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Abstract: The electric double layer (EDL) is an important phenomenon that arises in systems where
a charged surface comes into contact with an electrolyte solution. In this work we describe the
generalization of classic Poisson-Boltzmann (PB) theory for point-like ions by taking into account
orientational ordering of water molecules. The modified Langevin Poisson-Boltzmann (LPB) model
of EDL is derived by minimizing the corresponding Helmholtz free energy functional, which includes
also orientational entropy contribution of water dipoles. The formation of EDL is important in many
artificial and biological systems bound by a cylindrical geometry. We therefore numerically solve the
modified LPB equation in cylindrical coordinates, determining the spatial dependencies of electric
potential, relative permittivity and average orientations of water dipoles within charged tubes of
different radii. Results show that for tubes of a large radius, macroscopic (net) volume charge density
of coions and counterions is zero at the geometrical axis. This is attributed to effective electrolyte
charge screening in the vicinity of the inner charged surface of the tube. For tubes of small radii,
the screening region extends into the whole inner space of the tube, leading to non-zero net volume
charge density and non-zero orientational ordering of water dipoles near the axis.

Keywords: electric double layer; orientational ordering of water dipoles; Helmholtz free energy;
modified Langevin Poisson-Boltzmann model

1. Introduction

The electric double layer (EDL) is a central phenomenon found at the boundary between a charged
surface and an electrolyte solution [1–8]. The counterions are accumulated close to the charged surface
and the coions are depleted from this region, resulting in a non-homogeneous distribution of ions.
The physical properties of the EDL are crucial in understanding colloidal systems, transport of charged
molecules across biological membrane channels or binding of charged proteins to biological surfaces.

Recently, much attention is being devoted to inorganic and organic hollow cylindrical structures
in the nanometer range due to their potential benefit in technology, biology and medicine [9]. Potential
applications range from microelectronics to microfluidics [10]. Ion channels or pores in biological
membranes and blood capillaries are also examples for cylindrical nanotubes.

In some biological systems, the walls of organic nanotubes are charged and in contact with
electrolyte solution, where the primary agents of interaction are electrostatic forces, both between
charged particles and polar water molecules. Due to the surface charge of the walls, counterions and

Entropy 2020, 22, 1054; doi:10.3390/e22091054 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-2481-7598
http://dx.doi.org/10.3390/e22091054
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 1054 2 of 19

coions of the electrolyte are, respectively, accumulated and depleted near the walls. At the internal
surfaces concave electrical double layers of cylindrical geometry are formed [11].

Furthermore, when bound to a cylindrical geometry, the effect of curvature on EDL properties is
significant on small enough scales. Such biological cylindrical channels, where EDL interactions are
important, encompass axons or tunneling nanotubes [12]. When artificially made channels, for example,
those found in nanoporous materials, are used in the manufacture of electrochemical nanocapacitors,
their power and energy densities are dependent on EDL characteristics such as capacitance [13–15].

EDL was first modeled by Helmholtz who assumed that the charged surface attracts the
surrounding point-like counterions and a single layer is formed to screen the charge [16,17].
Later, these ions have been described by a Boltzmann distribution, forming a diffuse layer extending
into the bulk [18,19]. The finite size has been incorporated by Stern with the so-called distance of
closest approach [20] and later developed further by numerous authors [3,21–26]. In recent decades,
EDL has been the subject of numerous analytical and numerical studies from Monte-Carlo methods,
DFT theories and lattice models [3,7,27–44]. Additionally, interest in nanostructured materials [45–48]
requires that theoretical models of EDL are revisited [49–51], also by taking into account the possible
quantum effects [52,53].

It has been shown that close to the charged surface, orientational ordering and depletion
of water molecules may result in a strong decrease in the local permittivity of the electrolyte
solution [54–61]. Considering the orientational ordering of water and finite size of molecules,
Outhwaite and collaborators developed a modified Poisson-Boltzmann’s (PB) theory of EDL composed
of a mixture of hard spheres with point-like dipoles and finite-sized ions [54,62]. Later, Szalai et al. [63]
published a mean spherical approximation-based theory [64] that can reproduce simulation results
for the electric field dependence of the dielectric permittivity of a dipolar fluid in a saturation regime.
The problem was also considered within a discrete lattice statistics model taking into account the
asymmetric size of ions and orientational ordering of water dipoles [44]. Recently, ion-ion and
ion-water correlations were also considered in a mean-field approach [65,66].

In the present paper, we first discuss the relative permittivity of water molecules within a cavity
field model. We then go on to the derivation of a modified Langevin Poisson-Boltzmann (LPB) equation
for point-like ions and water dipoles for planar geometry and then generalize the equations for arbitrary
geometry. In derivation of modified LPB equation we construct a Helmholtz free energy functional
and minimize it to derive the analytical expressions for ion distributions and spatial dependence of
statistical averages orientations of water dipoles. The free energy expression also includes contributions
from configurational entropy of ions and rotational entropy of water dipoles. In the second part of
the paper the modified LPB equation and the corresponding boundary conditions, generalized for
an arbitrary geometry, are utilized to present the numerical solution for a cylindrical geometry with
special emphasis given to very narrow cylindrical channels (Figure 1).

Figure 1. A schematic of a tubular structure with labeled independent coordinate r that can be at
most R.
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2. Relative Permittivity of Water

The dipole moment of an isolated water molecule is around 1.85 D (Debye is 3.336× 10−30 Cm).
In a solution, the dipole moment of a single water molecule differs from an isolated one since each
molecule is also polarized by the electric field of the neighboring water molecules, creating an effective
value of the dipole moment around 2.4 D–2.6 D [67,68]. The body of literature dealing with the
dielectric permittivity of water is voluminous and comprehensive, from analytic models detailing
the state of bound water molecules and water in charged crevices [69,70] to molecular dynamics
simulations with nonlinear response to external electric fields [71,72].

The effect of a polarizing environment can be reproduced in the most simple way by introduction
of the cavity field [61,73–75]. Cavity field is derived by solving the Poisson’s equation of a model water
molecule placed in an outside homogeneous electric field (for a detailed derivation, see Reference [76]).
The present section deals with polarization of water dipoles that follows directly from the cavity field.

The water molecules are described within the modified Kirkwood approach [75] as point-like
dipoles p with magnitude |p| = p at the centres of finite sized spheres, embedded in a medium with
electric permittivity representing the ion-water solution εr (Figure 2) [7,61]. Within this medium,
a spatially homogeneous electric field, E, is present. Due to the built up charge at the interface between
the inside and outside of the sphere, the dipole experiences the so called cavity field Ec. The relative
permittivity of water is given by εr = 1 + Ptot/(ε0E), where Ptot is the total polarization of water
dipoles, E is the magnitude of the spatially homogeneous electric field and ε0 is the permittivity of
vacuum. The total polarization is the sum of electronic polarization, Pe, and orientational polarization
due to the permanent water dipoles P, so that Ptot = Pe + P. The electronic polarization determines
the refractive index of water [51,61] n2 = 1 + Pe/(ε0E) ≈ 1.8 and εr can be expressed as

εr = n2 +
P

ε0E
. (1)

To find the expression for P we must take into account the constant number density of water nw and
the statistical-average orientation of water molecules in the solution [7]:

P = nw p〈cos θ〉. (2)

Here, θ is the angle between p and the cavity field Ec acting on it (see Figure 3). Statistical averaging
is labeled by 〈...〉. To estimate 〈cos θ〉, we must first find the expression for Ec. This involves solving
the Poisson equation for a sphere with electric permittivity n2 embedded in a medium with a relative
permittivity εr described in detail in Reference [76]. Neglecting the short range interactions between
dipoles, the local electric field strength at the centre of the sphere at the location of the permanent
point-like dipole (Figure 2) can be expressed as [7,76]

Ec =
3εr

n2 + 2εr
E. (3)

When the surrounding medium has a relative permittivity much larger than the refractive index of
water εr � n2, it follows that

Ec ≈
3
2

E → Ec ≈
3
2

E. (4)

So far we have neglected the reaction field, which is the field of the point-like dipole at the center of the
cavity itself. This reaction field is directly proportional to the strength of dipole Ereact ∝ p. In vacuum,
in the case of a single isolated water molecule, the external dipole moment is also the experimentally
measured dipole moment of a single water molecule pe given by [7,76]:

pe =
3

n2 + 2
p. (5)



Entropy 2020, 22, 1054 4 of 19

Here, p is the permanent point-like internal water dipole at the center of the sphere. The energy of an
internal point-like dipole p in a local field Ec is [61]

We = −p · Ec. (6)

Substituting from Equation (4) and Equation (5), we can express the dipole energy as [61]

We = −3
2

(
2 + n2

3

)
p0E cos θ, (7)

We = γp0E cos ω. (8)

Here, p0 is the magnitude of pe and ω is supplementary to θ, as shown in Figure 3. The constant γ

equals [7,61] (see Equations (7) and (8))

γ =
3
2

(
2 + n2

3

)
. (9)

With this in mind, the ensemble average in Equation (2) can be calculated as:

〈cos ω〉 =
∫

cos ωe−(βγp0E cos ω) dΩ∫
e−(βγp0E cos ω) dΩ

= −L(βγp0E). (10)

Here, β is the Boltzmann’s factor equal to β = 1/kT, where kT is the thermal energy. The element of
solid angle is dΩ = 2π sin ωdω, meaning that the integral runs from 0 to π with assumed azimuthal
symmetry. The Langevin function is defined as L(u) = coth u − 1/u. By taking into account
Equations (1), (2), (5) and (10), we can express the relative water permittivity as [7]:

εr = n2 +
nw p0

ε0

(
2 + n2

3

)
L(βγp0E)

E
. (11)

In the limit of vanishing electric field strength (E→ 0), the above expression for the relative permittivity
of water yields to the Onsager limit [7]

εr = n2 +
nw p2

0β

2ε0

(
2 + n2

3

)2

. (12)

For p0 = 3.1 D and nw/NA = 55 mol/L, [7,44], where NA is the Avogadro number, Equation (12)
yields the value εr = 78.5 at room temperature. Returning to Equation (2), we can write the final result
for the orientational polarization of water dipoles P, which will be needed for our Helmholtz free
energy minimization in the following section:

P = −nw p0

(
2 + n2

3

)
L(βγp0E). (13)
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Figure 2. A single water molecule is modelled by a sphere with relative permittivity n2, where n = 1.33
is the refractive index of water. A permanent point-like rigid dipole with magnitude, p, is located at the
center of the sphere [61]. Due to the built up charge, the point dipole experiences the so-called cavity
field Ec.

Ec

p

ÑΦcΩΘ

Figure 3. Relation between angles θ and ω. The water internal dipole moment is marked by p, the local
cavity field, Ec, points in the opposite direction of ∇φc.

3. Derivation of the Modified LPB Equation by Minimization of Helmholtz Free Energy

Our model assumes the electrolyte solution is a mixture of point-like monovalent co- and
counterions and permanent water dipoles, representing the water molecules. The expression for
the spatial dependence of the solution permittivity εr(x), arising as a direct consequence of the
spontaneous ordering of water dipoles, can be obtained by using the minimization of the Helmholtz
free energy in a one-dimensional setting with the charged planar surface located at x = 0. In the
minimization procedure, the local electric field at the positions of the hydrated point-like ions in the
electrolyte solution is denoted by E(x), while the local cavity field at the positions of the water internal
point-like dipoles is denoted by Ec(x). We can write the Helmholtz free energy of the system F as (see
also Reference [58]):

F =
ε0n2

2

∫
E2

c (x) dV︸ ︷︷ ︸
F1

+
ε0n2

2

∫
E2(x) dV︸ ︷︷ ︸
F2

+kT
[ ∫ (

n+(x) ln
n+(x)

n0
− (n+(x)− n0)

)
dV︸ ︷︷ ︸

F3

+

+
∫ (

n−(x) ln
n−(x)

n0
− (n−(x)− n0)

)
dV︸ ︷︷ ︸

F4

+
∫
(λ+n+(x) + λ−n−(x)) dV︸ ︷︷ ︸

F5

+

+
∫

nw〈P(x, ω) lnP(x, ω)〉ω dV︸ ︷︷ ︸
F6

+
∫

nwη(x) (〈P(x, ω)〉ω − 1) dV︸ ︷︷ ︸
F7

]
.

(14)

The thermal energy is given by kT, while n is the refractive index. For greater clarity, we split the
particular contributions to the free energy as marked by the underbraces in Equation (14). The mean
field created by coions and counterions and the water dipoles polarization contribution are given by



Entropy 2020, 22, 1054 6 of 19

terms F1 and F2, respectively. Mixing entropy free energy contributions of point-like counterions and
coions are accounted for in terms F3 and F4. The constraint of a constant number of ions in the system
is given in F5, where λ+ and λ− are the global Lagrange’s multipliers for counterions and coions.
The free energy that corresponds to orientational entropy of permanent water dipoles is given by F6,
while the last term, F7, gives the local constraint for orientation of dipoles. P(x, ω) is the probability
that a permanent water dipole located at x is oriented at angle ω with respect to the normal to the
charged surface (Figure 3). The brackets 〈...〉ω denote the average:

〈F (x, ω)〉ω =
1

4π

∫ π

0
F (x, ω) 2π sin ωdω. (15)

Here, ω is the angle between the internal dipole moment vector, p, and nφ = ∇φc/|∇φc| (see Figure 3).
We perform variation on the Helmholtz free energy, F, in Equation (14), so that δF = 0. Let us deal with
the variational approach of every contribution in Equation (14) particularly, beginning with F1 and
F2. For clarity of notation, direct spatial dependence will sometimes be omitted, so that for example,
n+(x) ≡ n+.

3.1. Variation Procedure

3.1.1. Electric Fields (F1 and F2)

Since there are no time dependent magnetic fields, we can express the electric fields as potentials
E(x) = −φ′(x), Ec(x) = −φ′c(x), where the prime labels the spatial derivative, and perform a variation
on the electrostatic term pertaining to water dipoles.

δ

(
ε0n2

2

∫
φ′2c dV

)
=

ε0n2

2

∫
2φ′cδ(φ′c) dV. (16)

We can rearrange this term, if we consider the rules of differentiating a function product

(φcδφ′c)
′ = φ′cδφ′c + φcδφ′′c ,

φ′cδφ′c = (φcδφ′c)
′ − φcδφ′′c .

(17)

The integral in Equation (16) can be rewritten as,

ε0n2
∫

φ′cδ(φ′c) dV = ε0n2
(

φcδφ′c|∞0︸ ︷︷ ︸
=0

−

−
∫

φcδ(φ′′c ) dV
)

,

(18)

where the first term on the right-hand side equals 0 at infinity, since we impose the electric potential
there to be constant and equal to 0. Taking into account the Poisson’s equation for the water dipoles,
namely φ′′c (x) = ∇ · P/ε0n2, where P represents the net polarization of the permanent water dipoles,
we get

− ε0n2
∫

φcδ(φ′′c ) dV =
∫

φcδρc dV. (19)

Here, ρc corresponds to the bound charge density due to the dipoles’ polarizations, which is related to
net polarization ρc = −∇ · P. We observe that δ(∇ · P) = ∇ · δP. The integral in (Equation (19)) can
now be rewritten: ∫

φcδρc dV = −
∫

φc(∇ · δP) dV. (20)

The product rule for divergence can be used ∇ · (φcδP) = (∇φc) · δP + φc(∇ · δP), so that the integral
of Equation (20) can now be written differently again:
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∫
φc(∇ · δP) dV =

∫
∇ · (φcδP) dV︸ ︷︷ ︸

=0

−
∫
(∇φc) · δP dV. (21)

Here, the first integral on the right hand side vanishes by virtue of the divergence theorem; since the
potential far away from the plates is constant and equal to zero. We therefore arrive at the final result

δF1 =
∫
(∇φc) · δP dV. (22)

The polarization, P, is related to the average orientation of all water dipoles (Equation (2)):

P(x) = nw〈P(x, ω)〉ω pnφ. (23)

Here, nw is the number density of water molecules in the solution, p = |p| is the internal point-like
dipole magnitude, nφ = ∇φc/|∇φc| is the unit vector away from the charged plate and 〈P(x, ω)〉ω is
defined by Equation (15) (see Figure 3). Since our case deals with a negatively charged surface (σ < 0),
P points in the direction opposite to the direction of the x-axis and is thus negative (for details see
Reference [76]). Since the variation of P can be written δP(x) = 〈nwpδP(x, ω)〉ω, we arrive at the
variation of F1:

δF1 = nw

∫
〈δP(x, ω)(∇φc) · p〉ω dV. (24)

Similarly, for F2 by taking into account Equation (17), we get

δ

(
ε0n2

2

∫
φ′2 dV

)
=
∫

φδρfree dV. (25)

The Poisson equation is different for free charges (ions): φ′′(x) = −ρfree/ε0n2 = e0(n+(x)− n−(x)).
The variation by φ′′(x) in Equation (25) can be written with macroscopic net volume charge density
ρfree(x), which in turn is the sum of the contributions of the local net ion charges. Performing the
variation on ion charge distribution ρfree(x) gives

δρfree = e0(δn+ − δn−), (26)

finishing the variation of the term F2:

δF2 =
∫

e0φ(δn+ − δn−) dV. (27)

3.1.2. Ion Mixing (F3, F4 and F5)

It makes sense to perform the variation of the ion mixing terms (F3 and F4), together with their
Lagrange multipliers (F5), since the variation δn+ and δn− will be a common term for positive and
negative ions, respectively. It is easily shown from Equation (14) that

δF3 + δF4 + δF5 = kT
∫

δn+(λ+ + ln
n+

n0
) dV + kT

∫
δn−(λ− + ln

n−
n0

) dV. (28)

3.1.3. Dipole Mixing (F6 and F7)

Variation of the terms F6 and F7 is straightforward. Since the bulk water number density, nw,
is taken to be constant, the variation of F6 is

δF6 = kTnw

∫
(〈δP(x, ω) lnP(x, ω) + δP(x, ω)〉ω) dV. (29)
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The last variation of F7 is performed over the probability, P(x, ω), and the Lagrange multiplier, η(x).
Expanding and applying the product rule, we find that

δF7 = kTnw

∫
(δη(x)〈P(x, ω)〉ω + η(x)〈δP(x, ω)〉ω − δη(x)) dV. (30)

3.2. Euler-Lagrange Equations

Combining the variations of all the integrals given in Equation (14), their sum δF gives
us the variation of Helmholtz free energy. Factoring all the variation terms with respect to
n+(x), n−(x),P(x, ω) and η(x) gives

δF =
∫

dVδn+(x)
[
kT
(

ln
n+(x)

n0
+ λ+

)
+ φe0

]
+
∫

dVδn−(x)
[
kT
(

ln
n−(x)

n0
+ λ−

)
− φe0

]
+

+
∫

dVnw〈δP(x, ω)
(
∇φc · p +

lnP(x, ω) + η(x) + 1
β

)
〉ω + kT

∫
dVnwδη(x)

(
〈P(x, ω)〉ω − 1

)
.

(31)

The volume differentials in a planar geometry are dV = S dx. Since the minimization condition
demands δF = 0, the expressions multiplied by δn+(x), δn−(x), δP(x, ω) and δη(x) in the last
equation must equal zero, resulting in a system

kT
(

ln
n+(x)

n0
+ λ+

)
+ φe0 = 0, (32)

kT
(

ln
n−(x)

n0
+ λ−

)
− φe0 = 0, (33)

Ec p cos ω +
lnP(x, ω) + η(x) + 1

β
= 0, (34)

〈P(x, ω)〉ω − 1 = 0. (35)

Here, we write β = 1/kT and expand the dot product ∇φc · p = Ec p cos ω (see Figure 3). Solving
Equations (32) and (33), we obtain the ion spatial distributions

n+(x) = n0 exp
(
− βe0φ− λ+

)
, (36)

n−(x) = n0 exp
(

βe0φ− λ−
)

. (37)

The boundary conditions state that φ(x → ∞) = 0 and n+,−(x → ∞) = n0, which renders λ+ = λ− = 0.
We may now turn our attention to the variation of permanent water dipoles orientation. Solving for
P(x, ω), Equation (34) gives

P(x, ω) = Λ(x) exp
(
− βEc p cos ω

)
, (38)

where Λ(x) = exp(−η(x)− 1). Substituting the cavity field Ec by E (Equation (4)) and dipole moment
magnitude p by p0 (Equation (5)) gives

P(x, ω) = Λ(x) exp
(
− β

3E
2

(2 + n2

3

)
p0 cos ω

)
, (39)

where p0 is the magnitude of pe. The final result is expressed using the constant γ defined in
Equation (9):

P(x, ω) = Λ(x) exp
(
− βγEp0 cos ω

)
. (40)

We can now evaluate the average internal dipole moment by integrating over mean orientations
(considering Equation (23)),
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p〈cos ω〉 = p0

(2 + n2

3

)
〈cos ω〉

=

∫ π
0

(
2+n2

3

)
p0 cos ω exp (−βγEp0 cos ω) dΩ∫ π

0 exp (−βγEp0 cos ω) dΩ

= −p0

(
2 + n2

3

)
L (βγEp0) .

(41)

The orientational polarization of water is thus (see Equations (2) and (5)):

P(x) = nw p〈cos ω〉

= −nw p0

(
2 + n2

3

)
L (βγE(x)p0) . (42)

If we insert the above result and the ion distribution functions (Equations (36) and (37)) into the average
microscopic charge density equation ρ(x) = ρfree(x)− dP/dx [61,77], where ρfree is the contribution of
the net ion charges Equations (26), (36) and (37) and P(x) is the polarization due to partially oriented
water dipoles, we get the expression for ρ(x) in a one-dimensional case:

ρ(x) = −2e0n0 sinh (βe0φ(x)) + nw p0

(
2 + n2

3

)
d

dx
(L (βγE(x)p0)) . (43)

Inserting the above expression for average microscopic volume charge density ρ(x) into the
Poisson’s equation,

φ′′(x) = −ρ(x)
n2ε0

, (44)

we get the modified LPB differential equation for the electric potential φ(x):

φ′′(x) =
1

n2ε0

[
2e0n0 sinh (βe0φ(x))− nw p0

(
2 + n2

3

)
d

dx
(L (βγE(x)p0))

]
, (45)

where φ′′(x) is the second derivative of the electric potential φ(x) with respect to x and E(x) = −φ′(x).
Equation (45) can be factorized via a product rule if we take into account that the Langevin function is
odd and its derivative is L′(u) = 1/u2 − 1/ sinh2 u in the following form [7]:

d
dx

[
ε0εr(x)φ′(x)

]
= 2e0n0 sinh (βe0φ(x)), (46)

εr(x) = n2 + nw
p0

ε0

(
2 + n2

3

)
L(βγE(x)p0)

E(x)
, (47)

where εr(x) is the relative permittivity (Equation (11)). This modified Langevin Poisson-Boltzmann
(LPB) differential equation (Equation (46)) is subject to two boundary conditions. The first boundary
condition arises from the electro-neutrality of the system, which assumes that the total net charge of
the system is zero, hence ∫

ρfree(x) dV − σS = 0, (48)

where σ is the negative membrane surface charge density, S is the total membrane surface area
and ρfree(x) = −2e0n0 sinh (βe0φ(x)) is the macroscopic (net) volume charge density of coions and
counterions. Since the macroscopic volume charge density is only dependent on x (Equation (43)) and
the differential dV = S dx, Equation (48) may be rewritten∫ ∞

0
2e0n0 sinh (βe0φ(x)) dx = −σ. (49)
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If we integrate Equation (45) once over the whole system, we get

φ′(x = 0) = − 1
n2ε0

[
σ + nw p0

(
2 + n2

3

)
· L(βγEp0|x=0)

]
. (50)

The second boundary condition states that the electric potential far away from the charged surface
(in the bulk) is constant φ′(x → ∞) = 0, rendering L(βγEp0|x→∞) = 0. The modified LPB equation
(Equation (46)) was derived in one dimension, but can be rewritten in a more general form to apply to
an arbitrary three-dimensional geometry. In three dimensions, the steps are analogous and discussed
in detail in a previous work [58], where a three-dimensional Lagrangian was derived for a model of
finite-sized ions. With this in mind, the modified LPB equation (Equation (46)) can be rewritten:

∇ ·
[
ε0n2∇φ(r)

]
+ nw p0

(
2 + n2

3

)
∇ ·

(
nφ L (βγEp0)

)
= 2e0n0 sinh (βe0φ(r)), (51)

where nφ = ∇φ/|∇φ| = ∇φ/E. We may factor the last equation, so that

∇ ·
[
ε0

(
n2 +

nw p0

ε0

(
2 + n2

3

)
L (βγEp0)

E

)
∇φ(r)

]
= 2e0n0 sinh (βe0φ(r)). (52)

This modified LPB equation can be written even more compactly, considering the definition of spatially
dependent permittivity εr(r) given by Equation (47) (for details, see Reference [58]):

∇ · [ε0εr(r)∇φ(r)] = 2e0n0 sinh (βe0φ(r)), (53)

εr(r) = n2 + nw
p0

ε0

(
2 + n2

3

)
L(βγE(r)p0)

E(r)
. (54)

Here, ρfree(r) is the macroscopic (net) volume charge density of coions and counterions.
A corresponding three-dimensional variant of the boundary condition (Equation (50)) is

∇φ(r = rsurf) = −
1

n2ε0

[
σnφ + nφnw p0

(
2 + n2

3

)
· L(βγE(r)p0(r)|r=surf)

]
. (55)

Rearranging, it follows that

∇φ(r = rsurf)
[
1 +

nφ

∇φ(r = rsurf)

nw p0

n2ε0

(
2 + n2

3

)
· L(βγE(r)p0(r)|r=surf)

]
= − σ

n2ε0
nφ. (56)

Evaluating the second expression on the left hand side of the last equation gives

nφ

∇φ(r = rsurf)
=
∇φ(r = rsurf)

|∇φ(r = rsurf)|
1

∇φ(r = rsurf)
=

1
E(r = rsurf)

. (57)

Combining this simplification with Equation (42), Equation (55) becomes

∇φ(r = rsurf)εr(r = rsurf) = −
σnφ

ε0
. (58)

Here we also take into account the expression for εr (Equation (47)). We see that the term
inside the square brackets on the left-hand side of Equation (56) is precisely the definition of the
relative permittivity on the surface of charged membrane εr(r = rsurf) (Equation (54)), yielding the
general result

∇φ(r = rsurf) = −
σnφ

ε0εr(r = rsurf)
. (59)
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4. Results

Figure 4 shows the dependency of the calculated macroscopic (net) volume charge density of the
electrolyte solution inside the nanotubes (ρfree(r)) on the radial distance from the geometrical axis of
the tube. It can be seen in the figure that for larger radii of the inner cross-sections of the nanotubes
(R), the value ρfree at the geometrical axis of the tube is zero, which means that the number densities of
counterions and coions there are equal and the electric potential is constant, that is, zero in our case
(see the right panel in Figure 5).

Figure 4. Macroscopic (net) volume charge density of coions and counterions (ρfree) as a function of
the radial distance from the geometrical axis of tube (r) calculated for 4 values of the inner tube
diameter R: 0.5 nm, 1.0 nm, 2.5 nm and 5.0 nm. The bulk concentrations of counterions and
coions n0/NA = 0.15 mol/L and σ = −0.25 As/m2, T = 298 K, constant concentration of water
nw/NA = 55 mol/L, optical refractive index n = 1.33 and magnitude of external dipole moment of
water p0 = 3.1 Debye, where NA is the Avogadro number.

Figure 5. Space dependence of electric potential in the cross-section of the tube interior calculated for 2
values of the inner tube diameter R: 1.0 nm and 5.0 nm. The values of the model parameters are the
same as given at Figure 4.

On the contrary, for smaller values of the nanotube radius R, the value of ρfree at geometrical axis
of the nanotube is not zero (Figure 4). Accordingly, for small values of the radius of the inner nanotube
also the gradient of the electric field (Figure 6) and the electric potential at the nanotube geometrical
axis are not zero (left panel in Figure 5). Hence, the bulk condition of the equal number densities of
counterions and coions is fulfilled outside the interior of the nanotube.
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Figure 6. The magnitude of electric field strength as a function of the radial distance from the
geometrical axis of tube (r), calculated for 4 values of the inner tube diameter R: 0.5 nm, 1.0 nm,
2.5 nm and 5.0 nm. The values of the model parameters are the same as given at Figure 4. The narrow
nanotube before and after entrance of the nanoparticles.

Figure 7 shows the dependency of the average orientation 〈cos (ω)〉ω and the relative permittivity
εr on the radial distance from the geometrical axis of tube (r), calculated for four different values of
nanotube inner radius R. It can be seen that for small radii, R, the average orientational of water dipoles
is relatively strong also in the vicinity of geometrical axis of the tube, while for larger R the average
orientation of water dipoles is strong only in the region near the charged inner surface of the tube.

Figure 7. Average orientation 〈cos (ω)〉ω and relative permittivity εr as a function of the radial distance
from the geometrical axis of tube (r), calculated for 4 values of the inner tube diameter R: 0.5 nm,
1.0 nm, 2.5 nm and 5.0 nm. The values of the model parameters are the same as given at Figure 4.
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5. Discussion and Conclusions

In this paper, we derived a modified Langevin Poisson-Boltzmann (LPB) model and the modified
LPB equation to theoretically describe the electric double layer (EDL) for a monovalent electrolyte
solution inside very narrow nanotubes with a negatively charged inner surface. In the modified LPB
approach, the electronic polarization of the water is taken into account by assuming a permanent
dipole embedded in the center of the sphere with a volume equal to the average volume of a water
molecule. The effect of a polarizing environment is reproduced by introduction of the cavity field
in the saturation regime [7,61,76]. In past EDL studies, treatments of cavity fields and structural
correlations between water dipoles were limited to cases of relatively small electric field strengths,
far away from the saturation limit of polarization and orientational ordering of water molecules
[73–75]. High magnitudes of electric field strength were later added in several works [44,61,63,78].
A commonly oversimplified assumption when theoretically describing the EDL is the assumption of a
surface charge density-independent relative permittivity in the inner (Stern) layer. Due to orientational
ordering of water dipoles, the relative permittivity of the Stern layer depends on the electric field
strength, that is, on the surface charge density (σ) of the electrode [51,79–82]. Furthermore, fitting the
model curves with a range of free parameters to the experimental points [83] cannot prove that the
Stern layer capacitance and permittivity is σ-independent. The decrease in the relative permittivity
close to the charged surface (electrode) is obviously partially the consequence of orientational ordering
of water dipoles close to the saturation regime or in the saturation regime as shown theoretically in
References [6,27,44,54,58,59,61–64,80,82].

Within a recently presented phenomenological approach it is claimed that close to the charged
surface, almost all water molecules belong to water shells around the ions, while the free water
molecules are excluded [83]. The results of simulations clearly refute this fact [84] by showing increased
water ordering in the direction towards the charged surface (including the region close to the charged
surface) (Figure 7, upper panel) even for high salt concentrations [84], in quantitative agreement
with mean-field theoretical predictions [7,82]. For example, for a magnitude of 0.16 As/m2 surface
charge density, there is practically no difference in the orientational ordering and space distribution of
water dipoles close to the charged surface between water with and without NaCl (of concentration
500 mmol/L) [84]. In general, for magnitudes of surface charge density up to around 0.3 As/m2, where
the mean-field approach can still be justified [7,82], there is only a weak quantitative influence of salt on
the profile of orientational ordering of water dipoles in Stern and diffuse layers, but not qualitative [84].
Note that the multi-layering of water predicted in simulations [84] cannot be predicted within our
mean-field approach [44,61] as well also not in the oversimplified phenomenological models [83].

Besides the saturation in polarization/water dipole orientation at high magnitudes of the
electric field strength, the important thing to consider in the EDL studies is also the saturation
in the counterion concentration near the charged surface due to the finite size of ions. These steric
effects were first predicted in the Wicke-Eigen’s model (also called the Bikerman’s model) and their
modifications [3,5,22,25,27,35,85,86]. For finite sized ions, the dielectric permittivity profile in the
vicinity of a charged surface is modulated by the depletion of water dipoles at the charged surface due
to accumulated counterions [58,82]. In the modified LPB model [7,59], described in the present paper,
these steric effects were not taken into account.

The described decrease in the relative permittivity relative to its bulk value in the present paper is
the consequence of strong orientational ordering of the water dipoles in the vicinity of the charged
surface (Figure 7). Contrary to our results it is claimed in Reference [87] that the relative permittivity is
increased in direction to the charged surface. As pointed out in publications of different authors the
predicted increase of relative permittivity near the charged surface in Reference [87] is unphysical [6,59]
and defies the common wisdom in electrochemistry [56]. In addition, the experiments report just the
converse as predicted in Reference [87], that is, the experiments indicated the decrease of relative
permittivity near the charged surface [88,89]. The predicted substantial increase of relative permittivity
in the inner part of the double layer near the charged surface in Reference [87] is due to arise in
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the dipole density near the surface as pointed out in Reference [56]. This unphysical result [6]
is the consequence of inconsistency of so-called dipolar PB theory presented in Reference [87] as
indicated in Reference [59]. Namely, it was shown [59] that the dipolar PB theory for point-like ions in
Reference [87] assumes an orientationally averaged Boltzmann factor for spatial distribution function
for water dipoles, which is however not compatible with the assumption of point-like ions. Energy
dependent spatial distribution of water dipoles cannot be taken into account simultaneously with the
assumption of point-like ions, but only if the finite size of molecules in the electrolyte solution are
taken into account [35,61]. This means that the dipolar PB model presented in Reference [87] is not
a self-consistent model and consequently predicts unphysical results which are not compatible with
experimental results even qualitatively, as noticed in References [6,56,59] and other publications.

The other important difference between our modified LPB model and the theoretical model
presented in Reference [87] is that our value for (external) water dipole moment 3.1 D [7,44,51,61]
is considerably smaller than the corresponding value 4.86 D used in Reference [87]. The value 3.1
D is closer to the experimental values of the effective dipole moment of water molecules in clusters
(2.7 D) and in bulk solution (2.4–2.6 D) (see for example Reference [68]). The value 4.86 D is so large in
order to compensate for the cavity field [6,61,74,75,78] that is not taken into account in Reference [87],
as noticed also in Reference [6], but is considered in the present modified LPB model. The model
value 3.1 D can be additionally decreased by taking into account structural correlations between water
dipoles [60,78]. The ion-ion and ion-water correlations were taken into account also in the mean-field
models of References [8,65,66].

It has been shown that for finite-sized ions the drop in the number density of water near a charged
surface results in an additional decrease of permittivity [7,58]. A further generalization of the modified
LPB model with steric effects taken into account within a lattice-statistics model of a modified LPB is
found in References [44,51,82]. By taking into account asymmetric finite size of ions the modified LPB
equation was generalized to (modified Langevin Eigen-Wicke model) [44,51,82]:

d
dx

[
ε0εr(x)

dφ

dx

]
= 2e0nsn0

sinh (βe0φ)

DA(φ, E)
, (60)

where εr(x) is the spatial dependence of relative permittivity:

εr(x) = n2 + n0wns
p0

ε0

(2 + n2

3

)(F (γp0Eβ)

DA(φ, E)E

)
(61)

and
DA(φ) = α+n0e−e0φβ + α−n0e+e0φβ +

n0w

γp0Eβ
sinh (γp0Eβ). (62)

Here, the parameters α+ and α− are the number of lattice sites occupied by a single positive and
negative hydrated ion, respectively, where a single water molecule is assumed to occupy just one lattice
site. The reduced number density of lattice sites ns/NA = 55 mol/L is equal to the concentration
of pure water [44,51,82]. The symbol n0w stands for the bulk number density of water molecules.
The function F (u) is defined as F (u) = L(u) sinh (u)/u, where L(u) is the Langevin function.

The results of the present paper are important when considering electric fields within artificial
as well as biological channels containing an electrolyte. Much attention has recently been given to
understanding tunneling nanotubes (TNTs), small tubular structures that drive cell communication
and spreading of pathogens [12]. Not yet fully understood, it is thought that these tubular structures
initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic
membrane nanodomains. Further research is needed to clarify the role of EDL in the inception of these
structures, since cytoplasmatic proteins and other elements are electrically charged. When such motor
proteins are complemented by protruding cytoskeletal forces provided by the polymerization of f-actin,
TNT formation is crucial in determining cell morphology, sometimes even leading to endovesiculation
of the red blood cell membrane [90–92]. Recently, within a molecular mean-field approach and taking
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into account the asymmetric size of ions, polarization of water, and ion-ion and ion-water correlations,
the ionic and water flows through biological ion channels was theoretically considered [65,66].

To conclude, in the present paper we started from a mean-field Helmholtz free energy functional,
presented a thorough derivation of the modified LPB equation and model by minimization of the
system free energy for the case of planar geometry. A special emphasis was devoted to orientational
ordering of water dipoles, taken into account in the expression for the free energy by rotational
entropy. Our approach provides a distinct analytical description of the interplay between mean-field
electrostatic and entropic effects arising from the mixing entropy of ions and rotational entropy of
water dipoles in EDL.

The derived modified LPB equation in planar geometry is then generalized for arbitrary geometry
and then used to calculate numerically the average orientation of water dipoles, relative permittivity
εr, magnitude of electric field strength, electric potential and the macroscopic (net) volume charge
density of coions and counterions for a cylindrical geometry (in dependence on radial distance from
the center of the tube).

Among other things it is indicated that in the saturation regime close to the charged surface,
where the magnitude of electric field is very large (Figure 6), strong orientational water dipole ordering
(Figure 7, upper panel) may result in a strong local decrease of permittivity (Figure 7, lower panel).
The relative permittivity of the electrolyte solution decreases with increasing magnitude of the electric
field strength.

Most interesting, we have shown that in the case of very narrow nanotubes the macroscopic (net)
volume charge density of coions and counterions (ρfree) at geometrical axis of the nanotube is not
zero (Figure 4). In addition, in narrow nanotubes the water dipoles are partially oriented also close to
the axis of the nanotube (Figure 7, upper panel), as schematically shown in (Figure 8). The potential
importance of this phenomena for the transport through the narrow channels with the charged inner
surface, specific only for very narrow nanotubes, should be investigated in the future. The channels in
biological membranes can be an interesting example of such systems.

Figure 8. A schematic figure of a radial arrangement of water dipoles inside a very narrow cylindrical
nanotube. The inner surface of the tube is negatively charged.

6. Materials and Methods

To solve Equation (52), a partial differential equation, we have used Comsol Multiphysics and
its electrostatics stationary solver. The mesh consists of 4946 elements, the boundary condition
(Equation (59)) was applied on the 2D cross-section of the nanotube and the geometry was solved
for 10293 DoFs. The numerical results were solved using a stationary nonlinear solver (Automatic
(Newton)), which implements a damped Newton’s approach, with a minimum damping factor of 10−6.
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31. Kjellander, R.; Marčelja, S. Interaction of charged surfaces in electrolyte solutions. Chem. Phys. Lett. 1986, 127,

402–407. [CrossRef]
32. Plischke, M.; Henderson, D. Pair correlation functions and density profiles in the primitive model of the

electric double layer. J. Chem. Phys. 1988, 88, 2712–2718. [CrossRef]
33. Mier-y-Teran, L.; Suh, S.; White, H.; Davis, H. A nonlocal free energy density functional approximation for

the electrical double layer. J. Chem. Phys. 1990, 92, 5087–5098. [CrossRef]
34. Strating, P.; Wiegel, F. Effects of excluded volume on the electrolyte distribution around a charged sphere.

J. Phys. A Math. Gen. 1993, 26, 3383–3391. [CrossRef]
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of TiO2@DNA nanohybrids and implications for capacitive energy storage devices. Nanoscale 2015, 7,
10438–10448. [CrossRef] [PubMed]

48. Kulkarni, M.; Patil-Sen, Y.; Junkar, I.; Kulkarni, C.V.; Lorenzetti, M.; Iglič, A. Wettability studies of
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