations corresponding
to Kirchhoff's first law, Eq. (c)is superfluous since it contains nothing new in
comparison with Egs. (a) and (b). Further control of the correctness of the ob-
tained system of equations can be made by verifying its completeness: the
number of equations must be equal to the number of unknowns.

What is the convention of signs in Kirchhoff's laws?
Which considerations must be followed in order to avoid writing superfluous Kirchhoff's
equations?

Sec. 29. Currents in a Continuous Medium

The method of calculating currents in continuous me-
dia is described.

Formulation of the problem. Electric current can flow not only through con-
ductors. For example, soil (especially damp) also conducts electric current.
What is the resistance of the soil if the ends of two conductors connected to the
terminals of a source of e.m.f. are thrust into the soil a certain distance apart?
Or, what will be the resistance of a massive metallic plate to which two conduc-
tors from the terminals of an e.m.f. source are connected? By the resistance of
a massive plate or a medium to the electric current we mean the ratio of the po-
tential difference between the current-carrying conductors to the current. Al-
though the electrical conductivity of the medium is known, it is not an easy

14—-0290
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task to calculate the resistance. However, the resistance can be easily measured
with the help of standard methods by determining the potential difference and
current.

Derivation of the formula. Let us consider a homogeneous continuous medium
into which electrodes are immersed. A current flows between the electrodes and
the current density lines coincide with the electric field lines in the medium,

since

i=+E. (29.1)
The current across a closed surface S surrounding one of the electrodes is
I=§j-dS=y§E.as. (29.2)

5 s

Let us now imagine that the conducting medium is removed and the electrodes
behave like the plates of a capacitor. By definition of capacitance C of a ca-

pacitor, we have
: Q=CU, (29.3)

where Q is the charge of an electrode and U is the potential difference between
the electrodes. In accordance with the Gauss theorem, we obtain

§E45=Qmm (29.4)
8

where E is the field of the capacitor and § is the same surface as in (29.2). How-
ever, in view of the uniqueness of the solution of problems in electrostatics, the
potential difference between given electrodes uniquely determines the field.
Consequently, the field in a current-carrying conducting medium [see (29.2)]
coincides with the field created in vacuum between the same electrodes for the
same potential difference [see (29.4)]. Hence, taking into account Eq. (29.3),
we obtain from (29.2) and (29.4):

I = vQ/&, = yCUl/¢,. (29.5)
~ Thus the resistance offered by a homogeneous medium to the current is given
by the formula ’ '

R = U/l = gy (¥C). (29.6)

It should be noted that all the above discussion is not applicable to nonhomoge-
neous media, since the passage of current through them is accompanied by the
creation of volume charges which are the sources of electric field. In this case,
the electric field generated in a medium during the passage of current is not
the same as the field in vacuum, although the same potential difference is
maintained between the electrodes.

Conditions of applicability of Eq. (29.6). Formula (29.6) can be used to deter-
mine the resistance of a medium to the current if we know the capacitance of the
capacitor formed by the electrodes. The accuracy of the results depends on the
extent. to which the potential of an electrode fluctuates during the passage of
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current through it. If the last requirement is not
fully satisfied and different points on the conduc-
tor have considerably different potentials during
the passage of current, the calculation of the
resistance does not boil down to the calculation of
the capacitance of the capacitor, since the poten-
tial at all points on the plate of the capacitor is
the same. Hence, in particular, it is necessary that
the resistivity of the electrodes be small in com-
parison with the resistivity of the medium. This
condition is not applicable if the electrodes have
small surface areas.

Coaxial electrodes. By way of an example, let us
consider two coaxial electrodes. It is required to Fig. 120. To the calculation of
calculate the resistance of the conducting medium the resistance of the medium
between these electrodes (Fig. 120). In order to between coaxial electrodes
apply formula (29.6), we must assume that the

conductivity of the material of the core and shell is much larger than the con-
ductivity of the medium. The current in the medium flows over the entire volume
along the radii between the core and the shell. Since the capacitance of a cy-
lindrical capacitor is

C = 2nley/In (ry/ry),
the resistance of the medium is
R = 1n (ry/ry)/2nly). (29.7)

Nonhomogeneous medium. The problem becomes quite complicated if the
conductivity is not constant, since in this case volume charges appear and it is
necessary to take into account the electric field generated by them.

As an example, let us consider the electric currents in the atmosphere. It is
shown experimentally that an electric field Ef &~ — 100 V/m exists near the
Earth’s surface and is directed towards its centre. The Earth is quite a good con-
ductor and hence it can be assumed that it has a surface charge

0p = 8,E® = —8.85.101 C/m?, (29.8)

It is borne out by measurements that the conductivity of the Earth’s atmo-
sphere increases with height. The main reason behind this is the ionization
caused by cosmic radiation. Solar radiation is mainly responsible for the ioni-
zation at large heights. At a height of about 50 km, the atmosphere can be prac-
tically assumed to be an ideal conductor. Measurements show that the depen-
dence of the conductivity on height can be expressed to a high degree of aecu-
racy in the following form: :

Y@ =73+ A4 —r1p (29.9)

Here r, is the Earth’s radius, r is the distance between the Earth's centre and
the point under consideration, y, =¥ (r,) is the electrical conductivity at the

14
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Earth’s susface, and 4 is a constant. The last two quantities have the following
values:

Yo = 3-1071* S/m, (29.10)
A =0.5-10"% S/m. (29.11)

On the average, the Earth’s field in the atmosphere is stationary and spheri-
cally symmetric. Hence the continuity equation for the current density as-
sumes the form

e . 1 o .
div j =5 o (rz]r) —_ 0, (29.12)
whence
ir (r) = jor3r?, (29.13)

where j, is the current density near the Earth’s surface (r = r;), which is equal
to
Jo="oEf" = —3-1072 A/m?. (29.14)

Since the radius of the Earth is ry ~ 6 X 108 m, the current from the atmo-
sphere to the Earth is equal to

I = |j,| 4nry ~ 1400 A.

At a distance r from the Earth’s centre, the electric field is

E =10, (29.15)

Hence the potential difference U between the Earth’s surface and the upper at-
mosphere whose conductivity is practically infinite is given by the formula

0o ) oo d
U=—[Ear=—jy | 5. (29.16)
To To

Here, the domain of integration is extended to infinity, since at distances larger
than about 50 km, v (r) practically becomes infinite and the integrand vanishes.
However, quite accurate results can also be obtained by using expression
(29.9) for y. In this case, the contribution to the integral from the domain of
integration for r > ry + 50 km is quite small in comparison with the contri-
bution from the domain of integration between ry:and r, + 50 km and can
therefore be neglected. Hence, instead of (29.16) we obtain

oo

. dr
U=—irs | wprae=rgm (29.17)

To
This integral can be easily evaluated in terms of elementary functions. How-
ever, the results of calculations are quite cumbersome and we shall omit them
here. To within quantities of the order of [y, (r34)] <« 1, this result can be ex-
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pressed quite accurately in the form

_ Jo Yo are A
T

Substituting into this equation the values of j,, y, and 4 from (29.14), (29.10)
and (29.11), we obtain U =~ 400 kV.

Owing to a direct current of about 1400 A passing through the atmosphere,
this potential difference must decrease and the charge on the surface of the Earth
must be neutralized. The relaxation time for this process is of the order of
T = go/y, 2~ 300 s. However, both the current and the potential difference are
constant on the average. Thus, there are some reasons behind this constancy.
Basically, transient atmospheric processes like storms and thunder are respon-
sible for this.

The most important property of earthed transmission lines is that the resistance is in-
dependent of the distance between the electrodes. The main contribution to the resistance
is made by the regions of the medium in the immediate vicinity of the electrodes.

The formula expressing the resistance of the medium in terms of the capacitance of a
capacitor with the electrodes as ifs plates is valid only provided that, in the presence of a
current, the potential at all the points on each plate is constant to a high degree of ac-
curacy, and volume charges do not appear in the medium.

For this purpose, the electrical conductivity of the electrode material should be much
higher than that of the medium and the latter should be electrically homogeneous.

Under what condition can the formulas for the resistance of the medium between two

felecci:irodes be applied in terms of the capacitance of the capacitor formed by the elec-
rodes?

Sec. 30. Earthing of Transmission Lines

The physical principle behind the possibility of earthing
is explained and the conditions necessary for earthing
are discussed.

Formulation of the problem. Since the electrical conductivity of the soil is
quite high, one can ask whether it is possible to use the Earth as a conductor of
electric current. Such an electric circuit is shown in Fig. 121 (4 and B are elec-
trodes embedded into the Earth). Obviously, the expenditure on the wires can
be reduced by about half in this case.

Calculation of resistance. Let us find the resistance of a continuous medium,
assuming that the electrodes are spheres of radius r, each. We denote by d
the distance between the centres of the electrodes. In order to simplify calcula-
tions, we assume that the medium is infinite (Fig. 122) and the charge distribu-
tion on the electrodes is spherically symmetric.
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il
N

Fig. 121. Earthing of a trans- Fig. 122. To the calculation of
mission line the resistance of the medium in
the case of spherical electrodes

Let z be the distance between the centre of the left electrode and a certain

point on the line connecting the centres of the electrodes (Fig. 123). The field
at this point is given by

1 1
E=E,+E.= 43% (',,T‘I"‘('a:)?) . (30.1)
The potential difference between the electrodes is
d—ro
— — Q __1_ 1 d-ro
U= [ Baz=g% [~ T+ a1
ro
=9 1 1 1 1
T 4ne, (_ d—r, +r_o+To“‘ d—r, ) (30.2)

E
(-)E
— (+)

)

d

Fig. 123. To the calculation of the resistance of the medium
in the case of spherical electrodes

In most practically important cases the distance between the electrodes is much
larger than their size, i.e. d>>r. Therefore, we can write Eq. (30.2) in the form

__ o 1
V=gt (30.3)

On the basis of what has been said in Sec. 29, we obtain

I=&j.ds=v(§E.dS=yQ/ao, (30.4)
S S
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where I is the current in the medium and S is a
closed surface surrounding one of the electrodes.
From (30.3) and (30.4), we obtain for the resis-
tance of the medium

R = U/l = ayry)~ (30.5)

The most important property of resistance (30.5)
is its independence of the distance between the elec-
trodes. Physically, thisis explained by the fact that
as the distance between the electrodes increases,
the effective area of the medium through
which the current is passing also increases accord-
ingly. An increase in the distance between the
electrodes increases the resistance while an increase .
in the area decreases it. Formula (30.5) shows Fig. 12’3 Demo‘f‘miftm“."tf the
that these two facjaors pra(_:tically compensate :)'; f&egﬂ:&lﬁfmohotneti?:ﬁs‘;:gf
each other and resistance is found to be inde- ¢e between the electrodes
pendent of the distance between the electrodes.

Consequently, the main contribution to the resistance of the medium comes from
the regions adjoining the electrodes. Hence, it is especially important to ensure
their good conductivity. For this reason, electrodes with large surface area are
used, which are buried deeply into the Earth, where the ground water ensures
a good conductivity of the soil.

Experimental verification. Two plane electrodes, connected to the terminals
of an extraneous e.m.f. source, are immersed into a weakly conducting liquid,
say, river water (Fig. 124). A certain current flows through the circuit. By chang-
ing the separation between the electrodes, we see that the readings of the am-
meter are not altered even at large distances (as compared to the size of the elec-
trodes). Consequently, under these conditions the resistance of the medium is
independent of the distance between the electrodes.

Step voltage. Since a current flows through the medium, an electric field exists
as well as a potential which varies in space.

Suppose that there is a break in a high-voltage transmission line and the free
end of a wire of length L is lying on the ground. An electric current flows through
the regions of soil adjoining the conductor. If a man happens to be walking near-
by, a potential difference called the step voltage appears between the points
where his feet touch the ground. Consequently, an electric current whose
strength depends on this potential difference flows through the man.

Let us calculate the step voltage. Since the conductor is quite long, we assume
that the current flows from it to the ground in a direction perpendicular to
the conductor. The equipotential surfaces are the surfaces of semicylinders whose
axes coincide with the conductor (Fig. 124). Suppose that the man is walking
in a direction perpendicular to the conductor with a step of length I, the distance
between the conductor and the foot closer to it being d. Assuming that the
current flows uniformly from the conductor over the semicylindrical region we
obtain the following expression for the current density at a distance r from the
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conductor:
j = I/(zrL). (30.6)
In this case, the field strength along the radii
perpendicular to the conductor is
E,. = jly = I/(nrLy). (30.7)
Consequently, the step voltage is
d+1
I d+1
/ Ug= 5 E,dr=—1- mir, (30.8)

TS
: For example, if I =500 A, d=1m, !l = 65 cm
Fig. 125. To the calculation of and L = 30 m, we find that Ug = 270 V. Much
step voltage when a hemisphe- higher voltages may appear under other condi-
rical earth plate is approached {jong and other shapes of conductors. Hence, when
a part of a high-voltage transmission line falls on
the ground, it creates a hazard not only because there can be a direct contact between
the cable and a human being, but also because of the emergence of step voltages.

- The resistance does not depend on the distance between the electrodes since the effective
cross section of the area through which the current flows is proportional to the distance
between the electrodes.

Example 30.1. A hemispherical earth plate is buried into the earth in level with its surface
(Fig. 125). Find the voltage which may be apﬁlied to a woman approaching this earth plate
(step voltage). The current passing through the earth plate is equal to I, the length of a step
is I, and the distance between the plate and the foot closer to it is ry. Solve the numerical
problem: y = 102 S/m, I =1 A, ry=2mand ! = 1 m.

The current from the earth plate is uniform in all directions and hence the current density
vector is directed along the radius vector from the earth plate and is equal to

jr = I/@nr?).
In accordance with Ohm’s law, the electric field strength is equal to
E, = jJr = Il@2nry).
Consequently, the step voltage is

ro+l I ro+l d I 1 1
,
o= | Bir=g | =gy (e
ro ro

)=2.7 V.

TTTRETITI s T

Problems TR

4.4. A copper sphere of 10-cm diameter is lowered into a water-filled hemispherical copper
vessef of 20-cm diameter so that the sphere and the vessel are concentric. The electrical
conductivity of water is equal to y =10-® S/m. Find the electric resistance between the
sphere and the vessel.

4.2. A small spherical electrode of radius e is immersed in a medium of conductivity y at
a distance d from another electrode in the shape of a large plate having a high conduc-
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tivity. Find the resistance of the medium to the electric current passing between the
electrodes.

4.3. Find the resistance of a medium to the current flowing between two concentric electrodes
of radii r; and r, respectively. The conductivity of the medium is y.

4.4. Find the resistance between points 4 and B of the network shown in Fig. 126. The re-
sistance of the side of a small square is R.

4.5. Two plane electrodes of area S each, whose linear dimensions are much larger than the
distance d between them, are separated by a conducting material whose conductivity

A
—
T v
B o J
Fig. 126. To Problem 4.4 Fig. 127. To Problem 4.6

varies linearly from y; at the surface of one electrode to y, at the surface of the other
electrode. Find the resistance of the medium between the electrodes.

4.6. Find the resistance of a conic conductor of a circular cross section, whose dimensions
are shown in Fig. 127. The electrical conductivity of the conductor material is y.

4.7. The space between two infinite plane-parallel electrodes separated by a distance d is
filled with two layers of a substance with a plane interface parallel to the electrodes.
The conductivities and the permittivities of the layers are y;, €, and y,, &, respectively,
the layer thicknesses being a and d — a. The potentials ¢, and ¢, are applied to the
electrodes. Find the potential and the surface charge density at the interface.

Answers

4. R=1590Q. 42. R=[1—a/(2d))/(knya). 43 R—’—( ! —i) 4t Rap=
1. = . oo = —a/( ‘\’a). Do L1 = 411:? r—]_ o K 4. ftpp =
47 d 1n (p,/71) l P1¥1 (@—a) + Ppysa
—_R. 45 R=212VV .6 R= . 4. 9= .
22 4 S (Y2—v1) nya;a, ¢ Yi(@—a)+7ya

— (1183 —7981) (@1 —@2)
Y1 (d—a)+7y.a :

o}



‘«CHAPTER 5

Electrical Conductivity

The mechanisms of electrical conductivity are diverse. Their only com-

mon feature is the close relation with the motion of charges. The
laws governing electrical conductivity vary over wide limits depend-

ing on the mechanism of electrical conductivity, properties of

r;aterials and conditions under which electric current flows in con-
uctors.

Sec. 31. Electrical Conductivity of Metals

Main experimental facts associated with electrical
conductivity of metals are described and their theoretical
interpretaion is given.

‘The proof of the absence of mass transport by electric current in metals. Long
before electrons were discovered, it was experimentally shown that, unlike in
electrolytes, the passage of current in metals is not connected with the mass
transport of metals. Experiments involved the flow of a direct current through
a metal-to-metal contact, for example, between gold and silver, during a period
-of time reaching several months. After this, the material in the vicinity of con-
tacts was investigated. It was demonstrated that no mass transport through the
interface between two metals was observed, and the substances on both sides of
the interface have the same composition as before the passage of current. This
-experiment proved that atoms and molecules in metals do not participate in elec-
tric current but they failed to give an answer to the question about the nature
of charge carriers in metals.

‘The Tolman and Stewart experiments. These experiments, carried out in 1916,
served as a direct proof that eurrent in metals is due to the motion of electrons.
The1 giiga of these experiments was put forward by Mandelstam and Papaleksi
in .

Suppose that we have a conducting coil which can rotate about its axis. The
ends of the coil are connected to a galvanometer with the help of sliding con-
tacts (Fig. 128). If the rapidly rotating coil is abruptly stopped, free electrons
in the wire continue to move by inertia, as a result of which the galvanometer
should register a current pulse.

Let us denote by v the linear acceleration of the coil during braking. It is
directed along the tangent to the surface of the coil. For a sufficiently dense wind-
ing and thin wires, we can assume that the acceleration is directed along the
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wires. During the deceleration of the coil, the

inertial force m.v directed against the acceleration
is applied to each free electron (m,isthe electron
mass). Under the action of this force, an electron
in metal behaves as if it were acted upon by a cer-
tain effective electric field

Eeoyy= —mgle. (31.1)

Hence, the effective electromotive force in the
coil due to inertia of free electrons is given
by

y me ° Fig. 128. Tol d St t’
Eon=| Endl=—T0p [a1=—Te yL, (31.2) g torman and Stevart's
L L

where L is the length of the wire. All points of the wire have the same decel-

eration rate, and hence v in (31.2) is taken out of the integral.

Denoting the current flowing in the closed circuit by I and the resistance of
the entire circuit including the resistance of the coil wires and the wires in the
external circuit and in the galvanometer by R, we write Ohm’s law in the form

IR= —meLle. (31.3)

The amount of electricity passing through the cross section of a conductor for
a current I during time df is

dQ=TIdt=—"e Lydr— T L gy, (31.4)

Thus, the amount of electricity passing through the galvanometer during the
braking time required to decrease the coil velocity from the initial linear ve-
locity v, to zero is given by

0
0=[a0=—"2e £ [av="e Lo, (31.5)

v
The magnitude of Q is determined from the readings of the galvanometer,
while the values of L, R, and v, are known. Hence we can find the sign and the
magnitude of e/m,. Experiments showed that e/m. corresponds to the ratio of
the electron charge to its mass. Thus, it was proved that the current observed

with the help of a galvanometer is due to the motion of electrons.

On the band theory. The quantum theory of electrical conductivity is based
on the band theory which follows from an analysis of the energy spectrum of elec-
trons see Sec. 2). The electron spectrum is split into bands separated by forbid-
den gaps. If the upper band of a substance, which still contains electrons, has
some free quantum states, i.e. if there is a possibility for rearranging the energy
and momentum of electrons, this substance is a conductor. In this case, its up-
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A per band is called the conduction band, and the

substance is called a conductor with electronic-

j type conductivity. If there are many electrons and

free quantum states in the conduction band, the

electrical conductivity is sufficiently high. The

electrons in the conduction band are the only

charge carriers responsible for electric current.

PP U Their motion obeys laws of quantum mechanics.

The number of these electrons constitutes only a

® J 1 small part of the total number of electrons. This

E circumstance eliminates drawbacks of the clas-

g — sical theory of electrical conductivity (see Sec. 27).

) Temperature dependence of resistance. Motion of

: electrons is the main cause of electrical conduc-

_ =t - - - tion not only in metals. For example, in semi-

j E conductors with electronic-type conductivity the

1 motion of electrons also contributes significantly

to the transport of electric charge. One of the

++ + + + + + + most typical differences in electrical conduction

©) in these two cases isin the nature of temperature

. dependence of electrical conductivity.

Fig. 129. The Hall effect Experiments show that theresistivity of metallic

conductors grows with temperature, i.e. their

conductivity decreases. For a moderate temperature, the temperature dependence
of conductivity has the form vy oc 1/T.

However, for some materials (e.g. glasses, semiconductors, electrolytes) conduc-
tivity increases with temperature. Although the mechanisms of increase in con-
ductivity are different, they all ultimately boil down to a decrease in the num-
ber of electric charge carriers responsible for current. The number of carriers
in metals, i.e. free electrons, practically does not depend on temperature. Hence,
the resistance to the current is determined only by the ability of metals to
form an ordered motion under the action of an electric field, viz. by their mo-
bility, which decreases with increasing temperature.

Hall effect. The charges creating an electric current due to their motion are
acted upon by Ampeére’s force (9.23). The density of this force can be written
in the form

f=3 X B=nevqy X B, (31.6)

where e is the charge whose motion forms the current, and n and v4 are its con-
centration and drift velocity respectively.

In the presence of a magnetic field whose induction is perpendicular to the
current density j, the charges in the conductor tend to move in the direction of
the force with the density f (Fig. 129a). As a result, an excess charge of the same
type that generates the current is formed on the corresponding surface of the
conductor. Thus, if the current is due to the motion of positive charges, the dis-
tribution of the surface charge density will be as shown in Fig. 1295, while
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for the motion of negative charges we obtain the distribution depicted in Fig.
129¢. A potential difference and an electric field E appear between the opposite
faces of the conductor. This field neutralizes the action of the forces with density
f (31.6). The direction of this field depends on the sign of charges forming cur-
rent, and its magnitude is determined by the factors responsible for the density
of force (31.6). The emergence of a potential difference in a current-carrying con-
ductor placed in a magnetic field is called the Hall effect. This effect was dis-
covered in 1879.

The induction B of the magnetic field and the velocity v4 of charges are at
right angles. The ratio of the force density (31.6) to the charge, like (31.1), can
be treated as the effective electric field called the Hall field:

Eett = v4B. 31.7)

Consequently, the potential difference emerging between the faces of the
conductor (Fig. 129d) is given by:

d
U= vyB de=v,Bd, (31.8)
0

where d is the thickness of the conductor. Considering that j = nevy, we can
write this expression in the form

U = djB/(ne) = RjBd, (31.9)
where
= 1/(ne) (31.10)

is the Hall constant. The potential difference can be measured. The other quan-
tities, except the concentration n of charges and their sign, are known. The sign
of the potential difference can be used to determine the sign of the charge carriers
whose motion createscurrent, while its magnitude determines the carrier concentra-
tion.

It should be noted that formulas (31.9) and (31.10) coincide with the corre-
sponding formulas in a more complete theory of the Hall effect, where the veloc-
ity distribution of electrons, statistical nature of their collisions and other
factors are taken into account. In this case, however, calculations are very cum-
bersome and we shall not consider them in this book.

The results of measurements showed that current in metals is formed by the
motion of negative charges. The carrier concentration is approximately equal to
the atomic concentration. In other words, one charge participating in a current
corresponds to about one atom of the metal, although this number varies within
certain limits. Electrons are the charge carriers responsible for current in metals.
This means that in metals, on the average, one free electron corresponds to an
atom. For example, 0.7 electron corresponds to a silver atom, 0.8 to copper,
0.9 to gold, and about two electrons to aluminium. It should be recalled that

the atomic concentration in metals, and hence the concentration of free
electrons, is close to n ~ 102 m-3,
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The analysis of the Hall effect in other cases revealed that it is not always
due to the motion of negative charges. When the sign of the potential difference
in the Hall effect corresponds to the motion of negative charges, the effect is called

anomalous.
The Hall effect is one of the galvanomagnetic phenomena. This term refers

to the phenomena observed in a current-carrying conductor placed in a magnetic
field. The physical essence of all these phenomena consists in that the electrical
conductivity of a conductor in an external magnetic field is a tensor rather than
a scalar. The transverse electric field, called the Hall field, is added to the elec-
tric field which creates a current in the absence of a magnetic field. As a
result, the direction of the resultant electric field forms with the current densi-
ty a certain angle called the Hall angle. This means that the directions of the
current density and the electric field do not coincide. These quantities are rela-
ted through the tensor formula

Ji =; YinEr,

where y;; is the electrical conductivity tensor. The conductivity of anisotropic
materials is described by the electric conductivity tensor even in the absence of
a magnetic field.
Magnetoresistance. Another important galvanomagnetic effect is a change
in the resistance of a conductor placed in a transverse magnetic field (magnetoresis-
tance). Experiments show that the relative change in the electrical conductivi-
ty Ay/y for not very strong fields is expressed by the formula
Ayly = — %, B?,

where %, is the transverse magnetoresistance coefficient which depends on the
properties of the material and B is the magnetic induction.

This phenomenon is a consequence of the tensor nature of electrical conductiv-
ity of a conductor placed in a magnetic field. As a result, the electric field com-
ponent collinear with the current appears, which causes a change in the cur-

rent manifested as a change in the resistance.
Mobility of electrons. Ohm’s law j = YE can be written in the form

nevy = yE. (31.11)
The mobility b of electrons is defined as the ratio of their drift velocity to the
electric field strength:
b = vy/E. (31.12)
Taking into account (31.11), we obtain
b @)= v/(ne). (31.13)

The electrical conductivity of a metal is known, and ne can be found from the
Hall effect. In other words, the change in the Hall effect makes it possible to find
the electron mobility in the conductor. The electron mobility in metals is of

the order
b ~10-%-10-3 m?/(V.s). (31.14)
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Thus, the drift velocity of electrons in metals is very small as compared to
ordinary velocities of motion of microparticles. A high conductivity of metals is
mainly due to a high carrier concentration (n ~ 10% m-3) and not due to their
high mobility [see (31.13)]:

vy = enb ~10-19.10%8.10-3 S/m = 10% S/m.

In dielectrics, most electrons are rigidly connected to the atoms, and the num-
ber of free charge carriers is very small. Consequently, the conductivity of dielec-
trics is very low although the mobility of charge carriers in them does not differ
drastically from the mobility of free electrons in metals. The carrier concentration
in semiconductors varies between 10'® and 102 m-3, while their mobilities lie be-
tween 10 and 10-* m? (V-s), i.e. are high. Such a wide range of variation of the-
concentration and mobility of carriers determines the wide range (over several
orders of magnitude) of variatiern of electrical conductivity of semiconductors.
However, it is impossible to attain as high conductivity for semiconductors as
for metals, having retained, of course, the temperature dependence of electrical
conductivity typical of semiconductors (i.e. an increase in electrical conduc-
tivity with temperature).

Superconductivity. In 1911 H. Kamerlingh Onnes discovered that apparently
mercury completely loses its resistance to electric current at 4.2 K. The loss
of resistance occurs abruptly within an interval of a few hundredths of a de-
gree. The disappearance of resistance was subsequently observed for many other
pure materials and alloys. This phenomenon was called superconductivity.
Transition temperatures for the superconducting state are different but always.
very low.

Critical temperature. If an electric current is excited in a superconducting
ring with the help of electromagnetic induction the magnitude of this current
remains the same for several years. This allows us to determine the upper limit
of resistivity of superconductors (which is below 10-2% Q.m). This value is less.
than the resistivity of copper at low temperature (equal to 10-'2 Q.m) by many
orders of magnitude. Therefore, it is assumed that the electric resistance of super-
conductors is equal to zero. Before the transition to superconducting state, the-
resistance may have different values. Many superconducting materials have a
rather high resistance at room temperature. The transition to superconducting
state always occurs abruptly. For pure single crystals, this temperature in-
terval is less than 10-3 degree.

Among pure materials, aluminium, zinc, indium and gallium exhibit super-

conducting properties. These properties depend on the crystal lattice structure.
For example, white tin is a superconductor while grey tin is not. Mercury is .
a superconductor only in the a-phase.
Critical field. In 1914, Kamerlingh Onnes found that the superconducting
state is destroyed by a magnetic field when the magnetic induction B exceeds a cer-
tain critical value. The critical value of induction depends on the superconductor
material and temperature. A

The critical field that destroys superconductivity may be created by the super—
current itself. Therefore, there exists a critical current at which superconduc-
tivity vanishes.
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Meissner effect. In 1933, Meissner discovered that there is no magnetic
field inside a superconductor. When a superconductor placed in a constant
external magnetic field is cooled, the magnetic field is completely ex-
pelled from its volume at the moment of the transition to the superconducting
state. This is the principal difference between a superconductor and an ideal con-
ductor in which the magnetic induction in the volume remains unchanged when
its resistivity drops to zero. The property of expulsion of magnetic field from
the volume of a superconductor is called the Meissner effect. This effect and the
absence of electrical resistance are the most important properties of a supercon-
ductor.

Surface current. Proceeding from the general laws of magnetic fields (see
Chap. 6) and taking into account the absence of a magnetic field in the bulk of a
superconductor, we may conclude that only surface current exists in it. From the
physical point of view, it is a real current flowing through a certain thin layer near
the surface. The magnetic field of the current neutralizes the external magnetic
field in the superconductor. In this respect, a superconductor behaves formally
as an ideal diamagnetic (see Sec. 41). However, it is not a diamagnetic since
magnetization inside it is equal to zero.

Soft and hard superconductors. The number of pure materials exhibiting
superconducting properties is not large. Most frequently superconductivity is
observed in alloys. The Meissner effect is observed to the fullest extent in pure
materials, while in alloys, the magnetic field is not expelled completely from their
volume (partial Meissner effect). Materials exhibiting complete Meissner effect
are called soft superconductors, while those in which the effect is partial are
ccalled hard superconductors.

In the bulk of hard superconductors, circular currents create a magnetic

field which, however, does not fill the entire volume of the conductor but is dis-
tributed in it in the form of individual filaments. As to the resistance, it is
equal to zero in hard as well as soft superconductors.
‘The theory of superconductivity. In its physical nature, superconductivity
is the superfluidity of a liquid consisting of electrons. Superfluidity sets in when
the energy exchange between the superfluid component of a liquid and its other
parts ceases, and consequently the friction vanishes. An important feature of
this process is the possibility of “condensation” of liquid molecules on the lower
-energy level separated from other levels by a sufficiently large energy gap which
cannot be surmounted by the forces of interaction. This is the reason behind the
termination of interaction. For the accumulation of many particles on the low-
-er energy level to become possible, it is necesary that they obey the Bose-Ein-
stein statistics, i.e. have an integral spin.

Electrons obey the Fermi-Dirac statistics and hence cannot be “accumulated”
-on the lower energy level to form a superfluid electron liquid. The repulsive
forces between electrons are compensated to a considerable extent by the
forces of attraction exerted by the positive ions of the crystal lattice. However,
an attractive force may appear between electrons due to thermal fluctuations
at the lattice sites, and then the electrons are combined into pairs. These ele-
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ctron pairs behave as particles with an integral spin, i.e. obey the Bose-Einstein
statistics. They may condense and form a current of superfluid liquid, viz. electron
pairs which form a supercurrent. Above the lower energy level there is an energy
gap which cannot be surmounted by an electron pair at the expense of the energy
of interaction with the remaining charges. In other words, the electron pair
cannot change its energy state and hence there is no electrical resistance.

—~\The possibility of the formation of electron pairs and their superfluidity is
explained by the quantum theory.

The large difference in the electrical conductivities of conductors, semiconductors and
dielectrics is due to a large difference In the carrier concentrations rather than fo a dif-
ference in the mobllity of charge carriers.

Example 31.1. The temperature dependence of resistance is quite essential for the operation of
many devices, as can be easily seen from the operation of an ordinary incandescent lamp. The fila~
ment of a lamp is made of tungsten, whose conductivity and radiant emittance M (the surface den-
sity of the radiant flux from the surface) can be represented I:y the following formulas in the temper-
ature range between 300 and 3000 K: ¢ = 0.95 X 101 7-1.28/m, M = 6.6 X 10-12 T°® W/m?,
where T is the thermodynamic temperature. Calculate the diameter d and the length 1 of a filament
if the lamp emits a power P at a voltage U and filament temperature T. Assume that the energy
losses due to the thermal conductivity of the filament are negligibly small. Estimate the precision
requirements for manufacturing the filament.

We have
U/ R S 2
k=\%-, R=— 5 P=nMid,
whence
g [4P2 U8 (yPU? \13
_( n2?U2M) -( 4nM? )

Since yM o< T%/8 and y/M3 0C T-11.2, the temperature dependence of the length and thick-
ness of the filament is rather strong. Therefore, the error in the diameter and length of the
filament during manufacturing considerably affects the temperature, and hence the spectral

comtposition of the' emitted light. Consequently, the precision requirements are quite strin-
gent.

Sec. 32. Electrical Conductivity of Liquids

The mechanismYof electrical cenductivity in liquids
is described and the dependence of electrical conduc-
tivity on various factors is considered.

Dissociation. Pure liquids are basically poor conductors of electricity. This
is due to the fact that they consist of neutral atoms and molecules whose mo-
tion cannot generate an electric current. However, the solutions of salts, acids
and alkalis are good conductors of electricity. It can be explained as follows.
The molecules of a dissolved substance dissociate, i.e. are decomposed into pos-
itive and negative ions. The ordered motion of ions ensures the transport of

15—0290
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electric charges, viz. an electric current. If the process of dissolution does not in-
volve a molecular dissociation, the solution is not a conductor.

Calculation of electrical conductivity. We denote by N = N(+)= N¢) the con-
centration of ions of each sign in a solution. For current density, we can write

j=q(®W 4+ b)) NE, (32.1)

where g is the value of the ion charge and b(*) and b(-) are the mobilities of
positive and negative ions (see (31.12)).

On the basis of (31.12), the drift velocity of ions is proportional to the field
strength:

v =y HE. (32.2)

Generally speaking, the positive and negative ions have different mobilities.
The mobility of positive ions in liquids is small and usually amounts to about.
10-7 m?/(V-s).

The ion concentration depends on the degree of dissociation which is char-
acterized by the dissociation coefficient o defined by the ratio of the ion concen-
tration NV to the concentration N, of the solute molecules:

N = aN,. (32.3)
Consequently, the concentration of undissociated molecules is
= (1 — a) N,. (32.4)

Dissociation and solvation, i.e. the combination of ions into neutral mole-
cules, occur simultaneously and continuously in a solution. At equilibrium, the-
intensities of these two processes that change the solution composition in oppo-
site directions are equal. The rate of variation of the concentration (dN/dt)
of each type of ions as a result of molecular dissociation is proportional to the
concentration N’ of undissociated molecules:

(@AN/dt) = B (1 — @) Ny, (32.5)

where B is the proportionality factor.

The rate dN/dt of variation of concentration ot undissociated molecules as a
result of ionization of molecules is proportional to the product of concentrations.
of*positive and negative ions:

(dN'/dt) = nadN?,, (32.6)
where 7 is the proportionality factor. At equi'ibrium,
dN dN’
(ar)=(%r)- (527)

Taking into account (32.5) and (32.6), we obtain a formula connecting the
dissociation coeﬁ@mnt with the concentration of the solute:

e f—a _ 1y (32.8).

a2 B
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Obviously, the dissociation coefficient depends on the concentration of the
solute. For a very low concentration (N, &~ 0), formula (32.8) gives

a=1, (32.9)
i.e. the dissociation is almost complete. If a < 1, we obtain from (32 8)
1/ B _1
a=1/L S (32.10)

In other words, a decreases with increasing concentration of the solute.
Taking into consideration Eq. (32.3), we can write (32.1) in the form

j =g &M+ dNaN,E. (32.11)

The mobility of ions does not depend on the electric field over a wide range of
the field strength. The deviation from the linear dependence of the field strength on
the drift velocity of carriers is observed only for a very large strength of the order of
millions of volts per centimeter, at which, in accordance with (32.2), the mobility
depends on the field strength. The value of a is also independent of E over a very
wide range. Consequently, formula (32.11) expresses Ohm's law for fields up to
o~ 108 V/em. Thus, the electrical conductivity of a solution is given by

v = g B+ b)) aN,. (32.12)

Dependence of electrical conductivity on concentration. For a not very high
concentration of a solution, the dissociation coefficient is constant. The sum of
the mobilities b(*) and b(-) of ions is also nearly constant. Consequently, for &
small concentration of a solution, its electrical conductivity is proportional to the
concentration. For large concentrations, the situation becomes much more complicated.
On the one hand, we must take into account the dependence of the dissociation
coefficient on concentration [see (32.8) and (32.10)], while on the other hand, the
ion mobility also begins to depend noticeably on concentration. In concentrated
solutions, the mobility of ions decreases as the electric interaction between ions
comes into play. Therefore, at high solution concentrations, a linear dependence
of the electrical conductivity on solution concentration is not observed.
Temperature dependence of electrical conductivity. As the temperature rises,
the dissociation coefficient increases since a more rapid motion of molecules
hampers solvation and facilitates dissociation (upon collisions). The viscosity of
liquids decreases with heating, and hence the mobility of ions becomes higher.
Consequently [see (32.12)], the conductivity of electrolytes increases with tempera-
ture, and may assume quite large values (exceeding the initial values by several
orders of magnitude).

Electrolytes. Since the current through solutions is due to the motion of ions,
the molecules of a dissolved substance are decomposed into components which are
liberated at the electrodes. This phenomenon is called electrolysis. The study of elec-
trolysis has played a significant role in the development of the theory of the
structure of matter. The laws of electrolysis discovered by M. Faraday are stud-
ied in detail in the course of secondary school physics. The conductors which
undergo electrolysis, i.e. are dissociated into ions, upon the passage of electric
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current through them are called electrolytes. Hence it follows that electrolytes
include many solutions of salts, acids and alkalis as well as a number of chemical
compounds in liquid and solid states.

An example of a solid electrolyte is glass which in its physical nature is a
supercooled liquid with a very high viscosity. It can be shown experimentally
that the Na* ions which are responsible for electrical conductivity of glass have
a noticeable mobility in it. When glass is heated, its resistance may decrease to
several millionths of its initial value. This can be illustrated by a very impressive
experiment. A glass rod connected to an electric power source is first heated
by the flame of a burner. The Joule heat liberated in the circuit contributes to
the heating of the rod. At a certain temperature (which is selected experimental-
ly) the burner is removed, and the further increase in the temperature of the
rod is only due to ohmic heating. The rate of change of temperature of the rod
is constantly increasing since the conductivity of glass increases with tempera-
ture, which, in turn, causes an even sharper increase in the temperature. As a
result of such an avalanche increase in temperature, the glass rod vigorously
melts and burns with a bright flash.

Sec. 33. Electrical Conductivity of Gases

Various mechanisms of conduction of current in gas-
es are discussed. The characteristic of current and the
role of volume charge are outlined

Self-sustained and non-self-sustained currents. A gas containing no charged
particles cannot conduct electricity. It becomes a conductor only upon being
ionized, when charge carriers appear in the form oi iree electrons,and ions. Pos-
itive ions may be singly or multiply charged depending on the number of lost
electrons. Negative ions formed as a result of addition of an electron to an atom
are usually singly charged.

In order to make a gas conduct, some external ionization factors ( a high tempera-
ture of the gas, ultraviolet and X-ray radiation, etc.) are required. 1f the field
strength is not high, the current through the gas ceases as soon as the extrinsic
jonization factor stops to operate. Such a current is called non-self-sustained.

If the field strength is sufficiently high, the field itself may cause ionization
as a result of which the gas becomes a conductor. The current appearing in this
‘case is called self-sustained. There is no unique universal dependence of current
on voltage for self-sustained currents. The situation is determined by specific condi-
tions. In particular, it may happen that a self-sustained current decreases with
increasing voltage.

Non-self-sustained current. Let us consider a non-self-sustained current in
greater detail. We denote by N the concentration of charges of each sign and by
(dN/dt)c, the rate of variation of the charge concentration due to an external
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source of ionization. The creation of charges is accompanied by their annihila-
tion as a result of recombination, i.e. mutual neutralization. After a sufficiently
long time, a dynamic equilibrium sets in, when the rate of charge formation and
the rate of recombination become equal. Obviously, in this case

N = N = N, (33.1)

where we assume for the sake of simplicity that ions are singly charged.
Clearly, the geombination rate must be proportional to the product of charge
concentration, i.e. N%. Hence, at equilibrium we have

(AN/dt)e, = —rN?, (33.2)

where r is the recombination coefficient.
By definition, the current density is given by

=i+ jO =g (N"v§’ + Nvi) = gN (v§" + v§”). (33.3)

The drift velocity of charge in an electric field is proportional to the field
strength:

vy = bE. (33.4)

The mobilities &* and b(-) of positive and negative charges are generally
different. Taking into account (33.4), we can write Eq. (33.2) as

j = (b + b)) NE. (33.5)

This formula resembles Ohm'’s law. However, it is equivalent to Ohm’s law
only when the coefficient of E does not depend on E and j. Generally speaking,
this coefficient for gases depends on the indicated quantities, and hence formula
(33.5) is not equivalent to Ohm's law.

If the number of ions recombining in 1 s is much larger than the number of
atoms reaching an electrode, we can use expression (33.2) under equilibrium
conditions for determining N in (33.5). This gives

j=q( cr

In order to find the conditions of applicability of this formula, we must bear
in mind that the mobility of ions in gases is of the order of 10~* m?/V.s, while
the recombination coefficient r ~ 1 m3/s. For example, if dN/d¢ is of the order
of 10'® ions/(m3-s) and £ = 10® V/m, the number of ions arriving at 4 m? of an
electrode during 1 s is given by

—'_(b“"-l-b" ]/1

If the distance between plane electrodes is 0.1 m, the number of ions recombin-
ing in the space between the electrodes per 1 m? of the cross-sectional area is
equal to 10'®, i.e. the condition of applicability of formula (33.6) is satisfied
in this case. The applicability of this formula for other values of parameters is
verified in a similar way.

(33.6)

| E =~ 2.108 m-2.g (33.7)
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Saturation current density. We denote by d the
distance between two plane electrodes. If the i:leld
strength is sufficiently high, so that all the ions
formed by an external source reach the electrodes
before they recombine, asaturation current appears
with density given by

R dN

jar=24 ()., (33.8)
glugt'agg&2231.:?;-1.51:&1-0:\1:{53;& The characteristic of current. In the.region of.in-
currents termediate electric fields, a part of ions has time

to recombine before they reach the 9lectrodes. The
equation for the balance of loss and creation of ions is written in the form

dy dNv vy _o, 33.9
(S )t (5 ) et (T)5=0 (33.9)
- Taking into account Egs. (33.2), (33.3), and (33.8), we get
jeat/q — rN?d — N (b 4 bO)E = 0. (33.10)
Considering that
s j = gN (0" + b)E, (33.11)
we can write (33.10) in the form of the following equation in j:
* + 2aj + 2ajsat =90, (33.12)
where
a=|q]| O 4 b)2E?(2rd). (33.13)
The positive root of Eq. (33.12) is
j=a (VI¥ Zpda—1). (33.14)

The dependence of the current density on o is shown in Fig. 130. In the lim-
iting cases (x<jsat and &> jg,1), Eq. (33.14) is transformed into (33.6) and
(33.8) respectively.

Expression (33.14) is called the characteristic of non-self-sustained current.
It is in good agreement with experiments if ion losses as a result of diffusion are
additionally taken into consideration.

Self-sustained current. If we continue to increase the electric field strength
at a current density nearly equal to the saturation value, the current den-
sity again starts increasing. This is so because before recombining with the
ions, the electrons existing in the gas have time to get accelerated by the field
up to energies at which they ionize the gas molecules by collisions. Consequent-
ly, the ionization rate becomes dependent on the field.The current appearing in
this case is called self-sustained current. The initial part of the characteristics
for this current is shown in Fig. 130 by the dashed line. It starts at a finite
value of a.

The effect of volume charge.’As was men tioned above, the mobilities of positive
and negative charges are different and &) is usually greater than b*). Con-
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sequently, the density of current resulting from the motion of positive charges
is less than that due to the motion of negative charges. Hence, the number of
positive charges reaching the cathode during a fixed interval of time is less than
the number of negative charges reaching the anode although the number of ions
formed is the same as the number of recombining ions during this interval of
time. Obviously, such a state gannot be an equilibrium state. The equilibrium
state is attained in the following way. As a result of the motion of positive char-
ges towards the cathode and negative charges towards the anode, an excess pos-
itive charge is accumulated at the cathode while negative charges are accumu-
lated at the anode. However, in view of a higher mobility of negative charges,
the excess negative charge at the anode will be larger than the excess positive
charge at the cathode. As a result of such a redistribution of charge concentration
and the change in the electric field associated with it, an equilibrium is estab-
lished, at which the numbers of positive and negative charges reaching the elec-
trodes become equal.

Mobility of charges. An ion having a mass m and charge ¢ moves in a uniform
agnetig field £ with a constant acceleration

JeJric a = qE/m (33.15)
and passes a distance
s = qE1*/(2m), (33.16)

during the time 7, the initial velocity being equal to zero.

If I is the mean free path of the ion in a gas for a random thermal motion and
v is its mean velocity, we can assume that T = !/v. The time and the mean free
path are defined in such a way that we can assume that during each collision
the ion completely loses its energy of ordered motion. Consequently, on the ba-
sis of (33.16), we can express the drift velocity as the mean velocity of ordered
motion in a direction collinear with the direction of the field:

va = s/t = qEv/(@2m) =qlE/(2my). (33.17)

The"'modiﬁcations introduced by the statistical distribwtion of I lead just to -

a small change in the numerical factor in (33.17). Hence, the mobility of ions
is given by

b = ql/ 2mv). (33.18)

This formula shows that the mobilities of positive and negative ions of the
same mass must be equal. However, the mean mobility of negative charges is higher
than that of positive charges since the mobility of negative charges is determined
not only by the contribution from negative ions but from electrons as well. The
mobility of electrons is significant due to their small mass, and this ultimately
determines the high mobility of negative charges.

Comparison of results with experiment. It follows from (33.18) that the mobi-
lity is inversely proportional to the gas density since the mean free path is in-
versely proportional to density. This conclusion is confirmed by experiments.

However, formula (33.18) on the whole does not explain the entire body of
experimental facts. In particular, the experimental values for the mobility are
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lower than theoretical values. In order to explain the discrepancy between the
theory and experiments Langevin took into account the polarization of ions ap-
proaching each other in collisions, owing to which the ions acquire additional di-
pole moments and the nature of their collisions changes. This circumstance in-
troduces considerable corrections into the formulas. In the framework of this
book, however, we shall not discuss this theory.

The presence of some external ionizing factor (high temperature of the gas, ultraviolet
radiatoin, X-rays, etc.) is essential fo make a gas conduct. For quite strong fields, however,
the gas is ionized by the field itself. The current generated in this way is called self-
sustained current. If external ionizing factors are present, the current is called non-self-
sustained current.

What is a self-sustained and a non-self-sustained curreni?

Why is a volume charge induced between two electrodes?

What is its effect? Due to what factors is the mobility of negative charges higher than
that of positive charges?

Sec. 34. Electric Current in Vacuum

Basic regularities of thermionic emission and their
manifestation during the passage of current betweer
electrodes in vacuum are discussed.

Thermionic emission. Electric current cannot exist in vacuumn if the latter
contains no charge carriers. If, however, electrons exist in vacuum, their mo-
tion generates an electric current which is called vacuum current.

Metals contain electron gas. In thermodynamic equilibrium, the distribution
of electrons over energy levels is described by the Fermi-Dirac statistics and is

given by

ni 1

s~ P B E—WIFT (34.1)
where B = 1/(kT), n; is the number of electrons having an energy E;, g; is the
number of quantum states corresponding to this energy, and p is the Fermi ener-
gy at temperature 7', which tends to the Fermi energy poat 7 =0as I -0 K,
in accordance with the formula

p=po[1—%(_’%)z+,. ]. (34.2)

Considering that in all cases of practical interest p>> k7, we may assume that
the quantity p in (34.1) is equal to p,.

Let E, be the energy of an electron at rest near the outer surface of a metal
(Fig. 131). Substituting E, for E; in formula (34.1), we can calculate the prob-
ability that the electron has the energy E,. This probability differs from zero,
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the more the higher the temperature (i.e. the sgall- E
er the value of §). Thus, near the surface of the me-
tal there is an electron cloud which is in equilibrium
with the electror gos in the metal. This equilibrium
is dynamic: the electrons in the metal, which have _
a sufficiently high kinetic energy, overcome the ’ Ho
forces which confine them within the metal and ——1p
become free. On the other hand, the electrons Vacuum Metal Vacuum
which are near the metal surface and have appro-
priate positions and directions of motion are cap- Fig. 131. Energy levels of free
tured by the forces which confine them to the electrons in a metal
metal. Thus, in dynamic equilibrium equal and
opposite currents flow across the surface of the metal. The total current across
the surface is equal to zero. The formatior of an electron cloud near the surface of
a metal due to the thermal motion of free electrons is called thermionic emission. At
0 K, no thermionic emission is observed, i.e. the electron cloud near the sur-
face of a metal does not exist.

The total energy of electrons having a kinetic energy Wy near the surface of a
metal is E; = Wy + E,, and formula (34.1) assumes the following form:

n |
T lw,~ exp B Wkt ONTT (34.3)

where ® = E, — p is the work function of electrons. It follows from this for-
mula that the electron cloud density near the surface of a metal strongly depends
on the work function @ and sharply decreases when the work function increases.

If an electric field exists near the surface of a metal, the electrons of the cloud
start moving and an electric current called the thermionic current is generated.
Thus, if two metallic plates to which a potential difference is applied are in
vacuum, a thermionic current flows between them. Thus current should obviously
increase with increasing potential difference. There exists a mazimum current at
which all the electronswhich get into the electron cloud acrossthe surface of the cathode
are entrained by the electric field towards the anode, and no reverse electron current
flows into the cathode through its surface. This maximum current is called the
saturation current. Any further increase in the potential difference between the
cathode and the anode does not alter the current since all the electrons supplied
by the cathode as a result of thermionic emission are involved in the generation
of electric current, and there are no other charge carriers for a further increase
in the current.

For metals, @ amounts to several electron-volts. The energy k7 is equal to a
fraction of an electron-volt even at a temperature of several thousand kelvins.
Consequently, p® > 1 and exp [f (Wx + ®@)] >1. Hence we can neglect unity
in the denominator of (34.3) in comparison with exp [p (W + ®)] and write
this formula in the form

L mem®RDg=Wi/RT), (34.4)
g Wy
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Thus, the saturation current strongly depends on the work function and tem-
perature since these quantities appear in the exponent. For pure metals, a sig-
nificant current can be obtained only at a temperature of the order of 2000 K,
i.e. metalswith a high melting point should be used for manufacturing cathodes. On the
other hand, it is desirable that their work function be as small as possible. For
example, pure tungsten whose work function is 4.5 eV should operate at a tem-
perature of 2500 K. For reducing the operating temperature of the cathode and
its work function, oxide-coated cathodes are used, in which a layer of oxides of
alkali-earth metals (e.g. BaO, SrO) is deposited on the substrate (base) with the
help of special technological processes. The cathode is then activated by passing
a thermionic current through it at a temperature of about 1300 K. As aresult,
the monoatomic layer of the alkali-earth metal is formed, which considerably
reduces the work function. For example, barium-strontium oxide-coated cath-
odes have a work function of about 1.8 eV, due to which considerable currents
can be obtained even at temperatures of about 1100 K. The current density
attained at such a temperature is of the order of 10* A-m-2. The barium-stron-
tium oxide layer is usually deposited on a nickel tube witha tungsten filament
inside it, used as a heater. Such a construction has an additional advantage over
a heated tungsten filament used as the cathode, since in the latter case a consi-
derable potential drop appears across the filament, and its surface will not be an
equipotential surface. The oxide layerin a coated cathode is an equipotential
surface, which considerably improves the operating conditions of the cathode as a
whole.

The characteristics of an electron cloud. The electron cloud near the surface
of a metal is described by formula (34.4). The number of quantum states in the
element dz dy dz dp, dpldp; of the phase volume is

¢=-pyr 42y dz dp. dp, dp.. (34.5)

Hence, the number of electrons in the element dz dy dz dp, dp, dp, of the

phase volume is represented in the form
2 =®/(RT) ,~P2/(2mRT)
dn = T © e ¢ dz dy dzdp,dp, dp,, (34.6)

where Wy = p¥(2m,).

The integration of (34.6) over dz dy dz yields volume V as a factor. Con-
sequently, the number of electrons in volume V, whose momenta are confined
in the element dp, dp, dp, near the momentum p,, p,, p,, is

dn, =[2V/(2xh)%] exp [ —D/(kT)] exp [— p*(2mkT)dp.dp,dp, (34.7)
where p? = px + pj + pi. Hence, we obtainTthe following expression for the
concentration of the electron cloud near the surface of a metal:

m= o { dny={zw | ex0 (=) § | §oxp (= 5257) dpwdp, dp,

- 00

1 ( 2mekT )3/2,exp (_

(01} 2
=z \"Tm kT )‘ (34.8)
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The average kinetic energy of electrons is
given by

pr \__ §[p¥C@meldnp, 3
Wy ={F=)= T, =T H-

(34.9)

Saturation current density. Let us direct the
Z-axis of a Cartesian system of coordinates nor-
mally to the surface of a metal (Fig. 132). The
electrons with the velocity component v, along Fig. 132. To the calculation of
the Z-axis only contribute to the saturation cur- the saturation current

rent density. The contribution to the current

density from an electron is equal to ev, = ep,/m,. Consequently, the satura-
tion current density is given by

¢ 2e [
Joat=—— S p.dn,= W]exp(—ﬁ)

pz>0
x §on (—2r) aoe | o (= g2h) amy § oo (= i) o,
-00 ~00 0

= e Trexp (—) »  (34.10)

= 2nhs
or
jsar=AT? exp [ —D/(kT)], (34.11)
where the constant

A = em i/ (2n?h®) = 1.2.108 A-m-2. K2 (34.12)

Equation (34.11) is called the Richardson-Dushman equation.
For an experimental verification, it is convenient to represent this formula
in the form

In (jegt/T?) = In A —®/(kT). (34.13)

The dependence of In (jga4/7%) on 1/T expressed by formula (34.13) is a straight
line (Fig. 133). Experiments confirm this form of dependence if we take in-
to account a slight variation of @ due to a decrease in p with temperature [see
(34.2)]. In accordance with (34.13), the slope of the curve can be used for deter-
mining the work function ®. The value of In 4 is determined by the point of
intersection of the straight line with the axis of ordinates. According to formula
(34.12), the quantity A should be a universal constant having the same value
for all metals. This conclusion is not confirmed by experiments. The value of A
slightly differs for different metals. For example, 4 = 1.1 X 108 A-m~2.K-?
for copper, 1.2 X 108 A-m-2.K-? for nickel, and 0.3 X 108 A-m~2.K-2 for
platinum. This variation of A is due to surface effects. Besides, the current den-
sities have different values for different faces of a crystal.
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Three-halves power law. Let us consider the dependence of the current flowing
in vacuum between two electrodes on the applied potential difference. We shall
assume that the electrodes are flat and direct the X-axis along the normal to
their surfaces (Fig. 134). The potential of the cathode is assumed equal to zero
(®, = 0), while the anode potential is denoted by U.

The main physical factor that influences the motion of electrons between the
cathode and the anode is the volume charge: the forces of interaction with this

InUga/T?
N Usat ) o d N
0 VT =0 e=1U,
Fig. 133. Temperature depen- Fig. 134. To the derivation of
dence of the saturation current the three-halves power law

charge hamper the motion of electrons from the cathode to the anode under the
action of the applied potential difference.

Suppose that the areas of the cathode and anode plates are sufficiently large
so that, while calculating the current density near the line connecting the cen-
tres of the electrodes, we can ignore the variation of quantities in the direction
perpendicular to this line. In other words, we shall consider a one-dimensional
problem, when all the quantities depend only on the z-coordinate. The Poisson
equation for the potential has the form '

d?@ Pe __nle|
= fe_nld (34.14)

where n is the electron concentration. The law of conservation of energy for the
electron drift can be written as

- md=e| (34.15)

where v, is the drift velocity at the point with a potential ¢. The volume cur-
rent density at this point is

il =n |e| vq4. (34.16)

All the quantities on the right-hand side of this equation are positive. Calcula-

ting the velocity vy from (34.15) and substituting the result into (34.16), we ob-
tain

nlel = |j] [mel(2 le] @)]/2. (34.17)
Taking this equation into account, we can transform Eq. (34.14) into
d2p/dz2=a/V o, (34.18)
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where a = (| j |/eq))/ me/@ | e |). Multiplying both sides of (34.18) by (d¢/dz) =
@, we obtain

99 =ag/V o, (34.19)
where the dots indicate the differentiation with respect to z. Considering that
$o=(99"/2 and o/ e=2(V9)", (34.20)

we write (34.19) as follows: ’
(%) =4a(V9)". (34:21)

Now we can integrate both sides of this equation with respect to z between 0
and the value of z for which the potential is equal to ¢. This gives

()= (L) =4V5, (34.22)

where we assume that @ (0) =0. The derivative (d¢/dz), characterizes the elec-
tric field strength near the cathode, and « is proportional to j. Consequently,

the volume current density j attains its maximum at (dg/dz), = O and then
{see (34.22)]

52 oV g, (34.23)
or

% —2Vads (34.24)

Integrating both sides of this equation between 2 =0, ¢ =0 and z = d,
¢ = U, we obtain

Usi=3aVa. (34.25)
Squaring both sides of this equation and considering that
a={(]jl/e)) V mI(2]el), (34.26)
we obtain
ljl =pU*2, (34.27)
where
4 2 1/2
=5 (Sc) ™", (34.28)

The solution of a similar problem for coaxial cylindrical electrodes or concen-
tric spherical electrodes leads to the same form of dependence of the volume cur-
rent density on the potential difference, viz. j is proportional to U to the power
of three halves. By the way, this dependence should be expected without cal-
culation from dimensional analysis. It follows from the Poisson equation writ-
ten in different coordinate systems that the coefficient p in all cases has the
same dimensions.
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In the absence of volume charge between the
cathode and the anode, the variation of the po-
1 tential follows a linear law (Fig. 135, line ). The
volume charge changes this dependence. Obvious-
= X ly, the volume charge near the cathode reduces

c the forces acting on electrons in the absence of
Fig. 135. Effect of volume charge volume charge, while near the anode these forces
on the potential distribution be- are increased. The variation of the potential
tween the cathode and the anode  between the electrodes taking into account the

volume charge is shown by curve 2.

The derivation of formula (34.27) is given under the assumption that elec-
trons leave the cathode at zero velocity. However, they may leave the cathode
at a finite velocity of emission. In this case, a current will exist even when there
is a small reverse field near the cathode. Consequently, the volume charge den-
sity may change to such values at which the potential near the cathode is re-
duced to negative values. In this case, the variation of the potential near the
cathode is described by the dashed curve C.

The deviation from the three-halves power law is observed at a sufficiently

high potential difference. This deviation becomes noticeable when the volume charge
density decreases so that it becomes impossible to maintain zero electric field nra-
the surface of the cathode, and hence the condition (d@/dz), = O under which this
law was obtained is violated. Upon a further increase in the field, the volume cur-
rent) density becomes independent of the potential difference (saturation cur-
rent).
The three-halves power law was considered here as an illustration of the non-
linear dependence between current and voltage. It is not of universal nature and
even in the case considered above it is valid only for a comparatively narrow
range of voltages and currents. The nonlinearity of the current-voltage character-
istic is the most important feature of many elements of radio- and electrical
engineering circuits, including the elements of solid-state electronics.

DQ .s

What is thermionic emission?
What causes the saturation current? What does it depend on?
Under what conditions are deviations from the three-halves power law observed?

Problems

5.1. The concentration of conduction electrons in copper is ny = 8.5 X 1022 cm-3. Find the
average drift velocity of conduction electrons for the current density j = 10 A/mm3,
5.2. A charge of | Q | coulombs was passed through an electrolyte. The mobilities of ions were
b(+) and b(-). Calculate the amount of electricity carried by positive and negative ions.
5.3. Two electrolytic baths with AgNO; and CuSO, solutions are connected in series. Cal-
culate the mass of silver liberated in the time during which 10 mg of copper are liber-

ated.
5.4. Electrolysis of AgNOg was carried out at the potential difference of 4 V. Find the electric

energy spent for the liberation of 100 mg of silver.
5.5. A conducting metallic ribbon of thickness a = 0.1 mm and width d = 5 cm is l.Flace»d
in a uniform magnetic field with the induction B = 1 T perpendicular to the surface of
the ribbon. The current I in the ribbon is equal to 1.6 A. Find the Hall voltage.
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5.6. The saturation current in a gas-discharge tube] with electrodes having a surface area
equal to 1 cm? and separation 3 cm isJgat = 107 A. The discharge is non-self-sustained.
Find tlie number of elementary charges of each sign induced per second in’1 cm® of the
tube volume.

Answers

b= 10l b Q|
1, v4=0.0736 cm/s. 5.2. IQ(+)I=W 1= = m. 15.3. 3 mg.

4. 3603, 5.5. 10 Vo 5.6. N ~22.1010 g=1.cmp=3,



CHAPTER 6

Stationary Magnetic Field

Stationary magnetfic field is due to electric currents. It cannot be
caused by the motion of an individual charge since in this case the
magnetfic field is necessarily varying. Nevertheless, we can use the
superposition principle to draw a conclusion about the field created
by an individual moving charge.

Sec. 35. Ampére’s Circuital Law

The differential form of Ampére's circuital law is
derived. The experimental verification of this law is
discussed,

Formulation of the problem. As in electrostatics, we have to obtain the laws
of magnetic field in differential form. In electrostatics this was done proceeding
from Coulomb’s law and the superposition principle as experimental facts.
Their integral form is given by the Gauss theorem from which differential
equation (13.20) follows.

In the case of a magnetic field we may, in principle, proceed in a similar way,

viz. from the Biot-Savart law (10.10) or (10.11) and the superposition principle
for a magnetic field as the experimental facts. Their integral form is called Am-
pére’s circuital law (in this chapter, we shall consider it for stationary fields),
from which the corresponding differential equation can be obtained. However,
we may take another route and continue the theoretical derivation of the laws
for a magnetic field from the laws for an electric field with the help of the theory
of relativity (see Secs. 8, 9). Thus, we proceed from formula (9.28) for the mag-
netic induction due to the current flowing in an infinite rectilinear conductor,
which has been obtained theoretically.
The integral form of Ampére’s circuital law. The lines of the magnetic field
generated by the current flowing in an infinite thin rectilinear wire are concentric
circles with their centres at the line of the current. The value of the induction is
given by formula (9.28). Let us calculate the circulation of the vector B

é’; B.dl (35.1)
L
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around a certain closed contour L enclosing the current I (Fig. 136). Since the
lines of B lie in the planes perpendicular to the line of current I, the contour L
should be chosen in one of such planes.

Evaluating the integral (35.1) with the notation shown in Fig. 137a, we obtain

AN\
B.dl=Bdl cos (B, dl)=Bdl,. (35.2)

By definition, do = dl,;/r. Taking into account formula (10.3), we write
(35.2) in the form

I
B.dl=12 - diy =% I de. (35.3)
This gives
{S}B-dl=§—;1§da=m{, (35.4)
b L

where we have considered that the integral of da over a closed contour around
the origin is equal to 2n. Consequently, the circulation of B around a closed

74
"
L
(b)
Fig. 136. Calculation of the cir- Fig. 137. Current I is perpen-
culation of vector B around a dicular to the plane of the figure
closed contour and is directed upwards. The

positive direction of circum-
vention coincides with the coun-
terclockwise direction.

contour surrounding the current does not depend on the shape of the contour and
is determined only by the current.
If a closed contour L’ does not embrace the current I (Fig. 137b), we.get

§ da=0, (35.5)
L i
16—0290
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i.e. the circulation of B around a closed contour which does not embrace the
current is equal to zero. Consequently, the obtained results can be formulated
as follows:

@B dl {p,I (the path of integration embraces the current),
® =
B

35.

0 (the path of integration does not embrace the current). (35.6)
Suppose that we have a large number of currents and the contour embraces a

part of them (Fig. 138). In accordance with the superposition principle, the mag-

netic induction at each point of the contour is equal to the sum of magnetic in-

ductions of the fields created by each current:

B=)B,. (35.7)
i
Substituting B into the left-hand side of (35.6), we obtain
S’B-dl =§(2 B,).d1=>) SB,-dl=2poIh=p,oI, (35.8)
L i i L k

where the subscript %4 denotes only the current embraced by contour L. The
currents which are not embraced by L make no contribution to the integral.
Consequently, the current I in (35.8) is the sum of the currents embraced by the
contour. Hence the Ampére’s circuital law for the general case can be formulated
as follows:

<§> B.dl=p,l, (35.9)
L

where I is the total current embraced by contour L. If the total current is equal
to zero, the circulation is equal to zero as well. Such a situation is realized not
only when the contour embraces no currents but also when the embraced cur-
rents flow in opposite directions and in total are equal to zero. For example, the
circulation of B around a contour embracing two currents equal in magnitude
and having opposite directions is equal to zero. The sign of the current I in
formula (35.9) is determined in accordance with the general rule (see Sec. 14):
if the direction of circumvention of contour L and the direction of the current
are related through the right-hand screw rule, the
7 current [ is positive.

} Otherwise, the current I has negative sign.
Expression (35.9) of Ampére’s circuital law
n for vacuum in stationary case is a direct con-
sequence of relation (9.28) and can be verified
experimentally. In the above analysis, this law
was verified for the current flowing in a straight
Fig. 138, Generalization of Am- inﬁpite conductgr. Let us show that it is also

pére’s circuital law to an arbit- valid for an arbitrary current.
rary system of currents. Differential form of Ampére’s circuital law. Letjus

e
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write formula (35.9) for volume currents. We denote by{S the surface enveloped

by contour L. As usual, the positive normal to the surface is connected with

the direction of circumvention of contour L through the right-hand screw rule.
The total current I flowing through this surface is given by

I={j.as, (35.10)
8

where j is the volume current density. Consequently, Ampére’s circuital law
(35.9) assumes the form

S B-dl=p, Sj-dS. (35.11)
L S

In accordance with Stokes’ theorem, the left-hand side of this equation can be
transformed to the surface integral:

5 B.dl= ScurlB~dS. (35.12)
L S

Then (35.11) can be represented in the form
S[curliB—poj].dS —o0. (35.13)
8

Integral (35.13) must be equal to zero for an arbitrary choice of the surface
S. Consequently, the integrand is equal to zero and

curl B = pj. (35.14)

This equation is called the differential form of Ampére’s circuital law. It is
of differential nature and is valid for any point. Hence it follows that it is valid
for an arbitrary field as well, although it} has beenf derived for the field gene-
rated by the current flowing in an infinite rectilinear conductor.

We can now prove that Ampére’s circuital law (35.9) is valid for arbitrary
currents and not only for rectilinear ones. In order to prove this, let us take ar-
bitrary currents and draw an arbitrary surface S bounded by a closed contour
L. Multiplying both sides of (35.14) by the element dS of this surface and in-
tegrating over dS, we find

{cur1B.as=p, |j.as. (35.15)
8 8

We transform the left-hand side of this equality with the help of Stokes’ theo-
rem (35.12) to the contour integral and express the right-hand side, with the
help of (35.10), in terms of the total current I crossing the surface. As a result,
(35.15) assumes the form (35.9). This proves that the law (35.9) is valid for
arbitrary currents and arbitrary contours. It should also be noted that while cal-
culating the total current with the help of formula (35.10) we can choose any

16+
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surface S streched over the contour L. Hence it
follows that Eq. (35.14) has been obtained from
Coulomb’s law, the superposition principle for the
electric field, invariance of charge, and formulas
of the theory of relativity. The Biot-Savart law
in the form (10.10) or (10.11) can be obtained from
(35.14) as a solution of this equation in the ab-
sence of currents at infinity [see (37.11¢)l.

Experimental verification of Ampére’s circuital
law. Ampére’s circuital law can be demonstrated and verified experimentally
to a nof very high degree of accuracy with the help of Rogovskii’s belt. It
consists of a flexible wire spiral made in the form of a belt (Fig. 139) whose ends
are connected to a galvanometer. The operation of the belt is based on the
Faraday’s law of electromagnetic induction (see Chap. 8): an electric current
appears in the circuit of the Rogovskii belt spiral upon a change in the mag-
netic field. The readings of the galvanometer are used to determine

Fig. 139. Rogovskii's belt.

S B.dl, (35.16)
b

where L is the contour coinciding with the axis of the Rogovskii belt spiral.

In order to demonstrate Ampére’s circuital law (35.9), it is sufficient to use
a Rogovskii’s belt in the form of a closed contour coinciding with the con-
tours L and L' (see Fig. 137). If the current is switched on, as shown in Fig. 137a,
the pointer of the galvanometer is deflected indicating that the integral is
equal to po/. In the case shown in Fig. 1375, the pointer is not deflected, which
means that the circulation of B around the contour L’ is equal to zero.
The derivation of the differential form of Ampére’s law by direct differentiation
of the Biot-Savart law. Formula (35.14) can be immediately obtained if we
take the curl of both sides of formula (10.11) expressing the Biot-Savart law.
On the right-hand side, this operation is applied only to the integrand since
the volume of integration does not depend on the variables with respect to
which the cur] is taken. In the integrand, j is independent of these variables
and only r and r depend on them. Taking the curl and integrating, we obtain
formula (35.14). These calculations can be made as an exercise.

It the permeability of a body exceeds the permeability of the medium, it behaves as a
paramagnetic; if it is lower than that of the medium, the body behaves as a diamagnetic.
The circulation of magnetic induction around a closed contour enclosing a current does not
depend on the shape of the contour and is defermined only by the current.

Example 35.1. Using Ampere’s circuital law, find the magnetic induction in a coarial cable
which is used for transmitting a direct current (Fig. 140). The current flows in a central core of
radius ry and returns along the sheath whose inner and outer radii are equal to r, and rg respec-
tively. The space between the core and the sheath is filled with a dielectric.
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Taking into account the axial symmetry of the mag-
netic field, we get from Ampére’s law

2n r
where I, is the current embraced by the circular contour
of radius r. The current density in the core is j; = I/(zr}).
Hence, for 0 < r < ry, we obtain I, = jynr2=1Ir?/r. Con-
sequently,
B = plr/(2nr}).

When r, <r<ry,, we have I, = I = const, and
hence

B = pl/(2nr).

If ry < r < rg, the contour embraces the reverse cur-
rent whose density is| Fig. 140. Coaxial cable.

jo=1/ln 3 — .
Then the current embraced by the contour for r, << r << rg and the magnetic induction are

given by
_ r2—r} ol r2—ri
L=I-1 r3—rg’ B= 2nr (1_ rg—rg )

Outside the cable, the magnetic induction vanishes.

Sec. 36. Maxwell's Equations for a Stationary Magnetic Field

Mazwell’s equations for the special case of a sta-
tionary magnetic field are formulated. The types of
problems involved are discussed.

Equation for div B. Let us calculate div B proceeding from formula; (9.30):

divB=-tol { div (i, x %) da’, (36.1)
-0

where the operation div is taken under the integral since the integration limits
do not depend on the variables with respect to which differentiation is per-
formed while calculating the divergence. It is expedient to write the variables
in Eq. (36.1) in the explicit form for convenience of further transformations.
Let B be the magnetic induction at the point (z, y, z), i.e. B = B (z, y, 2).
The calculation of divergence is reduced to differentiation with respect to
z, y, z. We denote the running coordinates of the points of integration in the
integrand of (36.1) by z’. Then

=i, (z—2') + Ly +iz, (36.2)
r=V @ —2rF P+ 2.
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In accordance with formula (A.15), we have

. r .
div (i, X5 - curl ip— i, curl —:—3-=O,

=r

(36.3)
since the first term on the right-hand side is equal
Fig. 141. A line of force is not to zero as i, is independent of the coordinates
:losed ,Whe!}ertge r;itlgh of ‘thel (z, y, z) with respect to which the differential is

Orus circumierence to € spira ] 1
pitch is an irrational nunfber. perfox:med during the evaluation of the curl. The
equality of the second term to zero can be proved
by a direct calculation of curl (r/r3)=0. The fact
that curl (r/r®) is equal to zero is a direct consequence of the central symmetry
of the field of vector r/r®. It can be easily shown that any centrally symmetric
field is a potential field. We leave it for the reader to prove this as an exercise.

Thus, the integrand in (36.1) is identically equal to zero, and hence

divB=0. (36.4)

From this equation, we conclude (see Sec. 13) that the lines of B do not
have sources. This means that there are no magnetic charges which would generate
a magnetic field in the same way as electric charges create an electric field. The
lines of B have neither beginning nor end. They are either closed or go to in-
finity. The absence of the beginnings and ends in such lines is obvious. How-
ever, there may exist unclosed lines contained in a finite region of space, which
nevertheless have no beginning and no end. Let us consider, for example, a torus
(Fig. 141), on whose surface a spiral is wound. If the ratio of the large circum-
ference of the torus to the spiral pitch is an irrational number, the field line
will never be closed and will be wound around the torus an infinite number
of times. Such a line is an example of an open line which does not have a begin-
ning or end and is contained in a finite region of space. The lines of field B
of this type can be easily obtained in experiments. For this purpose, we must
pass the current I, along the axis of the torus, perpendicularly to its plane
and the current 7, along the large circle coinciding with the axis of the spiral.
At a certain ratio between I, and 7,, the above conditions for the existence of
unclosed lines of B will be realized.

Maxwell’s equations. Equations (35.14) and (36.4) form a system of Maxwell’s
equations for the magnetic field generated by direct currents in vacuum:

curl B = pj, (35.5)

div B =0, (35.6)

The solution of these equations allows us to determine B provided that j
is known. The number of unknown scalar quantities in these equations is three
(Bxy By, B,), while the total number of scalar equations for determining these

unknowns is four (three scalar equations obtained from the first vector equation
\ and one scalar equation (36.6)). Thus, the number of equations is larger than

AN
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the number of unknowns. This, however, does not make the system overdeter-
mined (see Sec. 58).

The types of problems involved. Using Egs. (36.5) and (36.6), two problems
can be solved.

1. Knowing the magnetic induction, find the volume density of currents.

For this purpose, curl B must be calculated by using Eq. (36.5).

2. Knowing the density of currents, calculate the magnetic induction of the
field generated by them. For this purpose, the above equations must be solved
in unknown j’s. The methods of solution of these equations will be considered
later. Here, we note that for the case when all currents are concentrated in
a finite region of space, the solution is given by formula (10.11) expressing the
Biot-Savart law:

) iXr
B=to S XX gy (36.7)

The complex structure of the integrand and its vectorial nature make the cal-
culations quite cumbersome. For the sake of simplification, it is expedient
to introduce the vector potential.

The equation div B =0 shows that the magnefic field lines have neither beginning nor end:
they are either closed or go to infinity. These lines can also be concentrated Iin a finite
region of space, but in this case foo they do not have a beginning or end. This means
that there are no magnetic charges which would create a magnetic fleld in the same way
as electric charges create an electric field. There are four scalar equations (36.5) and {36.6)
for defermining the three components of the magnetic Iinduction vector. This, however
does not make the system of equations overdetermined {see Sec. 58).

Give an example of a line lying entirely in a finite region of space and having neither
beginning nor end.

Sec. 37. Vector Potential

The properties of the vector potential and its gauging
are discussed. The magnetic induction of an electric
current is calculated.

The possibility of introducing a vector potential. The identity div curl =0
which is known from vector calculus shows that the solution of the equation
divB =0 (37.1)
can be represented in the form
B = curl A, (37.2)
where A is the vector potential of a magnetic field.

Ambiguity of vector potential. A field with a given magnetic induction B can
be described by many vector potentials rather than by a single potential. In
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order to verify this, we shall prove that if the potential A describes a field with
magnetic induction B, another potential

Al = A + grad g, (37.3)

where y is an arbitrary function, also describes the same field B. For this pur-
pose, we calculate the magnetic induction B’ of the field described by the poten-
tial A"

B’ = curl A’ = curl A + curl grad § = curl A = B, (37.4)
since curl grad =0.

The ambiguity of vector potential is similar to the ambiguity of the scalar
potential in the electrostatic field theory, the only difference being that the scalar
potential is defined accurate to an arbitrary constant, while the vector potential is
defined to within an arbitrary function of a certain class.

Potential gauging. Since the potential is chosen ambiguously, we can impose
a certain condition on it. In magnetostatics, this condition is most frequently
chosen in the form

divA =0 (37.5)

and is called the gauging condition for the potential. Its role is similar to that
of the scalar potential in electrostatics. In particular, the arbitrariness in the
choice of the vector potential indicates that the vector potential plays only an auz-
iliary role and cannot be measured experimentally.

Equation for vector potential. Substituting (37.2) into (36.5), we obtain

curl curl A = pgj. (37.6)

It is known from vector calculus that
curl curl A = grad div A — V3A, (37.7)

and hence Eq. (37.6) assumes the form
VA = —pf, (37.8)

where gauge condition (37.5) is taken into account. Let us write Eq. (37.8) in
terms of coordinates:

VzAx = _l.lfojx, V2Ay = _Moiy| val = —‘pfojz. (37.9)

Thus, each component of the vector potential satisfies Poisson’s equation (see

Sec. 15). In particular, if all currents are concentrated in a finite region of

space, then by analogy with function (14.35) which is the solution of (15.14),
we can write the solution of Eqs. (37.9) in the form

jedV jy dV dv
A“=Z_J:S ]xr ’ Al’:-z_;:: S ]”r : A‘=% Slzf_. (37.10)

or, in vector form

'A=—an (L av. (37.11a)
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For a line current, we have

I " dl
A=t S d_t 5 | 4, (37.11b)
ioL

where L; are the contours of currents. The currents I; are generally different
in different contours. While integrating over the closed contour L; around a
particular current 7;, this current can be taken out of the integral as in the sum
of (37.11b).

Having found the vector potential, we can determine the corresponding mag-
netic induction with the help of formula (37.2).
Biot-Savart law. Using (37.2), we can obtain the following expression for
the magnetic induction from (37.11a):

B(z z) =12 S curl i@, ¥, 2) dz’ dy’ dz’,
@ ¥ 2= (Ve 1T W

where the coordinates of the point of observation at which the curl is calculated
and the running coordinates (z’, y’, z’) of the integration point are wiitten
explicitly. The curl operation involves the calculation of partial derivatives
with respect to (z, y, z). Taking into account the formula curl (pA) =
¢ curl A 4 grad ¢ X A of vector calculus, we obtain

i_ 1 . 1 .  jXr
curl = curl j+ grad —Xi="5

]

where curl j = O since j does not depend on the variables with respect to which

the curl is evaluated, and grad (1/r) = —r/r3. Consequently, we obtain the
formula
i X
B=1o S Ixr gy, (37.11c)

which expresses the Biot-Savart law. This completes the derivation of the
basic magnetostatic field laws from the electrostatic field laws with the help
of the theory of relativity.
The field of an elementary current. Let us calculate the vector potential and
the magnetic induction of the field created by an elementary closed current,
viz. the line current flowing around a surface with very small linear dimensions.
We shall choose the current loop in the form of a parallelogram with sides
i, Iy, 1y and I, (Fig. 142). We place the origin of coordinates at a point O of
the surface about which the current flows. The choice of the point O is arbitrary
since the loop and the surface are infinitely small. The potential is calculated
at the point characterized by the radius vector r. Using formula (37.11b), we
obtain
o dl
A=2Ler | &, (37.12)
Uylalsls

where a transition to rectilinear currents is made (j dV — I dl).
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Since the sides of the parallelogram are very small. we can assume that in the
integration of (37.12) over each side, the value of r is constant and equal, for
N

74 7.1

1

Fig, 142. Elementary current, Fig. 143. Calculation of the
difference in the distances from
two points.

example, to the distance from the point at which the field is determinedto the
middle of the side. Hence [see (37.12)],
—t (L A 1 4
Am=ge1(L ,S dl+ = IS i+ §dl+ o 15 a1)
1 2 8 4

_ 1 1 1 1
=g I (F+2+2+3). (6149

Considering that 1, = —Ig and 1, = —],, we find that

1, ly (4 __ 1y __ rs—ry ), h(=Iar) __ 1i(lyr)

" "_:—li("l "a)_l ( ,7‘1":1)~ r” - rs ’
ll li — i__i_ — r,—Ty _— l’ (ll'r)
?-l--r_;—lz ( ra L )_lz( Taly )— r ’ (37.14)

where we have considered that higher-order infinitesimals can be neglected in
calculations. For example, Fig. 143 shows the geometrical constructions used
for the calculation of the second group of equalities (37.14):

r, =1 +ry (37.15)
whence
rt=1%+r%+2,r, (37.16)
and hence
rR—rd=(—ry) (ry + 1) =11+ 2l-r, (37.17)
This gives
r‘\—r2=M ~ l-r/r. (37.18)

rytry
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Here we retained only the first-order terms in l,. Using the equalities of the
form (37.18), we obtain formulas (37.14). Taking into account (37.14), we
can write expression (37.13) for the potential in the form

A=%r—’a (I, (1-1)—1, (1)) (37.19)

In vector algebra, the following formula for the decomposition of a vector
triple product is known:

AX BxC=B(A:-C)—-C(A:B), (37.20)

which shows that the expression in the brackets in (37.19) can be represented
in the form

Ler) =1 (Ier) =r X I, Xx1))=(0, X1L,) Xr. (37.21)
Considering that
L xlL, =S8 (37.22)
is the vector element of the surface around which the current flows, we can
write (37.19) combined with (37.21) and (37.22) in the form

IS X
A=Fo =28 (37.23)

The quantity

IS = pm (37.24)

plays an extremely important role in magnetism and is called the magnetic
moment of elementary current. Its magnitude is equal to the product of the
current in the loop by the area bounded by the loop. Its direction coincides with
the direction of the positive normal to the surface.

We represent the vector potential of the elementary current in the form

A—lto PnXr

bo PmXre (37.25)
whence
BcurlA=Jo (3@nOr Pal (37.26)

This formula shows that the magnetic induction corresponding to the magnetic
moment decreases in inverse proportion to the third power of the distance, while the
magnetic induction of the field of the current element decreases in inverse proportion
to the square of the distance. This is due to the fact that the magnetic induction
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associated with the magnetic moment is the sum
of the magnetic inductions of the fields of cur-
rent elements having opposite directions and
separated by very small distances.

Example 37.1. Find the vector potential and magnetic induc-
tion of the field created by a rectilinear segment of a line con-
ductor of length L carrying current I.

It is assumed that this segment is a part of a closed
circuit. According to the superposition principle, this po-
tential is a summand in the total potential of the cur-
rent flowing in the closed circuit. Consequently, its cal-
.culation has a physical meaning even though an unclosed
direct current does not exist.

We place the origin of coordinates at the middle of
. . the segment under consideration and direct the Z-axis
Fig. 144. To the calculation of along the conductor (Fig. 144). Since the magnetic field
the potential of a finite region of a rectilinear current is axisymmetric, it is sufficient
of a rectilinear current. to calculate the induction at points in the ZY plane.

We shall characterize the coordinates of a point in this
plane by the distance r from the Z-axis and by the z-coordinate. It follows from formula
(37.11Db) that only the component A, differs from zero since the current flows in the direc-
tion of the Z-axis. Hence

L2
— Wl dz’ — Ml —2+L/2+[(z—L/2)*+-r?]1/2
" LS,,, e = | STt e e T
The magnetic induction can be calculated by the formula

B = curl A,

which should be written in cylindrical coordinates. The only nonzero compo-
nent of magnetic induction B is By where ¢ is the axial angle of the cylindrical
system of coordinates. This component is given by

By = —0A ,/or. (37.28)

At the points on the plane ZY in the figure, the component B, is perpen-
dicular to this plane and is directed towards negative values on the X-axis.
Using formula (37.28) together with (37.27), we get

_ Cmd [ —atL2 s+ L2
Bo= —oJor= 2 | G omrm t FrGrLaE ] G129)

For a very long straight conductor, we find from (37.27) and (37.29)

A, (L—o0) = — 2L 1n r 4 const, (37.30)
By (L—>o0o) =-Hol. (37.31)

Examiple 37.2. Find the vector potential and the magnetic induction created by the current flowing
in a coazial cable (Fig. 140), assuming that the material of the conductors and the space between
them are nonmagnetic.
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The potential satisfies Eq. (37.8). In view of axial symmetry, it is convenient to use the
cylindrical system of coordinates, whose Z-axis coincides with the axis of the cable. Obvious-
ly, the potential does not depend on z and the axial angle ¢, i.e. A = A (r). Besides, if only
the component j, of the current density differs from zero, then the required component A
of the vector potential will have a nonzero value. Let us denote this component by A an
use the subscripts indicating to which region this component corresponds, viz. Ay, 4,, 43,
and A4, are the vector potentials in the regions (0, ry), (ry, 1), (rs, rg), and (rg, oo) respec-
tively. Then [see (37.8)]

V2A1=-%-i (r dﬂ): Bol o<r<r),

dr dr nr}
VzAg =0 ("1 <r<< 1'2).
1 d d4 wol
24, == e — 3 )— 0 .
Vids r dr (r dr ) n(rg—ri) (re<r<rs), (37.32)
Vi4,=0 (rs <r << o),

where .
j1=1/@r}), js =0, jg = I/l§ — r3l, j, = 0.
The solution of Egqs, (37.32) is given by
_ Irt

4,= e +C lnr4-C;, O<r<ry,

dg=Cglnr4C; Pr<r<ry), (37.33)
H ’

Ag= olr +Cslnr4-Cy (ra<r<rg),

4n (rg—rj)
Ay=C7lnr4C, (rg <r << o).

We find the magaetic induction from the formula B = curl A, which in the case under
consideration is reduced to the expression B, = —dA/dr.

Since B, is the only nonzero component of the magnetic induction, the subscript ¢ will
be omitted in the further analysis. The subscripts will indicate the regions to which the value
of B corresponds. Then

17 nrt r

Since B, is finite for r = 0, we conclude that C; = 0. We choose for the normalization
condition 4, (0) = 0. This gives C; = 0, and hence the equations for 4, and B, assume the

(37.34)

form
Ay = —poIr/(4nr}), By = poIr/@nr}). (37.35)
For the region r; << r << r;, we obtain
By== ==Cy/r. (37.36)

Using the boundary conditions for B and considering that p = p,, we obtain B, (r;) =
B, (r) = —Cs/ry = pol/(2mry). Consequently, Cg = —poI/(2n).

Let us write the continuity equation for the vector potential for r=r; in the form Cs In ry-+
C, = —uol/(4m), which leads to the equation C, = —poI/(4n) + [pol/(2x)] 1n ry. Hence
the equations for the vector potential and the magnetic inauction for ry << r < r, become

S Y R L N 1Y § Y
dg=—g 1o a0 BT ony (37.37)
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The magnetic induction in the cable sheath (r, << r << rg) I8 given by

B.= aA, _ p.oI r Cg
3 or —  2n(rj—rd) r
Using the boundary conditions Bj (ry) = Bg (rp) and A, (ry) = A4 (r2), We obtain
— polr}
Cv= = =P -
polr3 polrs Pol 1 T
=== T mI—r) e -,

whence

el T r3—r2 T T2
Aa— 4 [ +r§ nrg +2ln rl]'

(37.38)
By Bl (=1
2nr (rg—r2)
Usm% the boundary conditions for r = r;, we find the following equations for the vector
potential and magnetic induction for r, <r< oo:
= _bi [ Is '_:] =
A= = In . +In ™ const, (37.39)
B,=0,

Sec. 38. Magnetic Field in the Presence of Magnetics

The influence of a magnetic on the magnetic field and
various mechanisms of magnetization are considered.
The relation between the volume and surface densities
of molecular currents and the magnetization is derived.
The phenomena at the interface between magnetics
are discussed and the measurement of magnetic induc-
tion in a magnetic is considered. The essence of mag-
netic screening is elucidated,

Definition. Magnetics are substances which, upon being introduced into an external
magnetic field, change so that they themselves become sources of an additional mag-
netic field. The total magnetic induction in this case is the sum of the inductions
of the external magnetic field and the magnetic field generated by the mag-
netic. The change in the state of a magnetic under the action of an external mag-
netic field, as a result of which the magnetic itself becomes a source of a mag-
netic field, is called magnetization of the magnetic. This phenomenon was
experimentally discovered in 1845 by Faraday for a wide class of materials.
He also established the existence of dia- and paramagnetic bodies for which he
introduced these terms.
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Mechanisms of magnetization. There are several mechanisms of magnetization.
Accordingly, magnetics are divided into dia-, para-, ferro-, and ferrimagnetics.
Antiferromagnetics also belong to magnetics although they do not create a magnetic
field in the space surrounding them (see Chap. 7).

In all cases, the intensity of magnetization is quantitatively characterized
in a similar way. In other words, under the action of a magnetic field, all volume
elements acquire a magnetic moment. This can be realized through the following
mechanisms.

1. When a magnetic is introduced into a magnetic field, the motion of elec-
trons in atoms and molecules varies so that a total circular current oriented
in a certain way appears. This current is characterized by a magnetic moment
[see (37.24)]. It can be said that the molecules of the magnetic introduced into the
magnetic field acquire an induced magnetic moment. As a result, they become the
sources of an additional field whose induction is defined by formula (37.26),
i.e. the substance is magnetized. Such substances are called diamagnetics.

2. The motion of electrons in molecules can be such that the molecules will
have a magnetic moment even in the absence of a magnetic field, i.e. the mole-
cules possess a permanent magnetic moment. Owing to this, each molecule is
a source of a magnetic field. In the absence of an external field, the magnetic
moments of different molecules are oriented quite randomly so that the total
magnetic induction of the field created by them is equal to zero. In other words,
infinitely small elements of the body are not the sources of a magnetic field, and
the body is not magnetized. When such a magnetic is introduced into an external
field, the permanent magnetic moments of individual molecules are reoriented in
the direction of the magnetic induction of the field, as a result of which the preferred
direction of orientation of magnetic moments is singled out. In this case, infinitely
small physical volumes acquire a magnetic moment equal to the sum of mag-
netic moments of molecules contained in the volume and become the sources
of a magnetic field. The magnetic is magnetized. Such materials are called
paramagnetics.

3. Magnetization of ferro- and ferrimagnetics is due to the fact that elec-
trons have a magnetic moment which is in a certain relation with their intrinsic
angular momentum, viz., the spin. Magnetization of this class of magnetics
is associated with a certain orientation of spins and is called the spin mag-
netization. The explanation of spin magnetization is beyond the scope of the
classical theory of electricity and magnetism and is possible only in the frame-
work of the quantum theory. For this reason, in this book we shall only
describe the most important properties of this class of magnetics without
presenting a quantitative theory. The theory of magnetic field in the presence
of magnetics considered below refers only to dia- and paramagnetics unless the
opposite is stipulated.

Magnetization. This quantity is defined as the ratio of the magnetic moment
of an elementary physical volume to this volume:

1
J=W 2 pmh (38.1)
AV
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where AV is the elementary volume and py,; are
the magnetic moments of molecules. The sum-
mation is performed over all the molecules in
volume AV.

In other words, definition (38.1) of magnet-
ization can be formulated as follows: magnet-
ization is the volume density of the magnetic mo-
ment of a magnetic. It follows from (38.1) that the

fﬁg' 145. To thfe d"ﬁ:“ﬁ‘in °§ magnetic moment of a volume element dV is
e expression Ior e volum given by

density of molecular currents.

dpm = J dV. (38.2)

Vector potential in the presence of magnetics. It is equal to the sum of the
potential A, created by the conduction currents and the potential A,, created
by the magnetic as a result of magnetization:

A=A, + Ap. (38.3)
On the basis of (37.11), (37.25) and (38.2), we can write

Ag=to S Lay, (38.4a)

Am=%5 IXr gy, (38.4b)

Volume density of molecular currents. It was mentioned above that the appear-
ance of magnetic moments is associated with the presence of circular currents.
The currents creating magnetic moments of the required magnitude in element-
ary volumes are called molecular currents. However, it would be wrong to attach
a too literal meaning to this expression. In a strict sense of the term, molecular
currents may flow only within molecules. While defining magnetization and
other quantities, averaged quantities are meant, owing to which the magnetic
moments of molecules are as if continuously smeared over the entire volume and
molecular currents are assumed to flow over the volume of a magnetic as in a con-
tinuous medium. Nevertheless, the term “molecular currents” was retained for
them.

Let us consider a very small closed contour L bounding AS (Fig. 145) and
calculate the circulation of the magnetization around the contour:

S J.dl= SJ,dz, (38.5)
b

where J is the tangential component of J along the path of integration. It is
created at the expense of current flowing in closed contours around the line
along which the integration in (38.5) is performed (Fig. 145; 8S is the area
over which the current flows in the plane perpendicular to the line of inte-
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gration). Multiplying the numerator and deno-

minator in (38.5) by 85, we make the following 2 ‘E—'—D—"
transformations:

S J.odl= si'J, o =S ’33":5 e (38.6) 74 % /%
L L L L

where we took into consideration formula (38.2). ﬂilg.f 146-1T<; tt}&‘l del‘i}’ati%n of

From the definition of the magnetic moment, we o of crrrente. o oce fe
. . . y of currents.

obtain dpy, = 6I8S (81 is the current flowing

around the area element 85 over the length dl, 87 intersecting 65 along the
normal). Hence,

[deme— (808 — [or=ar,, (38.7)
L L L

where Al is the normal component of the current crossing the area element AS.
Thus, taking into account (38.6) and (38.7), we represent (38.5) in the form

j J.dl=AI,, (38.8a)
L

Let us find the component of curl J in the direction of the normal to the area
element AS. Using the definition (14.6) for the curl and Eq. (38.8a), we obtain

{3.a1
curl, J = lim £ — lim &fn _; (38.8b)
"7 as.0 AS aswo B8 Jmne '
The quantity
. . AI
]mn=Alsl_liﬂ0 A; (38.9)

is obviously the normal component of the density of molecular currents since
precisely these currents are responsible for the magnetization. Equation (38.8b)
is valid for an arbitrary orientation of the area element AS, i.e. for any com-
ponents of curl J and J,,. Consequently, the following vector equation holds:

jm = curl J, (38.10)

This formula gives the expression for the volume density of molecular cur-
rents which generate magnetization J.

Surface molecular currents. Molecular currents may also flow over the interface
between magnetics or over a magnetic-vacuum interface.

Figure 146 shows the interface between magnetics I and 2. All quantities
referring to magnetics 7 or 2 are marked by the subscript 7 or 2. Let us draw
a contour L in the plane perpendicular to the interface. The parts of the contour
parallel to the interface are equal to I, while the perpendicular parts are very
small and tend to zero. This contour bounds the area S of the surface perpen-
dicular to the interface between the magnetics. Suppose that the element dS
17-0290
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of this area is directed away from us for a chosen direction of circumvention
of the contour. Multiplying both sides of (38.10) by dS and integrating over S,
we obtain

S curl J-dS = | j-ds. (38.11)
S

The left-hand side of (38.11) can be transformed in accordance with Stokes”
theorem to the integral around the contour L, which gives

S curl J.dS = S Jodl = (Jpg—J10) I+ (Dyat Aljars (38.12)
L L

wheie J,, and J,, are the magnetization components in the first and second
media, which are tangential to the path of integration. The minus signof J,,
has appeared because of the reversal of the integration path in the second me-
dium. The quantity (J )ja4Alja¢ takes into account the integrals over the ver-
tical parts of the path. There is no need in writing these integrals in detail since
they vanish as the horizontal regions of the integration path are contracted
to the surface. The right-hand side of (38.11) gives the projection of current
onto the direction of the normal to surface S. This direction is also tangentiak
to the interface between the magnetics, and hence

{ im-dS = Al gure- (38.13)

Taking into account (38.12) and (38.13), and dividing Eq. (38.11) by I, we
obtain
Jl‘l: -_ Jz-[ + (J )latAllﬂt/l = AIm.g“rt/l = im'surf, (38-1.4)

where
imsurt = Al surt/! (38.15)

is the projection of the surface current density onto the direction perpendicular
to surface S. Contracting in (38.14) the contour to the surface (Aljy —0),

we obtain
Jox — Jiz = im.surt- (38.16)

This formula is valid for an arbitrary orientation of the contour relative to
different directions along the interface. Consequently, it is more convenient
to write it in vector form. Let us denote by n the unit normal to the interface,
which is directed into the second medium (Fig. 147). It is clear from Fig. 147
and from the meaning of the quantities appearing in the above formulas that
expression (38.16) can be written in vector form as follows:

im=nx (J, —J,). (38.17)
Uniformly magnetized cylinder. By way of an example of calculation with

the help of formula (38.17), let us find the surface density of molecular current
in a uniformly magnetized cylinder (Fig. 148), which can be realized in the
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form of a permanent magnet. Although the nature of ferromagnetism explain-
ing the existence of permanent magnets cannot be understood in the framework
of the classical theory of magnetism, the field created by magnetized ferromag-
netics in space can be described with the help of the classical theory. In this case,
magnetization of a ferromagnetic which is assumed to be known is considered to be
a source of a magnetic field in the same sense as the magnetization of dia- and para-
magnetics is a source of a magnetic field. The magnetization of dia- and paramag-
netics exists only in the presence of an external field. The magnetization of ferro-
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Fig. 147. To the derivation of Fig. 148. Surface molecular cur-
vector form of the expression rents flowing over a uniformly
for the surface density of molec- magnetized cylinder.

ular currents.

magnetics is retained in the absence of an external field, and the field generated by
this magnetization exists independently. The problem consists in the description
of this field.

A uniformly magnetized cylinder can also be imagined as a dia- or paramag-
netic placed in an external field which ensures constant magnetization with
a sufficient degree of accuracy. In this case, the induction of not the total field
but only its part associated with magnetization is determined in the space out-
side the cylinder.

The magnetization J; of the cylinder is shown in Fig. 148 by the arrow.
In vacuum J, = 0, and the normal n to the interface is the outward normal
to the cylinder. In accordance with formula (38.17), the surface density; of the
molecular current flowing over the cylinder is given by

in=-nXJ =1J xn (13.18)

One of the lines of this current is shown in Fig. 148 by the circle with the
arrows. Obviously, magnetization J; forms a right-hand screw system with the
current flowing over the surface of the cylinder. Formula (38.10) shows that
there are no molecular volume currents inside the cylinder since curl J, = O.
Consequently, the entire field outside the cylinder is created by the surface
currents flowing in circles. Thus, we have proved the equivalence of the field
of a permanent cylindrical magnet and the field of circular currents (the field
of a solenoid). This statement is valid for all magnetics, including ferromag-
netics.

17+
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Magnetic field strength. In the absence of magnetics, the following relation
is valid:
curl B = pj.

This relation describes the generation of a magnetic field by conduction cur-
rents. In the presence of magnetics, a field is generated by molecular currents
im and by conduction currents j [see (38.10)]. Consequently, in the presence of
magnetics Eq. (38.18) can be written in the form

curl B = po G + jm) = po (j + curl ). (38.19)
Dividing both sides of this equation by p, and transferring curl J to the left-
hand side, we obtain
curl (B/p, — J) = §, (38.20)
where
H=B/p,—7J (38.21)

is the magnetic field strength. It is not a purely field quantity, since it includes
vector J which characterizes the magnetization of the medium. Hence, the vec-
tor H plays in the magnetic field theory the same role as the vector D in the electric
field theory, and the term field strength applied to it is not quite correct. Never-
theless, this term is historically used for this quantity.
Equation for the magnetic field strength. Taking into account (38.21) we can
write Eq. (38.20) in the form

curl H = j. (38.22a)

This is a very convenient equation for calculating the magnetic field in the
presence of magnetics.

In the presence of magnetics, Ampére's circuital law is derived in the same
way as in the absence of magnetics, viz. by proceeding from (35.14) with a subse-
quent transition to (35.15):

{H.a1=1. (38.22b)
L
Relation between magnetization and magnetic field strength. For the same
historical reasons as those concerning the term magnetic field strength for the
vector H, this vector and not B was assumed to be the source of magnetiz-
ation. Hence the relation between J and H is represented in the form

J = yH, (38.23)
where y is the magnetic susceptibility. The relation between B and H is usu-
ally written in the form

B = pH, (38.24)

where p is the permeability of the medium. These quantities do not depend
on B and H in the case of dia- and paramagnetics. In order to find the relation
between 4 and p, we substitute (38.23) and (38.24) into (38.21) and cancel H
from both sides of the tobained relation:

1= plpe — 1 (38.25)
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or
X = (0 — wo)po = pr — 1, (38.26)

where p, = p/p, is the relative permeability of the medium. It should be noted
that in the Gaussian system of units, the permeability is expressed by a num-
ber equal to 1/4n of the corresponding value in SI.

Different mechanisms of magnetization lead to different dependences of J on H
(see Chap. 7). Here, it should only be noted that magnetization in diamagnetics
is directed against H. In diamagnetics x << 0 [see (38.23)], and hence, in accord-
ance with (38.26), the permeability u << po (u, << 1). This means that the field
generated by a diamagnetic is directed against the initial field, i.e. a diamag-
netic weakens the external field. The magnitude | y | of their susceptibility is
very small (of the order of 10-%). The magnetic susceptibility of diamagnetics
is independent of temperature. Diamagnetism is exhibited in all substances.

In paramagnetics, J coincides in direction with H. In this case, y >0, p > p,
and p, > 1. The additional field in paramagnetics coincides with the initial
one. Consequently, a paramagnetic strengthens the field. The susceptibility %
of paramagnetics is temperature-dependent. At room temperature, the paramag-
netic susceptibility of materials in the solid state is of the order of 1073, i.e. is two
orders of magnitude higher than the diamagnetic susceptibility. Consequently, the
role of diamagnetic susceptibility in paramagnetic materials is small and can
be neglected.

In ferromagnetics, the vector J is directed along H and has a very large mag-

nitude. For these materials, 5 > 1 and p > p,. A typical feature of ferromag-
netics is that the values of 4 and p depend on the field and the past history of
magnetization. For this reason, they exhibit residual magnetization, i.e. the
magnetization of a sample, on the whole, is preserved even after the external field
has become equal to zero. In their formal properties, ferromagnetics are similar to
ferroelectrics (see Sec. 23).
Field in a magnetic. In vacuum, J = 0 and formula (38.21) allows us to define
the magnetic field strength in vacuum by the equation H, = B/p,. The con-
duction currents generate-a field H in an infinite homogeneous magnetic [see
(39.22)]. Equation (35.14) can be written in the form

curl H, = j. (38.27)

A comparison of (38.22) with (38.27) leads to the conclusion that identical
conduction currents excite identical magnetic fields in vacuum and in an in-
finite homogeneous magnetic

H = H,. (38.28)

Consequently, the magnetic inductions B in a magnetic and B, in vacuum are
connected through the following relation:

B = HBo/p«o = p’)‘BO‘ (38-29)

This relation shows that the magnetic induction in diamagnetics is smaller
than its counterpart in vacuum (u, << 1) and larger in paramagnetics (n, > 1).
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If all magnetics and conduction currents are located in a finite region of space
and both the conduction currents and magnetizations of all the magnetics are
defined as position functions [J = J (z, y, z)], the magnetic induction may,
in principle, be found in a fairly simple way. The vector potential can be re-
presented in the form of formulas (38.3), (38.4a) and (38.4b) which can be writ-
ten in a more convenient manner. It can be said that the vector potential A
is the sum of the potentials created by conduction currents (38.4a), molecular
currents (38.10) and surface molecular currents (38.17). All these currents create
potentials in accordance with the same law (38.4a). Hence, the formula for the
potential has the form

r

b J curl J p X (J;—J,)
A=to (dev-ké v+ § 2xhi=ld g5),  (38.300)

where the last integral takes into account surface molecular currents, and S
corresponds to the sum of the interfacial areas between magnetics.
However, the simplicity of determining the potential with the help of (38.30a)
is apparent since the potential can be found if only J is known. This quantity
is, however, unknown in many cases and its determination is fraught with
considerable difficulties.
Permanent magnets. These materials are either ferro- or ferrimagnetics, and
hence the theory described above is inapplicable to them. Nevertheless, the for-
mulas obtained above can be formally used for calculating the potential of the field
created by permanent magnets in the surrounding medium. The magnetic prop-
erties of permanent magnets, as well as of magnetics, are characterized by their
magnetization J, which generates the field in the same way as if it were the
magnetization of a dia- or paramagnetic. Consequently, using formula (38.30a),
we can write the following formula for the vector potential generated by a per-
manent magnet:

Wo curlJ o JpXn
Ay=to S @il gy 4 Lo [ JoX0 4, (38.30b)
5

In particular, if the magnetization of a permanent magnet is uniform over the
entire volume, the first term in (38.30b) vanishes, and the entire magnetic
field is as if created by currents flowing over the surface of the magnet in accord-
ance with the second integral. However, there are no real currents flowing
over the surface of a permanent magnet. In the case under consideration, they
are just auxiliary quantities for calculating the field strength. The physical
content of the auxiliary nature of these quantities can be grasped from the
following example. Suppose that we have a permanent magnet in the form of a
long cylinder, creating a certain field in the surrounding space. By an appropri-
ate choice of current in a cylindrical solenoid of the same length and diameter
with a sufficiently tight winding and a para- or diamagnetic core, we can create
a field in the medium surrounding a magnetic whose magnetic induction will
practically coincide with the induction of the field of the permanent magnet.
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‘The current flowing in the solenoid through thin

wires can be treated as a surface current flowing B
over the surface of the permanent magnet. This is 1

the mathematical meaning of the second term

on the right-hand side of (38.30b). The fictitious N B \Q

nature of this current is revealed when the question \ N §\J

about the field in a magnet and in a solenoid is \\ NN
TB

H,

H=H

considered. These fields turn out to be different. H
When permanent magnets are considered, the 1 0

equation div B = 0 for magnetic induction re-

mains unchanged, while the equation relating Fig. 149. Magnetic field in the

the induction with the magnetic field strength Presence of a ferromagnetic.

somewhat changes. A permanent magnet is an

additional source of the magnetic field, and hence we must write the equation

B = lJloH + p:oJ '+' l.l:on, (38-31.3)

instead of (38.21), where J, is the magnetization of the permanent magnet. Con-
sidering that poH 4 poJ = pH, we obtain

B = uH + poJyp. (38.31b)

It should be noted that p in this formula is only the diamagnetic and para-
magnetic permeability of a substance rather than the ferromagnetic permeability
that has already been taken into account by the term poJ,. Consequently, if
we treat Jy, as the total magnetization (Jioy = J 4+ Jp), it is more convenient
to represent (38.31a) in the form

B = uoH + polior. (38.31¢)

Let us consider, for example, a permanent magnet in the form of a plane plate
of a finite thickness and infinite area (Fig. 149). The permanent magnetization
Jp is normal to the surface of the permanent magnet. Dia- and paramagnetic
properties of the permanent magnet are disregarded.

Suppose that outside the permanent magnet, a magnetic field of strength H,
is perpendicular to its surface. The magnetic induction of this field inside and
outside the magnet is the same: B = poH,. Then [see (38.31c)], poH, = pH +
to/p. Hence the magnetic field strength inside the permanent magnet is
(see Fig. 149)

H = Ho —_ Jp.

Boundary conditions for the field vectors. Vectors B and H undergo abrupt
changes at the boundary between magnetics with different values of p, which
are characterized by the boundary conditions. In order to derive these con-
ditions, we proceed from Eqs. (36.4) and (38.22) which are valid for vacuum as
well as for a medium filled with a magnetic. The procedure for deriving the
boundary conditions is precisely the same as in the case of an electrostatic field
[see Sec. 17, (17.21) and (17.30)].

The boundary condition for the normal component of vector B. This condition
is derived in the same way as (17.21) is derived by proceeding from (17.17),

’
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but instead of (17.17) we now use the equation
div B = 0. (38.32)
This gives

| By, =B,,. | (38.33)

The boundary condition for the tangential component of vector H. It is derived
in the same way as (17.30) is derived from (17.29), but instead of (17.29), the
following equation should be used:

S H.dl= Sj-dS, (38.34)
ABCD , 8

which is obtained from (38.22) by multiplying both sides by dS and integrating
over the area bounded by the contour ABCDA (see Fig. 83), having transformed

—° M=o
2210277
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=n

24
7777747477

H=

A D
Fig. 150. Measurement of mag- Fig. 151. Field of a very long
netic induction with the help of solenoid.

Faraday’s law.
its left-hand side in accordance with Stokes’ theorem. As a result, we obtain

Hyy— Hyx =lsurt, (38.35)

where ig,¢ is the surface current density in the direction perpendicular to that
of the tangential components of the magnetic field strength. It should also be
kept in mind that these are surface conduction currents rather than surface
molecular currents i, [see (38.16)].

Refraction of magnetic field lines. At the interface between magnetics, the
lines of force experience refraction which is determined with the help of the
})fug;i)ary conditions in the same way as it was done in the analysis of formula

7.31).

The measurement of magnetic induction. The most visual and simple method
for measuring magnetic induction is based on the application of Faraday’s
law of electromagnetic induction. If a small conducting loop (Fig. 150) con-
nected to a galvanometer is oriented in a plane perpendicular to B and then
rotated through 90° about an axis lying in this plane, the galvanometer will
register a current pulse which can be used for determining B in the region of
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the loop (see Chap. 8). This method is used for measuring the average magnetic
induction on the area bounded by the loop. Instead of rotating the loop, we can
switch off the field.
The fields of a very long solenoid and a uniformly magnetized very long cylinder..
Suppose that a field is created by a current flowing in the winding of a very long-
solenoid (Fig. 151). The number of turns per metre of the solenoid, the current
and the permeability of the core are denoted by n, I, and p respectively. The-
magnetic field is axially symmetric and can only have a component parallel
to the axis of the solenoid (the turns are wound very tightly).

In order to find the magnetic field strength, we shall use Eq. (38.22a). Inte-
grating along the contour ABCDA, we get

H-dl=0, (38.36)
ABCDA

since the currents at the opposite ends of the solenoid flow in opposite directions.
Hence the total current through the surface stretched over the contour ABCDA
is equal to zero. The contribution to the integral from integration paths BC
and DA is equal to zero since the vector H can be only normal to segments 4B
and CD:

Hpel — Huapl =0, (38.37)

where Hpe and H 4p are the field strengths on BC and 4D, I being the length
of these segments. The minus sign is due to the fact that the pathsof integration
are opposite on these segments. Stretching the contour along AB and CD by
moving, for example, AD away from the cylinder, we notice that for (38.37)
to be identically equal to zero, H must be independent of the distance, i.e.
it must be constant outside the solenoid. At an infinitely long distance from:
the solenoid, the field is absent, and hence it is absent in the entire space out-
side the solenoid.

In order to determine the field strength inside the solenoid, we apply law
(38.22a) to the contour AB,C,DA (Fig. 151). The integral differs from zero-
only on the segment B,C,, and hence

Hpcl=nil, (38.38)

since the surface bounded by the contour AB,C,DA is intersected by nl turns
carrying current I. Formula (38.38) shows that the field inside the solenoid is-
uniform and its strength is equal to

H = nl. (39.39)

This formula allows us to measure the magnetic field strength in ampere-
turns, which is widely used in electrical engineering. According to this formula,
the magnetic field strength inside the solenoid does not depend on its material
and, other conditions being equal, is the same for all materials. Taking into-
account (38.24) and (38.39), we obtain the following expression for the magnetic
induction of the field inside the solenoid:
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which shows that it depends on the core material. The magnetic induction in
a hollow solenoid is larger than for diamagnetics and smaller than for paramag-
netics.

The magnetic induction of the field of a very long uniformly magnetized
cylinder can be found in a similar way, the only difference being that in this
case there are no surface currents. Relation (38.37) remains unchanged, and
the magnetic field strength outside the cylinder is equal to zero as in the cagse
of a very long cylinder. Instead of formula (38.38), we obtain Hl = 0 or H = 0.
‘This means that the magnetic field inside a very long uniformly magnetized

Fig. 152. Measurement of the Fig. 153. Measurement of the
magnetic field strength in a magnetic induction in a mag-
magnetic. netic.

cylinder is equal to zero, while for the solenoid it differs from zero. However,
the magnetic induction inside the cylinder is not equal to zero (B = p,J).
If the length of the cylinder is finite, the magnetic field strength has nonzero
values inside as well as outside the cylinder.

‘'The measurement of permeability, magnetic induction and the field strength
inside magnetics. Suppose that we have a very long solenoid whose core has
a very narrow channel along its axis (Fig. 152). The field inside the solenoid
is created by passing a current in the winding. A measuring coil connected to
a galvanometer is introduced into the channel. Boundary condition (38.35)
shows that the magnetic field strength in the channel is equal to that in the
magnetic. The magnetic induction in the channel is given by B = pu H. It
-can be measured by rotating the coil through 90° or by switching on the field.
The field strength inside the magnetic is calculated by the formula

H = By/p,. (38.41)

In order to measure the magnetic induction in the magnetic, we make
a very small transverse cut in a very long solenoid (Fig. 153). Boundary con-
dition (38.33) shows that the magnetic induction B; in this cut is equal to
the induction B in the magnetic. Consequently, it is sufficient to measure the
magnetic induction in the transverse cut.
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If we know the magnetic induction and field
strength in a magnetic, we can determine the \ﬂ-z/
magnetic permeability:
w = B/H = p,B,/B. (38.42)

A magnetic sphere in a uniform field. Suppose

that a sphere of radius R made of a magnetic

having permeability p, is placed in an infinite

medium having permeability p,, in which a uni-

form magnetic field of strength H, is created %%\
(Fig. 154a, b). We shall determine the magnetic (a)

field strength in the sphere and outside it. It I

is assumed that conduction currents are absent. /:\
In this case, Eq. (38.22) has the form ———

curl H = 0, (38.43) AT
i.e. in the space without conduction currents, the v

magnetostatic field is a potential field. No con-
duction currents flow inside the sphere and outside
it, and hence we have a potential field over the (®
entire space. Let us denote the potential of this
field by @n. Then

H = —grad qp,. (38.44)

For a homogeneous medium (pu = const), the equation div B = 0 is equiva-
{ent to the equation

Fig. 154. A magnetic sphere in
a uniform magnetic field.

divH = 0. (38.45)
Substituting (38.44) into (38.45), we obtain the following equation for all
points outside the sphere (u, = const) and for all points inside it (1, = const):
V2pm = 0. (38.46)

Thus, the magnetic field potential satisfies the Laplace equation.
It should be noted that if the permeability is not constant, we obtain another

equation instead of (38.46). For its derivation, we take into account Eq. (38.21)
which can be written in the form

Taking the divergence of both sides of this equation, we obtain
div B = po div H + p, div J = —p, div grad ¢ + po divJ = 0, (38.48a)

where we took into account relation (38.44) and the equation div B = 0. Con-
sequently, the equation for the potential @, has the form

Vipnm = div J, (38.48D)
which considerably complicates the solution of the problem for a magnetic with
a varying permeability.

Let us place the origin of coordinates at the centre of the sphere and direct
the polar axis of the spherical system of coordinates along H,. In view of the
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= axial symmetry, the Laplace equation (38.46)
’ =—— assumes the form (17.42). This equation should
/\ be solved under the boundary conditions (38.33)

and (38.25) on the surface of the sphere, which
\-// are completely identi[cal 'zo the ]boundary condi-
\/ tions for D, and E. [see (17.42)]. Since there are
\w/ no surface conduction currents, we can put.
isurt = 0 in (38.35). Consequently, the solution
of this problem is similar to the solution of the
problem about a dielectric sphere in a uniform
magnetic field. We must just make in the solution of Eq. (17.42) the fol-
lowing substitution: ¢ - ¢, E -~H, D - B, and & —p.
The magnetic field strength inside the sphere is constant and in analogy with
(17.51) is given by

Fig. 155. Magnetic screening.

—_ 3ue
H,,= TR H,. (38.49)

This is the sum of the external magnetic field strength H, and the magnetic
field strength created by the sphere as a result of its magnetization. The field
created inside the sphere due to its magnetization is called the “demagnetizing
field Hgep". This term is conditional since there is no demagnetization at all.
Rather, the magnetic is magnetized in an external field, thus leading to the
creation of an additional field which is added to the initial field. But since the
term for the field H 4.m has already been established, we have to use it. Then

Hyen=H,—Hy= :12_:21::2 H,. (38.50)

This expression can be written in a different form. Combining (38.26) and
(38.23), we obtain

Ji = (/po — 1) Hyyy Jo = (Rao/pte — 1) Ho,s (38.51)
whence
R (B2 — ) (Bo+21s)
Jo—Jy Ho (11t 2H2) Hy. (38.52)
Consequently, formula (38.50) can be written as follows:

Hyem = [pof/ (o + 22)] (Jo — J4)- (38.53)

In particular, if a sphere is in vacuum, p, = p, and J, = 0. Hence

Hdem = —Jl/3o

Magnetic shielding. It follows from (38.50) that for p; > p, the magnetic
field inside the sphere is weakened, i.e. the sphere as if screens its interior from
the external magnetic field. If we calculate the induction of the field inside the
cavity surrounded by the shell made of a magnetic with a sufficiently high per-
meability p,, it turns out that the magnetic lines are concentrated mainly
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in the shell (Fig. 155), without penetrating into the cavity. This means that the
shell made of a magnetic with a high p operates as a screen which does not allow the
magnetic field to penetrate into the space bounded by the shell.

in the liferal sense, molecular currents may flow only within molecules. However, in the
continuous medium model we consider the quantities averaged over infinitely small
volumes. For this reason molecular currents are visualized as flowing In the volume of a
‘magnetic as a continuous medium.

In ifs content, the magnetic field sirength plays the same role in the magnefic field theory
-as the displacement in the electric field theory.

in diamagnetics, the magnetization is directed against the magnetic field strength, and the
magnetic induction of an external field decreases.

in paramagnetfics, the magnetization is directed along the magnetic fleld strength, and
the magnetic induction of an external field is enhanced.

The classical theory is unable fo explain ferromagnefism, but f can explain the magnetic
field outside a ferromagnetic if its magnetization Is considered to be known.

Which quantity in the electric field theory corresponds to permeability | in the magnetic
field theory?
Why cannot molecular current be represented as flowing only inside the molecular volume?

Why is the diamagnetism of paramagnetics insignificant in comparison with their para-
magnetism? Give quantitative estimates.

How can the magnetic induction of the magnetic field inside a magnetic and the magnetic
field strength be measured?

Explain why H in the theory of magnetic field plays the same role as D in the electric
field theory.

Example 38.1. 4 linear current I flows along the axis of a very long right circular cylinder of ra-
dius a. The permeability of the material of the cylinder is w. The cylinder is surrounded by a free
space. Find the magnetic field strength, magnetic induction and magnetization at all points in
space.

We direct the Z-axis of the Cartesian system of coordinates along the cylinder axis in the
direction of current I (Fig. 156). Let us take for the integration contour L a circle of radius r
concentric with the cylinder and lying in a plane per-

pendicular to the current. Then the magnetic field Z

strength at all points can be determined from Ampére’s TN

circuital law: —

= H

SH-dl:sznr=I, § __é ¢
L =]

‘whence < S =, \/

Hy = I/Q2ar) (38.54) i =

is the magnetic field strength directed along the tangent : =

to the circle. The lines of force are circles concentric 3 =

with the current. =

The magnetic induction is given by

i

I
pHo= 2!:” O0<r<a, Fig. 156. To the calculation of
By= (38.55) the magnetic field created by
PoH, Tl (a<r) the current flowing in a cir-
o™ 2nr ) cular cylinder.
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It is convenient to find the magnetization from relation (38.21):
B o Bt Ty
Jo= Mo Bo  2nr (38.56)
0 (ea<<r).

The volume density of molecular currents can be found with the help of (38.10). Consid-
ering that magnetization is given in cylindrical coordinates, it is convenlent to calculate the
curl in (38.10) also in cylindrical coordinates. We have

Y 1 9
jm=curl J = —i, -67‘&4- i, — = (") =0. (38.57)

Thus, there are no volume molecular currents. There is, however, a surface molecular
current whose density, on the basis of (38.17) and taking into account (38.56), is given by

. (h—po) I
imz= —W. (38.58)

Sec. 39. Forces in a Magnetic Field
The forces acting on currents and body forces acting

on incompressible magnetics are considered,

Forces acting on a current.

dF=jx BdV=1I4dl x B, l (39.1a)

(39.1b)

o

F=Sj><BdV= {raixs.
v L

Lorentz’s force. The force acting on a point charge ¢ moving with a velocity v is

F=qv x B, l (39.2)

where ¢ includes the sign of the charge, i.e. can be a positive or negative quan-
tity. Formula (39.2) can be obtained from (39.1b) if we take into account that
i = ngv dV = pv dV, where p is the volume charge density, and hence p dV

is the charge contained in the volume dV, while S pdV =gq.

\4
The force and the torque acting on magnetic dipole. Suppose that an elementary
circular current creating a magnetic moment flows along a square loop with
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side I. We place the origin of coordinates at the z
centre of the square and direct the Z-axis perpen- (
dicularly to the plane of the loop (Fig. 157). The
direction of current 7/ in the loop is shown by
arrows. The magnetic field is arbitrary, and there
are no extraneous currents or ferromagnetics in
the region of the loop (div B = 0, curl B =0).
Let us determine the force and the moment of
force (torque) acting on the current-carrying loop
in terms of its magnetic moment. The loop is Fig. 157 To the calculation of
small in size, and we have to take into account the.force acting on a magnetic
the variation of the magnetic induction within dipole.
the loop only up to the first-order terms in I.

In accordance with formula (39.1a), the forces exerted on the sides AB, BC,
CD, DA of the loop by the magnetic field are

Fap = Ili, X B(i,l/2), Fpo=Il[—i, X B (i,l/2)],
Fop = Il [—i, X B(—igl/2)], Fp, = Illi, x B (—i,l/2)],

where i, and i, are the unit vectors in the direction of the X- and Y-axes. The
arguments of B contain distances from the centre of the loop to the correspond-
ing side considering the direction. The total force acting on the loop is

F = Fuspg + Fpc + Fep + Fpa = Iliy x [B (ixl/2
— B (—i.l/2)] + Ili, X [B (—i,l/2) — B (i,l/2)]. (39.3)
Considering that when only the first-order terms are retained, we have

B(+2L)=B(0) x5 5L and Bxi2)=B(0) x5 5O,

Equation (39.3) can be transformed as follows:

F=1I2 (i, x x 2 i, x ‘;f) (39.4)

Since I1® = pp, is the magnitude of the magnetic moment of a current-carry-
ing loop, we transform (39.4) by taking into account the well-known relations
between the unit vectors (i, X i, = i,, iy, X i, = i, i, X i, = i,) as follows:

. B . JB
F=(melx)x'_a?+(pm><ly)x—ay— 9

where p, = i,pn is the magnetic moment of the loop. Representing the double
vector product with the help of the formula A X (B X C) = B (A-C) —
C (A-B) of vector algebra, we obtain

Fis (Pu'g) —Pn (Legg iy (- 55) —Pm (i 5 )

(39.5)
b (e 22 44, (o) (4 ).
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where i,-(0B/0x) = dB./dz, i, (0B/dy) = 0B,/dy. Since div B = dB./dx +
dB,/0y + 0B,/9z = 0, we get

— P (T4 L) = P =P (1) = (P T »

whence

F=i. (pn-5) +iy (Pn-gp) +iz (P52 - (39.6)

This formula shows that an elementary circular current (magnetic dipole) is
acted upon by a force only in a nonuniform field. Since formula (39.6) expresses
this force in terms of the magnetic moment p, the special shape of the loop
chosen above is insignificant, and formula (39.6) is valid for an arbitrary mag-
netic dipole whose spatial dimensions are sufficiently small.

In order to calculate the moment acting on a magnetic dipole, we proceed
in a similar way. We place the origin of coordinates at the centre of the loop
and calculate the moment by the formula

M=IerM|xBL (39.7)
L

In this case, however, calculations are simplified since the distance r is of
‘the order of magnitude of sides  of the loop, and the quantity B should be taken
into account only in the zero order of smallness in the side I of the loop, i.e.
considered to be constant. As a result, we have

M=pn X B. (39.8)

This formula shows that the torque tends to rotate the magnetic dipole until its
magnetic moment coincides with the vector of the magnetic induction of the field.
Body forces acting on incompressible magnetics. Since the magnetic moment
of a volume element dV of a magnetic having magnetization J is given by

dpm = J dV, (39.9)

the force acting on this volume element is [see (39.6)1

dF,=1J- dV dFy=J.— dV dF, —J-— dv. (39.10)

Obviously, these expressions are always valid for rigid magnetics since for-
mula (39.6) was obtained as a result of differentiation at p, = const.
Let us represent (39.10) in vector form. Considering that
J=Ft—to g 39.
Hio (39-11)
we obtain the following expression for the volume density of force:
fo= de B—o B.-22 B __i__ p—p, 8B2
v T e oz 2 Bppe Oz

(39.12)
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and so on. Thus, the volume density of the force acting on a magnetic is

1 p—w 2
i= BT grad B2. (39.13)
This means that
(a) in paramagnetics p > p, and hence the volume density of force is directed
towards increasing magnetic induction.
(b) in diamagnetics p << p, and hence the volume density of force is directed
towards decreasing magnetic induction of the field.
Different behaviour of para- and diamagnetics in the same field is visually
demonstrated in many experiments. Suppose that a magnetic field is created

F

Fig. 158. A diamagnetic body Fig. 159. A paramagnetic body
pushed out of the region of the drawn towards the region of
maximum field the maximum field

in vacuum between the poles of a permanent magnet (Fig. 158). Obviously, the
magnetic induction of the field between the poles of the magnet decreases as we
move from the central line connecting the poles to the periphery. A light bis-
muth ball which is a diamagnetic body is pushed
out of the region with the maximum field induc-
tion (see Fig. 158). On the other hand, a para-
magnetic liquid, say, aqueous solution of ferric
chloride is drawn towards the regions of the field
having the maximum magnetic induction
(Fig. 159).

If the space between the poles is filled with a
material medium, the direction of forces depends Fig. 160. A paramagnetic body
on the ratio of permeabilities of the medium behaves e d‘g@agneﬁ“c n a
apd the body. If the permeabilfty of the body is f;::ﬁﬁ%;eilscrﬁfgﬁg? gla(;seﬁf;‘t
higher than that of the medium, the body behaves as of the body
a paramagnetic, if it is lower, then the body behaves
as a diamagnetic. For example, if we place a paramagnetic liquid with a suf-
ficiently high permeability between the poles of a magnet (Fig. 160), the force
acting on a paramagnetic ball whose permeability is lower than that of the
liquid is similar to that acting on a diamagnetic ball in vacuum.

A force acts on an elementary circular current {magnetic dipole) only in a nonuniform
magnetic field.
The torque appearing as a result of the action of a magnetic field on a magnetic dipole

tends fo rotate It so that ifs magnetic moment coincides In direction with the magnefic
induction vector.

18—0290
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Body forces acting on a paramagnefic are directed towards the increasing magnefic In-
duction, while in diamagnetics they are directed fowards decreasing magnetic Induction.

Describe the variation of forces acting on a magnetfic placed in a medium whose per-
meability differs from the magnetic constant and becomes higher or lower than the per-
meability of the magnetic.

Example 39.1. A current I flows irn a ring of radius ry made of a very thin wire. The tensile strength
of the wire is equal to fo. The ring is placed in a magnetic field whose magnetic induction is per-
pendicular to the plane of the ring so that the forces tend to break the ring. Find the magnetic
induction at which the ring will be broken, assuming that f = 1.5 N, rg = 15cmand I = 10 A.
The forces act on the ring in the radial directions. Denoting by 31 an element of length of
the ring, we find that the element of force acting on the element dl in the radial direction is
dF = I dl X B. Let us draw the X-axis through the centre of the ring so that it lies in the
plane of the ring. The projection of the force dF onto the X-axis is dF, = dF cos o = IB di
cos o, where @ is the angle between the X-axis and the radius drawn to the element dl.
Since dl = ry de, the expression for the force actinglgn a half-ring in the direction of
x,

positive values of the X-axis has the form Fy = IBr, \ cos a da = 2IBr,. This force is

-1t/2
distributed between two wire cross sections at the points of its intersection with the Y-axis.
Hence the breaking condition has the form 21Br, = 2f,, and consequently, B = f,/(Iry) = 1 T.

Problems

6.1. A copper spiral of radius e« has » turns per metre. The turns are wound so that
there are small gaps between them. The upper end of the spiral is fixed while its lower
end is connected to a conductiniload of mass m, lying on a metallic table. In this posi-
tion, elastic forces exerted on the load by the spiral are equal to zero. Assuming that
the gaps between the spiral turns decrease uniformly, find the current that should be
passed through the spiral in order to lift the load from the table. The mass of the spiral
can be ignored.

6.2, Two small magnets having the same magnetic moment p,, and mass m are suspended
from light threads of the same length. The distance d between the Points of suspension
is very large. Prove that the magnets get oriented so that they will attract each other.
Find the angle of deviation of the threads from the vertical, assuming that the effect

. of the magnetic field of the Earth can be neglected.

6.3. A sphere of radius @, uniformly charged with the
surface charge density o, rotates around the axis
passing through its centre at an angular velocity
®. Find the magnetic induction at the centre of
the rotating sphere.

6.4. Find the magnetic moment created bya point charge
¢ moving in a circle of radius r, at a constant
angular velocity o.

6.5. A plate made of a magnetic with a permeability p
is placed in the space between the poles of a per-
manent magnet where the magnetic field is
H, (Fig. 161). Find the force acting on the
magnetic plate.

6.6. Find the force in Problem 6.5 assuming that the
plate is a permanent magnet whose magnetization
Jp coincides in direction with H,.

Fig. 161. To the calculation of  6.7. Find the force with which a uniform surface cur-

forces of interaction between rent of density igy, flowing over an infinite plane

magnets. acts over length ! of an infinite linear conductor
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6.8.

6.9.
6.10.

6.11

6.12.

6.13.

6.14.
6.45.

6.16.
6.17.

6.18.

6.19.

6.20.

6.21.
6.22.

6.23.

{8+

carrying current I parallel to the plane at a distance d from it. Denote by n the normal
to the plane in the direction towards the linear conductor.

A current I, flows in a circular conductor of radius a, lying in the plane (z, y) with the
centre at the origin of coordinates and forms a right-hand screw system with the posi-
tive direction of the Z-axis. A current I, flows in very long straight conductor parallel
to the X-axis in the direction of its positive values, intersecting the Z-axis at a point
z = d. Find the force acting on the rectilinear current.

Find the magnetic induction at the centre of a solenoid of length L with » turns, having
a square cross section with side a. The current in the solenaid winding is equal to 7,

A disc of radius r rotates at an angular velocity @ about the axis perpendicular to its
surface and passing through its centre. Find the magnetic induction (l)-f the field on the
axis of fotatlon of the disc at a distance & from its surface. The surface charge density
is equal to o.

A polarized dielectric sphere of radius a rotates at an angular velocity @ about an axis
passing through its centre. The polarization P is constant and coincides in direction
with . Find the magnetic induction at the points of intersection of the spherical sur-
face with the axis of rotation.

A very long rectilinear cylindrical beam of circular cross section of radius g, having a
co(rilstant volume charge density p, moves along its axisat a velocity v. Find the magnetic
induction.

A current I flows in the gositive direction of the Z-axis along a very long rectilinear cy-
lindrical conductor of radius a whose axis coincides with the Z-axis of the Cartesian sys-
tem of coordinates. Find the vector potential of the field created by this current.
Find the axial component of the vector potential at the centre of a spiral carrying cur-
rent I. The data on the spiral are given in Problem 1.7.

A dielectric sphere of radius a rotates at an angular velocity ® about an axis passing
through its centre. A constant volume charge density of the sphere is equal to p. Find
the magnetic induction of the sphere on its axis of rotation.

A uniformly charged circular cylinder of radius a and length I, whose charge is equal
to Q, rotates at an angular velocity @ about its axis. Find its magnetic dipole moment,.
Find the mutual inductance of two circular currents of radii ¢; and a,, lying in the same
plane, in the dipole approximation. The distance between the turns is r.

The axis of a ri%:lt circular cylinder coincides with the Z-axis of the Cartesian system
of coordinates whose origin is at the centre of the cylinder. The cylinder is uniformly
magnetized and the magnetization vector coincides with the positive direction of the
Z-axis: J = Ji,. Find the magnetic induction on the axis of the cylinder if the radius of
its cross section is a and the length is I.

A spherical layer of a magnetic, whose inner and outer concentric surfaces have radii r
and r, respectively, is uniformly magnetized. The magnetization vector is parallel
to the Z-axis of the Cartesian system of coordinates whose origin coincides with the centre
of the surfaces and is equal to Ji,. Find the magnetic field strength on the Z-axis for
positive values of z. ‘

A right circular cylinder of length ! and radius a is uniformly magnetized. The magne-
tization vector is parallel to the cylinder axis and is equal to J. Find the magnetic in-
duction at the centre of,the cylinder, assuming that I > a.

A sphere with the surface charge density, o rotates about its diameter at an angular vel-
ocity @. Find its magnetic 'dipole moment.

A current I flows along a very long rectilinear conductor parallel to the plane interface
between a medium having permeability p,, in which the current-carrying conductor
lies, and a medium having permeability p. Find the force acting on a segment ! of the
conductor. The distance from the econductor to the interface is equal to d.

A thin wire is wound very tightly in one layer on the surface of a wooden sphere. The
planes of all the turns can be assumed to be perpendicular to the same diameter of the
sphere. The turns cover the entire surface of the sphere. The radius of the sphere is a
and the total number of turns is n. The current in_the winding is . Find the magnetic
induction at the centre of the sphere.
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6.24. A cylindrical conductor of radius a has a cylindrical cavity of radius b, whose axis is
parallel to the axis of the conductor and is at a distance d from it. The current in the
conductor has the volume density j. Find the magnetic induction at the points on the
diameter of the cavity, coinciding with the diameter of the conductor.

Answers

_1 2mg_ _ 3 P 1 _ o,
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6.5. Fx=1/2 (p—po) H3ld. 6.6, Fy=poJn (Ho+Jp) ld. 6.7. F= —1/2 poigurInl. 6.8, F=
2
iywol Iy (1—d/V @Fa%.  69.  B=ponl (1—%arcsin LT:-T%) 6.40. B,=

2
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CHAPTER 7

Magnetics

The phenomenological properties of a magnetic in a magnetic field
are taken into account through its permeability u. The dependences
of u on various parameters are very diversified as well as magnetics
themselves. These dependences are interpreted by constructing
models of magnetics which allow for the peculiarities of their be-
haviour in the magnetic field.

Sec. 40. Diamagnetics

The physical nature of diamagnetic susceptibility and
its properties are considered.

Larmor precession. The frequency of rotation of electrons in an atom
placed in a magnetic field differs from their frequency in the absence of the
field. In order to prove this, let us consider the simplest case when an elec-
tron rotates around a nucleus in an orbit of radius r in the absence of the field
at a frequency w, (Fig. 162). Newton’s equation for the motion of an electron
has the form

mojr=_F,, (40.1)

where F, is the centripetal force emerging as a result of attraction of the elec-
tron by the nucleus. This force is quite strong in comparison with the forces
which may be exerted on the electron by external fields, and hence the radii
of electron orbits do not change when an atom is introduced into external fields.
To a high degree of accuracy, an atom can be assumed to be rigid with respect to the
action of external fields.

Suppose now that an atom is in an external field whose magnetic induction
vector B is perpendicular to the plane of an electron orbit. The Lorentz force
is acting along the radius, and its direction either coincides with that of the
centripetal force or is opposite to it, depending on the relative orientation of the
angular velocity vectors of electron motion in the orbit and of the magnetic
induction. The magnitude of this force is

F =e| orB, 40.2)

where e is the electron charge and o is the frequency of the electron circulating
in the orbit in the presence of a magnetic field, which differs from w,.
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The equation of the electron motion in a mag-
netic field has the form

mo?r = F, + |e | orB, (40.3)

where the radius r of the electron orbit is the
same as in (40.1) while the plus or minus sign
is chosen in accordance with relative orientation
of the angular velocity vector of the electron
orbital motion and the magnetic induction
vector. Naturally, the centripetal force Fg in
. (40.3) is the same as in (40.1) since it is the
g‘g 1212' Emergencle Qi an fad- force of attraction by the nucleus, and the distance
réxf°nrot:t'?§§1“in"ea°°‘m’;gﬁe§“c r has remained unchanged. Cancelling F, from
field (40.1) and (40.3), we obtain

mw?r —mer = 3=|e|lorB. (40.4)

Considering that 0? — o) = (0 — @) (0 + 0, =~ 2Acw, where | Ao | =
| @ — 0o | € @y, we get from (40.4)

Aw=d-|e| B/(2m). (40.5)

Thus, an electron in a magnetic field acquires an additional angular velocity
characterized by the frequency

oy, = |e|B/(2m). (40.6)

which is called the Larmor frequency. The direction of the angular velocity
vector can be easily determined. For example, if the magnetic induction B
(see Fig. 162) is directed against the angular velocity of the electron motion
around the nucleus, the force F is directed against Fg, and hence the electron
velocity and frequency should decrease. This means that @y, coincides with B
in direction. If B is directed against the initial orientation of the magnetic
induction, we shall arrive at the same conclusion. Hence we can write

oL = —eB/(2m), (40.7)

where we took into consideration that the electron charge e is negative. The
appearance of this additional angular velocity without a change in the radius of the
orbit can be represented as an additional rotation of the atom as a whole at a fre-
quency oy, in the magnetic field. The total frequency of electron rotation is
equal to the sum of its frequency w, of rotation in the atom and the frequency
o, of rotation of the atom. This is valid only for the case when the angular
velocity and magnetic induction vectors are collinear.

Since the electron velocity in an atom placed in a magnetic field varies, its
kinetic energy varies as well. On the other hand, since r remains unchanged,
the potential energy also does not change. The question arises: what is the
cause of the change in the energy of an electron in an atom if it is known that
the magnetic field is always acting perpendicularly to the velocity and does not
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perform any work? The answer to this question can be obtained only in the
framework of the theory of electromagnetic induction (see Chap. 8): the appear-
ance of a magnetic field gives rise to an electric field which changes the velocity of
the electron motion in an atom.

In order to imagine the motion of an atom for an arbitrary mutual orientation
of the angular velocity of rotation of an electron around the nucleus and the
magnetic induction of the external field, let us extend the results obtained above
to the general case. An atom with an electron rotating in it can be visualized

B = B,sinw.t

Bt :
]
]
Pm
(@) (b)

Fig. 163. Larmor precession (a) and the emergence of paramag-
netic resonance (b)

as a gyroscope having a certain magnetic moment. The angular momentum of
the electron is equal to mwr2®. The electron moving in the orbit is equivalent
to a circular current ¢/T = ew/(2n), and hence the magnetic moment of the
atom is equal to nr?ew/(271). Taking into account the directions of the angular
momentum and the magnetic moment of the atom due to the motion of the elec-
tron, we can write

L = mr?e, pm = (er?/2) o. (40.8)
Here we assumed that the electron charge e is negative, and the angular momen-

tum L and the magnetic moment p,, have opposite directions (Fig. 163a).
The equation of motion of an atom treated as a gyroscope has the form

=M, (40.9)

where M is the torque [see (39.8)]. It follows from (40.8) that
Pm = eL/(2m) (40.10)
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z and consequently, Eq. (41.9) assumes the form

dL e e

R; A comparison of this equation with the equation
of motion for the points of a perfectly rigid body
rotating at an angular velocity

v=dr/dt =0 X r (40.12)
shows that the tip of the vector L circulates around

the direction of the induction vector at a fre-
quency

Fig. 164. To the calculation of
diamagnetic susceptibility

X Y
o, = —eB/(2m). (40.13)

Consequently, an atom precesses in a magnetic
field like a gyroscope (Fig. 163b). This motion is
called the Larmor [precession.

Diamagnetism. A circular current appearing as a result of Larmor precession
of each electron in an atom forms a left-handed system with the direction of
the magnetic induction vector. Consequently, an additional magnetic induction
due to this circular current is directed against the magnetic induction vector
of the external field. The magnetic moment of the atom, appearing as a result of
precession, as well as the magnetization are directed against the magnetic induction
of the external field. This mode of origination of the Larmor precession and the
magnetic moment and the additionsl magnetic field associated with it form
the basis of diamagnetism. Obviously, diamagnetism is inherent in any sub-
stance. The problem consists in estimating its magnitude.

Diamagnetic susceptibility. Each electron in an atom performs Larmor rotation
about the axis coinciding with the direction of the magnetic field (Fig. 164).
The resulting magnetic moment is

Pmi =Sl ;= nrie/T = erjoy/2, (40.14)
whence

J=—7 2 Pm=—5 BN (1), (40.15)
AV 1

where N is the atomic concentration. Formula (40.15) uses the expression for
the Larmor frequency, and the quantity in the angle brackets which denote
averaging is the sum of the squares of the distances from the electrons in the
atom to the Larmor precession axis. Figure 164 shows that

Ri=a}+yi+ 2, (40.16)

where R; is the distance between an electron and the nucleus. Taking into
account random orientation of atoms in space, we have

(= =D = (D) = (RY/3 (40.17)
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and hence
(r)) = (21 + 4 =2 (R} /3 =2 (R?/3, (40.18)

from which it follows that
Q) rl) = 2Z (R%)/3, (40.19)
i

where Z is the number of electrons in the atom. Hence, we finally obtain the
following formula for magnetization:

J= —2 NZ(RYuH. (40.20)

Comparing this formula with
J = yqH, (40.21)

we obtain the following expression for the diamagnetic susceptibility:
2
Ka= —5 NZ (R g, (40.22)

where we took into account that p & p, since the permeability of diamagnetics
differs from the permeability of vacuum only insignificantly. This formula is
in good agreement with experiment if we treat (R?) as the mean square distance
between the electrons and the nucleus in an atom, calculated with the help of
quantum theory. The diamagnetic susceptibility for solids and liquids is of the
order of 10-%, while for gases it is considerably lower due to a smaller atomic
concentration (i.e. smaller values of N in formula (40.22)).

Temperature independence of diamagnetic susceptibility. Formula (40.22) shows
that vyq is independent of temperature since none of the quantities appearing in
this formula depend on temperature. This is due to the fact that the Larmor
motion of electrons stabilizes very quickly, viz. during a time typical of atomic
processes. Consequently, thermal motion as well as atomic collisions do not bring
the atoms out of the Larmor precession for any appreciable periods of time. This
was brilliantly confirmed by experiments. The independence of diamagnetic
susceptibility from temperature was experimentally discovered in 1895 by
P. Curie (1859-1906).

The variatoin of the frequency of an electron circulating In an atom, which is responsible
for diamagnetism, occurs upon a change in the magnetic induction due fo the Infroduction
of the atom info a magnetic fleld or during the emergence of a magnefic fleld. The
magnetic field itself does not perform work and cannot alter the velocity of mofion of
elecfrons in an atom.

The diamagnetic susceptibility is independent of femperature since the thermal motion
and collisions of atoms are unable to draw them from the state of Larmor precession for
any appreciable fime.
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Sec. 41. Paramagnetics

The physical nature and properties of paramagnetic
susceptibility are discussed. Magnetism due to free
electrons and the paramagnetic resonance are also
discussed.

Mechanism of magnetization. Paramagnetic materials are substances whose
molecules have a constant magnetic moment. The energy corresponding to
the magnetic moment in an external magnetic field is equal to

W = —pu-B. (41.1)

The minimum value of energy is attained when p,, coincides with the direc~

tion of the magnetic induction vector. In this case, when a paramagnetic is
introduced into a magnetic field, a preferred orientation of magnetic moments
of paramagnetic atoms takes place in the direction of the magnetic induction
in accordance with the Boltzmann distribution, and the body is accordingly
magnetized. The induction of the additional field created due to magnetization
coincides in direction with the external magnetic induction and enhances it.
However, the angle between the direction of the magnetic moment of an atom and
the magnetic induction does not change with field: the magnetic moment just pre-
cesses around the magnetic induction vector, and the angle between the two remains
the same [see (40.11)]. A reorientation of magnetic moments in accordance with the
Boltzmann distribution takes place only as a result of collisions and interactions
between atoms.
Temperature dependence of paramagnetic susceptibility. The mechanism of
magnetization of paramagnetics is analogous to that of electrostatic charging
in polar dielectrics (see Sec. 22). The only difference is that we now use formula
(41.1) instead of (22.1). Thus, the formulas for paramagnetic susceptibility are
obtained by substituting pp for p and B for E in the formulas of Sec. 22 pertain-
ing to dielectric susceptibility.

Instead of (22.10), we now get

{Pms) = PuL (B), (412)

where L (B) is the Langevin function (see Sec. 22) for f = me/(kT ). At com-
paratively high temperatures and weak fields, when pnB < kT, ie. fp <1,
we obtain the following relation instead of (22.13):

(Pmz) = PmB/(3kT) = pmpoH/(3kT), (41.3)

where u 22 p,, since the difference between the permeability of paramagnetics
and p, is not significant. For magnetization, we obtain the formula
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Comparing this formula with the relation

we get the following expression for paramagnetic susceptibility:
%o = PmV 1o/ (3kT) =CIT, (41.6)

where C is the Curie constant.

The dependence yp oc1/T is called Curie’s] law which was discovered ex-
perimentally by P. Curie in 1896.

The atomic magnetic moments are of the order py ~ 1022 A.m2. Hence,
at room temperature, %p ~ 1073, a value which is two orders of magnitude
higher than the diamagnetic susceptibility. This means that the diamagnetic
susceptibility in paramagnetics can be generally neglected.

Langevin’s theory provides a fairly accurate description only for gases, where
the interaction between molecules is negligibly small in view of large distances
that separated them. This interaction can be significant in liquids and solids.
In most cases, a consideration of this interaction modifies the dependence
(41.6) olf susceptibility on temperature. The new dependence is called the Curie-
Weiss law:

xp = const/(T — T,), (41.7)

where the temperature T, is a characteristic of the substance and is determined
by its properties.
Magnetic moments of free atoms. Two factors are responsible for the origin of
magnetic moments:

(1) the orbital motion of electrons. The total orbital magnetic moment of
an atom is the sum of orbital magnetic moments of individual electrons;

(2) the existence of an intrinsic magnetic moment in electrons, which is
associated with their spin, i.e. with the intrinsic angular momenta of electrons.

The magnetic moments of individual electrons are mutually related and form
the so-called total spin magnetic moment of an atom. Owing to the spin mag-
netic moment, each electron moving in a magnetic field created by the orbital
motion of all the remaining electrons interacts with this field. This interaction
is called spin-orbital interaction. Because of this interaction, the total orbital
angular momentum of electrons is associated with their total spin magnetic moment,
thus forming the total magnetic moment of an atom. This mode of formation of the
total magnetic moment of an atom is called an LS-bond. In principle, the total
magnetic moment of an atom can emerge in another way also: the spin magnetic
moment of each electron is first linked with the orbital magnetic moment of the same
electron, thus forming the total magnetic moment of the electron. After this, the
total magnetic moments of electrons are linked with one another to give the total
magnetic moment of the atom. With the exception of the heaviest elements,
however, this mode of formation of total magnetic moment is generally not
realized since the intensity of interaction of the spin magnetic moment of an
electron with its intrinsic orbital angular momentum turns out to be weaker
than its interaction with the spin magnetic moments of other electrons. Thus
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the total magnetic moment for an individual electron is not realized. In most
cases, the LS-bond is responsible for the total magnetic moment of atoms.

While adding the total orbital magnetic moment and the total spin magnetic
moment, we must bear in mind that the coefficient of proportionality in the
linear relation between the total orbital magnetic moment and the total orbital
angular momentum differs from the coefficient of proportionality in the linear
relation between the total spin magnetic moment and the total spin. The total
angular momenta in an atom are added according to the rule of summation of
vectors, while the addition of magnetic moments is obtained as a result of sum-
mation of angular momenta. Consequently, the total magnetic moment of ar atom
may not be collinear with its total intrinsic angular momentum.

The problem of magnetic moments of free atoms is simplified on account of

the fact that it is advantageous from the energy point of view to fill the electron
orbits so that the total magnetic moment is minimum. Consequently, the total
orbital and spin moments of completely filled closed atomic shells and the total
moment of the completely filled shells are equal to zero. Hence, the magnetic
moment of an atom is determined only by the electrons which occupy partially
filled shells. In most cases, these are the outer orbits of electrons. The situation
is further simplified in view of the fact that electron spins and orbital angular
momenta in an outer shell tend to orient themselves in opposite directions so
as to compensate each other to the maximum possible extent. Thus, the magnetic
moment of a free atom is mainly determined by uncompensated spins of the outer
electrons.
Magnetic moments of molecules. The magnetic moment of a molecule is not
equal to the sum of the magnetic moments of the atoms constituting it, since
a chemical bond formed between the atoms requires a certain rearrangement
of the outer electron shells. For example, nitrogen molecules N, form a covalent
bond, and two electrons participatinf in a covalent bond have antiparallel
spins. The orbital angular momenta also compensate each other and their sum
is equal to zero. As a result, we see that the N, molecules do not have a constant
magnetic moment or, in other words, nitrogen is not a paramagnetic. A similar
tendency towards mutual compensation of magnetic moments is also observed
in molecules having an ionic bond. For example, a NaCl molecule has an ionic
bond between Na+ and Cl-. Both ions have closed electron shells and hence their
total magnetic moment is equal to zero. It can be stated that the general tendency
in the formation of molecules is to ensure that the total magnetic moment is equal
to zero. The only gases with paramagnetic properties among all commonly
encountered gases are oxygen (0O,) where the spins of collective electrons are
not compensated, and NO and NO, in which the total number of electrons is
odd and hence the spin of one electron is left uncompensated.

Most solids are composed of ions with closed shells, and hence they do not
possess paramagnetic properties. Solids are generally diamagnetics. The main
exception to this rule are compounds of transition elements. The electron shell
of these elements is only partially filled. Consequently, they are multivalent
and their ions have permanent magnetic moments. Thus, the paramagnetism of
transition element compounds is due to the magnetic moments of their ions. Ions
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whose outer electron orbits have similar configurations form compounds with
properties close to those of paramagnetics.

Magnetism due to free electrons. Although free electrons in a magnetic field
move in circular orbits under the action of the Lorentz force, the classical
theory predicts the absence of the diamagnetic effect due to the reflection of
electrons at the boundaries. Quantum theory, on the other hand, predicts the
existence of this effect. The diamagnetic susceptibility is found to be equal to

2 3n \1/3
ko=~ (5) (41.8)

where m* is the effective mass of free electrons and »n is their concentration. If
the magnetic induction is not very large, the diamagnetic susceptibility is
constant and does not depend on temperature.

Another magnetic effect associated with the conduction electrons is due
to the interaction of the spin magnetic moment of an electron with the magnet-
ic field. This results in the appearance of an excess of electrons whose spin
magnetic moments are aligned with the magnetic induction in contrast to
the electrons with opposite spin magnetic moments. This phenomenon is called
the paramagnetism of conduction electrons. Calculations show that the para-
magnetic susceptibility of conduction electrons under laboratory conditions
is practically independent of temperature. Paramagnetism of conduction elec-
trons is most pronounced in transition metals. Under laboratory conditions, the
diamagnetic susceptibility of conduction electrons is almost always lower than
their paramagnetic susceptibility (nearly by a factor of three), and hence their
total susceptibility is found to be positive (paramagnetic).

Paramagnetic resonance. Suppose that in a paramagnetic placed in a magnetic
field the induction vector of an additional periodic magnetic field is perpen-
dicular to that of the constant magnetic field. Under the action of the constant
magnetic field (Fig. 163b), the magnetic moments of atoms perform Larmor
precession. A torque M created as a result of interaction between the magnetic
moment py, of an atom and the induction B of the additional periodic magnetic
field tends to change the angle between pp, and B. If the frequency of the periodic
magnetic field is different from the Larmor precession frequency, the torque
will strive to increase the angle between p, and B for a certain duration of
time, and then strive to decrease this angle for some time. On the average, no
effect of the periodic field is observed. If, however, the frequency of the periodic
magnetic field coincides with the Larmor precession frequency, the torque caused
by the periodic magnetic field will strive either to increase the angle between
the magnetic moment of the atom and the induction of the constant field or
to decrease it all the time, depending on the phase difference between the Lar-
mor precession and the induction of the periodic magnetic field. As a result
of the prolonged action of such a torque, the magnetic moment of the atom is reorient-
ed, and its angle with the induction vector of the permanent magnetic field changes.
This phenomenon is called paramagnetic resonance. The reorientation of the
magnetic moment in accordance with formula (41.1) is associated with a change
in the energy of magnetic moment in a permanent magnetic field. In accordance
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with the law of conservation of energy, this is accompanied by an exchange
of energy with the periodic magnetic field. This field is realized in the form of
standing electromagnetic waves whose magnetic induction vector is perpen-
dicular to the induction vector of the constant magnetic field. Thus, energy is
exchanged with an electromagnetic wave.

This results in the formation of groups of atoms whose magnetic moments
are oriented parallel and antiparallel to the magnetic induction, i.e. which
have different energies of interaction with the magnetic field in accordance with
(41.1). The energy of atoms with antiparallel orientation is higher than that
of atoms with parallel orientation.

Besides being reoriented by a periodic magnetic field, the magnetic moments
of atoms are continuously subjected to thermal fluctuations and interactions
between atoms. The thermal motion and the interaction between atoms pre-
dominantly orient the magnetic moments in a direction antiparallel to the
magnetic induction vector. The energy liberated in this case is converted into
heat. The reorientation of magnetic moments parallel to the magnetic induction
takes place on account of absorption of energy of an electromagnetic wave. Hence,
the observation of paramagnetic resonance involves the measurement of the intensity
of an electromagnetic wave passing through a paramagnetic placed in a magnetic
field. From the experimental point of view, it is more convenient to use an
electromagnetic wave of constant frequency and to attain resonance condition
by varying the magnetic induction. When the Larmor frequency corresponding
to the magnetic induction will be equal to the frequency of the electromagnetic
wave, a sharp attenuation in the wave intensity will be observed, indicating
the onset of paramagnetic resonance.

Paramagnetic resonance can provide a great deal of diverse information on
the properties of a paramagnetic and is widely used in scientific research.

The classical picture presented here and concerning the emergence of para-
magnetic resonance is only of a qualitative nature. A more rigorous approach
is possible in the framework of quantum theory, which is based on the concept
of absorption and emission of quanta of electromagnetic radiation by atomic
systems characterized by an abrupt reorientation of magnetic moments which
ensure that the law of conservation of energy is obeyed. Within the frame-
work of these concepts, it is possible to obtain quantitative relations character-
izing paramagnetic resonance.

It follows from formula (40.13) that if the magnetic induction is equal to
1 T, the paramagnetic resonance frequency is of the order of 10 Hz. As the
magnetic induction decreases, this frequency also decreases accordingly and
one can expect to observe paramagnetic resonance at relatively low frequencies.
The resonance, however, cannot be observed at frequencies lower than 10% Hz,
i.e. when the induction of the constant magnetic field is of the order of 0.01 T.

This is in accord with the quantum theory of paramagnetic resonance which
predicts a significant decrease in the absorption of electromagnetic waves upon
a decrease in their frequency. Consequently, the resonance at comparatively
low frequencies is manifested very weakly. The most commonly used frequencies
in actual practice are of the order of 10'° Hz (at a wavelength of 3 cm).
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Sec. 42. Ferromagnetics

Basic experimental facts concerning ferromagnetism
are discussed and an elementary theoretical interpreta-
tion is provided. General concepts about ferromagne-
tism, antiferromagnetism, ferrimagnetism and ferro-
magnetic resonance are introduced.

Definition. Magnetics whose permeability attains large values and depends on an
external magnetic field as well as the past history are called ferromagnetics. They
possess a residual magnetization, i.e. their magnetization may differ from zero
in the absence of an external magnetic field. In this case, such materials are
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permanent magnets. Thus, the formal manifestation of ferromagnetics is anal-
ogous to that of ferroelectrics (see Sec. 23). It should be noted that ferromag-
netism was discovered and investigated a long time before ferroelectricity.
Magnetization of ferromagnetics was investigated in 1878 by A.G. Stoletov
(1839-1896). He constructed the permeability curve (see Fig. 168) which was
later called the Stoletov curve. Hysteresis was discovered in 1880 by Wahrburh
(1846-1931).
Magnetization curve and hysteresis loop. Magnetic susceptibility of ferromagnet-
ics is a function of the external field, and the J vs H dependence has the form
shown in Fig. 165. The magnetization does not increase indefinitely with magnetic
field, but has a limit called the saturation magnetization. By analogy with para-
magnetism, its existence indicates that the magnetization of ferromagnetics
is also associated with the reorientation of certain elementary magnetic mo-
ments.

Since

B = poll o, (42.1)

the B vs H curve does not show a saturation although J experiences saturation.
This dependence is called the magnetization curve (Fig. 166).
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If we carry out the alternating magnetization of a sample in a periodic mag-
netic field, the B vs H curve has the form of a loop called the hysteresis loop
(Fig. 167) by analogy with ferroelectrics. The segment OA4 is the magnetization
curve, since the field is switched on at zero induction, i.e. in the absence of per-
manent magnetization. The closed curve ACDFGKA is the hysteresis loop.
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Fig. 167. Hysteresis loop Fig. 168. Curve of relative per-

meability (Stoletov’s curve)

This loop can be demonstrated with the help of a diagram similar to the one
used for demonstrating the hysteresis loop of ferroelectrics when the capacitor
is replaced by coils (see Sec. 23).

As the magnetic field H is reduced from a certain value (corresponding to
point A) to zero, the magnetic induction decreases only slightly to a value char-
acterized by the segment OC. This magnetic induction is called the residual
induction. A ferromagnetic in this state is called a permanent magnet.

In order to neutralize the residual field, it is necessary to apply a reverse

field whose strength is given by OD. This magnetic field strength is called
the coercive force of a ferromagnetic. The shape of a hysteresis loop, residual
induction and coercive force depend on the material of the ferromagnetic and
differ for different types of materials over quite a wide range.
Permeability curve. The relative permeability p, = p/p, = B/(noH) can be
plotted as a function of H from the data of the magnetization curve (see Fig. 166)
and has the form shown in Fig. 168. With increasing H, p, attains its maximum
value after which it rapidly falls as the magnetic saturation is attained. Values
of p, of the order of 10* at the maximum are not a rarity for ferromagnetics,
Classification of ferromagnetic materials. Ferromagnetics can be divided into
two groups:

(1) magnetically soft materials, which have a high permeability, can be
easily magnetized and demagnetized, and have a weak coercive force;

(2) magnetically hard materials which have a relatively low permeability,
are difficult to magnetize or demagnetize, and have a strong coercive force.

The materials belonging to the first group are mainly used in electrical tech-
nology of alternating fields, especially in transformers, while the materials
from the second group are used for making permanent magnets.

Interaction of electrons. Ferromagnetism can be analyzed only in the framework
of quantum theory. Classical theory of magnetism only describes the properties of
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ferromagnetics and qualitatively analyze the mechanism of emergence of ferro-
magnetism.

Einstein and de Haas were the first to establish experimentally that ferro-
magnetism is caused by the electron spins. Ferromagnetics have the property of
spontaneous magnetization, when the electron spins tend to orient themselves
inthe same direction in the absence of an external magnetic field. This [orienta-
tion is due only to internal reasons. However, from the energy point of view,
it is not advantageous for the sample to be magnetized as a whole. Hence the
material is split into small magnetized regions, or domains. Each domain is
magnetized in a certain direction, but the directions of the magnetization vector
in neighbouring domains are different and hence the magnetic moment of small
physical volumes is found to be equal to zero. In other words, the magnetic
material is not magnetized on the whole.

This means that the main question in the theory of ferromagnetism is to explain
the tendency of electron spins to orient themselves in the same direction. Since states
with the lowest energy are encountered in a system, our task is to find the inter-
action under which a parallel orientation of the spin magnetic moments of
different atoms is found to be advantageous from the point of view of energy.
For this purpose, the total energy must be minimum for a parallel orientation
of moments.

The emergence of such a situation is associated with the exchange interaction.
Since the electrons obey the Fermi-Dirac statistics and hence two particles
cannot exist in the same state, electrons with parallel spins as if move apart
in space. Consequently, their Coulomb interaction energy is lower than that
for electrons with antiparallel spins, in which case they can be arranged more
closely in space. The exchange interaction energy is the difference in the energies
corresponding to parallel and antiparallel spins.

Such a situation, however, does not ensure the emergence of ferromagnetism,
since a decrease in the Coulomb interaction in the case of parallel spins is accom-
panied by an increase in the kinetic energy. In most cases, this increase com-
pensates the decrease in the potential energy and the total energy corresponding
to the state with parallel spins is not found to be advantageous. Only in rare
cases, when the decrease in the potential energy for parallel spins is more than
the increase in the kinetic energy, the total energy is reduced. In this case the
configuration with parallel spins turns out to be more advantageous from the

-energy point of view and ferromagnetism is observed. An investigation of con-
ditions under which such a situation is possible is the main task of the theory
of ferromagnetism. The choice of the expression for the interaction energy
plays a very significant role in this case.

Basic theory of ferromagnetism. In the theory of ferromagnetism, the exchange
interaction energy is expressed th