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Theoretical study of vesicle shapes driven by
coupling curved proteins and active cytoskeletal
forces†
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Eukaryote cells have a flexible shape, which dynamically changes according to the function performed

by the cell. One mechanism for deforming the cell membrane into the desired shape is through the

expression of curved membrane proteins. Furthermore, these curved membrane proteins are often

associated with the recruitment of the cytoskeleton, which then applies active forces that deform the

membrane. This coupling between curvature and activity was previously explored theoretically in the

linear limit of small deformations, and low dimensionality. Here we explore the unrestricted shapes of

vesicles that contain active curved membrane proteins, in three-dimensions, using Monte-Carlo

numerical simulations. The activity of the proteins is in the form of protrusive forces that push the

membrane outwards, as may arise from the cytoskeleton of the cell due to actin or microtubule

polymerization occurring near the membrane. For proteins that have an isotropic convex shape, the

additional protrusive force enhances their tendency to aggregate and form membrane protrusions

(buds). In addition, we find another transition from deformed spheres with necklace type aggregates, to

flat pancake-shaped vesicles, where the curved proteins line the outer rim. This second transition is

driven by the active forces, coupled to the spontaneous curvature, and the resulting configurations may

shed light on the formation of sheet-like protrusions and lamellipodia of adhered and motile cells.

Curved membrane proteins,1 for example membrane embedded
proteins with non-zero intrinsic curvature,2–8 flexible nano-
domains7,9 or curved membrane-attached proteins,1,7,10–12 have
been identified to play an important role in driving the
formation of various membrane shapes.4,7,13–17 Coupling
between non-homogeneous lateral distribution of membrane
components and membrane shapes may be a general mecha-
nism for the generation and stabilization of highly curved
membrane structures,18 such as spherical buds, membrane necks,
thin tubular or undulated membrane protrusions.13,14,17,19–29 In
addition, it was found in many cellular processes that the curved
proteins, or complexes containing the curved proteins, are able to
recruit the cytoskeleton of the cell to produce additional protrusive
forces, for example due to actin polymerization.30,31 Such protru-
sive forces are active, meaning that they consume energy (ATP) and
maintain the system out of thermal equilibrium.32 The resulting

steady-state configurations of the system may therefore differ from
those in thermal equilibrium. Note that in cellular membranes
such active forces can originate also from other sources, such
as ion pumps.33,34

Curved membrane proteins with a convex shape, such that
they induce outwards bending of the membrane, that also
recruit the cytoskeletal forces which push the membrane
outwards, can serve as efficient initiators of membrane protrusions.
This mechanism was first suggested theoretically,35 and has since
been found in experiments.36–43 This coupling of convex curvature
and recruitment of actin polymerization is therefore emerging as
an efficient cellular mechanism for the production of actin-based
protrusions.44 It also appears to be exploited by certain viruses
during their budding from the infected cell.45,46 Previous studies
of the coupling between curved membrane proteins and the
cytoskeletal forces were mostly limited to the linear regime35 or
to simplified geometries,47 and indicated that convex proteins
can undergo phase separation and aggregation at lower concen-
trations (or higher temperatures) when the protrusive forces are
present.48 We study here the membrane shapes and the aggrega-
tion properties of such systems using numerical simulations,
which allow us to go beyond the linear deformations limit. We
find that the presence of the active protrusive forces affects the
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phase-separation (budding) transition, as well as induces transi-
tions into new classes of shapes that are not accessible in the
equilibrium (passive) systems. The ability of active processes,
associated with curved proteins, to lead to global shape transi-
tions was previously found in numerical simulations,49 where
activity was in the form of proteins with fluctuating spontaneous
curvature.

1 Theoretical model

The energy of the membrane is expressed as the sum of con-
tributions of membrane bending, direct interactions between
membrane proteins and outward protrusive cytoskeletal forces,

W = Wb + Wd + WF, (1)

respectively.
For membrane bending energy the standard Helfrich

expression50 is used,

Wb ¼
k
2

ð
A

C1 þ C2 � C0ð Þ2dA; (2)

where the integral runs over the whole area A of the membrane
with bending stiffness k, C1 and C2 are principal curvatures and
C0 is the spontaneous curvature of the membrane. The proteins
on the membrane are modeled as patches of the membrane
with given spontaneous curvature c0.6,9,10 On the patches
occupied by the curved proteins we therefore set C0 = c0 and
elsewhere we assume a symmetric membrane C0 = 0.

For direct interactions between neighboring proteins we
assume the step potential,

Wd ¼ �w
X
io j

H r0 � rij
� �

; (3)

where w is a direct interaction constant, the sum runs over all
protein–protein pairs, rij are their mutual in-plane distances,
H(r) is the Heaviside step function and r0 is the range of
the direct interaction. We consider here attractive interactions
w 4 0, that induce phase-separation of the proteins.48

Finally, the energy contribution of the local protrusive forces
due to the cytoskeleton is

WF ¼ �F
X
i

n̂i �~xi; (4)

where F is the size of the force, the sum runs over all proteins, n̂i

is the outwards facing normal to the membrane at the location
of the protein i and -

xi is the position vector of the protein i.
The activity of the proteins appears as a force pointing at the

outwards normal of each vertex that is occupied by a protein.
The normal force term in the energy (eqn (4)) acts like a time-
varying external potential, which therefore manifestly makes
the system out-of-equilibrium. In other words, unlike the terms
that are due to local interactions in the membrane due to
curvature or protein–protein binding, the active force term has
the form of a fictitious external potential pulling on each
protein in the direction of the instantaneous outwards normal.
As the membrane changes its shape, this fictitious external

potential changes. A system with time-varying external poten-
tials is not in thermal equilibrium.

2 Monte-Carlo simulations

The membrane is represented by a set of N vertices that are
linked by tethers of variable length l to form a closed, dynami-
cally triangulated, self-avoiding two-dimensional network51,52

of approximately 2N triangles and with the topology of a sphere.
The lengths of the tethers can vary between a minimal value,
lmin, and a maximal value, lmax. Self-avoidance of the network is
ensured by choosing the appropriate values for lmax and the
maximal displacement of the vertex s in a single updating step.
In this work we used s/lmin= 0.15 and lmax/lmin = 1.7. The
dynamically triangulated network acquires its lateral fluidity
from a bond flip mechanism. A single bond flip involves the
four vertices of two neighboring triangles. The tether connecting
the two vertices in diagonal direction is cut and reestablished
between the other two, previously unconnected, vertices. The
treatment is within the Rouse description, as it ignores the
effects of hydrodynamics.

The microstates of the membrane are sampled according to
the Metropolis algorithm. The probability of accepting the
change of the microstate due to vertex move or bond flip is
min[1,exp(�DE/kT)], where DE is the energy change, k is the
Boltzmann constant and T is absolute temperature. The energy
for a given microstate is specified in eqn (1). The bending
energy is discretized as described by Gompper and Kroll.51–53

For each set of parameters, the system is initially thermalized.
Ensemble averaging is done over 200 statistically independent
microstates.

In this work we set Nc of the total N = 3127 vertices to
represent proteins, which have spontaneous curvature in the
range between c0 = 0 (for flat proteins) and c0 = 1/lmin for the
most highly curved proteins that can be described well by
the discrete mesh. All other vertices represent symmetric
membrane and have zero spontaneous curvature. The positive
sign of c0 for curved proteins means that the proteins have
the tendency to curve the membrane outwards. If the two
vertices representing proteins are nearest neighbors, there is
an addition energy term �w assigned to their bond (direct
protein–protein interaction). Direct interaction constant w is
assumed to be of the order of the thermal energy kT0, where
T0 E 300 K is ‘‘room temperature’’, and membrane bending
stiffness k is of the order of 20kT0. In the following we fix the
ratio k/w = 20, unless stated otherwise. For the size of the
protrusive force F, the natural choice in terms of the energy and
length-scale of the problem, is of the order of the thermal
energy kT0 per minimal bond length lmin.

Note that since the volume of the vesicle is not conserved, it
can adjust to accommodate any shape of the membrane, and
therefore the membrane is in a tensionless regime for the
passive system. The active forces, pointing outwards, induce a
finite membrane stretch and tension. In addition, we can
introduce a non-zero pressure difference across the membrane,
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which can act to inflate the vesicle and induce a finite tension
(Fig. S8–S15, ESI†).

3 Results and discussion

Using our simulations we aim to improve the understanding of
clustering of curved and active proteins on the membrane and
how this process of demixing is coupled with membrane shape
changes. Especially we are interested in the budding of curved
protein clusters. We expect the demixing and budding to be
enhanced by attractive direct interaction between the proteins
and the additional membrane deformation induced by the
protrusive (cytoskeletal) forces recruited by the proteins.

In our Monte-Carlo simulations the whole membrane is the
triangulated surface. To quantitatively analyse the demixing of
the proteins in our system, we define the ensemble averaged
mean cluster size as

�Nvch i ¼

P
i

N
ðiÞ
vcN

ðiÞ
clP

i

N
ðiÞ
cl

* +
; (5)

where the angle brackets denote the canonical ensemble aver-
age. Inside the brackets, i.e., for a given microstate, %Nvc is the
mean cluster size and the sums run over all clusters of vertices
representing proteins. In the sums, N (i)

vc is the number of
vertices in cluster i and N (i)

cl is the number of clusters of size N (i)
vc.

3.1 Phase transition in thermal equilibrium

In Fig. 1 we plot the cluster size distribution and snapshots of
typical microstates of vesicles with curved proteins, in the absence
of active protrusive forces. The system is in thermal equilibrium‡
at different temperatures and densities (area coverage fraction,
r = Nc/N) of curved proteins. The cluster size distributions are
given from averaging over convergent MC realizations.

At low average protein densities the equilibrium vesicle
shapes remain quasi-spherical, with clusters that increase in
size with decreasing temperature (in the far left column
of Fig. 1, the largest clusters are composed of 5 proteins at
T/T0 = 1.33 and of 8 proteins at T/T0 = 0.63). At higher average
protein densities, cluster sizes increase and curved protein
buds appear on the membrane.

At even larger average protein densities, the vesicle shapes
deviate drastically from quasi-spherical and large necklace-like
protein clusters often form. The size of these necklace-like
clusters and the number of ‘‘beads’’ they contain increase with
decreasing temperature. These necklace-like structures form
since the isotropically curved proteins can not form flat aggre-
gates, due to their spontaneous curvature, and resemble aggre-
gates calculated for membrane-adsorbed spherical particles.54

The theory of self-assembly of curved proteins can approxi-
mately explain observed necklace-like structures (see S1, ESI†),

while anisotropic curved proteins may form aggregates with
other geometries on vesicles.55,56 Necklace-like membrane
protrusions have been observed in cellular membranes, under
different conditions,57 and in many in vitro experiments.58,59

We compare these simulation results with the prediction of
the linear stability analysis (corresponding to the spinodal) of
Gladnikoff et al. (eqn (S8) in its ESI†).45 The linear stability
analysis yields the critical thermal energy, kT(c), below which
the instability occurs and buds start to form:§

kT ðcÞ ¼ 12wð1� rÞr 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmin

2Fc0

12w
1� 1

rR0

� �s !
; (6)

where 1/R0 is mean membrane curvature at the site of a curved
membrane protein. In the following we approximate R0 with the
radius of a spherical vesicle with the same membrane area A.¶
The expression in eqn (6) is in the limit of vanishing membrane
tension, which is valid for our system, while eqn (S8) in the ESI† of
Gladnikoff et al.45 gives the expression in the presence of tension.

In thermal equilibrium, in the absence of the protrusive forces
F = 0, this simplifies to: T (c) = 12w(1 � r)r/k, which is plotted in
Fig. 1. It can be seen that the prediction of the linear stability
analysis qualitatively agrees with our simulation results: above the
critical temperature line the protein budding is weak and the cluster
size distribution is highly peaked at the size of isolated proteins,
while below it buds are larger (together with the corresponding
membrane deformation) and the size distribution exhibits a
secondary peak at aggregates containing 8 or more proteins (which
is the number required to form the smallest closed spherical cluster
of proteins). For a more quantitative description, T (c) is defined
from the simulations as the temperature where h %Nvci = 2 (eqn (5)),8

‡ Note that in some cases, for example when large necklace-like clusters form,
thermal equilibrium is not always easily obtainable. However, after monitoring
different measures for membrane shape change and demixing, we expect that the
presented results correspond to the correct phase behaviour.

§ We express the binding interaction between viral proteins J introduced in
Gladnikoff et al.45 (see the forth term in the expression for the membrane free
energy, eqn (S1), in its ESI†) with our direct interaction constant w (see eqn (2)).
We get that the aggregation interaction energy contribution per viral protein is
Jf(1 � f)/2, where f is the local concentration of viral proteins. Change of f from
0 to 50% gives an energy change of J/8. On the other hand in our simulations the
energy contribution due to direct interaction between curved proteins is defined
on bonds between vertices, where each bond carries energy �w, if the vertices
connected by the bond both represent curved proteins. In a hexagonal mesh the
concentration f = 1/2 for a given vertex corresponds the case where 3 out of 6
bonds carry the energy �w and the energy per vertex is therefore �3w/2.
Comparing the energy changes per protein when f changes from 0 to 50% in
both models, we get J = �12w. We also identify f0 in ref. 45 with our normalized
average densities of curved proteins r = Nc/N, H with one half of our spontaneous
curvature c0 and fc with our F per a2, where a is protein lateral size. We use a = lmin

and take into account that in our simulations we assume tensionless membrane
(s = 0). In our model the membrane is not flat. For a membrane with curvature
1/R0 at the site of the curved protein, the spontaneous curvature c0 (or 2H in
eqn (S8) in the ESI of ref. 45) effectively changes to c0(1 � 1/rR0). We can then
express from eqn (S8) in the ESI of ref. 45 the critical temperature T(c).
¶ To estimate R0 we assume a network of equilateral triangles with sides of

lengths l = (lmin + lmax)/2. This gives R0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p

l2N=8p
q

� 0:35lmin

ffiffiffiffi
N
p

.
8 The points h %Nvci as a function of temperature (see Fig. 2b) where fitted using a
function y(x) = a1/xa2 + a3, where a1, a2 and a3 are free parameters and then y(2)
was taken as the estimate for T (c). For non-zero F only points at temperatures
above the transition into a pancake-like shapes are taken into account when
fitting. The error bars in Fig. 2 were obtained by fitting points h %Nvci � e, where e’s
are standard deviations of h %Nvci.
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Fig. 1 Microstates of the vesicles in thermal equilibrium (absence of protrusive forces), for different average densities of curved proteins r and relative
temperatures T/T0. The blue vertices represent the protein-free bilayer and have zero spontaneous curvature; red vertices denote the curved proteins
and have spontaneous curvature c0. In the corresponding cluster-size distributions, the y-axis is the ensemble averaged number of protein clusters of
each size and the x-axis is the protein cluster size. Black solid curve denotes the prediction of the critical temperature by the linear stability analysis
(eqn (6)), while gray points connected by dashed line denote the line where h %Nvci = 2. Red solid curve marks the critical boundary of the phase space
below which the self-assembly theory predicts aggregate growth (for r = 1.35lmin, R0 = 10r; eqn (8)).
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which agrees quite well with the predicted budding transition
line, as plotted in Fig. 1 and 2a, b. We find that the mean
aggregate size collapses to a universal curve when the tempera-
ture is scaled by T (c) (Fig. 2c). The agreement with eqn (6) is also
found as function of protein interaction strength (Fig. 2d), and
as function of vesicle radius (Fig. S7, ESI†). We conclude that
the critical temperature for budding in the passive system
agrees very well with the prediction of the linear stability
model45 (eqn (6)), at least for the low density regime where
the linear stability analysis holds.

Note that in the tensionless limit, as we have here, the sponta-
neous curvature only affects the budding (phase-separation) transi-
tion if there are active forces (eqn (6), compare Fig. 1 and Fig. S17,
ESI†). The spontaneous curvature alone (in the presence of
finite tension), without direct protein–protein adhesion, does
not lead to a budding transition in the limit of linear stability
of a flat uniform membrane.60

The phase separation of the passive system was additionally
approximated with a two-dimensional model of self-assembly
of curved proteins (see S1 for details, ESI†). The total free
energy of the model reads

F ¼ M ~x1~m1 þ kT ~x1 ln ~x1 � 1ð Þ½ �

þM
X1
i¼1

ximi þ kT
xi

i
ln
xi

i
� 1

� �h i

� mM ~x1 þ
X1
i¼1

xi

 !
:

(7)

Here, x̃1 and xi are the number densities of nanodomains in
the weakly curved region and highly curved aggregates,
respectively. The energy contributions come not only from
the free energies per nanodomain (mi and ~m1), but also
from configurational entropy, while the Lagrange multiplier
m assures a constant number of nanodomains in the
system through a conservation relation. We minimize F
with respect to the number densities, arriving at the equili-
brium distributions for aggregate size (eqn (S10), ESI†). This
model predicts that the critical density beyond which the
growth of aggregates is energetically favourable is given by
(eqn (S11), ESI†)

~xc � exp
Df � w

kT

� �
; (8)

where Df = fc � fsp is the difference between the energy of a
single protein nanodomain on the highly curved necklace-like
aggregates ( fc) and on the weakly curved membrane region
( fsp). Comparison between the model phase transition and
MC simulations of aggregate distributions shows good overall
agreement, with large necklace-like aggregates appearing
below the calculated transition line (Fig. 1).

The distribution of cluster sizes develops a secondary peak
below the transition line, indicating the formation of large
aggregates. For low temperature and large protein densities,
the distribution of lengths of necklace-like aggregates is

predicted to be exponential (eqn (S9), Fig. S1, S2 (ESI†) and
ref. 61). However, in our small vesicles and due to the simula-
tions getting ‘‘stuck’’ in particular aggregate geometries, this
feature of the distribution is not observed.

3.2 Phase transitions in the presence of active protrusive
forces

Next, we consider the effects of active protrusive forces on
the system. In Fig. 3 we plot the typical shapes and aggregate
size distribution as in Fig. 1, but with F = 1kT0/lmin. We
can see that the active protrusive forces promote demixing
and budding of the convex curved proteins, such that the
transition temperature T(c) is shifted to higher temperatures
and lower densities, as expected and predicted by the linear
stability analysis45 (eqn (6)).

A more dramatic effect of the active forces is seen in Fig. 3 at
low temperatures, where below the budding transition there is
now a second transition to a new class of shapes that was not
seen in the equilibrium system (Fig. 1). Namely, below the red
dashed curve we find that the vesicles change from deformed-
spherical to flattened pancake-like shapes, where all or nearly

Fig. 2 Results for the equilibrium system with curved proteins (c0 = 1/lmin)
without active forces F = 0. (a) Contour plot of the ensemble averaged
mean cluster size h %Nvci (eqn (5)) as a function of protein density r and
relative temperature T/T0. The prediction of the critical temperature T (c)

by the linear stability analysis (eqn (6)) is shown (solid yellow line), as
well as the points where h %Nvci = 2 (green). (b) Critical temperatures
as predicted by the linear stability analysis (solid line) and from simula-
tions (h %Nvci = 2, green points). Representative snapshots are added for
the mixed phase (for r = 0.05, T/T0 = 4/3) and the budded phase (for
r = 0.08, T/T0 = 0.625). (c) Mean cluster size h %Nvci as function of
the temperature normalized by the critical temperature T/T (c), for r =
5, 7.5, 8, 8.5, 9, 9.5, 10.5, 11, 11.5, 12, 12.5, 14, 15, 15.5, 17, 20 and 25%.
The horizontal dashed line indicates where h %Nvci = 1. Inset: h %Nvci
as a function of T/T0 for three values of r. (d) h %Nvci as a function of
T/T (c) for two different values of the direct interaction constant w.
The average protein density is r = 9.5% (inset: the same but as a function
of T/T0).
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all the proteins aggregate at the rim, forming one large cluster
in the form of a closed ring. We locate the transition into the

pancake-like shapes regime from the sharp change of the slope
of the mean cluster size h %Nvci as function of T (see Fig. 4b and d),

Fig. 3 Same as on Fig. 1 but for the system with active protrusive forces F = 1kT0/lmin. Approximate temperatures below which a transition into a
pancake-like shapes is observed are indicated with red dots connected with dashed lines.
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as shown in Fig. 3, 4a and c.** The transition is sharp (see
Fig. 5a), which suggests similarity to a first-order phase transi-
tion (although the system is out-of-equilibrium). However, we
did not find any significant hysteresis (Fig. S5, ESI†).

Note that in Fig. 4b we plot h %Nvci as a function of T/T (c),
where T (c) is the critical temperature from eqn (6). In the
presence of the actin protrusive force the curves collapse
well at temperatures above the pancake-like shape transition,
as in the passive case (Fig. 2b and c). However, at
lower temperatures, where this shape transition dominates
the system behavior, there is no such collapse as function
of T/T (c). This is expected, since the linear analysis of
Gladnikof et al.45 does not take into account large-scale
global shape changes, which are highly non-linear. A similar

behavior is found for different protein–protein interaction
strengths (Fig. S4, ESI†). As expected, a stronger force promotes
the transition to pancake-like shapes at higher temperatures
(Fig. 4d).

The organization of the proteins into a circular cluster
around the rim of a flat vesicle is highly effective in stretching
out the flat membrane parts. We indeed find that these regions
are almost devoid of proteins (Fig. 3 and 5a), since these
regions are energetically unfavorable for the curved proteins.
The stretching of the membrane in these regions also acts
to suppress aggregation of the curved proteins,45 and the rim
aggregate is highly stable (see Movie S1, ESI†).

Below a critical density, we find that there are simply not
enough proteins to form a continuous cluster around the rim
of the flattened vesicle, and the system changes to a different
class of shapes (Fig. 5a). In this regime the curved proteins
form arc-like clusters that line the flattened ends of an
elongated vesicle, and remain highly dynamic (see Movie S2,
ESI†). Since the curved proteins are isotropic, the curvature of
the rim of the flattened vesicles along circumferential direc-
tion is much smaller compared to c0. The curved protein
therefore tend to bend the rim and cause it to undulate along
this direction (Fig. 5b). At large protein densities we find that
the excess proteins crowd the rim and cause it to undergo

Fig. 4 Results for the system with active curved proteins (c0 = 1/lmin,
F = 1kT0/lmin). (a) Contour plot of the ensemble averaged mean cluster
size h %Nvci (eqn (5)) as a function of protein density r and relative
temperature T/T0. The prediction of the critical temperature T (c) by the
linear stability analysis (eqn (6)) is show (solid yellow curve), as well as the
points where h %Nvci = 2 (green) and approximate temperatures below
which a transition into a pancake-like shapes is observed (red). (b) h %Nvci as
a function of temperature normalized by the critical temperature T/T (c),
for r = 5, 7.5, 8, 8.5, 9, 9.5, 10.5, 11, 11.5, 12, 12.5, 14, 15, 15.5, 17, 20 and
25%. The horizontal dashed line indicates where h %Nvci = 1. Inset: h %Nvci as a
function of T/T0 for three values of r. (c) Critical temperatures as
predicted by the linear stability analysis (solid line) and from simulations
(green points). Approximate temperatures below which a transition
into a pancake shapes is observed in the simulations are shown in red.
Representative snapshots are added for the mixed phase (for r = 0.05,
T/T0 = 4/3), the budded phase (for r = 0.14, T/T0 = 4/3) and the pancake
phase (for r = 0.105, T/T0 = 0.625). (d) h %Nvci as a function of temperature
for three different values of the actin protrusive force (legend). The
average protein density is r = 9.5%. For F = 1.5kT0/lmin, the snapshots
of steady-state microstates are show for T/T0 = 0.625 (pancake),
1 (prolate) and 1.33 (quasi-spherical).

Fig. 5 (a) Zoom-in of the lower left corner of Fig. 3, showing system
snapshots at low protein densities. Approximate temperatures below
which a transition into pancake-like shapes is observed are also
indicated (red). (b) Zoom-in on the edge of the pancake shapes for
r = 10.5%, T/T0 = 0.625 (left) and r = 15.5%, T/T0 = 0.625 (right), to
highlight their convoluted shape. The circle in the middle has radius
lmin = 1/c0 and indicates the length-scale of a single spherical bud of
proteins.

** The error bars on the pancake-transition curve in Fig. 4c mark the region in
which the transition occurs, i.e., the region between observed no-pancake states
with lowest T and pancake states with largest T (Fig. 3).
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buckling and curling, so as to be able to accommodate more
curved proteins (Fig. 3). At the highest densities, the excess
proteins extend from the rim cluster as spherical and
necklace-like clusters (Fig. 3).

We can propose the following mechanism that drives the
transition from deformed spherical vesicles with small buds
to pancake-shapes in the presence of the active protrusive
forces. When the proteins are isolated, or in very small
clusters, the membrane is rather flat and the protrusive force
promotes the aggregation of small clusters,45 since the active
force is directed at the outwards normal at each protein,
thereby enhancing the outwards deformation that the
curved protein induces. However, for larger clusters that are
highly curved, the active forces point in different directions
which acts to inflate and deform the clusters (Fig. 6a). We
can give a rough estimate of the critical cluster size at
which the in-plane projection of the active forces at the cluster
edge are large enough to compete with the direct attraction
between the proteins (w), and can destabilize spherical
aggregates. The cluster size for an angle y is: Ncluster =
2pc0

�2(1 � cos(y))/a, where a B 0.8 � lmin
2 is the area per

protein. The critical angle can be estimated by the following
force balance: F sin(y) C w/lmin, where the projection of the
active force in the plane of the membrane at the edge of a
cohesive cluster competes with the binding energy of an
additional protein at the cluster rim. From this estimate we
expect that the active forces will destabilize spherical aggre-
gates above a critical cluster size. This estimate does not
provide us with an accurate expression that can be compared
quantitatively to the simulations, beyond noting that the
shape of the pancake transition line in the phase diagram
should follow the contours of the mean cluster size. The
observed transition line is indeed found to follow a critical
cluster size contour (Fig. 4a). As the temperature decreases
and the mean cluster size increases beyond the critical size,
the system transitions to another global configuration
where the proteins form a rim cluster that is highly stable
and contains almost all the proteins. In this configurations
there are no side-ways active forces that act to destabilize the

protein aggregate, but rather the active forces now act to stretch
the whole vesicle in the same direction as the deformation

Fig. 6 (a) Schematic illustration of the side-ways active protrusive forces
(black arrows) that act to destabilize spherical aggregates (red) of curved
proteins, on a flat membrane (blue). (b) Schematic illustration of the forces
when a flat protein aggregate (red) drives the growth of a tubular protru-
sion from a flat membrane.

Fig. 7 (a) Same as Fig. 3, but for flat active proteins (c0 = 0, F = 1 kT0/lmin).
Transition curve for hydra-like shapes is shown in dashed red line, the
hNcli = 2 line in dash green line and the critical temperature T (c) (eqn (6)) in
solid black line. (b) Contour plot of the ensemble averaged mean cluster size
h %Nvci as a function of protein density r and temperature T. Transition lines as in
(a), only T (c) in yellow. (c) Asphericity (eqn (10)) as a function of temperature. Red
vertical dashed line indicates the transition from quasi-sphere to tube-like
shapes. (d) h %Nvci as a function of spontaneous curvature for interaction constant
w = 0kT0 (blue), 1kT0 (green) and 1.5kT0 (red); for r = 11% and T/T0 = 0.7. Error
bars denote standard deviations. Some corresponding snapshots are shown,
where colors of the arrows match the color of the corresponding data points.
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due to the proteins’ curvature, and thereby stabilize the
pancake configuration.

The transition into the pancake shape can be arrested
by applying an osmotic pressure difference, which acts to
maintain the vesicle in a spherical shape of maximal internal
volume. In the S7 (ESI†) we derive the critical pressure at which
the pancake phase disappears from the phase diagram, which
scales as: pc B (F/a) B 1kT0/lmin

3, where d B 1/c0 is the
thickness of the pancake shape. However, already at much
smaller pressures the critical temperature shifts to much
lower values (Fig. S9–S13, ESI†). This arises from the following
effect: the applied pressure inflates the pancake shape,
increasing the radius of curvature at the rim such that it
becomes sufficiently different from the value preferred by
the proteins (1/c0). By calculating the pancake width as
function of pressure, as a balance between the pressure and
the bending energy of the proteins along the pancake rim, we
can estimate the value of the pressure at which the pancake
width increases significantly such that the bending energy is
increased by an order of dE B kT (Fig. S15, ESI†). This

pressure scales as: pc
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dEkc03=R3

p
, which for our vesicle

gives pc
0 B 0.04kT0/lmin

3.
Note that even in the absence of any osmotic pressure there

is an entropic pressure due to the collisions between the
membranes on the two opposing flat surfaces of the pancake
shape. This pressure, which is well known from membrane
stacks,62,63 turns out to be negligible in our case.

One striking feature of the pancake transition line shown
in Fig. 3 (see also Fig. S8–S13, ESI†) is that the critical
temperature has a maximum at r B 9%, and decreases for
higher densities. We can qualitatively understand this, as
arising from surplus proteins that can not fit within the
circular cluster along the pancake rim. The surplus proteins
attach to the rim aggregate from the sides, inducing sideways
forces that bend the rim. The net effect of these sideways
active forces is similar to the effect of the isotropic osmotic
pressure, making the pancake shape thicker and reducing the
bending energy gain for having all the curved active proteins
along the pancake rim (see also Fig. S6, ESI†). The critical
temperature needed to break-up the rim cluster is therefore
lower for these higher densities.

3.3 Dependence on the spontaneous curvature of the active
proteins

We next explore the role of the spontaneous curvature of the
active proteins in driving the shape transition discussed
above. We start by calculating the phase diagram for flat
active proteins, i.e., with c0 = 0. The result is shown in
Fig. 7a. We find that the budding transition line is still well
described by the linear stability expression (eqn (6)). At low
temperatures we find a global shape transition from
quasi-spherical vesicles to shapes with highly elongated
protrusions, which are driven by the protrusive force
provided by a cluster of proteins at the protrusion’s tip. An
approximate transition curve, which marks the transition into
such hydra-like shapes regime (Fig. 7a and b) can be obtained

from locating the sharp change of the slope of the asphericity’s††
dependence on T (Fig. 7c).

This shape transition can be understood by calculating the
conditions that allow a tube-like protrusion to start growing
from the vesicle, driven by the protrusive force induced by a
circular protein aggregate (Fig. 6b). This occurs when there is a
force balance between the protrusive force provided by the
protein cluster at the tip and the elastic restoring force due to
membrane bending (as in tether pulling): NclF ’ 2pk

	 ffiffiffiffiffiffiffi
Ncl

p
.

From this force balance we derive the radius of the protrusions

(details in the ESI,† eqn (S17)): Rc ¼
2ka
F

� �1=3

(where a is the

average area per protein), which is in very good agreement with
the simulated widths of the protrusions (Fig. S3, ESI†). As the
temperature decreases, the mean cluster size increases until it
is larger than the threshold size (Fig. 6b) for the elongation of
tube-like protrusions (Fig. 7b). In this phase the shapes are
highly dynamic and unstable, with protrusions merging and
growing (see Movie S3, ESI†).

By fixing a low temperature and large enough density, we
explore the dependence of the global vesicle shape transitions
on the spontaneous curvature of the active proteins. This is
shown in Fig. 7d, where we change the spontaneous curvature
of the active proteins from c0 = 0 (flat proteins) to c0 = 1/lmin

(the spontaneous curvature used in the previous section).
We find that as c0 is increased, the multi-tube-like shapes
transform continuously into shapes that have a single tube-
like part and flattened arc-like clusters at the two tips. Above a
critical spontaneous curvature there is a sharp transition into
the flattened shapes with continuous rim cluster. From our
simple estimates (Fig. 6a and b) we predict that the critical
cluster size that enables the pancake shape transition decreases
with increasing c0, while the tube-like shape transition does not
depend on this parameter. We therefore expect that above a
critical value of c0 the pancake shape will dominate, as we
observe (Fig. 7d).

†† Deviation of the vesicle from quasi-spherical shapes can be characterized
conveniently in terms of the asphericity. To this end, we make use of the gyration
tensor, whose components are defined for a discrete object through

Sij ¼
1

N

XN
k¼1

rk;i rk;j ði; j ¼ 1; 2; 3Þ: (9)

Here, rk,i is the i-th Cartesian coordinate of the position vector~rk of the k-th
particle. The origin of the coordinate system is located at the center of mass and
the sum runs over all particles of the object. From the principal moments (i.e., the
eigenvalues) l1 Z l2 Z l3 of Sij (calculated using the algorithm outlined by
Smith64), we obtain the asphericity of the object65

Asph ¼
l1 � l3ð Þ2 þ l2 � l3ð Þ2 þ l1 � l2ð Þ2

D E
2 l1 þ l2 þ l3ð Þ2
D E (10)

with h� � �i denoting ensemble averages. We point out that a one-dimensional
object (where l2 = l3 = 0) leads to A = 1, a two-dimensional axisymmetric disk
(where l1 = l2 and l3 = 0) entails A = 1/4, and a sphere (where l1 = l2 = l3) gives rise
to A = 0. The asphericity A has frequently been used in the past to characterize
polymers and membranes.66–68
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4 Conclusions

We have explored here the coupling of convex proteins (such as
complexes that contain IRSp53) that recruit the protrusive force
of the cytoskeleton (most commonly due to actin polymeriza-
tion), using Monte-Carlo computer simulations. We found that
the presence of the protrusive forces gives rise to the formation
of protein aggregates and budding at a higher temperature and
lower average protein density, compared to the passive system
that is in thermal equilibrium (no active forces). This is in an
agreement with analytic linear-stability analysis.45 The more
robust aggregation and budding due to the recruited active
forces of the cytoskeleton has important consequences for a
variety of biological processes, such as budding of viruses45,46,69

and initiation of cellular protrusions (such as filopodia) during
development and cell motility.

Beyond the budding transition, we found a new and unexpected
global shape transition that occurs only in the presence of the
active forces. In this transition the spherical vesicle is transformed
into a flat, pancake-like shape, with all the curved proteins and
associated cytoskeleton forces along the circular rim. This structure
resembles the lamellipodia and ruffles of spreading and motile
cells70 (see Movies S1 and S2, ESI†), where the actin polymerization
is localized to the highly curved leading edge. Our results show that
lamellipodia-like structures spontaneously form when convex
proteins recruit the protrusive force of the cytoskeleton, on a
closed membrane. This mechanism is in agreement with recent
experiments providing evidence for the role of such curved
protein complexes, involving I-BAR proteins, at the leading edge
of lamellipodia.71

While we do not take into account many physical processes
that occur in the lamellipodia of cells, such as adhesion and
accounting for the complex orientations of the branched actin
network, we do believe that our results may shed light on the
formation of such structures in living cells: adhesion is not
required for cells to form sheet-like membrane protrusions.70,72

The orientations of the actin filaments play a dominant role for
structures such as filopodia that have a core of highly oriented
actin filaments. In the sheet-like structures, where actin is
branched, the role of oriented fibers may be less dominant.
Including the complexity of the actin network is beyond the
scope of the models that we are exploring at present. Future
studies could test our predictions, by exploring the spontaneous
curvature properties of the actin nucleators at the leading edges
of these cellular structures.

In our simulations, the forces exerted by the active proteins
on the membrane do not maintain global force balance, since
the proteins are not symmetrically distributed on the surface of
the vesicle in general, while in a real cell these forces are
balanced of course. Most commonly, in an adhered living cell
the forces balance by adhesion to an external substrate. Despite
the lack of adhesion, and therefore lack of global force balance,
we do not expect the nature of our conclusions to qualitatively
change: (1) In the ‘‘pancake’’ class of shapes the active forces
nearly balance, even in our free vesicle system. (2) In the case of
flat active proteins that induce long protrusions, the basic

tendency of protein clusters to pull tether-like protrusions
should not change if the protrusions are being drawn from a
vesicle that has some part of it stuck to a substrate. In Fig. S16
(ESI†) we plot the mean total active force (per protein) as
function of the spontaneous curvature of the proteins. Indeed,
in the pancake phase the configuration of proteins gives rise to
near force balance, while in the phase with long protrusions it
is less well maintained. However, the discrepancy is not very
large, indicating that it is not likely to dominate the overall
class of shapes that the system forms, which should not be
strongly affected by the small force imbalance. Since we are
interested in shape changes, we disregard any center-of-mass
motion. While the role of adhesion on the shape of the vesicle
is a subject that we plan to study in the future, and is outside
the scope of the present paper, we simulated the shapes of
vesicles in the pancake and protrusions regimes where a
small patch is permanently anchored to a fixed flat substrate
(Movies S7 and S6, respectively, ESI†). We find that the shapes
maintain essentially the same dynamics as was observed for
the free vesicles, even though there is now an imposed global
force balance.

Another class of active proteins are those that exert forces
that maintain a local force balance, such as a local force dipole
due to the activity of membrane pumps73 or due to curvature-
changing proteins.34 These were not explored here, as we
focused on the direct local forces that can be exerted on the
membrane by the cytoskeleton. Due to the anchoring of
the actin cytoskeleton to the membrane, the application of
protrusive force at the sites of polymerization nucleation
(represented by the proteins in our model), may be balanced
by a net inwards pull exerted by the cytoskeleton on the
membrane away from these sites. This inwards effective pull
can be spread laterally over a larger membrane area compared
to the localized protrusive forces. Such a delocalized network
applies an overall dipolar force profile on the membrane, which
maintains force balance. Since our model does not include the
details of the actin network structure, and its anchoring to the
membrane, the description of this more realistic application of
the forces by the cytoskeleton is beyond the current study.

Let us note that flat oblate membrane shapes can be
obtained without the presence of active protrusive forces, for
vesicles with low volume to area ratios.10,16,74,75 However, in our
simulations the volume of the vesicle is free to relax, and under
such conditions we find that the active forces are essential for
the curved proteins to drive the global flattened vesicle shape
transition.

In addition, a variety of tubular and flattened shapes may be
stabilized in the absence of active forces, due to the presence of
anisotropic curved membrane proteins (or protein complexes).76

Tubular protrusions can occur due to accumulation of anisotropic
membrane components, as was shown theoretically21,28,29,77–80

and supported by experiments.9,21,24 Vesicles with flattened edges
can be stabilized by anisotropic (arc-like) proteins that form a
cluster at the edge of the flattened regions.80 We also note that the
edge of the disc-shaped vesicles that we obtained here are highly
convoluted (Fig. 5b), due to the isotropic curvature of the proteins.
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Lamellipodia in cells may avoid this and maintain a smooth edge
by using anisotropic proteins that recruit the actin polymeriza-
tion. All of these considerations motivate the exploration of the
vesicle shapes induced by coupling active forces with anisotropic
membrane constituents in our future studies.

To conclude, our study highlights the rich variety of
membrane shapes that may be induced by curved membrane
proteins that recruit the active forces of the cytoskeleton.30

These include steady-state shapes that are not possible for the
passive, equilibrium system. Future computer simulations
could explore further the space of these non-equilibrium, and
dynamic membrane shapes.
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16 B. Božič, V. Kralj-Iglič and S. Svetina, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2006, 73, 041915.
17 N. Walani, J. Torres and A. Agrawal, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2014, 89, 062715.
18 M. Chabanon, J. C. Stachowiak and P. Rangamani, Wiley

Interdiscip. Rev.: Syst. Biol. Med., 2017, 9, e1386.
19 W. Helfrich and J. Prost, Phys. Rev. A: At., Mol., Opt. Phys.,

1988, 38, 3065.
20 U. Seifert, Phys. Rev. Lett., 1993, 70, 1335.
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28 L. Mesarec, W. Góźdź, S. Kralj, M. Fošnarič, S. Penič,
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Theoretical study of vesicle shapes driven by coupling curved proteins and active cytoskeletal forces
(Supplementary Information)
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S1: A theoretical model of self-assembly of curved nanodomains in a two-component membrane
We use the theory of self-assembly to describe the accumulation of curved membrane nanodomains composed of lipids and proteins
into spherical or necklace membrane protrusions. The curved nanodomains (of total number N) are initially distributed in the weakly
curved spherical membrane surface of constant mean curvature H=1/R0. We assume that the nanodomains are laterally mobile over
the membrane surface. For isotropic curved membrane protrusion of constant high mean curvature H=1/r. Here, r is the radius of
curvature everywhere on the membrane protrusion which may be a sphere or necklace formation (see Fig. S1) and assume R0 > r.

Figure S1 Growth of necklace-like protrusions is energetically favorable when critical concentration x̃c is surpassed.

For the sake of simplicity we assume that the free energy of a single flexible membrane nanodomain can be written in the form [V.
Kralj-Iglič et al. Deviatoric elasticity as a possible physical mechanism explaining collapse of inorganic micro and nanotubes, Physics
letters A, 2002]:

f =
ξ

2
(H−H0)

2ao . (S1)

where H0 is the intrinsic mean curvature of an isotropic membrane nanodomain, ξ is the elastic constant and a0 is the area per single
nanodomain. In aggregates of curved flexible membrane nanodomains the local membrane bending constant is kc = ξ/4 and the
membrane spontaneous curvature c0 = 2H0.

Curved flexible membrane nanodomains in aggregates interact with neighbouring membrane nanodomains. We denote the corre-
sponding interaction energy per curved flexible membrane nanodomain (monomer) in an aggregate composed of i nanodomains as w(i)
where we assume that the energy w(i) depends on the size of the aggregate composed of i nanodomains. The mean free energy per
nanodomain in a curved aggregate (where H = D = 1/r) composed of i nanodomains can be written as:

µi = fc−w(i) , (S2)

where fc = f (H=1/r) and w(i) > 0. We assume that in the weakly curved spherical regions of the membrane (having H=1/R0) the
concentration of nanodomains is always below the critical aggregation concentration and therefore nanodomains cannot form two-
dimensional flat aggregates. The mean energy per nanodomain in the weakly curved membrane regions is µ̃1 = fsp , where fsp =
f (H=1/Ro). The number density of curved proteins in the weakly curved membrane regions is

x̃1 =
Ñ1

M
, (S3)

where Ñ1 is the number of monomeric curved nanodomains in the weakly curved membrane regions and M is the number of lattice
sites in the whole system. The distribution of highly curved aggregates in the membrane protrusions on the scale of number density is
expressed as

xi =
iNi

M
, (S4)
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where Ni denotes the number of aggregates with aggregation number i. The number densities x̃1 and xi must fulfil the conservation
condition for the total number of flexible nanodomains in or on the membrane:

x̃1 +
∞

∑
i=1

xi = N/M . (S5)

The free energy F of all nanodomains in or on the membrane can be written as:

F = M [x̃1 µ̃1 + kT x̃1(ln x̃1−1)]+M
∞

∑
i=1

[
xi µi + kT

xi

i

(
ln

xi

i
−1
)]
−µM (x̃1 +

∞

∑
i=1

xi) , (S6)

where µ is the Lagrange parameter assuring conservation of protein concentrations. The above expression for the free energy also
involves the contributions of configurational entropy. We minimize F with respect to x̃1 and xi:

∂F

∂ x̃i
= 0 ,

∂F

∂xi
= 0, i = 1, 2, 3, ... , (S7)

which leads to equilibrium distributions:

x̃1 = exp
(
−

fsp−µ

kT

)
, (S8)

xi = i exp
(
− i

k T
[ fc−w−µ]

)
, (S9)

where we assumed for simplicity that w(i) = w is independent of aggregate size. The quantity µ can be expressed from Eq. S8 and
substituted in Eq. S9 to get:

xi = i
[

x̃1 · exp
(

fsp +w− fc
kT

)]i
. (S10)

We see that if the concentration x̃1 is small, aggregate growth will not be favorable, since x1 > x2 > x3 .... Furthermore, xi can never
exceed unity, leading to the maximal possible value of the number density of monomeric curved flexible nanodomains in the weakly
curved parts of the membrane when x̃1 approaches exp

[
( fc− fsp−w)/k T

]
. The critical concentration is therefore

x̃c ≈ exp
(

∆ f −w
kT

)
, (S11)

where ∆ f = fc− fsp is the difference between the energy of a single nanodomain on the highly curved membrane protrusion and the
energy of the single nanodomain in the weakly curved membrane region with:

∆ f =
ξ ao

2r

(
1
r
−2H0

)
− ξ ao

2R0

(
1

R0
−2H0

)
. (S12)

If x̃1 is above x̃c , the formation of a very long necklace membrane protrusions composed of curved membrane proteins is energetically
favourable. It can be seen from Eq. S11 that longitudinal growth of the necklace membrane protrusions is dependent on the energy
difference ∆ f (Eq. S12) and the strength of the direct interaction between nanodomains w. The critical concentration x̃c strongly
depends on H0.

In the approximation limit R0� r we can rewrite Eq. S12 as:

∆ f ' ξ

2r

(
1
r
−2H0

)
=

2kc

r

(
1
r
− c0

)
, (S13)

where kc and c0 are the local bending constant and spontaneous curvature of aggregates of nanodomains, respectively. We may rewrite
Eq. S11:

x̃c ≈ exp
(

2
kc

kT
ao

r2 (1− c0r)− w
kT

)
. (S14)

For 1 < c0r the value of ∆ f is always negative. The theoretically predicted existence of necklace membrane protrusions (without
application of the local forces) within the self-assembly theory is in line with our MC predictions.

Since the density of nanodomains in or on the membrane is defined with the conservation condition (Eq. S5), this also gives us the
relation between normalized temperature T/T0 and total curved nanodomains concentrations ρ = N/M. Using the parameters from the
MC simulations, we may graph dependencies xi(i), as seen in Fig. S2. Above small concentrations and especially above x̃c, aggregates
start to form, where the peaks of the distributions are strongly dependent on the total protein concentration in the lattice. We see that
the critical line beyond which aggregate growth is favourable agrees well with the results of MC simulations.
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Figure S2 Aggregate concentrations in dependence on number of nanodomains in the aggregate for different number of flexible nanodomains on the
membrane.
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S2: A theoretical analysis of the critical cluster size that enables tubular shapes for flat active proteins
The conditions that trigger the transition into the tubular-shapes (Fig.7) are given by the following force balance:

The force applied at the tip of the cylindrical protrusion by the cluster of active proteins is

Fa = F
πR2

a
, (S15)

where F is the force per active protein, R is the radius of the cylinder, and a is the area of a protein on the membrane.
This is balanced by the restoring force of the membrane bending energy

Fb = κ
2π

R
, (S16)

with κ the bending modulus. The force balance gives the radius of the cylindrical protrusions in this phase of the vesicle shapes

Rc =

(
2κa
F

)1/3
. (S17)

The prediction of Eq. S17 is in good agreement with simulations (see Fig. S3), where we took for a the area that corresponds to one
vertex in a hexagonal mesh, a =

√
3 l2

0/2, where l0 = (lmin + lmax)/2.
In the phase of tubular shapes, there are several protrusions (typically 2-3) that pull in opposite directions to provide an approximate

overall force balance, and maintain the relative stability of this shape. Some fusions of protrusions do occur, especially for cases with a
larger number of thinner protrusions, so that their number fluctuates.

An alternative to the derivation of the estimate of the protrusion’s width given above can be obtained as follows: the total work
done by the active forces that pull and extend a protrusion of length L, combined with the curvature energy, is given by

W =
πR2

a
FL+2πRL

κ

2
1

R2 , (S18)

where we assume that the cylinder is very long compared to its radius, so that its surface area is given by: A ' 2πRL. For a fixed area
constraint, such that we can substitute L = A/(2πR), we can rewrite this work function as

W =
RF
2a

A+A
κ

2
1

R2 . (S19)

Differentiating this work with respect to R we find that the minimum is given by the radius of Eq. S17.
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κ/F [lmin]

R
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Figure S3 Radius of cylindrical protrusions as a function of the κ to F ratio for the system with almost flat active proteins with parameters c0 = 1/(0.9lmin),
ρ = 11%, w = 1kT0 and T/T0 = 0.7 (see top-left hydra-like snapshot on Fig. 7d). Black solid curve is the prediction of Eq. S17, while red dots are the
results of the simulations with error bars indicating standard errors.
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SI3: Cluster size dependence on the strength of the direct interaction for active system
See Fig. S4.
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Figure S4 Mean cluster size 〈N̄vc〉 as a function of T/T (c) for two different values of the direct interaction constant (legend), for an active system with
F = 1 kT0/lmin. The average protein density is ρ = 9.5%. The graphs do not collapse, unlike in the passive system (Fig. 2d).
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SI4: Testing for hysteresis of the pancake transition
See Fig. S5.
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Figure S5 Hysteresis test for the transition into the pancake shape (corresponding to the system shown in Figs. 3,4), showing ensemble averaged
mean cluster size for active curved proteins as a function of temperature for two different initial states – above (blue) and below (red) pancake transition.
Average protein density is ρ = 11%. Error bars denote standard deviations.
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SI5: Cluster size dependence on the density
The activity-driven transition is clearly seen in Fig. 4b of the main text – in the mean cluster size 〈N̄vc〉 as a function of temperature T/T0
for different average densities of proteins ρ. Without the active protrusive force, 〈N̄vc〉 monotonically increases with ρ and decreases
with T , while the protrusive force gives rise to the sharp transition into pancake-like shapes. The lower stability of the rim aggregate at
high protein densities, that we already noticed in Fig.3, is manifested in the non-monotonic dependencies of 〈N̄vc〉 on ρ and T (Fig. S6).
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Figure S6 Ensemble averaged mean cluster size as a function of the average density of curved proteins with c0 = 1/lmin. Results with active protrusive
force F = 1 kT0/lmin are shown for T/T0 = 0.625 (solid) and without it for T/T0 = 0.4 (dashed).
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SI6: Vesicle size dependence of the budding and pancake transition
The dependence of the pancake transition on the vesicle radius mirrors the effect on the overall cluster size distribution: a smaller
vesicle has smaller protein clusters and a lower transition temperature (Fig. S7).
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Figure S7 Dependence of the budding (green) and pancake (red) transition curves as functions of the number of vertices composing the vesicle with
F = 1 kT0/lmin,c0 = 1/lmin, ρ = 9.5%. Spherical vesicle with the same membrane area A has the radius R0 ≈ 0.35

√
N (in units of lmin). Black solid curve

is the prediction for the budding transition line from the linear stability analysis.
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SI7: Osmotic pressure dependence of the pancake transition
We studied the effects of adding an isotropic osmotic pressure, which adds a term of the form −p ·V to the energy of the vesicle.

We begin by estimating the pressure that balances the active forces of the active proteins along the circular rim of the pancake shape.
The work done by the active proteins and the osmotic pressure is

W '−pπR2d +
πRd

a
FR, (S20)

where we treat the pancake as very thin compared to its radius (d ∼ 1/c0� R), so that its volume V ' πR2d. We keep the membrane
area constant, so maintain: A= 2πR(d+R). Substituting this constraint into Eq. S20, we find a critical pressure that balances the protein
forces, when pc ∼ F/a ∼ kT0/l3

min. At higher pressures, the isotropic pressure overwhelms the protein active forces, and prevents the
pancake shapes.

However, as we can see from the phase diagram on Figs. S8 to S13 (details of the simulations are descibed below), we find that
there is significant shrinkage of the pancake phase already at much lower pressures. We can explore the interplay between the osmotic
pressure, the pancake shape and the bending energy that keeps the circular protein cluster along the highly curved rim. By considering
only the bending energy and work done by the osmotic pressure, we write an energy functional

W '−pπR2d +
πRd

2
κ

(
1
2

(
1
R
+

2
d

)
− c0

)2
. (S21)

Since we are interested in a regime of low pressures, where the pancake becomes thicker but still maintains d� R, we can simplify
the mean curvature

W '−pπR2d +
πRd

2
κ

(
1
d
− c0

)2
. (S22)

Minimizing this functional, while maintaining the constant surface condition, provides the steady-state width and radius, for a given
surface area A. It turns out that we can approximate R as constant, since it changes very little, and the steady-state width can be
approximated as

d '
√

κ

c2
0κ− pR

. (S23)

Plugging this width into the bending energy of the proteins at the rim (second term in Eq.S22), and equating this bending energy to
some threshold value δE (of order kT ) at which the proteins can be thermally activated to leave the highly curved rim, we get for the
critical pressure the expression

p′c ' 2
√

κ

R3

√
c3

0δE. (S24)

Using the values of our simulations in Fig. S14, and noting that the change in the bending energy of proteins at the transition is of
the order δE ∼ 0.07kT (see Fig. S15), this critical pressure is: p′c ∼ 0.01kT0/l3

min, which is close to the values that we found to affect the
pancake transition temperature.

In the simulations in the main text the membrane is (almost) tension free. However by including the osmotic pressure, we can
expect the membrane tension to increase. To evaluate for membrane tension, we added to the hamiltonian for the membrane energy,
besides the −pV energy term, also the term for tension energy:

WA =
kA

2

Nt

∑
i=1

(
ai

a0
−1
)2

, (S25)

where kA is the elastic constant of the membrane and the sum runs over all of Nt triangles of the network, ai is area of triangle i, and a0
is area of a tensionless triangle. For a0 we choose area of the equilateral triangle, a0 =

√
3 l2

0/4, with side lengths l0 = (lmin + lmax)/2. We
define membrane tension as the average tension energy per membrane area,

σ =

〈
WA

A

〉
, (S26)

where A is area of the membrane for a given microstate and bra–ket denote canonical ensemble average.
From Fig. S14 we see that for no osmotic pressure, p = 0, membrane tension is around 0.0212kT0/l2

min. As can be seen by comparing
the phase diagram in Fig. 3 with Fig. S8, we can see that, as expected, the tension term (Eq. S25) does not change the behavior of the
system for p = 0. When we introduce the osmotic pressure, the pancake protein rim disassembles (on Fig. S14 at p ≈ 0.0065kT/l3

min)
while the membrane tension is still close to the value at p = 0. Near the border of the pancake phase, the behavior is quite dynamic, the
protein aggregate at the rim can disassemble and reassemble, and with that the vesicle shape looses and gains again the pancake-like
shape (see Movies S4 and S5). At larger osmotic pressures (on Fig. S14 for p > 0.01kT/lmin), the pressure difference starts to dominate
the behavior, the vesicle swells and membrane tension starts to increase (see Fig. S14).
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Figure S8 Representative snapshots of the vesicle at protein densities ρ = 5, 7.5, 10, 12.5 and 15% and temperatures T/T0 = 0.6, 0.7, 0.8, 0.9 and 1.0,
for p = 0 (with kA = 1kT0, w = 1 kT0 and F = 1kT0/lmin). Approximate temperatures below which a transition into a pancake-like shapes is observed are
indicated with red dots connected with dashed lines.
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Figure S9 Representative snapshots of the vesicle at protein densities ρ = 5, 7.5, 10, 12.5 and 15% and temperatures T/T0 = 0.6, 0.7, 0.8, 0.9 and 1.0,
for p = 0.005kT/l3

min (with kA = 1kT0, w = 1 kT0 and F = 1kT0/lmin). Approximate temperatures below which a transition into a pancake-like shapes is
observed are indicated with red dots connected with dashed lines.
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Figure S10 Representative snapshots of the vesicle at protein densities ρ = 5, 7.5, 10, 12.5 and 15% and temperatures T/T0 = 0.6, 0.7, 0.8, 0.9 and
1.0, for p = 0.01kT/l3

min (with kA = 1kT0, w = 1 kT0 and F = 1kT0/lmin). Approximate temperatures below which a transition into a pancake-like shapes is
observed are indicated with red dots connected with dashed lines.
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Figure S11 Representative snapshots of the vesicle at protein densities ρ = 5, 7.5, 10, 12.5 and 15% and temperatures T/T0 = 0.6, 0.7, 0.8, 0.9 and 1.0,
for p = 0.015kT/l3

min (with kA = 1kT0, w = 1 kT0 and F = 1kT0/lmin). Approximate temperatures below which a transition into a pancake-like shapes is
observed are indicated with red dots connected with dashed lines.
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Figure S12 Representative snapshots of the vesicle at protein densities ρ = 5, 7.5, 10, 12.5 and 15% and temperatures T/T0 = 0.6, 0.7, 0.8, 0.9 and
1.0, for p = 0.02kT/l3

min (with kA = 1kT0, w = 1 kT0 and F = 1kT0/lmin). Approximate temperatures below which a transition into a pancake-like shapes is
observed are indicated with red dots connected with dashed lines.
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Figure S13 Representative snapshots of the vesicle at protein densities ρ = 5, 7.5, 10, 12.5 and 15% and temperatures T/T0 = 0.6, 0.7, 0.8, 0.9 and 1.0,
for p = 0.025kT/l3

min (with kA = 1kT0, w = 1 kT0 and F = 1kT0/lmin).
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Figure S14 Membrane tension σ (Eq. S26) as a function of osmotic pressure p for a membrane with elastic constant (Eq. S25) kA = 1kT0, at temperature
T/T0 = 0.7, with ρ = 11 % of active proteins with direct interaction constant w = 1 kT0 and protrusive force F = 1 kT0/lmin. Averaging is done over 200
statistically independent microstates in steady state and error bars indicate standard deviations. Vertical dashed line indicates border of the pancake
phase. Representative snapshots are shown for p = 0.006kT/l3

min (pancake), 0.007kT/l3
min (protein rim disassembles and pancake shape is lost) and

0.08kT/l3
min (quasi-spherical shape).
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Figure S15 Ensemble averaged bending energy of proteins Wbp as a function of osmotic pressure near the border of the pancake phase (indicated by
dashed vertical line), for a system used also in Fig. S14. Averaging is done over 400 statistically independent microstates in steady state.
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Figure S16 Ensemble average over 500 statistically uncorrelated microstates of the size of the normalized resultant of the protrusive forces (Eq. S27)
as a function of the spontaneous curvature of active proteins, for F = 1kT0, w = 1kT0, ρ = 11% and T/T0 = 0.7. As c0 increases, the configurations go
from hydra-like to pancake-like (see Fig. 7d in the main text). Error bars indicate standard deviations.

SI8: Normalized resultant of the protrusive forces

In our work we defined the local protrusive force due to the cytoskeleton at the active protein i as ~Fi = F n̂i, where F is the size of the
force and n̂i is the outward facing normal to the membrane at the location of protein i (see Eq. 4 in the main text). Here we define the
normalized resultant of the protrusive forces,

~r =
∑i n̂i

∑i |n̂i|
(S27)

where the sums run over all proteins. Note that size of vector~r is r = |~r|= 0 when the protrusive forces cancel out and the net protrusive
force on the vesicle is zero, and r = 1 when all protrusive forces show in the same direction.

Fig. S16 shows the ensemble averaged r for different scenarios - pancake and hydra shapes. As we expected, pancake shapes have
lower r than hydra shapes.
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Figure S17 Representative snapshots for flat passive proteins with w = 1kT0 for protein with densities ρ = 0.05, 0.11, 0.15 at temperatures T/T0 = 0.7,
0.9, 1.1. Black solid curve denotes the prediction of the critical temperature by the linear stability analysis (Eq. 6). Gray point with dashed line denotes
where 〈N̄vc〉= 2 (for ρ = 0.11 and 0.15, 〈N̄vc〉> 2 for all three temperatures shown).

SI9: Simulations with flat passive proteins
We also simulated membrane with flat passive proteins, where the only difference between vertices representing the proteins and the
rest of the membrane is that the proteins feel the attractive direct interaction (Eq. 3).

In Fig. S17 we plot representative snapshots for different values of protein densities and temperatures. As expected, all shapes are
quasi-spherical. There is only phase-separation due to direct protein-protein interactions.
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MOVIES
Movie S1: Animation of snapshots in steady-state of the system with ρ = 7% of curved active proteins with F = 1kT0/lmin, c0 = 1/lmin,
w = 1kT0 at T/T0 = 0.6 (see the last snapshot in the second line from below on Fig. 5a).

Movie S2: Animation of snapshots in steady-state of the system with ρ = 5% of curved active proteins with F = 1kT0/lmin, c0 = 1/lmin,
w = 1kT0 at T/T0 = 0.6 (see the second snapshot in the second line from below on Fig. 5a).

Movie S3: Animation of snapshots in steady-state of the system with ρ = 11% of almost flat active proteins with F = 1kT0/lmin,
c0 = 1/(9lmin), w = 1kT0 at T/T0 = 0.7 (see the top-left shape on Fig. 7d).

Movie S4: Animation of snapshots in steady-state of the system for osmotic pressure p = 0.006kT/l3
min with kA = 1 kT0, at temperature

T/T0 = 0.7, with ρ = 11 % of active proteins with direct interaction constant w = 1 kT0 and protrusive force F = 1 kT0/lmin (see Fig. S14).

Movie S5: Animation of snapshots in steady-state of the system for osmotic pressure p = 0.007kT/l3
min with kA = 1 kT0, at temperature

T/T0 = 0.7, with ρ = 11 % of active proteins with direct interaction constant w = 1 kT0 and protrusive force F = 1 kT0/lmin (see Fig. S14).

Movie S6: Animation of snapshots in steady-state of the system with κ = 20kT0, T/T0 = 0.7, ρ = 11%, w = 1kT0 (see Fig. 7d, green dots)
and c0 = 1/(9lmin) (top left shape on Fig. 7d, and movie S3), but with a patch of seven vertices fixed in space (denoted with green boxes).

Movie S7: Animation of snapshots in steady-state of the system with κ = 20kT0, T/T0 = 0.7, ρ = 11%, w = 1kT0 (see Fig. 7d, green dots)
and c0 = 1/lmin, but with a patch of seven vertices fixed in space (denoted with green boxes).
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