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Abstract—In this work the stability of spiculated red blood cells, called echinocytes, is studied. It is assumed that
the stable echinocyte shape corresponds to the minimum of its membrane elastic energy. It is shown that if the
membrane skeleton shear elasticity is not taken into account the calculated stable echinocyte shapes always have
only one spicule. However, by considering the skeleton shear elastic energy also, the calculated stable echinocyte
shapes have many spicula in agreement with experimental observations. Copyright © 1996 Elsevier Science Ltd.
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INTRODUCTION

The red blood cell (RBC) has no internal structure, there-
fore its shape is determined solely by the membrane
properties (Canham, 1970; Evans, 1974; Evans and
Hochmuth, 1978; Helfrich, 1973). The RBC membrane is
essentially composed of two parts: the bilayer and the
continuous network of proteins, the membrane skeleton
(Steck, 1974). The bilayer which is composed of two
layers of lipid molecules also contains some other mol-
ecules such as glycolipids and different membrane inte-
gral proteins. Under normal conditions the entire bilayer
is underlaid with the skeleton (Iglic et al., 1995; Liu et al.,
1989).

The normal resting shape of RBC is the biconcave
discoid shape. Under different external conditions this
normal red blood cell (discocyte) may be transformed
into various other shapes such as spiculated RBC
(echinocyte} or cup shaped RBC (stomatocyte} (Brecher
and Besis, 1972). Echinocytes are spherical cells with
10-50 spicula uniformly distributed over the cell surface
(Fig. 1). The most widely used method for changing the
discoyte towards a stomatocyte or an echinocyte is incor-
poration of molecules into RBC membrane thereby
changing the difference between the outer and the inner
lipid layer areas (AA). It was shown that lowering of A4
causes the discocyte RBC shape to change towards the
stomatocyte shape, while increasing A4 induces the
transformation of the discocyte shape into the echinocyte
shape (Evans, 1974; Helfrich, 1974; Sheetz and Singer,
1974).

It was shown that the stable axisymmetric discocyte
and stomatocyte shapes correspond to the minimum of
the membrane bending energy at the given external con-
ditions (Deuling and Helfrich, 1976; Evans, 1974; Seifert
et al, 1991; Svetina and Zeks, 1989). The stability of
echinocyte shapes has been also studied previously.
However, these studies of echinocyte shapes have been
limited to RBC shapes with a single spicule (Brailsford
et al., 1980; Stokke et al., 1986) or to the RBC shapes with
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short spicula approximated with spherical harmonics
(Landman, 1984). In this work the stability of strongly
nonaxisymmetric echinocyte shapes is analysed by tak-
ing into account all the arbitrary numbers and arbitrary
lengths of echinocyte spicula.

A POSSIBLE PHYSICAL MECHANISM DETERMINING
THE STABILITY OF ECHINOCYTE

Artificial phospholipid vesicles may attain discocyte
and stomatocyte shapes or pear shapes with a single
spicule (Berndl et al., 1990; Kids and Sackmann, 1991;
Sackmann et al., 1986) but never echinocyte shapes with
more than one spicule. Since the membrane of phos-
pholipid vesicles consists only of the lipid bilayer, it can
be assumed that the skeleton of the RBC membrane is
responsible for the stability of the echinocyte shape with
many spicula. Consequently, in the theoretical deter-
mination of the equilibrium echinocyte RBC shapes, the
membrane shear energy should be taken into account
(Brailsford et al, 1980; Landman, 1984; Stokke et al.,
1986) which is contributed solely by the skeleton since
the lipid bilayer has the properties of the two-dimen-
sional liquid. In this work we shall determine the stable
echinocyte RBC shapes by minimizing the membrane
elastic energy (W), consisting of both bending (W},) and
shear (W) contributions:

The bending energy of the bilayer can be decomposed
into two contributions: local and nonlocal (Evans, 1974;
Helfrich, 1974; Svetina and Zeks; 1989). The nonlocal
bending resistance is due to net compression and expan-
sion of both lipid layers resulting from the curvature
change. Recently it has been experimentally determined
that the nonlocal bending modulus B, is approximately
three times as large as the local bending modulus
B (Waugh et al., 1992). However, it can be shown that for
B, ~ 3B the nonlocal bending energy of the pear-shaped
RBC shape is approximately one order of magnitude
smaller than the corresponding local bending energy
(Iglic et al., 1996). The nonlocal bending energy can be
additionally decreased due to redistribution of molecules
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Fig. 1. Schematic representation of spiculated (echinocyte) red blood
cell shape.

within each lipid layer in order to equalize the area per
molecule and by exchange of lipid molecules between
both lipid layers to alleviate curvature induced dilation
or compression (Waugh and Hochmuth, 1995). In this
work the nonlocal bending term is neglected, ie. the
bending energy of the bilayer is taken to consist only of
the local contribution (Evans, 1974; Helfrich, 1974):

1
W, =3B J(C1 +C,)?dA, )

where C,; and C, are the two principal curvatures defined
so that they are positive for a sphere and dA is the
infinitesimal membrane area element.

The membrane bilayer greatly resists changes in
surface area while the skeleton may dilate or condense
relative to the constant density bilayer envelope; only the
total area of the skeleton is conserved (Fischer, 1992;
Mohandas and Evans, 1994; Svetina et al., 1996). Namely,
the very recent experiments have shown that the mem-
brane skeleton is locally compressible which leads to
a new constitutive model for the membrane skeleton
behavior (Mohandas and Evans, 1994). For the sake of
simplicity, in this work the RBC membrane is considered
within the model of immobilized boundaries (Markin
and Kozlov, 1986, 1988). Within this model the mem-
brane skeleton cannot redistribute relative to the cyto-
plasmic surface of the bilayer, which prevents by lateral
incompressibility of the bilayer, any local area changes
both of bilayer as well as of the skeleton (Lerche
et al., 1991). Therefore the shear energy of the skeleton
(Mohandas and Evans, 1994) is written using an approx-
imate expression (Evans and Skalak, 1980):

1 >
Ws=uf<21 : (A%Hz)—l)dA, (3)
Iavs)

where u is the membrane area shear modulus, while /.,
and 4, are the principal extension ratios of the membrane
area element, which is chosen sufficiently small that we
may consider it approximately flat. The local principal
axes are chosen so that the shear resultants along the

local area element edges are zero. The assumption that
the membrane skeleton is locally incompressible leads to
the conclusion that A;4, = . Since in this way 4; and 4,
are not independent, we need only to consider a single
principal extension ratio (Evans and Skalak, 1980). We
choose the principal extension ratio along the meridional
direction, 4,,. The other extension ratio is given by the
reciprocal, 4, !. Thus the membrane (skeleton) shear
energy W, can be written in the form (Evans and Skalak,
1980):

Wszuf<%(ii+im2 ~1>dA. 4)

GEOMETRICAL MODEL OF ECHINOCYTE SHAPE

The echinocyte shape is described by a geometrical
model with five parameters (Igli¢ et al, 1985). These
parameters are the radius of the large sphere R, the
number of axisymmetrical spicula distributed on the
large sphere n, the length of the spiculum cylinder L, the
radius p and the angle 3 (see Fig. 2).

Volume and surface area of the model echinocyte are

V =47R*/3 + n(npcos 3[(p + R)*sin* $ + p*(1 — cos® §/3)]
— np*(p + R)sin §(sinYcos § + n/2 — 9)
—R*(1 — cos 9)*(2 4+ cos 9)/3
+n[(p + R)sin 9 — p]°L
+ 2z[(p + R)sin 9 — p]3/3), (5)
A =4nR? + nQ2np[(p + R)sin ¥(n/2 — 9) — psin 9]
—2aR*(1 —cos 9) + 2x[(p + R)sin$ — p]L
+2n[(p + R)sin 9 — p]?). (6)

Since the distance between the neutral surfaces of the
membrane lipid layers (k) is much smaller than the di-
mensions of the RBC the area difference between both
the lipid layers (AA4) can be approximately written as
AA = hj(Cl + C,)dA which gives us, in the case of
presented model of echinocyte shape, the following ex-
pression for AA:

AA = 8aRh + n(—2n(p + R)hsin 3(n/2 — 9) + dnphcos §
~4nRh(1 — cos 3) + 4nRh(1 — cos 3) + 2nLh), (7)

where 87Rh 1s the area difference for the sphere with
radius R.

ELASTIC ENERGY OF ECHINOCYTE MEMBRANE
The bending energy of the model echinocyte can be
expressed by utilizing equation (2) as follows:
nnBL 2nnB(p + R)*sin? 9
(p+R)sin3 —p  pl(p + R?sin? 3 — p?)'#?
((p + R)sin 9 + p)tg(n/4 — 9/2) ®)
((p + R)*sin®§ — p?)'72 '

For the sake of simplicity we calculated the shear
elastic energy W, of the model echinocyte shape

Wh =8B +

x arctg <
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Fig. 2. The paramecters characterizing the geometrical model of

echinocyte shape. The bodies from which a single cchinocyte spicule is

composed arc the base (ba), the cylinder (cy) and the cap of the spicule
(cp)

according to approximate relation:
W, = nE,, (9)

where E, is the shear elastic energy of a single spicule and
its surrounding membrane. The energy E, is calculated
according to the method of Evans and Skalak (1980).
While calculating the energy E, the flat membrane is
considered as an initial reference state (sec Fig. 3), where
it is assumed that in the reference state E, = 0. Figure 3
schematically shows the membrane displacement and
membrane constant area deformation which occurs at
deformation of flat membrane into spicule. The unde-
formed reference coordinate system is characterized by
the radius r, originating from the symmetry axis of the
spicule and the polar angle ¢ in the initially flat mem-
brane. The deformed coordinate system is defined by the
curvilinear distance along the meridian (s) which begins
at the pole of the spiculum cap and eventually becomes
the radial coordinate (r) in the outer membrane surface.
Because of the symmetry, the azimuthal angle is the same
as the initial polar angle. The principal extension ratio
along the meridian (4,) i1s then given by (Evans and
Skalak, 1980)

ds
dry

where the fact that the area of the membrane (skeleton) is
locally conserved is taken into account, i.c. rodrode =
rdsde. The total area of the membrane segment must be
conserved too (see Fig. 3):

fo ~r
f Fodrg = J rds.
0 4]

A = (10)

= Fo/r.

(11)

—— L L

o

Fig. 3. Schematic diagram illustrating the mathematical procedure for
calculating the membrane shear energy of a single echinocyte spicule.
The flat membrane is considered as the reference state having shear
energy equal to zero. The cylindrical coordinates (z, r, ) are used to
describe the surface geometry, while the curvilinear coordinate s is used
to describe the distance along the meridian of the spiculum surface
(Evans and Skalak, 1980). The constant area deformation of a mem-
brane scgment is shown schematically. The dotted line shows the
borders of the chosen part of the membranc area before deformation in
the reference state, i.e. before the formation of the spicule, while the bold
line shows the corresponding borders after the formation of spicule.
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Fig. 4. Curvilinear distance along the meridian (s) from the pole of the

spheroidal spiculum cap to the surface outside of the spiculum where

ds = dr (see Fig.3). In the area of spiculum cap ds =ddfi, wherc

O=(p+ Rsind — p (see Fig.2), in the area of spiculum cylinder
ds = dl, while in the area of spiculum base ds = pde.

In this work the shear energy of the single spicule E, is
approximately expressed as sum of some contributions:

Es = Ecp + Ecy + Ebu + Ep1~ (12)

where E_, is the shear energy of the cup of the spicule, E.,
is the shear energy of the spiculum cylinder, Ey, is the
shear energy of the spiculum base, while E,, is the shear
energy of the plane around the spicule (see Fig. 4). In
order to calculate these energies the corresponding
values of the principal extension ratio 4, in different
points on the spicule and in its surrounding area are
calculated by utilizing equations (10} and (11) (see Fig. 4):

(13)
(14)

cap: 25 =14 (1 —cosf)?/sinf3,

cylinder: 25 = 2 + 21/,
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276? 5L — 2o s X
base: 12 = mo” + 2moL i np’sinw + 2n(p + d)pw
n[d + p(1 — cosw)]?

s

(15)

plane:  J2=1+[A,—n(p+0)P2)/ar?, r>(p+9) (16)

where
Am = 210% + 210L + n*(p + d)p — 2np?  (17)

is the area of the spiculum which is placed in the plane
(see Figs 2 and 4) while

§=(p+R)sing —p (18)

is the radius of the spiculum cylinder.

Knowing the values of 4, the energics E,,, E.,. Ey,
and E, can then be determined utilizing equation (4),
where we integrate over the appropriate areas of the
spicule (see Fig. 4). While we calculated the energy E
we extended the integration area to infinity. The cor-
responding error is small since the value of A2 in the
surrounding area of the spicule strongly decreases as
a function of the radius r as it can be seen in equation
(16). It can be shown that the error involved in E, is
around 20% if the distance between the two spicula is
around few times of the length (p + 6). Consequently,
the error in determination of the total shear energy
of the single spicule E, is much smaller (ca. 2%)
because the shear energy of the plane around the spicule
E, is around 10% of the energy E,. In this way the
energies E.,, E ., Ey,, and E,, can be expressed as follows:

E., = 2nud*(In2 — 5/8), (19)

E., = mul? + © pd? In(l
oy = muL? + 5 po* (1 + L/9), (20)

A
E,=pu[A, — + 0] In(—— . 21
ot = H[ n(p +0)7] n<7t(/)+5)2> (21)
The shear energy of the spiculum base (Ey,) is obtained
numerically by calculating the integral

/2 1
Eba:uj <2(A“3n+/1m2)—1>
0

x2n[0 + p(l — cosw)]pdw, (22)

using the trapezoidal formula, where A, is defined by
equation (15).

RESULTS AND DISCUSSION

As we mentioned before, the aim of this work is to
determine the stable echinocyte RBC shapes by minimiz-
ation of the membrane elastic energy. At given external
conditions the cell volume and the areas of the outer and
the inner membrane lipid layers are considered to be
constant and independent of the cell shape (Svetina and
Zeks, 1989). So the five parameters of the described
geometrical model of the echinocyte p,n, 3, L and R
cannot assume arbitrary values. Therefore we introduce
three constraints for the cell volume (V' ), the cell area (A)
and the area difference between outer and inner mem-
brane lipid layers (AA). These three constraints can be

written in our case as follows:

V{p,n 3, L, R) =V, (23)
A(P: n, 83 L: R) = A0> (24)
AA(p,n, 3, L, R) = AAy, (25)

where V,, Aq and AA, denote the values of V, 4 and AA
for a given cell shape. The expressions for V, 4 and AA
are given by equations (5)—(7). At givenV,, 4o and AA,,
the parameters 3, L and R can be determined numerically
as functions of p and n by solving equations (23)—(25),
Thus the parameter R can be expressed analytically as
a function of p, n, 3 and L from equation (25) and in-
serted in equation (24). Then the parameter L is deter-
mined as a function of p, n and 8 by solving analytically
equation (24). In this way the functions R(p, n, 3) and
L(p, n, 3) are determined. The parameter 3 is then cal-
culated numerically at given p and n from equation (23)
using the tangential method, where the functions
R(p,n, 3) and L(p, n, 9) are taken into account.

Since, in this way, the values of 3, L. and R are known
at given p and n, the elastic energy of model echinocyte
W can be determined as a function of parameters p and n.
By minimizing numerically the energy W with respect
to parameter p at given n, the elastic energy of the
echinocyte W as a function of number of spicula n can be
determined as presented in Fig. 5(a). In addition, Fig. 5(b)
shows the corresponding dependencies of the parameters
0,9, L and R on the number of spicula n. The chosen
values V, = 90 um® and A, = 138 um? in Figs S and
6 are the normal values for the RBCs, while A4, =
1.0 um? is in the range of those A4, where the model
axisymmetrical stomatocyte and discocyte shapes cannot
exist due to geometrical restrictions (Beck, 1978; Svetina
et al., 1994). It can be seen in Fig. 5(a) that the portion of
the elastic energy due to shear deformation (W) increases
with decreasing number of spicula, i.e. with increasing
length of the spicula.

Figure 6 shows the dependence of the number of
spicula (nn,) corresponding to the minimal membrane
cell elastic energy (W.i,) (see Fig. 5a) as a function of the
ratio u/B. It can be seen in Fig. 6 that for u/B = 0 the
stable echinocyte shape has only one spicule (ny,, = 1)
which is not in accordance with experimental observa-
tions (Brecher and Besis, 1972). However, for u/B # 0, the
stable echinocyte shapes corresponding to the minimal
elastic energy W,,;, have always more than one spicule
(Pmin > 1) in agreement with the observed echinocyte
shapes.

It is shown in Fig. 6 that n,,;, is an increasing function
of the ratio u/B. Since the length of the spiculum cylinder
decreases with increasing number of spicula (Fig. 5b) this
also means that larger values of the ratio u/B imply
smaller spicula in accordance with experimental observa-
tions (Haest et al., 1980).

The measured value of RBC membrane area shear
modulus g is about 6.6x107°*Nm~! (Waugh and
Evans, 1979), while the measured value of RBC mem-
brane bending modulus B is about 1.8x107' Nm
(Evans, 1974), which gives us the value about 35x
10~ 12m™ 2 for the ratio u/B.

In this work the spontaneous curvature of the mem-
brane bilayer (Helfrich, 1973), mtroduced in order to
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Fig. 5. The calculated total echinocyte membrane elastic energy W as a function of the number of spicula

2

n (full line) for ratio /B =38 x10'2m

“% where fp;, = 25 (a). Figure also shows the corresponding

dependencies of the parameters p, 3, L and R on n for the same value y/B (b). The values of parameters Vj,
Ao and AAg are: 90, 138 and 1.0 um? (Beck, 1978), respectively. The energy W is normalized relative to the
bending energy of the sphere 87B. The dashed line shows the portion of the elastic energy due to bending
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Fig. 6. The calculated equilibrium number of echinocyte spicula ny,

and the corresponding minimal elastic energy Wy,. see Fig. 5(a) as

functions of the ratio y/B. The values of ¥, A, and AA, are the same as
in Fig. .

describe the asymmetry of both lipid layers (Svetina et al.,
1994), was not taken into account. However, the inclu-
sion of the spontaneous curvature would not alter the

basic conclusion of this work. Namely, for u/B # 0 the
nonzero spontaneous curvature would only change the
value of n,,;, while it cannot explain the stability of
echinocyte shapes with more than one spicule for
wB=0.

CONCLUSIONS

The requirement of the minimal RBC membrane
bending energy can explain the stability of numerous
observed RBC shapes {(Deulin and Helfrich, 1976;
Evans, 1974; Kralj-Iglic et al., 1993; Seifert et al., 1991;
Svetina and Zeks, 1989). However, the previous studies
of RBC shapes were limited to the cell shapes which
cannot describe the arbitrary shape of strongly
nonaxisymmetric spiculated RBC cells. Therefore in this
work the analysis of the RBC shape stability was ex-
tended to the range of strongly nonaxisymmetric
echinocyte shapes having arbitrary number and arbitrary
length of spicula.

It was shown that within the limitation of the
presented geometrical model of echinocyte shape, the
requirement of the minimum bending energy cannot ex-
plain the stability of echinocyte RBC shapes with more
than one spicule. However, by the inclusion of the mem-
brane shear energy in the minimization procedure the
existence of such stable echinocyte shapes can be ex-
plained.
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