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1. INTRODUCTION

From a physical point of view, we can outline two properties of the lipid
bilayer. The first is that the dimension of the lipid bilayer in at least one of
the lateral directions is much larger than its thickness, while the second is
that the shape attained by the bilayer reflects the shape of the molecules that
constitute the bilayer and the interactions between them. Due to the first
property, the bilayer resembles a two dimensional surface, while the second
property contributes to the particularities of the shape that this ”surface”
attains in three-dimensional space (Fig. 1).

A two-dimensional surface in three-dimensional space can be described in
an elegant way by using the equations of differential geometry based on a local
2 X 2 curvature tensor. The equilibrium shape attained by the membrane
corresponds to the minimum of the free energy of the system at relevant
geometrical constraints. The link between the membrane shape and its free
energy is provided by expressing the free energy of each part of the membrane
by the invariants of the local curvature tensor.

The lipid bilayer is of scientific interest especially due to its relation to the
membrane of cells and organelles [1]. Following many years of thorough study,
the fluid mosaic model has been proposed [2] where it is assumed that the
cell membrane, regardless of its specific function, can be described as a lipid
bilayer with intercalated proteins or other large molecules. The lipid bilayer
exhibits the properties of a two dimensional liquid that is laterally isotropic,
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Figure 1. Examples of bilayer membrane shapes: A: transmission electron microscope
(TEM) image of a spherical bud at the top of the echinocyte spicule induced by adding
dodecylzwittergent to an erythrocyte suspension (from [10]), B: TEM image of a cylin-
drical bud at the top of the echinocyte spicule induced by adding the dimeric detergent
dioctyldiQAS to an erythrocyte suspension (from [10]), C: fluorescence microscope im-
age of the vesicle made of POPC and 1.5 % NBD-PC probe in sugar solution; the length
of the myelin-like protrusion was several diameters of the spherical part (from [32]); D:
phase contrast microscope image of a vesicle made of POPC in pure water; the shape
exhibits an undulated protrusion while there is a multilamellar structure within the
globular part (from [12]).

within which the proteins and other large molecules are more or less laterally
mobile. In agreement with the fluid mosaic model [2], the membrane was
considered as a laterally isotropic continuum so that its energy was expressed
by the invariants of the local curvature tensor: the mean curvature and the
Gaussian curvature [3].

The properties of the cell membrane can also be studied by introducing
exogenously added molecules into the membrane. A convenient system for
such study is represented by mammalian erythrocytes. These cells have no
internal structure, so that the properties of their membrane (composed of
a lipid bilayer with intercalated proteins and a membrane skeleton), are re-
flected in their shape. It was observed that intercalation of various substances
induces observable shape changes in mammalian erythrocytes [4, 5, 6].

Study of the effects of detergents on the erythrocyte membrane showed

that continuous intercalation of detergent molecules into the membrane leads
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to microvesiculation of the membrane [7, 8, 9]. The released microexovesicles
are so small that they cannot be observed by an optical microscope. However,
the vesicles could be isolated and observed by an electron microscope [8].
It was found that the microexovesicles are spherical and cylindrical [8, 10]
while the endovesicles are spherical, cylindrical and torocytic [11], depending
on the species of exogenously added detergent. The difference between the
main curvatures of the membrane in these structures is rather large. It can
be expected that in the regions where there is a large difference between
the main curvatures the membrane can no longer be described as a laterally
isotropic continuum. A new physical description should be created taking
into account the specific structure of the membrane constituents.

In this contribution, evidence is given that thin strongly anisotropic struc-
tures that are attached to the mother vesicle/cell can be found in one-
component phospholipid bilayers and in erythrocytes under certain condi-
tions. Starting from a microscopic description of the membrane constituents,
we describe the thin anisotropic structures of the bilayer membrane by a
mechanism that is based on the orientational ordering of the anisotropic
membrane constituents. It is derived that the relevant invariants of the cur-
vature tensor for description of such systems are the mean curvature and the
curvature deviator [10, 12, 13]. The shapes of the membraneous structures
are studied within the frame of these invariants and in correspondence with
the experimentally observed shapes.

2. INTERDEPENDENCE BETWEEN THE
CONFIGURATION OF THE INCLUSIONS AND THE
SHAPE OF THE MEMBRANE

The membrane inclusion can be any membrane constituting molecule or any
assembly of molecules that can be distinguished from the surrounding mem-
brane constituents. The surrounding membrane constituents are then treated
as a curvature field, the membrane inclusion being subject to this field. The
inclusion may be located in a single monolayer or it may protrude through
both layers.

We imagine that there exists a shape that would completely fit the inclu-
sion. This shape is referred to as the shape intrinsic to the inclusion. The
corresponding main curvatures are denoted by Ciy, and Cyyy, [14, 15]. Fig. 2
gives a schematic presentation of four different intrinsic shapes. The inclusion
is called isotropic if Ciy, = Coyy, while it is called anisotropic if Chy # Cop.

It would be energetically most favourable if the membrane had the in-
trinsic shape over all its area. However, if we consider a closed shape subject

to geometrical constraints, the membrane cannot have such a curvature at
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Figure 2. A schematic presentation of four different intrinsic shapes: A: flat shape
(Cim = Com = 0), B: saddle shape (Ciy, > 0, Cop < 0), C: cylinder (Cyy, > 0, Copy = 0),
D: inverted cylinder (Cy, < 0, Cop, = 0). The shape A is isotropic while the shapes B,C
and D are anisotropic (from [12]).

all its points. In general, the local membrane shape differs from the intrinsic
shape. This means that the principal curvatures and the principal directions
of the actual shape differ from the principal curvatures and the principal
directions, respectively, of the intrinsic shape. The mutual orientation of the
two principal systems describes the orientation of the inclusion if Ciy, # Copy
1.e. if the inclusion is anisotropic.

In a one-component bilayer membrane every membrane constituent can
be treated as an inclusion that is confined to the corresponding monolayer.
In a membrane containing proteins or some other molecules the inclusion is
formed by the seed molecule and adjacent membrane constituent molecules
that are significantly distorted due to its presence. The difference in the
treatment of the respective systems lies in the statistical mechanical descrip-
tion that yields consistently related expressions for the membrane free energy
and positional and orientational distribution functions. A lattice with an ad-
justable lattice constant is introduced. In the case when we consider every
constituent as an inclusion embedded in the continuum formed by the other
constituents, all of the lattice sites are occupied [12]. In the case when the
number of inclusions is much smaller than the number of membrane con-
stituents (e.g. when the inclusions are formed by the membrane proteins or
induced by intercalated drugs), most of the lattice sites are empty [14, 15]. As
the inclusions are laterally mobile over the membrane area, they would accu-
mulate in the regions of favourable curvature, while they would be depleted

from the regions of unfavourable curvature. In both statistical mechanical
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approaches there would be a different degree of orientational ordering of the
inclusions in different regions. Correspondingly, the whole membrane would
attain a shape exhibiting large regions of favourable local shape and small re-
gions of unfavourable shape, as such a configuration would yield the minimal
free energy of the whole membrane.

The free energy of the membrane is subject to the local thermodynamic
equilibrium (which is considered by using canonical ensemble statistics) and
the global thermodynamic equilibrium with respect to the positional and
orientational distribution functions of the inclusions and with respect to the
membrane shape, 7.e. the principal membrane curvatures at each point of
the membrane. The relevant geometrical constraints such as the requirement
for a fixed membrane area and enclosed volume are taken into account. In
this work we present some approximate solutions of this variational problem
that seem to be relevant for the particular experimentally observed features.

3. SINGLE-INCLUSION FREE ENERGY

The origin of the coordinate system is chosen at the site of the inclusion.
The membrane shape at this site is described by the diagonalized curvature
tensor C|

|G 0
c= T 4] )
while the intrinsic shape is described by the diagonalized curvature tensor
Cn
| Cm 0
=% o |- )

The principal directions of the tensor C' are in general different from the
principal directions of the tensor C, , the systems being mutually rotated by

an angle w.
We introduce the mismatch tensor M [13, 16],
M=RC,R"'-C (3)

where R is the rotation matrix,

= (4)
The single-inclusion energy is defined as the energy that is spent in adjust-

ing the inclusion into the membrane and is determined by terms composed

of two invariants of the mismatch tenls% M. Terms up to the second order in

cosw — Sinw
sinw Ccosw



the tensor elements are taken into account. The trace and the determinant
are considered as the fundamental invariants [13, 16],

B =2 (Te(M))’ + K Det(M), 5

where K and K are constants. Performing the necessary operations and
using the expressions (1) - (5) yields the expression for the single-inclusion
energy [14, 15]

Ezg(H—Hm)2+€—Z€ (C? —2C, Ccos2w + C2), (6)
where

1 1
H = 5 (01 + 02), Hm — 5 (Clm + CZm) (7)
are the respective mean curvatures while
~ 1 A 1
C = 3 (C1 —Cy), Cy= 3 (Cim — Com). (8)

The constants used in Eq. (6) are £ = 2K + 4K and £* = —6K — 4K.
The partition function of a single inclusion ¢ is [17]

1 (& E(w)
q = w—o . €exXp (—W> dw, (9)

with wy an arbitrary angle quantum and k£ the Boltzmann constant. In
the partition function of the inclusion the contribution of the orientational
states Qorient 1S distinguished from the contribution of the other states g,

q = {4c Gorient [15]7

_ 3 2 E+E& o A2
o= exp (~ e — Haf = SEECPr C) (10
1 [ (€ 4 £)Con C cos(2w)
orient — . 11
o = o | exp( e o (11)
Integration in Eq. (11) over w yields
L [(E+€NCuC
orient — —1I y 12
Qorient o 0 ( ok T (12)
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where Ij is the modified Bessel function. The free energy of the inclusion is
then obtained by the expression F; = —kT'Ingq,

¢ 2, §+5 2 | Ao (E+£)CaC
Fi=2(H - H)? + (C?+C2) — kTn 10( S ) . (13)
We introduce the curvature deviator
= |C]| (14)

that is an invariant of the curvature tensor as it can be expressed by its trace
and determinant,

D = +/(Tx(C)/2)? — Det(C) = v/ H? — C Cb. (15)

Here, it was considered that Tr(C') = 2H and Det(C) = Cy Cs. Since the
modified Bessel function and the quadratic function are even functions of the
difference C, the quantity C' in (Eq. (13)) can be replaced by the curvature
deviator D (Eq. (14)). Thereby the single inclusion free energy is expressed
in a simple and transparent way by two independent invariants of the cur-
vature tensor: the trace and the absolute value of the difference of the main
curvatures z.e. by the mean curvature H and the curvature deviator D,

g(H_Hm)Z §4E ey 2y len<IO<(§+£*)DmD))7(16)

4 2kT

F =

where Dy, =| Cy |.
The average orientation of the inclusion may be given by (cos(2w)) [18],

(€+€) D D
Il( 2k T )

(+¢)Dm D\’
IO( 2kT )

(cos(2w)) = (17)

where I; is the modified Bessel function.

Fig. 3 shows the average orientation of the inclusion as a function of
the curvature deviator D. For small D, i.e. in nearly isotropic regions, the
inclusions are randomly oriented. The orientational ordering increases with
increasing D and approaches the state where all the inclusions are aligned at
large D, i.e. in strongly anisotropic regions.
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Figure 3. Average orientation of the inclusion {cos(2w)) as a function of the curvature
deviator D (from [18]).

4. SHAPES OF EXTREME AVERAGES OF CURVATURE
TENSOR INVARIANTS

The shapes of the extreme average invariants of the curvature tensor are
distinct shapes in the set of possible shapes. In order to obtain the shapes
of the membrane of an extreme average mean curvature

1

(H)y =~ / HdA (18)
A

and of an extreme average curvature deviator
1

(D) = Z/DdA (19)

at a given area of the membrane surface A and a given volume enclosed by
the membrane V', the variational problems are stated by constructing the
respective functionals [18, 16]

gH:<H>—)\A-(/dA—A)+)\V-(/dV—V), (20)

gD:(D)+/\A-(/dA—A)—)\V-(/dV—V), (21)

where A4 and Ay are the Lagrange multipliers. The analysis is restricted
to axisymmetric shapes. The shape is given by the rotation of the function
y(z) around the z axis. In this case the principal curvatures are expressed

by y(z) and its derivatives with respect to = as C; = +1/y/1+ 3% and
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Cy = FyY'/A/1+ y’23, where (y = Oy/0x and ¢y’ = 0%y/0z®). The area
element is dA = 27 /1 + y'2 y dz, and the volume element is dV = +7 32 dz.
By =+ it is taken into account that the function y(z) may be multiple valued.
The sign may change at the points where 3’ — oco. The variations

0Gu = 5/93(%‘, y,y,y")dz =0 (22)
and

0Gp = 5/99(:6, y,y,y")dz =0 (23)
are performed by solving the corresponding Poisson - Euler equations

dg;i d (0g; d> ( 9y .

oy dz (ay’ dz? \ 0y” ' (24)

By inserting gy and gp into Eq. (24) we can express both variational
problems by a Poisson-Euler equation of single form. After obtaining the
necessary differentiations, this Poisson - Euler equation is [18, 16]

2 " 1 1
5 y+)\A< vy >—52y)\v—0, (25)

1 _
(1+y?) Vity?  (V1+y?)?

where d; and o may be + or —, depending on the actual situation. It follows
from the above that the solutions for the extremes of the average invariants
of the curvature tensor are equal. The nature of the obtained extreme may,
however, be different. So it is possible that some solution corresponds to a
maximal average mean curvature and maximal average curvature deviator.
Some other solution may correspond to the minimum average mean curvature
and maximum average curvature deviator etc.

Some simple analytic solutions of Eq. (25) were found: the cylinder
y = const [19, 10] and the circle of the radius reir, ¥y = yo £ /7%, — (T — ()2
where (zg, yo) is the centre of the circle. If 2y # 0 and yy = 0 the ansatz
fulfills equation (25) for two different radii [19], representing spheres with two
different radii. If o = 0 and yy # 0, the circle is the solution of the equation
(25) only when the Lagrange multipliers are interdependent; for ¢, < o,
the solution represents a torus and a torocyte [18].

As the sum of the solutions of the differential equation within each of the
above categories is also a solution of the same equation at the chosen con-
straints, different combinations of shapes within the corresponding category
are possible, provided that the combined shape fulfills the constraints [20].

In these cases, the Lagrange multipli%s1 may be interdependent [19, 18, 10].




Figure 4. The ((h), (d), IQ) phase diagram. The lines pertaining to three sets of
limiting shapes are depicted: the set of shapes composed of two spheres, the set of
shapes composed of a cylinder ended by two hemispheres and the set of tori. The

corresponding projections on the (d) = 0 plane and on the (h) = 0 plane are also shown
(from [16]).

The equilibrium shapes can be characterized by the volume to area ra-
tio defined as the isoperimetric quotient /@) = 367 V2?/A3 and both average
invariants of the curvature tensor. Dimensionless quantities are used to rep-
resent the average invariants: the dimensionless average mean curvature is
(h) = R(H) and the dimensionless average curvature deviator is (d) = R(D),
where R = y/A/4w. The possible equilibrium shapes can be represented in
a ((h), (d), IQ) phase diagram. The shapes of extreme average invariants of
the curvature tensor form curves in this phase diagram (Fig. 4). These lines
in turn form limits of the trajectories that correspond to the processes with
changing average curvature invariants.

Fig. 5 shows the budding of a spherical vesicle from a planar lipid bilayer
with increasing average mean curvature. All the shapes in the sequence but
the first and the last are obtained by minimization of the membrane bending
energy [22]. The first and the last shape are obtained by the solution of the
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Figure 5. The sequence of shapes simulating the budding of a spherical vesicle from

a planar lipid bilayer. The average mean curvature increases from left to right (from

[22]).
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variational problem of the extreme average mean curvature of a segment with
fixed area (Ay = 0). It can be seen that the limiting shape corresponding to
the minimal average mean curvature consists of a section of a sphere while
the limiting shape corresponding to the maximal average mean curvature
consists of a segment of a flat surface and a spherical vesicle [21, 22, 23].

5. STATISTICAL MECHANICAL DESCRIPTION OF THE
MEMBRANE

5.1. Statistical mechanical description of a bilayer membrane
composed of only one kind of constituents

The contribution to the membrane free energy due to local interaction be-

tween the molecules and the mean curvature field is in the first approximation

obtained by summing the contributions of the individual molecules of both

layers [12],

F = /mout Fi(Cl, CQ) dA—I—/min Fi(—Cl, —02) dA, (26)

where my,; and my, are the area densities of the molecules in the outer
and the inner membrane layer, respectively, while Fj is given by Eq. (16).
The integration is performed over the membrane area A. Note that the
principal curvatures in the inner layer have signs opposite to the signs of the
principal curvatures of the outer layer due to the specific configuration of the
phospholipid molecules within the layers - touching by the tails.

If we assume for simplicity that the area densities are constant over the
respective layers and also equal, my,, = min = My, and insert the expression
for the single-molecule energy (Eq. (16)) into Eq. (26), we obtain [12]

F = mogfH2<:1A+m0’ijg /DQdA—

2

— omokT / 1n(10(f2;€“§fDm D)) dA (27)

In integrating, the differences in the areas of the inner and the outer layer
were disregarded, so that the contributions proportional to the intrinsic mean
curvature H,, of the inner and the outer layer cancel and there is no sponta-
neous curvature for bilayer vesicles composed of a single species of molecules.
Also, the constant terms were omitted from Eq. (27).

The above procedure leading to Eq. (27) is a statistical mechanical deriva-
tion of the expression of continuum elastomechanics. It can be seen from Eq.
(27) that the free energy of the membrane inclusions is expressed in a simple
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and transparent way by the two invariants of the local curvature tensor: by
the mean curvature and the curvature deviator.

The first and the second term of Eq. (27) can be combined by using Eq.
(15) to yield [12]

F = m03€+€* /(2H)2dA — m0§+€*/01 CodA
—2k T my / In (10(522;7{* D, D)) dA, (28)

as to compare the expression (28) to the bending energy of an almost flat
thin membrane [3] with zero spontaneous curvature

k
Wy = 50 /(2H)2dA + kg / C; CydA, (29)
where k. and kg are the membrane local and Gaussian bending constants,
respectively. We can see that the statistical mechanical derivation recovers
the expression (29), where

mo(3§ + &) /4 = ke (30)
and
—my(§ +£7)/2 = ka, (31)

and yields also an additional contribution (third term in Eq. (28)) due to
the orientational ordering of the phospholipid molecules. This contribution,
which is always negative, is called the deviatoric elastic energy of the mem-
brane (originating in the curvature deviator D (Eq. (14))). Also, it follows
from Eqgs. (28) and (29) that the saddle splay modulus is negative for a
one-component bilayer membrane.

5.1.1. Estimation of the strength of the deviatoric effect in a phospholipid
bilayer membrane

Introducing the dimensionless quantities, the free energy F' (Eq. (28)) is

normalized by 27 mg (3§ + &),

f= i/(2h)2da+ /s:(;/cl cada — m/ln(lo(ﬁdm d)) da, (32)

where da = dA/4n R?, R = (A/4m)'?, kg = —(E+E9)/(BE+€Y), k =
4kTR2/(3£+€*), 9 = (§+§*)/2kTR2, C1 = RCl, Cy = RCQ, h = RH,
d=RD and d,, = R D,,. We also obtain the dimensionless bending energy

wy, if we normalize the expression (29) by 87 k.. Thereby, kg = kg /2k.
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To estimate the interaction constants, we assume that the conformation of
the phospholipid molecules is equal all over the membrane and for simplicity
take that & = £*. In this case, kg = —1/2, so that kg = —k.. By comparing
the constants before the first terms of Egs. (28) and (29) we can express the
interaction constant & by measured quantities: the local bending constant k.
and the area density of the number of phospholipid molecules my, so that
12]

§ = ke/mo, (33)
k=1/9=kT R*my/k.. (34)

We consider that k. ~ 20k7T [24, 25] and that mg = 1/ag where aq is
the area per molecule, ag ~ 0.6 nm? [26], T = 300K and R = 107° m.
This gives k = 1/9 ~ 8.3 -10% We estimate that the upper bound of Dy,
is the inverse of the molecular dimension (~ 108 m™!) so that in our case
d,, = R D,, would be of the order of 103.

It follows from the above estimation that the argument of the Bessel func-
tion in Eq. (32) is very small unless 1/D is smaller than about a micrometre.
In effect, the deviatoric contribution to the area density of the free energy of
the phospholipid bilayer membrane is important only in those regions of the
vesicle shape where there is a large absolute value of the difference between
the two principal curvatures.

5.2. Statistical mechanical description of anisotropic inclusions
within the approximation of a two-dimensional ideal gas
It is imagined that the membrane layer is divided into patches that are so
small that the curvature is constant over the patch; however, they are large
enough to contain a large number of inclusions that can be treated by statisti-
cal methods. It is taken that the inclusions protrude through both membrane
layers. A chosen patch is a system with a well defined curvature field C, given
area AP, number of inclusions M and temperature 7" and can therefore be
subject to a local thermodynamic equilibrium. To describe the local ther-
modynamic equilibrium we chose canonical statistics [27] where we treat the
inclusions as a two-dimensional ideal gas confined to the membrane surface.
Within this approximation, the inclusions are treated as dimensionless and
explicitly independent. The inclusions are also considered as indistinguish-
able. The canonical partition function of the inclusions in the small patch
of the membrane is Q = ¢™/M!, where q is the partition function of the
inclusion (Eq. (9)) and M is the number of inclusions in the patch. Knowing
the canonical partition function of the patch (), we obtain the Helmholtz free
energy of the patch, FP = —kT In 1%5 The Stirling approximation is used



and the area density of the number of molecules m = M /AP is introduced.
This gives for the area density of the free energy [15]

p *
% =—kTm ln(qC Io(g Z;
To obtain the free energy of the whole membrane F,, the contributions of
all the patches are summed, 7.e., integration over the membrane area A is
performed

/ ~dA. (36)

The explicit dependence of the area density m on position can be deter-
mined by the condition for the free energy of all the membrane inclusions
to be at its minimum in the thermodynamic equilibrium 0F,, = 0. It is

taken into account that the total number of inclusions Mt in the membrane
is fixed,

/A mdA = My (37)

Da, D)) 4+ ET(mInm —m). (35)

and that the area of the membrane A is fixed. The above isoperimetric
problem is reduced to the ordinary variational problem by constructing a
functional

Fon+ A /A mdA = /A £(m) dA, (38)

where

£+&
2kT

and A, is the Lagrange multiplier. The variation is performed by solving
the Euler equation dL/0m = 0. Deriving (39) with respect to m and taking
into account Eq. (37) gives the Boltzmann distribution function modulated
by the modified Bessel function Iy [15]

E(m)z—kT’mln(qcIO( Dy, D))—|—k:T(mlnm—m)+)\mm (39)

M %chlo(%?;%D D)dA’

where ¢, is given by Eq. (10) and my is defined by my A = Mr.

To obtain the equilibrium free energy of the inclusions the expression
for the equilibrium area density (Eq. (40)) is inserted into Eq. (35) and
integrated over the area A. Rearranging the terms yields [15]

F, = —kTMTln(%/qclo(i—]:; Dy D) dA) (41)
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The equilibrium free energy of the inclusions cannot in general be ex-
pressed as an integral of the area density of the free energy. We say that the
contribution of the inclusions is a nonlocal one. A change of the local condi-
tions affects the cell shape and the distribution of the inclusions through the
minimization of the free energy of the whole membrane. Although the inclu-
sions are explicitly treated as independent, their mutual influence is taken
into account through the mean curvature field which in turn depends on the
lateral and orientational distribution of the inclusions. It can also be seen
from Eq. (41) that the energy of the membrane with inclusions is not scale
invariant. The inclusions favour a certain packing arrangement that depends
on the values of the principal membrane curvatures.

To estimate the strength of the deviatoric effect, the free energy Fy, (Eq.
(41)) is normalized by 8 k.

fu = —hmIn / (¢ To(9 d ) da, (42)

where Ky = Mr kT/8m ke, 9 = (€ + &*)/2k T R?, while h, d, dy, R and da
are defined as below Eq. (32). We took £ = £*, kyy = 1, Hy = hy/R =0,
Dy, = 1/300 A" and R = 6pm [15]. The interaction constant & was esti-
mated by assuming that the energy cost of distorting the tail of a phospho-
lipid molecule within the inclusion is approximately equal to the energy dif-
ference corresponding to the tail packing in different aggregation geometries.
Such a difference is of the order of (0.1 - 0.5) kT per tail of a phospholipid
molecule [28]. If we assume that there are 10 molecules (20 tails) involved
in the inclusion, the energy of the inclusion can reach several k7. For the
mother cell h ~ 1 while d ~ 0. Then, from the above choice of h,, and d,,
and Eq. (6), we estimated that ¥ is of the order of 1073.

Fig. 6 shows the relative free energy of the inclusions f,, and the rela-
tive membrane bending energy wy as a function of increasing average mean
curvature (h) for a sequence in which the shape with one spherical vesicle
is formed from a pear shape. The shapes in the sequence correspond to the
minimum of the membrane bending energy. It can be seen that the bending
energy monotonously increases along the sequence. The free energy of the
inclusions only slightly decreases as long as the neck is wide. When the neck
shrinks, the free energy of the inclusions sharply decreases, reaches a mini-
mum and then increases towards the initial value. When the neck becomes
infinitesimal, the curvature deviator becomes very large, however, the area
of the neck becomes very small. The deep minimum of the f;,((h)) curve
provides a possible explanation for the stability of thin necks connecting the
daughter vesicle and the mother cell [29].
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Figure 6. The normalized free energy of the inclusions fi, (Eq. (42)) and the normalized
membrane bending energy wy, (first term of Eq. (32)) as a function of increasing normal-
ized average mean curvature (h); 9 = 1073 ky = 1, hy = 0, dy, = 100 and 1Q = 0.9.
The energy fm is determined up to a constant (adapted from [15]).

6. MEMBRANE SHAPES EXHIBITING DEVIATORIC
ELASTICITY

6.1. Myelin-like protrusions of phospholipid bilayer vesicles

An experiment showing fast recovery of fluorescence in photobleached giant
phospholipid vesicles [30] indicated that the giant phospholipid vesicles ob-
tained in the process of electroformation [31] are connected by thin tubular
structures [30]. Later, it was observed [32] that giant palmitoyloleylphos-
phatidylcholine (POPC) bilayer vesicles, which immediately after formation
appear spherical, spontaneously transform into flaccid fluctuating vesicles in
a process where the remnants of thin tubular structures that are attached
to the vesicles become thicker and shorter and eventually integrate into the
membrane of the mother vesicle. The thin tubular network acts as a reser-
voir for the membrane area and importantly influences the future shape and
dynamics of the globular phospholipid vesicles.

The POPC vesicles were prepared and observed in sugar solution [32]
and in pure water [12]. Also, the vesicles were labelled with the fluorescent
probe NBD-PC [32]. The observed features are the same in all cases. Im-
mediately after being placed into the observation chamber the vesicles are

spherical; the protrusions are not visible under phase contrast and the long
158



Figure 7. Shape transformation of a giant phospholipid vesicle (made of POPC and
1.5 % NBD-PC in sugar solution) with time. The times after the preparation of the
vesicles are A: 3 h, B: 3 h 20 min, C: 4 h, D: 4 h 2 min, E: 4 h 4 min 30 s, F: 4 h 8 min
15 s, G: 4 h 14 min 25 s, H: 4 h 14 min 30 s. The white arrows indicate the protrusion
while the black arrows indicate the mother vesicle. The vesicle was observed under an
inverted Zeiss IM 35 microscope with phase contrast optics (from [32]).
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Figure 8. Shape transformation of a giant phospholipid vesicle (made of POPC in sugar
solution as in [32]) with time. A small void was left in the grease closing the observation
chamber to allow water evaporation. Undulations of the protrusion were observed at
longer protrusions. When the ”beads” became sphere-like (F), the shape stayed stable
for about two hours. The vesicle was observed under an inverted Zeiss IM 35 microscope
with phase contrast optics.
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wavelength fluctuations of the spherical part are not observed. After some
time, long thin protrusions become visible (Fig. 1C); the protrusions appear
as very long thin tubes that are connected to the mother vesicle at one end
while the other end is free. With time, the protrusion becomes shorter and
thicker; however the tubular character of the protrusion is still preserved
(Fig. 7A-C) while the fluctuations of the mother vesicle increase in strength.
Later, undulations of the protrusion appear and become increasingly appar-
ent. Shortened protrusions look like beads connected by thin necks (Fig.
7D-F). Eventually, the protrusion is completely integrated into the vesicle
membrane to yield a fluctuating globular vesicle (Fig. 7H). The transforma-
tion of the protrusion is usually very slow, indicating that all the observed
shapes may be considered as quasiequilibrium shapes. In the sample, the
tubular protrusions are still observed several hours after the formation of the
vesicles. The timing of the transformation may vary from minutes to hours,
as the protrusions are initially of very different lengths.

The observed shape transformation may be driven by the inequality of
the chemical potential of the phospholipid molecules in the outer solution
and in the outer membrane layer which causes a decrease of the difference
between the outer and the inner membrane layer areas. Possible mechanisms
that were suggested to contribute to this are the drag of the lipid from the
outer solution by the glass walls of the chamber, chemical modification of
the phospholipid and phospholipid flip-flop [32]. A decrease of the volume
to area ratio (isoperimetric quotient) of the vesicle occurs due to slight evap-
oration of water from the chamber. The vesicle then looses water in order
to equalize the respective chemical potentials inside and outside the vesicle.
The tubular/beadlike character of the protrusion seems to depend on the
speed of the loss of lipid molecules from the outer membrane layer relative
to the speed of the decrease of the enclosed volume. The undulations of the
protrusion are more evident when a small void is left in the grease thereby
enhancing the evaporation of water from the outer solution (Fig. 8).

y
™

Figure 9. Oscillations of the neck width before opening of the neck of giant phospholipid
(POPC) vesicle.
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Another interesting observed feature is oscillation of the neck width. This
is especially notable before the opening of the neck that connects the last
bead with the mother vesicle (Fig. 7F-H). The neck shrinks and widens
several times before the last bead integrates with the mother vesicle (Fig. 9)
indicating increased stability of the neck. A similar effect - the persistence
of the neck connecting a spherical daughter vesicle and a mother vesicle
- was also observed in the opening of the neck induced by cooling, while
the formation of the neck by heating was quick and took place at higher
temperature, indicating hysteresis [33]. In the case when a small void is left
in the observation chamber longer protrusions already have a beadlike form
(Fig. 8). When the protrusion undergoes transformation into a shape with
one bead less, the necks open to yield an almost tubular shape (Fig. 8B,D).
If the protrusion develops into spherical beads connected by very thin necks
(Fig. 8F), the shape stays stable for hours.

A complete picture of the dynamics of shape transformation seems at this
point beyond our understanding. However, we can point to some facts that
can be elicited with a certain confidence. In comparing the protrusions at
an early time and at a later time, the protrusions at the early time appear
considerably more tubular. Therefore we think that the protrusions also have
tubular character even at earlier times when they are too thin to be seen by
the phase contrast microscope. The possibility should be considered that the
radius of the tubular protrusion immediately after its formation is very small
- as small as the membrane thickness.

To describe these features theoretically, the equilibrium shape is deter-
mined by the minimum of the membrane free energy (Eq. (28)) under given
constraints. It is considered that the membrane area A, the enclosed volume
V' and the average mean curvature are fixed. The average mean curvature
of a thin membrane is proportional to the difference between the two mem-
brane layer areas, (H) = AA/2AJ, where § is the distance between the two
layer neutral areas which is considered to be small with respect to 1/H and
AA =6 [(Cy+Cy)dA. The constraint for (H) therefore reflects the number
of molecules that compose the respective layers and therefore the conditions
in which the vesicle formation took place. If the area difference is normalized
by 870 R (Aa = AA/87R), for a thin bilayer, it is equal to the normalized
average mean curvature,

1
(h) = Aa = 3 /(01 + ¢o)da. (43)
For the sake of simplicity, we compare two shapes that represent the
limits of the class of shapes with a long thin protrusion. In the first case the
protrusion consists of equal small spheres (Fig. 10A), while in the second
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Figure 10. A: schematic presentation of a shape composed of the mother sphere and
protrusion composed of small spheres connected by infinitesimal necks, B: schematic
presentation of a shape composed of the mother sphere and a thin cylinder closed by
hemispherical caps (from [12]).

case the protrusion consists of a cylinder closed by hemispherical caps (Fig.
10B). It is expected that these two shapes are continuously connected by a
sequence of shapes with decreasingly exhibited undulations of the protrusion.

Each of these two limiting cases involves three geometrical model pa-
rameters (Fig. 3) that can be determined from geometrical constraints for
the area, volume and average mean curvature. In the limit /() ~ 1, the
geometrical parameters and therefore also the energies can be expressed ana-
lytically [12]. It has been shown that the relative membrane bending energy
of the shape with the cylindrical protrusion wy, ¢y is always higher than the
membrane bending energy of the shape with the spherical beads wy, sph [12],

Wh, cyl = Wh,sph + 1. (44)

As within the theory of elasticity of an isotropic bilayer membrane [3] the
shape with a protrusion composed of small spheres that are connected by
infinitesimal necks would always be favoured over the shape with a tubu-
lar protrusion (Eq. (44)), this theory is unable to explain stable tubular
protrusions.

A possible mechanism that can explain the stability of the long thin
tubular protrusions is that of a deviatoric elasticity which is a consequence of
the orientational ordering of the membrane constituent molecules in the thin
tubular protrusion. If we chose high (h) the shape has a long protrusion. As
the membrane area and the enclosed volume are fixed, this protrusion is very
thin and consequently its mean curvature is large. For tubular protrusions
the deviatoric contribution to the normalized free energy (fg) (third term in

Eq. (32))
fa=—k / In(Ip(9 dwm d)) da (45)

is large enough to compensate for the less favourable bending energy of the

cylinder Eq. (44). On the other hand, for lower (h), a protrusion of the same
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membrane area and enclosed volume is shorter and broader, and therefore its
mean curvature is lower. The corresponding deviatoric term of the cylinder
is therefore too small to be of importance and the shape with the beadlike
protrusion has lower free energy. At a chosen intrinsic anisotropy d,, the
shapes with small spheres are energetically more favourable below a certain
(h) while above this threshold the shapes with cylinders are favoured.

Fig. 11 shows a ((h),d,,) phase diagram exhibiting the regions corre-
sponding to the calculated stable shapes composed of a spherical mother
vesicle and a tubular protrusion and to a stable shapes composed of a spher-
ical mother vesicle and a protrusion consisting of small spheres connected by
infinitesimal necks.

A

cylindrical protrusion

3000

2000

1000

Y N Y N S N N N N (!

Figure 11. The ((h), d\,) phase diagram of calculated equilibrium shapes with protru-
sions. The regions where shapes with a particular kind of protrusion are energetically
more favourable are indicated. The sequence of shapes shown in the figure indicates
the process of diminishing (h) at constant Q) that could be observed experimentally.
We chose ag = 0.6 nm?, R = 107°m, k. = 20k T, so that kK = 1/9 = 8.3 - 10° while
IQ = 0.90. The shapes corresponding to different (h) are depicted with the centre of
the spherical part at the corresponding (h) values (adapted from [12]).

The radii of the stable tubular protrusion are 200 — 400 nm while the
corresponding deviatoric energies are larger than the estimated energy of
thermal fluctuations [12]. The sequence of shapes shown in the figure roughly

simulates the transformation observle())cl1 experimentally (Fig. 7). Initially,



(h) is large and the shape is composed of a mother sphere and a long thin
nanotube. Assuming that the volume of the vesicle remains constant with
time, the number of phospholipid molecules in the outer layer diminishes, so
that (h) decreases and the tubular protrusion becomes thicker and shorter.
In the experiment [32], the undulations of the protrusion became increasingly
notable during the process. Our theoretical results shown in Fig. 11 exhibit a
discontinuous transition from a tubular protrusion to a protrusion composed
of small spheres connected by infinitesimal necks, as we consider only the
limits of the given class of shapes. Therefore, the phase diagram and the
sequence (Fig. 11) should be viewed only as an indication of the trend of
shape transition and not as to the details of the shape.

6.2. Detergent-induced anisotropic structures of the
erythrocyte membrane

Continuous intercalation of detergent molecules into the outer layer of the
erythrocyte membrane eventually leads to microexovesiculation [7, 8, 9].
Upon intercalation of the detergent molecules into the membrane the mother-
cell becomes spherical while a few percent of the erythrocyte membrane area
is released in the form of microexovesicles. Analysis of the protein composi-
tion of the isolated microexovesicles [9, 21] showed that the microexovesicles
are depleted in the membrane skeletal components spectrin and actin, sug-
gesting that a local disruption of the interactions between the membrane
skeleton and the membrane bilayer occurrs prior to microexovesiculation
[7, 9, 34, 21] and indicating that the shape of the microexovesicles is de-
termined by the properties of the membrane.

It was observed [8] that some species of added amphiphiles induce pre-
dominantly spherical microexovesicles while other species induce predom-
inantly tubular microexovesicles. Among these, the cationic dimeric am-
phiphile dioctyldiQAS, in which two head - tail entities are connected by a
spacer at the headgroup level, induces stable tubular microexovesicles [10]
(Fig. 13). An elongated tubular shape was exhibited even in the buds (Fig.
1B). For comparison, Fig. 1A shows budding of a spherical vesicle.

Fig. 13 shows a sequence of prolate shapes connecting two limiting shapes:
the shape composed of a cylinder and two hemispherical caps and the shape
composed of three spheres connected by infinitesimal necks. The correspond-
ing normalized average mean curvatures and normalized average curvature
deviators are also depicted. It can be seen that the shape composed of spheres
corresponds to the maximal average mean curvature and minimal average
curvature deviator while the shape composed of the cylinder and two hemi-
spherical caps corresponds to the maximal average curvature deviator and

minimal average mean curvature.
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Figure 12. TEM image of the isolated tubular daughter microexovesicles induced by

adding dioctyldiQAS to an erythrocyte suspension (from [10]).
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Figure 13. A sequence of axisymmetric vesicle shapes with /@) = 1/3. The corresponding

values of the average mean curvature (h) and of the average curvature deviator (d) are

given. All the shapes but the first from the left were obtained by minimizing the

membrane bending energy. The first shape from the left was obtained by combining the

solutions of Eq. (25) representing the sphere and the cylinder (adapted from [10]).
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Figure 14. A: TEM micrograph of the torocyte endovesicle induced by adding Ci5Eg to
an erythrocyte suspension (from [11]), B: calculated equilibrium shape of the torocyte
(full line) and the corresponding distribution of the anisotropic inclusions (broken line);
km = 100, ¥ = 1, hy, = —1.5, d;, = 1.5 (adapted from [16, 40]).

After adding both, dodecylzwittergent or dioctyldiQAS, to the erythro-
cyte suspension, the erythrocytes first underwent a discocyte-echinocyte-
spheroechynocyte transformation [10, 35], so it is evident that the average
mean curvature (h) continuously increased in the process [35]. According
to the bilayer couple model [5, 36, 37, 38, 39, 35] expressed by the bending
of the laterally isotropic membrane [3], the process of increasing the area
difference AA i.e. - (h) due to the intercalation of detergent molecules into
the outer membrane layer would lead to the shape of the maximal average
mean curvature i.e. to spherical microexovesicles (Fig. 13). While the bi-
layer couple model explains the spherical shape of the microexovesicles that
are induced by intercalating dodecylzwittergent into the erythrocyte mem-
brane, it cannot explain the tubular shape of the microexovesicles induced
by dioctyldiQAS.

A possible mechanism that can explain the observed stable tubular mi-
croexovesicle shape is that of a deviatoric elasticity which is a consequence of
the orientational ordering of the detergent-induced inclusions on the tubular
buds/vesicles [17, 14, 15, 10]. Besides increasing the average mean curvature,
the intercalation of anisotropic dioctyldiQAS-induced inclusions also increase
the average curvature deviator [10]. If the second effect prevails, the process
may continue until the limiting shape composed of cylinder and two hemi-
spherical caps (Fig. 12), that corresponds to the maximal average curvature
deviator, is reached.

On the other hand, continuous intercalation of detergent molecules into
the inner layer of the erythrocyte membrane eventually leads to endovesic-
ulation. It was reported [11] that octaethyleneglycol dodecylether (Ci2Esg)
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may induce (usually one) stable endovesicle having a torocyte shape (Fig.
14A). It was observed that the torocyte endovesicle originates from a pri-
marily large stomatocytic invagination which upon continuous intercalation
of Ci9Eg molecules loses volume. The invagination may finally close, form-
ing an inside-out endovesicle of small isoperimetric quotient. Three partly
complementary mechanisms were suggested in order to explain the formation
and stability of the observed torocytes [11, 18, 40]. The first is preferential
intercalation of the Ci3Eg molecules into the inner membrane layer, the sec-
ond is preference of the Ci9Eg induced inclusions for zero or slightly negative
local mean curvature, and the third is the lateral and orientational order-
ing of C1oEg induced inclusions. It was suggested [40] that lipid molecules
and membrane proteins may be involved in CisEg induced inclusions. To
determine the equilibrium shape of the torocyte endovesicle, the membrane
free energy (including the free energy of the inclusions) is minimized at fixed
membrane area and fixed enclosed volume [40]. Eq. (42) is used to calculate
the free energy of the inclusions. Fig. 14 shows the calculated equilibrium
shape of the torocyte vesicle and the corresponding distribution of the C9Eg
induced inclusions. It can be seen that the inclusions favour the region of
highly different main curvatures while the contour of the calculated shape
agrees with the observed TEM image. In order to calculate the character-
istic torocyte shape (Fig. 14B) it was necessary to include the deviatoric
effect [16, 40]. Within the standard bending elasticity model of the bilayer
membrane [3, 36, 37, 38, 39] the calculated torocyte vesicle shapes, corre-
sponding to the minimal bending energy, have a thin central region where
the membranes on the both sides of the vesicle are in close contact, 7.e. the
resultant forces on both membranes in contact are balanced [18]. However,
as it can be seen in Fig. 14A the adjacent membranes in the flat central
region are separated by a certain distance indicating that the stability of
the observed torocyte shape can not be explained by the standard bending
elasticity model.

The same substance, 7.e. the detergent CioEg, was shown to stabilize
transient pores in cell membrane that are created by electroporation [41]. By
using a simple geometrical model of the pore where the pore was described as
the inner part of the torus, and by minimizing the free energy of the inclusions
(Eq. (42)), the equilibrium configuration of the system was predicted at a
finite size of the pore - if the inclusions were anisotropic [42, 16].

The examples presented indicate that the model in which the membrane
is treated as a laterally isotropic two dimensional liquid should be upgraded
in order to describe the observed features. The deviatoric elasticity provides
an explanation for some of the observed features; however, further refinement
of the model such as inclusion of the role of the membrane skeleton [43, 44,
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Figure 15. Vesiculation of human erythrocytes at high pH with exogeneously added
dibucaine. The vesicles around the mother cell move synchronously with the mother
cell indicating that they are connected to the mother cell by thin tethers (from [29]).

45, 46, 35, 47, 48] should be taken into account in order to obtain a more
realistic description.

7. CONCLUSION

Considerable knowledge has been gathered on lipid bilayer membranes. The
interdependence between the membrane elastic properties, the conditions
in solution and the vesicle and cell shape has been thoroughly investigated
[49, 3, 39, 50, 43, 51, 35, 52, 53]. Theoretical approaches based on statistical
mechanical methods mostly describe the configuration of the hydrocarbon
tails [54, 28, 55], while the link between the detailed description of the tails
and the membrane shape has not been made. On the other hand, this link was
achieved in describing the effect of membrane inclusions [56] on the vesicle
shape [57, 14, 17, 15, 40]. Most of the work was devoted to globular shaped
vesicles and cells where the membrane could be considered as an almost flat
and laterally isotropic two-dimensional liquid [2].

Recently, the experiments have drawn attention to thin anisotropic struc-
tures attached to the globular part of the vesicle [30, 10, 32, 12]. Further, such
structures seem to be common also in cells [29] (Fig. 15). It was indicated
that these structures form an important auxiliary pool of the membraneous
material that hitherto remained obscure. We have found that the features
involving the auxiliary pool cannot be explained if the membrane is treated

169



as a two dimensional liquid. We propose a simple mechanism which consid-
ers that the membrane constituents are intrinsically anisotropic. While the
collective effect on almost flat regions yields the state of a laterally isotropic
two dimensional liquid, the anisotropic properties become expressed if the
membrane for some reason develops regions of highly different main curva-
tures. The proposed mechanism provides an explanation for the stability of
the phospholipid micro and nanotubes attached to the giant phospholipid
vesicle, for the stability of thin tethers connecting the mother cell and the
daughter vesicle in erythrocytes, for the stability of tubular daughter mi-
croexovesicles and torocytic daughter endovesicles of the erythrocyte mem-
brane and for the stability of detergent-induced pores in the cell membrane.
However, the auxiliary pool is yet to be explored.
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