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Thickness of electrical double layer. Effect of ion size
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b Institute of Biophysics, Faculty of Medicine, Lipiče�a 2, SI-1000 Ljubljana, Slo�enia
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Abstract

The thickness of a single flat electrical double layer is considered. The electrostatic mean field and the excluded
volume effect are taken into account. A simple statistical mechanical approach is used, where the particles in the
solution are distributed over a lattice with an adjustable lattice constant. Different sizes of ions are described by
different values of the lattice constant. Two measures are introduced that describe an effective thickness of the
electrical double layer: a distance where the density of the number of counterions drops to a chosen fraction of its
maximal value, and a distance defining a region that contains a chosen fraction of the excess of the counterions. It
is shown that the effective thickness of the electrical double layer increases with increasing counterion size and with
decreasing bulk concentration of ions, whereas increasing the surface charge may cause either a decrease or an
increase of the effective thickness. It is shown that the description of the effective thickness of the electrical double
layer by the Debye length differs qualitatively from the description presented for low bulk concentrations of ions.
© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A flat electrical double layer is created by a charged
plane in contact with an electrolyte solution composed
of solvent molecules, counterions (ions with the charge
of the opposite sign than the plane) and coions (ions
with the charge of the same sign as the plane). Phenom-
ena involving the electrical double layer are common in
systems in contact with the electrolyte solution, such as
biological and artificial membranes [1], in liquid crystals
[2], in clays [3], and solid electrolytes [4].

As these systems are of importance in technology and
medicine, the electrical double layer has been a subject

of extensive study since the pioneering work of Gouy
[5] and Chapman [6] (for reviews see Refs. [1,7]). The
Poisson–Boltzmann theory, where dimensionless ions
are treated within the mean field approach, is an ac-
knowledged and widely used description.

One of the issues that still needs further clarification,
and which this work addresses, is ion-specific behavior
[8–12]. Here, we focus on the thickness of the flat
electrical double layer, a property that measures the
range of the electrostatic influence of the charged plane
in the surroundings. We would like to upgrade the
description within the Poisson–Boltzmann theory by
considering the effect of the size of the ions on the
thickness of the electrical double layer. We use a trans-
parent, nearly analytical, but yet detailed enough
model, based on the excluded volume effect, that was
stated in the 1950s [13–15], and which has recently
been developed further [16–20].
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2. Theory

We imagine a single planar surface at x=0 with
surface charge density �. This charged plane of area A
is in contact with a solution of symmetric electrolyte,
composed of one kind of coions, one kind of counteri-
ons and a solvent. For simplicity, we consider a symmet-
ric univalent electrolyte, the generalization being
straightforward. The area A is considered to be large, so
that boundary effects can be neglected. The solution

extends in the positive x direction up to a distance d
where the effect of the charged plane is negligible. The
system is described by the mean electrostatic field,
whereas the finite size of the particles that compose the
solution is considered by means of the excluded volume
effect. It is assumed that the electrostatic field extends
into the positive x direction, whereas there is no electri-
cal field on the other side of the charged plane (x�0).
The excluded volume effect is introduced by means of a
statistical mechanical description. Within this descrip-
tion each particle in the solution occupies one, and only
one, site of a finite volume. A lattice with an adjustable
lattice constant is introduced, all sites of this lattice
being occupied:

ns=nct(x)+nco(x)+nsolvent(x) (1)

where nct is the density of the number of the counteri-
ons, nco is the density of the number of coions and
nsolvent is the density of the number of the solvent
molecules. The density of the number of lattice sites of
the system ns can be expressed as ns=1/Vs, where Vs is
the volume of a three-dimensional cubic lattice with a
lattice side size of a : Vs=a3. The volume of the whole
system is the sum of the volumes of ions and solvent
molecules.

The derivation of the general equations of the model
is given elsewhere [18]. The densities of the number of
the respective particles depend on the distance from the
charged plane

where n0d is the density of the number of the solvent
molecules far from the charged plane, nd is the density
of the number of the counterions and of the coions far
from the charged plane, �ct and �co are the valences of
the counterions and the coions respectively, �ct,�co= �
1, e0 is the elementary charge, �(x) is the potential of
the mean electrostatic field, k is the Boltzmann constant
and T is the temperature.

The mean electrostatic potential is obtained by solv-
ing the differential equation

where � is dielectric constant of the solution and �0 is
influence constant. The boundary conditions subject to
Eq. (4) are
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Accordingly, d should be regarded as very large, i.e.
d��.

The screening of the electrostatic field by the counte-
rions that accumulate near the charged plane can be
represented by the effective thickness of the electrical
double layer. In previous work [18] we have introduced
the distance x1/2, where the density of the number of the
counterions (calculated relative to its value far from the
charged plane) drops to half of its value at x=0:

nct(x1/2)−nd=1
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where nct(0) is density of the number of counterions at
x=0.

Here, we generalize this condition so as to consider
the finite dimension of the lattice by the distance of the
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nct(x�)−nd= (1−�)(nct(a/2)−nd) (9)

We introduce another measure of the thickness of the
electrical double layer, namely the distance d�, defining
the region that contains a certain fraction � of the
excess of the counterions� d�

a/2

(nct(x)−nd) dx=�
� d

a/2

(nct(x)−nd) dx (10)

For vanishing ion size (in the limit of the validity of the
Poisson–Boltzmann theory) x� is expressed
analytically:

where
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2kT

�cte0

ln(�1+ (�/c)2+ �� �/c) (12)
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Subject to the same limit, and taking that d��, the
parameter d� is expressed as
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If, in addition, �e0�(x)/kT ��1 for all x, i.e. the lin-
earized Poisson–Boltzmann theory is applied, both
measures further simplify into the expression

x�=d�=
1
�

ln
� 1

1−�

�
(16)

where 1/� is the Debye screening length, which de-
scribes the effective thickness of the electrical double
layer in the linearized Poisson–Boltzmann theory.

Within the model presented the lattice sites are equal;
therefore, all the particles are considered to have the

same size. Without this assumption the number densi-
ties of the ions could not be expressed analytically (as
by Eqs. (2) and (3)). Therefore, in the model all parti-
cles have the same size. In previous work [18] we have
arbitrarily adjusted the lattice constant to the size of
solvent molecules, as we were interested in the general
solution of the self-consistent expressions for the elec-
trostatic potential, particle distribution functions and
free energy. Here, we focus on the effect of the size of
the particles; therefore, the choice of the lattice constant
should be adjusted according to the relevant features
under consideration. Far from the charged plane the
electrostatic field does not depend on the lattice con-
stant [18]. On the other hand, in the vicinity of the
charged plane the counterions are accumulated while
the coions are scarce. The influence of the counterions
contained in the region close to the charged plane on
the electrostatic field is the most important one [18].
Therefore, we propose that it is relevant to chose the
lattice constant a by the size of the counterions in the
solution. Different solutions characterized by the kind
of counterions can then be simulated by changing the
lattice constant a pertaining to the corresponding kind
of counterions.

To study the effective thickness of the electrical dou-
ble layer for different sizes of the counterions we solve
Eq. (4), determine the distribution function given by
Eq. (2) and calculate the parameters x� and d�. The
solution of Eq. (4) is obtained numerically by using the
fourth-order Runge–Kutta method [21] starting far
from the charged plane, and the integral in Eq. (10) is
calculated using Simpson’s method.

The ion density is defined only for x�a/2, whereas
the electrostatic field is defined for all x�0 and is
subject to the condition in Eq. (5).
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Fig. 1. The dependence of the thickness of the electrical double
layer represented by the parameters x� (a) and d� (b) on the
lattice constant a. The parameter � determines the fraction of
the counterion excess within d� while at x� the number density
of the counterions falls to (1−�) of its value at x=a/2. The
points denote the corresponding results of the nonlinearized
Poisson–Boltzmann (PB) theory. The model parameters are
�=78.5, T=310 K, nd=0.1 mol/l, and �� �=0.4 A s/m2.
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Fig. 2. The dependence of the thickness of the electrical double
layer represented by the parameter d1/2 on the bulk density of
the number of the ions nd. The results of the nonlinearized
Poisson–Boltzmann (PB) theory and the linearized Poisson–
Boltzmann (LPB) theory are also shown. The model parame-
ters are �=78.5, T=310 K, and �� �=0.4 A s/m2.

increase beyond every bound (not shown). It can be
seen in Fig. 1 that the effective thickness of the electri-
cal double layer increases with increasing size of the
counterions, reaching values of several nanometers for
lattice constants of about 1 nm. The limit of small a
corresponds well with the Poisson–Boltzmann theory.

Fig. 2 shows the dependence of the parameter d�=1/2

on the number density of the ions far from the charged
plane nd for a chosen lattice constant a. The curves
calculated using the Poisson–Boltzmann theory and the
linearized Poisson–Boltzmann theory are also shown.
For small densities of the number of ions far from the
charged plane nd the effective thickness of the electrical
double layer is constant in an interval of about three
orders of magnitude. However, the value of the effec-
tive thickness is larger for larger lattice constants. The
curve obtained by the Poisson–Boltzmann theory ex-
hibits qualitatively the same behavior. In contrast, the
linearized Poisson–Boltzmann theory yields a depen-
dence that deviates qualitatively from the other results
shown in Fig. 2. In this case, with decreasing nd, instead
of reaching a plateau value, the effective thickness
increases beyond every bound. Note that the curve
corresponding to the finite size of counterions is defined
only to a certain upper bound with respect to nd.

Fig. 3 shows the dependence of the parameter d1/2,
representing the effective thickness of the electrical
double layer, on the surface charge density �� � of the
x=0 plane. Two choices of lattice constant a are given.
If the surface charge density �� � increases, then the
effective thickness of the electrical double layer contain-
ing counterions of a finite size decreases, reaches a
minimum and then increases. The corresponding result
of the Poisson–Boltzmann theory shows a continuous
decrease of d1/2 with increasing �� �.

3. Results

Fig. 1 shows the parameters x� (a) and d� (b) repre-
senting the effective thickness of the electrical double-
layer in dependence on the lattice size a that represents
the ion size. Three choices of � are considered (�=0.9,
0.8 and 0.5). The points marked by the dots in Fig. 1(a)
and (b) show the result of the Poisson–Boltzmann
theory (Eqs. (15) and (11) respectively). The values of
the parameters d� and x� are larger for higher � ;
however, qualitative dependence is equal for all three
choices. For small values of � both parameters dimin-
ish, whereas as � approaches unity both the parameters

Fig. 3. The dependence of the thickness of the electrical double
layer represented by the parameter d1/2 on the surface charge
density �� � of the x=0 plane for different lattice constants a.
The result of the Poisson–Boltzmann (PB) theory is also
shown. The model parameters are �=78.5 and T=310 K, and
nd=0.1 mol/l.

Fig. 4. The density profile of the counterions nct for different
lattice constants a. The results of the nonlinearized Poisson–
Boltzmann (PB) theory and the linearized Poisson–Boltzmann
(LPB) theory are also shown. The model parameters are
�=78.5 and T=310 K, nd=0.1 mol/l, and �� �=0.4 A s/m2.
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Fig. 5. The dependence of the electric potential on the distance
from the charged plane x for different lattice constants a. The
results of the nonlinearized Poisson–Boltzmann (PB) theory
and the linearized Poisson–Boltzmann (LPB) theory are also
shown. The model parameters are �=78.5 and T=310 K,
nd=0.1 mol/l, and �� �=0.4 A s/m2.

involved in the region x�d�. On the other hand, for �

very close to unity the thickness of the electrical double
layer is almost independent of all the parameters, as the
region must contain almost all the excess counterions.
It is sensible to choose � somewhere between 0.4 and
0.8, where the effect of other different parameters is
clearly exhibited.

Assuming close packing, the layer width can be ap-
proximated by dcp=a3e0/�� �. This simple expression
compares with the results shown in Fig. 1. For exam-
ple, dcp=2.5 nm for a=1 nm.

As the values of the effective thickness of the electri-
cal double layer are of the same order as the lattice
constant, the macroscopic quantities of the density of
the number of ions and the dielectric constant are
poorly defined. We have taken that the density of the
number of particles is defined only for x�a/2, �=78.5
for x�0 and that the electrostatic field is −�/��0 for
0�x�a/2.

In the limit of vanishing ion size (at finite bulk
density of the number of counterions nd) and for very
small area density of charge �� �, both d� and x� ap-
proach the expression Eq. (16) by the Debye length.

In considering the effect of the bulk density of ions,
a saturation in the thickness of the electrical double
layer is obtained in a broad region over several orders
of magnitude for a small bulk density of counterions nd

(Fig. 2). It can be emphasized that the linearized Pois-
son–Boltzmann theory may considerably overestimate
the thickness of the electrical double layer even for
moderate bulk counterion densities corresponding to
the concentrations 10–100 mmol/l (Fig. 2). Moreover,
the result of the linearized Poisson–Boltzmann theory
deviates qualitatively from the corresponding result of
the nonlinearized Poisson–Boltzmann theory, increas-
ing beyond every bound as the bulk density decreases.
In the limit of vanishing ion size, moderate �� � and
vanishing bulk density nd, the parameter x� approaches
the expression x�=A0/2�lB(1/�1−�−1) and the
parameter d� approaches the expression
d�=A0�/2�lB(1−�), where A0 is the effective area of
the charged plane that bears one elementary charge and
lB=e0

2/4�kT��0 is the Bjerrum length. Note that both
expressions are independent of nd.

Our results indicate that caution should be taken
while using the Debye length in interpretation of the
phenomena considering the electrical double layer. It
has already been suggested that a description of the
electrical double layer by the Debye length is oversim-
plified in diluted solutions where solution behavior can
be conveniently studied by the electrolytic conductivity
[11].

Considering finite size of ions qualitatively agrees
with the nonlinearized Poisson–Boltzmann theory (Fig.
2). However, as the thickness of the electrical double
layer is increased for larger counterions, the quantita-

Fig. 4 shows the profile of the density of the number
of counterions, and Fig. 5 shows the electrostatic po-
tential dependence on the distance from the charged
plane. Two different lattice constants a and the results
of the Poisson–Boltzmann and the linearized Poisson–
Boltzmann theory are given. The density profile of the
counterions in the vicinity of the charged plane depends
strongly on the lattice constant, whereas far from the
charged plane the density of the counterions is insensi-
tive to the lattice constant. Note that the counterion
density is defined only for x�a/2. For large enough a
the profile exhibits a plateau region near the charged
plane, whereas in the limit of vanishing a the density of
the number of the counterions nct converges towards
the corresponding density obtained by the Poisson–
Boltzmann theory.

4. Discussion

We described the thickness of the electrical double
layer by two characteristic lengths: (a) the distance
where the excess of the counterions drops to a chosen
fraction of the initial value x� and (b) the distance d�

wherein a chosen fraction of all the excess counterions
is contained. The values of d� are higher than the
corresponding values of x�. In the limit of vanishing ion
size (at finite density of the number of the counterions
far from the charged plane nd and area density of
charge of the charged plane �� �) both parameters
monotonously increase with increasing choice of � from
zero at �=0 and diverge as � approaches unity. The
parameter � should, therefore, not be too low, as for
small � only a small part of excess counterions is
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tive agreement between the result of the linearized
Poisson–Boltzmann theory and the result obtained by
considering finite size of ions may, for certain choices of
�� � and nd, be better than the agreement between the
result of the nonlinearized Poisson–Boltzmann theory
and the result obtained by considering finite size of
counterions. This is notable also in Figs. 4 and 5.

It can be deduced from Figs. 1–4 that the screening
of the electric field of the charged plane is less effective
for larger ion sizes. Namely, in the case of larger lattice
constant a, the electrostatic field protrudes further into
the solution and the energy of electrostatic field W el is
higher. The entropic contribution to the free energy
reflects the rearranging of ions in the solution. In the
case of larger ions the rearrangement of ions is ex-
tended further into the solution; however, the rear-
rangement of ions near the charged plane is much less
pronounced.

The results regarding the counterion density profile
(Fig. 4), which show a continuous decrease for small
lattice constant and a plateau region for large lattice
constants, reproduce the profiles obtained by Freise [14]
(who introduced the excluded volume effect by the
pressure-dependent chemical potential), by Wicke and
Eigen [13,15] (who, in a thermodynamic approach,
multiplied the density of the number of ions by a factor
containing the number of the vacant sites), and by
Borukhov et al. [19,20] (who used a systematic path
integral approach within the lattice theory and a phe-
nomenological approach based on the entropy of the
solvent). It can be established that, for large counteri-
ons, two regions can be distinguished within the system:
a saturated layer dominated by the steric repulsion and
a diffuse layer extending into the solution.

Since the pioneering work of Gouy and Chapman,
the description of the electrical double layer has been
improved by considering molecular Hamiltonian mod-
els that take into account direct interactions between
the charges in the system and solvent structure and
interactions. Simulations were performed [7,22–28],
and approximation approaches, such as the modified
Poisson–Boltzmann theory [29,30], cluster expansion
theory [31] and integral equation theories [32–34], have
been developed.

However, these studies are comparatively demanding
and are not convenient for everyday analysis of experi-
mental data. Therefore, for such purposes the Poisson–
Boltzmann theory is still widely used [7]. Recently,
theories have been developed that include some relevant
property of the system, such as the excluded volume
effect, in a relatively simple way [13–15,18,19,35–37].
Within the formalism used in this work, the effects of
different sizes of counterion can be distinguished within
a model that requires a solution of one relatively simple
differential equation; therefore, it is suitable to apply in
supporting the experiments. It is, however, important to

estimate when the simplifications that are taken into
account render the theory qualitatively insufficient to
describe the phenomena of interest.

Liquid-state theory has shown that fluctuation terms
are important [38]. Some models explicitly take into
account the dipolar nature of the solvent [36,39,40].
Owing to the more detailed description, oscillations in
the density of the ions near the charged plane occur.
For monovalent ions in the solution the effects of the
direct interactions of ions and of the solvent are negligi-
ble [7,28,41]. If the valence of the ions and the concen-
tration of the ions are higher, direct interactions
between the particles that constitute the system become
more important.

In our model, we cannot account for the direct
interactions owing to the limitations due to the mean
field approximation. Also, the solvent is treated within
the solvent primitive model [42]: on the one hand, as a
set of particles that interact through the excluded vol-
ume effect and, on the other hand, as a medium
characterized by a dielectric constant. We cannot ob-
tain the oscillations of the ion density profiles. How-
ever, the calculated ion density profiles obtained by the
Monte Carlo method [23] show that the amplitudes of
the oscillations for univalent and divalent electrolytes
are much smaller than the drop of the counterion
density due to the screening of the electrostatic field of
the charged plane. Although the results of the Monte
Carlo simulations [7,23] are given for relatively low �,
where the effects of the direct interactions are relatively
stronger, the amplitudes of the oscillations are so small
that the oscillations would not affect the thickness of
the electrical double layer as defined in our work.

The ion density profiles near the charged plane are,
however, significantly influenced by direct interactions.
We have made a quantitative comparison between the
results of the Monte Carlo simulations and our results
by comparing the parameter x�. We have used the ion
density profiles calculated by the Monte Carlo method
[23], from which we could estimate the distance where
the counterion density drops to 1−� of its value
closest to the charged plane. For a univalent electrolyte,
where �=0.0438 A s/m2 and nd=1 mol/l, the parame-
ter x4/5 obtained by the Monte Carlo method is indis-
tinguishable from the corresponding x4/5 obtained by
our method, whereas the parameter x1/2 differs by
about 10%. For a divalent electrolyte, where �=
0.0876 A s/m2 and nd=1.2 mol/l, the difference in x4/5

is about 25% and about 45% in x1/2. The ion diameter
was 0.425 nm in both cases [23]. As this parameter used
in the Monte Carlo calculations [7,23] describes rather
small ions, the results obtained by our theory for the
respective lattice constant are very close to the results
of the Poisson–Boltzmann theory. Unfortunately, we
found no data for large ions at high �, where the effect
of our model becomes important. In the future it would
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be of interest to perform a Monte Carlo simulation for
such a system.

The evaluation of the different theoretical ap-
proaches can only be made by comparison of the
theoretical results with experimental data. The experi-
ments using neutron diffraction [43] and X-rays [8,9,44]
show accumulation of the counterions in the vicinity of
the charged plane and a rapid decrease of the density as
the distance from the plane increases. Recently, experi-
ments with large multivalent phosphotungstate ions in
contact with a highly charged plane were performed
[8,9]. A monolayer composed of eicosylamine
(C20H43�NH2) was formed at the electrolyte solution/
air contact. The solution contained phosphotungstate
anions (PW12O40

3−). The pH of the solution was low, so
that the amine group facing the solution was fully
ionized. Thus the headgroup plane was highly posi-
tively charged. The lateral pressure, and the area per
eicosylamine molecule, and therefore the surface charge
of the charged plane were varied by the compression
barrier. The density of the number of the phospho-
tungstate counterions in the vicinity of the headgroup
plane was measured by X-ray reflectivity and optical
observations. It was found that most of the counterions
are located within a single layer of monomolecular
width. Fig. 6 shows the dependence of the number of
the counterions close to the charged plane (per eicosy-
lamine) on the effective area of the eicosylamine. The
results of the measurements [9] for small areas per
eicosylamine molecule (large �) are compared with the
corresponding theoretical results obtained by our the-
ory and also by the Poisson–Boltzmann theory. The
number of counterions close to the charged plane was
calculated by integrating the counterion density within
a layer of thickness a ; it was considered that a=1 nm
[45]. It can be seen that by considering a finite size of
counterions reproduces an increase in the number of

counterions per eicosylamine with increasing area per
eicosylamine (decreasing �). This cannot be obtained
by the Poisson–Boltzmann theory. However, in the
above experiment, for a larger area per eicosylamine
(small �) it was found that more counterions approach
the charged plane than are necessary to compensate the
charge of the eicosylamine headgroups [8,9] (data not
shown in Fig. 6). This effect can be described as an
overcompensation of charge; however, it is also possible
that small H3O coions that could not be detected by the
experimental method used are present within the coun-
terion-dense region [9].

We have failed to obtain precompensation of charge
with our model where the charge is uniformly smeared
over the charged plane by symmetric and nonsymmetric
electrolytes of valences of coions and counterions up to
four and also with symmetric electrolytes with added
ions (coions and counterions). These results agree with
the corresponding results obtained by a similar model
[20]. This is due to the limitations of the model, proba-
bly due to the mean field description of the electrostat-
ics. The overcompensation could be described within
the primitive model by the molecular Hamiltonian the-
ories, where other terms besides the mean field are
taken into account [46]. However, it might also be
possible that the discreteness of the charge could con-
tribute to the explanation. Namely, it has been shown
[47] that a multivalent polyion can cluster around a
point charge of the opposite sign. Generalizing the
origin of this effect, a counterion of a higher valence
than the charge on the charged plane would approach
the charge and reverse the sign of the complex if the
complexes were sufficiently far apart.

The above experiments, where the density profiles
were directly measured, did not confirm oscillations in
density profiles that were predicted by the approaches
based on the molecular Hamiltonian. The reported
resolution of the experiments seems to be too low to
yield a definite answer.

The features regarding the electrical double layer are
of importance in amphiphilic layered systems, such as
bilayer membranes. The contribution of the electro-
static forces to the free energy affects lateral pressure
within the membrane [48] and influences the membrane
curvature [49–52]. In the future it would be of interest
to study the effect of ion size on the membrane curva-
ture and, consequently, on the shape of aggregates
made of amphiphilic molecules, such as phospholipid
vesicles.
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Fig. 6. The dependence of the counterions close to the charged
plane per eicosylamine molecule on the effective area of the
eicosylamine. The experimental data were taken from Ref. [9].
The values of the parameters used in calculations are a=
1 nm, �=78.5 and T=310 K, and nd=0.003 mol/l.
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