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PREFACE

Preface

This textbook aims to help students taking courses taught in English at CTU, Faculty of
Mechanical Engineering, in their studies of one of the most important, and, at the same time, most
difficult engineering subjects. This course will be taken not only by foreign students (speaking good
English and knowing English technical and mathematical terms), but also by Czech students intending
to improve their English while studying a professional subject (perhaps with a view to continuing their
studies abroad).

This textbook, entitled ”Strength of Materials II”, links up with “Strength of Materials I”
(published 1999), and is intended as support material for the 2" course on “Strength of Materials”. It
was not easy to prepare these study materials, due to extraordinary limitation of space, and to avoid
simply presenting formulas together with brief comments. An attempt was made to preserve both
pedagogical values (professional and linguistic) and comprehensive coverage of the prescribed study
material. Much of the textbook is devoted to a description or characterization of problems, especially
in the first part of each chapter. For reasons explained above, it has not been possible to discuss all

suitable methods, and only a relatively small number of examples are presented.

The author is indebted to Mr. Robin Healey, who promptly and willingly reviewed the text, and
to Ing. Pavel Sidlo and Mr. Petr Tichy, who made most of the figures and prepared the text for
publication. The author is repeatedly indebted to his wife, Dr. Ludmila Sochorova, for her patience

and understanding during the preparation of the manuscript.




CURVED AND CRANKED RODS AND FRAMES

1. Curved and cranked rods and frames

Applying the method of sections on a curved rod (CR) we observe 3 internal force actions:

normal force N, , shearing force V, ,and bending moment M, , Fig. 1.1. The analysis of curved rods
depends on the ratio of their radius of curvature » to
its depth 4

1) Thick CR: %ss; 2) Thin CR: §>5

The analysis of a thick CR will not be discussed
in this textbook.

When turning our attention to the problems of a

thin CR (ThCR) we can treat it as a beam, 1.e., only a

strength criterion for bending will be applied on
TnCR (the influence of Nyand ¥V, will be neglected).

Fig. 1.1 Note: The neutral axis of a cross-section will coincide

with its respective central principal axis.

1.1 Statically determinate thin curved rods and cranked rods

1.1.1 Displacements of TnCR

In case of TnCR, an application of Mohr’s integral (cf. [1], Chap.11, Eq.11.3.1.15), based on
Castigliano's theorem, is suitable, e.g., to assess displacements in 77CR at point B (Fig.1.1.1.1): (M%)

= F. r. sing... bending moment caused by given load F)

=1 \mjl Ug = EIE-I— IM(&,)mx (E_,) ds; m, (&) = - r-(1-cosQ) ... b.m. caused by
L

F
r £=1 dummy load f;
_../-/qui\ VB IM(?::, g) ds; my€) = rsing ... bm. caused by
PUNLS dummy load £y
N Agy = Ef M(&) m(&) ds; m&) =1 .. bm. caused by dummy
couple m (1.1.1.1g,b,c)
F7777777 J e e Fy?
Fig.1.1.1.1 M Results: ug = _ﬁ; Vg = 4EI Apg = B

1.12 Displacements of a cranked rod

In the case of cranked rods, an application of Verescagin’s rule (cf. [1], Chap.11, Eq.11.3.1.15),

a modification of Mohr’s integral, is suitable, e.g., to assess displacements in a cranked rod at point 4

(Fig.1.1.2.1): u, = ZA mxc,VA=——ZA m; A ZA ‘m, (1.12.1a,b,c)

T EI P
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12 Statically indeterminate thin curved rods and cranked rods

Note: SI curved and cranked rods can be solved by the procedure shown in the following table: 1) °SI

determination; 2) Releasing to SD basic system; 3) Application of the respective number of compatibility
eqgs. expressed either by Mohr’s integral or by Veres€agin‘s rule.

°SI Ip Rod supports Releasing to SD basic |~ Compatibility
system equations
F F Ay
1 =
4 B A B A va=0
p= pzi p= \' f
F UA=0
F Y Note: Here it is
1 4 B A | B x AYH | necessary to express
p=177 the moment eq.
p= p: p_2 V*A ? about plIl B: MB =0
F F
V —
2 5 B A H A uB_O
-—> X VB—O
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F M&—L uA:O

3 6 va=0
B A |B H A

. App=

p=3 =3 | v

A

1.3 Statically indeterminate frames
Closed frames are statically indeterminate to the third degree (3°SI), Fig.1.3.1, which can be
assessed by applying the method of sections. The problem can be restated as the solution of a statically

A indeterminate (3°SI) thin curved (or cranked) rod, Fig.1.3.2., one

F3 F]
-

Ma M, =1
3 \ ( VA fx1 NA

Na Na

\ .
A" Fig13.1. Fig.1.3.2

end of which being as if fixed (left) and the second as if free.

If a frame is symmetrical both geometrically and with respect to its load, this symmetry can be

utilized, and the degree of static indeterminateness thus decreases:

One axis of symmetry: Shearing force ¥V, vanishes = the frame is 2° ST (M, and N, remain)

t Na

M, Due to the symmetry
only one half of the

_ frame has to be solved

i Comp. egs.:
i Np )MB A@a=0

uA=0

R2=F

Two axes of symmetry: Shearing force V, vanishes and normal force N, is obtained from a force

equilibrium equation => the frame is 1° ST (M, remains):

Due to the double
symmetry only one
quarter of the
frame has to be
solved

Comp. eq.:
A(PA =0




THICK CYLINDERS & CIRCULAR PLATES

2. Axially (rotationally) symmetric problems in the theory of elasticity

Rotationally symmetric members can be shown to be
structures which are rotationally symmetric not only with
respect to their shapes but also with respect to their loadings

and the resulting displacements and stresses.

Note: Rotationally symmetric tasks that we will deal with involve
thick cylinders (TC), and circular plates (CP). Necessary
physical quantities and their relations can be derived (generally
for all rotationally symmetric tasks, i.e., thick cylinders,
circular plates and also rotating disks) when following a
procedure (shown below) divided into 9 steps. In Sec. 2.1, we
will apply them to thick cylinders, while in Sec. 2.2, we will
apply similar steps to circular plates.

2.1 Thick cylinders (vessels)
Thick cylinders can be divided with respect to their type of stress state (cf. Sec. 2.1.1):
a) Closed vessels (e.g., pressure vessels) - main feature: axial stress arises, which results in

3D-stress state

, v vPv v
\ A 4 : &
& rl# V///; A A A ) A4 N—— F
..... pl ¥ " AN X —=‘“==“
%‘ vy v¥ /\4—})1 /—J&
VY
N WS g <
ZENw S S S
Fig. 2.1.1 Fig.2.1.2

b) Open vessels (e.g., engine cylinder with piston, hydraulic cylinder, gun barrel) - main feature:

without axial stress, which results in a 2D-stress state

2.1.1 Elastic stress formulas

Elastic stress formulas for thick cylinders under uniform pressure applied on both the inner and
outer cylinder surfaces will be derived. The following formulas are applicable for sections some
distance from the ends of the cylinder, where the effects of end constraints are negligible, according to
Saint-Venant’s Principle (see Chap. 1 in [1]). The applied loadings (pressures), as well as the resulting
displacements and stresses are axially symmetric. The solution is based on a generalized plane strain
model for which both the stress (if any) and the strain, arising in the cylinder axial direction, are

constant,
1) Equilibrium equation
This can be obtained by using a segmental element. In Fig. 1/2.1.14, both positive radial stresses

o, and tangent (circumferential, hoop) stresses o, are plotted.

8




THICK CYLINDERS & CIRCULAR PLATES

A, +do, c;.b.dx

I

Ot Jb.dx
(o, +do)(x+dx).do.b - o, .x.do.b

Fig. 1/2.1.1a Fig. 1/2.1.15
Expressing the internal forces produced by the stresses exerting on the respective element
surfaces, we can draw their equilibrium (balance) triangle (Fig. 1/2.1.1b) from which we can write the

following equilibrium equation

d(c,-x)—0,-dx=0, or c;i‘-x+0'r-ct=0 (1/2.1.1a,b)

We can see that there are two unknown stresses and only one equilibrium equation, from which it
follows that the problem is internally statically indeterminate (to the 1° degree). This means that we
must add (define) one compatibility equation (deformation condition) which can be obtained by

defining the relation between displacements and strains of the cylinder segment.

2) Relation between displacements and strains

We shall start from a possible element deformation given
by an increment (displacement) & of an arbitrary radius x of
the cylinder and an increment u + du of the infinitesimally
increased radius x + dx (Fig. 2/2.1.1a), taking into account that,
due to the rotational symmetry of the problem, the element

circumferential coordinate do.  cannot change. Then, with

respect to the fact that the strair is defined as the ratio

new element length - original element length

— ,  we shall compute both the iangent
original element length

(circumferential, hoop) and radial strains and obtain successively:

(x +u)-do —x -day _u

g, = (2/2.1.1a)
X -do X

c =[<1X+(u+du)—u]—dx _du_ (2/2.1.1b)
! dx dx

Comparing the resulting expressions from the first two steps we can see that they are not,
~ evidently, compatible. This means that constitutive relations are necessary. For that reason we use the

generalized Hooke'’s law.

3) Generalized Hooke’s Law
When solving a closed vessel problem, we need to deal with a 3D-stress problem (i.e., 6, - radial
stress, oy - tangent stress, and o, - axial stress). On the other hand, when solving the open vessel

problem, we deal only with a 2D-stress problem (o, - radial stress and o, - tangent stress): The 3D-
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stress problem is substantially more difficult to solve than the 2D-stress problem, and, surprisingly, the
final result, concerning the basic thick cylinder differential equations for the two cylinder types are the
same, as can be proved. In our course we shall apply the simpler 2D-approach.

We express the generalized Hooke’s law in three modes:

a) Referring to Sec.5.8 in [1], we express the corresponding strains:

|
The tangent strain g = 2o —E . [crt —M- O'r] 312.1.1a)
X

| 1
The radial strain g, =u = o [6,-p-c,] (3/2.1.1)

b) Then we rearrange them into a form needed for substitution into the first step - the differential

equilibrium equation, i.e., expressing the corresponding stresses (when applying Eqgs. 2/2.1.1a,5,

we express the stresses as functions of displacement u):

E u '
The tangent stress C, =i—2”[8t +|,t-8r]=Ex -li—+u-u} (32.1.1¢c)
. E . |' , u
The radial stress C, = 5 ~[8r+u-at]=E o +pe— 3/2.1.1ad)
I-p L X
¢) Finally we differentiate the relation for the radial stress having
d oy —
&=Exn[uw+“.w} B2.116)
dx -

’ ~ which we also need for substitution into the first step.

4) The basic thick cylinder differential equation (BTCDE) (which we obtain after substituting
Egs3/2.1.1cde into Eq.1/2.1.1b):

x-u"+u—2=0 4/2.1.1a)
X

This step completes the principal (invariant) part of the solution. A similar approach and
procedure can be applied to rotational disks (we are not going to study them in our course) and circular
(Kirchhoff’s) plates (see Sec. 2.2).

5) Solution of the BTCDE
BTCDE, a differential equation of the Euler type, has a particular solution in the form

u=x" (512.1.1.q)
which, after substituting all its required derivatives (u’= n.x"’; u”’= n.(n-1).x"?) into Eq.4/2.1.1q,

will result in (while x # 0):

x“'lv[nn(n—l)+n—-l]=0 = (5/2.1.10)
n==1
A general solution of BTCDE is
u=C,-x+ & ; (u'= C —C—g ... we need this in the next step) (52.1.1¢,d)
X X

Unknown integration constants C; ,C> can be obtained when applying suitable boundary

conditions. But we do not know the displacements of the cylinder faces uy, wy . It follows from this

10
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that another quantity must be chosen for which we know the values at the faces. It is easy to find out
that this role can be played only by radial stresses (G, , Oy2 ), because the faces are loaded with

internal and external pressures py, pz , respectively, acting in a radial direction (see Fig.7/2.1.1a).

6) Substituting 5) into 3b) = stress expressions with unknown integral constants:

C
ct=E"-[£+p-u']=E"-[CI+C—22+p,C1—pC—§]=K+—2 (6/2.1.1a)
X X X X
C
cr=E"-[u’+u-P—:I=E"-[CI—C—,2+pC1+p—C%}=K——2 (6/2.1.1b)
X X" X X i
Where K =E*-C[l+p] and C=E*-C,[1-p] (62.1.1c.d)

are the integration constants in a new shape.

Note: After solving the integration constants X, C in step 7, we return to step 6 (then denoted 6a) to obtain final
stress expressions.

7) Boundary conditions: 6, =-p; , G, =-p; = expressions of the integral constants:

(7/2.1.1a)
Fig. 7/2.1.1a 6. =—p =K C /-(=1)
rl - 1 ___i_ T 2 ')‘
1, o2
‘ + L sC=(p,-p,) % (72.1.15)
c L -5
O,=-p,=K-—
L

Now, when applying the second possible equilibrium equation - in the axial direction - for
closed cylinders - we learn that the integration constant K (Eq.7/2.1.1a) equals the axial stress o,

exerted in closed cylinders:

>

1 /7 ‘
I'ZJ :Ga Ga-(n-rzz—‘n:-rlz)—-pl-Tc-1‘12+p2-7t-r22=0
A ¥ - Fig7n.1.15 2 2
£ o =Puh —Pyh
- a 2 2
L/ //BCa L, —§
p2A A (712.1.1¢)
6a) Substituting 7) into 6) = the final stréss expressions:
C p-rz—p 1’ RS P C
o =K+—5=""122 1(p—p,) 5255 =(0)+—
X I, -1 r, -5 X
s , 2 : o (6/2.1.1¢,f)
C p ' -p,t, o -t
GI=K——=—1—-1———-¥— -p 172 .—-:—.(ca)-——
O N P1 2)r22_r12 & N
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Note: For practical applications, the last expressions of Eqs.6/2.1.1¢.f are the most suitable (while having in
mind the contents of symbols X, or (¢ ,), and C, Eqs.7/2.1.1a,b). According to these expressions we can
see that geomertrically the o, and o, stresses can be interpreted as polytropic curves which are symmetric
with respect to their mutual asymptote (c,) (Fig.8/2.1.1a)

Since the constant K has the same shape as the axial stress (in closed cylinders) o , (compare Egs.
7/2.1.1a,c) the symbol (o, ) is used, while the parentheses express the fact that only the shape of these
symbols coincides, but not always their interpretation:

1) the mathematical meaning of (G,) ...an integration constant: (c,) =K;

2) the geometrical meaning of (c,) ... the location of the polytropic curve asymptote;

3) the physical meaning of (G,) - only with closed cylinders... the axial stress: (G,) =G , .

Conclusion: Items 1-7 (6a) are to be proceed for deriving relations applicable for all TC (thick cylinder) types.

2.1.2 Dimensioning and deformation of TC (steps 8 and 9)

The discussion of TC problems will continue with items needed when computing concrete

mechanical members made of thick cylinders.

8) Dimensioning: a) single cylinders subjected to both internal and external overpressure

b) pressed (compound) cylinders subjected to internal overpressure —see 2.1.3.

a) Single cylinder internal overpressure p; > p; external overpressure p; <p;
AX Prove of symmetry P2 AX
| p2 p‘); ot e B
Oy Or
P
_ (ca)
B +G
/ Y ;
Open vessel c)
Omin=Ot1 On Omx=0C,=0
Closed vessel
d

Fig.8/2.1.2a,b,c,d Omin =0t Ca= (0a) Omax=0n

Strength criterion (Tresca):

Internal overpressure: p;>p; External overpressure: p; <p;
for both open and closed vessels for open vessels
Geq = Gt] - Grl S Gau o-eq = Ga _th S 0-3“
Gn="P s G:1=2(Ga)+P1 1 6,=0; Gﬂ=2(ca)+pl

12
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2 2 ' 2 2
P —P5 Py — P>,
c, )=~ 22 o)=L 222
2 2 2
p—p, <2 1-| 5| | (82.12a) py<Zal |3 L2 D s
2 L, 2 I, 2 I,

Note: When imagining that the cylinder
thickness increases theoretically to infinity (r, ‘
— o), it follows from (8/2.1.2.a) that the O =0, =0y =0,;0, =—D;; Oy = 2((73)-f-p1
maximum borne internal overpressure of a

for closed vessels

single tube is strongly limited by the material 2 2 2
and can attain as only as (c,)= Py “Pohh 5 PP < San. 1- 5
(pl' pZ)max —> Call 2. : r22 - r12 2 r2
In some cases, so-called compound
cylinders can increase it — see 2.1.3. (8/2.1.2.c)

9) Deformation, displacement
Change in the radii of cylinders when loaded:
Since the displacement # means the change Ax in radius x (i.e.,u = AX ), we apply the tangent strain

formula Eq. 2.1.1.2a, where a suitable generalized Hooke s law is substituted:

Closed vessel (3D stress state): g = % = %[cst - p(cr +0, )],
open vessel (2D stress state, because g;=0): €, = % = %[cst - ucr] (9/2.12.a,b)
Change in the radii of the inner and outer vessel faces:
Closed vessels: Open vessels (o, =0):
At the inner face, x = r1; Ar, = 1.El[csﬂ - u(Ga - pl)] Ar, = —ré-[cu +i- pl]
At the outer face,x =r1: Ar, = %[Gt2 - p(ca -P, )] Ar, = %[GQ +n -pz]

(9/2.1.2.c,de,f)

Example: An open pressure vessel is loaded by external pressure p, =50 MPa.
Dimensions: #; = 50 mm and r, = 80 mm; material: oy =200MPa, E=2.1 0’ MPa, u=03.

Determine: the vessel safety factor: ky ; displacements of the vessel faces: Ar;, Ar,.

Solution: Open cylinder = ¢,=0

Never forget to draw first the type of vessel stress distribution (here for external overpressure):

2 2 2 2
" Pii ~Pohh L 80
Position of asymptote: (0,) =—5—+=— =-50 =—-§2.0MPa
ymptote: (a,) -1 P2 1 ~1 80” —50°

Stress state in the vessel faces:

6, =-p =0 : 6, =2(c,)+p,=2(c,)=2-(-82)=-164.0MPa

13
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6., =—p, =—-50.0MPa ; o, =2(c,)+p, =2-(-82)+50=—-114.0MPa
-0, =0-0,=-0, =164.0MPa

Tresca’s strength criterion: ©,, =0

max

Factor of safety : ky = 2y o % =1.22
. c

€q

Change in the face radii caused by the loading:

| 50
Ar =%[cﬂ +ppy|= 57 5(+164)=-0.0410 mm

Ar, =%2[ct2 +u-p, )= 5%(-11“0,3-50): ~0.0396 mm

AR
1
On | P
|
G | Cr
I |
— ! —
Omin = Ot Omax = Cr1=P1 = 0
—>
0] +o

2.1.3 Dimensioning and deformation of pressed (compound) cylinders (steps 8 & 9)

8) Dimensioning: pressed (compound) cylinders subjected to internal overpressure

From the sketch of the stress distributions in Fig.8/2.1.2a,b it is evident that there is a large
variation in tangent (circumferential, or hoop) stress across the wall of a cylinder subjected to internal
overpressure. The material of the cylinder is not therefore used to its best advantage. To obtain a more
uniform hoop stress distribution, cylinders are often built up by shrinking one tube on the outside of
another. When the outer tube I contracts on cooling the inner tube I is brought into a state of
compression. The outer tube 7 will conversely be brought into a state of tension. If this compound
cylinder I + IT is now subjected to internal pressure p; the resultant hoop stresses will be the algebraic
sum of those resulting from internal pressure and those resulting from shrinkage, as drawn in

Fig.8/2.1.2¢; thus a much smaller total fluctuation of hoop stress is obtained.

I3 E

(o) Internal overpressure only (B) Shrinkage only (v) Internal overpressure
(as if made of one piece) - compound cylinder

Fig.8/2.1.3

9) Deformation: pressed (compound) cylinders subjected to internal overpressure
In order to achieve a required performance of the compound tubes, a corresponding shrinkage

allowance has to be produced — see Fig.9/2.1.3.

14
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Corporate radius r, obtained after| )\ " ... before shrinkage

shrinkage and loading by internal|  Ap, .. required shrinkage allowance

overpressure (p;- ps3) ” L1

p—— Ar, =Ar,” —Ar, [e—

Ar-H_ fAr r 2 2 2 r,

e
L zAl‘z 7 1 I (because 1" =r, ~r)
1¥) 1 I
. Ar, Ar Ar.
Flg9/213 —2=—2”— 21 =g’2H —6121 =

v r r

Applying generalized Hooke’s law (while o =0, =- P2, see example below) we have

=%[G?2 +Hp, ~0; —}’LPZ] [o'tz _Gtz] 2 [(G ' -(o,) ] (9/2.1.3a,b)

A procedure for computing compound (pressed) cyvlinders will be demonstrated when solving a

concrete example:

Given: Pressed cylinders: r;: vy: r; = 2:5:9, made of material: oy = 300 MPa, are subjected to
internal overpressure: p; > p;.
Tasks: 1) Assess allowable overpressure (p; - ps )an - apply step 8;

2) Determine necessary interference (shrinkage allowance) Ar; - apply step 9;
3) Check the structure behaviour (its strength) at shrinkage state only (when in the unloading
state, i.e., p; =0), see the case fin Fig.8/2.1.3.

Thin dotted line represent internal pressure
A / only (as if a one-pieces tube from r; to r; ),
t see Fig.8/2.1.3 a.

: 1
r3 I o' ; Iéca):: o
\ ! Shrinkage allowance Ar in scale of 1/E, see

LTS Eq. (9/2.1.3a,b) and Fig.8/2.1.3 f
L
J Ot (
tcl | 64! - 64l < o ... Strength criterion for
the shrinkage only before loading, see
Fig.82.13: f=y-«a
;G
Fig2.1.4

Thick solid lines represent (c,’, ol ,of, otH)b compound
cylinders (shrinkage + internal pressure), see Fig.8/2.1.3%

1) Allowable overpressure (p; - p3 ).an_- apply step 8

When considering internal overpressure exerted in the two pressed cylinders we can write

Strength criteria by Tresca (“1,,,”) successively:

II. (outer) cylinder (compare a single cylinder subjected to internal overpressure and change the

respective subscripts compatibly)

2
G L

Geql_cﬂ +p, = (20 +p2}+p2<call =>p,—p; = 2all 1"(?] (1)
. 3
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2 2

hil L - I.
where (0,) = Bh “Phs Z pz 2
L -5

L. (inner) cylinder (compare a single cylinder subjected to internal overpressure)

2
c I )
Geq th +h = (20 +p1)+p1<6an =P~ P2 STH“ 1_(;1" ()
2

plrl pz 2

rzrl

2 2
p,—p, <2 2_(11) -(5&] S p1 <229.7 MPa G)
2 I, I,

where (G, )= summing the above Eqs.(1) and (2). we obtain

Note: we introduce a concept of optimum radius: 1, ., = /T, -1, = 4.24, an extreme of

2 2

c I r o\p, —

pl — p3 < —all 2 - L] - 2 , when applymg_(p_l_gé_) = 0 , ]eading to
2 I, L or,

I

I
( p3)opt - Gall : 1—[ 1]i| 233 3 MPa.
2) Necessary interference (shrinkage allowance) Ar, (enabling proper operation of the structure) — step 9

At,=Ar" — Ar)' /- 1 =
L
Ar, A" At 1
— _'%I"‘ - _% = 8t2H - StZI = _[(GtZH - “’GrZH)— (GtZI - ”’GrZI)]
, 1, I E

"and since itholds o, = o, =- p2 we have

2.1,

Ar, =%[ct2“ ~0,' =22 [0, ~ (0] @), (5)
Egs. (4) and (5) hold for every type of pressed (two-layer) cylinder. But quantities 6,™" and/or (c,)™*
require p; to be calculated, which we did not need for the resulting strength criterion Eq.(3).
Assuming equality in Eqs.(1), (2), we have

p, =103.7MPa,, (c,)" = 46.3 MPa, and (c,)" =-79.7 MPa.
After substituting, Eq.(5) yields....... Ar, = 0.756 mm.

From the equalities in Egs.(1) and (2), we can also obtain expressions

(c,)"' = % -p, and (c,)' = 62““ —p, leading to new, simpler, shapes of Eq.(5):

Ar, 2 1‘2 [(0_ ) (s,) ] 2-1, (pl _p2)= (LIS o I:l_(ﬁz_]:' (5), (6), (D
E E I,

Expressions (6) and (7) can be applied only when a pressed two-layer cylinder is designed based

on the strength criteria (when equalities in Eqs.(1), (2), (3) can be assumed).

Note: The shape of Eq.(7) was obtained when the equality in Eq.(2) was substituted into Eq.(6).
You can readily prove that all these equations yield Ar, =0.756 mm.
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3) Checking the strength of the structure when in unloading state, i.e., p; =0

Imagine that a compound vessel is manufactured by pressing one on the other, i.e., the outer (II)
cylinder can be heated and put on the inner (I) cylinder. After cooling, cylinder II will load by
shrinkage this whole compound structure. The previous strength calculations concern the structure
when operating by internal overpressure p; — p;. The unloading state (p; = 0) of this completed
structure needs to be checked, since we cannot know in advance if the pressed cylinders are not
damaged in a different stress condition (p; =0). This procedure can be performed by superposing
different sets of stress states of the structure based on different loading conditions, which we can see in
Fig.8/2.1.34. When subtracting a fictitious stress state (assuming a fictitious single, non-parted, i.e.,
made of a single piece of material, cylinder of radii 7, and r;), Fig.8/2.1.3 ¢ from the stress state of the
pressed cylinder, Fig.8/2.13% composed of two pieces, both under operating conditions, i.e., sﬁbjected

to pressure p;—p;, we obtain the looked-for stress state of an unloaded pressed cylinder:

10':1 - Gﬂl <6, = 183.2 < 300 [MPa], = the compound cylinder satisfies all requirements

c{l =2(o‘a )I

* Joy =2(oa) +p; =2535MPa

Where ... "‘P1 =70».3MPa is the rangent stress exerted on the compound structure

inner face caused by pressure p;—p;

is the tangent stress exerted on the fictitious one-piece
structure inner face caused by pressure p—p;

2.2 Circular plates

2.2.1 Plate elastic stress for’mulas

Assumptions for the CP solution:
1/ CP thickness t is relatively small in comparison with its radius r, i.e., t <<r
2/ CP obeys the so-called Kirchhoff hypothesis, which states: CP cylindrical sections change into
conical sections after deformation, i.e., CP is stressed in bending with its middle surface remaming
non-stressed.
3/ CP deflection is small in comparison with the thickness. (If the deflection had exceeded half of the

CP thickness then stretching of the CP middle surface would have been taken into consideration).

To derive elastic formulae of circular (Kirchhoff’s) plates (CP) we can apply items similar to

those for thick cylinders -- see section 2.1.

1/ Differential equilibrium equation for circular plates (DEECP)
Based on Fig.1/2.2.1a,b,c,d the following formulae are obtained:

The shearing forces exerting on the element at a cylindrical section of radius x are

dv =%)—xdoc =

(x) * _Q(x)+dQ
(X)  2mx . da, dV (x+dx) T da (1/2.2.1a,b)

where Q(x) represents the transversal loading of the plate centre up to radius x.
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After neglecting the infinitesimal quantities of higher order, we express the moment produced by the

shearing forces in the following form

VA w(x)
b)
d)
Figl1/22.labcd  dM, dMX + dM —dM,
dM =dV -dx =%(i)doc-dx (1/2.2.1¢)
T

The tangential and radial moments as resultants of tangent G, and radial o, stresses, respectively, at
radius x :

_ _1 2 _ _1 2
th = th ‘Gt =% dx-h ct and er = Zbr cr =% x-do-h Gr 1/2.2.1d,e)
The radial moment at the radius (x + dx) as a resultant of the radial stress (o; + do;)
* % B 1 2
M _=Z, - (cr + dcr)— 3 (x +dx)-do-h (or + dor) 122.19)

After constructing the equilibrium triangle (Fig.1/2.2.1d), we can write the equilibrium equation
successively using the following expressions:

’dM:+dM—er=thdoc:>

SQW) 4 :ic—rx+(5 _o =-50®)

2mh2 dx rot om?

2/ Compatibility relations (relations between strains and displacements)

d(er) - O‘tdx =-

(1/2.2.1g,h)

When dealing with circular plates, it is more convenient to express the
radial displacement u of the bottom face by means of the slope ¢ of the
plate middle (neutral) surface, i.e.

u =%-(p, (2/2.2.1a)

cf. Fig. (2/2.2.1) and the respective strains can be expressed
u_ho , _di_hdo

, (2/2.2.1b,¢)
t x 2x I dx 2dx

Fig. (2/2.2.1)
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3/ Generalized Hooke’s Law

As it was done with thick cylinders, we express the generalized Hooke’s law in three modes:

h h
a/ see Eq3/2.1.1a and then, after substituting u = 5 @ and u’ = 3 ©', we have:

— E [ ]_ X h Q ’ -
b/ O = 2 g the |=E 5[;+mp (3/2.2.1a)
_ E [ .I__ X h ’ ¢ .
o = 12 e, the |=E 5[@ TR (3/2.2.1b)
and, finally, we also differentiate the relation for the radial stress which we need to substitute into the
first step
dG h ’X —
| —LpX2| g +p2X"? 322.1
| Y Ix 2 [‘P |2 x2 ( )

4/ Basic circular plate differential equation (BCPDE)
Substituting Eqs.3/2.2.1b,c into Eq.1/2.2.14) we obtain
EXE (P”+H(px_(P x+E* E|:(p'+p,-(—p-:l_Ex El:g_l_p(P'} - _6Q(x) / 2
" ' 6Q X
And finally we have O'X+Q —2=__(_)_

X EXp.h3
We can see that BCPDE is a non-homogeneous differential equation with the left hand side

(412.2.1a)

having the same form as in the case of a thick cylinder. While for BTCDE, which being a
homogeneous differential equation, we were to find only a general solution, for BCPDE, we are to
obtain, into addition, a necessary particular integral depending on the right hand side given by the type
of plate transversal loading.

This task can be simplified by fewriting the left hand side into the following shape

’
1 ’ 6Q(x
X —((p-x) = _————-—Q( ) (4/2.2.1b)
X E*n-h3
since this differential eq. can be solved by applying a simple integration twice.
Note: Since each CP is loaded by a generally different type of load Q(x), steps 5 — 9 will be solved for concrete

practical examples (thus differing from TC, where concrete examples are applied using steps 8 and 9)

9/ Deformation of plates (theoretical approach)
Plate deformation is presented by the change of its neutral, i.e.,

middle, originally plane, surface into a surface bent in the form
of a rotationally symmetric cup. The equation of this surface can
be derived from the deformation of a plate element taken in an

axial section, Fig.7/2.2.1:

dy =-0p-dx ,

where the negative increment dy corresponds with positive dx.
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The resulting plate deflection can be calculated from
y=K- [p-dx (112.2.1a)

where the integration constant K can be obtained by applying a corresponding boundary condition

(BC). For instance, BC for the plate in Fig.7/2.2.1is y,_,, =0.

Example 1:
Parameters given:
i) geometry: t = 10 mm; r; = 100 mm;
+F h ¥, = 1000 mm
L. H " ”
W\ " ii) material: o,y = 100 MPa
el E=2.10° MPa
> u=03

Task: allowable load F
We start from item 4 (the basic circular plate differential equation - BCPDE):

1 ‘ 6-
X {— . ((p . x) ] = ___E(g_(%, where the force Q(x) = F (acting on the plate area within radius x)
x n . .
. . . 6-F . .
will be substituted. After denoting B= PRI we have the following diff. eq.:
Tc . .

o[ Losf | -2

- Item 5 (BCPDE can be solved by applying “per partes” integration):

(p=—%-x-lnx+%-x+—l-x+& = ¢=C, -x+&—g-x-lnx
X

C,x
Item 7 (item 6 is omitted, since we know BC for ¢):

\=0
B (P(rl) } = CI,I-]_’_&_E.I-I.lnrl:O; Cl-rz+g—E-r2-lnr2=0
) , 2

C.
(P(r2)=0 2
B - lnr. —r%-
which yields: ORE LL Tk hl F PR

2 L -5

B Inr, —Inr
__.#.rlz.r,)z <0

2 2
2 -y

Item 6 (applying GHL we express stresses):

E*h, C1+&—E-lnx+pi Cl—&——Pl-lnx—E)
2 2 X" 2 2

X2

The tangent stress:
E*-h ,
X

*

* * . .
6, =C; +——B’ -Inx, where we expressed new types of integration constants
X

X

EX.h X .
C;=T"[C1'(1+u)-%u} ; C;=E2 h'cz'(l—u); B*=E4 h'B'(Iﬂl)

to enable a better survey of the stress creating functions, which are:

* * C
the asymptotic curve...a, = C; — B’ -Inx ; the polytropic curve of the second order... —% .
X
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The radial stress

o =L ‘h-{(p’ﬂ,t-g] = cr=CI'—~C—,2——B*-lnx
X x?

' 2
* EX.h B L. *% *
(where... C; = . ¢ -(1+u)—5 and the asymptotic line ...a, =C; -B -Inx)
F Item 8: Tresca’s Strength criterion
Geq = Omax ~ Cmin = Oan
o,(4)-0, <oy, (c,=0)
I
’ I, o,(n)soy =
>
A C2 *
+ c C] — T -lnl‘l S Ga“
Omax = Or1 I.l
Or
B 2'0 1l
a = Asx_a
Gy 2 E*-h
Gt 1 6-F 2-c
\ . _2_ - 3 AS ” all ,
T .
Omin = Ca = 0 > n-E”-h E*-h
X 2
2-n-h” o
\7 F<Z—— 3l . F<57354N
3-A
r22 ‘Inry - r12 -Ing In r2 In rl
(where... A=—2—2———-(1+p,) (1 p) (1+u) Ing-1)
- r2 ”fl

Item 8: Deflection of the plate  ( y=K - [@-dx)
C 2 2 -l
=K—_[ Cl-x+&—E=x-lnx dx=>y=K- —1-x2+C2-lnx—E- X nx-2-
x 2 2 212 4
B.C. for deflection:

y(r)=0=K-

r22 -lnr2 —r12-lnr1 2 lnrz—lnr1 5 » 5 r22 r22
(where D= ) T~ 3 R Aoy +| —-Inr, —— )
246y - 4

2
Maximum deflection: y ... =y ) =4.3mm
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2.2.2 More general types of CP loading

Example 2:

In example 1, we see how to proceed when a CP is simply loaded, i.e., when a single BCPDE is

sufficient for solving it. Now, a more complex case will be solved demanding several BCPDE:s to be

applied, Fig.2.2.2.1.

7 A

Iy

T, )
focontl}pero-o—rno—or-e—r————.

1

M1( i le
X
X |
[

i2. Mg

Fig.2.2.2.1

The plate, being simply supported by a ring
support with radius 7, is subjected to ring load F
along its outer circumference (radius 7).

Item 4: (substitution in Eq. 4/2.2.1b):
Plate I- O(x) = 0 ; Plate II: Q(x) = -F
Item 6 (GHL) and 7 (BC):

x=0:0¢'0)=0; (BC... 1)
M
x=r;: c'(r)=c(r)= —1% (BC...2)
27tr1 h
¢'(r) =¢"(ry (BC...3)
x=r; @r) =0 (BC... 4)
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3. 3D - stress and strain state, differential equilibrium equations of
continuum elements

3.1 General stress state

Stress is a symmetric tensor of the second order:

Cne Ty Tu c, T, T,
0;=1%x Oy Tnr=3%, Oy <
Tx Ty O T, 1T, O,

3.1.1 First task: normal, shearing and resulting stresses on an oblique p _plane

From the viewpoint of the general theory of tensors, the formal and at the same time basic
feature of the tensor character of a state of stress at a given point is that, as one passes from the
coordinate planes (Oxy, Oyz, Ozx) to an arbitrary inclined plane p with outward normal » (making
angles a, [, y with the respective coordinates x, y, z), the stress components vy , vy , v, of the total
stress v (<X @, y, y with the respective coordinates x, y, z), which is exerted on plane p, are expressed by:
vV, =0, -Cosa+1,-Cosf+1, -cosy
vy-—-'l:z-cosm+csy-cosﬁ+rx -COSY (3.1.1.1a,b,¢)
v, =T, -cosa+T, -cosp+o,-cosy

These formulas are linear with respect to the original components as well as to the direction cosines.

Note: These equations is easy to obtain when expressing the
equilibrium equation of forces acting in a respective
coordinate direction of a cut corner of a stress cube
(i.e., “the stress at a point tetrahedron”) - see Fig.
3.1.1.1. For instance, in the x direction:

v,dA-oc,-dA, -1 -dA -7, -dA =
=v,-dA-o,-dA-cosa—1,-dA-cosy—
-1,°dA-cosB=0=>

V,=0,-Cos0+7T,-cosB+1, -cosy

Fig. 3.1.1.1

Under a complete transformation involving the passage from axes x, y, zto new axes x’, y’, z’
(one axis - say x'- of which coincides with the normal » of the above mentioned arbitrary inclined
plane p, i.e. x’ = n) the components of the state of stress are expressed in terms of the original
components Oy, Oy, Oz, Ty, Ty , T, by projecting the components vy , vy , v, of the total strain v, which
is exerted in the plane p, on the x’=n axis (according to Fig.), thus obtaining normal (direct) stress:
G, =0, =V, -cosa+V, -cosf+v, -cosy=
=Gx-COSZOL+Gy-COSZB+GZ-COSZ‘Y+ (3.1.1.2)
+2-7, -cosfB-cosy+2-1, -cosa-cosy+2-1,-cosa-cosf

This expression is linear with respect to the original components and quadratic (or so-called bilinear)

with respect to the direction cosines of the new system.

23




3D - STRESS AND STRAIN STATE

The other two stress components exerted in this arbitrary inclined plane p are shearing stresses

Ty, T that can be obtained:

a/ either by projecting the components v, , vy, v, of the total strain v, which is exerted in plane p, on
the y’ and z’ axes, respectively (these axes must lie in plane p and form a rectangular coordinate
system with the x’=n axis);

b/ or by projecting the total t, exerted in plane p on the y’ and 2z’ axes. The shearing strain 1, is

obtained by applying Pythagoras’ theorem:

2 2 2 2 2 2
rp—\/vp -c, —\/vx +v, +v, -0 =

(3.1.1.3)

2 2 2 2 2 2 2 2 2,V
=4/0, -cos"au+0, -cos'f+0, -cos”y—|o,-cos” o+, cos” B+0,-cos”y

3.1.2 Second task: Principal stresses and principal planes (stress invariants: Eigen
values and Eigen vectors)

Consider the special case of the “stress at a point tetrahedron” where plane p is a principal plane
subjected to a principal stress ¢ and, by definition, zero shear stress. The normal stress ¢ is thus
coincident with the resultant stress v, i.e., v = &, while both have the same direction cosines: cosa =

COS@; COSf=COoSY; COSy = COSY.

Then V, =V-COSQ=0-CosQ
v, =V-cosy = G-cosp (3.1.2.1a,b,c)
V, =V-COSY =0C-COSY
i.e., substituting in Eqs.3.1.1.1 we have
G -COSQL =0, -COSQL+T, - cosB+ T, -cosy
G-cosp=1,-cosa+c, -cosp+r,-cosy (3.1.2.2a,b,¢)
G-COSY=T,-COSQ+7T, -coSP + 0, -cosy
and after rearranging we have
0=(0'x —cs)-cosoc+rZ -cosP+1, -cosy
0=1,-cosa +(cy —c)-cosﬁ+‘tx - COSY (3.12.3a,b,c)

0=t -cosa+1, -cosP +(c, —0)-cosy
Considering Eqs. 3.1.2.3a,b,c as a set of three homogeneous linear equations in unknowns cosa, cosp,
and cosy, the direction cosines of the principal plane, one possible solution, viz. cosa = cosf =cosy =
0, can be dismissed since cos’a + cos’f + cos’y = 1 must always be maintained. The only other
solution which gives real values for the direction cosines is that obtained by equating the determinant
of the R.H.S. to zero: i.e.,

o,—0 T, T,
T, o,-o 1, |=0 (3.1.2.4)
T, T, c,-0

Evaluating the determinant yields the so-called “characteristic equation”
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()( ]
X "z y ¥x z "y

_— (3.12.5)
-|1,06,7,]=0 = o’ -1,-6*+1,-6-1,=0

1, 1,0,

Thus, for any given set of Cartesian stress components in three dimensions a solution of this cubic

equation is required before the principal stress value can be determined; a graphical solution is not

possible.

Note: The solution for the principal stresses i, o; and o3 from the characteristic equation are known as the
Eigen values, whilst the associated direction cosines cosa, cosf and cosy are termed the Eigen vectors.

Stress invariants

If, for the same applied stress system, the stress components had been given relative to some
other set of Cartesian co-ordinates x’, y’ and z°, the above equation would still apply (with x " replacing
x, y replacing y and z’ replacing z) and would still produce the same principal stress values. It follows,
therefore, that whatever axis system is chosen the coefficients of the various terms of the
characteristics equation must have the same values, i.e., they are “non-varying quantities” or
“invariants”, and they are denoted I, b, Ix in Eq.3.1.2.5. When evaluating the determinants applied in

Eq.3.1.2.5 we can find expressions for all the invariants in the following shapes:
[,=0,+0,+0,
2 2 2
L= (rz +T, 47T, )— (cx 6,+6,-6,+0, -qx) (3.1.2.6a)

= 2 2 2
I,=0,-06,-6,+2:7,:1,:7,—0, - Tx~0 Ty —0, T

Note: If the reference axes selected are principal stress axes in the system then all shear components reduce to
zero and Egs. (3.1.7a) reduce to:

I1 =0, +0, +05; 12 =—(cr1 "Gy + Gy "Gyt Oy -0'1); I3 =00, 0y (3.1.2.6b)
The first and second invariants are particularly important in the development of the theory of plasticity,
since it is assumed that:
i) I has no influence on initial yielding
if) L, (= constant) can be taken as an important criterion of yielding
[Recall the energy strength criterion (based on the Maximum-shear-strain-energy, or distortion-energy,
criterion), which is called the HMH Criterion (by its authors: Huber, Mises, Hencky) |

Alternative procedure for determination of principal stresses (eigen values)
An alternative solution to the characteristic cubic equation expressed in stress invariant format,

viz. Eq. 3.1.2.5, is as follows:

principal stresses obtained:
o, =2S-cos(a/3)+1,/3

o, = 28-cos|(a/3)+120° |+1,/3 (3.12.7)
o, =28-cos|(at/3)+240° |+ 1,/3
with S=(R /3)y2 and o =cos (- Q/2T)
1 1 2 1.,
md R=21'-1,, Q=31 L-L-=1, T=(2—7R3)
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After calculation of the three principal stress values, they can be placed in their normal conventional
order of magnitude.

Evaluation of direction cosines for principal stresses (eigen vectors)
Having determined the three principal stress values for a given three-dimensional complex stress

state using the above procedure, a complete solution of the problem generally requires that we
determine the directions in which these stresses act — as given by their respective direction cosines or
given eigen vector values.
The relationship between a particular principal stress 6 , (p = 1, 2, 3) and the Cartesian stress
components is given by Egs. (3.1.5b):
0= (cx —cp)-cosa +71,-cosPp+1, -cosy
0=1,-cosa+ (cy - cp)- cosfB + 1, -cosy (3.12.8a,b,c)
0=1,-cosa+t, -cosP+ (cz —cp)- cosy
If one of the known principal stress values, say © 1, is substituted in the above equations together
with given Cartesian stress components, the three equations result in the three unknown direction
cosines for that principal stress, i.e., cosay, cosf and cosy ;. However,l only two of these are
independent equations, and the additional identity: '
cos’a+cos’B+cos’y =1 (3.1.2.84)
is required in order to evaluate cosa, cosff, and cosy .
This procedure can be repeated, substituting the other principal stress values 6 ; and ¢ 3, in turn,

to produce eigen vectors of these stresses.

3.2 Geometrical theory of strains

3.2.1 Displacement and strain components. and the relation between them

Let us take an elastic body and fix it in such a way as to prevent its displacement as an absolute

rigid body. Then displacement of each of its points will be caused only by deformation, Fig.3.2.1.1.

Fig.3.2.1.2

. Fig32.11

Consider any point M(x,y,z) in the body fixed as indicated above. The point M will be displaced
into a new position M’ as a result of the deformation produced. We designate the projections of the
displacements MM’ on the coordinate axes by u, v, w ; and since the displacements vary from point to
point, the projections of the displacements are functions of position

u=fip2; v=2(6,2; w=fi(%) 2
Let us now pass from displacements to deformations. In an elastic body, we isolate an

infinitesimal with edges dx, dy, dz. During the deformation of the body it will displace and deform: the

length of its edges will change and the initially right angles between the faces will distort.
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To estimate the deformation of the elastic body at a given point M it is necessary to examine the
elongations (linear deformations) of the edges dx, dy, dz of the isolated parallelepiped and the
distortions of the angles /M2, 1M3, 2M3 (shears or angular deformations). For this purpose consider
the projections of the parallelepiped in the coordinate planes (Fig.3.2.1.2); obviously, the deformation
of the parallelepiped itself can be deduced from the deformation of these three projections. In future
we shall restrict ourselves to very small deformations, in the case of which the subsequent treatment
may be greatly simplified.

Take, for instance, the projection of the element M123 on the plane Oxy, Fig.3.2.1.2, where it will
create a rectangular MNPQ. Before deformation, the lengths of the edges are: MN = dx, MP= dy.
After deformation, they occupy the positions M’N’ and M'P’, respectively. We now fix our attention

on the projection of MN. If the

displacement of the point M along YA
the axis Ox is u, the corresponding o ut—_dy Qo
- P
displacement if the point N is v+ 5 dy P /
u . Y - “l
u+du=u+-—dx, where du is \ P Q
ax 4 4 -.-—""_’YX I,I
the increment; since point N differs dy ',' - [ v
from point M only by the coordinate vy I ﬁ?y N v+ o dx
3 L]
x, the small increment Su in the last [ YRY . N 1
formula is replaced, to infinitesimal 0 ﬂa’ux
u
quantities of the second order, by o 4 u+&dx
X [ B
the partial derivation of function u N P>
Fig3.2.13

with respect to the variable x.
Likewise, if the displacement of point M along the axis Oy is v, the displacement of point N along the

- ov o .
same axis is expressed as v +——dx . The projection of the absolute elongation of the segment MN on

the axis Ox being d(dx) = %dx , We obtain

d(dx) oOu ov ow
=—: g =€ =—; §_=E¢ =E (3.2.1.1a,b,0)

z

B TERTT Tk WY dy =
for the unit elongation (normal strain, extensional strain, extension) of this edge (and by reasoning
analogously, for the unit elongation of edge MP directed along axis Oy and in the same way, for the
edge parallel to axis Oz, i.e., edge M3, in Fig.3.3.1.2). Thus, we have obtained the formulas of linear
deformations (elongations) at a given point M of the body in the direction of the three coordinate axes.

Let us now turn to the analysis of angular deformations. We easily find the angle rotation

ov ov
BIB" Ex_dx &
o, stano, = oD = W = e Since we have confined ourselves to the case of

dx+—dx 1+—
ox ox
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. : ou . . .
very small deformations, we may omit the quantity € = P in the denominator of the last expression

as negligibly small compared with unity; we get y,, =

& .

- . : . ou
Similarly, we obtain the angle of rotation of the edge MP = dy in the plane Oxy: ¥, ~ tany,, = g .
We now can easily find the shearing strain, i.e., the distortion of the right angle NMP:

ou

Note: Formula (3.2.1.2a) gives the expression of the shear angle occurring in the plane Oxy which is
perpendicular to the Oz axis (thus resulting in the % denotation).

Similarly, we obtain the expressions of shearing strains in the other two coordinate planes by a
cyclic change between the letters which denote the displacements with respect to the applied
coordinate planes.

Collecting together the above results, we get six basic relations characterising deformation:
a/ unit elongations (extensional strains or extensions)

€ =_3£_ € =&' € =@ (3.2.1.3a,b,c)
X ax’ y ay’ z oz 2.1.3a,b,
b/ shearing strains
Yx =Yy TY =§E+@;
T 8y oz
Yy =¥z T ¥ _%"‘%‘g‘; (3.2.1.4a,b,¢)
Vo= Vyx ¥y = +éu_-
= I T T T ey

3.2.2 Tensor character of the strain at a given point in a body

In the last section we introduced the concept of the stress tensor: from the viewpoint of the
general theory of tensors, the formal and at the same time basic feature of the tensor character of a
state of stress at a given point is that, as one passes from the coordinate planes (Oxy, Oyz, Ozx) to an
arbitrary inclined plane p with outward normal n (having angles o, B, y with the respective
coordinates x, y, z), the stress components vy , v, , U, of the total stress v, which is exerted on plane p,
are expressed by Eqs.(3.1.1.1a,b,¢). These formulas are linear with respect to the original components
as well as to the direction cosines. Under a complete transformation involving the passage from axes x,
Y, zto new axes x', y’, z’ (one axis - say y’- of which coincides with the normal » of the above
mentioned arbitrary inclined plane p, i.e., y’ =n) the components of the state of stress are expressed in
terms of the original components oy, 6y, G, , T4, Ty , T, by projecting components vy , vy , L, of the
total strain v, which is exerted in the plane p, on the y’=n axis according to Eq.(3.1.1.2). This
expression is linear with respect to the original components and quadratic (or so-called bilinear) with
respect to the direction cosines of the new system. The other two stress components exerted in this

arbitrary inclined plane p are shearing stresses t,, T, that can be obtained:
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a/ either by projecting the components vy , Uy , v, of the total strain v, which is exerted in the plane p,
on the x’ and z’ axes, respectively (these axes must lie in the plane p and form a rectangular
coordinate system with the y’=# axis),

b/ or by projecting the total T, exerted in plane p on the x” and z’ axes. The shearing strain T, is

obtained by applying Pythagoras’ theorem, Eq.(3.1.1.3).

In this section we shall show that the deformation of a body at a given point, determined by nine
components of the strain matrix, Eq.(3.2.2.1), is also a tensor from the above point of view. The
deformation at a given point in a body will be completely determined if we calculate the unit
deformation of any infinitesimal segment drawn from the given point. Therefore, consider such a
element MR =dr , Fig. 3.2.2.1.

Y 5
RdP.L:EZ_,
7 P)
,I l,’dw
/
/
4
(4
-
M=M' x
z z
M A e Yo Iy
AU G W P PR 3221
x oy az| = P TeTIp B 5 G220
ow ow ow) ff= To Bal oy,
ox oy oz 2 2 °

The direction angles related to the coordinate axes x, y, z of this initial segment MR (before
loading) are a, B3, Y, respectively. After loading, the point M is shifted into position M’, and R into R".
We denote u, v, w the displacement components of M, and u +du, v +dv, w+ dw those of R . To
be able to examine the elongation of segment MR more easily, we shift its deformed shape MR’ in
such a way that the points M and M’ coincide. When expressing the total elongation Adr of segment
MR , it follows (when projecting the displacement increments du , dv , dw of the point R in the

direction of the segment MR): Adr =du- coso. +dv-cos B+dw-cosy since we can neglect

the changes of the direction angles o, 3, v, as very small quantities of higher order.

The unit elongation is then expressed as

e=ﬂ=d—u-cosa+d—v-cosﬁ+—cﬁ-cosy . (3.2.2.2)
dr dr dr dr

The displacement infinitesimal increments du, dv , dw may be replaced by their differentials

(omitting small quantities of higher order):
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du= —qlldx +—6—u—dy+@dz; dv= @dx +ﬁdy+@dz; dw = @dx+@dy +@dz
0x 0z ox 0z O0x Oy oz
(3.2.2.3a,b,c)
It can readily be found from Fig.3.2.2.1 that it holds:
cosaL = dx ; cosP= dy ; COSy= dz . (3.2.2.4a,b,c)
dr dr dr

After substituting these expressions into Eq.3.2.2.2, when considering Eqs.3.2.2.3a,b,c and
3.2.2.4a,b,c, we obtain
_ 2 2 2 . . .
€=§,-COS 0L +€, -COS B+g, COS"y+Y, -cosP-cosy+y, -cosa-cosy+7, -cosa-cosf

(3.2.2.5)
When comparing Eqgs.3.1.1.3 and 3.2.2.5, we learn that these expressions are quite analogous.

The quantities ¢ correspond with € and t with y/2. It can be proved that such an analogy holds
generally. Therefore, all the conclusions issuing from the analysis of stress also hold for strain.

For instance, the magnitudes of the principal unit elongations are the roots of the following cubic

equation:
AN
e Nl e W] 2 2 2
2 Y * * ¥ Y 3 2
83—(8x+8y+82)-8'+ 214 204 2ile-Hz g o0 = &-1,-82+1,.6-1,=0
Tx e Pr o Pz ¢ 2 72
e I L P
2 2 (3.2.2.6)

3.3 Differential equations of equilibrium

Imagine that we isolate in a solid an

y

+ infinitesimal element (parallelepiped), the edges of
E o Tt o1, dy o which are dx, dy, dz. (The stresses acting upon its

-~ % d . . o .
0x<|____ ; dy _:+ x ° faces generally vary according to their positions in

[}
AT JRpEEAL ) .x the coordinate system. In the equilibrium
- Ty g

st Y dz equation of the forces acting upon the element in

Z/ dx Fig.33.1 the x-coordinate direction is:

[cx + oo, dx]-dy-dz—cx -dy-dz+(rZ + o, dy)-dx-dz—rZ -dx-dz+
ox oy
(3.3.1)

& N
+(Ty +—51dz}dx-dy—'cy -dx-dy + X-dx-dy-dz=0
z

where X is the x-coordinate component of so called body forces applied to unit mass of the body; such

are, for instance, the gravity, or centrifugal, or magnetic, forces and forces of inertia.

ot
Eq.3.3.1 can be rearranged thus having %, + o, +—2+X=0 (3.32a)
ox oy oz
Analogously, based on equilibrium equations in the y/z-coordinate directions, we have
o, 0oy ot ot
2 Y TX Y =0 Y, % 2 7 (3.3.2b,c)
ox Oy oz ox Oy oz )
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4. Torsion of bars with non-circular profiles

When twisting a shaft (with a circular profile), its originally plane cross-sections remain plane
after loading (after shaft deformation). This is because the shearing stresses © (produced by torsion),
acting along all the so-called shearing lines (which are circular in shape), are parallel. (We know that
T is a tangent to these shearing lines). It can be seen (Fig.4.1) that the shearing stresses T, acting
along each shearing line, are in proportion. It follows from this that the corresponding shearing strains
v must also be proportional and, therefore, the profile does not deplane. ‘ |

However, this does not hold when twisting a bar that does not have a circular profile. 4sa

consequence of this, the originally plane cross-sections warp (deplane) (Fig. 4.2 and Fig. 4.3).

SHEARING
LINE

YA

SHEARING
LINE

Fig4.1 Fig.4.2
Based on the concept of warping (deplaning) there are two tvpes of torsion:

When all the cross-sections of a twisted bar can warp (deplane) freely, we refer to “free (simple)
torsion”;, while if free warping is restrained, e.g., by a fixation or by ribs, we refer to “restrained

torsion” or “bending torsion”.

YA
T A T

Denoting the relative twisting angle (the relative angular displacement of two cross-sections that

Y
A

v

Fig4.3 < X

are one unit apart) as §, then the angular displacement of two arbitrary sections separated by the

distance x (Fig.4.3)is @ = 3-x . Based on Fig.4.4, displacements v and w can be expressed:

v=-MM'-cosa=—r-¢-coso.=-1-3-x-cosaa=-9-X-z (4.1a)
w=MM'-sino=r-@-sina=r-9-x-sina=9-x-y (4.15)
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(where the geometric relations: sino. = Z;coscx =2 , are readily obtained from Fig.4.4.)
r r

Applying to Eqgs.(4.1a,b) the relations
(3.2.1.3a,b,c) and (3.2.1.4a,b,c), Chap.3, we

A
s
9 have successively:
= + X
May) | ¢

y 8x=@=0
v Ox
y 8y=%=0
- sz=ﬁ:0
z 0z

(4.2a,b,c)

Fig.4.4

Note: Eq.(4.1.2a), i.e., g, = 0, follows from the fact that the deplanation, i.e., axial displacement, u = f(y,z), does
not depend on its axial position.

’yx=§v—+@=——9x+9x=0; yy=@+@=9y+@¢0 ; y2=@+ﬂ=@—82¢0
0z ox 0Oz 0z 0y 0x

. (4.3a,b,c)
Eqgs.( 4.3 b,c) represent relations between strains (y) and displacements (u). Confronting them

with the circular shaft torsion derivation (studied last term, cf. [1], Chap.8), we can denote all the
expressions derived so far, as step 1. Following the analogy of the shaft torsion derivation we
approach step 2, i.e., the generalised Hooke s law (GHL) application:

Substituting Eqs. (4.2a,b,c,) and (4.3a,b,c) into GHL (cf. [1], Chap.5, Egs.5.8.2.1a,b,c and
5.8.2.2a,b,¢), it follows that

au N
0x=0y,=0,=1%=0  (ab,cd) and ou (4.4a,b,c,de.f)
1,=G(—-9%2)20
oy

These results show that, when twisting a non-circular profile bar, no normal stresses arise and the
shearing stress has a general direction in the cross-sections (it follows from the theorem of associated
shearing stresses that the shearing stress components 7, and 7, have their counterparts in the bar axial
sections).

Differentiating Eqs. (4.4e,f) with respect to the corresponding coordinates, and then subtracting

the first from the second, we obtain successively a partial differential equation:

a‘t 2
Fyy—=G(9+§/;) o o
Z
o, . & = Ty “5)
£ =G(—--9) ,
0z Oyoz

as a result of combining the 1st and 2nd steps.
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Step 3: Equilibrium equations
In Chapter 3 (3D-stress state), we derived the partial differential Eqgs.(3.3.2a,5,c) of a body

element equilibrium. For non-circular profile torsion, only the first of these equations will be used:

0
9o, +§T—Z+A+X=O
ox Oy 0z

When twisting a rod, the volume force X = 0 and, based on the fact that ¢, =0, also @:L =0

ﬂ + % =0 (4.6)
oy 0z
4.1 Stress function
In order to assess shearing stress, we have a system of two partial differential Egs. (4.5) and (4.6).
No general solution of this eq. system is possible (solutions - and rather complex ones - exist for
several particular cases). Theory of elasticity teaches that, if a solution of a strength problem is found,
it will be unique. We shall try to find a function ¥ =F(y,z), the partial derivatives of which
(Eqs.4.1.1a,b) give the values of the shearing stresses
. =i§E=—ﬁ' c ___$6F_ oF

s z —=+—
T ey T oy oz oz

A function which possesses the mentioned characteristic is called the “stress function”. Geometrically,

(4.1.1a,b)

we can consider F(3,z) as a

o surface “inflated” over the
N Y4 b t1 Fig.4.1.1
ar cross-section, Fig.4.1.1.
! Ty /— . .
: Ay The above introduced partial

z T derivatives denote the slope

magnitudes of the tangents #,,

T,
s
Y - LN“A 1,, respectively:

L
LT \,Fig4ll Fig4.1.2 oF
—<
0y(z)

w2z P tgml(z) —

0

(which are negative for the concave surface, where @, , = n/2).

Note: It is evident from Fig.4.1.2 that 1, >0 (having a positive sense with respect to the z axis) and v, < 0
(being directed oppositely with respect to the y axis). In order to respect these two facts we take the lower
signs in Eqs.(4.1.1a,b).

After respective differentiating, Eqs.(4.1.1a,b) yield
ot,  OF o, OF o1,  O°F o1, O°F
75 b = =t d) =t
oy oy 0z 0yoz oy 0yoz 0z 0z

Two of these expressions (b and ¢) satisfy Eq.(4.6), while applying the remaining expressions (a and d)

c)

in Eq.(4.5) we obtain
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2 2 )
-@—E + 6_12: =-28G; (since F = F(y,z) = .a_lj = 0) we can write: Vle =-2G8 (4.1.2)
oy" oz ox

) *
(where we applied the operator V~ = Sttty )
ox oy 0z

As a consequence of the complementary shearing stress theorem, the shearing stress direction has

to be tangent to the cross-section contour, Fig.4.1.2. Considering there the similar triangles (formed by

. . . dy 1, :
shearing stress components 1,, T, and by differentials dy, dz), we have d— =% where we substitute from

VA ’L‘y

Eq.(4.1.1a,b) and thus obtain the boundary condition of the stress function:

OF
oW o Fy Fho 4.1.3)
1, dz _OF oy - oz

oy

Note 1: Where the left hand side is a total differential, Eq.(4.1.3) can be rewritten as dF = 0, which (after
integration) yields F = const. Thus, the boundary condition that the stress function F has a constant
value along the cross-section contour. If the cross-section contour is demarcated by several curves,
i.e., a twisted rod has longitudinal holes, the stress function F must be constant along all the cross-
section contours.

Note 2: Stress function assessment is generally not a simple problem,but when the profile contour equation

(Fig.4.1.2) obeys the following condition Vlzf = C, where C denotes a non-zero constant value, we can

9
determine the stress function easily, being F(y,z) = —Tf(y, z), which can be proved when

2GS
considering V12F = —Tvlzf and, because Vl2 f =C, the basic condition Eq.(4.1.2) is fulfilled:
2
V{F=-2G3.

Exact stress functions can be obtained for the following profiles: i) elliptic, and, ii) equilateral triangle.

4.2 Characteristics of the stress function F(y,z)
1/ Function F(y,z) can also be referred to as a stress-cap (SC). In Fig.4.2.1, the stress-cap is cut with

a plane x = A. In the front view, the intersection line (F(y,z) = h), i.e., the isohypse, successively

oF
obtains the forms (cf. Eqs.4.1.1a,b and 4.1.3): dF = QF—dy + élidz and d_y =0z _% 4.2.1
oy 0z dz OF 1,
oy

Therefore the stress-cap isohypses represent the shearing lines (including the contour line, where h = 0).
2/ When we cut the stress-cap with two planes, x = & and x = h + dh, which are infinitesimally close
to each other, then the intersections of these two planes with the stress-cap form two infinitesimally

close isohypses. From Fig.4.2.2, it follows successively

OF

r=’1y|cosB+ _COSB+—Z§

T, sinp. (4.2.2)

sinf3, or 1=
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Denoting the distance of the shearing lines as dn,

it also holds that cosf} = __d_y’ sinf3 = _dz ,so that T=—, a—de+ -a—F-dz L (4.2.3)
dn dn oy 0z dn
. . dF :
Applying Eq.( (4.3.1), we obtain T= _E 4.2.4)

The front view Ay w\T

of SC —\
Ty

-~ isohypse

The side view

/ \ of SC
A S —;—
contour line

Fig.4.2.1 bar h e

Note: The last expression implies two interpretations:
a/ The 1 magnitude at a profile point is given by the stress-cup gradient at the respective point.
b/ When rearranging Eq.(4.2.4) we obtain
}7-dn|= dF = const (4.2.5)

which is called the continuity equation (since its shape is similar-to the continuity eq. known from
hydraulics). The continuity equation (Eq.4.2.5) expresses:
where the shearing lines (similar to the lines of flow) are concentrated, the shearing stresses (similar
to the flow velocity) increase.

-dz

Fig.4.2.2
3/ Let us, as in the previous item, cut the stress-cap with two infinitesimally close planes and thus
obtain two infinitesimally close isohypses (i.e., shearing lines), Fig.4.2.3. With respect to the origin of
the coordinates O (i.e., the pole of the twist), an elementary force, i.e.,1dn-ds, produces an elementary
torque of the second order: d*T =1dn-ds-p,

so that the elementary torque (of the first order) carried by the belt between these two shearing lines

under consideration (while integration is executed along the central line c¢) is:

1 eq .
dT = |tdn-2dS, (where dS = —pds is the area of the shaded triangle). Considering that it holds
2

C

(according to the second stress-function characteristic): |‘rdn| = dF = const, the elementary torque can be

expressed as follows: dT =21dn IdS ,or dT =21dnS,. (4.2.6)
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Substituting Eq.(4.2.5), i.e., dT =2S . dF =2dV,

we obtain by integrating: T =2V, 4.2.7)
i.e., the forque magnitude bome by the given

profile is equal to the_two-multiple of the stress-

cap volume.

Note: Eq.(4.2.6) is very important. From this point of
solution we can continue in two modes:

I) continuing in the integration process and thus
obtaining an allowed torque to be applied in torsion of a
solid profile, see below;

II) interrupting the integration process when considering
the similarity of the_two infinitesimally close isohypses

) E to_a hollow thin-walled _profile -while adopting
Fig.4.2.3 PLGEY: 1) Eq.(4.2.6) - (see later in section 4.3.1 where hollow

thin-walled profiles will be discussed).

4.3 Thin-walled profiles

Based on the formulas obtained in the previous sections, problems of free torsion of thin-walled
cross-sections can be derived. The thin-walled cross-sections are divided into two groups: i) hollow
(closed), and, ii) open thin-walled profiles. We will learn that the deplanation of hollow profiles under
free torsion is much lower (due to their high stiffness) than deplanation with open profiles. And, since
in practice predominantly restrained torsion (restraining deplanation) takes place, only the results

obtained here for free torsion of hollow profiles are of direct practical use, while the torsion formulas

for open profiles need to be completed by the restrained torsion theory.

4.3.1 Hollow thin-walled profiles
The shape of hollow thin-walled profiles (with wall thickness #) being similar to the

configuration given by the two thick-dotted isohypses (Fig.4.2.3) which are separated by a distance
dn, we start from Eq.4.2.6 and, having transformed it (by an engineering approach) from elementary

quantities to final quantities, we have

T=2-1,-n, S, (4.3.1.1)
where [T, -nmin[ =const, according to Eq.(4.2.5), and 1. =
n,
— A Tan holds for central curve C in the thinnest part (# ,,;,) of the
ﬁ\ \ profile. It is evident from Fig. 4.3.1.1 that 1. > T,y , which is
n
1 + T inadmissible, requires a reduction of torque T. For this
Te)™ Tan _ HH
® \-;V ) & L,| purpose we apply Stoke’s theorems.
\ 4f )

Te 1) Stress reduction for a straight profile part:

1) Based on the supposed linear stress distribution
\ (Fig43.1.1): 1, +7, =21,

2) Elementary Stoke’s theorem: (for a straight part p — 0)

F1g4311 E—Fl =2G9 = Te —Ti = 2G9 3’Ce _Ti =2G8nmin

dn p n min
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1) + 2) yields: T, =T, +G0n (4.3.1.2)
n
4Tds Tan '(Ll —n2)+’Cann—1-(L2—n1)
3) General Stoke's theorem: GO = = Gd= 2
2-S, (Ll—nz)'(Lz_nl)

Note: From the continuity equation (the 2nd stress-cap characteristic), it follows T;. n; =17, . n,

II) Stress reduction at a sharp corner of the profile, Fig. 4.3.1.2: (dn =dp) oo ‘
dt 1t R
Elementary Stoke’s theorem: L 2G0 = o o= ny
dn p d‘p/'/ ’,’l”’ PPl b
dt = / ; 4 ,;’ A
— +==2G%/-p-dp= d(t-p)=2G0-p-dp [ A
dp p #
] iy
C N b
After integrating we have T=G0p+—. (43.1.3) T &
- 1
P Fig. 4.3.1.2

Integration constant C, found by applying BC (the continuity equation):

T,n— % (re2 - riz)

.
Ty 0, = [T(p)-dp, isC= - (43.14)
g In—=
L
) . . ) C
Stress concentration (with a sharp corner) arises at radius r;: T, =GO, +— 4.3.1.5
L

The final value of allowable torque T, that the profile can bear is obtained by reducing Eq.(4.3.1.1):

T
Ty, =T- —2_ where Ty = max (Te, Ts ), S€€ Egs.(4.3.1.2) and (4.3.1.3).

max
Note: After this reduction, the allowable stress T,y will not be exceeded anywhere in the profile. The formulas

introduced here can be applied in practical design.

4.3.2 Open thin-walled profiles
The theory of free torsion of open thin-walled profiles is based on formulas derived for a long

narrow rectangle, Fig. 4.3.2.1:
In such a case, the stress-cap F(y,z) can be simplified into a parabolic cylinder F(y) (thick dotted line),

dt
and therefore Eq. (4.5) simplifies to d—y =2G0=> T, =2G0y+C, *).
y

dF(y)

F() ny,z) From Eq.(4.1.1a): Ty =——"—, We have
A / \ :l F(0) dy
F(y)=-Gdy* +C,.
e Boundary condiions: 1/ 5(0) = 0= = 0
b A 2 F(b/2)=0 =
P h FO) Co= GO(b2);
Fig. 4.3.2.1 )
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b 2
yield stress-function F(y)= Go- [—4— - yzj k)

twice the volume of which indicates the torque borne by the profile:

T=2V=2 % -F(0)-h-b =G0 %b3h *kKY), From the *) expressions, we can express

b
,(3) 1
2G0 = —y—:2— = ﬁ . In combination with ***) we have successively:
2

T T

i) Strength criterion:; 7, =— = 1 STy, (43.2.1)
Zr Zph

3

T T
ii) flexibility (the rate of angle of twist): O = = 3 4.3.2.2)
GIr G-1v°n
hi, '
-
Y A Toax = Tal The resulting torque of a chanmel profile,
} Brr= Drnax Fig.4.3.2.2, is the sum of the torques the
(bs l component rectangles can bear:
L~
=T = 1b*h-1 =
? Note: these angles, being T ;T‘ ; 00T,
proportional to the angle of twist: )
z D of the whole profile, i) as well 5" 1p2p ¢ bi
hy| - ’ as of each of its parts, are equal — 3™ al b,
\ = Tmax Occurs at the contour in
1 . the thickest wall I
1 T = ZT . Tau = b— . Tall (4.3.2.3)
b. max
A T =TT here I. = Y 1. =1’ -h
/] b, where Iy = 3T, =) b7 -hy
n n
Fig4.3.2.2

It is necessary to check for a possible stress concentration in sharp corners by applying Eq.(4.3.1.3),

_—Cj;—ﬁ(re2 —riz)

where integration constant C = obtains a slightly different shape by applying BC:

r
In2

I‘i'

I, .
0= J"C(p) -dp (resulting stress “flow” across the profile wall thickness is equal zero). The angle of twist to

I

be substituted in Eq.(4.3.1.3), is obtained from expression **), where the torque calculated from

T
Eqgs.(4.3.2.3) is substituted. If T; > Tan a reduction, T,; =T - —is needed.
T

max
Note: General Stokes’ Theorem applied for torsion
When twisted, the rod cross-sections are deplaned in all their points M(y,z) by a displacement u(y,z) (in
the x direction). The function u(y,z) is a coherent and univocal function of y,z. As the displacement
change must be coherent as well, the total differential du is also a coherent function of y,z. In a
considered point (Fig.1), we cut out an arbitrary, closed, simply continuous curve C, to each relevant
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TORSION OF BARS WITH NON-CIRCULAR PROFILES

point of which is assigned a certain value u(y,z), and thus also du(y,z),

ou ou
which we integrate along the curve C Cj’ du= Cj‘ —dy+—dz [=0.
Sc oy oz

©) ©
C

fu 1, ou Ty
It follows from Egs.(4.14ef): —=—=+3z; —=——-8y =
oy G 0z G

S : Fy2)=0 = q‘(tzdy + Tde)= GS cj-(ydz - zdy)*)

Fig.1 AR © (©

Based on Fig.2 we have t,dy +1,dz=1,ds. Since it holds, according

to Fig.3, that E[ ydz=S. and CJ. zdy = —S,., resulting in cf (de - Zdy) = 28, , the right hand side
(© © (©)

integral in Eq.*) expresses twice the area covered inside curve C. Thus we rewrite Eq.*) into a simple
shape {r,ds =2G9S; **)
©) '

which is called the General Stokes Theorem for torsion.

sl

S

?f'_‘f

»
Q.
N
N

7'y
@]

Fig2 Fig.3

Elementary Stokes Theorem

Let us apply the general Stokes Theorem on an elementary area dS demarcated by two near shearing
lines SL and two normals N containing an elementary angle de, Fig.4. Then Eq.**) can be modified into

(t+df)=(p+dn)-da—t-p-da=2G8-p-doc-dn = g—r+1=2GS which is called the

n p
Elementary Stokes Theorem for torsion.
It is used for determining the shearing stress distribution:
i)Over the wall thickness of hollow thin-walled profiles, where Eq.(7) will take an approximate shape

LT o269

Din
ii) In the sharp corners of both hollow and open thin-walled profiles, where Eq.(7) obtains successively
the shapes as follow

C
jl+1=2G9/-p-dp:dr-p+r-dp=2Gs-p-dp:>r=Gs-p+—,
p p - ' -~ p
d(t.p)
Taun_@(rez —riz) —919‘(1132 _rl_z)
where integration constants: C = 2 —,or C= —2-1_———,
In= In-=
I T.

(holiow, or open profile).
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5. Buckling of columns

A long slender bar subjected to axial compression is called a column. The term column is
F frequently used to describe a vertical member (whereas the word
strut is occasionally used in regard to inclined bars).

Type of failure of a column : Failure of a column occurs by

buckling, i.e., by lateral deflection of the bar (Fig.5.1a). By contrast,

it is to be noted that failure of a short compression member occurs

by yielding of the material (Fig.5.15). Buckling, and hence failure,

7 —rr77777 Of acolumn may occur even though the maximum stress in the bar
a) 1F Fig.5.1 b) is less than the yield point of the material. Though every carrying
(load-bearing) system is deformed, in the problems studied so far,

we were able to neglect the influence of small distortions of the systems on the state of their
equilibrium. In such a way, the problems became linear, i.e., elastic deformations were proportional to

the external load. For instance, we did not consider the influence of the beam’s horizontal axis length

shortage Al Fig.5.2a, when computing bending moments, shearing forces and stress distribution.

Briefly, we start from the basic geometry of the non-deformed system. These simplifying assumptions

cannot be applied when the loading force acts on the axis of a

F
A - slender bar. A contingent deflection of the bar (caused for
7TTT Vo 7 A instance by a processed eccentricity) brings about
Fig.5.2 < F  Supplementary bending moments M = Fy, “which
............... y S iy additionally increase both stress and deflection (Fig.5.25).
A K . . .
X Purd Deformations are already not proportional to the axial

D - Fig5.2b loading magnitude and their influence cannot be neglected.

Types of column stability

a)

)

Consider an ideal case of a column loaded with an b
; () ()
)

Fig.5.3

axial force F (ideal— material homogeneity, column

geometry, co-axial load, etc.), then three types of

column stability can occur (Fig.5.3a,b,¢):

a) The force F is relatively small (later we shall find out that F <F,).
If the column is bent out by a short-term lateral force exertion, the column stiffness tends to settle

the column to its original equilibrium position, which is reached after a short vibration of the column.

The column will not be bent in the end. In this case the system is said to be stable (in stable

equilibrium). In Fig. 5.3a, the concept of stable equilibrium is demonstrated by a sphere in a concave
cup.
b) The force F is equal to the critical force F; (F = F_ ;1)

If some lateral impulse bends the column out slightly, and the column remains in its new bent

position without any tendency to move out, the system is said to be in indifferent equilibrium. The
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corresponding axial force F is then called the critical force F., .In Fig.5.3b, the concept of indifferent

equilibrium is demonstrated by a sphere on a plane.

Note: All deflection, although_theoretically unbounded, must be considered very small, otherwise the
following mathematical description will not hold.

¢) The force F is greater than the critical force F iy (F > F)

When the critical force is exceeded slightly, F > F,,;,, and a lateral impulse bends the column out
of a straight line, the column deflection will increase quickly until rupture of the column occurs at a
limit force Fy,. The system is said to be unstable. (The system loaded with F>F,; could theoretically be in
unstable equilibrium for some time, which can be demonstrated by a sphere on a convex cup, Fig.5.3¢). The
limit force Fy,, does not differ much from the critical force F,.;,, and therefore this is considered to be,
in practice, the limit of the carrying capacity of the column.
Note: A complex of problems, when the carrying capacity of members is not determined by their strength but

by their stable state of equilibrium, is known as the stability of structures. Stability problems also occur
with thin-walled members, e.g., plates (both plane and curved), shells (pressure vessels subjected to
external pressure), beams with thin-walled profiles (both open and closed) and beams that are pressed,
twisted, bent or under a combination of these loadings, etc. _Stability problems can concern both a whole
structure and parts of a structure. Exact solutions of most stability problems are very difficult to obtain,
and thus designers are often satisfied with only approximate solutions or with experimental findings
{which are also very problematic to carry out).

5.1 Basic modes of buckling of columns

Buckling is one of the basic stability problems that designers very often have to face. The critical
force magnitude F,;, depends on the column’s: dimensions, material (and its homogeneity) and the
mode of the column end fixations. With respect to the column end conditions, four basic modes are
usually brought forward, (Fig.5.1.1a,b,c,d):
I) column with one free end 4 supporting a load F and one fixed (clamped) end B;
II) pin-ended column;
MI) column with one fixed end B and one pin-connected end 4 supporting a load F;

IV) column with two fixed ends 4 and B supporting a load F.

Fig.5.1.1a,b,c,d
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5.1.1 Classic solutions

The elastic solution principle (in the range of validity of Hooke’s law) for all the basic modes can be
described as follows:

Consider the respective column critical loading F (the symbol should be denoted accurately Fe; )
resulting in the column indifferent equilibrium state, i.e., an arbitrary lateral deflection y,; of the
column can take place, Fig.5.1.1.1 We are just to express two relevant mathematical relations:

1) Bending moment My, , exerting in a given column point &, (at a distance x from end B) by
applying the method of sections;

Mx)

2) Bernoulli’s equation y" = ———— applied to determine the beam deflection

Note: As the solution of the column with the 2nd. type of end conditions (briefly 2nd buckling mode) will be
proved to be the simplest, we will start with it.
2nd buckling mode (end conditions)

The relevant expressions for the 2nd buckling mode can readily be obtained from Fig.5

" ! 1(x) I - » I 2
w=F; =0 —=
AdDH M F-y;ad2) y I Iy introducing : o

we obtain a homogeneous differential equation (of the second order,

having constant coefficients): y"+a’y =0, the solution of which is
y =Acosox + Bsinax end (boundary) conditions (BC): for the

bottom pin ...X =0,y =0=Acos0+Bsin0=>A=0 for the

upper pin ...Xx =L; y ) = 0= BsinaL = 0,which is satisfied:

i) either B = 0, then y = 0 ...and the column remains straight (stable

equilibrium);
Fig.5.1.1.1 ii)or sinal=0,then o-L=k-m,  wherek =1, 2, 3..and the
column will deflect: y,, = Bsinox (indifferent equilibrium).

The minimum critical load will be delivered when substituting & = 1 into ),

F }
=1 =3 Taking into account ﬁ =a? ,weobtain a-L =L EEI =7 , and the

n%El
L2

critical load will be F_;, = (5.1.1.1)

Fig.5.1.12 Note: The meaning of the different values of coefficient £ is evident from
T Fig.5.1.1.2 (for application k£ = 2;3..., the column would need lateral supports).

Discussion of Eq.(5.1.1.1):
1. From formula (5.1.1.1) it is evident that the /ateral deflection depends on the bending stiffhess EJ and
for this reason the deflection must set in the plane of the lowest bending stiffness ELpy,.
[Therefore rods with sections (profiles) having considerable differences in principal second moments of
area (cf. [1], Chap.9), e.g., channels (U-irons), are not advantageous for use as columns (or struts),
because of their unbalanced buckling resistance, which means that they consume much material.]
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2. The formula contains Young'’s modulus of elasticity E and therefore it has limited applicability. It can

be applied only in the range of validity of Hooke'’s Law, i.e., only when the critical stress G = Fy

/A does not exceed the proportional limit ., of the applied material. The critical load is then
rewritten:

n2ElL_;

Forit == - (5.1.1.1a)

L :

The expression obtained is known as Euler’s formula, after the Swiss mathematician Leonard Euler
(1707-1783)

Ist buckling mode (end conditions)

¢ . Based on Fig.5.1.1.2, it holds:
A
el 1 DM =—F<c—y);z>y"=—%=%(c—y) =
<M /Ns oy L vy +alty=a’e
/’ B The particular integral being y, = ¢, we obtain the solution in the
] B \ following shape y = A cosax +Bsinax +c ;
7 Fig.5.1.1.3 y' = —oAsinoax +aBcosax (needed for BC)

End (boundary) conditions:

for bottom fixing...x =0:y, =0=Acos0+Bsin0+c = A=-c

and Y =0=-0-Asin0+o-Bcos0 = B=0
Thus, the deflection curve equation isy =—C-coSOQX +C = c(l —COoS OLX), which holds for the whole

column and therefore also for the upper freeend... x =Ly, =c= c(l—cos aL)= c-cosaL =0

To satisfy the last condition:

i) either ¢ = 0, then y() = 0 ... the column remains straight (stable equilibrium);

ii)or cosal=0,then ao-L =k g Y where k = 1, 2, 3..., and the column will deflect (indifferent

equilibrium), obeying the relation: y= c(l —CoS ocx)

The minimum critical load will be delivered when substituting £ = I (any other £ value would require
f F = 2
R L —== n“El_;
lateral supports), into ) aL =1 Fl 2 andthe critical load will be F;, = —4L2—m‘" (5.1.1.2)

Note: Another approach to this 1st buckling mode solution can be:
We may observe that the column will behave as the upper part of a pin-connected column (Fig.5.1.15).
The critical load for the column in Fig.5.1.1a is thus the same as for the pin-ended column of Fig.5.1.15
and may be obtained from Euler’s formula (5.1.1.1) by using a column length equal to twice the actual
length L of the given column. We say that the effective length L, of the column in the Fig.5.1.1a is equal
to 2L and, substituting L, = 2L in Euler’s formula (5.1.1.1), we obtain Euler’s formula (5.1.1.)
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3rd buckling mode (end conditions)

Based on Fig.5.1.1.3, it holds:

F H
DM, =Fy-H(L-x);2) y=——|y-—(L-x =
)M, =Fy-H(L-x);2) y EI[YF( )]
" 2 ZH . .
T 3 y+a‘y=o ?(L—X) . Its general solution is
Y/ e
X . H
'y ‘M= Fig.5.1.1.4 y=Acosocx+Bsm0Lx+?(L—x)

FEEE

End (boundary) conditions:

HDx=0,y=0: 0=AcosO+BsinO+%(L—O) = A=—%—L

2)x=0,y=0: O=a[—Asin0+BcosO—£} = B=-E
oF oF

3)x=L,y=0: 0= %[l sinaL —Lcos OLL:I = tgol = al. (indifferent equilibrium).
o

The first root satisfying this transcendent equation is aL=4.493 and the critical load for

2 2 2
. . El .
the 3rd buckling mode is F, = 4 49:2 E_20 126EI ,or F o = 2n 2EI == 7 (5.1.1.3)
L L L (0.70)
4th buckling mode (end conditions)
F .M,
y— % Based on Fig.5.1.1.4, it holds:
F M
) M=Fy-M;;2)y" =-—|y—-——| =
) y=Mp2)y'=-5 [y F ]
" 2 2 Ml . .
y +o'y=a T Its general solution is
. ) M
Fig.5.1.1.5 y=Acosocx+B51n0Lx+T1

End (boundary) conditions:

1) x=0,y=0:0=AcosO+Bsin0+—A% = A=—%

F
2)x=0,y =0:(y =—Aasinax+Bacosax) = 0=o(-Asin0+Bcos0)=B=0

M
)x=L,y=0: O=T1(l—cosocL) = l=cosal :ocL=k(27t) ;0 k=123...
' 2
To obtain the minimum critical load we apply k =1: L, /% =2n => F; = %E#“— (5.1.1.3)
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The region of applicability of Euler’s solution:

We express so-called buckling stress by dividing the critical loads F

i DY the cross-sectional area
4, and we obtain O, = F_;; / A . In order to ensure the applicability of Euler’s solution , we must

stipulate that the buckling stress does not exceed the proportional point of the applied material, i.e.,
G =F /AL O prop - Introducing 7 = A.i*, where i is the radius (of inertia) of the column profile,

we can write successively

2 2 -2 el
Bl n-mEA-1 B 2
Gcrit=Fcrit/A=n - me = 2 =1- i 2:>Gcrit:n.n2ESGProp
AL AL (L} A
imin

limit slenderness Ay, =

1/ columns obeying Euler’s formulas, i.e., h 2 Ay, (elastic buckling, where Gerit < Gprop)
2/ columns not obeying Euler’s formulas, i.e. A < Ay, (non-elastic buckling, Geit > Gprop)

Buckling in the non-elastic region:

Note: There are a number of approaches fo non-elastic buckling solutions:
a/ introduction of the Equivalert elastic modulus, tending to the extension of Euler’s formulas also for the
non-elastic region; b/ Application of buckling coefficients; ¢/ Application of empirical formulas
As the latter approach has greater practical significance, we will pay special attention to it:
Its principle is based on experimentally obtained data to be used in the diagram {Geg, A}.
The plots cbtained have a shared point with Euler’s formulae for 6. and they may obtain for instance the
shapes of a parabola, a general cuzve, or a straight line.

In our country, we most frequently apply the Tetmayer critical stress formulas:

1/ for a ductile material Gt =O6r=a-b(l/i)=a-b.A
2/ for a brittle material Cuit =Or=a-b(L/i)+c(L/i)
Tetmayer, Fuler If we do not know the coefficients g, & for a ductile
=3 L
Ot \ material we can fix the ends of the straight line oy =
\
Oy|_ Ot \\\ f(;\..) at points {7\. = 0; Gt = Oy ] and [7\1 =A lim> OT =
N
Oprop o Opicp 1> thus obtaining the Tetmayer critical stress:
6y —0O
= Oy =07 =0y — —
VA' 7\’lim

Mim
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5.2 Approximate solution methods

The above shown classical solution of column buckling can be applied only for simple stability
problems (columns with a uniform cross-section and which are loaded at their ends). With columns
that have a genérally varying cross-section, or that are loaded along their length, the exact solution is
no longer valid, and we must confine ourselves to:

a/ energy methods (by Rayieigh) and

b/ the method of successive approximations (by Vianello)

Note: A common feature of both methods is a suppeosition (estimation) of the column deflection curve shape.
The column deflection shape is selected in such a way that it satisfies the column end conditions,
corresponds with the course of the column stiffness along its length, and offers a simple solution.

5.2.1 Energv method

The basis of this method consists in comparing the column strain energy increment AU (produced
when the strut is being bent) with the external work increment AW executed by the corresponding
load F displacement AL: 1/ AU > AW, i.e., stable equilibrium; 2/ AU < AW, i.e., instable equilibrium;
3/ AU = AW; i.e., indifferent (neutral) equilibrium.

The energy method formula assessment will be presented for a pin—ended column, Fig.5.2.1.1:

a/ the column strain energy increment AU : AU = J. (x)
2;

Note: Moment M(x) can be expressed:
o) in the shape M(x) = F-y holding for the 2nd buckling mode only =

2
! 2
the increment of the strain energy holding for the 2nd buckling mode only is AU =— F2 J y—(x)dx
2

L EI
B) applying Bernoulli’s equation for beam deflection A (x) = (EIy'"), we obtain the increment of the
strain energy in a general form (applicable for all buckling modes): AU = — J y Eldx
2

b/ The load external work increment AW:
Neglecting the column length reduction (by compression) we can consider the column length to

be unchanged after its bending L =s. For the column length element ds, it holds

ds= \/idxz +dy? i: dx(l +y’? )2 = dx(l += y'z) Ly JcF

Al
—
(when, for a small column defiection, the development in Taylor’s series applies) L| L-sL x dy S
Beginning from the infinitesimal load (F) displacement (related to element ds) l dxlHds
v >y
1 %) \ 1 72 g
dAL=ds-dx =dx|1+ =y |-dx ==y “dx x| el
27 ) 2
52.1.1

: : . . 1.,
we obtain load (F) displacement AL by integration: AL =— Iy 2dx
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The external work executed by the force F (which remains constant when producing the work AW

along AL) is AW=F-AL=§ Iy'zdx
L
¢/ The critical force 1s assessed from the equality AW = AU (obtained in two forms):
| . J‘ y’2dx
ad o) —F? —(-de =— j.y “dx = F_,, =———— (2nd buckling mode only) (5.2.1.1)
2 27 J’ (X) ix
- . j y”*EI dx
ad ~ [y"*Eldx = — [y?dx = F,, = ———— (all buckling mod 52.1.2
B) > ]:[Y 2} _[ erit = Iy'zdx (all buckling modes) ( )
L

Note 1: The solution obtained from formula (5.2.1.1) can be satisfactory even for a very approximate (non-
accurate) estimation of the column deflection curve function (because in this case the second derivation,
which is very difficult to estimate, plays no role). While the solution obtained from formula (5.2.1.2)

can be satisfactory only when applying the exact deflection curve (if we know this from another
solution), or when expressing it in the form of a series.

Note 2: The energy method is based on the theorem of minimum potential energy 7= W - U:
ox=0W -6U=0= 6W =48U, which holds exactly only when the deflection curve is accurately
found (estimated). It can be proved that (§°Z> 0 = minimum. Because we rarely find the exact
deflection curve, we must apply the symbol £, instead of =, in the two formulas (5.2.1.1) and (5.2.1.2)

5.2.2 Method of successive approximations (by Vianello)

When applying this method, we start from a selected (estimated) shape of the column deflection
curve y,(x) (this may in fact be a graft only - corresponding to the column dimensions but not necessary
obeying its end conditions). The column is to be loaded with a load F, (assumed to be the respective critical
load), because a column is bent only when in indifferent (neutral) equilibrium.

The moment at a column arbitrary point is then M(x) = F, - y,(x) and the differential equation
M(x) __F,-y,(x)
El El

curve which has to obey the column end conditions. This curve y;(x) can then serve as a newly starting

of the deflection curve is expressed y;(x) =~ , where y;(x) is a new deflection

deflection curve from which we obtain y,(x). This will fit better to the exact curve. After n-]-iteration

EI

previous curve. The procedure is iterated as long as y,(x): y..2(x) = K + £, where K is a constant and

cycles we can write  yr(X)=- . This newly obtained curve is compared with the

€ a selected admissible deviation of two successive deflection curves. In such a way, we obtain (with
the required accuracy) the deflection curve shape, which approximates to the eigen function of the
critical load. In this case, it holds for y,(x) that:

DELly,”(x) =-F,y ni1(x);

i) and EI'y,”’ (x) =- Fayy 2 (x) from which it follows: F .y =F,y,i(x) 7 yu(x)
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Note: As the procedure exertion increases with the increasing number of iterations, we endeavour for the most
effective exploitation of the two lowest possible successive approximations, for instance the selected
Yo(x) and computed y;(x) or, in an extreme case, from the couple of deflection curves y;(x) and y,(x)
resulting from the next approximation. Since. in such cases, the single ratios y(x) / y;(x) can differ
somewhat for different x, we involve more deflection values (y,(x)) in the critical load computation

Sy [yo(x)dx

~F = 01 -
Fre =B =% . Of Fcrit =R
Z Yy

AO
=F,———=F -2
IY1 (x)dx 1

5.3 Combined stress: buckling & bending

In practice there are often cases where a beam, while

N N carrying transversal forces, is simultaneously

_%'- F?%__ subjected to axial loading. Such a case is especially

2 L unfavourable when the axial load is compressive.

< L —> Although this is not a stability problem, we currently

7 1(%) N | (%) denote it as buckling & bending combined stress. A

N-yﬁ) M) —E M;) transversal loading (being supposed to act in one of the

T x _X principal planes of the beam) produces a basic bending

. TR ) My (2) moment 7/ and brings about the beam bending

Mz'(b) ‘ vl with deflection y, in this plane. Owing to the
Fig.5.3.1

deflection, the axial force N acts eccentrically in the
beam individual cross-sections, producing an additional moment My =Ny, together with a
gradually increasing deflection yy added to the basic deflection y, so that the final deflection
magnitude is
Yoy = ¥e + ¥n 6.3.1)
A resulting moment in an arbitrary cross-section x is then
i M, =%, + Ny, (5.3.2)
i This type of loading in fact represents a combination of compression & bending that means not a

stability problem but a strength problem. So that it must satisfy the basic strength condition

=Mmax +—1i$c

|G|max Zb A ali

(5.3.3)

Nevertheless, we must, at the same time, check a corresponding stability condition of the beam,
| because its carrying capacity failure might set in the direction of minimum stiffness of the beam, which
would be caused by buckling .

An assessment of the maximum moment M, of buckling & bending combination to be
substituted into the strength criterion (Eq.5.3.3):
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1) Solution based on the deflection curve y(x): When substituting Eq.(5.3.2) into Bernoulli’s

2

N o
equation and introducing i =a? , we have successively:  y"+ 0%y = ——1\?7%(,, )

the general solution of which is: y,, = Acosax+Bsinax+y,

This represents a resuiting deflection curve, and its substitution in Eq.(5.3.2) yields My,qy.

Note: A, B are integration constants to be assessed from the boundary conditions: for x = 0 — y(0) = 0;

for x = L — y(L) = 0; or, if need be, from the conditions of beam deflection curve compatibility,
i.e., the equality of the deflection magnitudes and the deflection slopes from the two sides of the beam

cross-section under consideration; yp is a particular integral of the non-homogeneous differential
equation,

2) Direct moment solution M(x): Starting from the double derivation of Eq.(5.3.2) we have
M’(x) = 7"(x) + N- y"(x), where we substitute Bernoulli’s equation and thus obtain
M”(x)+ a*M(x) = #"(x) **). The general solutionis M,, = Acosox+Bsinax+M,

Note: The integration constants A, B are similarly obtained from the respective boundary
conditions, and M} is a particular integral. By finding an extreme, we obtain Mpa..

Example: Assess My, produced in the column shown in Fig.5.3.1.

Solution: Transversal force F produces bending moments in two spans (g, b):

M, (x) = F%x . W,(X) = F—?—i (e, #{(x) =0; %, (X)=0), thus Eq.**) is homogeneous.
L
Span 0 x Sa: M§ +0.*M, =0 (from lef) Span 0 <% b : M5 +0a*M, =0 (from right)

M; (x) = A, cosox + B, sin ox M, (X) = A, cosoX + B, sin oX

V, = M] = —0A, sin ox + oB, cosox V, =-Mj = 0A, sin 0X — 0B, cosoX

BC: 1) x=0: M{0)=0=A; =0, thus M;(X)=B;sinox; 2)x=0:M;(0)=0=A4A;

=0
3x=aand¥=b: M,(@)=M,(b) =B, =130 s M, (x) = L0 Gin ox
: sin oL o sin ol
Ayx=aamdi=b M (a)-[-M,(b)]=F = B, L3892y Fsimaa g, %
o o sin oL L. o, sin oll.

Note: For a case, where the transversal load F is acting in the beam centre (a = b = L/2), the extreme location is
; oL
g .
2 |_ n "
ol max

2

. : FL
inxpy= ; and the maximum moment obtains the value as follows M3 =—
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6. Plasticity

6.1 Introduction

So far we have dealt with elastic behaviour of structures, i.c., structures that have been stressed
within the range of Hooke’s Law, i.e., to the proportional limit of the material. Now, we extend
structure stressing beyond the proportional limit. As material stress-strain curves have complicated
shapes after exceeding this boundary, and thus a computation of the structure stress distributions can
hardly be carried out by an analytical approach, simplified material models are introduced. When
applying a tensile test on a specimen of a ductile material (see [1], Chap.2, Fig.2.6.1.1), we can
observe that, after a critical value oy (point Y) of the stress has been reached, the specimen undergoes
a large deformation with a relatively small increase in the applied load. (This deformation is caused by
slippage of the material along oblique surfaces and is due, therefore, primarily to shearing stresses.)
When comparing €y ~ 0.1% (the strain corresponding to point Y) with € # 1.6%, which occurs at the
end of the slippage (where material hardening begins), and taking into account that, though we will
deal with the plastic behaviour of the material, only a vefy small structure deformation will be
considered, a very realistic model of material is that of ideal plasticity (material hardening being
neglected), the so-called elastic-ideally plastic model of material, Fig.6.1.1a. If more complicated
structures are dealt with (e.g., plates or shells) we have an even simpler model, the so-called rigid-

ideally plastic model of material (where elastic strain is neglected completely), Fig.6.1.15.

A Yield A
B
Oy | N\ Oy
elastic-ideally plastic rigid-ideally plastic
model of material model of material
£y ~0.1% e~ 1.6% € ey~ 1.6% €
Fig.6.1.1a Fig.6.1.ib

We will be concerned with basic types of loading: i) tension and compression of rods; ii) torsioﬁ
of various profiles; iii) bending of beams; iv) pressurizing of thick cylinders. The concept of the plastic

limit load of structures will be explained when dealing with tension and compression of rods and it

will then be applied to other types of loading.

6.1.1 Definition of the limit carrying capacity (plastic limit state) of a structure

When loading a structure from zero load parameter (p = 0 ) it will behave elastically up to a
certain load parameter p,, called the elastic limit load. After passing this limit, a plastic flow will occur
in some parts of the structure where the stress states reach the yield strength of the structure material

oy. The higher the load the more extensive the plastic regions will be until: i)either all the structure

stress state obeys the yield condition of the structure material (i.e., the structure will undergo plastic
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flow), or ii), the remaining elastic parts are not able to bear the structure in equilibrium, and the

structure will become a limit mechanism no longer able to bear its operational load. Such a stress state
is called the limit state of the structure, and its corresponding load parameter pyy is called the limit

load carrying capacity (plastic limit, or collapse load) of the structure.

6.2 Tension and compression of rods beyond the validity of Hooke’s Law

A statically indeterminate pin-connected framework, Fig.6.2.1, is examined while being loaded

with load F gradually increasing from zero up to a limit load: (0 <F< Fy;, . This procedure will contain
2 stages:
1) The pin-connected framework behaviour within the range of the validity of Hooke’s law (0< F< )

The problem being statically indeterminate to the first degree (1° SI), we apply one compatibility
equation together with two equilibrium equations, which yields (cf. [1], Chap.3, Sec.3.5, pp 44-45):

Fcos’o F

2 = —————; N3 =————=— . Maximum stress
1+2cos’ o 1+2cos” o

max

G =03 = XS =0, defines the elastic limit load of the framework

F,=0,- A(l +2cos’ OL) *). When divided by a factor of safety it

el

F
yields allowable load F,;; = Tel = GTY . A(l +2cos® OL) (6.2.1) Fig.6.2.1

2) Elastic-plastic behaviour of the pin-connected framework, i.e., Fy < F< Fy,

Since the stress in rod 3 has reached yield strength oy, it cannot increase (elastic-ideally plastic
model of material, Fig.6.1.1a). The framework, being changed into an SD problem (Fig.6.2.2), can be
solved exclusively by static means, i.e., the force equilibrium in the verticai

F-Ac
direction: (Nl + Nz)cosa +Acy -F=0=> N, =N, =N=——>
2cosa

When yield strength oy is also reached in the two lateral rods:

Fim — A
G, =06, = N = -lm ~ 20V Gy, the framework becomes a collapse
A A-2cosa
mechanism and the load: F,, = Ao, (1 +2cosa) (6.2.2)

(which caused this collapse of the framework) is called the limit (plastic) load.

Fig.6.2.2

Fy, oy
When divided by a safety factor, this yields another allowable load Fy = —1:]- = —kY— - A(l+2cosa)

By F; 1+2cosa 8
Note: The ratio p = im E}—H = —————— means a gain of the limit plastic analysis. (o = 60" B = —).
Fq Fap 1+2c0s” a 5

Instant assessment of the limit load Fiy:
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Based on the collapse mechanism (Fig.6.2.3) we can assess the limit load by
means of the method of virtual work: D, =D, 6.2.3
(D. ...dissipation of external energy; D; ...dissipation of internal energy)
=F;, 0=0y-A-9+2-0y-A-9-cosa=F,_ =Ac,(1+2cosa)

Note: Advantages of (plastic) limit analysis (deduced from the foregoing results):

1/ The (plastic) limit analysis of a structure is often simpler than the elastic analysis.

2/ A better overview of the behaviour of a structure is achieved when studying its limit carrying capacity
(plastic limit state), which means that we can design a safer structure in a logical sense (although
formally having a lower coefficient of safety than with the elastic solution ).

3/ Structures designed by (plastic) limit analysis have a lower cost.

6.2.1 Residual stress and strain

A
c v L The idea of residual stress can be readily obtained by understanding
Oy the phenomenon of residual strain. From Fig.6.2.1.1 we can deduce:
L} The imaginary . . .
process Curve 1...the loading process consists of an elastic part (0— Y)
1 2\\ The real process and a plastic part (Y- L)
U Curve 2...the unloading process (L—U) passes parallel with the
»
O e, Ea | € elastic part (0—Y) of the loading process1 =
R The unloading process is always elastic.
Fig.6.2.1.1

But as we do not know how to compute the unloading process we will compute an imaginary
loading process U—L which we subtract from the loaded state represented by point L. Thus
€ =€, TE~E,.
In the same manner we define the residual stress: Residual stress Oy is obtained when we
subtract from the stress ¢ = fy(F), i.e., O—L (produced by a working load F, < F,, < Fj;,), the

imaginary stress oy = f3(Fy,), i.e., U—L, which we obtain by loading the structure with the same
working load F,, but when we consider that it always behaves elastically:

G =0, =6 —0; (6.2.3.1)
6.3 Plastic torsion

6.3.1 Circular profiles
Based on the elastic-ideally plastic model of material and Fig.6.3.1.1, we can express:

n
1) Elastic limit torque: T, = %d%Y =-—r3’CY;
2) Elastic-plastic torque:

T [ 2 AN - 4 1(pY
Tow = EPSTY +_!27tPPTYdP =§7WY (13 "ij =‘2"T3TY l:g*‘g[%) }
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4
3) Plastic limit torque (p —»0): T, =T,- 3 = 2—3n-r3'r:Y
Tel Telp] Tlim
r
r=d /Q
NGl /|
/ ARE:
Ty L/ Ty e ¥
\

Fig.6.3.1.1

6.3.2 Non-circular profiles
Utilizing the stress-cap characteristics: 2™ (the © magnitude is given by the stress-cap gradient fgo),

and 3“ (T = 2V, where V is the stress-cap volume), and
v the elastic-ideally plastic model of material to an
v assessment of the torque borne by a rectangle profile
(Fig.6.3.2.1) we have
% : %
7 =2V =—0 =1, 2
/ ~ % 2 3 4 12
7 /////'fzf%f where v=-g--tg0c=%-'cy;a=h—b
< v

Fig.6.3.2.1

6.4 Plastic bending

Fig.6.4.1 summarises all the problems we can encounter with beams undergoing bending beyond
the validity of Hooke’s law: I) The profile stress distributions at the central section (x = L/2), are
maximally stressed, which enables us to assess various types of moments (M., M.y . Mjm ); 1I)
Moment distributions (corresponding to the profile stress distributions) leading to the definition of the
beam collapse mechanism and the corresponding (plastic) limit load (Fj;,); IIT) Ranges of plasticity in
the beam center corresponding to the load intensity.

I) Types of bending moments based on the profile stress distributions at the central section (x = L/2):

1) Elastic limit (bending) moment: M, =Z,6y =%bh20'Y (6.4.1)
b
. . , 1, ., 2 _ 1% 4(aY
2) Elastic-plastic moment : M, = —6-ba Gy + ZZ!.GY ‘bry-dy= TGYI:l—E[E) (6.4.2)

2 .
3) Plastic limit moment (for a— 0 we obtain an ideal limit plastic moment which appears in the

1
beam as an ideal plastic hinge): M = thzcy (6.4.3)
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1) Assessment of the limit load of the beam:

We can apply two methods:

. F,,L 4M
1) Comparison of internal and external moments, i.e., —— =M =E, = I

4 o

2) The method of virtual works: D, = D;

L 4M
Consulting Fig.6.4.1 we have: D, =F-u=F- 8-—2—, and D; =M, -28 = F,, =
(D, ...dissipation of external energy; D;...dissipation of internal energy)
<X F
P / N > hils
- - i . : ﬁ r ? / 7
._._._\ _________ %?f’ /e =
""""""" RN 0 i Ll At i i =
N T R ‘75’."_‘""5",2 '"’/{
/3__\ ................ L. 4. 7 _:(-_ - ._I[z
~ //’\\ \Al 57 /,2 L f \ / '
v L N !
EST\ H \ ;; g =T - b 1) 2) \/ 3)
/ ‘ \ Ideal plastic hinge a...elastic cores;
u / g in case 3) we neglect
. L/2 . L ~| Model plastic hinge that remaining elastic
e ; — . - |core:a—0
PTG AERJJEEQLE
P =T~ [ Fy i )
T iy N E 4 T Fig.6.4.1

II) Range of plasticity in the beam centre

The range of plasticity aroused in a loaded beam can be obtained by comparing the external
moment distribution M(x) with the internal elastic-plastic moment M, (y) (elastic core y = a/2 ).
When dealing with the beam in Fig.6.4.1, we have a parabola:

2
M) =M, (y) = g(;— - x) =M, |:1 - g(—i—) } . To obtain the plastic range border at the

. . 4M pl Yy 2 3 x
plastic collapse of the beam, we substitute F=F, = and have | = | =—-—%)
L h) 2 L
The greatest distance x,; of the material plastic state measured from the beam centre is at the upper

. . L
and lower faces of the beam, i.e., when we substitute y =2 in *): X =—.

6

Example: A statically indeterminate cantilever is subjected to concentrated load F. Analyse the
problem when load F gradually increases up to the limit carrying capacity F, of the
cantilever, Fig.6.4.2.
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% F |
?ﬁ 1) 0<F<F, The problem is 1° SL
Ag C %:B Comp.eq.: o =0=> M ——EFL
A v [ P !
o 14
R el T Mom Mo =g L=
12 c =97
=-== i 81 M
M, 81FLf | S F, = 81 My
' 14 L
A
2 —
) - J d Mc=M, 2) F,; <F<Fy, = SD problem
M lD [*~~ ] M
Af ~~~~~~ DL\D},) ! The moment eq. about C:Rp = Lpl =
2 6
3 MMy M, |= R,L-JFL1>-M,
E-F“mL . M. |=M
My =My, L 9 will grow up to l A| =M, =
a{ it )
9 u 23 M| =—(3Mpl —EFL)=MPI =
< L >
L. . . F 6Mpl
® Plastic hinge;0 Designed hinge; Fig.6.4.2 tim =

A direct assessment of the plastic limit load (based on a kinematically admissible collapse

mechanism):

1) The comparison of internal and external moments,

2 M, _6M,
9FLM+aM+ = F P

im im — L

2) The method of virtual works: D, = D;=

pl

Fim -u=M,, '(49)3 Fim “(23 %‘J =M, '(43) = Fiim = L

6.5 Plastic behaviour of thick cylinders under inner overpressure

% —0 (6.5.1)

We commence with the equilibrium equation 1
X

which does not depend on the material properties. Now, considering that the pressure vessel is made of

a ductile material, we are to assess a relevant plastic criterion, which could be Tresca’s yield criterion
Oy =Omx —Omin =0y (6.5.2)

Recalling the elastic stress distribution for this case we conclude that the maximum stress is o, while

the minimum stress is G, , at all the cylinder points described by a general radius x, and it is evident

that, although the plastic stress distribution will look different, this succession will not change.
Applying this conclusion, Eq.(6.5.2) will have the shape 6, -6, =0, (6.5.3)

Substituting Eq.(6.5.3) into Eq.(6.5.1) we obtain a simple differential equation
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L (6.5.4)
™ y 5.
the solution of which is o, =0, - Inx+C (6.5.5)

Although it has only one integration constant, two boundary conditions are available:

1/ for x =1, it holds 6,, =—p, =c -Int, +C, which, denoting the starting plastic stress state,

will serve for determining the integration constant, C=-p, —c -Iny, resulting in the plastic

radius stress distribution o, =-p;+0, -ln5 (6.5.6)
]

T

2/ for x =1,, itholds 6,, =—p, =-p, + 0, -In-2, which (denoting that the plastic stress state is
h

distributed right to the outer radius of the cylinder, i.e., the whole cylinder undergoes plastic

flow) will serve for obtaining the cylinder limit plastic overpressure:

(o, — P )y =0, -In2 (6.5.7)

5
Finally, from the Tresca’s yield criterion and the plastic radial stress distribution, see Eq.(6.5.3) and

(6.5.6), respectively, we express the plastic tangential stress distribution

G, =-p, +0, -(1+lnr§} 7 (6.5.8)
1

The plastic tangential and radial stress distribution for a cylinder under inner overpressure is shown in
Fig.6.5.1

XA
P
N =i Note: The residual stress on the inner face after
w— unloading from the plastic limit overpressure

o: SE,&‘ (P Viim» for p;=0:

L 7 S~ Ot f 2
7 -~ 1 ( ) plrl
5 Ctres =0y ~Oyf =\-Pr*oy )| 275 Py =
I — N
< P! 9 << ¢ 2
- -l 2 2
(o} tyres T r r
« Y e S 2 b _ R
- > > =oy -2p| 5 = -oy| 2In-5 5= -1
Fig.6.5.1 271 1R
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