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Elastic deformations in hexagonal phases studied by small-angle X-ray

diffraction and simulationsw
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In this study we present experimental and theoretical results which concern the deviations from

circularity of the pivotal plane in the inverse hexagonal phases (HII) of phospholipid

self-assemblies. Due to packing constraints, the cross-section of the polar/apolar interface deviates

from a circle, which we studied in minute detail by analysing small-angle X-ray diffraction data of

dioleoyl-phosphatidylethanolamine (DOPE) and stearoyl-oleoyl-phosphatidylethanolamine

(SOPE), respectively. On this structural basis, Monte Carlo (MC) simulated annealing variations

of the free energy were carried out, both on the formation of the HII-phase and on the particular

shape of the cross-section in the HII-phase. The equilibrium of the HII-phase pivotal plane

contour and the corresponding values of the mean intrinsic curvature, Hm, and the hydrocarbon

chain stiffness, t, were determined from MC calculations. The results of these calculations were

tested by solving the corresponding system of non-linear differential equations derived using

variational calculus. Here our main aim is to predict the range of possible values of Hm and t.
Comparing the measured structural data with predictions from MC calculations including lipid

anisotropy, and accounting for the elastic deformations of the pivotal plane allowed us to

determine a relationship between the bending deformation and stretching of hydrocarbon chains.

1. Introduction

Phosphatidylethanolamines (PEs) containing self assemblies

have been extensively studied using various methodical

approaches.1,2 The biological relevance of PEs concerns to a

large extent their role in forming non-planar membranes in

nature.3,4 For instance, they may promote high local membrane

curvature, which is crucial for membrane vesiculation

processes.5,6 Also, non-bilayer forming lipids play a key role

in the transient and/or local formation of non-bilayer

structures. The different steps of membrane fusion or inter-

bilayer tight junctions are believed to host intermediate

non-planar structures.7–10 Last, but not least, (PEs) are

indispensable in providing a lipid matrix with special properties,

tuning its flexibility and altering its lateral pressure profile,11

and hence assures the proper function of integral membrane

proteins, even in changing environmental conditions.12–14

Apart from the relevance of non-bilayer forming lipids in

biomembrane processes such as membrane fusion and

exocytosis,15 there is also direct evidence for the formation

of non-bilayer structures. For instance, stable domains of the

inverted hexagonal phase (HII-phase) have been identified as

paracrystalline inclusions in the disk membranes of retinal rod

outer segments.16,17

Moreover, the HII-phase of biomimetic model systems has

been intensively studied in order to characterize the geometric

and energetic properties involved.18–21 For this purpose, most

commonly the bending modulus and intrinsic (spontaneous)

radii of different lipid/water systems were evaluated. Note that

due to the simple geometry of the HII-phase, a clear relation-

ship between the intrinsic shape of the lipid molecules and the

given packing frustration is also at hand.22–24 PEs in the

HII-phase were recently also studied by various molecular

dynamics simulations.25–30

Fig. 1 shows schematically the geometry of the HII-phase

which consists of long lipidic monolayer cylinders with radii of

a few nanometres arranged in a hexagonal lattice. The

phospholipid headgroups are in contact with the water, while

the hydrocarbon chains are oriented outwards. Recently it was

pointed out by Mareš et al.21 that the concept of the

anisotropic shape of lipid molecules may better explain the

La � HII phase transition and the stability of the HII-phase at

higher temperatures rather than the concept of isotropic lipid

shapes. A similar idea was also expressed earlier,31 but not

applied to any model calculations. Hence the model of wedge-

like shaped phospholipid molecules was favoured over that of

inverted cone-like ones20,21 and the corresponding deviatoric

energy term averaging the rotational states of the anisotropic
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compartments was considered.32 As in the case of the principal

curvatures of the membrane, the anisotropy of the lipid

molecules is described by the two principal intrinsic curvatures

C1m and C2m.

It is important to note that commonly models of the

HII-phase assume isotropic molecule shapes,33–36 and further

presuppose the polar/apolar interface to be perfectly circular,

a simplification that was also applied in our latest model

calculations.21,37 In the present work we further generalized

our HII-phase model, now also allowing for deviations of the

pivotal plane from a circular cross-section, where the pivotal

plane is the plane on which the area per lipid molecule is not

changed upon applying a bending moment.34,38 Indeed in

reality the cross-section is not purely circular, but appears

to be hexagon-like with smoothed edges as was shown in

experiments39,40 and investigated in theories35,41 and simulations.25

Although the approximation of circular geometry is more than

sufficient for the robust free energy determination of the

HII-phase, allowing for deviations from a circular cross-

section yields a more accurate evaluation of the membrane

material parameters. However, for this it is necessary that

the theoretical predictions are cross-checked against highly

resolved electron-density maps as given, for instance, for

di-oleoyl-phosphatidylethanolamine (DOPE).39 In the next

section two examples of the HII-phase are presented in

full structural detail. Our refined model and the theoretical

approaches are described in section 3. We note, that the

presented theory accounts also for the anisotropy of the

molecular shape of the membrane constituents, and thus

may be considered an extension of the Helfrich formalism.

Finally, the results are presented and also discussed in

comparison to literature results, which were derived instead

from the classical Helfrich ansatz42,43 for the free energy of the

HII-phase.

2. Materials and Methods

2.1 Sample preparation and X-ray measurements

The preparation of multilamellar vesicles (MLVs) was

described in detail in ref. 20. Briefly, 1-stearoyl-2-oleoyl-

sn-phosphatidylethanolamine (SOPE) was purchased from

Avanti Polar Lipids, Inc., Alabaster, AL, USA (purity 4 99%)

and used without further purification. For the preparation of

MLVs, 25 wt% of lipid was dispersed in glass distilled water

(HPLC grade, Sigma-Aldrich, Steinheim, Germany). To

ensure complete hydration, the lipid dispersions were shock

frozen in liquid nitrogen, thereafter thawed for 15 min

reaching a final temperature of 50 1C (B19 1C above the main

transition), and finally vigorously vortexed for several

minutes. This procedure was repeated 10 times.

At 68 1C the static small-angle X-ray diffraction (SAXS)

pattern was recorded at the Austrian SAXS beamline at

ELETTRA, Trieste.44,45 The 1D position sensitive detector46

covered the corresponding s-range (s = 2sin(y/l)) of interest
from about 1/200 Å�1 to 1/12 Å�1. The angular calibration of

the detector set-up was performed with silver-behenate

(d-spacing 58.38 Å47). Further sample handling was the same

as in ref. 20.

2.2 X-Ray diffraction data analysis

2D electron density maps of the HII-phase were derived from

the SAXS pattern using standard procedures (for details see

ref. 19). After the raw data had been corrected for detector

efficiency, and the background scattering both from water and

the sample cell had been subtracted, all Bragg peaks were fitted

by Lorentzian distributions. The fittings were carried out with

the Origin 5.0 software package (Microcal Software). Next,

the intensities were corrected for their multiplicity, i.e., the

intensities of the (2,1), (3,1), (3,2) and (4,1) peak were divided

by 2. Thereafter, a Lorentz correction was applied to all

powder diffraction images by multiplying the peak intensity

(peak area) by its corresponding wave vector s2 (for discussion

of the Lorentz correction on powder samples see Warren48).

Finally, the square-root of the corrected peak intensity determined

the form factor F of each respective reflection. The electron

density contrast was calculated by Fourier synthesis

~rðr!Þ ¼
Xh;kmax

h;kað0;0Þ
ah;k �Fh;k � cosð2ps!h;k r!Þ; ð1Þ

where F(h,k) is the amplitude of the peak at the position~sh,k,

where h and k are Miller indices and ah,k is its corresponding

phase. For centrosymmetric structures, as in this study, the

phases for each diffraction order is either +1 or �1. In the

inverse hexagonal phase the (1,0), (1,1), (2,0), (2,1), (3,0), (2,2),

(3,1), (3,2) and (4,1) reflections were recorded. The best

phasing for the HII-phase (+ � � + + + + � �) was

taken from ref. 18, where seven different diacyl phosphatidyl-

ethanolamines were studied. Note that we checked only the

value of a2,1, since it has been reported for DOPE that it

changes its sign at very high temperatures.39 Nevertheless,

choosing the phase of the (2,1) reflection to negative resulted

in too low an electron density for the water region and an

unusually strong radial fluctuation of the water core radius.

Fig. 1 Cross-section of the HII-phase showing the following

geometric parameters: radius vector of the pivotal plane, r, unit cell
parameter, a, equilibrium length of the hydrocarbon chain, z0, and
polar angle, j. Upper-left corner: model of anisotropic wedge-like

shaped phospholipids, where one intrinsic principal curvature is zero

and the second is highly negative.
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2.3 Evaluating the pivotal plane cross-section

The cross-section of the pivotal plane was determined from the

electron density map (Fig. 2) using Matlabs 7.5. First the

phosphate group position with the highest intensity was

detected and consequently the pivotal plane position was

evaluated. By taking into account that the head-group

extension in the radial direction in the hexagonal phase is

about 1.1 nm,39 then the steric lipid/water interface position

can be estimated as Rphosph � 0.55 nm and the polar/apolar

interface position Rpivot B Rphosph + 0.55 nm, which for

DOPE is in very good agreement with the experimentally

determined position of the pivotal plane.49 Nevertheless, the

contour lines at Rphosph and Rphosph + 0.55 nm (determined at

f = 01) are not perfectly equidistant. Thus the evaluated

pivotal plane position varies in the range of �0.05 nm. The

averaged deviations (Dphosp = (RphospMax� RphospMin)/RphospMax)

are DphospSOPE = 1.4% and DphospDOPE = 2.3% on the

phosphate group radius, where RphospMin and RphospMax are

the maximum and minimum radii of the phosphate group

position.

3. Theory

3.1 Monolayer free energy

The lipid monolayers in the HII-phase have a strong

anisotropic curvature therefore the average orientational

ordering of the lipids cannot be neglected. The free energy of

a lipid monolayer has been derived32,50 starting from the

energy of a single molecule and using the methods of statistical

physics. The local bending energy of the lipid monolayer42 was

derived; however, the contribution of the deviatoric bending to

the HII-phase was included32,37 as an additional contribution

due to the average orientational ordering of the phospholipids.

The whole monolayer free energy is supposed to be:

F = Fb + Fv (2)

where Fb is the monolayer bending energy comprising of the

anisotropy of lipids:21

Fb ¼
Z
A

n0x
2
ððH �HmÞ2 þD2 þD2

mÞdA

� n0kT

Z
A

ln 2 cosh
x~WDmD

kT

 ! !
dA

ð3Þ

Here H = (C1+C2)/2 is the local mean curvature of the

monolayer, D = |C1 � C2|/2 is the local curvature deviator,

Hm = (C1m+C2m)/2 is the intrinsic mean curvature,

Dm = |C1m � C2m|/2 is the intrinsic curvature deviator

(for details see ref. 21 and 37), n0 is the area density of the

lipid molecules, x is a constant describing the strength of the

interaction between a single lipid molecule and the surrounding

membrane continuum which is connected to the monolayer

bending modulus (x = 2kcn
�1
0 ). ~W is a constant describing the

direct interaction between lipid molecules,32 k is the Boltzmann

constant, T is temperature and dA is the area element of the

monolayer surface. We have shown37,51 that if we take into

account the isotropic model of a phospholipid molecule (very

small values of curvature deviators D and Dm), eqn (3) for

monolayer bending energy turns into the classical Helfrich

ansatz.42,43

The second contribution Fv is the stretching energy of the

lipid chains:21

Fv ¼ tn0

Z
A

ðz� z0Þ2dA: ð4Þ

where z is the length of the lipid molecule, z0 is the reference

length of the molecule and t is the stretching modulus of the

lipid molecule. Considering the HII-phase geometry (Fig. 1),

the length of the hydrocarbon chain may be expressed as:

z ¼ a

2 cosj
� rðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p a

2z
� 1

� �
; ð5Þ

where a is the unit cell parameter. The hydrocarbon chain

length is described here in both polar and Cartesian coordinates

respectively, see Fig. 3, for use in two different methods of

calculation. In the following sections we present two different

approaches for finding the equilibrium configuration which is

determined by the minimum of the membrane free energy F,

eqn (2), with constraints relevant to the given case. The

deviations from circularity of the pivotal plane cross-section

were taken into account in both approaches.

The aim of our calculations was to obtain the equilibrium

contour of the pivotal cross-section represented by the unit cell

parameter, a, and the polar, r(j), or Cartesian, z(x), coordinates
for the different membrane parameters Hm and t with the

Fig. 2 Electron density maps of (A) DOPE at 20 1C and (B) SOPE at

68 1C with measured lattice spacings (unit cell parameter), a, of 7.58

and 7.42 nm, respectively. The position of the lipid head-groups are

coded in red, the water core region in light blue and the hydrocarbon

chain regions are highlighted in violet to black. The electron density

map of DOPE was recalculated from amplitudes given in ref. 39, while

for SOPE the derived amplitudes F(1,0) = +1.000, F(1,1) = �1.070,
F(2,0) = �0.780, F(2,1) = +0.270, F(3,0) = +0.330, F(2,2) =

+0.320, F(3,1) = +0.260, F(4,0) = +0.009, F(3,2) = �0.160,
F(4,1) = �0.180 were used for the construction of the density map.
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constants kc = 11 kT.52 The values of z0 and n�10 are given in

Table 1 for both phospholipids. The mean and the Gaussian

curvatures are 2H = (q2z/qx2)/(1+(qz/qx)2)3/2 and C1C2 = 0,

respectively. Using the definition of the arc length l and the

angle c leads to expression: 2H = 2D = dc/dl (see Fig. 3).

For the sake of simplicity, we considered the anisotropic

shape of the lipids at higher temperatures as wedge-like, having

C2m = 0 and C1m o 0 which yields Hm = Dm = C1m/2,

(Fig. 4c). Because of the hexagonal symmetry it is sufficient to

determine the equilibrium contour shape for only one twelfth of

the pivotal plane cross-section.

3.2 Euler–Lagrange equation

In the minimization procedure, the monolayer pivotal surface

of the single inverted lipid cylinder in the HII-phase is

described by the Cartesian coordinate z = z(x, y). We assume

that lipid monolayer cylinders are perfectly straight and thus

only the z–x plane was considered and coordinate z= z(x), i.e.

we assume cylindrical symmetry (see Fig. 3).

The contour coordinates, the length of the lipid chains, the

area, the area element and the membrane free energy are

written in dimensionless forms. Normalizing the length by

an arbitrary z0 (in our case we set z0 = 1 nm) gives dimension-

less curvatures h = z0H, d = z0D, hm = z0Hm, dm = z0Dm,

and dimensionless x/z0 - x, z/z0 - z, a/z0 - a, z0/z0 - z0),
arc length l/z0 - l. The area element is dA = dl dy, further

normalized to dyz0. The energy F is normalized to n0xdy/2z0,

f ¼ fb þ fv ¼
Z
ðh� hmÞ2dl þ

Z
ðd2 þ d2

mÞdl

� k
Z

lnð2 coshð2~WdmdÞÞdl

þ ~t
Z
ððx2 þ z2Þ1=2ða=ð2zÞ � 1Þ � x0Þ2dl;

ð6Þ

where

k ¼ 1=W ¼ 2kTz20
x

; ~t ¼ 2tz40
x

: ð7Þ

To minimize the membrane free energy F a functional

L ¼ 1

2

dc
dl
� hm

� �2

þ 1

4

dc
dl

� �2

� k ln 2 cosh ~Wdm
dc
dl

� �� �

� l cosc� dx

dl

� �
� n sinc� dz

dl

� �

þ ~tððx2 þ z2Þ1=2ða=ð2zÞ � 1Þ � z0Þ2

ð8Þ

was constructed, where l and n are Lagrange multipliers

preserving the boundary conditions. Eqn (8) is minimized by

solving a system of Euler–Lagrange equations

@L

@c
� d

dl

@L

@cl

� �
¼ 0; ð9Þ

@L

@x
� d

dl

@L

@xl

� �
¼ 0; ð10Þ

@L

@z
� d

dl

@L

@zl

� �
¼ 0; ð11Þ

where cl = dc/dl, xl = dx/dl and zl = dz/dl. By introducing

the variable

Y ¼ dc
dl
; ð12Þ

Fig. 3 Illustration of parametrization of the pivotal plane cross-

section. The contour is described by Cartesian z(x) and polar r(j)
coordinates. c is the angle between the vertical and normal (n) in each

point.

Table 1 Values of the optimal (relaxed) length z0 and area per lipid
molecule at the pivotal plane a0 = n�10 obtained from experiment39

SOPE (68 1C) DOPE (20 1C)

z0/nm 1.33 1.20
n�10 /nm2 5.84 5.97

Fig. 4 The difference between isotropic and anisotropic phos-

pholipids: (a) inverted cone-like shape, isotropic; (b) inverted

wedge-shape lipid with lower anisotropy; (c) inverted wedge-shape

lipid with highest anisotropy.
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the system of eqn (9)–(11) yields

dY

dl
¼ ðl sinc� n coscÞ 1� k~W2d2

m

cosh2ð~WdmYÞ

 !�1
ð13Þ

dl
dl
¼ 2~txða=ð2zÞ � 1Þ
ðx2 þ z2Þ1=2

ððx2 þ z2Þ1=2ða=ð2zÞ � 1Þ � z0Þ ð14Þ

dn
dl
¼ 2~tððx2 þ z2Þ1=2ða=ð2zÞ � 1Þ � z0Þ

� zða=ð2zÞ � 1Þ
ðx2 þ z2Þ1=2

� aðx2 þ z2Þ1=2

2z2

 ! ð15Þ

The above system of eqn (13)–(15) was solved numerically

by the Mathematicas program to yield the equilibrium con-

tour map of the pivotal plane. The results of these calculations

were used to test the accuracy of the MC method described in

the next section.

3.3 MC simulated annealing method

Eqn (2) was minimized numerically using the MC simulated

annealing method.53 The contour of the pivotal plane was

described by the polar coordinates of the radius vector r and

the polar angle, ji = [0,p/6], i= 1,..,N which divided a twelfth

of the contour line into N points (see Fig. 3). The starting

contour for the MC method was the equilibrium geometry

where deviations from circularity were not taken into account

(computed as described in Mareš et al.21). The boundary

conditions were c = 0 and c = p/6. In the MC computations

r1, ci and a were changed slightly in each step and the energy

of the contour was evaluated with respect to the Metropolis

criterion, while according to the cooling schedule the temperature

parameter was decreased after each step until it reached zero.53

The radius vector length ri was calculated by using the

expression:

riþ1 ¼
riðcosji þ sinjitgciÞ
ðcosjiþ1 þ sinjiþ1tgciÞ

: ð16Þ

which can be easily derived from Fig. 3.

4. Results

Firstly, the dependence of the mean radius rmean= (rmax+ rmin)/2

and the deviations from circularity D = (rmax � rmin)/rmax

were computed as functions of the mean intrinsic curvature

Hm for different values of the chain stiffness t in order to

quantify the effect of t on the phospholipid packing during

temperature increase. Here rmax = max(r(j)) and rmin =

min(r(j)) are the maximal and minimal radii of the contour,

respectively. The temperature dependence of the intrinsic lipid

shape in the model is quantitatively simulated by the linear

temperature dependence ofHm and Dm. As already mentioned

above, in this work the wedge shape model of a phospholipid

was adopted, i.e. the wedge angle increases linearly with the

temperature.20,21 It can be seen in Fig. 5a that the higher t is,
the lower the mean radius of the cylinders is. Also the effect of

t on the transition point can be seen (marked by arrows). The

simulations show that for higher values of t, the La–HII

Fig. 5 (a) Mean radius rmean = (rmax + rmin)/2 and (b) deviations

from circularity D= (rmax� rmin)/rmax dependent on |Hm| for different

values of hydrocarbon chain stiffness. t1 = 1.9 kT nm�2 (diamonds),

t2 = 9.5 kT nm�2 (spheres), t3 = 19 kT nm�2 (triangles). Arrows

mark the transition points for each value of t.

Fig. 6 The best agreement of the experimentally obtained pivotal

plane cross-section of DOPE and theoretical predictions. The

parameters are Hm = 0.14 nm�1, t = 14.95 kT nm�2.
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transition point occurs at higher mean intrinsic curvatures,

|Hm|, which practically means at higher temperatures (Fig. 5a).

On the other hand, the deviations from circularity are higher

for t, (Fig. 5b). The deviations decrease with temperature and

above a certain value of |Hm| they become negligible and the

shape of the pivotal plane cross-section is circular.

The good agreement of the HII-phase pivotal plane

cross-section contour shape between experiments and theoretical

predictions for both DOPE and SOPE phospholipids can be

seen in Fig. 6 and 7, respectively. Good agreement for the

pivotal plane cross-section contour can be achieved for several

combinations of Hm and t. Hence we plotted all the possible

solutions (Fig. 8). The range of possible pairs of parameters is

restricted to a rather small region in the Hm–t plane. To

reproduce a realistic non-circular shape of the pivotal plane

(cp. Fig. 2), t should not drop below 2 kT nm2, otherwise even

at the low temperatures the shape is too circular (D o 0.5%).

The upper limit of possible values for t is restricted by the

magnitude of the realistic mean radii, which become too small

for higher t values. The values of the mean intrinsic curvature

Hm are also restricted by the mean radius, namely for higher

values of |Hm| the mean radius is too small to match the

experimental contour.

To study the dependence of the intrinsic membrane

parameters on the temperature, the results were compared

with experimental data from Turner and Gruner39 and the

match between possible values of Hm and T was performed

with respect to the match of the maximal and minimal radii

and the unit cell parameter (Fig. 9). This gives us a qualitative

evaluation of the membrane parameters and their dependence

on temperature. In Fig. 9 we used t = 9.5 kT nm�2 which

resulted in Hm = (0.135–0.159) nm�1, corresponding

to possible values of the intrinsic radius in the range

Fig. 7 The best agreement of the experimentally obtained pivotal

plane cross-section of SOPE and theoretical predictions. The para-

meters are Hm = 0.15 nm�1, t = 1.9 kT nm�2.

Fig. 8 A plot of |Hm| and t pairs which are in accordance with

experimental data from the electron density maps. SOPE–circles,

DOPE–stars.

Fig. 9 (a) Maximal and minimal radii of the pivotal plane and (b)

unit cell parameter as a function of temperature (experimental results)

and mean intrinsic curvature |Hm| (computational prediction).

Comparison between experimental results39 dependent on temperature

(line with stars) and theoretical predictions dependent on mean

intrinsic curvature |Hm| (circles and squares) is shown. In order to

achieve a good agreement between experiment and theory a linear

dependence between |Hm| and temperature was assumed, see inset

panel (c). Parameters used: DOPE (see Table 1), t = 9.5 kT nm�2.
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rm = 3.70 � 3.14 nm. If we take into account the linear

dependence of the intrinsic radius rm = 0.5|Hm|
�1 on the

temperature, we obtain a constant coefficient of 0.008 nm 1C�1.

This value is constant for different chain stiffnesses.

In Fig. 10 the membrane free energy is plotted as a function

of the mean intrinsic curvature |Hm|. It is interesting to

compare the energy dependences of the HII-phase with circular

as well as non-circular (distorted) geometry and the membrane

free energy of the lamellar phase for comparison. The energy

of the lamellar phase was computed from eqn (3) assuming

planar geometry by using the values H = D = 0 which means

considering only the first non-deviatoric term of the equation.

Here a value of chain stiffness t = 9.5 kT nm�2 was chosen. It

is obvious that taking into account deviations from circularity

slightly lowers the membrane free energy with respect to the

case of a purely circular geometry. The decrease is more

pronounced for higher deviations from circularity. The range

of theoretical coexistence of both phases was predicted to be

between |Hm| = (0.134 � 0.165), as seen in Fig. 10.

5. Discussion and conclusions

It is important to note that our estimated values of |Hm|

should be compared with other literature values with due care.

The values of the spontaneous curvature of the membrane

monolayer obtained from osmotic pressure and gravimetric

measurements22,38,52,54 are based on the Helfrich theory42 of

an isotropic elasticity model (Fig. 4a). Moreover, we point out

that our computations consider the most anisotropic case of

the intrinsic lipid shape by setting |Hm| = Dm, which means

that the second principal intrinsic curvature C2m = 0 (Fig. 4c).

In reality the most probable value of curvature deviator |Dm|

should be smaller and lie somewhere between the two

extreme values of 0 and |Hm| (Fig. 4b). This means a general

relationship between the mean intrinsic curvature and the

curvature deviator Dm = c|Hm| with C2m = C1m(1 � c)/

(1 + c), where c reflects the rate of anisotropy, should be

applied in future simulations (see Fig. 4). Our predicted linear

coefficient of the intrinsic radius temperature dependance

(0.008 nm 1C�1) is approximately twice as small as the

published value of 0.015 nm 1C�1. 34 This discrepancy can

again be explained by the fact that a direct comparison of

|Hm| from isotropic and anisotropic models is not possible.

However, factor 2 gives some hint of the possible rate of lipid

molecule anisotropy.

It was already shown by Mareš et al.21 that higher mean

intrinsic curvatures |Hm| and higher chain stiffnesses, t,
promote a decrease in the pivotal plane cross-section radius

and thus promote the transition from a lamellar to an inverted

hexagonal phase. In the present work, the deviation from

circularity of the pivotal plane cross-section (D) was also

studied experimentally and theoretically. The predicted

dependence of the pivotal plane cross-section on the model

parametersHm and t can be explained by competition between

the bending (Fb) and interstitial (Fv) energies. It can be

concluded that when the hydrocarbon chains are very stiff

the membrane must bend towards the hexagon corners in

order to help to fill the voids. Thus the pivotal plane contour

deviates more from a circle as shown in Fig. 5. On the other

hand, when the stiffness of the hydrocarbon chain is lower, the

chains can easily stretch themselves and in this way fill the

voids. As a consequence the HII-phase lipid monolayer does

not need to be elastically deformed as much as before.
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