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The mathematical models and the corresponding computer program for determination of the hip joint
contact force, the contact stress distribution, and the size of the weight bearing area from a standard
anteroposterior radiograph are described. The described method can be applied in clinical practice to
predict an optimal stress distribution after different operative interventions in the hip joint and to
analyze the short and long term outcome of the treatment of various pathological conditions in the hip.
A group of dysplastic hips and a group of normal hips were examined, with respect to the peak contact
stress normalized by the body weight, and with respect to the functional angle of the weight bearing
area. It is shown that both these parameters can be used in the assessment of hip dysplasia.
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INTRODUCTION

The hip joint is a multiaxial spheroidal joint where the

articulating bone surfaces are covered with articular

cartilage. A synovial membrane underlying the interior of

the joint capsule secretes lubricant called synovial fluid

[1]. Due to synovial fluid, the tangential stress in the hip

joint articular surface is negligible compared to the normal

stress [2]. In the following, the term hip joint contact stress

is used for the normal stress in the hip joint articular

surface.

It was indicated that an excessive hip joint contact stress

is an important factor accelerating degenerative processes

in the hip joint [3–5]. Also, it was found that the peak

stress in the hip joint is higher in women than in men [6].

As women have a higher incidence of arthrosis, these

results favor the hypothesis that elevated stress in the hip

joint (due to characteristic femoral and pelvic shape) can

be one of the reasons for greater incidence of arthrosis in

the female population [7].

In this work, we present a computer method for

estimation of peak contact stress and of the size of the

weight bearing area in human hip joint in one-legged

stance body position by using a standard anteroposterior

roentgenograph. The contact stress distribution in the hip

joint is determined in two steps. First, the hip joint

resultant force R is determined by solving the equilibrium

equations for forces and torques in the one-legged stance

where the individual variations in the femoral and pelvic

geometry are determined from standard anteroposterior

roentgenographs. Second, the magnitude and direction of

R are used as the input data into the model for

determination of stress distribution. For that, centre-edge

angle (qCE) and the radius of the femoral head (r ) should

also be known. Two specific examples of application of

the described computer program for determination of the

contact stress distribution and the size of the weight

bearing area in the human hip joint are presented: the peak

contact stress in different pelvic shapes is calculated and

the average peak contact stress and the average weight

bearing area are estimated for the group of normal hips

and for the group of dysplastic [8] hips.

DETERMINATION OF THE HIP JOINT

RESULTANT FORCE FROM THE STANDARD

ANTEROPOSTERIOR RADIOGRAPHS IN ONE-

LEGGED STANCE

Equations of Static Equilibrium of the Body in the
One-legged Stance

The origin of the Cartesian coordinate system is chosen in

the femoral head center of the loaded leg so that the x and z
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axes lie in the frontal plane while y axis points in the

posterior direction (Fig. 1). Due to simplicity, the body is

divided into two segments. The first segment is the loaded

leg and the second segment is the rest of the body. In the

one-legged stance (Fig. 1), the second segment bears the

partial body weight ðWB 2 WLÞ; where WB is the body

weight and WL the weight of the loaded leg. The force and

moment equilibrium equations for the second segment can

be written in the form [9]:

i

X
Fi 2 Rþ ðWB 2 WLÞ ¼ 0; ð1Þ

i

X
ðri £ FiÞ þ a £ ðWB 2 WLÞ ¼ 0; ð2Þ

where a ¼ ð0; 0; aÞ is the moment arm of the force ðWB 2

WLÞ; ri is the radius vector of the i-th muscle force (Fi)

application point drawn from the origin of the coordinate

system to the muscle origin point on the pelvis. The model

includes nine effective muscles, which are classified in

three groups according to their positions: anterior (a ),

middle (b ) and posterior (g ) (Table I). Each muscle is

considered to act along straight line connecting the point

of attachment on the pelvis (determined by the radius

vector ri) and the point of attachment on the femur

(determined by the radius vector r
0

i). The rotation of the

pelvis in the frontal plane around y-axis is described by the

angle w while the rotation of the femur around y-axis in the

frontal plane is described by the angle q (Fig. 1). For

q ¼ 0 and w ¼ 0; the reference three-dimensional

coordinates of the radius vectors ri ¼ ðxi; yi; ziÞ and r
0

i ¼

ðx
0

i; y
0

i; z
0

iÞ are taken from Dostal and Andrews [10]. In

general, the angles q and w are not zero (Fig. 1), therefore,

the reference coordinates of the muscle attachment should

be corrected using the corresponding rotation matrixes. In

this work, we take w ¼ 0 and q ¼ arcsinðb=xo) where

xo ¼ 42:3 cm [10] is the length of the femur and b is the z-

coordinate of the moment arm of the force WL (Fig. 1).

The force of each individual muscle included in the

model is written as [9]:

Fi ¼ siAiei; ð3Þ

where Ai is the relative cross-sectional area of the i-th

muscle (Table I) determined from the data of Johnston

et al. [11], si is the average tension in the i-th muscle and

ei ¼ ðeix; eiy; eizÞ is the unit vector in the direction of the

force of the i-th muscle ði ¼ 1; 2; . . .; 9Þ :

ei ¼
r
0

i 2 ri

jr
0

i 2 rij
: ð4Þ

FIGURE 1 The characteristic forces, moment arms and geometrical
parameters of the described model of the hip in one-legged stance body
position.

TABLE I The relative cross-sectional areas of the model muscles

Muscle i Group Ai

Gluteus medius-anterior 1 a 0.266
Gluteus minimus-anterior 2 a 0.113
Tensor fasciae latae 3 a 0.120
Rectus femoris 4 a 0.400
Gluteus medius-middle 5 b 0.266
Gluteus minimus-middle 6 b 0.113
Gluteus medius-posterior 7 g 0.266
Gluteus minimus-posterior 8 g 0.133
Piriformis 9 g 0.100
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The magnitude of the moment arm of the force ðWB 2

WLÞ is determined from the y-component of the moment

equilibrium equations for the first and the second body

segment:

2WBcþWLb 2 MY ¼ 0; ð5Þ

ðWB 2 WLÞaþMY ¼ 0; ð6Þ

where a is z-coordinate of the moment arm a ¼ ð0; 0; aÞ; c

is z-coordinate of the moment arm of the ground reaction

force 2 WB (Fig. 1) and MY is z-component of

intersegmental moment M ¼
i

P
ðri £ FiÞ: It follows

from Eqs. (5) and (6) [12]:

a ¼
WBc 2 WLb

WB 2 WL

: ð7Þ

The moment arms b and c are expressed by the interhip

distance l: b ¼ 0:24 l; c ¼ 0:5 l [12]. The weight of the

leg is approximated by the equation WL ¼ 0:16 WB [13].

The described mathematical model for the body in the

one-legged stance static position has six scalar equations

given by three components of the vector equilibrium

equations (Eqs. (1) and (2)), and 12 unknowns (three

components of the force R ¼ ðRX;RY ;RZÞ and nine

unknown muscle tensions si). The number of unknowns of

the model thus exceeds the number of model equations,

therefore the problem is indeterminate and in general an

infinite number of solutions satisfy the system of Eqs. (1)

and (2). The problem can be solved either by reducing the

number of the model unknowns (reduction method) or by

taking into account additional optimization criteria for the

muscles’ actions (optimization method).

Reduction Method

The aim of the reduction method [9] is to modify an

initially indeterminate problem to a determinate one by

reducing the number of unknowns. For this purpose, the

average tensions (si) in the particular muscle group are

assumed to be equal: s1 ¼ s2 ¼ s3 ¼ s4 ¼ sa; s5 ¼

s6 ¼ sb; s7 ¼ s8 ¼ s9 ; sg: The equilibrium equations

(Eqs. (1) and (2)) can be then solved and the unknown

quantities RX, RY, RZ, sa, sb and sg are obtained (Table

II). The calculated R turned out to be lying nearly in the

frontal plane of the body and its sagittal component did not

exceed 1% of the frontal component in one-legged stance

[9].

Optimization Method

Another procedure used to solve an initially indeterminate

problem (Eqs. (1) and (2)) is the optimization method

[11,14]. In this study, we select the nonlinear optimization

criteria of minimal possible magnitude of the hip joint

contact force [15], i.e. the criteria of the minimal possible

bone loading. Due to simplicity, we are searching for the

minimum of the square of magnitude of the hip joint

reaction force:

F ¼
X9

i¼1

siAieix þ ðWB 2 WLÞ

 !2

þ
X9

i¼1

siAieiy

 !2

þ
X9

i¼1

siAieiz

 !2

;

ð8Þ

subject to three constraints (Eq. (2)):

G1 ¼
X9

i¼1

ðYisiAieiz 2 zisiAieiyÞ ¼ 0 ð9Þ

G2 ¼
X9

i¼1

ðzisiAieix 2 xisiAieizÞ þ aðWB 2 WLÞ ¼ 0

ð10Þ

G3 ¼
X9

i¼1

ðxisiAieiy 2 yisiAieixÞ ¼ 0 ð11Þ

In order to solve the described optimization problem,

we used the constrained Fletcher–Powell algorithm [16]

where a modified objective function is defined as:

F ¼ F 2
X3

k¼1

lkGk þ B
X3

k¼1

G2
k ; ð12Þ

where lk and B are parameters. When the convergence is

achieved Gk ¼ 0 and F ¼ F: The values of si and R

determined by this optimization technique are given in

Table II. It can be seen in Table II that the calculated

values of si by using the reduction method and by using

the optimization technique are considerably different.

However, the predicted values of R=WB do not differ that

much. Since in this work, we are interested only in the hip

joint resultant force, in the following R is calculated using

the simple reduction method.

Determination of the Hip Joint Resultant Force for an
Individual Patient Using the Standard Anteroposterior

Radiograph

The calculated hip joint resultant force R should be scaled

by the individual variations in femoral and pelvic

TABLE II The predicted values of the average muscle tensions (si) and
the magnitude of the hip joint resultant force (R ) determined by the
optimization method (second column) and by the reduction method (third
column) and for l ¼ 16:9 cm and WB ¼ 800 N:

Optimization Reduction
Muscle (i ) si (N/cm2) si (N/cm2)

1 111.9 36.2
2 39.8 36.2
3 34.5 36.2
4 48.1 36.1
5 102.7 191.0
6 37.6 191.0
7 78.4 14.6
8 28.9 14.6
9 15.0 14.6
R/WB 2.370 2.383
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geometry [6,17,18]. For this reason, the reference values

of the model muscle attachment points [10] and the

interhip distance l are rescaled in order to adjust the

configuration of the hip and pelvis for the individual

person. Thereby, the following values of the hip and pelvic

geometrical parameters from the standard anteroposterior

roentgenograph of a given patient are measured (Fig. 2):

the interhip distance (l), the pelvic height (H ), the pelvic

width (C ), the vertical and the horizontal distance from

the center of the femoral head to the effective muscle

attachment point (T ) on the greater trochanter (z and x,

respectively). The point T is determined by the

intersection of the contour of the greater trochanter and

the normal through the midpoint of the straight line

connecting the most lateral point (point 1) and the highest

point (point 2) on the greater trochanter [17,18]. The

above-described geometrical parameters are used to scale

the respective reference values of the attachment points of

the muscles included in the model (Table I) and the

interhip distance for an individual person. The reference

values of H, C, l, z and x are adopted from Dostal and

Andrews [10] and Kersnič et al. [7]. While taking the

roentgenograph, both femurs should be in the zero joint

configuration where the straight line connecting the

femoral head center and the midpoint between the lateral

and medial epicondyle is perpendicular to the straight line

through both femoral head centers [10]. The abduction or

adduction of the legs from this reference configuration

would affect the accuracy of the correct values of the

coordinates of the point T, i.e. z and x.

DETERMINATION OF THE CONTACT STRESS

DISTRIBUTION AND THE FUNCTIONAL ANGLE
OF THE WEIGHT BEARING AREA OF THE HIP

JOINT

As it is mentioned above, the input parameters of the

mathematical model for calculation of the hip stress

distribution and for calculation of the size of the weight

bearing area in the hip joint are the magnitude of the

resultant hip force R, the direction of R represented by its

inclination with respect to the sagittal plane (qR), the

center edge angle qCE and the radius of the femoral head r

(Fig. 2). The hip joint resultant force R is considered to be

lying in the frontal plane.

Within the model of stress distribution used in this work

[19], it is assumed that when unloaded, the acetabular

shell and the femoral head have spherical shape with

coincident centers. Upon loading, the intermittent

cartilage layer is squeezed. The contact hip stress at any

point of the weight-bearing area ( p ) is proposed to be

proportional to strain in the cartilage layer. The point of

closest approach of the spherical surfaces of the

acetabulum and the femoral head is called the stress

pole with the spherical coordinates Q and F [19]. The

polar angle Q determines the angular displacement of the

pole from the vertical axis, while the azimuthal angle F

describes the angular displacement of the pole in the

horizontal plane from the frontal plane in the counter-

clockwise direction. The above assumptions lead to the

cosine dependency of the contact stress distribution in the

hip joint [19,20]:

p ¼ po cos g; ð13Þ

where po is the value of stress in the pole and g is the angle

between a given point and the stress pole. The lateral

border of the weight-bearing area is determined by the

acetabular geometry, while the medial border is defined as

the curve where stress vanishes, i.e. where cos g ¼ 0:
With known magnitude and direction of R, the distribution

of the contact stress in the hip joint can be computed from

the equation ð
S

pdS ¼ R; ð14Þ

where we integrate over the weight-bearing area. The

solution of the system of Eqs. (13) and (14) [19] yields (for

the case when R lies in the frontal plane and when pole lies

on the lateral side of the acetabular contact hemisphere or

outside the acetabular contact hemisphere in the lateral

direction) the spherical coordinate of the stress pole (Q )

and the value of stress at the pole ( po):

tanðqR þQÞ ¼
cos2ðqCE 2 QÞ

p
2
þ qCE 2 Qþ sinðqCE 2 QÞcosðqCE 2 QÞ

ð15Þ

po ¼
3 R cosðqCE þQÞ

2r 2 p
2
þ qCE 2 Qþ sinðqCE 2 QÞcosðqCE 2 QÞ

ÿ � :
ð16Þ

FIGURE 2 The geometrical parameters of the hip and pelvis needed for
determination of the hip joint resultant force and contact stress
distribution in the hip joint. The stress distribution and the resultant hip
joint force R are also shown schematically. Symbol qR denotes the
inclination of R with respect to the vertical.
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Since R is limited to the frontal plane, the pole of stress

distribution also lies in the frontal plane and is therefore

determined only by one spherical coordinate, i.e. by the

angle Q (Fig. 3). The value of Q (Fig. 3) is determined

numerically from Eq. (15) using the Newton iteration

method. If the pole of stress distribution is located within

the weight bearing area, the location of the peak contact

stress ( pmax) coincides with the location of the pole

ðpmax ¼ poÞ: When the stress pole lies outside the weight

bearing area, the peak contact stress is located at the point

on the weight bearing surface, which is closest to the pole

[19].

In the following, we introduce also the functional angle

of the weight bearing area qF:

qF ¼ p=2þ qCE 2 Q; ð17Þ

which is equal to the size of the weight bearing area

divided by 2r 2 (Fig. 3).

RESULTS AND CONCLUSIONS

In order to illustrate the ability of the presented

mathematical models and the corresponding computer

program HIPSTRESS (written in TURBO PASCAL and

in VISUAL BASIC), to simulate the effect of the femoral

and pelvic shape on the contact stress distribution in the

hip joint, Fig. 4 shows the dependence of the magnitude

(R ) and the direction (qR) of the hip joint contact force

and of the peak stress in the hip joint ( pmax) on the

variation of the interhip distance (dl). It can be seen in

Fig. 4 that the peak stress in the human hip joint articular

surface pmax has a minimal value for the pelvis with a

small interhip distance and a maximal value for the pelvis

with a large interhip distance. It can be also seen in Fig. 4

that the change of the interhip distance (dl) considerably

influences the magnitude of the resultant hip joint force

(R ), however, it has nearly no effect on the angle of the

inclination of this force with respect to the sagittal plane of

the body (qR). This is reflected also in the peak stress in

the articular surface of the hip joint ( pmax) which increases

proportionally to R. Namely, pmax is for constant qR

directly proportional to R (see Eqs. (13) and (16)). The

reason that qR remains nearly constant upon the change of

the interhip distance l is that the relative position of the

hip abductor muscle origin and the insertions points

remain unchanged upon the variation of the interhip

distance l, as they are located on the lateral side of the

pelvis and on the femur. On the basis of the results

presented in Fig. 4, we would like to emphasize that the

pelvic shape with a large interhip distance is most

probably unfavorable regarding the degenerative changes

in the hip joint because of the increased stress in the

articular surface of the joint.

In the following, the peak stress in the hip joint ( pmax) is

estimated from the standard anteroposterior roentgen-

ographs for a group of normal hips and for a group of

dysplastic hips. Dysplasia of the hip refers to mechanical

deformations and deviations in the size and shape or

mutual proportions between the upper part of the femur

and the acetabulum [8]. The dysplastic hip can be

diagnosed according to anatomical changes in the hip that

are visible in the radiograph, as for example the presence

of osteophytes or according to the shape and density of the

trabecular net in the femur [8,21,22]. The main radio-

graphic parameter that is used for assessment of the hip

dysplasia is the centre-edge angle qCE [21,22]. The size of

qCE gives the numerical value of the lateral coverage of

the femoral head (Fig. 2). The range from 20 to 258 is

considered to be a lower limit for normal hips, while a

value below 208 is pathognomonic for hip dysplasia [22].

However, it was suggested that beside qCE, the radius of

FIGURE 3 Schematic representation of the functional angle of the
weight bearing area qF and the spherical coordinate of the pole Q.

FIGURE 4 The magnitude of the resultant hip joint force (R ), the angle
of the inclination of the hip joint resultant force with respect to the
sagittal plane of the body (qR) and the peak stress in the articular surface
of the human hip joint ( pmax) as functions of the change of the reference
interhip distance (dl). Parameters used in calculations are: r ¼ 2:5 cm;
qCE ¼ 298 and body weight WB ¼ 800 N:
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the femoral head should also be taken into account in

assessment of hip dysplasia [22]. It was shown that in the

normal hips qCE correlates with the femoral head radius.

Hips with large heads were found to have smaller qCE

[22]. The radiographic parameters used in assessment of

hip dysplasia were actually introduced to estimate the

physical quantities such as hip joint contact stress

distribution and size of the weight bearing area [21].

The direct estimation of physical quantities such as the

peak contact stress in the hip joint pmax and the functional

angle qF, could be important in assessment of hip

dysplasia.

In this work, a group of dysplastic hips and a group of

normal hips were examined with respect to the normalized

peak contact stress pmax=WB and with respect to the

functional angle of the weight bearing area qF. The

correlation between the parameters pmax=WB (and qF) and

the centre-edge angle qCE was studied. The standard

anteroposterior radiographs of dysplastic and normal hips

were taken from the medical records of the Department of

Orthopaedic Surgery and Department of Traumatology,

University Medical Centre, Ljubljana. The group of

dysplastic hips consists of 20 subjects with unilateral

dysplasia and 18 subjects with bilateral dysplasia. In total,

we have 56 dysplastic hips. In this group, 9 hips belong to

males and 47 belong to females, 32 hips are right and 24

are left. The normal hips belong to 146 persons who were

subject to the X-ray examination of the pelvic region for

reasons other than degenerative diseases of the hip joint.

The radiographs showed no signs of the hip pathology.

The contours of the bony structures in each anteroposter-

ior radiograph were put into digital form and then

measurements of the geometrical parameters (Fig. 2) were

performed. The geometrical parameters needed for

determination of the resultant hip force (Fig. 2) are the

interhip distance (l), the pelvic height (H ), the pelvic

width (C ) and the coordinates of the effective muscle

attachment point on the greater trochanter (T ). Digitiz-

ation of the contours from the radiographs and

determination of the geometrical parameters were

performed by using a computer program HIJOMO as

described in detail elsewhere [6,18]. The same program

HIJOMO was also used to determine the centre-edge

angle qCE and the femoral head radius r needed for

calculation of the parameter pmax=WB and the functional

angle qF.

The correlation between the centre-edge angle qCE and

the normalized peak contact stress pmax=WB is shown in

Fig. 5. The shape of the numerically obtained fitting curve

is consistent with the above-described mathematical

model of the contact stress distribution in the hip joint.

Low qCE correlates with high pmax=WB and vice versa.

Scattering of the data in Fig. 5 shows that in determining

the peak contact stress, the geometrical parameters other

than qCE angle are also important. For example, in two

hips with approximately the same qCE (68) the normalized

peak stress was shown to differ by about 4000 m22. The

influence of the geometrical parameters other than qCE on

the value of pmax=WB is larger for smaller qCE angles.

Figure 6 shows the correlation between the center-edge

angle qCE and the functional angle of the weight bearing

qF. In Fig. 6, we can see a positive correlation between qF

and qCE; high values of qCE correlate with high values of

qF. The influence of the geometrical parameters other than

qCE on the functional angle qF (reflected in the scattering)

is low.

To characterize the role of the parameters pmax=WB and

qF in the assessment of hip dysplasia, statistical

significance of the differences in the parameters

pmax=WB and qF between the normal and dysplastic hips

FIGURE 5 The correlation between the normalized peak contact stress pmax=WB and the centre-edge angle qCE. The values for the normal hips are
denoted by the symbol S and the values for the dysplastic hips are denoted by the symbol K.
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was calculated by the two-tailed pooled t-test [23]. The

average values of the sets of the data of the particular

biomechanical parameter and the results of the t-test are

given in Table III. The null hypothesis [8] assuming equal

average values of pmax=WB and qF in normal and

dysplastic hips is rejected at the level lower than 0.001. It

can be therefore concluded that parameters pmax=WB and

qF are appropriate biomechanical parameters for the

assessment of hip dysplasia.

The normalized peak contact stress pmax=WB and the

size of the weight bearing area (which is proportional to

qF) have been estimated from the anteroposterior

radiographs already before [20,22]. However, in these

studies the hip joint contact force was determined by using

the simple mathematical models, which consider only a

single effective muscle group (the hip abductors) and very

few direct musculoskeletal anatomical data. Conse-

quently, the variation of the model parameters by means

of the variation of the geometrical parameters of the

femoral and pelvic shape is strongly limited [24]. More

accurate estimation of the hip joint contact force requires

three-dimensional muscle model [11,24]. In this work, the

hip joint contact force is calculated by using a three-

dimensional mathematical model that includes nine

effective muscles (Table I). The coordinates of the muscle

pelvic and femoral attachment points are taken from

Dostal and Andrews [10].

In conclusion, we describe a method for determination

of the hip joint contact force, the peak contact stress and

the functional angle of the weight bearing area from the

standard anteroposterior radiographs by using the

mathematical model. A population study indicated that

by applying the described method the average value of the

normalized peak contact stress pmax=WB and the average

value of the functional angle of the weight bearing qF are

in dysplastic hips twice as large as the respective

quantities in normal hips. It was also indicated that the

pelvic shape with a large interhip distance is most

probably unfavorable regarding the degenerative changes

in the hip joint because of the increased stress in the

articular surface of the joint.
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gathering the radiographs from the archives and

determining the profiles of the hip and pelvis. Equations

(13) and (14) are cited from the paper Ipavec et al. [19]

where the typographical error in Eqs. (5) and (6) appeared

(the symbol ^ should be replaced by 7). The computer

program HIPSTRESS for calculation of the hip joint

contact force, contact stress distribution and functional

angle of the weight bearing area can be obtained from the

authors by e-mail free of charge.

References

[1] Mow, V.C., Proctor, C.S. and Kelly, M.A. (1989) “Biomechanics of
articular cartilage”, In: Nordin, M. and Frankel, V., eds, Basic
Biomechanics of the Musculoskeletal System (Lea and Febiger,
London), pp 31–58.

FIGURE 6 The correlation between the functional angle of the weight bearing qF and the centre-edge angle qCE. The values for the normal hips are
denoted by the symbol S and the values for the dysplastic hips are denoted by the symbol K.

TABLE III The average values of pmax=WB and qF in the normal and
dysplastic hips

Parameter Normal Dysplastic Difference (P )

pmax/WB (m22) 2692 5274 ,0.001
qF (degree) 117 66.8 ,0.001

COMPUTER DETERMINATION OF HIP STRESS 191



[2] Legal, H., Reinecke, M. and Ruder, H. (1980) “Zur biostatischen
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(1997) “Incresed incidence of arthrosis in women could be related
to femoral and pelvic shape”, Archives of Orthopaedics and Trauma
Surgery 116, 345–347.

[8] Durnim, C.W., Ganz, R. and Klaise, K. (1991) “The acetabular rim
syndrome—a clinical presentation of dysplasia of the hip”, Journal
of Bone and Joint Surgery 73B, 423–429.

[9] Iglič, A., Srakar, F. and Antolič, V. (1993) “Influence of the pelvic
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Tönnis, D., ed, Congenital Dysplasia and Dyslocation of the Hip

(Springer, Berlin), pp 26–57.

[23] Duncan, R.B., Knapp, R.B. and Miller, M.C. (1977) Introductory

Biostatistics for the Health Sciences (Wiley, New York), pp

21–119.

[24] Brand, R.A. and Pedersen, D.R. (1984) “Computer modeling of

surgery and a consideration of the mechanical effects of proximal

femoral osteotomies”. In Proc. 12th Open Scientific Meeting of the

Hip Society (ed. R.B. Welch), Mosby, St. Louis, pp. 193–210.

A. IGLIČ et al.192




