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Abstract. The electric double layer is formed when a charged plane is placed in contact with an electrolyte
solution. The ions which are oppositely charged than the plane are attracted by the plane and therefore
accumulate near it, while the jons which carry the charge of equal sign as the plane are repelled by the plane
and therefore expelled from its vicinity. In this work, some electrostatic properties of the electric double layer
are considered. The electrostatic interaction of ions with the mean electric field is taken into account. The finite
size of jons and water molecules is considered by means of volume exclusion principle. Starting from the
statistical mechanical description, a procedure is proposed in which self consistent expressions for the free
energy of the system, ion and water distribution functions and the differential equation for the electric field are
derived. It is shown that the classical Gouy-Chapman model of the electric double layer which considers ions
and water molecules as dimensionless is a good approximation only for low values of the surface charge
density of the charged plane. When the values of the surface charge density are higher the finite size of ions
should be considered. The expressions for the ion and water molecules distribution functions and the electric
field which are presented here can be due to their simple form used for fitting different experimental data in
electrochemistry and physics of biological membranes.
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Vpliv kon¢ne velikosti ionov na elektrostati¢ne lastnosti elektri¢ne
dvojne plasti

Povzetek. Elektritna dvojna plast nastane, ko pride po povrsini naelektrena plo¥ta v stik z ionsko raztopino.
lone, ki nosijo nasprotno elektrino kot ploi&a, plo§&a privla&i. Zato se naberejo v bliZini naelektrene ravnine,
medtem ko enako naelektrene ione plo§¢a odbija in izriva iz svoje bliZine. V tem delu obravnavamo nekatere
elektrostatiCne lastnosti elektrine dvojne plasti. UpoStevamo elektrostati¥no interakcijo ionov s povpre&nim
elektri€nim poljem. Kon&no velikost ionov in vodnih molekul pa upo$tevamo s predpostavko, da se
prostornine, ki jih zavzemajo posamezne molekule, ne morejo prekrivati. ZaZen§i s statisti®no mehanskim
opisom sistema predpostavimo postopek v katerem izpeljemo med seboj usklajene izraze za prosto energijo
sistema, krajevne porazdelitvene funkcije za ione in vodne molekule ter diferencialno ena&bo za krajevno
odvisnost elektri¢nega potenciala v elektrolitski raztopini. PokaZemo, da je klasitni Gouy-Chapmanov model
elekiri¢ne dvojne plasti, ki obravnava ione in vodne molekule kot toZkaste delce, dober pribliZek samo pri
majhnih vrednostih povi¥inske gostote elektrine na plos&i. Kadar je plos&a moZneje naelektrena, moramo
upostevati kon&no velikost ionov in vodnih molekul. Izpeljani izrazi za krajevno porazdelitev jonov in vodnih
molekul ter krajevno odvisnost jakosti elektritnega polja so relativno preprosti. Zato imajo uporabno vrednost
pri tolmacenju rezultatov meritev v elektrokemiji in fiziki biolo¥kih membran.

Klju¢ne besede: elektritna dvojna plast, elektri&ni potencial, ioni, ionska porazdelitvena funkcija

1 Introduction

If the electrolyte solution is in contact with the charged
plane with surface charge density o, the ions which carry
the charge of the opposite sign than the plane (counteri-
ons) are accumulated near the plane and the ions which
carry the charge of the same sign as the plane (coions)
are depleted from this region. A diffuse electric dou-
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ble layer is thus created (figure 1). The electric dou-
ble layer is a convenient model for the description of
the' electrostatics of the cellular membranes, phospho-
lipid bilayers and metals in contact with the electrolyte
solution [7,9,10,11,12]. On the basis of the electric dou-
ble layer theory different physiological processes can
be elucidated, such as transport of charged molecules
across the biological membranes [6,8,10,11,13], binding
of charged molecules to the biological membrane [3,11]
and fusion of phospholipid vesicles or liposomes with
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Figure 1. Schematic presentation of the electric double layer.
In the presented case the surface charge density o is negative,
therefore cations (counterions) are accumulated near the plane
and anions (coions) are depleted from the vicinity of the plane.
The x-axis is perpendicular to the plane located at = 0, while
the y and z axes lie in the charged plane.
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Figure 2. The system is divided into cells.

biological membranes [14,15].

In this work, macroscopic electric properties of an
aqueous solution of univalent cations and univalent an-
ions (i.e. an 1-1 electrolyte solution) in contact with a
charged plane are considered. Requiring the local ther-
modynamic equilibrium, ions and water molecules are
assumed to be distributed in accordance with the mean

electric field produced by the charged plane and the ions
in the solution themselves. Counterions which accumu-
late in the vicinty of the charged plane, screen its electric
field. Since ions and water molecules occupy finite vol-
umes, screening is constrained with the maximal possi-
ble concentration of counterions near the charged plane.
The electric properties of the system are thus affected by
the finite size of particles constituting the solution. In
this work, the finite size of ions is described by taking
into account the excluded volume effect, i.e. ions and
water molecules are assumed to occupy finite volume
which can be occupied by only one particle at the same

. time. By taking into account the excluded volume effect

and the electrostatic interactions of ions with the mean
electric field, the electrostatic properties of the electric
double layer are studied in this work.

2 Theory

Let us imagine a plane extending over an area A which
bears on its surface (at x = 0) uniformly distributed
charge with surface charge density o (figure 1). The
charged plane is in contact with the electrolyte solution
which extends into infinity in the positive x direction of
the chosen Cartesian coordinate system (figure 2). It is
taken, that there is no electric field on the other side of
the charged plane. The solution under consideration is
composed of univalent anions, univalent cations and wa-
ter molecules. The presented model of electric double
layer is subject to the condition that the whole system,
i.e. the charged plane and electrolyte solution together,
is electrically neutral. Nonuniformly distributed ions in
the solution (figure 1) create an additional electric field
to the field generated by the charged plane. However,
the electric field and also all other macroscopic proper-
ties of the system still depend on the x coordinate only
since the boundary effects are neglected.

In order to describe the system, we divide it into cells
of equal volume (figure 2),

AV =A Az 0))

where Az is the dimension of the cell in the x direction.
It is assumed, that Az is small comparing to the distance
over which macroscopic properties of the system change
appreciably.

In the particular cell chosen, there are N, water
molecules, N, cations and N_ anions. Finite size of
particles is introduced in the model by means of ex-
cluded volume effect. This means that the particles in
one cell are distributed over Ny sites of equal volume
which are all occupied (figure 1),

N++N_+Ny,=Ng . @

In accordance with equation 2 the volume of the cell
is proportional to the number of the sites Np. It is also
assumed, that the total volume of all the particles is con-
served if the particles are mixed.

The behaviour of an individual particle in the cell can
be described by using statistical mechanical approach.



Influence of finite size of ions on electrostatic properties of electric double layer

-200
=
£,
-100
0 1 1 1 | 1 | n | N
00 0.2 04 0.6 08 10
x [nm]
Figure 3. The electric potential ® in dependence on the

distance from the charged plane z calculated by consider-
ing the finite size of ions and the corresponding depen-
dence of ®* on z calculated using the Gouy-Chapman model.
The values of model parameters are ¢ = —0.5 As/m® ,
n =01 moll, T = 310 K,e = 785, no = puNa/M,,
M,, = 18 kg/kmol, p,, = 1000kg/m°.

The particle partition functions of a m, - th univalent
cation and a m_ - th univalent anion are respectively
(5]

- | —eo®(r
Qm+=‘12€fcp[—oTj(1m_+)], m+=1)2)")N+ ’ (3)
+eoP(r
4. =q‘iezp[—°k(:,,—"“—)], m_=12.,N_, @

while the partition function of a m,, - th water molecule
which is electrically neutral is written as

Im, =45, My =1,2,.,N,, (5)

where ey is the unit charge, ®(r,,;) the potential of the
electric field at the position r,,; of the m; -th ion of the
j-th species, while ¢ is defined as follows,

K;; .
q.?_—'Zexp[_ﬁ]’ J=+—,w, (6)
i

where index i runs through all possible energy states K i
of the chosen particle of the j-th species. As we can
see, all particles of the same species are considered as
indistinguishable and equal with respect to the spectrum
of the energy states K ji. It is assumed, that the electric
field in the system does not influence the energies Kj;.

The solution in the chosen cell is considered to be a
system with constant volume AV and constant number
of all species of particles N,, N_ and N,. The sys-
tem is immersed in a heat bath, so that its temperature
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T is constant. Since it is assumed, that the particle-
particle correlations are described through the effect of
the mean electric field and the excluded volume effect,
the particles in the cell are explicitly considered to be
independent.

Assuming that the solution in the particular cell is in
the thermodynamic equilibrium and taking into account
all possible nonequivalent distributions of the particles in
the cell, the canonical partition function of the cell Q¢
can be written as a product of particle partition functions
(see equations 3-5)

ezp [—AICLTH] (™ [0 (8]

Noy!
"NLIN_IN,!
where all possible nonequivalent distributions of the par-

ticles in the single cell are taken into account by the
factor yiy—y and where

M

N, N_
AWe = Y e®Em)+ Y —eg®(rm_ )=
my=1 m._=]
1 2
= EEG()E’ Alz ®)

is the the electric potential energy of all ions in the cell.
The ions are assumed to be immersed in a medium with
permittivity e. The symbol ¢; denotes the permittivity
of the free space, while E is the electric field strength
which points in the direction of the x-axis. The valid-
ity of equation 8 is limited by the assumption that Az is
small comparing to the distance over which macroscopic
properties of the system change appreciably, so that elec-
tric field is considered to be constant everywhere in the
cell. While calculating AW ¢, it is taken into account
that the potential at the site of a given ion is created by
all other ions in the whole solution and the charged plane
as well.

Knowing the canonical partition function Q¢ , using
equations 1 and 2 and applying the Stirling approxima-
tion for large N, N_, N,, and Ny, the expression for the
Helmholtz free energy of the solution in the chosen cell
AF can be obtained by using the statistical mechanical
relation AF = —kT In Q°:

AF = [%ceobﬂ + kTE]AAx, 9)
Y = [n,,ln n+0 +n_ ln—E_T+nw In nwo] ,
noq, noq_ noqy

where the densities of the number of particles n; as well
as the density of the number of sites ng are introduced,

AL
°T AV

(10)

3
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Figure 4. The density of number of univalent counterions
(cations) n. in dependence on the distance from the charged
plane z calculated by considering the finite sizes of ions and
the corresponding dependence of n} on z calculated using the
Gouy-Chapman model. The values of model parameters are
the same as in figure 3.

In order to derive an expression for the free energy
of the whole system F'S , the contributions of all the
cells which constitute the system are integrated,

[e ]
FS = / [%660E2($)+kTE] Adz | (11)
0

where it is taken into account that £ — FE(z) and
n; — n;(x), j =+, —, w. The free energy of the system
expressed by equation 11 includes interactions of ions
with the mean electric field due to all the charges in the
system and the entropy of mixing of all the particles in
the system.

The equation 11 describes how the free energy of
the system is expressed with the particle distribution
functions and the electric field in the system. However,
the explicit expressions for the functions n.(z), n_(z),
nw(z) and E(x) are not known. To derive the explicit
expressions for these functions, the condition for the free
energy minimum (§F° = 0) is applied, where the fol-
lowing constraints must be satisfied:

(a) the condition, that all of N sites in each cell are
occupied (equation 2), i.e. that for any x:

no = ne(z) +n_(@) +ny(2),  (12)

(b) the conditions that the total number of the parti-
cles for each species Nr; in the whole system
is constant while the variation is performed,

o0

/nj(:c)Ad:c = Nrj, j=+—,w, (13)
0
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Figure 5. The electric potential near the charged plane ®(z = 0)
in dependence on the charge area density of the z = 0 plane o
considering the finite size of particles in the solution and the
corresponding dependence of ®*(z = 0) on o calculated by
using the Gouy-Chapman model. The values of n, T, € and no
are the same as in figure 3.

(c) the validity of the Gauss law at any z,

OF
ceoa— = egn(z) — eon4 (). (14)
T
The requirement that the variation of F*¥ is zero, tak-
ing into account the conditions 12-14 and the boundary
condition

E(@x — o0) = —(—2%(1: — 00) =0, (15)

formulates an isoparametric problem. The condition 15
takes into account that the effect of the charged plane
is screened by the ions and that far from the plane the
density of the number of cations n.(z — oo) equals the
density of the number of anions n_(z — 00),

(16)

After some calculation we obtain the solution of the
above isoparametric problem,

ny(x — o0)=n_(x — 00) = n.

nen ezp(———’e,g?(x))

ny{z) = ) an
T e [14 22 ch(252))|

() = non exp(—‘-%;?q(ﬂz)) (18)
Nwoo [1 + ni"w ch(ﬂ’%ﬂ)]

o (19)

nw(x) = 1+ ninm Ch(eongx)) )
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d2® _ 2eongn sh(—c?",?Tﬁ) 20)
dz? €€0Mwoo [1 + %ch(%ﬂ)] ’
where we take into account F(z) = -—% and chose

®(x — co) = 0. The distribution functions 17 - 19 and
the differential equation 20 were obtained also by Freise
(1952) by applying a thermodynamical approach. The
thermodynamical approach can however not prove that
the distribution functions are consistent with the differ-
ential equation for the electric potential, which can be
done by applying the presented method.

If it is assumed that the electrolyte solution is very
dilute everywhere in the system, i.e. that for any z

n(2) + n.(z) K ny(z), (21)
the ion distribution functions 17 and 18 transform into

* —eo®* ()
ni(z)=n exp (‘}CT) , (22)
nt(@)=n eap (%@) L@
while the differential equation 20 becomes
d*®*  nep eo®* ()

Equations 22 -24 are known as Gouy - Chapman model
of the electric double layer [1.4] (denoted by asteriks).
It can be noted that in contrast to the expressions 17 -
20, the corresponding expressions 22 - 24 do not depend
on the density of the number of sites ng , i.e. on the vol-
ume occupied by a single particle in the solution. This
means that the particles in' the Gouy-Chapman model are
considered as dimensionless and there is no upper limit
posed upon the concentration of particles. To avoid un-
reasonably high concentrations of counterions near the
charged plane it should be kept in mind that the use of
the Gouy Chapman model is justified only within the as-
sumption 21 that the concentration of ions is very small
everywhere in the system. If the surface charge density
| o | is high, many counterions are attracted in the vicin-
ity of the charged plane and therefore condition 21 may
be violated there even if the concentration of ions far
from the charged plane is very low.

3 Results and discussion

In order to obtain the explicit dependencies of n,,n_, ny,
and @ on the distance z from the charged plane, we
must first solve the differential equation 20 subject to the
condition 15 and to the condition ®(z — oo) = 0. The
charged plane at « = O (figure 1) is taken into account
by an additional boundary condition at = = 0 [12],

d
dz €€

Equation 20 can be integrated to obtain

(dd)) 2 %T
— 1} = In
dz €€p
By taking into account 25 and 26, an analytic expression
for the surface potential ®(z = 0) is obtained

[1+ 20 ch(%o;:)} 6

2n
1+ s

d(x=0)= k?T-ArchT, 27
0

n 2n o?
= | 22 — | —1]|.
T [ 2n [(1 * Moo Jezp [zefokT’no] ”

The corresponding densities of the number of ions at
z =0, n,(z = 0) and n_(z = 0), respectively, can be then
obtained from equations 17 and 18 by inserting ®(x = 0)
from equation 27. To obtain the dependence of ® on
z and the corresponding distributions n.,(z) and n_(z),
equation (26) must be 'solved numerically.
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Figure 6. The density of number of univalent counterions
(cations) near the charged plane n.(z = 0) in dependence
on the charge area density of the z = 0 plane o considering
the finite sizes of particles in the solution and the correspond-
ing dependence of nj(z = 0) on o calculated by using the
Gouy-Chapman model. The values of n, T, ¢, and ng are the
same as in figure 3.

We would like to compare the calculated values of
®(z = 0), ni(z =0) and n_(z = 0) with the correspond-
ing Gouy-Chapman values calculated from equations 22,
23 and 24. Equation 24 can be integrated twice to ob-
tain an analytic expression for ®*(z) [12]. The surface
potential ®*(z = 0) is

2

* kT a
d*(z=0)= EArch [1 + _266()an0

] . (28)
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The corresponding densities of number of ions at = =
0,n}(z = 0) and n* (z = 0), respectively, can be obtained
from equations 22 and 23 by inserting ®*(z = 0) from
equation 28.

Figure 3 shows the dependence of the electric po-
tential ® on the distance from the charged plane x and
the corresponding dependence of ®* on z calculated by
using the Gouy - Chapman model. The potential is neg-
ative since the potential of the negatively charged plane
is negative. The counterions which are attracted by the
charged plane accumulate near it and screen its poten-
tial, so that the absolute value of the potential diminishes
with increasing distance from the charged plane. Con-
sidering the finite size of ions causes ®(z) to be more
negative then the corresponding ®*(z), the difference
®(z) — ®*(x) diminishing with increasing distance from
the charged plane.

Figure 4 shows the dependence of the density of
the number of counterions n, on the distance from the
charged plane = and the corresponding dependence of the
Gouy-Chapman model n}(z). The number of counteri-
ons is the largest in the vicinity of the charged plane
and diminishes monotonously with the distance from
the plane. Considering the finite size of ions causes
n.(x = 0) to be lower than nj(z = 0) since the par-
ticles in the Gouy - Chapman model are considered to
be dimensionless and their number density therefore un-
limited. However, at certain distance from the charged
plane nj(z) falls below n.(z) due to the effect of the
electric potential for which | ®(z) |>| ®*(x) | (figure 3).

Figure 5 shows the dependence of the electric po-
tential at z = 0 plane ®(z = 0) and the corresponding
dependence of the Gouy - Chapman model ®*(z = 0)
on the charge area density of the charged plane o. Both
potentials become more negative with increasing | o |.

Figure 6 shows the dependence of the density of the
number of counterions at x = 0, n,(z = 0) and the cor-
responding dependence of the Gouy - Chapman model
n;(z = 0) on the charge area density of the charged plane
o. The discrepancy between both curves increases with
increasing | o |. It can be seen that n.(z = 0) saturates at
high values of | o |, attaining the value of the density of
the number of sites ng while the corresponding curve of
the Gouy - Chapman model n}(z = 0) increases unlimit-
edly and therefore exceeds the density of the number of
sites ng. For higher | o | the Gouy-Chapman approach
is no more justified, because the condition 12 is not ful-
filled in the vicinity of the charged plane and finite size
of ions must be taken into account in order to describe
the system in a more realistic way.

4 Conclusions

Comparing the results of presented model of electric
double layer and classical Gouy-Chapman model it was
shown that the Gouy-Chapman model of electric double
layer is a good approximation only when concentrations
of ions are low everywhere in the solution, including the
reagion near the charged plane. It was shown that this
condition can be fulfilled only for low values of surface

charge density of the charged plane. Namely, for higher
values of the surface charge density (Jo| > 0.2 As/m?)
many counterions accumulate near the charged plane in
order to fulfill the electroneutrality condition, so the con-
centration of ions in the vicinty of charged plane may be-
come very high and the use of the Gouy-Chapman model
can not be justified. Therefore when surface charge den-
sity of charged plane in contact with electrolyte solution
is higher than 0.2 As/m?, the presented more general ex-
pressions for the electric potential and ion concentration
functions should be considered.
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