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Abstract-

 

On the one hand simple systems and simple rules 
can enable surprisingly complex patterns in nature. On the 
other hand several fundamental questions on natural behavior 
remain unanswered. For example, dark matter and dark 
energy have been introduced to explain observed structure 
and dynamics of the universe. However, their existence is not 
experimentally supported at fundamental level. It might be that 
difficulties in understanding of some basic phenomena of the  
nature arise because we are trying to present it from wrong 
perspective. There are strong evidences that in physics the   
fields

 

are fundamental entities of nature and not particles. If 
this is the case then topological defects (TDs) might play the 
role of fundamental particles. An adequate testing ground to 
study and gain fundamental understanding of TDs are nematic 
liquid crystals. In this paper we present TDs in simple two-
dimensional nematics emphasizing their particle-like behavior. 
We demonstrate strong interactions between TDs and 
curvature of

 

the space which hosts them. Furthermore, we 
discuss how using simple rules in a simple system one can 
predict extremely complex behavior of lattices of TDs.

 

Keywords:

 

continuum fields, topological defects, nematic 
liquid crystals, topology, intrinsic curvature, extrinsic 
curvature. 

I.

 

Introduction

 

ature exhibits rich diversity of complex patterns. 
Several toy models [1] in nonlinear physics 
demonstrate that simple system and simple rules 

could enable complex patterns. On the other side, 
despite several “simplicity smoking gun” indicators, 
numerous fundamental questions in nature remain 
unanswered. Among others, we are not aware of 
fundamental origin of most of the energy and matter in 
the universe. For example, to explain observed 
increased acceleration of the universe

 

negative energy

 

was introduced. Furthermore, to explain observed 
dynamics of galaxies dark matter

 

was proposed. Most 
probable carriers of dark matter

 

are WIMPs (Weakly 
Interacting Massive Particles). However, despite 

enormous research efforts, there are no experimental 
evidences supporting existence of both negative energy 
and dark matter at fundamental level [2]. There are also 
unresolved discrepancies between best current theories 
of nature: the general relativistic theory describing 
phenomena at cosmological scales and quantum 
theory, which focuses on submicrometer scales [3]. For 
example, in the relativistic theory time and space 
coordinates are interdependent, forming the fabric of 
four dimensional spacetime. On the contrary, in 
quantum mechanics time is independent quantity and 
plays similar role as in the Newton’s classical 
mechanics. Incompatibility of these theories is most 
evident in describing black holes, where both relativistic 
(due to their high mass) and quantum (due to their small 
size) effects are important. 

It might be that all these unresolved problems 
are not satisfactorily solved yet due to wrong 
perspective view on nature. The best existing 
description of nature is given by the Standard Model of 
particles. It describes nature in terms of fundamental 
particles and forces among them. However, there are 
theorems in quantum relativistic field theory yielding 
contradicting claims in particle-view description [3]. 
Furthermore, several strange, counterintuitive quantum 
phenomena might be consequence of the fact that in 
hearth it is designed to explain behavior of particles, 
which from the field-view perspective do not exist. 
Several key researchers in quantum relativistic field 
theory shear belief that fields represent basic entity of 
nature and that nature is analogue in character [3] (i.e., 
it is represented by real and not integer numbers). From 
this perspective fundamental particles are emergent. 
They represent stable localized excitations in relevant 
fields. 

Note that lord Kelvin was the first to propose 
field presentation of nature. He believed that atoms 
(which at that time played the role of fundamental 
particles) could be presented as stable knots in a 
relevant field. Basic principles of field-type description of 
nature were introduced by Faraday and Maxwell. 
Already in 1962 Skyrme [4] presented a theory in which 
he described hadrons as topological defects (TDs) in 
the pion field. He referred to these TDs as Skyrmions. 
Several latter studies proved existent of Skyrmions in 
diverse other condensed materials [5,6,7]. 

Furthermore, several predictions based on 
Standard Model assume that universe is essentially 
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spatially homogeneous and isotropic. This is the 
essence of the Cosmological Principle, which originates 
back from Copernicus. Its key experimental support is 
relatively high homogeneity of the measured Cosmic 
Microwave Background radiation. But this configuration 
of the universe is based on our limited experimentally 
accessible view. Namely, results of recent non-linear 
relativistic numerical studies [8]revealed that the 
universe might be strongly nonhomogeneous. It might 
be that vast voids of the universe are negatively curved. 
If this is the case then, among others, increased 
acceleration of the universe could be explained within 
the existing Standard Model, with no need to introduce 
dark energy. Furthermore, its positive curvature parts 
might account for dark matter. From this perspective 
dark energy and dark matter are just artifacts emerging 
from wrong perspective of explaining natural behavior. 
Negative curvature of the universe might also support 
theory of multiverse. In next few decades experimental 
resolution is expected to become accurate enough to 
determine if the universe is curved or not. 

In summary, deep understanding of geometry, 
topology and topological defects [9] (TDs) in continuous 
fields could resolve several open and unresolved 
fundamental issues in nature. Note that topological 
defects are unavoidable consequence of continuous 
symmetry breaking phase transitions (CSBPT). These 
could be according to Landau described in terms of 
relevant order parameter fields Q which are different 
from zero only in the symmetry broken phase [10]. In 
case of CSBPT the order parameter consist of two 
qualitatively different contributions [10]: the amplitude 
field and the gauge field. For example, in case of a para-
ferromagnetic transition Q could be presented by a 

vector field Q nλ=
 

, 1n =


, where n  is the gauge field 

vector. The amplitude λ  describes a magnitude of the 
established ordering and has a unique value for given 
conditions. On the other hand the gauge field  n   
defines a symmetry breaking direction.  Any symmetry 
breaking direction can be selected because all are 
equivalent for CSBPT. This infinite degeneracy of 
gaugefield components enables formation of TDs in 
case the gauge field is locally frustrated. To prove 
universal appearance of TDs we stress that the 1st 
theory of coarsening dynamics of networks of TDs was 
developed in cosmology [11] in order to explain 
coarsening dynamics of the Higgs field in the early 
universe. The so called Kibble mechanisms claims that 
TDs can dynamically appear in a fast enough CSBPT 
because symmetry breaking choices of the 
corresponding gauge field are in general different in 
different parts of the system because they are 
informationally decoupled. Note that validity of the 
Kibble mechanism requires only i) CSBPT, and ii) 
causality (i.e., information propagates with a finite 
speed). 

Topological defects [9,12,13] describe stable 
localised gauge field structures which are topologically 
protected. Namely, for fixed boundary conditions TDs 
can not be eliminated. Topology is concerned with 
properties that are unaffected by continuous 
deformations. The key property of TDs is quantified by 
the discrete topological charge q, which is a conserved 
quantity. In general, it can have either positive or 
negative value. One commonly refers to TDs bearing 
q>0 as defects, and TDs characterized by q<0 as 
antidefects. Pairs of TDs bearing opposite values of q 
could annihilate each other into a defect-less state. 

Numerous theoretical and numerical studies 
concerning topology and TDs have been performed in 
two-dimensional (2D) system[14,15,16,17]. Relatively 
simple XY-type models were used. Namely, they are well 
mathematically accessible and in some cases they are 
transparent enough to derive analytic solutions.  In 2D 
the topological charge is commonly referred to as the 
winding number m[9,12,13]. Impact of topology on TDs  
is most visible via the Gaussian curvature K. According 
to the famous Gauss-Bonnet and Poincaré-Hopff 
theorems[18] the total winding number mtot of TDs within 
a closed surface 𝜁𝜁 possessing in-plane order is 
determined by the total surface integral of K: 

𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 = 1

2π
∬ 𝐾𝐾𝑑𝑑2𝑟𝑟𝜁𝜁 . (1)

 

Several works demonstrated[15,16,19]the 
electrostatic analogy where K and m play the role of an 
electric field and electric charges, respectively. Analytic 
derivations and numerical simulations reveal that 
positive (negative) Gaussian curvature is mathematically 
equivalent to a smeared negative (positive) topological 
charge [15,16]. Furthermore, it has been demonstrated 
that surfaces exhibiting regions with both positive and 
negative K could trigger unbinding of pairs {defects, 
antidefect} [15,16,19]. 

In general, geometry influences structure of an 
ordering field within a 2D manifold via two qualitatively 
different elastic contributions [18,20,21,22], refereed to 
as the intrinsic and extrinsic terms, respectively. For 
illustrative purpose we present key tendencies of these 
contributions for orientational in-plane ordering 
described by a vector field n. Intrinsic terms penalize 
departures of n from surface geodesics[18].They are 
associated with variations of n  as it would live only 
within the 2D curved surface. On the contrary, the 
extrinsic terms [20, 21, 23, 24] quantify elastic costs of 
out-of-surface gradients in n . They are sensitive how 
2D manifold is embedded in 3D Euclidian space. In 
case that local principal curvatures are different the 
extrinsic contributions generate an effective 

geometrically induced symmetry breaking field. Its 
strength increases with increasing difference between 
the curvatures. 

© 2017  Global Journals Inc.  (US)
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In general both contributions are always present 
[20,21,22] and as a rule enforce contradicting 
tendencies. However, majority of theoretical studies  
employed covariant derivatives [14,15,16,17] in 
expressing free energy elastic terms of 2D ordered 
systems. Such approaches automatically rule out 
extrinsic contributions. Therefore, in such studies only 
impact of the intrinsic curvature was analyzed. 

An ideal testing bed to study impact of 
curvature on TDs emphasizing universal features are 
various liquid crystal (LC) phases[25]. They represent an 
intermediate state between ordinary liquids and crystals. 
On one hand they flow like an ordinary liquid. In addition 
they possess long range orientational ordering and in 
some cases also quasi long range translational order. 
They are exceptionally experimentally accessible due do 
their unique combination of softness, optical anisotropy 
and transparency, and suitable scales of characteristic 
time and spatial relaxation responses. In addition they 
exhibit rich variety of phases and structures that exhibit 
practically all possible symmetries of TDs. 

Could simple fields yield complexity of the 
nature (see Figure 1)? In the paper we illustrate how 
complexity might emerge using a simple uniaxial field in 
combination of symmetry breaking. We consider TDs in 
2DnematicLC phase, emphasizing their particle-like 
behaviour and interaction with intrinsic and extrinsic 
curvature. The plan of the paper is as follows. We first 
present TDs and their key particle-like characteristics. In 
planar geometry we illustrate that TDs exhibit behaviour 
reminiscent to the Faraday cavity effect. Then we 
demonstrate impacts of intrinsic and extrinsic curvatures 
in closed nematic shells of spherical topology.  

II. Theoretical Background 

We consider TDs in thermotropical uniaxial 
nematic LC phase[25] which possesses only 
orientational long range order. For sake of simplicity we 
limit to LCs consisting of rod-like molecules exhibiting 
head-to-tail invariance at mesoscopic level. On lowering 
temperature T. the nematic phase (N) is entered at the 

critical temperature Tc via the first order CSBPT from the 
isotropic (I) phase as it is schematically shown in Figure 
2. Isotropic phase features liquid-like behavior and short 
range order. Orientational ordering in the nematic phase 
is mesoscopically described by the nematic director 
field n which points along the local uniaxial ordering 
direction. In bulk equilibrium n  is spatially 
homogeneously aligned along a single symmetry 
breaking direction. 

Fast enough continuous symmetry breaking I-N 
phase transition temperature quench always generates 
TDs via the Kibble mechanism [11]. Due to causality in 
separate parts of a system different symmetry breaking 
directions are selected, see Figure 3. At merging areas 
of different boundary walls separating neighboring 
domains TDs are formed due to topological reasons. 
TDs might be formed also due to other reasons, for 
instance by frustrating boundary conditions [26,27] or 
strong enough curvature[15,16] of space hosting n. In 
the paper we will focus to the latter case. 

In the following subsections we first introduce 
topological charge of TDs for an arbitrary field. 
Afterwards we introduce our mesoscopic modelling 
used to treat TDs in 2D nematic films. 

a) Topological defects and topological charge 
Topological defects represent “tears” in 

respective order parameter field. Its key feature is the 
topological charge [9,12] which is conserved for any 
smooth deformations if boundary conditions are fixed. 
To calculate it we need first to introduce the order 
parameter space. It consists of all possible states of the 
gauge field equilibrium solutions. For example, in case 
of 3D ferromagnet described by the vector order 
parameter Q nλ=

 
 the OPS forms a unit sphere.  In 2D 

the OPS is a circle. The topological charge of a TD in a 
general unit vector field 1 1 2 2 ... d dn n e n e n e= + +

   
 (i.e., 1n = ) 

in a d-dimensional coordinate frame 1 2{ , ,.., }de e e  
is 

defined by an integral over a surface enclosing a 
defect[12]. 

                             

1 2

1 2

1 1 1
1 2 1

1 2 2

1 1 1

...

...
1 ... ...

... ... ... ...

...

d

d

d

d d d

n n n
n n n
u u u

q Det du du du

n n n
u u u

−

− − −

∂ ∂ ∂
∂ ∂ ∂

=
Ω

∂ ∂ ∂
∂ ∂ ∂

∫ ∫ ∫  

 
 
 

.

                                         

(2) 

The coordinates { 1 2 1, ,..., du u u − } determine a d-
1 dimensional surface enclosing a defect, and Ω  
determines the “solid” angle in d-dimensional space 
(e.g., in 2D and 3D it equals to 2πΩ =  and 4πΩ = , 
respectively). The integral Eq.(2) reveals how many 
times all possible configurations of OPS are realized in 

the enclosed region. If this integral is zero, the region 
can not contain a single defect (it can contain several 
defects if the sum of their topological charges equals to 
zero). 
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In case of a two-dimensional space one can 
use parametrization 1 1 2 2 1 2cos sinn n e n e e eθ θ= + = +

    
. 

In this case Eq.(2) yields 

1 2

1 2

1 1
2 2 2

n n
q m Det du dun n u

u u

θ θ
π π π

∂ ∆
≡ = = =∂ ∂ ∂

∂ ∂
∫ ∫  , 

 

(3)

 

where the du
 
determines a differential along a closed 

line enclosing a defect counter clockwise, and θ∆
 
is 

the change of the angle θ
 
on encircling the defect. In 

2D one referees to q
 
also as the winding number

 
m. For 

a vector field a TD is characterized by an integer value 
of m, i.e. { 1, 2, 3....}m∈ ± ± ± . In case of orientational 
ordering exhibiting head-to-tail invariance n±  , then half 
integer values of m

 
are also allowed: 

{ 1/ 2, 1, 3 / 2....}m∈ ± ± ± . Some representative defect 
structures are schematically depicted in Figure 4.

 

b)
 

Ordering fields and free energy
 

We henceforth restrict to 2D films 
exhibitingnematic liquid crystal ordering. We set that 
molecules displaying uniaxialnematic

 
orientational 

ordering are bound to lie in the local tangent plane of a 
flat or curved surface as shown in

 
Figure 5. Its local 

surface patch, corresponding to a point at mesoscopic 
scale, is

 
characterised by the surface normal

 
v , and by 

the curvature tensor [28,29]
 

1 1 1 2 2 2.C C e e C e e= ⊗ + ⊗
   

 

(4)

 

Here the unit vectors { 1e , 2e } point along the 
surface principal directions with principal curvatures 
{𝐶𝐶1,𝐶𝐶2}

 
as shown in

 

Figure 6.

 

The localnematicorientational order is described 
by the nematic director field n , 1n =


, which is 

schematically depicted in Figure 5.
 
At the mesoscopic 

levelnematicmolecules
 

are assumed to be rod-like, 
exhibiting the so-called head-to-tail invariance, where 
states n±  are equivalent. Consequently, ordering is 
describedby the tensor order parameter[29]

 

( ) ,Q n n n nλ ⊥ ⊥= ⊗ − ⊗
   

 
(5)

 

For which ( ) ( )Q n Q n= −
  . The quantityλ

 

determines the amplitude

 

field

 

and

 

n
 

plays the role of 
the

 

gauge field, v n n⊥= ×
   , and 0n n⊥⋅ =

  . 

In terms of

 

invariants in terms of C

 

and Q

 

we 
express the free energy density (int) ( )ext

c e ef f f f= + + , 
where we take into account only the most essential 
terms to demonstrate key qualitative features of our 
interest. Here 

cf , (int)
ef , ( )ext

ef
 

stand for condensation, 
intrinsic

 
elastic and extrinsic

 
elastic term, respectively. 

We express them as 
 

𝑓𝑓𝑐𝑐 = −𝐴𝐴𝐴𝐴𝐴𝐴𝑄𝑄2 + 𝐵𝐵 �𝑇𝑇𝑇𝑇𝑄𝑄2�
2
,  (6a) 

𝑓𝑓𝑒𝑒
(𝑖𝑖𝑖𝑖𝑖𝑖 ) = 𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇 �∇𝑠𝑠𝑄𝑄�

2
, (6b) 

𝑓𝑓𝑒𝑒
(𝑒𝑒𝑒𝑒𝑒𝑒 ) = 𝑘𝑘𝑒𝑒𝑇𝑇𝑇𝑇 �𝑄𝑄𝐶𝐶2�. (6c)

 

Here A
 
and B

 
are positive material constants in 

nematic phase, and {ki,ke} stand for {intrinsic, extrinsic} 
curvature elastic constants, ∇𝑠𝑠= (𝐼𝐼 − 𝑣⃗𝑣 ⊗ 𝑣⃗𝑣)∇  stands

 

for the surface gradient operator[29] and ∇
 

is 3D 
gradient operator.

 

Nematic tensor order parameters (3 )DQ
 
in 3D 

and Q in 2D are related as
 

( )
(3 )

(3 ) 3 .
2

D
DQ Q v v Iλ
= + ⊗ −

   
 

(7)
 

 

In our 2D approach we assume that  (3 )Dλ   (the
 

eigenvalue of  (3 )DQ along v ) is spatially constant. Due 
to this assumption we consider only TDs with biaxial 
cores, which is sensible for common nematics [31]. If 
this is the case it is convenient to introduce the degree 
of biaxiality [30]

 

( )
( )

2(3 )3

2
3(3 )2

6
1 [0,1],

D

D

TrQ

TrQ
β = − ∈

 

 

(8)

 

where uniaxial states are signalled by 2 0β =
 

and 
states exhibiting maximal biaxiality by 2 1β = . Two

 

dimensional 2β  plot well fingerprint TDs. Namely, 
m=±1/2 are characterised by a closed  2 1β =  
ring [31]. In case of an isolated TD in bulk the ring  is 
circular and its radius is estimated by the nematic 
correlation length ξ. In our modeling it is estimated by  

ik
A

ξ = . 

 

(9)
 

In simulations we consider axial symmetric 
shapes exhibiting inversion symmetry. We describe the 
shapes using the parametrizion

 

𝑟𝑟 = 𝜌𝜌(𝑠𝑠)cos (u)𝑒𝑒𝑥𝑥+𝜌𝜌(𝑠𝑠)sin(u)𝑒𝑒𝑦𝑦) + 𝜌𝜌(𝑠𝑠)𝑒𝑒𝑧𝑧
 

(10a)

 

in the Cartezian coordinates. In the case of ellipsoidal 
shapes we use the parametrization 

 

𝑟𝑟= 𝑏𝑏(sin(v)cos(u)𝑒𝑒𝑥𝑥+sin(v)sin(u)𝑒𝑒𝑦𝑦) +𝑎𝑎

 

cos(v)𝑒𝑒𝑧𝑧, (10b)

 

where

 

 v ∊ [0,𝜋𝜋], u ∊ [0,2𝜋𝜋].

 

Numerical details are 
described in [19]. 
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III. Particle-Like Behaviour of TDS 

In this section we consider TDs in 
nematicorientational order in 2D flat and curved 
geometries. 

a) Planar geometry 
We first treat flat nematic films, where 

C1=C2=0. We parametrize the nematic director field in 
the 2D Cartesian system {𝑒𝑒1 = 𝑒𝑒𝑥𝑥 ,𝑒𝑒2 = 𝑒𝑒𝑦𝑦} as  

𝑛𝑛�⃗ = 𝑒𝑒1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. (11) 

Minimization of free energy given by Eq.(6) 
yields the Euler-Lagrange equilibrium equation 0θ∆ = , 
where we neglected spatial variations in λ .  Possible 
solutions have a linear dependence in a respective 
spatial coordinate. A possible solution, expressed in 
Cylindrical { ,ρ ϕ } and Cartesian {x,y} coordinate 
variables, reads[25] 

0 0( / )m m ArcTan y xθ ϕ θ θ= + = + , (12) 

where 0θ  is a constant. From the equivalence of states
( 0)n ϕ =


 and ( 2 )n ϕ π=


and taking in to account head-

to-tail invariance n±   it follows that
{0, 1 / 2, 1, 3 / 2....}m∈ ± ± ±  must be a discrete quantity. 

Cases m=0 describe homogeneous structures defined 
by 0θ . These solutions determine equilibrium n

configurations in bulk unconstrained samples. Cases 
with 0m ≠ correspond to topological defects. The 
corresponding gauge field profiles are shown in Figure 4  
((a): m=1/2, (b): m=-1/2, (c): m=1, (d): m=-1). A pair 
of TDs {m>0,-m} is referred to as {defect, antidefect}. 
Namely, if we sum the pair one obtains a homogeneous 
field structure, where the defect and antidefect mutually 
annihilate. Note that solutions given by Eq.(9) exhibit 
singularity at the center of the coordinate system, which 
is removed if spatial variation of λ  is taken into 
account. Namely, at the defect center the amplitude is 
melted (i.e., 0λ = ), removing the singularity. The core 
size of a topological defects is approximated by the 
nematic correlation length ξ .  

The elastic free energy density of the solution 
given by Eq.(9) in cylindrical coordinates equals

2 2
22

2
i

e i
k mf k λλ θ
ρ

∇ = where we assume that 

( ) 0λ ρ ξ< = , and m miminizes the condensation free 
energu density fc. Integration of the free energy density 
from ρ ξ=  to Rρ = (R determines the size of the 
system) yields the elastic free energy cost

 
2

0eF m F∆ = ∆ , (13) 
 
 where 2

0 2 lni eq
RF kπ λ
ξ

 ∆ =  
 

. From the results we infer two 

important conclusions. Firstly, the elastic free energy 

penalty diverges in the limit R →∞, signalling that a 
single defect can not exist. Furthermore, if we have 
several defects in a finite volume, from a relatively large 
distance they effectively act as a single defect bearing 
an effective charge.  For example, in Figure 7a we plot a 
regular checkerboard array of 9 TDs with alternating 

charge as depicted in the following Table: 
1 1 1
1 1 1

1 1 1

−
− −

−
. In 

the figure the distance between neighbouring TDs 
equals 5a0. In

 

Figures 7 we gradually zoom out the  
structure from the center

 

of the checkerboard. One sees 
that at a relatively large scale (Figures 7d) the system 
configuration resembles a TD bearing the effective 
charge m=1, which equals the total charge of the 
system. This illustration demonstrates that in an infinite 
system the total charge of TDs must be zero.

 

Furthermore, for a single isolated  defect the 
local elastic free energy penalty outside the core scales 
as 2

eF m∆ ∝ , see Eq.(13).

 

Consequently, it is 
energetically advantageous that the defects bearing

 

relatively strong charges decompose into elementary 
charges m0=±1/2. For example, in the case of a single 
m=1 defect it holds ΔFe∝m²=1, while if it decomposes 
into two m0=1/2 elementary charges it follows that 
ΔFe∝(1/4)+(1/4)=(1/2).

 

Note that the solution

 

Eq.(12) solves the linear 
differential equation. Therefore, liner combination of 
solutions is also a solution where in addition the 
conservation of the total topological charge must be 
taken into account

 1
.

N
i

i i
i i

y ym ArcTan
x x

θ θ
=

  −
= +  −  
∑

 

 

 

(14)

 Here N

 

stands for the number of TDs, where 
thei-th defect is characterised by the defect’s core 
center coordinates (xi,yi), strength mi

 

and constant iθ . If 
we inserts the solution Eq.(14) into the free energy and 
integrate it over the (x,y) plane, we obtain the free energy 
expressed  in

 

terms of TDs  coordinates and their 
charges. Consequently, the system is viewed

 

as being 
composed of particle-like objects (TDs)

 

because the 
field coordinates are integrated out.

 

Next, we numerically calculate nematic patterns 
exhibiting TDs on a flat plane using free energy in Eq.(6). 
First we consider a rectangular boundary of linear size 
R>>ξ , at which we fix the nematic director profile 
given by Eq.(11) where we set 0 0θ = and m>0. 
Therefore, via boundary condition we enforce total 
topological charge of strength m

 

inside the boundary, 
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where we calculate the resulting nematic pattern by 
minimizing the free energy. In Figure 8we show the case 
where m=2. One sees that the imposed m=2 defect 
decomposes into four defects bearing elementary 
charges m0=1/2. Furthermore, the TDs tend to 
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~



 
assemble close to boundaries in a manner to maximize 
their mutual separation. Positions of defect cores are 
well visible in Figure 8a where we plot the degree of 
biaxility 2β [30]of the configuration. Namely, the cores of 
m0=1/2 TDs are fingerprinted by a volcano-like rim 
where 2 1β = [31]. The resulting director profile in the 
central region on the system is nearly spatially 
homogeneous, see

 

Figure 8b. This is even more 
pronounced in

 

Figure 9,

 

where we enforce via the 
spherically shaped boundary the total charge

 

m=6. One 
sees that 12 elementary TDs are formed which 
assemble just below the enclosing surface. This 
structure is reminiscent to the Faraday effect in 
conductors (if one puts electric charges on a conducting 
body they

 

assemble at its surface and the resulting 
electric field inside the body equals zero). Note that 
Faraday

 

behaviour is in our simulations well visible for 
cases R/ξ >>1. Absence of electric field inside the 
conductor in our simulations corresponds to uniform 
director field in the region separated for a distance 
greater than ξ   from the enclosing boundary.  

 

b)

 

Intrinsic and extrinsic curvature

 

Next we consider impact on curvature on TDs, 
where we consider both

 

intrinsic

 

and extrinsic

 

curvature. 
First we present

 

key features of both contributions on a 
simple example. We consider a two-dimensional 
manifold which is embedded in the 3D Cartesian 
coordinate system.  We parametrize the nematicorienta- 
tional ordering field in 2D film using Eq.(11). In the 
simplest nematic description only in terms of nematic 
director field the elastic free energy density is expressed 
as

 

𝑓𝑓𝑒𝑒 = 𝑘𝑘|∇𝑠𝑠𝑛𝑛�⃗ |2, (15)

 

where

 

k

 

is a positive elastic constant. Considering the 
parametrization Eq.(8) and taking into account that the 
frame {𝑒𝑒1, 𝑒𝑒2} varies in space we express the elastic 
term as 𝑓𝑓 = 𝑓𝑓𝑒𝑒

(𝑖𝑖𝑖𝑖𝑖𝑖 ) + 𝑓𝑓𝑒𝑒
(𝑒𝑒𝑒𝑒𝑒𝑒 ). The intrinsic(𝑓𝑓𝑒𝑒

(𝑖𝑖𝑖𝑖𝑖𝑖 ))

 

and 
extrinsic(𝑓𝑓𝑒𝑒

(𝑒𝑒𝑒𝑒𝑒𝑒 ))

 

contribution are given by 

 

𝑓𝑓𝑒𝑒
(𝑖𝑖𝑖𝑖𝑖𝑖 ) = 𝑘𝑘�∇𝑠𝑠𝜃𝜃 + 𝐴𝐴�

2
, (16a)

 

𝑓𝑓𝑒𝑒
(𝑒𝑒𝑒𝑒𝑒𝑒 ) = 𝑘𝑘

 

𝑛𝑛�⃗  ·  𝐶𝐶2𝑛𝑛�⃗ .

 

(16b)

 

The quantity 𝐴𝐴 = 𝜅𝜅𝑔𝑔1𝑒𝑒1 + 𝜅𝜅𝑔𝑔2𝑒𝑒2

 

is refereed to as 
the spin connection [18] and  {𝜅𝜅𝑔𝑔1,𝜅𝜅𝑔𝑔2}

 

are geodesic 
curvatures along {𝑒𝑒1, 𝑒𝑒2}. The spin connection can be 
expressed in terms of the Gaussian curvature as 
𝐾𝐾 = �∇ × 𝐴𝐴�. 

 frustrated. Consequently, the intrinsic

 

term is minimized 
for a locally non-homogenous pattern, i.e. ∇𝑠𝑠𝜃𝜃 =
−𝐴𝐴 = −𝜅𝜅𝑔𝑔1𝑒𝑒1 + 𝜅𝜅𝑔𝑔2𝑒𝑒2. The resulting non-homogeneity 
originates from the incompatibility of straight and parallel 
lines on surfaces with |𝐾𝐾| > 0. 

 

On the contrary the extrinsic

 

term acts like an 
effective external field. Using Eq.(16b) and Eq.(11) it is 
expressed as 𝑓𝑓𝑒𝑒

(𝑒𝑒𝑒𝑒𝑒𝑒 ) = 𝑘𝑘

 

(𝐶𝐶1
2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝐶𝐶2

2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃). There- 
fore, for k>0 it tends to align 𝑛𝑛�⃗

 

along the principal 
direction exhibiting minimal absolute value of curvature.

 

It is to be stressed that most approaches used 
to study impact of curvature in 2D films expressed 
elastic terms using covariant derivatives. In these 
approaches the

 

extrinsic

 

contribution is automatically 
ruled out. In Figure 10 we present a simple case which 
illustrates the importance of extrinsic

 

contribution. In the 
cylindrical geometry shown both director structures (a) 
and (b) are aligned along geodesics. Consequently, the 
intrinsic

 

contribution is zero in both cases. This 
degeneracy is lifted if the extrinsic

 

term is taken into 
account. Namely, it favors structure shown in Figure 10a 
aligned along the cylinder axis exhibiting zero curvature. 

 

In the following we illustrate on simple cases 
impacts of intrinsic

 

and extrinsic

 

curvature on position as 
well as number of TDs where we calculate numerically 
nematic patterns via minimization of free energy 
contributions given in Eqs.(6). To simplify  numerical 
treatment we consider closed films exhibiting axial and 
inversion symmetry.

 

We first focus on the intrinsic

 

term described by 
𝑓𝑓𝑒𝑒

(𝑖𝑖𝑖𝑖𝑖𝑖 )

 

in Eq.(6b) and set ke=0.

 

Its impact on assembling 
of TDs on surfaces exhibiting spatially nonhomoge- 
neous Gauss curvature well reveals the Effective 
Topological Charge Cancellation (ETCC) 
mechanism[19]. In it we characterize each surface 
patch ζ∆

 

by its

 

average characteristic Gaussian 
curvature

 

𝐾𝐾� = 1

ζ∆
∬ 𝐾𝐾𝑑𝑑2𝑟𝑟ζ∆ . (17)

 We assign the effective topological charge to the patch:

 

∆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = ∆𝑚𝑚 + ∆𝑚𝑚𝐾𝐾 . (18)

 

It consists of the topological charge∆𝑚𝑚

 

of “real” 
TDs and the spread curvature topological charge, which 
we define by

 

∆𝑚𝑚𝐾𝐾 = − 1

2π
∬ 𝐾𝐾𝑑𝑑2𝑟𝑟ζ∆ . (19)

 Therefore, if 𝐾𝐾� > 0 (𝐾𝐾� < 0) then ∆𝑚𝑚𝐾𝐾 < 0  
(∆𝑚𝑚𝐾𝐾 > 0). The ETCC mechanism claims that in each 
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We first consider key features of the intrinsic
term. In flat geometries, where K=0, it enforces a 
spatially homogeneous structure. In surface patches 
characterized by 𝐾𝐾 ≠0 the ordering is in general 

surface patch there is the tendency to cancel ∆𝑚𝑚𝑒𝑒𝑓𝑓𝑓𝑓 , 
i.e., to be topologicallyneutral. This can be achieved 
either i) by redistribution of existing TDs or ii) via creation 
of additional pairs {defect, antidefect}. 
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This mechanism embodies the fact that

 

TDs 
with positive (negative) topological charge are attracted 
to regions exhibiting negative (positive) Gaussian 
curvature. Figure 11 yields an example which illustrates 
the origin of this interaction. In the figure there is a 
sketch of a TD bearing m=1 placed on the top of a 
spherocylinder. In this case the total elastic penalty of 
the TD is confined to the cup of the spherocylinder and 
equals zero in its cylindrical part (there the orientational 
ordering is spatially homogeneous). If this TD would 
reside

 

on an infinite plate its elastic energy would be 
infinite. Consequently, there is energetic advantage to 
drag a topological defect bearing

 

m=1 in a region 
exhibiting K>0.  

 

Next, we illustrate the predicting power of the 
ETCC mechanism regarding the curvature-driven 
assembling of TDs. As a reference we consider a sphere 
of radius R, where the Gaussian curvature is spatially 
homogeneous and equals to K=1/R2. In this case the 
characteristic surface patch ζ∆

 

refers to the whole 
sphere surface and the ETCC mechanism is exactly 
obeyed owing to the Gauss-Bonnet and Poincare-Hopf 
theorems embodied in Eq.(1). Namely, in this case  
∆𝑚𝑚𝐾𝐾 = −2  and ∆𝑚𝑚 = 2, yielding ∆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = 0. For equal 
elastic constants ∆𝑚𝑚

 

consists of four elementary 
charges m=1/2, residing at the vertices of a regular 
hypothetical tetrahedron in order to maximize their 
mutual separation, see Figure 12. Furthermore, in this 
geometry the extrinsic

 

contribution is absent, because 
C1=C2=1/R. 

If one morphs the sphere into an ellipsoid, at 
the poles localized regions appear with relatively high 
positive curvature, see the dashed line in the top panel 
ofFigure 13. The smeared negative Gaussian charge 
builds up at the poles and consequently, the “real” 
elementary charges m=1/2 are progressively dragged  
towards the poles if one increases the ellipsoid’s 
prolateness as shown in Figure 14.

 

On the contrary, on deforming a sphere into an 
oblate shape the positive Gaussian curvature begins to 
build up at the equatorial region (see the full line in the 
top panel of Figure 13). Consequently, on increasing the 
oblateness the TDs progressively approach the 
equatorial line. In Figure 15 we show the case where the 
oblateness is strong enough to assemble TDs at the 
equator.             

 

In examples above the “limit”  ETCC structures, 
where all patches are topologically neutral, were reached 
via redistribution TDs bearing m=1/2 which already 
existed in spherical geometry. In the following we 
illustrate a simple case where a

 

limit ETCC structure is 
realized by forming additional pairs {defect,

 

antidefect}. 
For this purpose we deform a sphere into a dumb-bell 
shape shown in Figure 16a. In this process we form the 
region of negative Gaussian curvature which can be 
compensated only with negative topological charges. In 

order to predict changes in number of TDs on narrowing 
the neck of dumb-bell structures we consider a limit 
structure, which approximately consists of two spheres 
connected by a catenoid, which is shown in Figure 17. 
The smeared Gaussian charge of closed sphere equals 
to ∆𝑚𝑚𝐾𝐾 = −2

 

and of the catenoid ∆𝑚𝑚𝐾𝐾 = 2. The case 
where four m=-1/2 neutralize negative Gaussian 
curvature at the neck of a catenoid is shown in Figure 
18. Therefore, in order to make topologically

 

neutral

 

all 
three dumb-bell characteristic (top and bottom 
spherical-like, and middle catenoid-like) patches, one 
needs ∆𝑚𝑚 = 2

 

in spherical regions and ∆𝑚𝑚 = −2

 

in the 
neck region. For this purpose one needs to create four 
pairs {defect,

 

antidefect} if one starts from a spherical 
shape. In Figure 16b we depict evolution of the effective 
topological charge in spherical parts of the dumb-bell 
structure on increasing the ratio 𝜌𝜌2/𝜌𝜌1(the distances are 
defined in Figure 16a) taking into account only the initial 
set of TDs present in spherical geometry. In

 

Figures 19 
we show configuration of defects just below (Figures 
19a) and above(Figures 19b) the critical condition where 
two pairs {defect,

 

antidefect} are created.     

 

Next we consider impact of extrinsic curvature, 
which is in our modelling presented by 𝑓𝑓𝑒𝑒

(𝑒𝑒𝑒𝑒𝑒𝑒 )

 

in Eq.(6c). 
In our simulations we set ki=ke. Note that extrinsic term 
plays the role only for cases where 1 2C C≠ . The extrinsic 
term acts as an external field whose strength is 
proportional with 1 2ek C C− .  The curvature deviator  

1 2 / 2D C C= −   is the invariant of  the curvature tensor 

and can be expressed by  the mean curvature 

1 2( ) / 2H C C= +    and  Gaussian curvature 1 2K C C=

 

as 
2 2D H K= −

 

[23,24].

 

For ke>0 it

 

tends to align 
nematicorientational

 

ordering along principal directions 
exhibiting minimal curvature. In Figure 20 and Figure 21 
we plot TDs on prolate and oblate ellipsoid. In both  
geometries the curvature deviator  |𝐶𝐶1 − 𝐶𝐶2|/2

 

(see also 
[23,24]) exhibits maximum in the equatorial region, see 
the bottom panel of Figure 13. TDs tend to be expelled 
from regions where the effective extrinsic

 

field is strong 
enough. Consequently,

 

inprolate structure TDs are 
dragged towards the poles (Figure 20).  In this case 
both intrinsic

 

and extrinsic

 

term cooperatively push TDs 
towards the poles. By contrast, in oblate structure the 
intrinsic

 

and extrinsic

 

term have competing tendencies. 
The intrinsic

 

elasticity favors to assemble TDs in the 
equatorial region. On the other hand the extrinsic

 

term 
expels them from this region. In Figures 21 we show the 
case where the effective extrinsic

 

term is strong enough 
to expel TDs from the equatorial region, where they 
would be for ke=0, see Figure 15.
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IV. Conclusions

In the paper we describe  fundamental behavior 
of topological defects in two-dimensional nematic liquid 
crystals. TDs are stabilized by topology and 
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  consequently their behavior does not depend on 
microscopic details. For this reason they display several 
universal features. Two-dimensional nematic LCs 
represent adequate systems to study the physical 
properties of  TDs for the following main reasons. First of 
all, there exist several “natural” systems exhibiting 
effectively two-dimensional nematic-like orientational 
ordering, e.g., in anisotropic biological membranes  
[23,24]. In addition, such systems could be prepared 
experimentally by coating colloids with thin LC films, 
referred to as nematic shells [32,33,34]. In these 
systems diverse TDs could be formed and relatively 
easily observed using optical microscopy. Next, for such 
systems mathematics is relatively well developed and 
transparent. Combined experimental and theoretical 
accessibility of these systems allows one to perform 
controlled experiments well supported by theoretical 
modelling [29,35,36]. Finally, such systems are of 
interest for various ambitious applications  in photonics 
and sensor applications. Of particular recent interest are 
LC-based sensor aimed to detect biological nano-
objects [37] (lipids, proteins, viruses, bacteria…). There 
might be also several applications in biomedicine. For 
instance, very recent studies reveal that TDs in 
epithelium cells trigger the death and removal of cells 
[38]. LC shells might also pave path to design colloidal 
crystals [39], representing analogues of “conventional” 
crystals. In this analogy LC shells and TDs would play 
the role of atoms and their valence, respectively. Note 
that “colloidal chemistry” might yield even richer variety 
of resulting crystal structures than those observed in 
nature because of our ability to form diverse LC shells 
(i.e. “atoms”) with almost arbitrary configuration of TDs. 

 

In the paper we first consider flat nematic films. 
On a simple example we demonstrate how particle-like 
description of TDs emerges, although TDs represent 
only relatively  energetically costly singularities in 
nematic director field. We illustrate that TDs of relatively 
strong topological charge are difficult to form because 
they have strong tendency to decompose into 
elementary

 

topological charges. In case of nematics 
these carry topological charge (winding number) 
m0=±1/2. We demonstrate the Faraday effect-like 
behavior in cases where we enforce a relatively strong 
total topological charge m

 

within an area. If a 
characteristic linear size of the confinement is large with 
respect to the amplitude

 

order parameter correlation 
length then the enforced charge m

 

decomposes into 
TDs bearing elementary charges m0. These assemble at 
the confinement boundary and the resulting director 
field in the main body of the system is essentially 
spatially homogeneous.  This behavior is consequence 
of mutual Coulomb-like repulsion [16] among 
elementary TDs. Position and number of TDs is strongly 
influenced by curvature of 2D surface hosting LC. 
Simple analysis shows that two qualitatively different 
elastic curvature terms exist: intrinsic

 

and  extrinsic

 

contributions. In general both contributions are present. 
But in most theoretical studies so far the extrinsic

 

contribution was neglected, because the derivations 
were based on covariant derivatives. The impact of the 
intrinsic

 

contribution is well represented by the Effective 
Topological Charge Cancelation  (ETCC) mechanism. It 
tends to topologically neutralize

 

(i.e. to cancel the 
effective charge) each surface patch represented by an 
average Gaussian curvature. This is achieved either by 
redistribution of existing TDs or/and formation of 
additional pairs {defect,

 

antidefect}. The ETCC 
mechanism in fact describes cancelation of a finite local 
Gaussian curvature K

 

by dragging appropriate TDs into 
this region. Consequently, TDs  are attracted to regions 
exhibiting maximal absolute value of K. On the contrary, 
the extrinsic

 

contribution acts like a local effective 
ordering field the strength of which increases with 
curvature deviator   1 2 / 2C C−

 

[23,24,44,45], and is 

absent at umbilical points where 1 2C C=

 

[44]. In general, 
intrinsic

 

and extrinsic

 

contributions might have 
contradictory impacts on TDs. For instance, on oblate 
ellipsoids the

 

intrinsic

 

curvature tends to assemble TDs 
at the equatorial line (where K

 

exhibits local maximum). 
On the contrary, for oblate shapes theextrinsic

 

curvature 
would like to expel TDs out from the equatorial belt 
because the curvature deviator 1 2 / 2C C−

 

is

 

maximal at 
the equatorial line. Our preliminary studies show that 
extrinsic

 

contributions might dramatically enhance 
stability range of oblate-like discocytes. Such 
geometries are often realized in biological cells. Note 
that positions of TDs fingerprint relative importance of 
intrinsic

 

and extrinsic

 

curvature contributions, and can 
therefore serve as indicators of their relative strength. In 
general, deep understanding of effects of extrinsic 
contributions

 

is important from fundamental view. 
Namely, it reflects impact of d-dimensional space on 
embedded d-1 dimensional subspace.  However, 
lessons learned from 2D manifolds can not be directly 
generalized to higher dimensional systems [39]. For 
example, in 2D nematics only point defects exist. In 3D 
also line defects are possible, which can form complex 
knot-like structures (in bulk line defects always form 
closed loops). For example, topologists know how to 
classify all possible 2D manifolds. However, 
classification of all 3D manifolds remains an unsolved 
problem.         

 

To illustrate possible formation of even more 
complex structures formed by TDs we consider glass-
like states, the physics of which is still disputable. For 
instance,  from TD perspective one could explain 
supercooling driven vitrification in CSBPT phases by 
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combining well known i) Kibble mechanism [11,41], ii) 
Imry-Ma-Larkin (IML) mechanism [42,43], and iii) 
Mullins-Sekerka (MS) [46]. The universal Kibble 
mechanism yields conditions for which domain-type, 
yielding short range order, is dynamically formed. 
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Furthermore, the IML mechanism yields conditions for 
which domain pattern can be stabilized. It states that 
even infinitesimal amount

 

of random-field type disorder 
stabilizes domain-type pattern. Finally, the MS 
mechanism provides a path via which random-field type 
disorder could be formed in a system. This proposed 
mechanism of vitrification is the topic of our current 
research. 
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Figure caption 

 

 

 
 
 

 

Figure 1:  Could a complex pattern on left side of the figure left emerge from the field shown on the right 
side? 
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Figure 2: Temperature driven spontaneous symmetry breaking phase transition.  Above Tc  the system 
exhibits isotropic orientational symmetry where all orientations are equivalent. Below the transition the 
systems spontaneously aligns along a symmetry breaking direction. Any other direction would be also 
energetically equivalent
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Figure 3: Domain-type pattern typically formed in a fast enough continuous symmetry breaking phase 
transition. In general in different parts of the system a different symmetry breaking direction because these 
parts are informationally decoupled. Lines indicate  domain walls. Average orientational ordering within each 
domain is depicted with a thick line. Circles indicate presence of topological defect which are locally stable 
for fixed boundary conditions. In general average domain size grows in time which is enabled by annihilation 
of pairs {defect, antidefect}

Figure 4: Typical topological defects in two-dimensions characterized by the winding number m.  (a) m=1/2, (b) 
m=-1/2, (c) m=1, (d) m=-1. In (e) am=1 TD is split into two m=1/2 TDs. Winding numbers with minimal value 

1/ 2m = are referred to as elementary topological charges           .0 0θ =
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Figure 5: Orientational ordering with a 2D curved surface is at mesoscopic scale described by the uniaxial nematic 
director field n .  Local surface orientation is defined by the unit normal v  
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Figure 6: Sketch of a principal curvature frame  {𝑒𝑒1, 𝑒𝑒2} and the corresponding curvature radios{R1, 
R2}. The corresponding principal curvatures are given by{ 1 11 /C R= , 2 21 /C R= }
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Figure 7: A checkerboard lattice of nine TDs bearing topological charges m=±1. The central TDs bears charge m=1. 
The coordinate system is presented in distance unitsa0.  In each line neighboring TDs are separated for a distance 5 
a0. In figures (a), (b), (c), (d) we progressively zoom out the viewing are of lattice of TDs. In (a) the resolution is high 
enough to see all nine TDs. In (b) we see only the effective far-distance field of the lattice, which bears the total 
topological charge m=1      
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Figure 8: The square boundary enforces the total topological charge m=2 to the system. The characteristic 
linear size R of the system is large with respect to the order parameter correlation length ξ. The enforced 
charge m=2 splits into four m=1/2 elementary charges which assemble in the corners of the square in order to 
maximize their mutual separation. / 10R ξ = .  (a) 2D biaxiality profile 2β  in which cores of TDs are clearly 
visible. (b) The corresponding director field profile. Note that the director field is essentially homogeneous in the 
central part of the structure        
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Figure 9: Within the circle we enforce the total topological charge m=6, which splits into 12 m=1/2 elementary
charges. These are well visible in the 2D biaxiality 2β plot. The director field in the central part of the figure is 
essentially spatially homogeneous aligned along a single symmetry breaking direction. / 10R ξ =
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Figure 10: In both structures (a) and (b) the intrinsic contribution equals zero. On the contrary, the 

extrinsic contribution is lower in (a) 

   

Figure 11: Schematic sketch illustrating tendency of TDs (red point) with m=1 to be localized in the region with K>0. 
In this case the elastic penalty of the director structure in the cylindrical part of the system equals zero because the 

structure is there spatially homogeneous
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 Figure
 
12:

 
A sphere hosting four m=1/2 TDs. (a) The nematic director field and amplitude

 
profile 

superimposed on the sphere. (b) Order parameter amplitude
 
in the (u,v) plane. The TDs

 
reside at 

the vertices of hypothetically inscribed tetrahedron in order to maximize their mutual separation.
/ 5R ξ =
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Gaussian curvature (upper panel) and absolute difference between principal curvatures (bottom 
panel) in prolate (dashed curve) and oblate (full line) ellipsoids. R denotes minimal radius describing an 
ellipsoid. Red dashed lines represent the prolate ellipsoid 𝑎𝑎/𝑏𝑏 = 1.5, while the black lines represent the 
oblate ellipsoid𝑏𝑏/𝑎𝑎 = 1.28, see Eq.(10b)

Figure 13  :
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Figure 14: (a) An ellipsoidal shell with superimposed nematic director and amplitude profile. The ‘’real’’ TDs are 
assembled at the poles, where the negative smeared Gaussian charge builds up due to the localized positive 
Gaussian curvature. (b) The order parameter profile in the (u,v) plane revealing exact positions of m=1/2 TDs. 

/ 5R ξ = , ke=0 

 
 
 
 
  

Figure 15:  (a) Nematic director and order parameter amplitude superimposed on the oblate shell. (b) 
The amplitude plotted in the (u,v) plane. / 5R ξ = , ke=0 
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Figure 16: (a) An axially symmetric dumb-bell structure. It is characterized by distances ρ2 (maximal radius), ρ1 
(minimal radius). The radius ρ0 separates regions with positive (ρ >ρ 0) and negative (ρ 0> ρ) Gaussian curvature. 
(b) Building up of effective topological charge in regions with positive Gaussian curvature (ρ >ρ 0) 
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Figure 17:  Catenoid With The Superimposed Amplitude Field. The Meaning Of The Color Code Is Visible From 
Figure 18a 

Figure 18: (a) Four m=-1/2 TDs residing at the neck of the catenoid shown in Figure 17. (b) The corresponding nematic 
director field. / 0.1R ξ = , R is the catenoid’s neck radius
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Figure 19: Configuration of TDs in the dumb-bell structure shown in Figure 16 just below (a) and above (b)  
the critical condition where two pairs {defect,antidefect} are formed. / 5R ξ = , ke=0 
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Figure 20: (a) A prolate ellipsoid with superimposed order parameter field for a relatively strong  extrinsic curvature. (b)
Amplitude field in the (u,v) plane. / 5R ξ = , / 1e ik k =
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Figure  21:
 
(a) An oblate ellipsoid with superimposed order parameter field  for a relatively strong  extrinsic

 

curvature. (b) Amplitude
 
field in the (u,v) plane. / 5R ξ = , / 1e ik k =
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