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Technical note

Cylindrical shapes of closed lipid bilayer structures correspond to an
extreme area di!erence between the two monolayers of the bilayer
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Abstract

The shapes of extreme area di!erence between the outer and the inner layer (*A) of the closed lipid bilayer structures at "xed
membrane area (A) and "xed volume (<) are determined by stating and analytically solving a variational problem for axisymmetric
shapes. It is shown that the spheres with at most two di!erent radii and the cylinder are the solutions of this variational problem.
The cylinder ended by a hemisphere on each end is the shape combined from these solutions and is therefore, itself the shape of the
extreme *A at "xed< and A. The related cylindrical shapes of stearoyl}oleoyl}phosphocholine vesicles are shown. ( 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

The occurrence of red blood cell shape (RBC) changes
and the vesiculation of RBC membrane have been ob-
served in some human blood disorders (Palek, 1987;
Wagner, 1986). Therefore better understanding of phys-
ical mechanisms determining RBC shape and RBC mem-
brane vesiculation may help to devolop a new medical
treatment to reduce some complications of blood dis-
orders (Wagner, 1986). The human RBC has no internal
structure, therefore its shape at given cell volume is
determined solely by the physical properties of the cell
membrane (Evans, 1974; Deuling and Helfrich, 1976).
The red blood cell membrane is essentially composed of
two parts, the bilayer and the continuous network of
proteins * the membrane skeleton (Evans and Skalak,
1980). Although the RBC membrane is structurally and
mechanically more complex than that of the closed bi-
layer lipid vesicles (Evans and Skalak, 1980; Sackmann,
1994; Iglic\ , 1997), the study of the shape changes of lipid
vesicles can be directed to many aspects of the RBC
behaviour (Svetina and Z[ eks\ , 1996).

The transformations beetwen the shapes of lipid vesicle
or cell with no internal structure can be qualitatively well
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explained within the bilayer couple model (Sheetz and
Singer, 1974; Evans, 1974). In the view of this model the
di!erence between the outer and the inner membrane
lipid layer area of the membrane (*A) is taken to be an
important parameter which in#uences the cell shape
(Svetina and Z[ eks\ , 1996; Seifert, 1997; Iglic\ et al., 1998b).

Within the bilayer couple model the class of cell or
vesicle shapes of a "xed area A contains all the stationary
shapes of the same symmetry that can be continuously
transformed one into other by continuously varying the
two model parameters, i.e. the cell volume < and the
di!erence between the areas of the two membrane lipid
layers *A. The shapes of the extreme < at given A and
*A (Svetina and Z[ eks\ , 1996) or the shapes of the extreme
*A at given < and A (Iglic\ et al., 1998a) were de"ned as
the shapes corresponding to the boundaries of certain
classes of the phase diagram of possible shapes. We call
these shapes the limit shapes (Seifert et al., 1991; Svetina
and Z[ eks\ , 1996). It was shown analytically by means of
solving a variational problem that the limit shapes can be
composed of spheres or sections of spheres, where at
most two di!erent radii are possible (Svetina and Z[ eks\ ,
1996; Iglic\ et al., 1998a). It was recently indicated that in
addition to these, the limit shapes can be composed also
from cylindrical and toroidal parts (Iglic\ et al., 1998a;
HaK gerstrand et al., 1998).

In this paper we theoretically describe the limit shape
of closed bilayer structures composed of the cylinder
ended with two hemispheres. Numerical calculations
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indicate the existence of such shapes at the boundary of
the dumbbell class (Seifert et al., 1991; Svetina and Z[ eks\ ,
1991). However, no analytical proof for the existence of
the cylindical limit shape has yet been o!ered. In this
work it is shown analytically as well as calculated numer-
ically that the cylinders ended with hemispheres are the
limit shapes of prolate class of shapes. Moreover, experi-
mental evidence of the existence of such limit shapes in
the case of stearoyl}oleoyl}phosphocholine (SOPC) ves-
icles is given.

2. Materials and Methods

2.1. Experiment

SOPC was purchased from Avanti Polar Lipids (Al,
USA) and used without further puri"cation. We dis-
solved the lipid powder in a mixture of chloroform and
methanol (1 : 1 v/v) to 1 mg/ml and stored it at 258 K.
Giant vesicles were prepared by modi"ed method of
Reeves and Dowben (Reeves and Dowben, 1969). Ap-
proximately 50 ll of lipid solution was spread on the
te#on disk and left for at least 2 h under low vacuum for
the solvent to evaporate. The te#on disk with lipid "lm
was placed at the bottom of 50 ml beaker and exposed to
a gentle stream of water saturated nitrogen for 30 min.
Then, 100 mM glucose solution was added and left to
stand for some days at room temperature. The suspen-
sion with SOPC vesicles, kept in a glass chamber at room
temperature, was observed by a phase contrast micro-
scope (Obj.Ph 3, NA 1.3, 100], Oil).

2.2. Possible limit shapes of vesicles corresponding
to extreme values of *A

In order to obtain the limit vesicle shape of an extreme
*A (Eq. (9)) at a given A and <, a variational problem is
stated by constructing a functional (Iglic\ et al., 1998a)

Q"*A!j
A AA!PdAB!j

VA<!Pd<B , (1)

where j
A

and j
V

are the Lagrange multipliers which can
be determined from the constraints for the membrane
area and the enclosed vesicle volume. The analysis is
restricted to axisymmetric vesicle shapes where the sym-
metry axis of the vesicle coincides with the x-axis, so that
the shape is given by the rotation of the function y(x)
around the x-axis. The variation dQ"0 is performed by
solving the corresponding Euler}Poisson equation (Iglic\
et al., 1998a)

2yA(1#y@2)~2#j
A
((1#y@2)~1@2!yyA(1#y@2)~3@2)

!j
V
y"0, (2)

where j
A

and j
V

are renormalized. It has been shown
(Iglic\ et al., 1998a) that the above Eq. (2) can be solved by
the ansatz for the sphere with at most two di!erent radii,

R
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"2/(j
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)1@2), (3)

as well by the the ansatz y"j
A
/j

V
representing the

cylinder of the radius

r"j
A
/j

V
. (4)

Di!erent combination of the above solutions are pos-
sible, provided that the combined shape ful"lls the con-
straints and possible additional conditions. One of the
possible combined shapes of the extreme *A at "xed
< and A is the cylinder ended by a hemisphere on each
end of the cylinder. For such combined shape the Lag-
range multipliers are interdependent, j2

A
"2j

V
. The

shape is characterized by two parameters: the radius of
the cylinder which is equal to the radius of the hemi-
sphere (r) and the length of the cylinder (l) which can be
determined from the contraints for the vesicle volume
and area. As the number of the parameters in this case
equals the number of the constraints, the cylinder ended
with hemispheres ful"lls the requirement for the limit
shape corresponding to the extreme *A (Elsgolc, 1961).

To calculate the parameters of the cylinder ended with
hemispheres, dimensionless quantities are introduced.
For the unit length, the radius of a sphere R

S
with the

membrane area A is chosen. In accordance with the
de"nition of the radius R

S
, the relative area a"A/4nR2

S
is equal to one, the relative volume is v"3</4nR3

S
and

the relative area di!erence is *a"*A/8nhR
S
. At a given

relative volume v the radius r and the length of the
cylinder l can be determined from the constraints for the
relative area and the relative volume of the vesicle:

1"r2#rl/2, (5)

v"r3#3r2l/4, (6)

where r and l are measured in the units of R
S
.

In experimental procedures the relative area di!erence
*a and the relative volume v of the arti"cial lipid vesicles
can be varied continuously by changing the temperature
or osmotic conditions (Helfrich, 1973; Berndl et al., 1990;
KaK s and Sackmann, 1991; Seifert et al., 1991). Also, the
relative area di!erence *a can be modi"ed by redistribu-
tion of lipids from one monolayer to another by applying
a transmembrane pH gradient (Farge and Devaux, 1992).

3. Results

Fig. 1 shows the values of *a of the cylinder ended with
hemispheres in dependence of its relative volume v. It can
be seen in Fig. 1 that the length of the cylindrical part of
the vesicle l increases while the radius r decreases with
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Fig. 1. Relative area di!erence *a of the cylindrical vesicle ended with
hemispheres in dependence of the relative volume (v). Figure also shows
some characteristic vesicle shapes.

decreasing v. It can be also seen in Fig. 1 that the relative
area di!erence *a increases with decreasing relative ves-
icle volume v. Consequently, the enclosed relative volume
of the cylindrical vesicle ended with hemispheres should
be as small as possible in order to render the value of *a
the largest.

The above theory gives the shapes at the boundary of
the phase diagram of the possible shapes. Due to con-
"rmation it is of convenience to "nd a sequence of shapes
within a given class of vesicle shapes that leads to the
boundary of the phase diagram upon a continuous
change of the relative area di!erence *a. Fig. 2 shows
that the cylindrical vesicle shape ended with hemispheres
represents the lower limit of a sequence of the prolate
vesicle shapes with equatorial mirror symmetry. The
shapes B}E in Fig. 2 are obtained numerically by solving
the variational problem of varying the local bending
energy for the axisymmetric vesicle shape at "xed A, <
and *A (Deuling and Helfrich, 1976; Svetina and Z[ eks\ ,
1996; Seifert, 1997). The corresponding di!erential equa-
tion for the axisymmetric vesicle shape is given in the
appendix. The shape F was calculated numerically from
Eqs. (5) and (6) using the tangential method. The limit
shape A was calculated analytically from the constraints
for the relative area and the relative volume of the limit
vesicle shape composed of three spherical vesicles with
the same radius connected by the ideal necks.

The theoretically predicted cylindrical (prolate) shapes
are compared with the observed ones. Fig. 3 shows the
phase contrast micrograph of a SOPC cylindrical vesicle.
The vesicle shape remained stable for at least half an
hour. In Fig. 4 shape transformation from initially un-
dulated shape (Fig. 4A) to a more cylindrical shape

Fig. 2. The sequence of the prolate vesicle shapes with equatorial
mirror symmetry for v"3~1@2. The shape A represents the limit shape
composed of spheres of equal radii while the the shape F is the limit
shape composed of the cylinder ended with hemispheres on both ends.

Fig. 3. Phase contrast micrograph of the SOPC cylindrical vesicle.

Fig. 4. Phase contrast micrographs of the SOPC prolate vesicle at two
di!erent times. The undulated shape of the vesicle (A) has larger *A
than the cylindrical shape (B).

(Fig. 4B) took place within some minutes. We believe that
the shape change occured due to the decrease of *A
caused by the drag of the lipids from the outer membrane
layer by the glass of the chamber. After the vesicle had
reached the cylindrical shape it remained unchanged for
half an hour and was no longer observed. It can be seen
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that good qualitative agreement between the observed
shape transformations (Fig. 4) and the calculated shape
transformations of the prolate undulated vesicle (Fig. 2)
induced by decreasing of *A is obtained.

4. Conclusions and Discussion

The described limit cylindrical vesicle shape composed
of a cylindrical part and two hemispheres renders a dis-
continuity of the principal curvature along the meridians
at the junction between the cylindrical part and the
spherical part (Fig. 2F). Therefore, in reality, the ob-
served cylindrical vesicle shapes (Fig. 3) never reach the
exact limit cylindrical shape ended with hemispheres.
However, they are very close to the calculated shape E in
Fig. 2 where the discontinuities at the cylindrical}spheri-
cal junction are smoothened out, i.e. the radius of the
cylinder smoothly ends by two caps of a slightly enlarged
extension perpendicular to the cylinder axis.

The prolate shapes of the vesicle at given A, *A and
< (Fig. 2) was determined by minimization of the local
bending energy. Including the nonlocal bending energy
(Evans and Skalak, 1980) in the minimization procedure
would not change the calculated shape at given *A, only
the total energy of the vesicle membrane would be di!er-
ent (Svetina and Z[ eks\ , 1996; Iglic\ et al., 1998b). Including
some other contributions to the membrane free energy
such as the energy due to inhomogeneous distribution of
the membrane components (Lipowsky, 1993; Kralj-Iglic\
et al., 1996) would in#uence also the calculated equilib-
rium vesicle shape at given *A. However, the limit shape
corresponding to the extreme *A would remain the
same.

The spherical and the cylindrical limit shapes and their
possible combinations are not the only possible limit
shapes of the extreme *A. We have recently shown that
the torus and the torocyte shapes (HaK gerstrand et al.,
1998) are also the shapes of the extreme *A.

In conclusion, we have shown analytically for the "rst
time that the vesicle shape composed of the cylinder
ended with two hemispheres is the limit vesicle shape
corresponding to the extreme value of *A. The related
structures in the case of the SOPC vesicles were observed
(Figs. 3 and 4). On the basis of the presented results it can
be suggested that while describing the boundaries of the
phase diagram of the vesicle shapes the cylindrical limit
shapes and their combinations with spherical shapes
should also be considered in addition to the previously
described spherical and toroidal limit shapes.
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Appendix A

The vesicle shape with minimal local bending energy
(Deuling and Helfrich, 1976)

=
"
"1

2
k
#P(C1

#C
2
)2 dA. (7)

at given A, < and *A is obtained by minimizing the
functional (Deuling and Helfrich, 1976; Svetina and Z[ eks\ ,
1996)

F"=
"
!j

A
A!K

V
<!K**A, (8)

where the Lagrange multipliers K
A
,K

V
and K* can be

determined from the constraints for the area, volume
and area di!erence. Here k

#
is the local bending modulus

of the membrane, C
1

and C
2

are the principal mem-
brane curvatures. Integration in Eq. (7) is performed
over the bilayer neutral surface area of the segment.
Since the distance between the neutral surfaces of
the bilayer lea#ets (h) is much smaller than the di-
mensions of the vesicle, the area di!erence *A can be
written as

*A"hP(C1
#C

2
) dA. (9)

where C
1

and C
2

are de"ned so that they are positive for
a sphere.

In the following analysis dimensionless quantities are
introduced. To describe the equilibrium shape, we intro-
duce independent coordinates o(s) and z(s) (JuK licher and
Seifert, 1994) where o is the distance between the sym-
metry axis and a certain point on the contour, z is the
position of this point along the symmetry axis and s is the
arclength along the contour. These coordinates are nor-
malized with respect to R

S
. The angle t(s) made by

surface normal and z axis is de"ned by the equation tan
t"dz/do (Deuling and Helfrich, 1976).

The bending energy =
"

and the functional ¸ are
normalized relative to the bending energy of the sphere
8nk

#
:

f"F/8nk
#
"w

"
!j

A
a!j

V
v!j**a, (10)

where w
"
"=

"
/8nk

#
and the new Lagrange multipliers

are j
A
"K

A
R2

4
/2k

#
, j

V
"K

7
R3

4
/6k

#
and j*"K*hR

4
/k

#
.

The restriction for the geometrical relations between the
angle t and the coordinate o is taken into account by
introducing an additional Lagrange multiplier c(s)
(Heinrich, 1991; JuK licher and Seifert, 1994). Using the
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de"nition f":¸ ds, where

¸"(o(dt/ds)2#sin2 t/o)#j
A
o/2#3j

V
o2 sin t/4

#j*(o dt/ds#sin t)#c(do/ds!cos t), (11)

the Lagrange}Euler equations for the described varia-
tional problem can be then written as

du/ds"sin t cos t/o#3j
V
o2 cos t#4c sin t, (12)

dc/ds"(u2!sin2 t)/8o2#j
A
/2#3j

V
o sin t/2

#j*u/4o, (13)

dt/ds"u/o, (14)

do/ds"cos t. (15)

In Eqs. (12)}(14) the function u is de"ned as

u"o dt/ds. (16)

Eqs. (12)}(16) are solved numerically as described in
detail elsewhere (Heinrich, 1991).
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