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Abstract. The existence of non-axisymmetric shapes with
minimal] bending energy is proved by means of a mathe-
matical model. A parametric model is used; the shapes
considered have an elliptical top view whilst their front
view contour is described using Cassini ovals. Taking into
account the bilayer couple model, the minimization of the
membrane bending energy is performed at a constant
membrane area A, a constant enclosed volume V and a
constant difference between the two membrane leaflet
areas AA. It is shown that for certain sets of A, V and 4A
the non-axisymmetric shapes calculated with the use of
the parametric model have lower energy than the corre-
sponding axisymmetric shapes obtained by the exact so-
lution of the general variational problem. As an exact
solution of the general variational problem for non-
axisymmetric shapes would yield even lower energy, this
indicates the existence of non-axisymmetric shapes with
minimal bending energy in a region of the V/4A phase
diagram.
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Introduction

Phospholipid vesicles exhibit various shapes depending
on the properties of the membrane and on the enclosed
volume. The diversity of the observed shapes includes, for
example, spheres, biconcave discs, cup shapes, and shapes
with different protrusions or invaginations (Lipowsky
1991). Studies of such systems lead to the conclusion that
the shape of a phospholipid bilayer vesicle can be de-
scribed theoretically by minimization of the membrane
elastic energy. The procedure of minimization of the
membrane bending energy was first applied for the deter-
mination of the equilibrium shape of human erythrocytes
by Canham (1970). A triparametric model was used,
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where the vesicle front view contour was described by the
Cassini function whilst its top view was taken to be a
circle, as only shapes having axial symmetry were taken
into account. It was found that under normal conditions
the equilibrium shape of an erythrocyte of a given mem-
brane area and a given enclosed volume was a biconcave
disc. Deuling and Helfrich (1976) minimized the mem-
brane bending energy by exactly solving a general varia-
tional problem for axisymmetric shapes. The variational
problem was expressed by the Euler equations for the two
principal curvatures, subject to the constraints regarding
the membrane area and the enclosed volume. Deuling
and Helfrich (1976) also introduced the concept of the
spontaneous curvature of the membrane as a model pa-
rameter. By varying the spontaneous membrane curva-
ture and the vesicle volume at constant membrane area,
different cup shaped, stomatoid, discoid, and dumbbeli
axisymmetric equilibrium shapes were obtained.
According to the bilayer couple model (Evans 1974;
Sheetz and Singer 1974) the phospholipid membrane is
considered to consist of two leaflets which are free to slide
over each other while staying tightly together along the
whole membrane area. It is an essential feature of the
model that each layer responds differently to environ-
mental changes, causing different changes of the leaflet
areas and thereby changes of the vesicle shape. The differ-
ence of the two membrane leaflet areas was theoretically
related to the shape change (Svetina et al. 1982; Svetina
and Zeks 1989). Svetina and Zeks (1989) solved the Euler
equations for the principal curvatures for the axisymmet-
ric shapes. The Euler equations were subject to the con-
straints requiring fixed values for the average membrane
area A, the vesicle volume V and the difference between
the two membrane leaflet areas 44. Thus many different
shapes, including discocytes, cup-shaped cells, pear-
shaped cells, dumbbells and cells with spherical protru-
sions and invaginations were obtained. It was found that
at low values of 44 the calculated equilibrium shapes
exhibited invaginations. As 44 increased, discoid shapes
were favored while for high values of 44 the equilibrium
shapes exhibited protrusions. By varying 44 at constant
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A and ¥, the dependence of the obtained membrane bend-
ing energy on A4 exhibited several local minima. The
minima pertaining to the higher values of 44 corre-
sponded to prolate shapes while the minima pertaining to
the lower values of 44 corresponded to oblate shapes.

Until recently, theoretical studies were restricted to
shapes having axial symmetry. Experimental observa-
tions do, however, also show non-axisymmetric shapes.
Cells having elliptical symmetry were found in the blood
of some animals, such as the llama (Khodadad and Wein-
stein 1983) and in the blood of patients with some hered-
itary disorders of membrane structure and function
(Palek 1987). It was also observed by Hotani (1984) that
the shapes of the vesicles prepared from phospholipids
and cholesterol exhibit axial as well as polygonal sym-
metries with n=2, 3, 4 as the vesicle top view is corre-
spondingly deformed from the circle. These shapes were
described theoretically by Sekimura and Hotani (1991) by
minimizing the membrane bending energy at fixed mem-
brane area and fixed vesicle volume. A parametric model
was used, where the vesicle front view contour was
desribed by the Cassini function whilst its top view was
obtained by deforming a circle into a polygonal shape by
means of a trigonometric function. Within such a para-
metric model it was found that the equilibrium shapes
having a large excess area are non-axisymmetric. The exis-
tence of non-axisymmetric shapes was theoretically pre-
dicted within the spontaneous curvature model (Peterson
1985) where it was shown that the axisymmetric shapes
are infinitesimally unstable for some values of model
parameters. Following general conclusions for the nearly
spherical vesicles (Peterson 1989) it was predicted (Seifert
et al. 1991) that non-axisymmetric shapes must exist with-
in the bilayer couple model. These shapes were predicted
to exist in the gap between the prolate axisymmetric
shapes composed of a cylinder and two spherical caps,
and oblate axisymmetric shapes with sharp edges on the
equatorial plane. However, it remained an open question
as to how far this region of stable non-axisymmetric
shapes extends into the prolate and oblate axisymmetric
regions. The existence of non-axisymmetric shapes within
the bilayer couple model was actually proven for nearly
spherical shapes (Heinrich et al. 1992); the variational
problem was solved when the shape of vesicles was ex-
panded in terms of spherical harmonics and the mem-
brane bending energy was minimized with respect to the
expansion coefficients. It was shown that for 44 ranging
between the oblate and the prolate axisymmetric shapes
with the minimal energy values, elliptically deformed
spheres exhibited lower membrane bending energy than
the corresponding energetically lowest axisymmetric
shape.

It is our aim to determine whether within the bilayer
couple bending energy model there do exist non-axisym-
metric shapes which differ markedly from the sphere. It is
our intention to estimate the conditions under which
equilibrium non-axisymmetric shapes could be expected,
Le. the conditions under which a non-axisymmetric equi-
librium shape has lower energy than the corresponding
axisymmetric shape. While the solution of the general
variational problem for axisymmetric shapes was derived

by Deuling and Helfrich (1976), a corresponding proper
generalization for non-axisymmetric shapes leading to
the Euler equations in two dimensions has not yet been
developed. However, the existence of non-axisymmetric
shapes can also be determined by employing a parametric
model, provided that the non-axisymmetric shape calcu-
lated by such a model has lower energy than the corre-
sponding axisymmetric shape obtained by the solution of
the general variational problem.

The parametric model introduced here is restricted to
simple closed surfaces having mirror symmetry with re-
spect to the x=0, y=0 and z =0 planes because such
shapes were shown to be the equilibrium shapes for near-
ly spherical vesicles (Heinrich et al. 1992). The vesicle top
view is taken to be an ellipse. Such shapes are referred to
as elliptical. Elliptical shapes were chosen because ellipti-
cal erythrocytes were observed experimentally (Palek
1987; Khodadad and Weinstein 1983) and because the
calculated equilibrium shapes of nearly spherical vesicles
are elliptical (Heinrich et al. 1992). For the side view con-
tour, a parametric approach is employed by using the
Cassini function (determined by three characteristic
parameters) which qualitatively corresponds to the ob-
served shapes for the conditions we are considering (Can-
ham 1970). The equilibrium vesicle shape is obtained by
determining the values of the model parameters by mini-
mizing the membrane bending energy. The parametric
model described is presented in more detail because it
could serve as an appropriate tool in the analyses of relat-
ed experimental data.

Theory

The vesicle shape is determined by minimizing its mem-
brane bending energy

k.
W= 5 [(Ci+ Gy dd, (1

where k. is the membrane bending constant, C, and C,
the two principal curvatures and dA the area element.
The integration is performed over the entire membrane
area A. If R, is the radius of the sphere with this mem-
brane area,

R,=(A4/4m)'?, @

the dimensionless curvatures are ¢, = R, C, and ¢, =R, C,.
All other quantities are also expressed in dimensionless
form. It is assumed that the relative membrane area
a=A/(4n R?) is fixed

{da=1, (3

that the relative volume v = V/(4 = R3/3) is fixed (where V
is the volume of the vesicle),

[do=v, )

and that the relative difference between the areas of the
two membrane leaflets is fixed

if(c,+¢,) da=4a, (5)
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Fig. 1a,b. Cross sections of a vesicle in all three perpendicular
planes. a type Z shape, b type X shape. The front view vesicle
contour is determined by the Cassini function characterized by the
parameters o = 0.89, = 0.68 and y =0.90 (Eq. (7)) while the vesicle
top view is an ellipse with semiaxis ratio 9 =1.3

where 4a =AA/8n R,k and h is the distance between the
two membrane leaflet neutral surfaces. The bending ener-
gy is expressed relative to the bending energy of the
sphere, w,=W,/8nk,,

wy= 1{(c,+c¢,)* da. ©)

To generate the shape of the vesicle, a curve z=f(x)
describing the vesicle contour in the y = 0 plane is chosen
to be the Cassini function, as modified by Canham (1970)

f(x)= +BI0* +4a2 ) —a? — X7, ™

where o, f and y are the characteristic parameters and
+accounts for the symmetry of the contour with respect
to the x axis. The ratio «/y can vary between 0 and 1 while
the corresponding contour varies from an ellipse to a
lemniscate (shape A4 in Fig. 5). The parameter f distorts
the curve proportionally in the z direction. The parame-
ters « and y give the maximal extension of the curve in the
x direction +./a® +y2.

The curve (Eq. (7)) can be rotated around its symmetry
axes z Or X, respectively, giving axisymmetric surfaces
which determine the shape of the vesicle. However, if
the axisymmetric shape is deformed so that its top view is
an ellipse, the shape obtained is elliptical. Two types of

—1/(92 ) — (cos® t + sin?t/9?) £2/f + (sin® t + cos? t/9?) f,
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The type Z shapes have an elliptical top view in the xy
plane, so the points having the same value of z lic on the
ellipse with the semiaxis ratio 9 (Fig. 1a). The vesicle sur-
face is then expressed by the vector

RZ=(x, y, f(/X*+Y*/9%), ®)

where 9 >1 includes all shapes which can be generated.
For the sake of convenience new coordinates £ and ¢t are
introduced such that

x =& cost, )
y = &3 sint, (10
2=1(). (11)
It follows from (9)—(11) and (A1)—(A7) that

EG—F*=1+f?(cos?t +sin*t/9?), (12)

where f, denotes the derivative of f with respect to ¢. The
sum of the principal curvatures is

¢ +¢; (13)
_ (cos’t +9%sin’t + 1) 3£/ + (sin®t + 9% cos® 1) 8 £,
- [92 + f2 (sin® t + §? cos® 1)} */? ’

where f;, denotes the second derivative of f with respect
to &. The element dx dy is

dxdy=3¢dEdt. (14)

The type X shapes have an elliptical top view in the yz
plane so that the points having the same value of x lie on
the ellipse with the semiaxis ratio 9 (Fig. 1b). The vesicle
surface is then expressed by the vector

R*=(x,y,{/f*(x)— y*/9%), (15)

where 3 >1 includes all shapes which can be generated.
After introducing new coordinates such that

x=x, (16)
y=38f(x)cost, V a7
z = f(x)sint, ' (18)
the expressions corresponding to (12)—(14) are

EG—F?*=(f2?+sin?t + cos?t/9%)/sin?t, (19)

¢ +e,=

shapes (Z and X, referring to the particular axis of rota-
tion) are considered (Fig. 1). The vesicle surface is ex-
pressed by the vector R' =(x, y, z(x, y)) where x, y and z
are normalized with respect to R, and i=Z, X. The
relative surface area element is given by the expression

da= 11; (EG —F?)'? dx dy where the meaning of E, F
and G is explained in the Appendix. The relative volume
element is given by the expression dv =2 43—n z(x,y)dx dy,

where the factor 2 takes into account the mirror symme-
try of the vesicle with respect to the z =0 plane.

(f2+sin®t + cos? £/ 9%)32 (20)
and
dx dy =98 f(x)sint dx dt, 21)

where f, denotes the derivative of f with respect to x and
f... denotes the second derivative of f with respect to x.

The vesicle shape is characterized by its type (Z or X)
and by four parameters o, §, y and 9 which are determined
using three constraints for the membrane area, the en-
closed volume, and the area difference of the two mem-
brane leaflets (conditions (3)—(5)) and the equilibrium
condition that the membrane bending energy is at its
minimum. All the integrations are performed numerically
within the intervals ¢ € [0, 27] and &, x € [0, . /a* +y?] us-
ing the Simpson method.
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Fig. 2a, b. The region of possible values of parameter
f and 9 for the relative volume v = 0.6. a type Z
shape, b type X shape. Different shadings represent
different sets of shapes which are described in the
text. The location of some characteristic equilibrium
shapes depicted in Figs. 4 and § is marked with
arrows and capital letters, respectively. The heavy
lines represent § and 9 values of the equilibrium
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Fig. 3. Bending energy w, as a function of the parameter § for two
values of the parameter 9: § =1 (dotted lines) and 9 = 5 (full line) for
the type Z shapes. The arrows mark the points where the shapes of
the first and the second set become identical

Results and discussion

The Cassini parameters o and y are eliminated by satisfy-
ing conditions (3) and (4), which leaves the parameters j
and & undetermined at this point. All vesicle shapes hav-
ing a simple closed surface which can be obtained by our
procedure for a given membrane area and relative vol-
ume v, have values of f and 3 within a bounded region in
the (8, 9) plane. If v =1, there is only one shape consistent
with (3) and (4) for which g = 3 =1 (sphere). By decreas-
ing v, the size of the bounded region is increased. The
bounded region of shapes for v = 0.6 is shown in Fig. 2
(marked by shading). The behavior of the system is also
similar for other values of v € [0.6, 1]. Both cases pertain-
ing to the shape types Z and X, respectively, are consid-
ered (shown in Fig. 2a and b, respectively). Two sets of
shapes can be obtained for each type; they are marked in
Fig. 2 as the first and the second set of shapes, respec-
tively. The left boundaries of both sets are determined by
the condition « =0, i.e. when the shapes are ellipsoids.
The two sets partially overlap, which means that some of
the points in the bounded region correspond to one shape
and some correspond to two shapes. For the points which
correspond to two shapes (pertaining to the first and sec-
ond set of shapes, respectively), the values of § and & are
identical, while the values of « and v, the values of area
difference of the two membrane leaflets and also the val-
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shapes marked in Fig. 4

ues of the membrane bending energies are different. At a
given 4, the maximal possible value of § determines the
right hand side of the bounded region where the shapes of
the first and the second set become identical. This means
that for the points on the right hand side boundary the
values of all four parameters o, f, y and 9, as well as the
area difference of the two membrane leaflets and the
membrane bending energy, are identical for the shapes of
the first and the second set. At this value of the relative
volume v = 0.6, a boundary exists for the shapes of the
first set characterized by a =y, where the side view con-
tour of these shapes is a lemniscate.

The dependence of the bending energy w, on the pa-
rameter S for two values of parameter 3, ie. for the
axisymmetric shapes (3 =1; dotted lines) and for the non-
axisymmetric shapes (3 =5; full line) for the type Z is
shown in Fig. 3. It can be seen in Fig. 3 (and also in Fig. 2)
that for § =1 there is one shape for f € [0.33, 0.75] and for
pel[5.5, 6.7). There are two shapes for ge[6.7, 10.75]
while no shape exists for f € [0.75, 5.5]. For 3 =5 there is
one shape for § € [0.68, 2.82] and two shapes for § € [2.82,
4.85]. It can be seen in Fig. 3 how the shape of the first set
is continuously connected to the shape of the second set
at the maximal value of § for a given 3 (marked with the
arrow). Comparing our results with the results of the tri-
parametric model used by Canham (1970) it should be
noted that the shapes considered by Canham (1970) cor-
respond to the first set of the type Z shapes for 3 =1 and
B €[0.33, 0.75].

By taking into account a constant value of the area
difference of the two membrane leaflets (condition (5)),
B4.(9) lines can be defined in all sets of shapes in the
bounded (8, 9) regions. An equilibrium shape for a given
4a is obtained by finding the values of parameters § and
3 on such iso-4a lines for which the value of the bending
energy is minimal (denoted by w, .,,). In some cases the
value of § is found to be § =1, meaning that the equilib-
rium shape is axisymmetric.

Figure 4 shows the dependence of equilibrium shape
energy w, ., on Aa. We are considering 44 values in the
range where non-axisymmetric shapes could be expected,
corresponding to the nearly spherical case (Heinrich et al.
1992) i.e. the range of 44 values between the oblate and
the prolate axisymmetric shapes with minimal energies.
Elliptical shapes are marked with the full line while
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Fig. 4. Bending energy of the equilibrium shapes w, ., as a function
of the area difference da for v = 0.6 calculated with the use of the
four parametric model, and bending energy of the equilibrium
shapes as a function of 4a, obtained by solving the general varia-
tional problem (broken line). The axisymmetric shapes obtained by
the parametric model are represented by the dotted line, the elliptical
shapes are represented by the full line. Bending energies of some
characteristic equilibrium shapes depicted in Fig. 5 are marked with
capital letters
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Fig. 5. Cross sections of some calculated shapes in all three perpen-
dicular planes. The shapes are marked with capital letters corre-
sponding to the ones used in Figs. 2 and 4. The orientations of the
coordinate system for both types of shapes are as shown in Fig. 1

axisymmetric shapes are marked with the dotted line.
Two intervals of Aa values can be seen, corresponding to
two different types of equilibrium shapes. The interval
within the bounds marked with arrows 1 and 2 involves
the first set of shapes of type Z, while the interval extend-
ing beyond the bound marked with the arrow 2 involves
the first set of shapes of type X. The values of the parame-
ters f and 9 of the shapes marked with the arrows in
Fig. 4 are also depicted in the bounded (f, 9) region
(Fig. 2) and marked with the corresponding arrows, re-
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spectively. Some characteristic shapes are marked with
capital letters to illustrate the change of shape as 4a
changes; cross sections in all three perpendicular planes
of the shapes marked in Fig. 4 are depicted in Fig. 5. As
the curve in Fig. 4 is followed in the direction of increas-
ing 4a, initially axisymmetric discoid shapes of the type Z
(shapes marked with A and B) become elliptical, while the
parameters f§ and & increase as seen in Fig. 2 (shapes
marked with C and D). If 4a is further increased, at the
discontinuity of the derivative of the curve (point marked
with the arrow 2) the shape changes abruptly into an
elliptically symmetric dumbbell of the type X. If the curve
is followed further on, the parameter 3 of elliptically sym-
metric dumbbells (as the shape marked with E) decreases
and reaches the value 1 (see Fig. 2) so that the shape
becomes axisymmetric again. On a further increase of 4a,
the axially symmetric dumbbells exhibit narrowing of the
neck (shapes marked with F and G). The values of the
parameters f§ and 9 of the shapes marked in Fig. 4 are
depicted in the (8, 9) plane (Fig. 2) and marked with the
corresponding letters. In this analysis only shapes within
a limited range of Aa values are considered. Outside this
Aa range some rather peculiar equilibrium shapes, having
very high membrane bending energies, are obtained. This
results from the limitations of the parametric model and
the evaluated shapes do not correspond to any of the
observed shapes.

In Fig. 4 two local minima of the curve can be noted.
The minimum at the lower Aa value gives an oblate dis-
coid shape of the type Z, while the minimum at the higher
Aa value gives a prolate dumbbell shape of the type X.
It can also be shown that both local minima of the curve
correspond to axisymmetric shapes. There is, however,
a region of elliptical equilibrium shapes between the
minima.

The results of our calculations are compared to the
results obtained for axisymmetric shapes by solving the
general variational problem ie. the Euler differential
equations for the principal curvatures, constrained by the
conditions that the membrane area, the vesicle volume
and the difference between the two membrane leaflet ar-
eas are fixed (Svetina and Zek§ 1989). The membrane
bending energy of the equilibrium shapes w, .o, as a func-
tion of 4a, calculated by solving the Euler equations, is
also shown in Fig. 4 (broken line). Different segments of
the dependence represent different classes of the shapes.
Two local minima of the w, ., (da) dependence can be
noted. It was found (Svetina and Zek$ 1989), that for the
values of the relative volume v higher than about 0.65 the
minimum pertaining to the higher value of Aa and corre-
sponding to the prolate shape is energetically more favor-
able, while for lower values of v the minimum pertaining
to the lower value of Aa and corresponding to oblate
shapes is energetically more favorable. We found (not
shown here) that the corresponding results of the para-
metric model agree with the results of the solution of the
general variational problem. As expected, if only the
axisymmetric shapes are considered, the energy calculat-
ed using the parametric model is higher than the corre-
sponding value calculated with the use of the Euler equa-
tions for any 4a, owing to the lack of flexibility of the



102

parametric model compared to the exactness of the solu-
tion of the Euler equations. However, as can be seen in
Fig. 4, if the elliptical shapes obtained by the parametric
model are compared to axisymmetric solutions of the
Euler equations, for some values of 4a between the two
minima the elliptical shapes exhibit considerably lower
energy. In this region of 4a the exact solution of the
general variational problem for non-axisymmetric shapes
must give even lower energy values than the ones we have
obtained using the parametric model.

Comparing our results with the results of Sekimura
and Hotani (1991), which indicate the existence of non-
axisymmetric vesicle shapes for low values of the relative
volume, our analysis differs from theirs as it takes into
account elliptical shapes only while theirs takes into ac-
count various polygonal shapes. Sekimura and Hotani
(1991), however, did not consider the prolate shapes (cor-
responding to the second set of the type Z shapes and also
both sets of the type X shapes). Our analysis also includes
the bilayer couple model which imposes on the system an
additional constraint for the area difference of the two
membrane leaflet areas da. It should be pointed out that,
according to our results, non-axisymmetric shapes were
obtained only for certain choices of Aa, while the absolute
energy minimum was obtained for the axisymmetric
shapes for all values of the relative volume between 0.6
and 1. Sekimura and Hotani (1991) obtained non-axisym-
metric equilibrium shapes for low enough values of the
relative volume as their function describing the top view
contour yields different shapes than our strictly elliptical
one. However, their equilibrium shape has, for a given v,
higher energy than the corresponding equilibrium shape
obtained by the exact solution of the general variational
problem. In order to determine whether the absolute en-
ergy minimum is non-axisymmetric, an exact solution of
the general variational problem for the non-axisymmetric
shapes should be found.

The results of Heinrich et al. (1992) also indicate the
existence of non-axisymmetric equilibrium shapes be-
tween the oblate and prolate axisymmetric shapes with an
absolute minimum for axisymmetric shapes. The energy
of the equilibrium non-axisymmetric shapes as a function
of Aa does not exhibit any discontinuous derivatives such
as seen in Fig. 4. We believe that the discontinuity in our
Ws, .qu (4a) curve (point 2, Fig. 4) is a consequence of the
limitations of the parametric model. It should be pointed
out that the shapes obtained by Heinrich et al. (1992) are
restricted to nearly spherical vesicles having the values of
the relative volume v close to 1. Our results show that the
non-axisymmetric equilibrium shapes can be continuous-
ly extended to considerably lower values of the relative
volume, thereby proving the existence of a class of non-
axisymmetric equilibrium shapes in the v/4a diagram.
Our results indicate that the non-axisymmetric shapes
appear in the v/4a diagram between the oblate and pro-
late axisymmetric shapes of minimal energy values. Start-
ing in the region of oblate axisymmetric shapes at fixed
relative volume v, the equilibrium shape energy decreases
with increasing da and reaches its minimum within the
class of oblate axisymmetric shapes. At this point, with a
further increase of Aa, the equilibrium shape transforms

continuously into a non-axisymmetric shape. After pass-
ing the interval of Aa of non-axisymmetric shapes, the
shape again transforms continuously into a prolate
axisymmetric shape in the point of minimum of bending
energy within the class of prolate axisymmetric shapes. If
da is increased still further in the region of prolate
axisymmetric shapes, the energy of the equilibrium
shapes increases.

It can be concluded that within the bilayer couple
model for some values of 4a, non-axisymmetric shapes
have lower energy values than any axisymmetric shape
obtained at the same Aa values, which thereby proves the
existence of stable non-axisymmetric shapes at these da
values.

Acknowledgement. We are indebted to Dr. V. Heinrich for allowing
us to include in the w, ., (4a) dependence obtained by solving the
Euler equations (marked with the broken line in Fig. 4) some of his
unpublished results.

Appendix

The cell surface is represented by the vector R =(x, y,
z(x, y)). It follows from the equations of differential geom-
etry that the sum of the two principal curvatures ¢, and
¢, is expressed by

EN+GL—-2FM

e e, = e (A1)
where
E=1+22, (A2)
F=z12z, (A3)
G=1+z22, (Ad)
ZXX
LUz 4
M=—fo (A6)
(1+ 22+ 222>
: (A7)

. T S—
(1422 + 222

where the quantity @, denotes the partial derivative of @
with respect to « and the quantity &, , denotes the partial
derivative of @ with respect to « and .
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