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Abstract The interdependence of the lateral distribution
of molecules which are embedded in a membrane (such as
integral membrane proteins) and the shape of a cell with
no internal structure (such as phospholipid vesicles or
mammalian erythrocytes) has been studied. The coupling
of the lateral distribution of the molecules and the cell
shape is introduced by considering that the energy of the
membrane embedded molecule at a given site of the mem-
brane depends on the curvature of the membrane at that
site. Direct interactions between embedded molecules are
not considered. A simple expression for the interaction of
the membrane embedded molecule with the local mem-
brane curvature is proposed. Starting from this interaction,
the consistently related expressions for the free energy and
for the distribution function of the embedded molecules
are derived. The equilibrium cell shape and the correspond-
ing lateral distribution of the membrane embedded mole-
cules are determined by minimization of the membrane free
energy which includes the free energy of the membrane
embedded molecules and the membrane elastic energy. The
resulting inhomogeneous distribution of the membrane
embedded molecules affects the cell shape in a nontrivial
manner. In particular, itis shown that the shape correspond-
ing to the absolute energy minimum at given cell volume
and membrane area may be elliptically non-axisymmetric,
in contrast to the case of a laterally homogeneous mem-
brane where it is axisymmetric.
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Introduction

Equilibrium shapes of cells with no internal structure (such
as phospholipid bilayer vesicles and mammalian erythro-
cytes) are determined by the minimum of the energy of
their membranes. For laterally homogeneous closed
membranes, composed of layers which are unconnected
but in contact, the relevant energy is the elastic energy of
such membranes (Svetina and Zeks 1992). The correspond-
ing equilibrium shapes are well represented by the gener-
alized bilayer couple model (see Heinrich et al. 1993, Miao
et al. 1994 and references therein). The generalized bilayer
couple model includes as the two opposite limits the
spontaneous curvature model (Deuling and Helfrich 1976)
and the strict bilayer couple model (Svetina and Zek$
1989).

Membranes can in general be viewed as a matrix com-
posed of lipid molecules in which large molecules (such
as integral membrane proteins) are embedded. The embed-
ded molecules can, with greater or smaller mobility, move
around in the plane of the membrane (Gennis 1989). Dif-
ferent experimental data suggest that the most energeti-
cally favorable distribution of the embedded molecules is
laterally inhomogeneous. The spontaneously released ves-
icles of in vitro aged sheep erythrocytes and sheep eryth-
rocyte ghosts are enriched in integral glycoproteins with
respect to intact cells (Lutz et al. 1977), suggesting an in-
homogeneous distribution of membrane proteins which
could arise from significantly higher curvature of vesicle
membranes. Weitz et al. (1982) studied human erythrocyte
membrane vesiculation induced by addition of dimyris-
toylphosphatidylcholine liposomes. Also here, inhomo-
geneous distribution of membrane proteins was observed,
as the vesicles released from the membrane were enriched
in some integral membrane proteins. The observations of
microvilli formed on lymphocytes (de Petris 1978) show
that some molecules which are relatively free to move lat-
erally over the cell membrane tend to leave the cell body
and accumulate on microvilli where the membrane curva-
ture is larger. It was likewise observed (Weiss and Subjeck
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1973) that the glycoprotein area density was higher on the
microvilli than on the intermicrovillous membrane surface
of Ehrlich ascites tumor cells. These observations indicate
a possibility that a property which varies over the surface,
and could be the cause for the inhomogeneous lateral dis-
tribution of the molecules over the membrane, is the mem-
brane curvature.

It is of interest to investigate how membrane curvature
affects the distribution of membrane constituents over the
membrane area. Besides that, it is also of interest to inves-
tigate how this distribution affects the membrane curva-
ture and the cell shape. In this work, a bilayer membrane
with embedded molecules which span both layers of the
membrane is considered. These molecules are treated as
equal and the direct interactions between them are ne-
glected. The only relevant contribution to the energy of the
embedded molecule is therefore the energy of the interac-
tion between the molecule and the local membrane curva-
ture which depends on the shape of the molecule. Our pre-
liminary results (Svetina et al. 1990) indicate that inhomo-
geneous distribution of the membrane embedded mole-
cules produces equilibrium shapes that are, in general, dif-
ferent from the shapes of the laterally homogeneous mem-
brane which were obtained by minimization of the mem-
brane elastic energy within the bilayer couple model.
Therefore it seemed to be of interest to examine in detail
how the presence of the embedded molecules affects
the shape within the framework of the bilayer couple
model.

Related systems and problems have been studied be-
fore. The inhomogeneous distribution of membrane con-
stituents was related to the vesicle shape. Most of these
studies consider the membrane as a single layer. The basic
idea for the description of the interdependence of the in-
homogeneous distribution of the membrane constituents
and the cell shape was put forward by Markin (1981). The
expression for the free energy of the membrane composed
of two species of molecules was derived by employing the
spontaneous curvature mode! where in addition to the
membrane bending energy were included the contributions
due to the membrane constituents. For the dependence of
the membrane bending constant and of the spontaneous
curvature on the area density of the membrane constitu-
ents, the phenomenological expressions were proposed.
The equilibrium shapes of a two-dimensional analog of the
cell (an elastic ring) were calculated. More recently, a
phenomenological coupling between the membrane curva-
ture and the area densities of membrane constituents was
applied (Leibler 1986; Leibler and Andelman 1987; Kaw-
akatsu et al. 1993; Seifert 1993; Taniguchi 1994). The free
energy of the membrane was expressed by means of a Ginz-
burg-Landau expansion in powers of the order parameter
related to the concentration of the membrane constituents.
Static and dynamic phenomena of a membrane containing
a certain amount of laterally diffusing embedded particles
and of a two component membrane were considered. As-
suming that the energy of interaction of the embedded par-
ticles with the phospholipids, as well as among themselves,
is given by a harmonic function of the particle concentra-

tion, and that the membrane curvature changes only very
little with the position on the membrane, Leibler (1986)
established by using the above formalism that the mem-
brane free energy could be written in the form of the mem-
brane bending energy of the spontaneous curvature model
with renormalized expressions for the membrane bending
constant and the spontaneous curvature of the membrane.
Further, by considering two component vesicles, intra-
membrane phase separation of the molecules was obtained
and the stability of shapes was studied in the strong segre-
gation limit (Kawakatsu et al. 1993) and in the weak seg-
regation limit (Taniguchi et al. 1994).

Considering that the membrane is composed of two
layers Mitov (1981) derived an expression for the free en-
ergy of the two component membrane starting from some
basic parameters of molecules such as the surfaces per head
and per hydrophobic part of the molecule at a given defor-
mation of the membrane and the constants characterizing
the interaction between heads and chains, respectively,
of the lipid molecules. Seifert (1993) considered shapes
of two component vesicles where the spontaneous curva-
ture was assumed to depend linearly on the local compo-
sitions of the two membrane layers. The membrane free
energy could then be expressed in the form of the elastic
energy of the generalized bilayer couple model with renor-
malized expressions for the parameters of the elastic bend-
ing energy: the spontaneous curvature and the local and
non-local bending constants of the membrane as well as
the equilibrium area difference of the two membrane
layers.

In our model the membrane is treated as a laterally ho-
mogeneous bilayer in which the embedded molecules span
both layers. The formalism proposed here differs from the
previous models as it starts from the energy of the interac-
tion of an individual embedded molecule with the mem-
brane curvature at the site of the molecule. An expression
for this interaction is proposed where it is taken that an em-
bedded molecule is symmetric with respect to the axis per-
pendicular to the membrane. The macroscopic quantities
such as the equilibrium lateral distribution of the embed-
ded molecules, the membrane free energy and the equilib-
rium cell shape are then derived using the methods of sta-
tistical physics. Following the procedure, in the next sec-
tion, the consistently related expressions for the molecu-
lar distribution function and for the free energy of the mem-
brane independence of the local membrane curvature are
derived. The variational problem is defined, in which the
equilibrium shape and distribution corresponding to the
minimum of the membrane free energy (including the
membrane elastic energy in addition to the contribution of
the embedded molecules) at given constraints are sought.
It is then shown how the curvature dependent interaction
of the embedded molecules with the membrane influences
the cell shape, the distribution of embedded molecules and
the membrane free energy. Possible relations of these fea-
tures to similar systems studied and also to biological phe-
nomena such as the existence of elliptic erythrocytes are
indicated.



Theory

The membrane is treated as a two-dimensional continuum
in which laterally mobile molecules such as proteins are
embedded. The embedded molecules are taken to be equal
and also independent in the sense that the direct interac-
tions between them are neglected. It is assumed that the
addition of the embedded molecules does not affect the
membrane area. In this model a molecule interacts with the
membrane by simply “sensing” its local curvature. The
energy of interaction between the membrane and the mole-
cule (E) reflects the mismatch in the shape of the part of
molecule immersed in the membrane and the local mem-
brane curvature which causes an increase in the energy. It
is assumed that the energy E is a function of the two prin-
cipal curvatures C, and C, of the membrane at the site of
the molecule. In general, the principal curvatures vary over
the vesicle surface. Because the embedded molecules are
expected to be more abundant at energetically more favor-
able sites, they are distributed nonuniformly over the ves-
icle surface.

Here, the expressions for the distribution of the mem-
brane embedded molecules and for the corresponding equi-
librium free energy are derived from the same basic as-
sumptions and from the same statistical mechanical origin.
In the first step, the distribution function for membrane
embedded molecules which is energetically the most fa-
vorable at a given cell shape is sought. In this procedure
(which is described in Appendix I) the expression for the
free energy of membrane embedded molecules is mini-
mized with respect to the distribution function of the mole-
cules. The Boltzmann distribution function is obtained as
the most favorable distribution function (AI.14),

1 -E@,, e,

nln, = (D
where

Zzij'e-E(cl, CIKT g )
and

n,=NI/A, (3)

n is the number surface density of the embedded molecules
at a given position, n, is the number surface density cor-
responding to the uniform distribution, k is the Boltzmann
constant, 7 is the temperature, dA is the area element, and
N is the total number of the membrane embedded mole-
cules. Integration is performed over the entire membrane
area A.

The free energy of the membrane embedded molecules
F, which corresponds to the above distribution function
for a given vesicle shape is (AL.16)

Fy=-kTN InX. G

The membrane elastic energy W in the generalized bi-
layer couple model (in which the membrane is considered
to be composed of two layers which are unconnected but
in close contact) is (see Heinrich et al. 1993; Miao et al.
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1994, and references therein)

2

1 2 1 &, [ AA—AA
W=_k |(G+Cy-Cy)  dA+— | — |, 5

ke (G +C-¢y) v |: h (5)
where k. and k, are the local and the non-local bending
moduli, respectively, C, is the spontaneous curvature of
the membrane, AA is the area difference between the out-
er and the inner membrane layer areas

A =h[(C,+CydA, (6)

with £ the distance between the neutral surfaces of the two
membrane layers, and AA, the area difference of the two
unstretched membrane layers.

The equilibrium principal curvatures as functions of the
position on the membrane (determining the equilibrium
vesicle shape) are obtained by minimization of the mem-
brane free energy F which includes the membrane elastic
energy W and the free energy of the membrane embedded

molecules F,
F=W+F,. @)

Dimensionless quantities are introduced. If R, is the radi-
us of the sphere with the membrane area A,

R :(ﬁ;)”z, ®
the dimensionless curvatures are

c;=R,Cy, ¢;=R,Cy, ¢o=RC )
and the relative area element is

da = dA/ATR?. (10)

The area difference of the two membrane layers AA and
the equilibrium area difference AA, are normalized with
respect to the area difference of a spherical cell 87R A,

Aa=%_[(c1+cz)da, (11
and Aag=AAy/87 R h, respectively. The free energy (7) is

normalized with respect to the bending energy of the spher-
ical cell 87k, f=F/8nk,,

f=lj'(cl +cy —c‘0)2da+&(Aa—Aao)2
4 k.

-p lnfe_E(c" )/ kT 4g (12)

where

p = NkT/87k, (13)

and we express the interaction of a membrane embedded
molecule with the membrane curvature in terms of dimen-
sionless curvatures E(cy, ¢;).

The equilibrium shape and the corresponding distri-
bution of membrane embedded molecules which yields
the minimal value of the membrane free energy is
sought. While performing the minimization it is taken
into account that the relative membrane area a=A/4nR?
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is constant
Ida =1, (14)

that the relative volume v = V/ (47L'R§’/3) is constant (where
V is the cell volume),

fdv:v, (15)

and that the number of all the membrane embedded mole-
cules is constant,
[ L da=1. (16)
nu
In the examples calculated and presented in this work
the value of the non-local bending constant k, is taken to

be infinite. This is identical with the assumption that the
relative area difference is constant

Aa = Aay, (17)

which means that we are applying the strict bilayer couple
model in which the shapes are characterized by the values
of v and Aa,, (Svetina and Zeks 1989).

In order to calculate the shapes the interaction between
the membrane embedded molecule and the membrane E
has to be specified. A simple expression is proposed in
which the interaction is expanded up to quadratic terms of
the principal curvatures (Appendix II, Eq. AIL8),
E=K((C+C+C)? -4/3CG,), (18)
where K and C, are constants. The constant C; determines
both principal curvatures that are the most favorable for
the molecules. In deriving Eq. (18) we considered for the
sake of simplicity that the part of the molecule which is
immersed in the membrane is axially symmetric with
respect to the local axis perpendicular to the membrane
area so that the energy E is minimal when C,=C,=3C/4
(AIL.13).

The distribution function of the membrane embedded
molecules expressed by means of dimensionless quantities
is obtained by inserting the interaction £ (18) into (1)

n/nu=éexp(—l€((cl+cz—cs)2-—%c1 cz)) (19)
where

K =K/kTR?, (20)
¢s = C,R,. 1)
Results

In the following it is shown how the parameters , ¢, and
p (Egs. (20), (21) and (13)) influence the equilibrium dis-
tribution of the membrane embedded molecules and the
cell shape. At given relative volume v we study the inter-
val of the relative membrane area difference Aa, where the
cells with laterally homogeneous membrane have rela-

tively low energies (Svetina and Zek§ 1989). Within this
interval of Aay the shapes are oblate axisymmetric, non-
axisymmetric and prolate axisymmetric, while they are
symmetric with respect to the equatorial (z=0) plane as
well as with respect to x=0 and y =0 planes (Heinrich et al.
1993; Kralj-Iglic et al. 1993).

The variational problem of shape determination is
solved by using a simple parametric model (Kralj-Ig-
li¢ et al. 1993) as in the treated interval of Aa, the approx-
imative solutions of the variational problem for the later-
ally homogeneous membrane obtained by this model are
sufficiently close to the shapes and energies obtained by
the exact solution of the variational problem (Kralj-Igli¢
et al. 1993). In the model, the contour of the shape cross
section in the y=0 plane, z= {(x), is described by the Cas-
sini function modified by Canham (1970)
() =+B[(r* + 4’2 — o —xz]l/z, (22)
where o, 8 and ¥ are the characteristic parameters and x
accounts for the symmetry of the contour with respect to
the x axis. The curve (22) is rotated either around its sym-
metry axis z or around its symmetry axis x (to yield oblate
discoid shapes and prolate shapes, respectively) in such a
way that a view along the symmetry axis of the obtained
shape is an ellipse with a given semiaxis ratio 4, this be-
ing the fourth characteristic model parameter (Kralj-Igli¢
et al. 1993). The values of the parameters ¢, B, yand ¥ are
found, for which the membrane free energy f (12) is min-
imal within the strict bilayer couple model (conditions
(14)—(17)). The values of 21 account for all different
shapes which can be generated by this model. For the value
of ¥=1 the equilibrium shape is axisymmetric while the
values ¥#>1 represent non-axisymmetric elliptic shapes.

We first examined how the interaction of membrane em-
bedded molecules with the membrane curvature affects the
elliptic deformation of the cell (Figs. 1, 2). As an example,
a vesicle with v=0.6 and Agy=1.069 was considered.
These values of v and Ag, were chosen since the vesicle
with a laterally homogeneous membrane (in which the em-
bedded molecules are uniformly distributed) with these
values of v and Aa, is moderately elliptically deformed
(U9=1.43, Kralj-Igli¢ et al. 1993). Therefore we can study
whether the non-uniform distribution of membrane embed-
ded molecules would cause an increase or a decrease of the
already existing elliptic deformation. Molecules are char-
acterized by different values of the parameter ¢, which may
attain any positive or negative value and which determines
the most favorable membrane curvatures for the molecules
(Appendix II). A high value of ¢, means that molecules fa-
vor high values of both principal curvatures while a low
value of ¢, means that molecules favor low values of both
principal curvatures. Figure 1 shows the ellipse semiaxis
ratio ¥ as a function of the parameter x [reflecting the
strength of the interaction, Eq. (20)] at constant value of p
for the three chosen values of ¢, ¢,=4, ¢,=2 and ¢,=0.
Figure 2 shows the ellipse semiaxis ratio ¢ as a function
of the parameter p (which is proportional to the total num-
ber of membrane embedded molecules N (Eq. 13)) at con-



Fig. 1 The ellipse semiaxis ratio ¢ of equilibrium shapes as a func-
tion of the strength of the curvature dependent interaction of the mem-
brane embedded molecules and the membrane (x), for three values
of the parameter ¢: 0, 2 and 4. Three characteristic shapes are also
depicted: a the shape in which the lateral distribution of the embed-
ded molecules is uniform (a=0.74, B=0.8, y=0.76, = 1.43); b the
shape with membrane embedded molecules which favor high curva-
tures (¢,=4; a=0.68, §=0.97, y=0.68, ¥=1.68); ¢ the shape with
membrane embedded molecules which favor low curvatures (¢,=0;
o=0.37, $=0.28, y=1.27, ¥=1). The non-axisymmetric shapes a
and b are represented by their front, side and top views, while the
axisymmetric shape c is represented by its side view and the rotation
axis. Values of other parameters are v=0.6, Aa,=1.069 and p=25

Fig. 2 The ellipse semiaxis ratio ¢ as a function of the parameter p
reflecting the total number of membrane embedded molecules, for
the values of parameter cg: 0, 2 and 4. The positions of the charac-
teristic shapes b and ¢ shown in Fig. 1 are also marked by the corre-
sponding letters. Values of other parameters are v=0.6, Ag;=1.069
and x=0.05. The shape a corresponds to the limit log(p) — ~oo

stant value of x for the same values of c,. For the local
membrane bending modulus k.= 107197, temperature
T=310 K and vesicle area 140 10™'?2 m?, and chosen val-
ues of k=0.05, log p=1.4 and c¢,=4, the energies of the
membrane embedded molecule are in the range of k7T val-
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ues, the number of the embedded molecules N is about 1.5
10* while the parameter C, is about 1.2 10® m™".

Considering the non-uniform distribution of membrane
embedded molecules which favor high curvature (c¢,=4) it
can be seen in Figs. 1 and 2 that the elliptic deformation is
larger (¥is larger) than in the case of uniform distribution
of membrane embedded molecules and that it increases
with increasing x and p, respectively. The elliptic defor-
mation is also larger when c¢,=2. For the embedded mole-
cules favoring low curvature (c,=0) the elliptic deforma-
tion is smaller than in the case of uniformly distributed
molecules and it decreases with increasing x and p. For
strong enough interaction the cell with ¢,=0 is axisymmet-
ric.

The effect of the membrane embedded molecules on the
cell shape and on the distribution of the molecules can also
be looked at by analyzing the distribution of the membrane
area and the number of the embedded molecules over the
membrane curvatures. As an example Fig. 3 shows the dis-
tributions of the relative membrane area (full lines) and of
the relative number of membrane embedded molecules
(broken line) with respect to ¢, + ¢, for the shape (b) marked
in Fig. 1 (molecules in favor of high curvatures) and for
the shape (a) where the embedded molecules are uniformly
distributed over the membrane (in this case the two distri-
butions are identical). Whereas the distribution of the rel-
ative membrane area over ¢, + ¢, of a sphere is a delta func-
tion at ¢; + ¢, =2, deviation of the shape from the sphere
causes the distribution to broaden and become more com-
plex. The shape (b) where the molecules favor larger cur-
vatures is distorted relatively to the shape (a) in a way that
exhibits a larger portion of membrane area pertaining to
higher values of ¢, and c,. Also, the area density of mem-
brane embedded molecules is higher in these regions as
d(n/n,)/d(c, + c,) (broken curve) exceeds the da/d(c, + ¢,)
(full curve).

For illustration, the distribution of the membrane em-
bedded molecules over the cell surface for the shape (b)
viewed from above is shown in Fig. 4. The molecules ac-
cumulate closer to the rim where the curvature is larger
while they are expelled from the central region where the
curvature is smaller.

In order to compare the equilibrium shapes which were
calculated by taking into account inhomogeneous lateral
distribution of membrane embedded molecules with the
equilibrium shapes of cells with uniformly distributed
molecules the calculated dependence of the membrane free
energy of the equilibrium shapes f on the relative area dif-
ference Aag for a chosen value of the relative volume v=0.6
is given (Fig. 5). It was established for the cells with lat-
erally homogeneous membrane (Kralj-Igli¢ et al. 1993)
and is also shown in Fig. 5 (curve (A)), that for this value
of the relative volume (v=0.6) the f(Aay) curve exhibits
two local minima in the treated Aq,, interval. The local en-
ergy minimum at lower Aag, corresponding to the oblate
discoid shape is at chosen value v=0.6 lower than the lo-
cal minimum at higher Aa, which corresponds to the pro-
late shape. The shapes pertaining to the minima are both
axisymmetric. There is a region of non-axisymmetric el-
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Fig. 3 Distributions of the relative membrane area (full lines) and
the relative number of membrane embedded molecules (broken line)
with respect to ¢; + ¢, for the shapes a and b marked in Fig. 1. For
the shape a the distribution of the embedded molecules is laterally
uniform so that the distributions of the relative membrane area and
of the number of membrane embedded molecules are identical. The
average value of the sum of the principal curvatures ¢, + ¢, =2 Aq,
is marked

Fig. 4 The top view of the

shape b marked in Figs. 1 and a
2. A family of curves of equal
number density of the embed-

ded molecules is shown. The 019
number density is calculated 038
relative to the density of the 0.56
corresponding uniform distribu- 0.15
ti()n 09’4

1.13

1.32

liptic shapes between the minima. At both transitions from
axisymmetric to non-axisymmetric shape (at the two min-
ima) the shapes and energies change in a continuous man-
ner. Figure 5 (curves B and C) shows the free energy of the
equilibrium shapes f of the cell with v=0.6 and c,=0 as a
function of the relative area difference of the two mem-
brane layers for the membrane with embedded molecules
favoring (B) high curvature (¢;=4) and for the embedded
molecules favoring (C) low curvature (c,=0).

It can be seen in Fig. 5 that the values of fare larger ow-
ing to the presence of the membrane embedded molecules
and that the dependence of f on Aqg is considerably af-
fected. In case B (c,=4) the absolute energy minimum lies
in the range of the prolate shapes and is significantly lower
than the minimum in the range of the oblate shapes. The
equilibrium shape corresponding to the absolute minimum
is prolate and axisymmetric. In the range of oblate shapes
the lower bound of the Ag, interval of non-axisymmetric

\
i
\
1
i
1

28 A

20 T T T T T

Fig. 5 Therelative free energy of the equilibrium shapes fas a func-
tion of the relative area difference Aq, for three cases which corre-
spond to three different sets of parameters regarding the membrane
embedded molecules; A: k=p=0,B: x=0.05,p=5,¢,=4; C: k=0.05,
p=35,c,=0.In all cases cg=0 and v=0.6. The broken lines represent
free energies of axisymmetric shapes while the full lines represent
free energies of nonaxisymmetric elliptic shapes

shapes is shifted towards smaller Aa, with respect to the
case of uniform distribution of membrane embedded mole-
cules (Fig. 5). In case C (¢,=0) the minimum in the range
of oblate shapes is considerably lower than the minimum
in the range of prolate shapes so that the equilibrium shape
corresponding to the absolute minimum is oblate and it is
non-axisymmetric.

Discussion

The main subject of this work is the interdependence of the
lateral distribution of the membrane embedded molecules
and the cell shape. The macroscopic quantities: distribu-
tion of the membrane embedded molecules over the mem-
brane area and the corresponding free energy are derived
starting from the energy of an individual embedded mole-
cule which is taken to be a second order polynomial in the
two principal curvatures. The state of an embedded mole-
cule in the membrane is in this case characterized only by
the two degrees of freedom determining its lateral position
on the membrane. Namely, in order to show the conse-
quences of the ideas presented in the simplest manner we
did not take into consideration the other four degrees of
freedom of a molecule, i.e. the three degrees of freedom
for the molecular rotation and the molecular position in the
direction normal to the plane of the membrane. The ex-



pression derived for the molecule energy given in Appen-
dix II (AILS5) actually involves also the rotation of the
molecule around the axis directed along the membrane sur-
face normal and could be applied in cases of non-axisym-
metric molecules where the mismatch in the shape of the
immersed part and the membrane changes along the con-
tact rim. Our simplified treatment corresponds to the situ-
ation where the immersed part of the molecule is axisym-
metric. In this case the interpretation of the results obtained
is more transparent in particular because for the embedded
molecule the two most favorable principal membrane cur-
vatures have equal values (AIL.13).

The curvature dependent interaction between the em-
bedded molecules and the membrane can have a strong ef-
fect on the lateral distribution of the molecules and also on
the cell shape. It is obvious that for simple thermodynamic
reasons the embedded molecules are more abundant in the
membrane regions with favorable curvatures and less
abundant in the regions with unfavorable curvatures. It can
also be understood that a cell attains the equilibrium shape
which involves an increased amount of regions of the fa-
vorable values of principal curvatures.

The cell shapes are obtained by the criterion of the min-
imum membrane free energy which contains, in addition
to the usually considered elastic energy of the membrane,
the contribution due to the laterally inhomogeneous dis-
tribution of the embedded molecules. The set of equilib-
rium shapes thus obtained consists of shapes that are in
general different from the shapes obtained by the mini-
mization of membrane elastic energy of the homogeneous
membrane.

Regarding the membrane elastic energy, all the results
presented were calculated in the limit of the strict bilayer
couple model, i. e. by assuming the non-local bending con-
stant k, to be infinite. Analogously to the case of laterally
homogeneous membrane (Heinrich et al. 1993) the results
obtained within the strict bilayer couple model can be gen-
eralized in a straightforward manner which allows for the
finite k,.

The inclusion of curvature dependent energy of mem-
brane embedded molecules brings in additional parame-
ters: ¢, (21) determining the membrane curvatures which
are the most favorable for the membrane embedded mole-
cules, k (20) expressing the strength of the molecule —
membrane interaction, and p (13) reflecting the number of
the membrane embedded molecules. The parameter c, de-
termines whether the shape will be distorted in a way to
exhibit larger regions with larger curvatures or with smaller
curvatures. The values of parameters xand p determine the
extent of the distortion (Figs. 1, 2). It is expected that the
shapes obtained would differ the least from the correspond-
ing shapes obtained in the case of the laterally homogene-
ous membrane if we assume that the average curvature is
equal to the most favored one. By considering that the rel-
ative average curvature is equal to the relative area differ-
ence Ag, (11) and that for the embedded molecules both
the most favorable relative curvatures were shown to be
3c¢,/4 (AIL.13), it can be expected that the values of ¢, close
to 4Aay/3 would cause the least deformation while for the
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¢, values significantly different from 4Aay/3 the effects
would be considerable. For the example presented in
Figs. 1 and 2 for which Aa,=1.069 so that 4Aa,/3=1.42
it was shown (Figs. 1, 2) that if ¢,=2 or 4, larger elliptic
deformations are promoted while for ¢,=0 the shapes are
less elliptically deformed than the corresponding shapes of
the laterally homogeneous membrane.

Ourresults show that the intrinsic curvature of the mem-
brane embedded molecules characterized by the parame-
ter ¢, determines whether the cell shape corresponding to
the absolute energy minimum at given cell volume and
membrane area is in the region of oblate or prolate shapes.
If the parameter c; is large in comparison to the average of
the mean curvature over the membrane area, the prolate
shape corresponding to the minimum at higher Aa, in the
f(Aay) curve (Fig. 5) is energetically more favorable while
for low ¢ the oblate shape corresponding to the minimum
atlower Aa,, is preferred. This effect is in qualitative terms
the same as the effect of the non-zero spontaneous curva-
ture ¢, on the energies of the shapes of the cell with a lat-
erally homogeneous membrane. In the case of homogene-
ous membranes, owing to the non-zero spontaneous cur-
vature, a linear function of Aa, has to be added to the f(Aay)
curve, by which the positions and the heights of the two
minima are shifted whereas the corresponding shapes re-
main the same (Svetina and Zeks 1989). Consequently, the
absolute minimum of the f(Aa,) curve corresponds to an
axisymmetric shape. However, besides this effect of rela-
tive shifting of the energy of the prolate and oblate shapes,
it was shown here that the inhomogeneous distribution of
membrane embedded molecules may cause the absolute
energy minimum to correspond to a non-axisymmetric
shape (Fig. 5).

It is clear from the above that the nonaxisymmetric
shape cannot be predicted for the absolute energy mini-
mum state of the system on the basis of those curvature de-
pendent interactions for which the effect of nonhomoge-
neous distribution can be described by renormalization of
the values of the parameters of the original elastic energy
model. In order to reveal the features of the model pre-
sented which are responsible for its more complex behav-
ior, it is of interest to see under what conditions its predic-
tions can be described by the renormalization procedure.
As presented in Appendix III, the membrane free energy
can be expressed in the form of the generalized bilayer
couple model with renormalized model parameters for
weak interactions of the embedded molecules with
the membrane (K/AT — 0) and |C,| much larger than
[(C, + C)|. The membrane free energy has in this limit es-
sentially the same form as the free energy introduced by
Seifert (1993). There is a slight difference in the renormal-
ized model parameters due to the difference between the
two models. In the model presented the membrane is com-
posed of two layers and the embedded molecules span both
of them whereas in the model of Seifert (1993) the mem-
brane is asymmetric with regard to the composition of its
layers. In our case for ¢, # 0 the inhomogeneous distribu-
tion of the embedded molecules gives rise to the nonzero
spontaneous membrane curvature whereas in the case of
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Seifert, if the membrane is symmetrical and the spontane-
ous curvature is zero, in the unstressed state of a two com-
ponent mixture of lipids the membrane would tend to be
flat. The stable nonaxisymmetric shapes can also be ob-
tained within the model of Seifert by shifting within the
phase diagram of possible stable shapes of the generalized
bilayer couple model. However, a nonaxisymmetric stable
shape corresponding to the absolute energy minimum can-
not be obtained by this model.

The result that the redistribution of membrane constit-
uents may shift the absolute minimum of the system free
energy into the region of shapes with different symmetry
properties can bear a significant relevance with regard to
the behavior of real biological systems. It is plausible to
assume that cells in general attain shapes which correspond
to the absolute minimum of their membrane energy, pro-
vided that there exists an appropriate coupling between the
cell biochemical processes and the parameters determin-
ing cellular mechanics. As has been suggested previously
(Svetina and Zek§ 1990), the polar asymmetry in the dis-
tribution of membrane embedded molecules could thus be
the basis for the stabilization of the polarized state of a cell
in the process of establishing cellular polarity. Another per-
tinent example is the occurrence of elliptic erythrocyte
shapes in some human blood disorders (Palek 1987) and
in some healthy animals, e.g. in llama (Khodadad and
Weinstein 1983). The elliptic erythrocyte shapes were
characterized, with respect to the discoid shape of normal
human erythrocytes, either by altered structure of some
membrane proteins and therefore altered interaction with
the membrane, or by the altered abundance of membrane
embedded proteins (Liu et al. 1991; Khodadad and Wein-
stein 1983). Our analysis shows that changes in the struc-
ture or in the abundance of the membrane proteins may
give rise to changed values of one or more of the system
parameters which influence the shape (x, ¢, and p) in such
a way that the absolute energy minimum is shifted towards
the region of non-axisymmetric shapes. The effect of the
distributional free energy presented here can be considered
only as one of the possible mechanisms which would make
the erythrocyte shape elliptic. In explaining the existence
of elliptic erythrocytes other contributions to the mem-
brane free energy arising from the bilayer — cytoskeleton
interactions and by the interactions between the molecules
within the cytoskeleton such as the membrane shear energy
(Stokke et al. 19864, b; Elgsaeter and Mikkelsen 1991;
Strey et al. 1995) should however be taken into account.
Further studies providing quantitative data on the values
of the relevant parameters will be needed to evaluate the
relative effects of different contributions to the membrane
energy.

The analysis presented was performed by using an ap-
proximative solution of the variational problem defined by
the minimization of the membrane free energy at given
geometrical constraints. Because in the case of a homoge-
neous membrane the shapes calculated with the paramet-
ric model used here were shown to be in the treated Aa,
region sufficiently close to the shapes obtained by the ex-
act methods (Kralj-Igli¢ et al. 1993) we believe that the

general conclusions about the effect of the embedded mole-
cules on the behavior of the system are correct. However,
it is expected that for Aa, values outside the treated range,
for strong interaction between the embedded molecules
and the membrane, and for large numbers of embedded
molecules, the possible stable cell shapes would signifi-
cantly differ from the corresponding stable shapes of the
elastic energy models. Therefore, work to solve the varia-
tional shape problem including the membrane embedded
molecules exactly is also in progress.

Appendix |

Shape dependent free energy of membrane embedded
molecules

In order to derive the free energy of the membrane embed-
ded molecules the membrane surface is divided into m
small regions of area 4, i=1,2, ..., m. It is assumed that
the dimensions of A; are small, so that the principal curva-
tures C,; and C,;, and the interaction energy E;=E; (C,
C,;) are taken to be constant over A;. In a particular region
chosen there are N; membrane embedded molecules. The
local equilibrium state of N; equal, independent and indis-
tinguishable membrane embedded molecules in a region
having an area A, at temperature T is described by the ca-
nonical partition function Q; (Hill 1962),

0, = e NiEIKT 1
1

N (AL1)
!

where k is the Boltzmann constant and 7 is temperature.
The corresponding free energy of the membrane embed-
ded molecules of the i-th region of the membrane is then
F, ;=—kT InQ,. Using the Stirling approximation yields

F, ;=NE;+ kT N;(In N; - 1). (AL2)

To obtain the free energy of the membrane embedded
molecules of the entire membrane, contributions to the free
energy of all the regions are summed (X F; ;) over the mem-
brane area A=Y A. d

L
If the interacl:tion energy is constant everywhere in the
membrane, the distribution of the membrane embedded
molecules is uniform. The uniform distribution is consid-
ered as the reference distribution and is described by a con-
stant number surface density »n,,

n,=2N;/A. (AL3)
i

In the reference state there are N, ; molecules in the i-th

region of the membrane,

N

wi="nAp (AL4)
so that the contribution to the free energy of this state of

the i-th region F ¥ is

F¥=kTN, ;(InN, ;- 1). (AL5)



To obtain the free energy of the reference state (X F ,'ff,-),

the contributions of all the regions are summed. The
free energy F, is defined as the difference between X F, ;

and X F .
the number surface density of the membrane embedded
molecules #; is used,

n;=NJA,. (AL6)

It is also taken into account that in the entire membrane
there are altogether N molecules,

N=|nA)dA=n,A,
A

In the summation of the contributions (AI.2)

(AL7)

where the summation is replaced by the integration, so that
n; transforms into n(A) and dA is the area element. Using
(AL2) to (AL7), the free energy of the membrane embed-
ded molecules is

F,=[[E(C,, Cy)n +kTnIn(n/n,)]dA . (ALS8)
A

The requirement of local equilibrium was already con-
sidered by using the canonical partition function in any of
the m small regions. However, to obtain the equilibrium
state of the entire system, the distribution function of the
membrane embedded molecules n(A) is sought for which
the free energy F,is minimal. While performing the min-
imization of F,; with respect to n(A) the total number of
membrane embedded molecules N is kept constant (AL7).
This is obtained by variation of the functional

G=Fd—l(jndA—N), (AL9)
A
where 4 is the Lagrange multiplier.

The functional can be expressed as
G=]G(Cy, Cy,n) dA, (AL.10)
where
G=E(C,, Cy)n+kTnln (n/n,) — An+const.  (AL11)
The corresponding Euler equation is
G
—=0. Al12
on O ( )

Using (Al.11) and (AI.12) yields the Boltzmann distribu-
tion function
n=exp(—E(Cl,Cz)/kT+l/kT—1). (AL 13)

The parameter A is determined by using the condition
(AL7) and the expression (Al.13), and we get

nin, = %e—E(ChCz)/kT’ (AL.14)
where
z:%J‘e—E(C.,C‘z)/deA_ (AL15)
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The free energy of the membrane embedded molecules F,
minimized with respect to the distribution function of these
molecules for a given vesicle shape (which is determined
by knowing the principal curvatures C, and C, over the
entire surface) is then obtained by inserting (AL 14)
and (AI.15) into the expression (AI.8) and some rearrang-
ing,

F,=—kTN InX. (AL16)

Appendix II

The dependence of the energy of membrane embedded
molecules on the local curvature of the membrane

The membrane free energy is expressed in terms of the
interaction of the membrane embedded molecule with the
membrane which depends on the local membrane curva-
ture E(C,,C,). In order to specify this interaction, a sim-
ple expression is proposed based on the notion that it is en-
ergetically favorable that the shape of the part of the mole-
cule which is immersed in the membrane is fit to the local
membrane curvature. Any mismatch in the shape, which
may change along the rim of the immersed part, causes an
increase of the energy.

The normal membrane curvature C in a chosen direc-
tion is expressed in terms of the two principal membrane
curvatures C, and C,,

C = C,cos’¢ + C, sin’¢, (AILI)

where ¢ describes the orientation of the chosen direction
in the principal axes system. The shape of the immersed
part of the molecule (which may change along the rim) is
approximated at a chosen direction by

C,, = C,,co8’y + C,, sin’y, (AIL2)

where C,,, and C,,, are the principal curvatures character-
izing the shape of the molecule and y is the angle of rota-
tion with respect to the molecule principal axes system. We
also introduce the angle @ which describes the rotation of
the molecule principal axes system with respect to the
membrane principal axes system so that

o=vy+ o

To obtain the energy of the interaction of the immersed part
of the molecule at a given ® the contributions over all an-
gles y are summed,

& ey
E(@)= 2 [(C=C, dy,
0

(AIL3)

(All4)

where & is the constant of the local interaction. By insert-
ing the expressions (All.1) and (AIL.2) into (AIIl.4) and per-
forming the necessary integrations we get



320
Bw=2lGrer-tae]

+%|:(Clm +Cap)? - % ClmCij|
(AILS)

S (Cnt Co) (G +C)
_g(clm - CZm)(Cl - CZ)COS(ZCO)-

The energy E in general depends on the orientation of
the immersed part of the molecule with regard to the rota-
tion of the molecule around its axis along the membrane
surface normal. However, for the sake of simplicity, in this
work only the molecules which are axisymmetric with re-
spect to this axis are considered, so that

Cim = Com = Com (AIL6)
and the energy does not depend on the angle
E=%[(C1 +0y)? —%CICZ} (AILT)

—%Com<cl+cz>+§c(%m.

Omitting the constant term the energy E can be written in
the form

E:K((chz—cs)z—%qczj, (AILS)
where

K=3¢/16, (AIL9)
and

C, =4Cyy, /3. (AIL10)

The principal curvatures which are the most favorable for
the membrane embedded molecules C; i, and Cy_ i, T€-
spectively, are determined by the conditions

JE 4

TC‘IZZ(Cl’min+C2’min—CS)—ECZ’mi“=0’ (AIII])
E 4

é%zz(cl,min +C2,m1n_cg)_§ Cl,min =0, (AIIlz)

which give

Ci, min = C2, min =3C /4. (AIL.13)

Appendix il

The generalized bilayer couple model as a limit
of a weak interaction between the membrane embedded
molecules and the membrane

It is shown that by taking into account some additional as-
sumptions about the interaction between the membrane
embedded molecules and the membrane curvature the

equations having the form of the membrane elastic energy
of the generalized bilayer couple model with renormalized
values of elastic constants, C, and AA, can be obtained
from the expression for the membrane free energy (12).
It is assumed that the interaction between the membrane
embedded molecules and the membrane curvatures is very
small in comparison to kT over the entire membrane area

KIkT — 0 (AIIL1)

so that we can expand the exponential function in X (Eq.
(2)) as well as the logarithmic function in the free energy
term due to the membrane embedded molecules (F,) (Eq.
(4)) in terms of E/KT. The expansion up to quadratic terms
in E/kT yields

F(E<KT)= %kcj(C, +Cy)2dA

NkT
R;

(AIIL2)

+ [E/KT — E*/2(kT)* |dA

2
NkT 2 2, dA

+ [J'[E/kT E*/2(kT)?) ppr j :

The expression for the interaction of the membrane em-

bedded molecule (18) is inserted into (AIIL.2). Further, it

is assumed that | C,| is much larger than any |(C, + C})|. In

this respect, retaining only the terms proportional to KC,,

and omitting the constant terms, the free energy becomes

Ey =Sk [ (G + Gy = Cy)PdA (AIIL3)
+%kr, oir (A — AA))* AR,

with renormalized local bending constant k.. ¢

ke o = ke —4n, K* C3/KT, (AIIL4)

renormalized non-local bending constant k. g

ky ofr = ky +4n, K> CHKT, (AIILS)

renormalized spontaneous curvature G

Co = Cy kelke, ot + 2, KCylk, cff (AIIL6)

and renormalized equilibrium area difference of the two
membrane layers

AAy = Mgk, Tk, . (AIIL7)
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