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Like-charged macroions in aqueous electrolyte solution can attract each other because of the presence of
inter- and/or intramolecular correlations. Poiss@voltzmann theory is able to predict attractive interactions

if the spatially extended structure (which reflects the presence of intramolecular correlations) of the mobile
ions in the electrolyte is accounted for. We demonstrate this for the case of divalent, mobile ions where each
ion consists of two individual charges separated by a fixed distance. Variational theory applied to this symmetric
2:2 electrolyte of rodlike ions leads to an integro-differential equation, valid for arbitrary rod length. Numerical
solutions reveal the existence of a critical rod length above which electrostatic attraction starts to emerge.
This electrostatic attraction is distinct from nonelectrostatic depletion forces. Analysis of the orientational
distribution functions suggests a bridging mechanism of the rodlike ions to hold the two macroions together.
For sufficiently large rod length, we also observe “overcharging”, that is, an over-compensation of the macroion
charges by the diffuse layer of mobile rodlike ions. Our results emphasize the importance of the often rodlike
internal structure that condensing agents such as polyamines, peptides, or polymer segments exhibit. The
results were compared with Monte Carlo simulations.

1. Introduction individual charges well-separated from each other and with

Electrostatic interactions between charged macroions in POSSibly additional internal ionic degrees of freedom.
electrolyte solutions are omnipresent in colloid science, cellular The observation of attractive interactions between like-
biology, and technological applications; an extensive body of charged macroions in aqueous solution has initiated considerable
studies, both experimental and theoretical, eXigtectrolytes theoretical interest. One reason is that the mean-field level
consisting of multivalently charged ions are among the most theoretical description, PoisseBoltzmann theory, does not
interesting systems as they are often found to mediate attractivepredict attraction between equally charged surfa@é&sdence,
interactions between like-charged macroions. A well-docu- in order to obtain attraction, correlations need to be included.
mented example is the condensation of DNA by a multitude of The fact that interionic correlations, correlations between mobile
condensing agents such as the polyamines spermine andons, can lead to attraction was realized early by Kirkwood and
spermidine, cationic polypeptides or proteins, multivalent metal Shumake¥ and Oosawa; later studied by Monte Carlo (MC)
cations?3and nanoparticlesSome of these condensing agents Simulations* and various other methods:*” A simple inter-
can have a variable shape as is the case for cationic amphiphilegretation of the mechanism that leads to attraction can be given
or polymers. In addition, they are often able to adjust their inthe low-temperature limit where condensed counterions form
charge distribution, even if subjected to the hypothetical two-dimensional Wigner crystals on the surface of each mac-
constraint of a fixed shape. For example, the lipids in mixed roion. Interlocking of the crystals then gives rise to a short-
cationic membranes are mobile and thus may optimize their range attractive force. However, Linse has shown that correlation
lateral distribution through a diffusive proceés€n the other  attraction occurs even if no Wigner Crystal arrangement is
hand, in certain cationic polymers such as polyethylenimine present?® Experimentally observed attractive forces, such as
(PEI)$ the local charge density is adjustable via the degree of those between like-charged mica or clay surfaces in a solution
ionization? Complexation of macroions other than DNA is also  Of divalent ions!®2 are in agreement with this interpretation.
frequently observed, examples include network formation in  Attractive interactions between like-charged macroions can
actin solutiong and the aggregation of rodlike M13 virus, also arise through intra-ionic correlations, that is, correlations
induced by a divalent tunable diamin i®%s a common feature  between the spatially separated charges of a single multivalent
in almost all cases, the condensing agent is not simply a microion. A notable example is the ability of polyelectrolytes
multivalent pointlike ion but has an internal structure with its to complex oppositely charged macroighas is observed for
the condensation of DNA induced by cationic polym@mirect
experimental observations of attractive, polyelectrolyte-induced
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the two surfaces are in equilibrium with a bulk reservoir of
concentratiomy. The two surfaces, each of aréa= Na with
N fixed positive charges attached, are parallel and separated by
distanceD. We note the corresponding (positive) surface charge
densityo = €/a, wheree is the elementary charge aads the
o cross-sectional area per charge on each planar macroion. Our
choice of the planar geometry is guided by simplicity rather
than by any particular application; it ensures that all average
properties of the system depend only on the normal direction
of the macroion’s planar surfaces, thaxis. The special feature
of our system is the structure of the divalent ions. Instead of
having point-like ions, each one consists of two individual
T charges separated by a fixed distahc&he electrolyte thus
0 X+S contains two structurally equivalent but oppositely charged
Figure 1. Schematic illustration of two like-charged planar surfaces, rodlike ionic species that are free to optimize their spatial
located at positions 0 and D along the horizontal axis witlenoting distribution and orientations everywhere between the two planar
the corresponding surface charge density. The surfaces are immersegurfaces.
in an electrolyte solution that contains negatively and positively charged | ot ys describe the locations and orientations of the positively
rodlike divalent counter- and co-ions. The separation between the 5, negatively charged rodlike ions by the ionic distribution
individual charge_s of eqch rodlike ion is de_r_lotedlby'he coordinates _ functi d ively. W f f
x andx + s specify the instantaneous positions of the two charges in unctionsn.(x, s) an n_(x_, S)'_ respectively. We refer to one o
a given rodlike ion along the horizontal axis. the two charges of a rodlike ion as a reference charge. The local
concentration of the reference charges for the positively charged

that the segment connectivity within the polymer chains (which rodlike ions is them.(x) = .(x, s)LJ where we define the
reflects the presence of intra-ionic correlations within the average value

polyelectrolyte) is accounted: 26 Two related physical effects 1

predicted for polyelectrolytes interacting with macroions are ()= — ﬂl ds g(s) (1)
overcharging’2® and bridging?®>3° The former implies charge 2l

inversion, that is, an accumulation of excess charge above that

needed to neutralize the surface charges of the macroions. Th@f any given functiorg(s) in the region—I < s < I. Similarly,
latter describes the mechanism of individual polyelectrolytes the conditional probability density to find the second charge of
being adsorbed onto two macroions at the same time. Botha positively charged rodlike ion at+ s if the first is located
effects are intimately connected to the existence of a stableatX is given byp.(slX) = ni(x, s)/[h(x, s)L] Hence, the ionic
equilibrium distance between the two like-charged macroions. distribution function appears as the familiar joint probability

Perhaps the most simple multivalent ion with a spatiall
extendeg charge distribut[i)on would consist of two indl?vidua)I/ ny(x, ) =N, (X)p(sX) @)
point-charges separated by a fixed distahcEhis rodlike ion
type was the subject of a recent sté&tin which a nonlinear
Poissonr-Boltzmann equation was derived in the limit of
sufficiently small rod length (resulting from a Taylor expansion
and being strictly valid only fot < Ip, wherelp is the Debye
screening length). The possibility of attractive interactions
between two like-charged planar macroions was indeed pre-
dicted, but only if the rod is longer than a critical valevith,
generally lc > Ip. Clearly, because our previous approach was
based on small the presence of attraction is still questionable.
One of our goals is thus to extend our previous approach to
arbitrary rod length and to study if attractive interactions still
exist.

In particular, we shall develop the theory for the case of
arbitrary long rodlike ions sandwiched between two like-charged
planar surfaces. Any correlations between the mobile rodlike
ions will be neglected. Yet, the internal structure of each rodlike
ion is fully accounted for. Numerical solutions of the resulting
integrodifferential equation corroborate the possibility of at-
tractive electrostatic interactions between the two like-charged
macroions. In the limit of weak macroion charge density, they
emerge fol > |, ~ 2Ip. Below, we shall present an interpreta-
tion of the electrostatic attraction in terms of the above-
mentioned bridging mechanism.
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Analogous quantitiesi-(x) = -(x, s)0and p—(s|x) = n-(x,
s)/n_(x, s){are introduced for the negatively charged rodlike
ions.

Let us discuss the free energy of the system. It will contain
an expression for the electrostatic energy, a nonelectrostatic
potential that accounts for the presence of the walls, and entropy
terms (for both ionic species, positively and negatively charged
rodlike ions) that describe the translational and orientational
degrees of freedom. Within our approach, the translational
entropy is simply that of an ideal gas. Concerning the orienta-
tional entropy, all ion orientations in the absence of any external
potential must have the same probability. Averaging over two
spatial coordinates (theandz direction) then leads to a constant
density of states in the regional < s < | along thex axis. Of
course, the total orientational space for a single ion with fixed
reference charge, namely, the area of a sphere of rédiss
obtained by also averaging over the remaining spatial direction,
271 [, ds = 4nl2.

We are now in the position to write down the electrostatic
free energy of the systenf, measured in units of the aréa
and of the thermal energyT (herek is Boltzmann’s constant
andT is the absolute temperature). It can be expressed as

= lpl(x)z .
2. Theory m_ -

The system we consider is schematically displayed in Figure
1 and consists of two planar, like-charged surfaces immersed Z (%, 9)|In
in a symmetric 2:2 electrolyte. The mobile ions residing between

ni(x, )

-1+ U9 D+ 2ng| (3)
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where the sum runs overt” and “—" and wherelg ~ 0.7 nm
is the Bjerrum length in water. The symbdl denotes the

commonly used dimensionless electrostatic potential, and a OF
prime denotes the derivative with respect to the argument.

Hence, the first term in eq 3 is the total electrostatic energy of

the system. The second term accounts for all nonelectrostatic

interactions. It contains, first, the entropy of the rodlike ions

. H ( n(x, 9 )&
S=-k [ d (%, 9|1 -1
I Xi:;—} x, 9)|In .
n(X)
_kf_mwdx Z ni(x)lln——l—i- B,(s1X) In pi(s|X)
i={T-} Ny

(4)

where the second line is the decomposition into the translational

and orientational entropy. (Note that the above-mentioned
uniformity of orientational states along tleaxis is expressed

by the absence of a degeneracy term in the expression for the
orientational entropy). It contains, second, an additional potential

U(x, s) (expressed in units okT) that specifies an external
nonelectrostatic interaction for a rodlike ion whose two charged
ends reside at positiong = x andx, = x + s. Because of the
symmetry of the rodlike ions, the external potential should not
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the variation becomes

(8)

e S, ax i:Z,} B x s)(IP(X) + iP(x+9)

(X, s)

0]

+1In + U(x, 9)0 )

Hence, in thermal equilibrium, the optimal ionic distribution
functions are

—i[WY(X)+W(x+s)]—U(x,9)

n(x, s) =nye (10)

with i = + andi = —. Once theni(x, s) are known, we can

calculate the local concentrations and the conditional probability
densities defined above, yielding

n»(x) — m-(X S)DZ no@—i[lP(x)+\ll(x+s)]—U(x,s)D
i i\

ni (X, S) e iW(x+9)—U(x,5)
M (x, 90 [@Per9-Ukxs)

pi(sIx) = (11)

Moreover, upon insertingi(x, S) into eq 6, we can calculate

distinguish between the two charges. Therefore, we requirethe charge density

symmetry ofU(x, s) with respect to exchanging the positions
X1 — X2 andx; — x;. This gives rise to the relatiod(x, s) =
U(x + s, —s). Apart from this symmetry relation, we do, at this
point, not need to further specify the external potential. Below
we shall defineU(x, s) so as to describe the presence of the
macroion’s planar surfaces.

In thermal equilibrium, the ionic distribution functions
n.(x, s) andn_(x, s) are free to adjust such th&tin eq 3 adopts
a minimum. We find the corresponding optimal distributions
by performing the first variation ofF with respect tan+(x, s)
andn_(x, s). Using Poisson’s equatiod/" (x) = —4xlgp(X)/e,

this gives rise to
oF
+ U(x, S))W ®)

AKT

p(X)

e

i:;_} Bni(x, S)(In

+

=" dx[llf(x)é

ni(x s)

Ny

The local charge density, appearing in Poisson’s equation and

in eq 5,

p(x)=e Z im(x, s) + n(x — s, s)LH pg (%) (6)
=T

accounts for both individual charges of positively« +) and
negatively charged & —) rodlike ions that make a contribution
at positionx. That is, the local charge density has contributions
from the reference charges that are located @irst term in

the sum in eq 6) and from the second, orientationally mobile,
charges (second term in the sum in eq 6) of the rodlike ions.
We have also included intp(x) an additional fixed charge
densitypsix(X) which is independent af;(x, s) andn_(x, s). At

this point, we need not specipyx(X); below, we shall use it to

p0) = pp ) + €

(Z ino@—i[lI’(x)+lP(x+s)]—U(x,s)_,’_
)

e*i[W(X*S)+W(X)]*U(X*S,S)D (12)
Replacings with —s'in the last term of eq 12
@*i[qj()()+‘y(X*S)]*U(X*S,S)Dz Efi[‘ll(x)+ly(x+s)]7U(x+sfs)D (13)

and recallingU(x + s, —s) = U(x, ) on the right-hand side of
eq 13, we obtain the final expression for the charge density

p(x) = —deny@ Y®I sinh[W(x) + W(x + 9]H py (X)) (14)

Using this expression fgs(x) in Poisson’s equation yields the
nonlinear integrodifferential equation

29" (x) = x2[@ Y9 sinh[W(x) + W(x + 9)] 0~
Prix (X)
B e

8l (15)

where we have defined the Debye lengish= 1/« through«?

= 4 x 8xlgng. This definition of the Debye length is equivalent
to that of a symmetric 2:2 electrolyte containing divalent
pointlike ions. Inserting the equilibrium distributions fior(x,

s) andn_(x, s) into the free energy in eq 3, we obtain

AikT= 2n, [ dx@ UOSW(x + 9) sinh[W(x) +
W(x+ s)] — coshW(x) + W(x+ 9)]] + 1[H
1 Prix(X)
5 W) == (16)

describe the fixed charges on the macroion’s planar surfaces.

To carry out the variatiodp(x) in eq 5, we note the equality

J7 W ()on(x — s, 0= 7 dxW(x + 9)on(x, 90 (7)
valid for bothi = + andi = —. With this, the final result for

Equation 15, together with the corresponding result for the
free energy, eq 16, are major results of the present work, valid
for any choice olJ(x, s) and psix(X). For our specific system of
two charged planar surfaces, located at positiors 0 andx
= D, we may now specify these functions,
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> > < < 3
U(X’S)z{o xI Oﬁx+s 0&x<D&x+s<D ., s i
oo elsewhere 25|\ gos\ (@) 1
6‘10.6 (b)
and pix(x) = o[d(x) + 6(x — D)], where we recalb = e/a to 21| os _09
be the surface charge density of the two planar surfaiesy; %1 si|| ° %os
is the delta function, andis the cross-sectional area per charge 5 % H ® T o7
on each surface. Equation 15 then gives the integrodifferential 1 (b) '
equation 06y,
q 0.5 f / o5
W) = k2L [MON G Sinh[() + W(x+ )] (18) o 04 (®)
2| J —min(l,x) 0 5 10 0 5 10
x T
: . Figure 2. Results for the linearized theory (see eq 21), derivedfor
Note that eq 15 also yields the boundary conditions = 0.1, and large distanc® = 20 between the two surfaces. A:
W'(0) = —W'(D) = —2p (19) Electrostatic potentidl’(X)/p as a function of the distancefrom the

charged surface. The inset shows the scaled integrated charge according

. ) . to eq 26. B: Local concentration of reference charge&)/n, as a
where we have defined the dimensionless megser&slslo/a function of . Dashed lines display corresponding calculations where

for the charge density of the macroion surfaces. With our electrostatics is excludeg & 0). In all diagrams, the different curves
particular choices folJ(x, s) and prix(X), the free energy in eq  correspond td =5 (a),1 = 2 (b), andl = 0 (c).
16 reads

140 T 4—
‘P(O) \ Vo) (A) ! © (B)
F i ) 120 ! R -
A= a2y L g ST a9 x Y
| 100/ | N "
sinh[W(x) + W(x + )] — coshl¥(x) + W(x + s)]]} (20) e V() >

\
€
3 80\\L/i 2t ()
In the present work, we will also consider the linear regime, \

60r

applicable in the limit¥ < 1. In this case, we obtain the (© (@ 1 (8)
linearized integrodifferential equation 40 i S
min(l,D—X) N5, _6—__—800 2 4 6 8
2w (x) = 2| —ming) dg¥P(x) + Y(x+ 9)] (21) b 5
Figure 3. Scaled free energly as a function of the distance between
and the free energi (see eq 20), reduces to the two charged planar surfacds, for | = 5. In both diagrams, the

solid curves are derived using nonlinear theory, while the dashed curves

= 1I’(0) 5 1 D% are based on linearized theory. The charge parameters correspond to
o =\ = [min(D=x =2 (a, b),p=1(c, d), andp = 0.1 (e, f). Finally, for curve g, it is
AKT  a 2N ﬁ’ o1 2l f —min(,x) ds] (22) p = 0, and no electrostatic interactions are present.

The first term on the rhs of eq 22 is the electrostatic contribution F _Y¥() 2p cothDI2) (25)

to the free energy. Obtaining the surface potenti#(0), AKT  a

involves solving the linearized integrodifferential equation, eq

21. The second term on the rhs of eq 22 is of nonelectrostatic Clearly, for pointlike ions, the interaction energy between the

origin and represents the steric depletion interaction due to two like-charged surfaces is repulsive. This is also the case in
entropic confinement of the rodlike molecules between the rigid the nonlinear regime.

walls. The corresponding integration can be carried out, yielding

I dx[l—% min (0= ds] — min(,D) [1— ind. D)] (23)

—min(l,x)

3. Results

The following analysis is based on numerical solutions of
either the nonlinear (see eq 18) or the linearized (see eq 21)
ForD > I, eq 23 gives the constali2, while forD < |, eq 23 integrodifferential equation. The method of solving these
gives —D?(2l) + D. In the latter case, the integral in eq 23 integrodifferential equations is outlined in the Appendix; for
decreases quadratically for decreasihgnd approaches 0 for  an isolated surface, an approximate analytical solution is also
D — 0; see curve g in Figure 3B. Note that the simple expression known?3? It is convenient to present our results in terms of
for the depletion energy, based on neglecting all intermolecular reduced, dimensionless, spatial coordinates, scaled by the Debye

steric interactions, is strictly valid only in the dilute regime.  lengthlp. Hence, we defin& = x/Ip, D = D/lp, | = I/lp, s =
The linearized case has a well-known closed solution in the g/lp, and so forth.
limit of vanishing length,l, of the rodlike ions. This limit Let us first consider the linear regime (see eq 21) at large
corresponds to pointlike divalent ions for which the linearized separationD = 20, between the two charged planar surfaces.
integrodifferential equation read¥"'(x) = «?¥(x), implying Figure 2A shows the reduced electrostatic potenti@t)/p as
(with boundary conditions given in eq 19) the solution a function of the distanc& away from the macroion. The
different curves correspond to different rod lengittPlotting
W) =2 coshf(x — D/2)] (24) W(X)/p is convenient becaus#(x) ~ p in the linear regime.
sinhD/2) Clearly, forl = 0 the potential is given by eq 24. Note that the

potential increases more rapidly for nonvanishirthan forl
and the corresponding free energy reads = 0, which is in agreement with the previous findidgfor a
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single planar macroion (corresponding B — ). Upon
increasing! beyond| > I ~ 2, the potential develops
nonmonotonic behavior. This behavior directly implies “over-
charged” regions where the charges from the rodlike ions over-

compensate the macroion charge density at a certain distance

away from the macroion. This conclusion follows

from the scaled integrated charge (charge per unit area) at

distancex,

o s

QR =—~" [, p(®) dX (26)
which generally adopts the valu€%0) = 0 andQ(D/2) = 1.
In addition,Q(X) > 1 signifies “overcharging”. Rewritin@(x)
=1+ ¥'(X)/(2p) we see that regions witl'(x) > 0 imply
Q(x) > 1. The inset of Figure 2A displayQ(x) corroborating
“overcharging” forl 2 2. Note that fot = 2, there is no critical
charge parametqy at which the overcharging first appears.

Even though the potenti&dl(X) in Figure 2A is smooth, the
corresponding ionic densities.(X) (see eq 11) are not. That
this is so for anyt > 0 can be seen directly in the limit pf=
0 where no electrostatic interactions are relevant any mBre;
= 0 andn(X) = n_(X). The steric interactions of the rodlike
ions still lead to a depletion from the macroions; r> 2|
the densities ar@.(X)/no = (1 + X/1)/2 for 0 <= X < | and
n:(X)/no = 1 for | = x < D/2. These functions are plotted in
Figure 2B (dashed curves, for different rod lengthtogether
with the corresponding results (solid curves) for(X) in the
presence of electrostatic interactions (that is,der 0.1 as in
Figure 2A). Again, the different curves a, b, and c correspond
to different rod lengths.

Knowing W(X) allows us to calculate the free energy(eq
20 in the nonlinear regime and eq 22 in the linear case). Figure
3 shows results for a characteristic case of long ions; 5.
Note that, in Figure 3, the scaled free enefgyx 16mlglp/
(AKT) = F/(AKT2nlp) is displayed, normalized so as to simply
produce the result in eq 23 in the linpit= 0 where electrostatic
interactions are irrelevant; see curve g in Figure 3. Thus, in
this limit (p = 0) and forD > I, we findF x 16mlglp/(AKT) =
112, (or, equivalently F/(AKT) = Ing), indicating that the two
flat surfaces no longer interact with each other. For small
distancesD < I, there is entropy loss of the mobile rods because
of their interaction with both surfaces. The corresponding
depletion attraction continues to dominate the system for weakly
charged surfaces whepex 1, leading to a minimum i (D)
at smallD < I. For larger surface charge density,z 1, a
depletion minimum is absent. A second minimum, located
roughly atD ~ |, is weak forp < 1 but dominates the system
for p 2 1. This second minimum is distinct from the depletion
minimum; it is electrostatic in origin and can be ascribed to a
bridging mechanism as analyzed below (see Figure 5). In
support of this notion, the bridging minimum occurs for highly
charged surfaces almost exactlyDat= |; see curve a in Figure
3. The linearized integrodifferential equation (see the dashed
curves in Figure 3) makes, qualitatively, the same predictions
as the full, nonlinear theory (see the solid curves in Figure 3).
Yet, as for pointlike mobile ions, the free energies of the former
are much larger ip = 1. ~

Similar considerations as fdr= 5 (on which Figure 3 is
based) apply to different rod length Our numerical results
are summarized in Figure 4 which shows the positibns:
DeqwhereF (D) exhibits an absolute minimum. These positions
are shown as a function bfor different choices op. Consider
first the limit of weakly charged macroions wifh= 0.1; see
curve ain Figure 4. As pointed out above, for sufficiently large
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Figure 4. Stable equilibrium distances between the charged surfaces
Deq as a function of. The scaled macroion charge densities @re

0.1 (a),p= 0.5 (b, ¢), ancp =1 (d). Curves a and b are derived using
linearized theory; for curves ¢ and d, we have used the nonlinear
version. Note that the smallest rod length that allows for attraction is
| = lc ~ 2. Note also that, for curve a, the position of the stable
minimum jumps at ~ 3.8, indicated by the vertical dashed line. The
inset shows the corresponding (fo= 3.8 andp = 0.1) scaled free
energy as a function of the distanBebetween the charged planar
surfaces.

4)

Figure 5. Conditional probability densitp_(5/X) as a function of the
projections of the rodlike ions with respect to thkeaxis for two different
coordinates of the reference charges 0 for curves a and c, arxd=

4 for curves b and d. The length of the divalent rodlike ion is 8,
and the scaled surface charge densitp is 0.5. The dashed lines
show corresponding calculations with excluded electrostapies Q).
The distance between the charged wallBis= 20 in diagram A, and
D = 8.47 in diagram B.

[, we observe two local minima, one reflecting the interplay

between depletion attraction and electrostatic repulsion and the

other one corresponding to an electrostatic bridging mechanism.

The bridging minimum is the stable one for sufficiently small

[, namely, forl < 3.8. The stable minimum reflecting the

interplay between depletion attraction and electrostatic repulsion

is adopted fol 2 3.8 (see curve a in Figure 4). The position

where the two minima exhibit the same depth is at about

3.8. This is indicated in Figure 4 by the vertical broken line;

the corresponding scaled free energy lfee 3.8 is shown in

the inset of Figure 4. Position and depth of the depletion

minimum depend om; for p = 0.1 we obtain an equilibrium

separatiorDeq~ 2.3; see curve a in Figure 4. Upon an increase

of p (with p < 1), this position shifts to largdt Forp z 0.5,

only the bridging minimum is left; see curve b in Figure 4.
The location of the bridging minimum is the more interesting

one because within linearized theory it is independenp.of

Curve b in Figure 4 shows it fop = 0.5 where no stable

depletion equilibrium is found anymore. (The position of the

local bridging minimum fop = 0.1 andl 2 3.8 is not shown;

it would coincide with curve b). Fop = 0.5, the free energies

in linear and nonlinear theory are still fairly close as is evident

from the proximity of curves b and c in Figure 4. Curve b of
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Figure 6. Schematic illustration of the bridging mechanism. For long ,,4/7 (a) \
rodlike ions,| > 1, there exists a stable equilibrium between the two 0= :
macroions aD ~ |. Here, the ions preferentially orient either parallel 0 5 10
or normal to the macroion surfaces. Those aligning normal give rise to :::[nm]

the bridging equilibrium. ) ) )
Figure 7. Local concentration of reference charge$x) as a function

; ; ; a1, Of X, Curve (@) refers to positively charged rodlike ions, and curve (b)
Figure 4 is a major result of the present study. lts qualitative refers to negatively charged rodlike ions. Dashed lines display the

featpres_ are identical to_those Qerlved_ln__a previous Wovkere theoretical approach, whereas full lines display results of MC simulation.
rodlike ions were considered in the linit« 1, leading to the  The model parameters are: the length of the rodlike loms2 nm,
prediction of attraction fot > I = 2.45 (see the inset in the  their bulk concentratiom, = 0.1 mol/L, the charge parametpr= 1
right diagram of Figure 2 in Bohinc et &l). Our present and the plate-to-plate separatibr= 10 nm. In MC simulations, both
approach, being valid for arbitraty results in the numerically ~ ion types are modeled as two charged hard spheres of radius 0.05 nm
somewhat different predictio = 2. Another similar feature ~ (Separated by the fixed distante
is Deqg = | for I > 1, motivating the interpretation of this _ _ _ ) _
minimum to originate in a bridging mechanism. one of the macroion surfaces. Again, this observation applies
Increasing the surface charge density ultimately renders thefor both locations of the reference chargexat 0 or X = 4.
system nonlinear, and the locatiofs, = Deql), of the bridging Hence, our finding is thgt two different orientations are
minimum will depend orp. Curves b and ¢ in Figure 4, both preferr_ed, with _the rodlike ion either pare.lllell or normal to t_he
derived forp = 0.5 using the linear and nonlinear approaches, Macroions. It is the latter case that signifies the bridging
respectively, exhibit the same behavi65q=I_, for1> 1. They transition. We _thus_ redisplay, in Figure 6, the schematic
also roughly predict a minimal length= 2 needed for attractive ~ '€Presentation in Figure 1 for the case Df = Deq = |,
electrostatic interactions to occur. highlighting the preferred parallel and normal orientations of

Our final analysis characterizes bridging of the rodlike ions the rodlike ions. We note that the orientational ordering is
as the mechanism that leads to the stable minimum betweerinduced by electrostatics. For uncharged surfaces, corresponding
the like-charged surfaces Bty ~ 1. To this end, we consider ~ t©© P = 0, the probability distributionp-(S|x), is uniform as
the conditional probability densitp () (see eq 11) that ~ Shown in Figure 5 (broken lines). In the opposite case, for
directly reflects the orientational distribution of the rodlike Strongly charged surfaces, wighz 1, the variations irp-(S[x)
counterions. As everywhere in this sectipn(slx) is expressed are much stronger than those displayed in Figure 5 (results not
in terms of the rescaled coordinates= x/lp ands = dlp; the shown).
normalization condition then reads We also discuss the probability density distribution of coions

and their contribution to the interaction between equally charged
1 ,1 o surfaces. First note that the concentration of coions is much
21 f—T P-(SIX)ds=1 (27) smaller than the concentration of counterions. In the Ease
[, p= 0.5 andl = 8 the concentration of counterions close to
valid for x in the region O< x < D. For allSoutside that region, ~ the charged surface is-(x = 0)/np ~ 3.88, while the
it is p_(3X) = 0. Figure 5 showg_(3X) at largel for two concentration of coions close to the charged surfacg [ =
different cases, largh (with D > | > 1) corresponding to an ~ 0)/no ~ 0.07. With increasing surface charge density the
isolated macroion andl = Deq~ | where the rodlike ions bridge concentration of coions becomes negligibly small compared with
between the two planar macroions (see Figure 6). In Figure 5,the concentration of counterions. This means that the coions
we have specifically chosem= 0.5 andl = 8, as well ad = have a very small influence on the attraction between equally
20 (see diagram A) anid = 8.47 (see diagram B). In the latter ~ charged surfaces. In the case Df~ |, the most probable
case,D = De; see Figure 4. In both diagrams, we display location of the second charge of the coions is in the midplane
p_(3X) for the two positions = 0 andx = 1/2 = 4. of the system regardless of the position of the reference charge.

For D = 20 (see diagram A of Figure 5), we observe an  Our approach accounts for intra-ionic correlations, that is,
enhanced probability to find the second charge of the rodlike correlations between the two charges within a given rodlike ion.
ion close to the macroion surface, irrespective of whether the But it neglects inter-ionic correlations, that is, correlations
first is located ak = 0 orx = 4. Clearly then, the rodlike ions  between charges of different rodlike ions. As is well-known,
exhibit a tendency to align parallel to the macroions’ surface. interionic correlations can be neglected for monolvalent salt

For D = 8.47 (see diagram B of Figure 5), there are two solutions (of reasonably low densities). But they become
regions of enhanced probability densgy(S|X), corresponding important for pointlike divalent ions. We thus expect our
to the location of the rodlike ion’s second charge close to either approach to work better for long rodlike ions where the two



Bridging Like-Charged Macroions J. Phys. Chem. B, Vol. 112, No. 6, 2008691

charges of each ion are spatially separated so that the electrolytdetween them (the latter being neglected in the mean-field
behaves effectively similar to a monovalent salt. For vanishingly Poissor-Boltzmann approach). Our results qualitatively cor-
smalll, the charges merge into one divalent pointlike ion. Then, roborate previous findings on the interactions induced by rodlike
correlations between these ions tend to be strong and ourions that were based on a Taylor expansion with respect to the
approach fails. This notion is supported by Monte Carlo rod length’! Specifically, there is a minimal rod lengtl, above
simulations that we have carried out (as described in sectionwhich the electrostatic interactions can be attractive. In our
4). We finally note that our approach predicts overcharging present approach, this minimal rod lendths= 2lp, is roughly
independently of the macroion’s surface charge density. This given by twice the Debye lengthp, that characterizes the

is qualitatively different for multivalent pointlike ions where electrostatic screening length. In the limit of large rod length,
overcharging is a function of the ion radius and involves a | > Ip, an optimal distancé) ~ |, between the macroions results
critical surface charge densify?®> (which has been suggested from a bridging interaction. We expect that our present results
to diverge with decreasing ion rad#@s The situation considered  contribute to better understand the often rodlike structure of
in the present work is qualitatively different because intra- common condensing agents such as polyamines and certain
(instead of inter-) molecular correlations lead to the overcharg- linear peptides that are able to condense BRPPand other

ing. macroions'®
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Canonical Monte Carlo (MC) simulations were performed
using the integrated Monte Carlo/molecular dynamic/Brownian
dynamic simulation suite Molsiff following the standard
Metropolis scheme. Both positive and negative rod-like ions
were placed randomly into the Monte Carlo simulation box.
The MC box was made electroneutral and average concentra
tions of both positive and negative charges exactly matched
those obtained from the PB calculations. A trial move consists ~ Analytical solution of the integrodifferential eq 18 with
of both random displacement and random rotation. Displacementboundary conditions (eq 19) is not available in a closed form.
parameters were chosen to obtain approximately 50% acceptancé numerical solution is obtained in the following way. The
rate. Thirty thousand attempted moves per particle were usedintegrodifferential boundary value problem (egs 18 and 19) is
for equilibration followed by 100 000 attempted moves during restated as a fixed point equation
production runs. Interparticle interactions were calculated as
described elsewheP& To calculate single particle distributions, W=7") (28)
the z axis was divided into 200 bins of width 0.05 nm. The \yhere W) is the solutionY of the ordinary differential
standard deviation c_)f \_/alues in histograms was less t_han O:S%boundary value problem
for each separate bin in all cases. Because the MC simulations
cannot be performed using a mixture of pointlike positive and " 2
pointlike negative charges, we modeled both ion types as 2Y"(x) =«
charged hard spheres of radius of 0.05 nm. A small but
inevitable difference of the density profiles in the vicinity of ~with boundary condition&(x = 0) = —Y'(x = D) = 4xlg/a.
charged walls arose due to finite ionic radii. The fixed point eq 28 is then discretized by replacing the domain

The comparison between the Monte Carlo simulations and [0, D] of eq 18 by a mesh
the theory shows that for sufficiently long divalent rodlike ions .

(in our casel = 2 nm) there is a good agreement for the Qy={0y: 1=1,...N}
concentration profile of reference charge$x) (Figure 7). Also D D o1
(o)

“Appendix

1 min[l,D—x]

o1 J —miniix dssinh[Y(X) + P(x+ 9] (29)

the noncontinuous derivatives f(x) (the concentration of the Oy; =— *+ - cos N

reference charges) at the positiorts | andx = D — | obtained 2 2
in the theory is reproduced by our MC simulations. But in the
limit of small divalent ions, ther_e isa I_arge discrepancy between vectorWy, of values at the mesh nodes, and eq 28 by the finite
our theory and Monte Carlo simulations (not shown). dimensional algebraic equation

Our comparison clearly suggests the usefulness of the theory
in the limit of long divalent rodlike ions. It also suggests that W, = 1y (7 (pn(PN) (30)
the overcharging for fixed length of divalent rodlike ions is
present for any parametpr In other words, we did not find a  wherepy(Wy) is the polynomial interpolating the values in the
critical surface charge density at which overcharging first vectorWy at the mesh nodes and(Y) is the N-dimensional
appears. Hence, for sufficiently long divalent rodlike ions, the vector of the values of the functioyi at the mesh points. Note
attraction between equally charge surfaces is present for anythat, by denoting with¥y; theith componentj = 1, ...,N, of
surface charge density. the vector®y, eq 30 reads componentwise as the nonlinear

algebraic system

of N Chebyshev nodes, the functid# by an N-dimensional

5. Conclusion
N

In summary, we have developed a density functional theory — 7 (o N o=
for rodlike ions of arbitrary lengthl, subject to an additional P ‘/(IZ IniOni) g 1= 1N
nonelectrostatic external potential. The specific application to
the case of two interacting, like-charged, planar macroions of N scalar equations in th& unknownsWy;, where the
reveals the possibility of attractive interactions, introduced functionslyj, j =1, ...,N, are the Lagrange coefficients relevant
entirely by correlations within the rodlike ions, rather than to the nodes irffy.
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