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Abstract: Biological membranes are composed of isotropic and anisotropic curved nanodomains.
Anisotropic membrane components, such as Bin/Amphiphysin/Rvs (BAR) superfamily protein
domains, could trigger/facilitate the growth of membrane tubular protrusions, while isotropic curved
nanodomains may induce undulated (necklace-like) membrane protrusions. We review the role of
isotropic and anisotropic membrane nanodomains in stability of tubular and undulated membrane
structures generated or stabilized by cyto- or membrane-skeleton. We also describe the theory
of spontaneous self-assembly of isotropic curved membrane nanodomains and derive the critical
concentration above which the spontaneous necklace-like membrane protrusion growth is favorable.
We show that the actin cytoskeleton growth inside the vesicle or cell can change its equilibrium
shape, induce higher degree of segregation of membrane nanodomains or even alter the average
orientation angle of anisotropic nanodomains such as BAR domains. These effects may indicate
whether the actin cytoskeleton role is only to stabilize membrane protrusions or to generate them
by stretching the vesicle membrane. Furthermore, we demonstrate that by taking into account the
in-plane orientational ordering of anisotropic membrane nanodomains, direct interactions between
them and the extrinsic (deviatoric) curvature elasticity, it is possible to explain the experimentally
observed stability of oblate (discocyte) shapes of red blood cells in a broad interval of cell reduced
volume. Finally, we present results of numerical calculations and Monte-Carlo simulations which
indicate that the active forces of membrane skeleton and cytoskeleton applied to plasma membrane
may considerably influence cell shape and membrane budding.

Keywords: cytoskeleton; membrane skeleton; cell shape; orientational ordering; actin filaments;
active force; BAR domains; anisotropic shape of molecules; NMIIA motor domains; membrane
budding

1. Introduction

The lipid bilayer, embedded with inclusions like proteins and lipids, is the main
element of biological membranes [1,2]. A typical biological membrane contains three types
of lipid molecules-phospholipids, glycolipids and cholesterol [3], where the majority of the
lipid bilayer is composed of phospholipids [4]. A lipid molecule consists of hydrophilic
(polar) head and hydrophobic (non-polar) tail composed of fatty chains [4]. The shape and
curvature of pure lipid structures depend on the intrinsic shape of phospholipid molecules
(see Figure 1). For example, if the lipids are conically shaped, they can aggregate densely
and form a micelle (Figure 1a), which is the smallest object formed by aggregation of
single-chained lipids (surfactants). In this case, the hydrophobic tails are oriented towards
each other, away from the water solution, while the hydrophilic heads are in contact with
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water [4] (Figure 1a). Futhermore, if the lipids are “cylindrically” shaped, they tend to
self-assemble into planar lipid bilayers (Figure 1b) [2,4]. Only “cylindrically” shaped
phospholipid molecules tend to self-assemble into planar bilayer structures (Figure 1b).
Phospholipid molecules which are not “cylindrically” shaped self-assemble into non-planar
structures (see panels (a,c,d) in Figure 1). In general, phospholipid molecules with two
tails are anisotropic (including “cylindrically” shaped phospholipids), which can result
in formation of anisotropic phospholipid aggregates (see panels (c,d) in Figure 1). Note
that at the edge of the lipid bilayer, hydrophobic tails would be still in contact with water
(Figure 1b), which can be avoided by the formation of closed membrane shapes-vesicles [4].

Figure 1. Schematically shown polymorphisms of phospholipid aggregates with the corresponding
(isotropic and anisotropic) shapes of phospholipid molecules. Panel (a) shows a spherical micelle
and a conically shaped lipid with a hydrophilic head (red) and a hydrophobic tail (blue). Figure also
shows a phospholipid bilayer (b), a cylindrical micelle (c) and an inverted cylinder (d). Adapted
with permission from ref. [5]. 2009 Elsevier.

Biological membrane takes part in different biological processes, such as the trans-
membrane transport of nutrients, envelopment of larger particles or viruses, communica-
tion between cells and cell’s waste control [6,7]. Biological membranes can be viewed as a
complex multicomponent system [2,8], composed of lipid molecules, proteins, carbohy-
drates and many other biologically active components [9]. These components/inclusions
may promote local membrane curvature changes, sometimes resulting in a global ad-
justment of the cell shape [10–21]. Membrane shape depends on the intrinsic shape of
membrane constituents and their interactions with other constituents, membrane skeleton
and cytoskeleton. It has been shown that a non-homogeneous lateral distribution and
phase separation of membrane inclusions may be a driving force of cell shape transfor-
mations [13–16,19,22–29]. Different proteins, lipid molecules and their complexes are able
to move freely within some region of the two-dimensional membrane [23,30]. The lipid
bilayer contains various kinds of proteins and other molecules which have anisotropic
properties (see Figure 2) [31–36]. Also, lipid molecules, the main component of biological
membranes, are in general anisotropic (see Figure 1) [37–39].
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Figure 2. Schematic representation of different isotropic (C1m = C2m) and anisotropic (C1m 6= C2m)
shapes of lipid bilayer-embedded constituents (inclusions). Front and side views of inclusions
are shown.

Besides by membrane inclusions, the shapes of cells and/or lipid bilayer vesicles (often
used as model systems) may be influenced also by the cytoskeleton and membrane skeleton
and their forces [20,27,40–46]. Among these are ATP -consuming active forces important
for different cell functions [19,24,47–51]. Consequently, new theoretical approaches for
modelling changes in the cell shape as a consequence of energy-consuming active forces
have recently been developed [19,24,47,50,51].

For example, in the case of the red blood cells (RBC) it was long believed that active
forces are totally absent in the mechanisms of cell shape determination; a belief that was
refuted only recently [48–50]. It has been shown that myosin (NMIIA) motor nanodomains
may cause tension in the spectrin-F-actin RBC membrane skeleton and therefore partially
control the RBC shape [48,49] and membrane vesiculation [50].

The non-homogeneous distribution of NMIIA motor nanodomains over the whole
inner surface of discocyte RBC membrane is in accordance with experimental observa-
tions [49]. It was suggested that in order to keep a stable discocyte shape of RBC and
prevent a pancake shape transformation, the normal component of the NMIIA nanodomain
force should be directed to the interior of the cell and different than zero [49]. This applies
to the whole surface of the membrane, including the dimple region of the dicocyte RBC
shape [49]. If the NMIIA motor proteins are contracted in the dimple region of the RBC,
they may induce modest local exvaginations and non-zero components of myosin force
directed into the RBC interior. Since actin molecules and NMIIA motor nanodomains are
distributed only on the inner surface of the RBC membrane, the normal component of the
NMIIA motor nanodomain is always directed inward.

Experimental measurements of NMIIA densities of RBC discocytes at the rim and
dimple confirmed the theoretical predictions [49] that the NMIIA force density has to be
larger in the dimple compared to the RBC rim in order to stabilize the discocyte RBC
shape [49]. It was also shown that a decrease in the difference between the outer and inner
lipid layer relaxed areas induced the inward bending of the RBC membrane [46,52–55],
while an increase between the relaxed areas of the outer and inner membrane layers favored
outward bending [45,46,52–56]. Consequently, exogenously added amphiphiles which
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bind predominantly in the outer lipid layer induce the transformation of a discoid RBC into
a spiculated RBC shape (echinocytic), while amphiphiles bound predominantly in the inner
lipid layer promote the transformation into invaginated stomatocytic shapes [54,55,57].

In addition to lipid bilayer, membrane of RBC contains also a membrane skeleton,
which is composed of a spectrin-F-actin network attached to the inner surface of the lipid
bilayer [43]. This implies that a shear elastic energy of the membrane skeleton should also be
included alongside the local and non-local bending energies in the free energy minimization
of the membrane in order to explain the observed stability of spiculated (echinocytic)
RBC shapes theoretically [42,44–47,52,58–66]. Recently, it was also shown that in RBCs,
the ATP-dependent membrane skeleton forces, which are exerted on the membrane by the
skeleton nodes, may cause also membrane softening, which may possibly influence the
RBC deformability to facilitate the migration of RBCs through narrow capillaries [47].

In cellular processes, tubular protrusions of biological membranes have an impor-
tant role. Membrane nanotubes that are formed by lipid bilayers are universal in cell
biology [29,67–71]. The stability and growth of membrane tubular structures, observed in
experiments, can be explained theoretically. It was shown that minimisation of the isotropic
bending energy of the membrane introduced by Helfrich [72,73] is not sufficient to predict
the stability of membrane tubular protrusions [23,26,74,75].

Early physical models [72,73] considered the biological membrane as a thin elastic
shell with isotropic properties. These models along with their modifications successfully
described some of the experimentally observed shapes of erythrocytes and phospholipid
vesicles in cases where the membrane does not exhibit regions of high anisotropic curvature
(reviewed in [76]). In order to theoretically study also membrane shapes with highly curved
anisotropic regions, a model considering deviatoric elasticity was proposed within a
continuum approach [77,78], introducing the spontaneous membrane warp as a parameter.
However, it was assumed that its value is negligible [77,78], also because the existence of
the membrane nanostructures was at that time not yet widely acknowledged and biological
membranes were considered locally nearly flat. In 1996, the deviatoric elasticity (DE)
model was proposed, which takes into account also the anisotropic properties of membrane
components [79,80]. Deviatoric membrane free energy was derived from an energy of a
single-constituent applying the methods of statistical physics [15,23,74,79–81]. In general,
membrane constituents/nanodomains in the DE model can be considered isotropic or
anisotropic [8,15,25,75,80,82–84]. DE model can theoretically explain stable shapes of cells
and vesicles possessing strongly anisotropically curved regions, for example shapes with
thin tubular protrusions [21,23,75,85–90] and narrow necks [15,16,26,81,91].

The aggregation of different proteins in biological membranes is important for nor-
mal cell functioning. Furthermore, a disruption in key mechanisms of protein aggrega-
tion in membranes may lead to neurodegenerative diseases [18,92]. Local accumulation
of anisotropic membrane proteins may induce the cell membrane tubulation [71,93,94].
The tubulation of the cell membrane could be spontaneous or induced by external
agents [26,67,70,74,75,89,93,95–102]. Typical example of anisotropic proteins are for ex-
ample Bin/Amphiphysin/Rvs (BAR) superfamily protein domains [103] (see Figure 3).
These can change the local and global membrane curvature resulting in formation of the
membrane tubular structures [103]. In epithelial and endothelial cell tissues, held together
by cell-cell junctions containing transmembrane and cytoplasmic proteins, unbalances in
cytoskeletal derived forces can cause the bending of the junctional membrane, which in
turn triggers the recruitment of curved BAR proteins to the positively curved junctional
interface [104–107].
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Figure 3. Schematic presentation of the Bin/Amphiphysin/Rvs (BAR) superfamily domains. BAR do-
mains are shown along with their typical sizes and curvature preferences. Adapted with permission
from refs. [18,108]. 2016 Elsevier.

BAR superfamily domains are named after the three proteins in which they are found,
namely Bin, Amphiphysin and Rvs. These domains are able to induce the local bending
of the membrane if the binding energy of the domain is larger than the energy required
to bend the membrane [103]. BAR superfamily domains can dimerise and they may be
involved in membrane association [33,109]. Furthermore, members of the BAR superfamily
are important for cell migration, cell division, membrane trafficking and organelle bio-
genesis [18,110]. The interaction between different proteins and membranes may result
in shape deformations and changes in topology of cell/vesicle membranes. This effect is
called protein mediated membrane remodeling [111,112]. BAR protein domain induced
membrane remodeling can result in tubulation and vesiculation of liposomes [18,113].

The BAR domain superfamily contains BAR/N-BAR, F-BAR and I-BAR domains,
each with a different local curvature preference, i.e., the membrane binding surface areas of
the BAR/F-BAR and the IMD/I-BAR domains have opposite curvatures [18,114,115] (see
Figure 3). The BAR protein domain is a bow-shaped dimer that binds preferentially to neg-
atively charged membranes with high positive curvature [18,33,116,117]. The amphiphysin
BAR dimer is capable of stabilizing the membrane curvature [118] and tubulating liposomes
in vitro [119]. The F-BAR modules also have a preference to bind to membrane regions
with a positive curvature, but they have lower intrinsic curvature than the BAR/N-BAR
modules (see Figure 3). F-BAR domains could also tubulate membranes [18]. The overex-
pression of the pacsin2 EFC/F-BAR may induce cellular microspikes and deform liposomes
into tubules in vitro [120]. I-BAR modules on the other hand, preferentially bind to mem-
brane surfaces with negative curvature [18,121] (see Figure 3). I-BAR domains are also
capable of deforming biological membranes and inducing the growth of plasma membrane
protrusions, while attaching to the inner side of the membrane of tubular protrusion [71,93].
The membrane deforming activity of I-BAR domains of IRSp53 proteins is crucial for the
bending of membrane patches into filopodia protrusions [122,123]. It was shown that
IMDs can induce the development of membrane tubular invaginations protruding into
the liposome interior [122]. The I-BAR IRSp53 domains, attached to the inner membrane
surfaces, could induce dynamic membrane protrusions without actin that are thinner than
normal filopodia [18,100].

Membrane tubular protrusions may also form as a consequence of force acting on
the membrane. External force, stretching the membrane, can be for example generated
experimentally by the tip of the cantilever to which the force of the atomic force micro-
scope is applied [41]. The surface of a cell membrane could also be deformed in a small
region when it is subjected to a localized torque or force caused by an integral protein,
a receptor or a cell-kicking instrument [41]. In experiments with liposomes, the origin of
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such protrusive forces can also stem from the polymerization of actin, which leads to the
growth of prolonged actin filaments beneath the membrane [124–126]. The elongating
actin filaments could “push out” the cell/vesicle membrane in direction normal to the
surface [124], which may result in the formation of membrane tubes [23]. However, it
is still not completely clear whether the membrane tubular protrusions are pushed and
deformed by the polymerizing actin filaments inside the cell, or they are only stabilized by
actin filaments [18,93]. It has been indicated that actin filaments are not decisive for the
generation of a membrane protrusion, but only for stabilization of the initial protrusion
induced by BAR proteins or pentasaccharide GM1 [71,93,110,127,128]. The transport of
proteins to the tip of the protrusion via myosin motors is crucial for the formation and
maintenance of cellular protrusions based on actin [129]. On the other hand, experimental
and theoretical studies suggest that some of membrane tubular protrusions could be stable
and even grow without actin filaments [23,26,74,75,87].

In general, the actin cytoskeleton represents a network of protein filaments stretching
over the cytoplasm [30]. A lipid bilayer can cause the emergence of bundled actin filament
protrusions from branched actin filament networks, which implies that the membrane
actively participates in organizing actin filaments [130]. It was shown that the coupling
between actin and curved proteins can induce membrane instabilities [125,131]. Curved
proteins that mobilize actin can destabilize the membrane tube either as a result of the
inward force forming denser protein rings that shrink the tube [131] or due to fast squeeze,
leading to pearling of a uniform actin coat [125]. Furthermore, the pearling instability can
initiate the membrane tube fission into distinct vesicles [23,125].

Biological membranes very likely possess some degree of in-plane ordering, especially
in membrane regions with high and anisotropic curvature [15,79,80]. For example, ori-
entational nematic ordering may occur because of the membrane attached rod-like BAR
domains in regions with high concentrations of BARs, where the rotation of an individual
BAR domain becomes restricted due to direct/steric interaction with neighboring BAR do-
mains [18,132]. Nematic ordering might occur also due to two flexible hydrocarbon chains
of lipids [37,81,133] (Figure 4). Furthermore, tilt and hexatic orientational ordering may be
developed by the tails of lipid molecules that tilt relative to the surface normal [82,134,135].
The orientational in-plane order in hexatic membranes with short-range positional order
and long-range bond orientation order has been observed experimentally [136]. Within a
statistical-mechanical approach, it has been indicated that in some membrane regions,
the average orientation of lipid molecules cannot be neglected in spite of their rotational
movement [81].

Figure 4. In-plane orientational order within the membranes of red blood cells or extracellular
vesicles could arise due to V-shaped stretched chains of phospholipids. Adapted with permission
from ref. [137]. 2019 Springer Nature.
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2. Modeling of Closed Membrane Shapes
2.1. Deviatoric Elasticity Model

Local membrane shape is described by the two principal membrane curvatures C1
and C2 (see Figure 5), while the intrinsic shape of the membrane constituent (see Figure 2)
is characterized by the corresponding principal curvatures C1m and C2m of the imaginary
membrane into which the unconstrained constituent would fit perfectly [15,26,75,80]. Each
membrane constituent may also locally rotate with respect to the membrane [15,84]. If the
two principal curvatures of the membrane at a given location are equal (C1 = C2), the local
membrane shape is considered isotropic, while if they differ (C1 6= C2), it is considered
anisotropic [26,74,79,80]. Likewise, if the intrinsic principal curvatures of membrane
constituent are equal (C1m = C2m), the constituent is considered isotropic, while if they
differ (C1m 6= C2m), it is considered anisotropic [15,18,26,79,80,83,84] (see also Figure 2).

Figure 5. Schematic presentation of the two principal curvatures (C1 and C2) of a saddle-like surface.
The first principal curvature is negative (C1 < 0), while the second one is positive (C2 > 0).

The energy of a single membrane element (molecule or nanodomain, Figures 1, 4 and 6)
is assumed to be a function of the mismatch between curvature tensors C and Cm, which
are defined as (Equations (1) and (2)):

C =

[
C1 0
0 C2

]
, (1)

Cm =

[
C1m 0
0 C2m

]
, (2)

where C1 and C2 are the principal curvatures of the membrane surface (see Figure 5),
and C1m and C2m are the intrinsic principal curvatures of the membrane element [21,90].
In this formalism, the membrane element can have anisotropic properties if C1m 6= C2m (see
Figures 1 and 2). In general, the curvature tensors Cm and C have different orientations,
i.e., they are rotated by an angle ω. The mismatch tensor M (Equation (3)) is introduced to
express the mismatch between Cm and C:

M = R CmR−1 − C , (3)
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where the transformation matrix for rotation R (Equation (4)) is expressed as [21,90]:

R =

[
cos ω − sin ω
sin ω cos ω

]
. (4)

Figure 6. Schematic presentation of flexible membrane nanodomains (consisting of proteins and
lipids), which are denoted by shaded area. Panel (a) shows a flexible membrane nanodomain
including a flexible chain-like protein [26], while panel (b) shows a flexible membrane nanodomain
formed by a membrane-embedded rigid protein [12,21,22].

Each membrane element should adapt so that it fits into its place in the membrane [90].
We will estimate the energy which is needed for the deformation of the membrane surface.
The elastic energy density w should be a scalar quantity, which means that each term in the
w expansion must also be a scalar. Therefore, w (Equation (5)) may be expressed by two
invariants of the tensor M, trace and determinant [84]:

w =
K1

2
(Tr(M))2 + K2Det(M) , (5)

where K1 and K2 are constants [21,90]. Equation (5) can be rewritten as (Equation (6)):

w = (2K1 + K2)(H − Hm)
2 − K2(D2 − 2DDm cos(2ω) + D2

m) , (6)

where H = (C1 + C2)/2 is the mean curvature of the membrane, Hm = (C1m + C2m)/2 is
the mean intrinsic (spontaneous) curvature of the membrane element, D = (C1 − C2)/2
is the curvature deviator of the membrane, and Dm = (C1m − C2m)/2 is the intrinsic
curvature deviator of the membrane element [15,21,74,77–80,83,90]. We can clearly see
from Equation (6) that the elastic energy of anisotropic membrane element (Dm 6= 0)
directly depends on its orientation ω. Therefore, the orientational ordering of anisotropic
membrane constituents is also considered in this formalism [75,81].

2.2. Elastic Constants and Intrinsic Curvatures of Protein-Induced Nanodomain as a Function of
Lipid and Protein Properties

In this section, we estimate the phenomenological parameters Hm, Dm, K1 and K2
(Equation (6)) of membrane nanodomain induced by anisotropic rigid protein (Figure 6b)
using a simple theoretical model of the lipid bilayer elasticity [12,21]. We will assume that
the local microscopic deformations of the membrane shape in the vicinity of the membrane-
embedded rigid protein are constrained (Figure 6b) and the lipids adjust their tilt due to
the intrinsic shape of the rigid protein [21].
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Let us consider a single anisotropic cone-like rigid protein. To introduce anisotropy of
the protein, we assume that the cone angle θ = θ(ω) depends on the azimuthal angle ω
(Figure 7). For small θ variations we can write (Equation (7)) [21]

θ(ω) = θ̄ +4θ cos(2ω) , (7)

where θ̄ represents the average conicalness of the protein and4θ the difference between
the maximal and minimal conicalness.

ω θ ω( )

h r( )

-cR

r

protein

membrane

R

r0

Figure 7. Schematic illustration of conical membrane-embedded rigid protein. For anisotropic
proteins, the cone angle θ depends on the azimuthal angle ω. Adapted with permission from ref. [22].
2006 APS.

For the sake of simplicity, it is assumed that the rigid protein is embedded in one lipid
layer only [12], with its local shape defined by mean curvature H and deviatoric curvature
D. According to the Euler’s lemma, the line curvature of the normal cross section measured
in the radial direction of the protein inclusion at azimuthal angle ω is given by Equation (8)

C(ω) = H + D cos(2ω) . (8)

The free energy perturbation of the lipid bilayer, induced by the rigid protein, can be
expressed as an integral of the free energy density Ẽ(ω) per unit length of the circumference
of the protein inclusion’s core. The circumference length is L = 2πr0, where r0 is the radius
of the inclusion’s core (Figure 7). The free energy is therefore expressed as: E =

∫
L ẼdL =

(L/2π)
∫

Ẽ(ω)dω. For sufficiently large rigid protein inclusion radius r0, we expect that
Ẽ = Ẽ[C(ω), θ(ω)] is a function of ω via the relations C(ω) and θ(ω) [12]. In general, Ẽ
should depend also on the derivatives of C(ω) and θ(ω) with respect to ω. The dependence
on the derivatives should become relevant if the radius of the inclusion r0 is smaller than
the characteristic decay length of the membrane perturbations ζ. Using membrane elasticity
theory, ζ has been calculated [138] for a planar lipid layer that is in contact with a wall tilted
by an angle θ. The value of ζ depends on the thickness of the lipid bilayer, the tilt modulus
and the lateral stretching modulus. Typical values of ζ for a lipid monolayer [12,21] are
about 1 nm. Therefore, by assuming that r0 ≥ ζ, we can write (Equation (9))

E
L
=

1
2π

2π∫
0

Ẽ[C(ω), θ(ω)]dω . (9)

In above equation, Ẽ can be calculated by using a one-dimensional model for the elastic
interaction of a lipid layer with a rigid wall. Such a model from previous works [138,139] can
be generalized in order to describe a bent lipid layer of curvature C (Equation (10)) [12,21]:

f̃ (C, θ) =
κ0

2ζ
(θ − Cr0)

2 + (C0 − C)(θ − Cr0) , (10)

where κ0 is the bending stiffness of the monolayer and C0 its spontaneous curvature. We
can substitute θ(ω) from Equation (7) and C(ω) from Equation (8) into Equation (10) and
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compare the obtained free energy density f (C, θ) with the elastic free energy density w
from Equation (6), which yields (Equation (11)) [12,21]:

Hm =
θ̄

r0

(
r0 + ζ

r0 + 2 ζ

)
+

ζC0

r0 + 2 ζ
, Dm =

4θ

r0

(
r0 + ζ

r0 + 2 ζ

)
,

K1 =
3π

4
r2

0κ0

(
r0

ζ
+ 2
)

, K2 = −π

2
r2

0κ0

(
r0

ζ
+ 2
)

. (11)

This demonstrates how the shape of the membrane-embedded rigid protein is in-
cluded in the expressions for the rigid protein induced flexible nanodomain (Figure 6b)
intrinsic mean curvature and the intrinsic curvature deviator: Hm ∼ θ̄/r0 and Dm ∼ 4θ/r0.
Strong dependence of the constants K1 ∼ r3

0 and K2 ∼ r3
0 on the protein radius (for r0 � ζ)

is a consequence of both the membrane-embedded protein rigidity (contributing ∼ r2
0) and

the linear increase of the circumference with r0.
Within more advanced model [21,22], the tilt deformation can be explicitly taken into

account and the lipid membrane consisting of two opposed monolayers, an external one
(E) and an internal one (I), can be also considered. The external and the internal monolayer
were described by their height profiles (hE and hI) and by their local directors (tE and tI),
which describe the average orientation of the lipid chains as shown in Figure 8 [21,22].

Figure 8. Schematic presentation of a perturbed lipid bilayer with local directors tE and tI and height
profiles hE and hI of the external and internal membrane leaflet, respectively. The average bilayer
height is h = (hE + hI)/2. Adapted with permission from ref. [22]. 2006 APS.

For the external monolayer, the elastic free energy per unit area (Equation (12)) can be
written up to quadratic order in hE and tE as [21,22]:

f̂E =
κs

2
(∇ · tE)

2 +
κt

2
(tE −∇hE)

2 +
B
2
(hE − h)2

+
κh
2
(4hE)

2 +
K
2
(∇× tE)

2 + κ̄ det hE,ij . (12)

The first term in Equation (12) describes the splay energy of the lipid chains, where κs
stands for the corresponding splay modulus. The second term takes into account the energy
penalty of tilting the director tE relative to the normal of the surface E, where κt is the tilt
modulus [73]. It was shown that lipid tilt degree of freedom may lead to local softening
of membrane regions with embedded rigid proteins (Figure 6b) [21,22]. The third term
accounts for the thickness changes of the monolayer, where B represents the compression
modulus and h a reference surface with respect to which the compression or expansion
of the monolayer is measured. The bare bending energy of the external monolayer is
expressed by the fourth term, where κh is the corresponding modulus. Note that the splay
energy (the first term) accounts mainly for the splay deformation of the lipid chains, while
the bending energy (the fourth term) originates mostly in the monolayer headgroup region.
Finally, the last two terms in Equation (12) take into account the twist deformation of the
chains (modulus K) and the saddle deformation of hE (modulus κ̄) [21,22].
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The elastic free energy of the internal membrane leaflet f̂I is obtained by replacing hE
with hI and tE with −tI in the expression for f̂E given by Equation (12). The minus sign is
reflecting the opposite orientation of the opposed monolayers. The elastic energies from
both monolayers contribute to the total free energy of the lipid bilayer: f̂bl = f̂E + f̂I [21,22].

2.3. Isotropic Limit and Helfrich Model

If the membrane contains only isotropic components (for example isotropic lipids or
protein-induced nanodomains [22]) with the intrinsic (spontaneous) curvature C1m = C2m,
i.e., Dm = 0 in Equation (6), the elastic energy density becomes (Equation (13)):

w = (2K1 + K2)(H − Hm)2 − K2D2

= K1
2 (2H − C0)

2 + K2K + K1C0
2
(

K1
2K1+K2

− 1
2

)
,

(13)

where K = C1C2 is the Gaussian curvature and (Equation (14)) [90]

C0 =
(2K1 + K2)Hm

K1
=

(
2 +

K2

K1

)(
C1m + C2m

2

)
. (14)

Up to the constant terms, independent on C1 and C2, Equation (13) is identical to the Hel-
frich expression for isotropic local bending energy density (Equation (15))
[60,73,90,140–142]:

wb =
kc

2
(2H − C0)

2 + kGK, (15)

where kc is the membrane bending constant, kG is the Gaussian bending modulus and
C0 is the spontaneous curvature of a membrane. In our case it holds: kc = K1, kG = K2
(see Equations (13) and (15)). The equilibrium local mean curvature for isotropic bending
energy (Equation (15)) is determined by requiring ∂wb/∂Ci = 0, i = 1, 2, which yields
Equation (16) [90]

Heq = (Ceq
1 + Ceq

2 )/2 = Ceq
1 = Ceq

2 = kcC0/(2kc + kG) = Hm. (16)

Microscopic theoretical models for biological membranes [75,90,143] predict that
kc > 0 and kG < 0, therefore, K1 > 0 and K2 < 0.

In isotropic case membrane contains isotropic (spherical) components: C1m = C2m =
1/Rm, where Rm stands for the curvature radius which is favored by the components.
Therefore, Equation (14) can be written as (Equation (17)):

C0 =

(
2 +

K2

K1

)(
1

Rm

)
. (17)

Note that for a special case: K2 = −K1 (Equation (18)) it holds that (see Equations (14)
and (17)):

C0 = Hm =
1

Rm
. (18)

This formalism is valid also for the homogeneous isotropic lipid bilayer membrane.
Nonzero spontaneous curvature C0 in the relaxed state may be expected if the two sides
of the lipid bilayer are unequal or facing different aqueous solutions [58]. The shapes of
cells/vesicles are therefore likely to be susceptible to chemical agents added to the outer
aqueous phase and not instantly permeating to the inner one [58]. For thin and not too
strongly curved bilayers, spontaneous curvature could originate from the area difference
between the two membrane monolayers [52,56]. If the constituent monolayers are free
to slide over each other, C0 is expected to be constant over the entire surface area of the
cell/vesicle [63].
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The total energy of a closed membrane shape (Equation (19)) is equal to the integral of
the bending energy density over the whole membrane surface:

Fiso =
∫

S
wbdS. (19)

By minimizing this energy, it is possible to predict some of the experimentally observed
shapes of red blood cells (RBC) like open stomatocytes and discocytes (see Figure 9).
To theoretically predict the stable echinocyte shape shown in Figure 9c, one has to take
into account also shear deformation of the RBC membrane skeleton, which is described in
Section 2.5.1.

Figure 9. Scanning electron microscope images of red blood cells (RBC) shapes: (a) open stomatocyte,
(b) discocyte, (c) echinocyte. Adapted with permission from ref. [137]. 2019 Springer Nature.

2.4. Cell Shape Changes Driven by Nematic Orientational Ordering

Biological membranes very likely possess orientational in-plane ordering, especially in
membrane regions that are highly and anisotropically curved [15,79,80]. In-plane ordering
could arise for example due to anisotropic Band 3 proteins embedded within membranes
(see Figure 10) [79,80,144–146]. Taking into account nematic in-plane ordering with direct
interactions between anisotropic membrane components could explain the experimen-
tally observed wide stability window of the reduced volume values v for stable oblate
(discocyte) shapes of red blood cells (RBC). The origin of non-specific attractive nearest-
neighbour direct interactions between membrane-embedded proteins, are among others,
lipid-mediated depletion- and fluctuation-forces and hydrophobic mismatch between
proteins and lipids [147–149].

In numerical simulations, the closed membrane surface area S and the volume V
are kept constant. This ensures that an important geometrical parameter, the reduced
volume v, is also kept constant during numerical minimization. The reduced volume
v = V/V0 is defined as the ratio of the cell/vesicle volume V and the volume of the sphere
V0 = 4πR3

0/3 with the same surface area as the surface of the investigated cell/vesicle,
where R0 =

√
S/4π is the radius of the sphere and S is the surface area of the investigated

cell/vesicle shape. All lengths are scaled with respect to R0.
The values of v in healthy cells (discocyte shape) of different mammals posses a

relatively broad range of values [150–153]. In humans, the experimentally determined
reduced volumes of stable discocyte shapes of red blood cells range within the inter-
val 0.58 ≤ v ≤ 0.81 [150], which the existing theoretical approaches are not able to
reproduce [46,60,72,73,140,154]. Within the pioneering mesoscopic model introduced by
Helfrich [73,140], oblate discocyte shapes are stable only in a relatively narrow window
0.59 ≤ v ≤ 0.65.
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Figure 10. Nematic-type orientational ordering within the membranes of red blood cells or extra-
cellular vesicles could arise due to anisotropic proteins such as Band 3 proteins embedded within
membrane. See also Figure 6. Adapted with permission from ref. [137]. 2019 Springer Nature.

The stability range as a function of the reduced volume v is shown in Figure 11 [137].
Equilibrium closed membrane shapes are calculated by minimizing the Helfrich isotropic
bending energy (Equation (15)) weighted by the isotropic bending constant kc with the
addition of the free energy associated with nematic in-plane ordering (taking into ac-
count direct interactions between membrane components). The free energy contributions
associated with nematic ordering in the membrane are in this paper described by the
constant ko. For a detailed description of the nematic ordering energy, see [137] and
references therein. If the nematic orientational ordering energy is neglected (ko << kc
in Figure 11), the boundary between oblate (discocyte) and prolate shapes appears at
v = 0.65. For v > 0.65, prolates represent equilibrium stable shapes of RBCs, which is
not in agreement with experimental observations where discocyte RBC shapes are found
within the interval 0.58 ≤ v ≤ 0.81 [150]. However, when the impact of nematic ordering
is increased (ko ≈ kc), the stability region of stable discocyte shapes widens significantly
(Figure 11) [137]. For this phenomenon to occur, one has to take into account the so-called
extrinsic (deviatoric) term in orientational ordering energy [137], as described above.

Figure 11. Phase diagram of equilibrium closed membrane shapes with nematic in-plane ordering
taken into account. The solid line separates the stability regimes between discocyte (oblate) and
prolate shapes. Discocyte shapes are stable on the left side and prolate shapes on the right side of
the line. The energy associated with nematic ordering is weighted by the constant ko against the
isotropic bending energy weighted by the membrane bending constant kc (Equation (15)). Adapted
with permission from ref. [137]. 2019 Springer Nature.
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The extrinsic (deviatoric) term tells how the orientational field of molecules is em-
bedded in 3D space [137,155]. The extrinsic-type terms were neglected in many studies
so far but in general there is no justification to discard them [156,157]. In studies of bi-
ological cells, such and similar terms were considered already in previous studies and
referred to as deviatoric terms [15,74,79,80,84,90]. The extrinsic curvature term is effec-
tive in points on the membrane surface where the principal curvatures C1 and C2 differ
and its strength increases with the increased absolute value of the curvature deviator
D = (C1 − C2)/2 [15,137] (see also Equation (6)). Wide stability range of discocyte shapes
in the presence of extrinsic term (Figure 11) is a consequence of their unique shape. In the
equatorial region of discocytes, the difference between C1 and C2 is large so the extrinsic
term enforces strong orientational order in that region, which results in the lower total free
energy. Consequently, oblate discocyte shapes become more energetically favorable than
prolate shapes when the impact of nematic orientational ordering (with the extrinsic term)
is taken into account (see Figure 11). Experimentally observed broad stability interval of
v for discocyte RBC shapes could therefore be explained by considering the orientational
in-plane ordering in their membrane [137] (Figure 11).

2.5. Influence of Membrane Skeleton
2.5.1. Shear Deformation of Membrane Skeleton and Echinocyte Shape of Red Blood Cells

Red blood cell shape change can be induced by externally added amphiphilic molecules
like detergents or peptides that bind into the membrane [53,56,57]. The bilayer couple hy-
pothesis predicts that RBC echinocyte shape transformation is primarily driven by binding
of externally added molecules, most probably into the outer membrane layer [45,53,57,74].

Echinocyte shape stability is primarily determined by competition between mem-
brane bending and skeleton shear energy (mentioned already in Equation (15)) [44,45].
The constitutive model for the shear energy of membrane skeleton accounts for its local
compressibility [43,158–160]. However, an approximate expression for shear energy of the
membrane (Equation (20)) is often used due to simplicity [44,161]:

Fshear =
µ

2

∫
(λ2

m + λ−2
m − 2)dS, (20)

where µ is the skeleton area shear modulus of the membrane, λm is the principal extension
ratio in the meridional direction and dS is the infinitesimal membrane area element. In this
approximation the membrane skeleton is considered laterally incompressible [162].

The total membrane bending energy (Equation (21)) can be written also as the sum of
local (Equation (15)) and non-local term [52,56,58,62,161,163]:

Fh =
kc

2

∫
(2H)2dS + knS(〈H〉 − H0)

2, (21)

where 〈H〉 = (1/S)
∫

H dS is the mean average curvature, H0 is the effective mean spon-
taneous curvature, kc is the membrane isotropic bending constant, kn is the coefficient of
non-local bending rigidity [161] and S the membrane area.

For thin and only slightly curved bilayers, the mean average curvature 〈H〉
(Equation (22)) is proportional to the difference between the two monolayer areas (∆S) of
the membrane [21,163]:

〈H〉 = ∆S
2Sδ

, (22)

where δ is the separation distance between two monolayer neutral surfaces. The nor-
malized average mean curvature 〈h〉 = R0〈H〉 is equal to the normalized area difference
δs = δS/8πδR0, where R0 is the radius of the sphere with surface area S: R0 =

√
S/4π.
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The normalized effective spontaneous mean curvature h0 = R0H0 is equal to the
normalized optimal area difference ∆s0 (Equation (23)) [26]:

h0 = ∆s0 =
∆S0

8πδR0
. (23)

The optimal area difference ∆S0 is defined by the difference in the number of con-
stituents (molecules), differences in area of a single molecule and the difference in the in-
trinsic molecular shapes present in the outer and the inner monolayer (see [26,52,58,62,163]
and references therein).

Figure 12 shows erythrocyte shapes calculated by minimization of the membrane
elastic energy (shear and bending): F = Fshear + Fh for two different values of optimal area
difference ∆S0 [26,44,45,164].

The echinocyte shape can be modulated additionally by stretching the membrane
skeleton [43,52] and by a non-homogenous distribution of membrane-embedded pro-
teins [165]. Note that if the membrane skeleton shear elastic energy is neglected, the cal-
culated echinocyte shapes corresponding to a minimum in membrane bending energy
(Equation (21)) have only one spiculum [44,45].

Figure 12. The calculated shapes of erythrocytes determined by minimization of the shear and
bending elastic energy (Equations (20) and (21)) for (a) ∆s0 = 1.038 and (b) ∆s0 = 6.8. Furthermore,
kn/kc = 8 [166], µ/kc = 1013 m−2 [161] and the relative cell volume v = 0.6. The cell shapes are
determined as described in [28] for shape (a) and [44,45,164] for shape (b). Adapted with permission
from ref. [26]. 2007 Elsevier.

2.5.2. Membrane-Myosin Interactions in Red Blood Cells

Lacking transcellular cytoskeleton or internal organelles, RBC membrane is sup-
ported by the membrane skeleton-a two-dimensional network of short F-actins linked
by long, flexible spectrin molecules. These spectrin molecules bind to transmembrane
proteins in order to maintain membrane curvature, tension and mechanical properties of
the RBC [44–46,49]. Furthermore, RBC shape is also influenced by membrane-myosin in-
teractions as schematically shown in Figure 13. The myosin is attached to the spectrin-actin
membrane skeleton which may stretch the membrane to additionally stabilize the discocyte
RBC shape (Figure 13).
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Figure 13. Schematic representation of membrane-myosin interactions in RBC. The shape of the
RBC is partially controlled by the interaction of the lipid bilayer and membrane skeleton. Figure
shows biconcave discocyte shape of RBC plasma membrane with the membrane skeleton underneath.
The myosin (NMIIA) filaments effect (denoted by green colour) was modeled by the local forces
applied to the lipid membrane (inward red and gray arrows). Adapted with permission from ref. [49].
2020 Public Library of Science.

In Figure 14, we present MC simulations of a closed membrane shape with isotropic
membrane nanodomains of negative intrinsic curvature. The shape of MC predicted closed
membrane structures presented in Figure 14 depends on the nanodomain intrinsic curva-
ture, the concentration of nanodomains, the strength of the direct attractive interaction
between nanodomains and on the active forces exerted by the nanodomains [50]. Nan-
odomains with negative intrinsic cvurvature may induce the growth of undulated thin
inward membrane protrusions (buds) as demonstrated in Figure 14a. Isotropic membrane
nanodomains are accumulated in the region of the protrusions (red colored surface patches
in Figure 14a). The theoretically predicted shape in Figure 14a is calculated in the absence
of the active force of NMIIA nanodomains and may partially correspond to the situations
in RBCs where the protrusion is growing in the region in which the local disruption of
the membrane skeleton and the membrane bilayer interactions appears or the skeleton is
detached from the protrusion [160,167]. In such cases, the inward membrane protrusion
does not contain membrane skeleton [168].

Figure 14a shows also the nanodomains cluster size distributions determined from
the averaging over the convergent MC realizations. One observes that the nanodomain
cluster size distribution has two distinct peaks corresponding to spheroidal (smaller) and
necklace-like (larger) aggregates of nanodomains (Figure 14a). The nanodomains aggre-
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gate into curved membrane protrusions or buds as a consequence of non-zero (negative)
intrinsic curvature of nanodomains and high enough attractive interaction energy between
nanodomains/inclusions [168]. Note that there are no isotropic nanodomains in a highly
curved neck region of the invagination (denoted by red arrow in Figure 14a). The mem-
brane curvature in the neck region is anisotropic (C1 6= C2) and therefore not favorable for
highly curved isotropic (C1 = C2) nanodomains/inclusions. For long term stabilization
of the neck connecting the bud and the parent membrane, one would have to take into
account in MC simulations also the effect of anisotropic nanodomains [15,81,89,168,169].
Anisotropic saddle-like nanodomains would in this case assemble in the neck region and
stabilize the neck [170].

In simulations presented in Figure 14b, we take into account also the active forces
that the membrane NMIIA nanodomains exert in the perpendicular direction to the mem-
brane surface towards the RBC interior. Such active forces in the RBC membrane may be
generated by myosin (NMIIA) motor domains bound to F-actin of the RBC membrane
skeleton [48] (see also Figure 13). We observe in Figure 14b that in the case where mem-
brane nanodomains are exerting force on the membrane, the MC predicted RBC shape has
one large invagination [50], which is in agreement with some experiments [54,55]. Cluster
size distribution in Figure 14b shows that the membrane contains many smaller aggregates
of nanodomains. For visualization purposes, different views of the invaginated vesicle
from Figure 14b are presented in Figure 14c.

Note that large invaginations can be separated from the parent cell due to local
frustrations in orientational in-plane ordering of membrane constituents in highly curved
membrane parts such as membrane necks connecting the invagination and the parent
cell [168,171]. Highly curved membrane regions such as membrane necks are likely to
host topological defects, which are a source of large elastic penalties [168,171]. Invaginated
stomatocyte neck region is a relatively small surface, which can host up to four topological
defects. Consequently, within the neck region, local interactions between neighboring
molecules are weakened, which might lead to the neck rupture [168,171].

Figure 14 demonstrates that invaginated stomatocytic RBC shapes can have spherical
or undulated necklace-like invaginations. Furthermore, MC simulations in [50] reveal
that a larger concentration of NMIIA nanodomains exerting force on the membrane can
induce also pancake-like torocyte membrane invaginations, which were observed in some
experiments [172]. These results represent an extension of the previous theoretically
predicted invaginated stomatocyte shape classes, which were limited mostly to the simple
axisymmetric stomatocyte with only one large invagination [50].

Note that in MC simulations [24,50,168] presented in Figure 14, the bilayer structure
of the membrane and the skeleton elasticity are not explicitly considered. Consequently,
the value of the bending modulus is set to be compatible with the membrane of giant lipid
vesicles [173,174] and not with the RBC membrane [47,175–178]. Furthermore, for sim-
plicity, only one type of nanodomains/inclusions that can induce local bending of the
membrane by cause of their negative intrinsic curvature is considered in MC simula-
tions [24,50,168].
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Figure 14. Inset (a): The Monte-Carlo simulation of the transformation of the RBC membrane induced
by mobile membrane nanodomains with negative local intrinsic curvature c = −1 d−1

min with the
absence of the active force of NMIIA nanodomains. Concentration of membrane nanodomains is
p = 5%. Semitransparent visualization of the triangulated membrane surface is used in order to
uncover its interior shape. Red arrow in the middle enlargement points to the neck area in which
there is a lack of nanodomains. In the corresponding cluster-size distributions, the y-axis represents
the ensemble averaged number of nanodomain clusters of each size, while the x-axis is the size of the
cluster of inclusions. Other parameters: local bending stiffness of lipid bilayer κ = 25 kT and direct
interaction parameter w = 1.25 kT. In the inset (b), there are results for the same parameters with
additional active force of NMIIA nanodomains towards the cell interior. Inset (c) shows different
views of the vesicle from (b) (side cross-section and top view). Adapted with permission from refs.
[50,168]. 2020 Slovenian Chemical Society, 2020 Frontiers Media.
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2.6. Theory of Self-Assembly of Isotropic Curved Membrane Components into Larger Domains

Theory of self-assembly may be used to describe the accumulation of isotropic curved
membrane nanodomains (Figure 6) composed of lipids and proteins [12,22,26] into spher-
ical or necklace membrane protrusions. In the beginning, curved nanodomains (of total
number N) are distributed in the weakly curved spherical membrane surface of constant
mean curvature H = 1/R0. We assume that the curved nanodomains are laterally mobile
across the whole membrane surface and may at certain conditions form highly curved
aggregates in the form of curved membrane protrusions of constant high mean curvature
H = 1/r. The membrane protrusion with constant H = 1/r which may be a single sphere
or necklace formation (see Figure 15). We assume r � R0.

r

H=1/r

r

H = 1/r

Figure 15. Growth of necklace-like protrusions as aggregates of isotropic curved membrane nan-
odomains is energetically favorable when critical concentration x̃c of nanodomains is surpassed.

In the following we determine the critical concentration of isotropic curved nan-
odomains necessary for formation of neklace-like protrusions of the membrane in the
self-assembly process. For the sake of simplicity we presume that the free energy of a
single isotropic flexible membrane nanodomain (Equation (24)) (Figure 6) is written in the
form [12,22,26,84]:

f =
ξ

2
(H − Hm)

2a0 . (24)

where Hm is the intrinsic mean curvature of an isotropic membrane nanodomain,
ξ = 4K1 + 2K2 is the elastic constant (see Equation (13)) and a0 is the area per single
nanodomain. In large aggregates of curved flexible membrane nanodomains the local
membrane bending constant is kc = K1 (Equation (13)) and the membrane spontaneous
curvature C0 = (2K1 + K2)Hm/K1 (Equation (14)).

Curved flexible membrane nanodomains in aggregates interact with neighboring
membrane nanodomains. We denote the interaction energy per curved flexible membrane
nanodomain (monomer) in an aggregate composed of i nanodomains as w(i) where we
presume that the energy w(i) depends on aggregate size consisting of i nanodomains.
The mean free energy per nanodomain in a curved aggregate (where H = D = 1/r)
composed of i nanodomains is written as (Equation (25)):

µi = fc − w(i) , (25)

where fc = f (H = 1/r) and w(i) > 0. We assume that in the weakly curved spherical
regions of the membrane (having H = 1/R0) nanodomain concentration is always below
the critical aggregation concentration and nanodomains cannot form 2D flat aggregates.
The mean energy of a nanodomain in the weakly curved membrane regions is µ̃1 = fsp ,
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where fsp = f (H = 1/R0). The number density of curved nanodomains in the weakly
curved membrane regions is (Equation (26))

x̃1 =
Ñ1

M
, (26)

where Ñ1 is the number of monomeric curved nanodomains in the weakly curved mem-
brane regions and M is the lattice sites number in the whole system. The distribution of
highly curved aggregates of nanodomains in the membrane protrusions on the scale of
number density (Equation (27)) is expressed as

xi =
iNi
M

, (27)

where Ni represents the number of aggregates with i constituents. The number densities
x̃1 and xi must fulfil the conservation condition for the total number of curved flexible
nanodomains (Figure 6) in or on the membrane (Equation (28)):

x̃1 +
∞

∑
i=1

xi = N/M . (28)

The free energy F of all curved nanodomains in or on the membrane is (Equation (29)):

F = M[x̃1 µ̃1 + kTx̃1(ln x̃1 − 1)] + M
∞

∑
i=1

[
xi µi + kT

xi
i

(
ln

xi
i
− 1
)]
−

−µM (x̃1 +
∞

∑
i=1

xi) , (29)

where µ is the Lagrange parameter ensuring a constant number of curved nanodomains in
the system. Contributions of configurational entropy are also taken into account in the free
energy. We minimize F with respect to x̃1 and xi (Equation (30)):

∂F
∂x̃i

= 0 ,
∂F
∂xi

= 0, i = 1, 2, 3, ... , (30)

which leads to equilibrium distributions (Equations (31) and (32)):

x̃1 = exp
(
−

fsp − µ

kT

)
, (31)

xi = i exp
(
− i

k T
[ fc − w− µ]

)
. (32)

This dependence xi(i) is shown in Figure 16 for different values of total number of
flexible nanodomains on the membrane. For simplicity we assumed that w(i) = w is
independent of aggregate size in Equation (32). The quantity µ can be expressed from
Equation (31) and substituted in Equation (32) to get (Equation (33)):

xi = i
[

x̃1 · exp
(

fsp + w− fc

kT

)]i

. (33)
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Figure 16. An example of concentrations of aggregates of nanodomains in dependence on number of
nanodomains in the aggregate for different number of flexible nanodomains on the membrane.

We see that if the concentration x̃1 is small, aggregate growth will not be favorable,
since x1 > x2 > x3 .... Furthermore, xi can never exceed unity, leading to the largest
possible value of monomeric curved flexible nanodomains number density in the weakly
curved parts of the membrane when x̃1 approaches exp

[
( fc − fsp − w)/k T

]
. The critical

concentration is therefore (Equation (34))

x̃c ≈ exp
(

∆ f − w
kT

)
, (34)

where ∆ f = fc − fsp is the energy difference between a single nanodomain on the highly
curved membrane protrusion and the energy of the single nanodomain in the weakly
curved membrane region with (Equation (35)):

∆ f =
ξa0

2r

(
1
r
− 2H0

)
− ξa0

2R0

(
1

R0
− 2H0

)
. (35)

Critical aggregation number density is given by x̃c. If x̃1 is larger than x̃c , the for-
mation of a very long necklace membrane protrusions composed of curved membrane
nanodomains is energetically favorable. This is also observed in our MC simulations
(Figure 17). It can be seen from Equation (34) that growth of necklace membrane protru-
sions is dependent on the energy difference ∆ f (Equation (35)) and the strength of the
direct nearest-neighbor interaction between nanodomains w. The critical concentration x̃c
strongly depends on H0.

In the approximation limit R0 � r we can rewrite Equation (35) as (Equation (36)):

∆ f ' ξa0

2r

(
1
r
− 2H0

)
=

2kca0

r

(
1
r
− c0

)
, (36)

where kc and c0 are the local bending constant and spontaneous curvature of aggregates of
nanodomains, respectively. We may rewrite Equation (34) as (Equation (37)):

x̃c ≈ exp
(

2
kc

kT
a0

r2 (1− c0r)− w
kT

)
. (37)



Int. J. Mol. Sci. 2021, 22, 2348 22 of 47

For 1 < c0r the value of ∆ f is always negative.
In the case of anisotropic curved nanodomains, Equation (34) still holds, while in the

case of cylindrical anisotropic aggregates, where H = D = 1/2r, ∆ f (Equation (38)) is
(see [179])

∆ f = a0ξH(H − Hm)− kTln[I0(
a0ξDmD

kT
)]. (38)

Here, H = (C1 +C2)/2 is the mean curvature of the membrane, the intrinsic mean cur-
vature of an isotropic membrane nanodomain is Hm = (C1m + C2m)/2, D = (C1 − C2)/2
is the curvature deviator of the membrane, and Dm = (C1m − C2m)/2 is the intrinsic
curvature deviator of the membrane element and I0 represents the modified Bessel func-
tion [15,21,74,77–80,83,90,179].

The theory of self-assembly can be used to predict phase space separations in dia-
grams of MC simulated equilibrium vesicle shapes with curved nanodomains. Figure 17
shows a plot of typical microstates of vesicles with curved nanodomains in the absence of
active protrusive forces. The vesicles are in thermal equilibrium at different temperatures
and nanodomain densities (area coverage fraction, ρ = Nc/N) of curved nanodomains.
The cluster size distributions (shown below the microstate snapshots in Figure 17) are
given from averaging over convergent MC shapes.

At low average nanodomain area densities the equilibrium vesicle morphologies
remain quasi-spherical, with clusters that increase in size at lower temperatures (in the far
left column of Figure 17, the largest clusters consist of 5 nanodomains at T/T0 = 1.33 and of
8 nanodomains at T/T0 = 0.63). At higher average nanodomain densities, clusters increase
in size and curved nanodomain buds appear on the membrane.

At even larger average nanodomain densities, the vesicle shapes drastically deviate
from quasi-spherical morphologies, often forming large necklace-like nanodomain clusters.
The size of these clusters of necklace-like nanodomains and the number of ’beads’ they con-
sist of increases with decreasing temperature. These necklace-like structures form because
isotropic curved nanodomains cannot form flat aggregates, due to their high intrinsic cur-
vature. The theory of self-assembly of curved nanodomains (Figure 6) can approximately
explain the basic principles of formation of observed necklace-like structures.

Since the density of curved nanodomains (Figure 6) in or on the membrane is defined
with the conservation condition (Equation (28)), this also gives us the relation between
normalized temperature T/T0 and total curved nanodomains concentrations ρ = N/M.
Using the parameters from the MC simulations, we may graph dependencies xi(i), as seen
in Figure 17. For sufficiently low concentrations x̃1, such that x̃1 · exp[( fsp + w− fc)/kT] is
much less than unity, we have x1 > x2 > x3, ..., which means that most of the nanodomains
will be found in the weakly curved membrane region. Above small concentrations and
especially above x̃c, aggregates start to form, where the peaks of the distributions are
strongly dependent on the total nanodomain concentration in the lattice. We see that the
critical line beyond which aggregate growth is favorable agrees well with the results of MC
simulations (see red line in Figure 17).
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Figure 17. Monte-Carlo (MC) predicted vesicle shapes in thermal equilibrium with curved flexible nanodomains. The dia-
gram provides information for differing average densities of curved nanodomains ρ and relative temperatures T/T0. Blue
surfaces represents the nanodomain-free lipid bilayer and has zero intrinsic (spontaneous) curvature; red surface denotes
the curved nanodomain clusters with spontaneous curvature c0. In the corresponding cluster-size distributions below each
snapshot, the y-axis is the ensemble averaged number of nanodomain clusters and the x-axis is the nanodomain cluster
size. The red curve is a boundary between shapes without and with protrusions predicted by the theory of self-assembly.
Below it, growth of membrane protrusions is favorable (see Equation (32)). Adapted with permission from ref. [24]. 2019
Royal Society of Chemistry.
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The distribution of cluster sizes features a second peak below the transition line,
corresponding to the formation of large aggregates of curved nanodomains (Figure 17).
For low temperatures and large nanodomain densities, the distributions of necklace-like
aggregates is predicted to be of an exponential nature (Equation (34)). However, due to
small vesicle size and the simulations getting “stuck” in particular aggregate configurations,
this feature is not observed in distributions. A close-up snapshot of a MC predicted vesicle
shape with a few formed beaded protrusions consisting of highly curved flexible isotropic
nanodomains can be seen in Figure 18.

Figure 18. A typical vesicle shape calculated by MC simulations for two-component membrane
composed of highly curved isotropic flexible nanodomains (red color) and the nanodomains with
zero intrinsic curvature (blue color). Membrane nanodomains with high intrinsic curvature (red
color) are accumulated in undulated membrane protrusions. Adapted with permission from ref. [23].
2017 Springer Nature.

2.7. Free Energy of Two-Component Anisotropic Membrane: An Approximative Approach

For the simplest case, where we assume that the principal systems of the actual local
membrane curvature tensor C and the intrinsic membrane curvature tensor Cm coincide
everywhere on the surface (ω = 0 in Equation (6)), the elastic energy density transforms
into (Equation (39)) [77,90]:

w = (2K1 + K2)(H − Hm)
2 − K2(D− Dm)

2. (39)

The equilibrium values of H and D (and consequently C1 and C2) corresponding to the
extreme of the function w (determined from ∂w/∂Ci = 0, i = 1, 2) are (Equation (40)) [90]

Heq = Hm, Deq = Dm. (40)

If the above condition is met, membrane component perfectly fits into the membrane
surface. Equilibrium values of H and D (Equation (40)) correspond to the local minimum
of w if the local stability condition (Equation (41)) for a completely free and small patch of
the membrane is true [90]:[(

∂2w
∂C1

2

)(
∂2w
∂C2

2

)
−
(

∂2w
∂C1∂C2

)2]
> 0, (41)

which yields (Equation (42)):
− K2(2K1 + K2) > 0. (42)

Considering the isotropic limit, it was shown in Section 2.3 that kc = K1 and kG = K2.
The results of microscopic theoretical biological membrane models [75,90,143] predict that
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the Helfrich’s constants kc and kG are of the same order of magnitude and that kc > 0
and kG < 0. We can therefore assume that K1 > 0 and K2 < 0, which is in agreement
with the above stability condition (see Equation (42)): (2K1 + K2) > 0, i.e., K1 > −K2/2.
Based on these results, we assume in the following that K2 ≈ −K1 [90], which simplifies
Equation (39) to the form (Equation (43)):

w = K1(H − Hm)
2 + K1(D− Dm)

2. (43)

In the following, we consider a membrane that is composed of two different nan-
odomains/components A and B, characterized by the intrinsic principal curvatures Ci

1m
and Ci

2m, where i = A, B. Note that curved flexible nanodomains A and B can be isotropic
or anisotropic (see Figures 6 and 7). The bending energy of the whole two-component
membrane (Equation (44)) is calculated by integration of w (Equation (43)) over the whole
membrane area S [23,89,90,180]:

Fb =
∫

S
kc(φ)

[
(H − Hm(φ))

2 + (D− Dm(φ))
2
]
dS, (44)

where dS is an infinitesimal element of the membrane surface area S and φ is the local
relative area density of the component A. The local relative area density of the component
B is therefore (1− φ). Constant K1 from Equation (43) was replaced with the bending
rigidity constant kc(φ), which depends on φ because in general, different membrane
nanodomains (in our case components A and B) can have different bending rigidities. It
can be assumed that the bending rigidity kc(φ) (Equation (45)), the intrinsic mean curvature
Hm(φ) (Equation (46)) and the curvature deviator Dm(φ) (Equation (47)) depend linearly
on the local relative area density of nanodomains A (φ):

kc(φ) = (κA − κB)φ + κB, (45)

Hm(φ) = (HA
m − HB

m)φ + HB
m, (46)

Dm(φ) = (DA
m − DB

m)φ + DB
m, (47)

where κi is the bending rigidity of the component i, Hi
m = (Ci

1m + Ci
2m)/2 is the intrinsic

mean curvature of the component i and Di
m = (Ci

1m − Ci
2m)/2 is the intrinsic curvature

deviator of nanodomains i, where i = A, B. Membrane nanodomains i are considered
isotropic when their intrinsic deviatoric curvature Di

m = 0 (Ci
1m = Ci

2m).
For two-component membrane we should take into account also the entropy of mixing

of these two components (Equation (48)). The second part of the membrane free energy is
therefore associated with the entropy of mixing [25,89,180]:

Fmix =
kBT
a0

∫
S
[φ ln φ + (1− φ) ln (1− φ)]dS, (48)

where kB is the Boltzmann constant, T is the absolute temperature and a0 is the area of
a single nanodomain of type A or B. The free energy functional of such two-component
membrane (Equation (49)) is the sum of the energy contributions defined by Equations (44)
and (48):

F = Fb + Fmix. (49)

Figure 19 shows axisymmetric vesicle shapes calculated for different values of the re-
duced volume v by minimizing the energy functional given by Equation (49). The average
relative area density of anisotropic nanodomains A is φave = 0.15, while the remaining sur-
face area of the closed membrane shape is covered by isotropic nanodomains B. According
to the definition of the reduced volume, for v = 1, the vesicle can only be in a spherical
shape. In this case, both types of nanodomains are homogeneously mixed throughout
the surface (Figure 19). As the value of the reduced volume gets lower, different mem-
brane nanodomains start to accumulate into separate regions (Figure 19). The entropy
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contribution to the free energy functional Fmix (Equation (48)) enforces different kinds
of membrane nanodomains to intermix, for which reason the lateral segregation of the
isotropic and anisotropic nanodomains is relatively weak. Nevertheless, anisotropic nan-
odomains enforce the formation of a tubular protrusion for v = 0.87 and v = 0.75 in
Figure 19 [23].

Figure 19. Equilibrium closed membrane shapes calculated for different values of the reduced
volume v. The entropy of mixing was taken into account in minimization of the membrane free
energy. Membrane contains two types of nanodomains denoted by A (anisotropic) and B (isotropic).
Fixed value of average relative area density is φave = 0.15 for the nanodomains A and (1− φave) for
the nanodomains B. The red color (φ = 1) represents the highest possible local relative area density
(concentration) of the nanodomains A, while the local concentration of the nanodomains B is given
by (1− φ). Shapes were calculated by minimizing the energy functional given by Equation (49)
for the following values of model parameters: HB

m = 1, DB
m = 0, HA

m = 8, DA
m = 8, κA = 8 κB,

κB = 30 kBT, R0 = 250 nm and a0 = 100 nm2. Here, R0 is the radius of the sphere with the same
surface area as the surface of the investigated cell/vesicle. Adapted with permission from ref. [23].
2017 Springer Nature.

In Figure 20 we demonstrate the formation of an isotropic bud as a consequence of
highly curved isotropic nanodomains. As the average relative area density φave of highly
curved isotropic flexible nanodomains A is increased, a small spherical bud is formed.
We observe some degree of lateral segregation of the nanodomains A and B, i.e., the local
relative area density φ (concentration) of highly curved nanodomains A is increased in the
small spherical bud and decreased in the remaining part of the vesicle (Figure 20).

The effect of anisotropic saddle-like nanodomains is shown in Figure 21. As the
average relative area density φave of anisotropic saddle-like nanodomains A is increased,
an anisotropic neck connecting two parts of the vesicle is formed. We observe a high
degree of lateral segregation of nanodomains A and B. Almost all saddle-like anisotropic
nanodomains A are accumulated within the neck region, while the remaining surface area
of the cell/vesicle is covered with slightly curved isotropic components B (Figure 21).
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Figure 20. Equilibrium closed membrane shapes calculated for different values of the average relative
area density φave of highly curved isotropic nanodomains A. Membrane contains two types of flexible
isotropic nanodomains denoted by A (highly curved) and B (slightly curved). The average relative
area density of nanodomains B is (1− φave). The red color (φ = 1) represents the highest possible
local relative area density (concentration) of the nanodomains A, while the local concentration of the
nanodomains B is given by (1− φ). The entropy of mixing was taken into account in minimization
of the membrane free energy. Shapes were calculated by minimizing the energy functional given by
Equation (49) for the following values of model parameters: v = 0.95 HB

m = 1, DB
m = 0, HA

m = 16,
DA

m = 0, κA = 8 κB, κB = 30 kBT, R0 = 250 nm and a0 = 100 nm2. Here, R0 is the radius of the
sphere with the same surface area as the surface of the investigated cell/vesicle. Adapted with
permission from ref. [170]. 2020 Public Library of Science.

Figure 21. Equilibrium closed membrane shapes calculated for different values of the average
relative area density φave of anisotropic saddle-like nanodomains A. Membrane contains two types
of nanodomains denoted by A (saddle-like anisotropic) and B (isotropic). The average relative area
density of nanodomains B is (1− φave). The red color (φ = 1) represents the highest possible local
relative area density (concentration) of the nanodomains A, while the local concentration of the
nanodomains B is given by (1− φ). The entropy of mixing was taken into account in minimization
of the membrane free energy. Shapes were calculated by minimizing the energy functional given
by Equation (49) for the following values of model parameters: v = 0.8 HB

m = 2, DB
m = 0, HA

m = 0,
DA

m = 8, κA = 8 κB, κB = 30 kBT, R0 = 250 nm and a0 = 100 nm2. Here, R0 is the radius of the
sphere with the same surface area as the surface of the investigated cell/vesicle. Adapted with
permission from ref. [170]. 2020 Public Library of Science.

3. Cytoskeleton and Cell Shape
3.1. Interplay between Cytoskeleton Force and Distribution of Curved Membrane Nanodomains in
Membrane Protrusive Growth

We discuss the effect of actin cytoskeleton mechanical force on closed membrane
shapes such as cells and vesicles. Our main goal is to analyze the membrane tubular
structures generated by such force. A possible mechanism of membrane protrusion growth
is demonstrated in Figure 22. The initial membrane deformation may be generated by GM1
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aggregates and I-BAR protein domains. GM1s themselves have a curvature-generating
mechanism when they are close to each other (Figure 22) [71]. Furthermore, they may
also have an indirect impact through the recruitment of I-BAR protein domains, which
favor negative curvature [18], initially generated by GM1s. It has been shown that I-
BARs, bound to the inner membrane leaflet, can generate a negative membrane curvature
(which in turn recruits more I-BAR domains [121]) and mediate the actin nucleation
machinery [71,122,181,182]. The attached I-BAR domains may induce actin self-assembly
inside the protrusion and in this way promote the elongation or stabilization of the mem-
brane nanotubes [18,71,94]. The space inside the membrane protrusion is filled by actin
filaments in the process of stochastic polymerization [93]. It is not fully clear if the mem-
brane protrusions are pushed and deformed by the polymerizing actin filaments, or they
are only stabilized by actin filaments [18,93]. In any case, actin cytoskeleton is required for
long term stabilization of the membrane protrusions [93].

Figure 22. Schematic diagram of the possible mechanism of the membrane protrusion growth.
(a) GM1 aggregates/nanodomains with positive intrinsic curvature and I-BAR protein domains
generate the initial plasma membrane outward deformation. (b) More I-BAR domains are attracted
to the negative curvature region at the inner leaflet of the membrane. They accumulate and partially
support the initial protrusion. Actin filaments start to fill the space inside the initial protrusion
through stochastic polymerization. (c) I-BAR domain proteins bend the membrane further, while
actin filaments are filling the space inside the protrusion. The nucleation of actin filaments drives the
membrane protrusive growth, elongating or stabilizing the membrane protrusion. Adapted with
permission from ref. [71]. 2011 Dove Press.

The external force on the membrane is modelled as a rod-like structure, which grows
inside the cell/vesicle and stretches it as schematically shown in Figure 23. In numerical
simulations, this is achieved by setting the constraint on the minimal height of the closed
membrane shape. Such external force could be applied experimentally, for example by
the tip of the cantilever to which the force of the atomic force microscope is applied [41],
or it could be a consequence of growing/elongating actin cytoskeleton inside the vesicle
or cell [18,124,183]. Note that when the cell/vesicle is stretched by the rod-like structure,
the bending energy of the membrane is increased. The limitation of our simulations is that
we did not consider the competition between the membrane bending and the bending of
actin filaments or actin filament bundles [184–186], i.e., the lenght of the actin cytoskeleton
is fixed by the constraint (see Figure 23). A large increase of the membrane bending energy
as a consequence of the membrane stretching could have an effect on the length and the
shape of the actin cytoskeleton structure, e.g., it could cause the buckling effect, which
cannot be taken into account in our modelling (Figure 23) [185–187].

The effect of mechanical force on a two-component membrane is studied in Figure 23.
In this case, the membrane contains two types of nanodomains, i.e., flat nanodomains and
relatively highly curved isotropic nanodomains. Equilibrium membrane shapes are calcu-
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lated within the model introduced in Section 2.7 for a fixed value of the reduced volume v.
Without the application of actin force, the equilibrium membrane shape is composed of
a spherical bottom with an undulated (necklace-like) membrane protrusion (Figure 23a).
The two types of membrane nanodomains are not completely laterally separated. Never-
theless, the local relative area density of highly curved isotropic nanodomains is higher in
the undulated part of the membrane, which makes sense because the necklace-like part of
the membrane (two smaller spheres) is actually formed as a consequence of the presence
of highly curved isotropic nanodomains (Figure 23a). When an external mechanical force
is applied, i.e., the membrane is vertically stretched, the protrusion gradually transforms
from an undulated to tubular shape (Figure 23). The shape in Figure 23f represents almost
a limit shape, composed of a spherical bottom and a tubular protrusion. Geometry dictates
that tubular protrusion has to get thinner and longer if the closed membrane shape is
stretched and the reduced volume v remains constant [23]. Note also that the degree of
lateral phase separation of the two types of nanodomains is getting higher as the shape is
stretched. Without the external mechanical force, the isotropic membrane nanodomains can
induce/stabilize only undulated (necklace-like) protrusions (Figure 23a) [23]. Only when
undulated membrane protrusions are stretched by the mechanical force of the cytoskeleton,
they are converted into tubular protrusions (Figure 23f). In the absence of external force,
tubular membrane protrusions can be stabilized only by anisotropic curved membrane
nanodomains [23].

Figure 23. Equilibrium closed membrane shapes calculated for different lengths of the cytoskeleton
rod-like structure inside the membrane (schematically shown as a grey rod inside the profile curve
for each shape). Membrane contains two types of nanodomains denoted by A and B. Fixed value of
average relative area density is φave = 0.35 for the nanodomains A and (1−φave) for the nanodomains
B. The red color (φ = 1) represents the highest possible local relative area density (concentration)
of curved nanodomains A, while the local concentration of flat nanodomains B is given by (1− φ).
For simplicity reasons, the entropy of mixing of different membrane nanodomains was not taken
into account. Shapes were calculated within the model introduced in Section 2.7 for the following
values of model parameters: v = 0.70, HB

m = 0, DB
m = 0, HA

m = 12, DA
m = 0, κA = κB.
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3.2. Orientational Ordering of Membrane Attached Bar Domains and the Force of Cytoskeleton

Next, we shall study the combined effect of orientational ordering of membrane at-
tached BAR protein domains and cytoskeleton force on membrane shapes (see
Figures 3 and 24). The bending energy density (Equation (50)) of a flexible anisotropic
banana-like BAR protein attached to the membrane can be expressed as [18]

wbar =
KpL0

2
(C− Cp)

2, (50)

where Kp is the flexural rigidity and L0 the length of the BAR domain. Curvature preference
of the BAR domain is determined by its intrinsic (spontaneous) curvature Cp [18]. This
energy term was originally introduced in [86,188]. We assume that the protein has circular
(radial) intrinsic shape [18].

Figure 24. Schematic presentation of the single rod-like BAR domain attached to the cylindrical
surface, where R1 is the radius of the cylinder. Angle ω is the angle of the normal plane in which the
BAR domain is lying relative to the normal plane of the first principal curvature C1. C2 is the second
principal curvature of the cylinder. Adapted with permission from ref. [18]. 2016 Elsevier.

As it can be seen in Equation (50), the energy of a rod-like BAR domain depends on
its orientation ω. The orientation angle ω dependence is included in the local membrane
curvature C, which is “seen” by the attached BAR domain. It can be expressed by Euler’s
relation (Equation (51)) as:

C = H + D cos (2ω). (51)

Note that in Equation (6), ω represents the angle between the principal systems of the
tensors C and Cm, while in Equation (51), ω stands for the angle of the normal plane in
which the BAR domain is lying relative to the normal plane of the first principal curvature
C1 (see also Figure 24) [18]. Minimizing the bending energy of BAR domains (Equation (50))
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with respect to ω, taking into account Equation (51), yields the angle corresponding to
minimal wbar at given H and D (Equation (52)) [18]:

cos (2ω) =
Cp − H

D
. (52)

The total free energy of rod-like BAR domains (Equation (53)) depends on their local
relative area density (concentration) φ [18]:

Fbar =
∫

S
φwbar dS, (53)

where dS is an infinitesimal area element and the integration is performed over the en-
tire membrane surface area S. To model a lipid bilayer membrane covered with certain
concentration of anisotropic rod-like BAR domains, we use a Helfrich isotropic bending
energy density (Equation (19)) with the addition of the above described bending energy of
flexible anisotropic banana-like BAR domains (Equation (53)). Even though the membrane
contains only one type of domains, i.e., BAR domains, these domains can still have different
concentrations profiles on the membrane surface. Therefore, we should take into account
also the entropy of mixing of BAR domains. The total energy of the system (Equation (54))
can then be written as:

F = Fiso + Fbar + Fmix. (54)

Note that in this case, in Fmix (Equation (48)) φ stands for the local relative area density
(concentration) of BAR domains. At each point of the membrane surface, φ is determined in
the process of variation of the system’s free energy [18]. The rod-like proteins may represent
BAR, F-BAR or I-BAR domains, each of them with a different intrinsic curvature. Note
that BAR and F-BAR domains usually attach to the outer membrane surfaces, while I-BAR
domains bind to the inner surfaces of biological membranes [18,115] (see also Figure 22).

The influence of cytoskeleton force on the closed membrane shape, applied to the
membrane with the attached rod-like BAR domains, is presented in Figure 25. The equi-
librium shapes were determined by minimization of the free energy F (Equation (54)) for
a fixed value of the reduced volume v. We model a closed membrane shape with zero
spontaneous curvature (C0 = 0), which contains a fixed average relative area density
(concentration) of curved BAR domains. Without the application of force, BAR domains
form a relatively wide protrusion on the top (Figure 25a). The radius of the protrusion
is correlated to the intrinsic curvature of BAR domains Cp (see Equation (50)), i.e., BAR
domains with higher curvature Cp prefer to be located on thinner tubular protrusions. If the
geometry allows, BAR domains usually form these protrusion in order to fit into them [18].
BAR domains in our case have a relatively low intrinsic curvature (Cp = 3.0), therefore,
the protrusion in Figure 25a is quite wide and not very prominent. The directions of BAR
domains are schematically shown in Figure 25 as grey lines. Note that without the applica-
tion of external force, BAR domains are always oriented perpendicular to the protrusion
(Figure 25a) [18]. This theoretical prediction was recently confirmed in [132], where BAR
domain induced tubular protrusions were observed with BARs oriented perpendicular to
the axis of the protrusion. Note that in molecular dynamics simulations presented in [132],
the direct interactions between BAR domains were also taken into account.

When the force of actin filaments is applied, i.e., the membrane is vertically stretched,
the tubular protrusion has to get thinner and longer if the reduced volume is fixed
(Figure 25) [18,23]. Thinner tubular protrusion is in this case induced by the external force
of actin filaments and not by BAR domains. In order to fit into the membrane surface, BAR
domains now adjust their angle of orientation. The angle of orientation of BAR domains ω
is adjusted according to Equation (52). The thinner the tubular protrusion gets, more along
the vertical axis are the BAR domains oriented (Figure 25). The orientation of BAR domains
on tubular protrusions is therefore changed when the external mechanical force is applied
to the membrane [18]. The membrane attached BAR domains oriented at a certain angle
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ω 6= 0 may form a chiral surface structure (see for example Figure 25e). Chirality plays
an important role in many branches of science, for example in the development of thin
anisotropic nano strips that may be transformed into nanotubes [189], or in the formation
of nanotubes, which may be driven by the self-assembly of chiral amphiphiles [190,191].

Figure 25. Equilibrium closed membrane shapes calculated for different lengths of the cytoskeleton
rod-like structure inside the membrane (schematically shown as a grey rod inside the profile curve
for each shape). Membrane contains a fixed value of average relative area density (concentration) of
anisotropic rod-like BAR domains φave = 0.25. The red color (φ = 1) represents the highest possible
local relative area density (concentration) of BAR domains, while the blue color (φ = 0) represents the
surface patches with almost no BAR domains. Grey lines on the protrusions denote the directions of
the orientation of BARs. For simplicity reasons, the entropy of mixing of BAR domains was not taken
into account. Shapes were calculated within the model introduced in Section 3.2 for the following
values of model parameters: C0 = 0, v = 0.70, Cp = 3.0, KpL0/2 = kc.

3.3. Active Protrusive Force

Many cellular processes display that curved proteins, or curved membrane nan-
odomains (Figures 6 and 22), are able to use the cytoskeleton of the cell in a way to give rise
to additional protrusive forces, for example due to the polymerization of actin (Figure 22b)
but also from other mechanisms like ion pumps [19,192–194]. Such curved membrane
proteins with a convex shape can induce outwards bending of the membrane (Figure 22).
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When this budding recruits additional cytoskeletal forces which push the membrane out-
wards even further, membrane protrusions can be efficiently initiated. This coupling of
convex spontaneous curvature and actin polymerization is emerging as an efficient cellular
mechanism for the production of protrusions which are actin-based. Certain viruses are
known to exploit this mechanism during their budding from the infected cell [195,196].

Due to an active force parameter F the additional energy term (see Equation (62)
is being calculated to achieve new steady states. The results are presented in Figure 26.
The protrusive force is acting only on the areas with curved nanodomains (proteins), per-
pendicular to the inner surface where F = kT0/lmin. In comparison to Figure 17, the phase
diagram is now strikingly different. Depending on the clustering of curved nanodomains,
the protrusive force elongates the phospholipid vesicle for lower concentrations of proteins
in the membrane. The active protrusive forces promote separation and budding of the con-
vex curved nanodomains. Furthermore, an additional effect of the active forces is seen in
Figure 26 at low temperatures, where a second transition is found below the budding tran-
sition leading to a new class of shapes that was not observed in the absence of protrusive
forces (see Figure 17). The vesicles change from deformed quasi-spherical to pancake-like,
flattened shapes, where all or nearly all the nanodomains aggregate at the rim, forming
one large cluster resembling a ring. Such organization of nanodomains into a circular
rim around a flat vesicle is highly effective in stretching out the flat parts of the vesicles
(Figure 26). It was shown that flat regions are almost devoid of nanodomains, since these
regions are energetically inconvenient for the curved nanodomains [24]. The stretching of
the membrane in these regions also suppresses aggregation of the curved nanodomains,
resulting in a high stability of the rim aggregate. Necklace-like structure occurs at higher
nanodomains concentration. In constrast with the cases without protrusive forces (see
Figure 17), the beads are formed also at higher membrane stiffness when there is an addi-
tional protrusive force acting on the curved nanodomains (Figure 26).

To conclude, flattened pancake-like shapes thus depend on the curved nanodomain
concentration and membrane stiffness. By varying the model parameters we can predict
similar vesicle shapes as they are found in nature. Figure 27 shows a scanning microscope
image of a vesicular structure from a blood isolate. The flattened vesicle budding at the rim
of the disc shape may be caused by the accumulation of curved nanodomains as predicted
in Figure 26. If the nanodomain density is increased even further, budding can occur on
the flat sides of the disc due to embedded protein nanodomains (Figures 26 and 27). Two
mechanisms may thus drive the budding process, the non-homogenous lateral distribu-
tion of nanodomains with non-zero intrinsic curvature (see Figure 14b,c) and the active
protrusive force (Figure 26) [12,15,16,24,25,32,40].

Inverting the active force in MC simulations to act into the membrane interior with
nanodomains with negative intrinsic curvature produces interesting results (see Figure 14).
Without the active force (Figure 14a) we predicted the inverted budding into endovesicles
connected to the parent membrane by a thin neck. However, when the active force is added,
a large invagination is predicted (see Figure 14b,c). Note that the neck area in Figure 14a is
free of curved nanodomains. The membrane curvature in the neck region is anisotropic and
therefore not favorable for highly curved isotropic nanodomains/inclusions. For long term
stable shapes that feature a connective neck between the bud and the parent membrane,
we would have to take into account the role of anisotropic saddle-like nanodomains, which
would assemble in the neck region [15,81,89,168,169] as shown in Figure 21 [170].
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Figure 26. MC predicted vesicle shapes in thermal equilibrium with curved nanodomains and active protrusive force that is
perpendicular to the surface and points outward at the positions of curved nanodomain clusters (red surface) with intrinsic
curvature c0. The blue surface represents the nanodomain-free lipid bilayer and has zero intrinsic (spontaneous) curvature.
In the corresponding cluster-size distributions, the y-axis represents the ensemble averaged number of nanodomain clusters
of each size, while the x-axis is the size of the cluster of inclusions. Adapted with permission from ref. [24]. 2019 Royal
Society of Chemistry.
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Figure 27. Scanning electron microscope image of a vesicular structure found in the isolate from
peripheral blood of a healthy human donor. Fresh blood taken into a vacutube with anticoagulant
trisodium citrate was centrifuged at 1500× g to sediment erythrocytes. The upper plasma, poor with
platelets was then repeatedly centrifuged at high speed (17,570× g) and washed with phosphate and
citrate buffered saline to isolate fragments of blood cells. Some residual cells, mostly platelets are
usually also present in the isolate. The size and the shape of the structure indicates that it derives
from a residual platelet. It is however likely that the assembly would integrate parts of membranes
of other cells, e.g., erythrocytes and leukocytes during the processing of blood. Similar structures
(with budding edge) of different sizes are often found in microvesicle isolates from blood. (Top bar
equals 500 nm).

4. Discussion and Conclusions

We described the impact of different membrane curved nanodomains and passive
and active forces of cytoskeleton and membrane skeleton on closed membrane shapes and
membrane budding. Our main interest was the role of passive and active forces in the
formation of tubular protrusions on the membranes of cells/vesicles. Such forces may be
a consequence of elongating actin cytoskeleton inside the closed membrane [18,71,124].
However, it was shown that membrane tubular protrusions can be induced also in the
absence of force if the membrane contains anisotropic curved nanodomains [23]. Note
that even in that case, actin filaments may fill the space inside the tubular protrusion and
promote a long term stabilization of the protrusion (Figure 22) [71,93].

First, we studied the effect of different types of curved nanodomains on closed
membrane shapes in the absence of cytoskeleton force. We presented how anisotropic
cylinder-like nanodomains may enforce the formation of a tubular protrusion in Figure 19.
In Figure 20, we demonstrated the formation of an isotropic bud as a consequence of highly
curved isotropic nanodomains. We presented also the effect of anisotropic saddle-like
nanodomains, which facilitate the formation of anisotropic neck connecting two parts of
the vesicle (Figure 21). In this case, anisotropic saddle-like nanodomains assemble in the
neck region and enhance the long term stabilization of the neck connecting the bud and
the parent membrane [15,81,89,168,169].

Next, we demonstrated the effect of actin filaments force in the case of a two com-
ponent membrane with flat and highly curved isotropic protein induced nanodomains
(Figure 6). Without the force of actin filaments, the membrane is composed of a spherical
bottom and an undulated (necklace-like) protrusion (Figures 18 and 23) induced by highly
curved isotropic membrane nanodomains. Isotropic nanodomains can induce/stabilize
only undulated membrane protrusions but not membrane tubular protrusions [23]. If an
undulated membrane protrusion is stretched by a mechanical force, it is transformed into
a tubular protrusion (Figure 23). In this process, the lateral separation of the different
types of membrane components and nanodomains becomes more pronounced. When
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the cell/vesicle membrane is stretched, tubular protrusion becomes thinner and longer
(Figure 23). The actin force can in this way induce the growth of membrane tubular
protrusions on closed membrane shapes (Figure 23) [23].

Furthermore, the effect of cytoskeleton force on a membrane with anisotropic rod-like
BAR domains is presented in Figure 3. Due to their anisotropic properties, BAR domains
are able to induce membrane tubular protrusions even in the absence of cytoskeleton force
(Figure 25a). Actin cytoskeleton stretching force can induce even more pronounced (longer
and thinner) tubular protrusions, leading to the change of the average orientation angle
of BAR domains on the protrusion (Figure 25) [18]. Note that when the membrane is
stretched, the cylindrical membrane protrusion has to become longer and thinner in order
to keep the constant value of the reduced volume of the cell/vesicle. When that happens,
the principal curvature of the membrane tubular protrusion C2 = 1/Rp (Rp is the radius of
the protrusion) becomes larger than the intrinsic curvature of BAR domains Cp. In order
to fit to the membrane and lower the energy, BAR domains now adjust their angle of
orientation (Figure 25) (see also Equation (52)). Note that without the force, BAR domains
would never induce a protrusion with larger curvature than their own intrinsic curvature
Cp because that would not be energetically favorable. Therefore, only mechanical force is
able to induce the change of orientation angle of BARs [18].

It is still not fully understood how the membrane protrusions are actually induced
or stabilised by a mechanical force of actin filaments [18,93]. In this review described
mechanisms of membrane protrusion growth could be tested experimentally by measuring
the average orientation of BAR domains on the membrane tubular protrusions. If the
average orientation of the membrane attached BAR domains would be different from
ω = 0 (see Figure 24) in the absence of the experimentally induced external force, that
would mean that the role of actin filaments is not only to stabilize, but also to physically
stretch the membrane and induce the process of the protrusion growth [18].

We have also explained how the stability of the echinocyte shape of RBCs is modulated
by competition between the membrane Helfrich local bending energy and the shear energy
of the membrane skeleton [44,45]. We have shown that the spiculated RBC shape (Figure 12)
can be determined by minimization of the sum of shear and bending energies. Discocyte
and echinocyte shape transformation of RBCs are predicted to be driven by changing the
optimal area difference between the lipid monolayers [26]. The optimal area difference is
determined through the differences in the area per molecule, the difference in the number
of molecules and the difference in the intrinsic molecular shapes in the inner and the outer
monolayer [28,164].

We further presented the stability analysis of competition between prolate and oblate
(discocyte) RBC shapes. The existing theoretical models [46,60,72,73,140,154] fail to explain
a relatively broad range of reduced volume values for which discocyte red blood cells are
experimentally observed [150]. We demonstrated that by taking into account the in-plane
orientational ordering of membrane components with direct interactions and the extrinsic
(deviatoric) curvature elasticity, the volume range of stable discocyte RBC shapes could be
significantly increased [137] (Figure 11). Nematic-like orientational ordering in RBC mem-
brane could be present for example due to lipid anisotropy (Figures 1 and 4) and/or due
to protein induced anisotropic membrane nanodomains (Figures 6, 7 and 10) [12]. Wide
stability range of calculated discocyte RBC shapes (Figure 11) due to extrinsic (deviatoric)
term in the free energy expression is a consequence of their unique shape. In the equato-
rial region of discocytes, the difference between the two principal curvatures is large so
the extrinsic (deviatoric) term enforces strong orientational order in that region, which
contributes to the lower total free energy of discocyte shape [137].

We showed that vesicle spherical or necklace protrusion growth can be predicted
within a simple analytic theory of self-assembly of isotropic curved membrane nan-
odomains [26,84]. If isotropic curved membrane nanodomains are assumed to be lat-
erally mobile throughout the membrane, we showed that above a critical concentration
of nanodomains protrusion growth is energetically favorable. At low densities of curved
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membrane nanodomains and low temperature, the vesicle equilibrium shapes remain
quasi-spherical. Higher densities of curved membrane nanodomains result in an increase
of cluster sizes, promoting budding and protrusion growth on the membrane. An example
of such a budding promotion can be seen in Figure 20. With increasing fraction of mem-
brane constituents that favor strong curvature, a budding of the smaller sphere is promoted
with a notable redistribution of components.The theory of self-assembly is also in good
agreement with Monte-Carlo (MC) simulations of three-dimensional equilibrium closed
shapes of vesicles (Figure 17).

Additionally, we have presented the results of vesicle steady-states with active force
that acts at the locations of curved nanodomains (Figure 22). When the curved nan-
odomains are isolated or accumulated in very small clusters, the membrane is relatively flat
and the active protrusive force stimulates the aggregation of small clusters of curved nan-
odomains, since the active force points at the outwards normal at each curved nanodomain,
thereby promoting the outwards deformation induced by the curved nanodomain. How-
ever, for larger clusters of highly curved nanodomains, the active forces point in various
directions, which inflates and deforms the cluster. The presence of the active protrusive
forces may give rise to the formation of aggregates of curved nanodomains and to budding
at higher temperatures and lower average curved nanodomain densities, compared to the
passive system in thermal equilibrium (no active forces). The more robust aggregation
and budding as a result of the recruited cytoskeleton active forces may have important
consequences for different biological processes, like budding of viruses and initiation of
cellular protrusions during development and cell motility.

5. Materials and Methods
5.1. Calculation of Axisymmetric Closed Membrane Shapes

In this Subsection we discuss the method used to calculate equilibrium axisymmetric
closed membrane shapes presented in Figures 11, 19–21, 23 and 25. These shapes are
assumed to have the rotational symmetry about the vertical z-axis. In order to represent
the surface of axisymmetric closed membrane shapes, we need to define a profile curve
in the r − z plane (Figure 28). The surface of the cell/vesicle is constructed by rotating
that profile curve about the z-axis by the angle ϕ = 2π. The profile curve is parame-
terized with the angle Θ(s) of the line tangent to the profile curve relative to the plane
that is perpendicular to the axis of rotation z. Here, s stands for the arc length of the
profile curve [197] (Figure 28). For a given function Θ(s), the shape profile radius r(s)
(Equation (55)) and the height z(s) (Equation (56)) are calculated according to [18,23]:

r(s) =
∫ s

0
cos(Θ(s′)) ds′, (55)

z(s) =
∫ s

0
sin(Θ(s′)) ds′. (56)

To describe the shape contour Θ(s) (see Figure 28) we use a function approximated by
the Fourier series (Equation (57)) [198],

Θ(s) = Θ0
s

Ls
+

N

∑
i=1

ai sin(
π

Ls
i · s), (57)

where Ls is the length of the shape profile (Figure 28), N is the number of Fourier modes and
ai are the Fourier amplitudes. To ensure that the axisymmetric membrane shape is closed
and smooth, the following boundary conditions are applied: Θ(0) = 0, Θ(Ls) = π, r(0) =
r(Ls) = 0. In Equation (57), Θ0 is the angle at the north pole of the vesicle (Figure 28), Θ0 =
Θ(Ls) = π [18,23]. In analogy to the area density profile for laterally separated mixtures,
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we assume that the local relative area density of the nanodomains A (Figures 19–21 and 23)
or BAR domains (Figure 25) has the form (Equation (58)) [89,199,200]:

φ(s) =
(

φA
2 − φA

1

)
[− tanh(χ(s− s0)) + 1]/2 + φA

1 , (58)

where the cell/vesicle surface is divided into two distinct regions, characterized by the
minimal and the maximal local area densities of the nanodomains A or BAR domains,
φA

1 and φA
2 , respectively [18,23]. The parameters χ and s0 determine the width and the

position of the border between those two regions [89,199,200]. In calculations presented
in Figures 19–21, 23 and 25, we used a constraint on average relative area density (concen-
tration) of the components A (Figures 19–21 and 23) and BARs (Figure 25). The average
relative area density φave (Equation (59)) is calculated as the following integral over the
whole membrane surface:

φave =
∫ 2π

0
dϕ

∫ Ls

0
φ(s)r(s)ds /S, (59)

where S is the surface area of the cell/vesicle [18,23]. Note that in the case with membrane
attached BAR domains, the remaining surface area of the vesicle (not covered with BARs)
is not covered by anything, while in the case of a two-component membrane, the remaining
surface area (not covered by the component A) is fully covered by the component B.

Figure 28. The shape cross-section in r− z plane. The shape profile radius r(s) and the height z(s) at
the given arc length s are calculated from Θ(s) via Equations (55) and (56). Ls is the length of the
shape profile and ϕ is the angle of rotation around the z-axis.

The main focus of this paper is the impact of external actin cytoskeleton force on
cell/vesicle shapes. Actin cytoskeleton is modelled as a rod-like structure, which stretches
the membrane from the inside (see Figures 23 and 25). To study the shapes of cells/vesicles
elongated by an external force, we add a constraint of minimal vertical distance between
the poles of the shape [18,23,197,200].

By taking into account the Equations (57) and (58), the minimisation of the free energy
functional (Equations (49) and (54)) is replaced by the minimisation of function with many
variables. In our case, the variables are the Fourier amplitudes ai, the shape profile length
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Ls, and the parameters χ, s0, φA
2 , φA

1 . The key parameters involved in most of the membrane
free energy functionals, the principal curvatures C1 and C2, for axisymmetric shapes, are
given as dΘ(s)

ds and sin(Θ(s))
r(s) , respectively [18,23].

The equilibrium closed membrane shapes are obtained by numerical minimisation
of the membrane free energy functional F (see Equations (49) and (54)) at non linear
constraints for the reduced volume v, the minimal vertical distance between the poles
of the shape, and the average relative area density of membrane components (either the
nanodomains A or the BAR domains) φave [18,23]. Functions Θ(s) and φ(s) are obtained
as a result of the described minimisation procedure. Function Θ(s) describes the shape
of the cell/vesicle, while function φ(s) describes the relative area density (concentration)
distribution of the membrane components on the membrane surface (BARs, lipids or
nanodomains A and B) [18,23].

5.2. Monte-Carlo Simulations of Closed Membrane Shapes

As an example of another approach to the modelling of closed membrane shapes,
we introduced the triangulated mesh model for the membrane [201]. Simulations using a
Metropolis-Hastings Monte-Carlo method [12,24,201,202] may serve as a basic approach
for determination of vesicle shape development. The model for the discretization of a
closed vesicle surface is a triangulated mesh, consisting of vertices, connected with N bonds
of length between dmin and dmax = 1.7 dmin, forming triangles on the surface. The bilayer
membrane can be treated in the first approximation as a two dimensional liquid layer [203].

The closed vesicle shape is developed into a thermal equilibrium state. The shape
evolution is measured in Monte-Carlo sweeps (MCSs). One MCS consists of an individual
move of each of the N vertices by a random displacement in the sphere with a radius
s = 0.15 dmin—we will refer to this action as the vertex move. To preserve membrane
“fluidity”, bond flipping is maintained within a triangulated network. In each MCS,
the moving of the vertex attempt is followed by 3N attempts to flip a bond chosen at
randomly. A single bond flip includes four vertices of two neighboring triangles. The tether
between two vertices is cut and then reestablished between the other two vertices which
were initially unconnected (for details see [202]). Each individual Monte-Carlo step (either
vertex move or bond flip) is accepted with a probability min[1, exp (−∆W/kT)] according
to Metropolis-Hastings algorithm, where ∆W is the change of energy due to the vertex
move or bond flip. The main parameter of the model that defines mechanical bilayer
properties is the bending rigidity constant.

The energy is a sum of three components (Equation (60)):

W = Wb + Wd + WF, (60)

where Wb is the local bending energy of the membrane, the energy of the direct interaction
between membrane nanodomains with the given intrinsic curvature (vertices) is Wd and
WF is the energy due to active force acting on the membrane.

The standard Helfrich expression is used for the bending energy Wb of the mem-
brane [73] and rewritten for a tensionless membrane (Equation (15)) in integral form with
mean curvature expressed as individual principal curvatures. The membrane keeps fixed
topology, so the Gaussian curvature contribution to the change of bending energy is left
out from the expression.

In the model the attraction force between the neighboring membrane nanodomains/
inclusions (vertices) with intrinsic curvature C0 contribute to an additional energy term
(Equation (61)) [24]:

Wd = −w ∑
i<j
H(r0 − rij), (61)

where w marks a direct interaction constant between two neighboring nanodomains and
is directly proportional to the strength of interaction. The energy is summed over all
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nanodomain pairs where rij is their in-plane distance, andH(r) is a Heaviside step function.
The range of direct interaction is given by r0.

The energy contribution of the local protrusive active forces (Equation (62)) can be
decribed as [24]:

WF = −F ∑
i

n̂i · xi (62)

where the magnitude of the force is F, n̂i is the normal facing outwards to the membrane
at the location of the i-th vertex (i-th nanodomain) and xi is the position vector of the i-th
vertex (inclusion). The sum runs over all nanodomains/inclusions in the membrane.
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connections mediated by nanotubular structures. Biophys. J. 2008, 95, 4416–4425. [CrossRef]
68. Liese, S.; Carlson, A. Membrane Shape Remodeling by Protein Crowding. bioRxiv 2020. [CrossRef]
69. Iglič, A.; Hägerstrand, H.; Bobrowska-Hägerstrand, M.; Arrigler, V.; Kralj-Iglič, V. Possible role of phospholipid nanotubes in
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components and raft formation in cylindrical membrane protrusions. J. Theor. Biol. 2006, 240, 368–373. [CrossRef]
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197. Góźdź, W.T. Spontaneous curvature induced shape transformation of tubular polymersomes. Langmuir 2004, 20, 7385–7391.

[CrossRef]
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201. Penič, S.; Iglič, A.; Bivas, I.; Fošnarič, M. Bending elasticity of vesicle membranes studied by Monte Carlo simulations of vesicle

thermal shape fluctuations. Soft Matter 2015, 11, 5004–5009. [CrossRef]
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