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bInstitute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
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Abstract

A simple statistical mechanical approach is applied to calculate the profile of the density of the number of particles and the profile of the

electrostatic potential of an electric double layer formed by a charged cylindrical surface in contact with electrolyte solution. The finite size of

particles constituting the electrolyte solution is considered by including the excluded volume effect within the lattice statistics while the

electrostatic interactions are considered by means of the mean electrostatic field. It is shown that the excluded volume effect decreases the

density of the number of counterions and increases the electrostatic potential near the charged cylindrical surface. The effect is more

pronounced for high area densities of charge of the charged surface and for larger counterions. Further, it is shown that the ratio between the

density of the number of the counterions near the charged cylindrical surface and the density of the number of counterions far from the

charged surface reaches a plateau at large linear charge densities for ions of finite size, while no plateau is reached for dimensionless ions.

The effective thickness of the electric double layer in cylindrical geometry is introduced. It is shown that the effective thickness increases

with increasing counterion size while its dependence on the area density of charge of the charged surface exhibits a minimum. The theoretical

approach presented in this work can be used for description of the electrostatics of the thin cylindrical structures in biological systems such as

DNA, protein macromolecules and charged micro and nano tubes. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The distribution of the ions in the electrolyte solution in

the vicinity of a charged object is mainly determined by the

competition between the interactions within the system and

the entropy of the particles that constitute the solution. As a

result, in thermodynamic equilibrium the counterions are

accumulated close to the charged object and the coions are

depleted from this region. A diffuse electric double layer is

created [1–3]. A well known example of the planar electric

double layer is a planar layer of phospholipid molecules

with charged headgroups in contact with the electrolyte

solution [3]. A spherical electric double layer may be

formed around a colloidal particle [4], while the cylindrical

electric double layer may be formed around a charged

polymer molecule (polyelectrolyte) [5–8]. The structure of

the counterion–coion atmosphere around the charged poly-

mer molecule importantly influences its internal electrostatic

stability. For example, in the case of deoxyribonucleic acid

(DNA) molecules, the conformational changes resulting

from the interaction between the DNA molecule and ions

in the surrounding electrolyte solution depend on the dis-

tribution of the counterion–coion charges around the phos-

phate groups, in the helical grooves, and around the base

pairs. These interactions affect also the flexibility and

curvature properties of the DNA molecules. The cylindrical

electric double layer may be also created in the system

composed of charged cylindrical parts of the cell membrane

or in the cylindrically shaped phospholipid bilayer struc-

tures, which are in contact with the electrolyte solution. It

was recently suggested that the electrostatic interactions

may significantly influence the bending properties of such

structures under physiological conditions [9].

Since the first description of the flat electric double layer

by Gouy [1] and Chapman [2] the description of the electric

double layer has been extended also to the cylindrical

geometry. The Poisson–Boltzmann (PB) differential equa-

tion for the mean electrostatic potential around the charged

cylindrical surface was solved [4]. The concept of the con-

densation of the counterions near the charged surface was

introduced in cylindrical geometry by Imai and Oosawa
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[5,6]. The counterion condensation was later thoroughly stu-

died by Manning [7,10]. The counterion distribution around

the charged cylindrical surface was treated in terms of the

linear charge density parameter n = lB/b, where lB = e0
2/

4pee0kT is the Bjerrum length, b is the cylinder length

containing one unit of charge, e0 is the elementary charge,

e is the permittivity of the solution, e0 is the permittivity of

the free space, k is the Boltzmann constant and T is the

temperature. Manning [10] found that in the case of highly

charged polyelectrolytes (n > 1/zi), the fraction [1�1/(zin)]
of the charge on the charged cylindrical surface is completely

neutralized by the counterions of the valency zi that condense

onto the charged cylindrical surface. It was shown for

polyelectrolyte solutions [11] that in the limit of infinite

dilution the solution of the Poisson–Boltzmann (PB) equa-

tion leads to the Manning condensation. Stigter [12] com-

pared the Manning condensation with the PB theory using

the free energy test. He showed that the PB theory gives the

lowest free energy and hence the most stable ion distribution.

The description of the electric double layer by the PB

theory has been improved by considering the molecular

Hamiltonian models that take into account direct interactions

between the charges in the system and solvent structure and

interactions. Approximate theories have been developed,

such as the modified Poisson–Boltzmann (MPB) theory

[13–16], generic density functional theories [17] and inte-

gral equation theories [18–20]. Theoretical results have been

compared with the results of the Monte-Carlo simulations

[14–16,21]. The description of the planar electric double

layer within the PB theory has been upgraded by considering

the effect of the finite size of the ions [22–24] and used for

description of various systems [25–28]. The importance of

the steric effects was supported by the results of the experi-

ments involving large trivalent tungstic ions [29].

In this work we used the PB theory that was upgraded by

considering the effect of finite size of ions [23] for the

description of the cylindrical electric double layer. We

improved the derivation of the consistently related expres-

sions for the equilibrium free energy of the system, the ion

and solvent distribution functions and the differential equa-

tion for the electric potential [23] by using the method of

undetermined multipliers within the canonical statistics. The

effective thickness of the electric double layer in the

cylindrical geometry is introduced. The influence of the

size of the counterions is studied.

2. Theory

2.1. Minimization of the free energy

We imagine a charged cylindrical surface of the radius r0,

length l and line charge density k. The line charge density

can be connected to the surface charge density of the

charged cylindrical surface r by the equation r = k/2pr0.
The length l of the charged cylindrical surface is assumed to

be much larger than r0. The charged surface is coaxially

enclosed in a cylindrical cell of the radius R, which is filled

with the electrolyte solution composed of solvent molecules

and M species of ions. At the distance R from the center of

the charged cylindrical surface the effect of this surface is

negligible. The system is described by the mean electrostatic

field while the finite size of the particles in the solution is

considered by means of the excluded volume effect.

The volume of the whole system is the sum of the

volumes occupied by the ions and the solvent molecules.

Within this description each particle in the solution occupies

one and only one site of a finite volume. A lattice with an

adjustable lattice constant a is introduced (Fig. 1), all sites of

this lattice being occupied. The density of the number of the

lattice sites in the system ns can be expressed as ns = 1/Vs,

where Vs is the volume of a three-dimensional lattice site.

The lattice sites may have different forms (Fig. 1), however,

we take that they have equal volumes Vs. The corresponding

lattice constant is a =Vs
1/3, so that

ns ¼
1

a3
: ð1Þ

Further, it is taken that the particles may approach the

charged surface only to the distance a/2. Hence, the density

of the number of the particles is defined in the interval

[r0 + a/2, R], while the electric field strength is defined in the

interval [r0, R]. However, in the interval [r0, r0 + a/2], the

electric field strength attains a constant value.

In deriving the expression for the free energy of the

system F subject to the local thermodynamic equilibrium,

the methods of statistical mechanics are used (Appendix A).

The free energy of the system F is obtained by starting from

the energies of the individual particles and treating the

particles as independent and indistinguishable (Eq. (A.10))

F ¼ W el þ kT

Z R

r0þa=2

XM
j¼0

njðrÞln
njðrÞ
nsq

0
j

 !
2prldr, ð2Þ

where

W el ¼ 1

2
��0E

2
0ðpðr0 þ a=2Þ2 � pr20Þl

þ 1

2
��0

Z R

r0þa=2

E2ðrÞ2prldr, ð3Þ

is the energy of the electrostatic field, E(r) is the electric

field strength, E0 is the electric field strength near the

cylindrical charged surface and nj is the density of the

number of particles of the j-th species. The index j = 0

denotes the solvent molecules while j= 1, 2,. . ., M denotes

ions of the j-th species. Further, qj
0 is the partition function

of the particle of the j-th species subject to no electrostatic

variable. The integrations are performed over the extension

of the system in the radial direction (r), 2prldr being the

volume element. Because of the cylindrical geometry there
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is a nonzero contribution to the electrostatic field only in the

radial direction.

The particle distribution functions nj, j= 0, 1,. . ., M and

the electric field strength are in general not known. In the

following, the explicit expressions for the functions nj(x),

j = 0, 1,. . ., M and E(r) are obtained by using the condition

for the free energy to be at its minimum in the thermody-

namic equilibrium of the whole system. The free energy can

be expressed by means of a function L, which depends on the

electric field strength E(r) and on the densities of all species

of the particles (represented by nj(r) = (n0, n1,. . ., nM)),

F ¼
Z R

r0þa=2

LðEðrÞ,n jðrÞÞ2prldr

þ 1

2
��0E

2
0ðpðr0 þ a=2Þ2 � pr20Þl, ð4Þ

where

LðEðrÞ,njðrÞÞ ¼
1

2
��0E

2ðrÞ

þ kT
XM
j¼0

njðrÞln
njðrÞ
nsq

0
j

 !
: ð5Þ

We simulated the size of the counterions by the choice of

the lattice constant a, which enters the above functional

through Eq. (1).

The condition for the global equilibrium

dF ¼ 0, ð6Þ

is subject to a global constraint requiring that

� the total number of the particles of each species is

constant

Z R

r0þa=2

ðnjðrÞ � KjÞ2prldr ¼ 0,

j ¼ 0,1,2, . . . ,M ,
ð7Þ

where Kj is a constant, and two local constraints

requiring
� the validity of the Gauss law at any r

��0
1

r

@ðrEðrÞÞ
@r

� e0
XM
j¼1

vjnjðrÞ ¼ 0, ð8Þ

Fig. 1. Schematic presentation of the electric double layer for a positively charged cylindrical surface. The anions are accumulated near the charged cylindrical

surface while the cations are depleted from this region. The electrolyte solution is presented within the lattice model.
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� and that all of the lattice sites are occupied

ns �
XM
j¼0

njðrÞ ¼ 0: ð9Þ

The valency of the ion of the j-th species is denoted by vj,

j = 1, 2,. . ., M.

To find the extremum of functional (4) by taking into

account constraints (7)–(9), the method of undetermined

multipliers is used. The function L*(r) is constructed,

L* EðrÞ,njðrÞ,
@EðrÞ
@r

,g1ðrÞ,g2ðrÞ
� �

¼ LðEðrÞ,njðrÞÞ þ
XM
j¼0

kjðnjðrÞ � KjÞ

� g1ðrÞ ��0
1

r

@ðrEðrÞÞ
@r

� e0
XM
j¼1

vjnjðrÞ
 !

þ g2ðrÞ ns �
XM
j¼0

njðrÞ
 !

, ð10Þ

and examined for the extrema. Here, kj, j= 0, 1,. . ., M are

the global Lagrange multipliers, while g1(r) and g2(r) are the
local Lagrange multipliers. The variation is performed by

solving a system of Euler equations

@L*

@E
� d

dr

@L*

@ @E
@r

� �
 !

¼ 0, ð11Þ

@L*

@nj
¼ 0, j ¼ 0,1,2, . . . ,M : ð12Þ

Far away from the charged cylindrical surface (at the

distance R from the center of the charged cylindrical sur-

face), the electrostatic field vanishes

dU
dr

				
R

¼ 0, ð13Þ

which means that the electrostatic potential U(R) is constant.

We chose

UðRÞ ¼ 0: ð14Þ

Eqs. (11) and (12) and conditions (13) and (14) give after

some calculation the particle distribution functions

njðrÞ ¼
nsðnjR=n0RÞexpð�vje0UðrÞ=kTÞ

1þ
XM
i¼1

ðniR=n0RÞexpð�vie0UðrÞ=kTÞ

j ¼ 0,1,2, . . . ,M ð15Þ

and the differential equation for U(r)

d2UðrÞ
dr2

þ 1

r

dUðrÞ
dr

¼
�e0ns

XM
i¼1

viðniR=n0RÞexpð�vie0UðrÞ=kTÞ
 !

��0 1þ
XM
i¼1

ðniR=n0RÞexpð�vie0UðrÞ=kTÞ
 ! , ð16Þ

where njR is the density of the number of particles of the j-th

species at r =R. The local Lagrange multipliers are

g1ðrÞ ¼ UðrÞ, ð17Þ

g2ðrÞ ¼ kT ln
nj

nsq
0
j

þ 1þ kj
kT

 !
þ e0vjUðrÞ: ð18Þ

The local Lagrange multiplier g1(r) is the electrostatic

potential (Eq. (17)).

In order to obtain the explicit dependencies of nj, j = 0,

1,. . ., M and U on the distance r, the differential Eq. (16) is

solved numerically. The condition

dUðrÞ
dr

jr0þa=2¼ � 2kTn
r0e0

, ð19Þ

where n = rr0e0/2��0kT and condition (14) are taken into

account.

2.2. A case of the univalent electrolyte

The solution under consideration consists of the solvent

molecules, univalent counterions and univalent coions. Far

from the charged cylindrical surface the density of the

number of counterions and the density of the number of

coions are equal and are denoted by nR, while the density of

the number of the solvent molecules is denoted by n0R.

We take positively charged cylindrical surface (r > 0).

The valency of counterions is vct =� 1, while the valency of

coions is vco = 1. The mean electrostatic potential is obtained

by solving the differential equation that follows from

expression (16)

d2UðrÞ
dr2

þ 1

r

dUðrÞ
dr

¼ 2e0nsnR

��0n0R

sinhðe0UðrÞ=kTÞ
1þ 2nR

n0R
coshðe0UðrÞ=kTÞ


 � , ð20Þ

subject to the boundary conditions (14) and (19).
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According to Eq. (15), the respective densities of the

number of counterions and coions are

nct ¼
nsnRexpðe0UðrÞ=kTÞ

n0R 1þ 2nR
n0R

coshðe0UðrÞ=kTÞ

 � , ð21Þ

nco ¼
nsnRexpð�e0UðrÞ=kTÞ

n0R 1þ 2nR
n0R

coshðe0UðrÞ=kTÞ

 � : ð22Þ

To study the counterion distribution, we solved Eq. (20)

and determined the distribution function given by Eq. (21).

The solution of Eq. (20) is obtained numerically by using

the fourth order Runge–Kutta method starting at r =R.

Fig. 2A shows the densities of the number of the

counterions and the coions, nct and nco, respectively, in

dependence on the radial distance (r) while Fig. 2B shows

the electrostatic potential e0U/kT in dependence on r. The

results obtained by considering a finite lattice constant a and

the results of the PB theory are given. In the vicinity of the

charged cylindrical surface the density of the number of

counterions is affected by the lattice constant, while far from

the charged cylindrical surface the density of the counter-

ions is insensitive to the lattice constant. We consider a

symmetric univalent electrolyte mct =� 1 and mco = 1. In the

limit of vanishing a the density of the number of counterions

nct calculated within the presented model including steric

effects converges towards the corresponding density of the

number of counterions obtained by the PB theory. For large

values of a the density of the number of counterions near the

charged cylindrical surface reaches a plateau (not shown).

The plateau is not so pronounced as in the case of planar

electric double layer.

Fig. 3A presents the calculated ratio between the density

of the number of the counterions at a distance of the closest

approach to the charged cylindrical surface (n0 = nct(r0 + a/

2)) and the density of the number of counterions far from the

charged surface nR, in dependence on the linear charge

density parameter n. The corresponding results calculated by

using the PB theory are also shown, where it is taken that

n0 = nct(r0). The discrepancy between the results obtained by

considering a finite lattice constant a and the results of the

PB theory increases with increasing parameter n. At high
values of the parameter n the ratio n0/nR obtained by

considering a finite lattice constant approaches the ratio

between the density of the number of lattice sites and the

density of the number of counterions far from the charged

surface (ns/n0). The corresponding ratio n0/nR in PB theory

increases without limit with increasing parameter n. Fig. 3B
presents the electrostatic potential at a distance of the closest

Fig. 2. (A) The density of the number of the counterions (nct) and the

density of the number of coions (nco) (full lines) and (B) the electrostatic

potential e0U/kT (full line) in dependence on the radial coordinate (r). The

results of the PB theory (broken lines) are also shown. The model

parameters are a= 0.8 nm, �= 78.5, T= 310 K, nR = 0.1 mol/l, r0 = 1 nm and

n= 2.7.

Fig. 3. (A) The ratio between the density of the number of counterions at a

distance of the closest approach to the charged cylindrical surface and the

bulk density of the number of counterions n0/nR (full line) and (B) the

electrostatic potential at a distance of the closest approach to the charged

cylindrical surface e0U0/kT (full line) as a function of the linear charge

density parameter n of the charged cylindrical surface. The broken lines

represent the respective results of the PB theory. The model parameters are

a= 1 nm, �= 78.5, T= 310 K, nR = 0.1 mol/l and r0 = 1 nm.
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approach to the charged cylindrical surface (U0 =U(r0 + a/2)

in dependence on the linear charge density parameter n. The
corresponding results calculated by using the PB theory are

also shown where it is taken that U0 =U(r0). At small values

of the parameter n the electrostatic potential near the

charged cylindrical surface for finite lattice constant coin-

cides with the corresponding results of the PB theory, while

the discrepancy between the two curves increases with

increasing parameter n, the value of U0 being larger for

finite lattice constant.

The ratio n0/rR and the electrostatic potential U0 are

compared to the respective limit cases where r0 is very

large, representing the planar electric double layer (Fig.

4A,B). For the limit case, we solved the differential equation

for the electric potential in the flat geometry [30]. The

results are calibrated to the same surface charge density r.
Fig. 4A shows the calculated ratio n0/rR while Fig. 4B

shows the electrostatic potential U0 as a function of the

parameter r0. With increasing r0, the results of the cylin-

drical geometry converge to the respective results of the

planar geometry.

The screening of the electrostatic field by the counterions

that accumulate close to the charged cylindrical surface can

be represented by the effective thickness of the electric

double layer [30]. In cylindrical geometry the effective

thickness of the electric double layer is defined as

nctðr0 þ r1=2Þ � nR ¼ 1

2
ðnctðr0 þ a=2Þ � nRÞ: ð23Þ

Eq. (23) assumes that at the distance r1/2 from the

charged cylindrical surface, the density of the number of

the counterions (calculated relative to its value far from the

charged cylindrical surface) drops to half of its value at the

closest approach to the charged cylindrical surface. Fig. 5

shows the parameter r1/2 in dependence on the dimension-

less linear charge density parameter n. Two choices of the

lattice constant a are considered. It can be seen in Fig. 5 that

the effective thickness of the electric double layer contain-

ing counterions of a finite size first decreases, then reaches a

minimum and then increases as a function of increasing

parameter n. The corresponding results of the PB theory

show a monotonous decrease of r1/2 with increasing n.

3. Discussion and conclusion

Starting with the energies of individual particles, we

obtained expressions for the equilibrium particle distribution

functions and the differential equation for the electrostatic

potential in cylindrical geometry. We considered the finite

size of particles by including the excluded volume effect.

Close to the charged cylindrical surface, the density of

the number of counterions is very high (Fig. 2A) while the

Fig. 4. (A) The ratio between the density of the number of counterions at a

distance of the closest approach to the charged cylindrical surface and the

bulk density of the number of counterions (n0/nR) (full line) and (B) the

electrostatic potential at a distance of the closest approach of the charged

cylindrical surface e0U0/kT (full line) as a function of the radius of the

charged cylindrical surface r0. For comparison, the respective results for the

planar geometry are given (broken lines). The model parameters are a= 1

nm, r = 0.4 As/m2, �= 78.5 and T= 310 K.

Fig. 5. The effective thickness of the electric double layer represented in

cylindrical geometry by the parameter r1/2 in dependence of the linear

charge density parameter n for two different lattice constants a. The result

of the PB theory is also shown. The model parameters are �= 78.5, T= 310

K, nR = 0.1 mol/l and r0 = 1 nm.
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corresponding density of the number of coions attains the

values which are at least two orders of magnitude smaller.

Therefore, in this region, the contribution of the counterions

to the excluded volume effect is considerable while the

contribution of the coions to the excluded volume effect is

negligible. The calculated density of the number of counter-

ions near the charged surface obtained by using the PB theory

is higher than the corresponding value calculated by taking

into account the excluded volume effect (Fig. 3A). The

differences between the respective ion densities and the

differences between the respective electrostatic potentials

can be attributed to the steric effect of counterions and solvent

molecules in a small region in the vicinity of the charged

cylindrical surface (Fig. 3A,B). However, in the cylindrical

electric double layer this effect is less pronounced than in the

planar electric double layer [30] since the decrease of the

electric field strength with increasing r is stronger in cylin-

drical geometry. In the cylindrical geometry the electric field

strength decreases in the free space as 1/r while the corre-

sponding electric field in the planar geometry is constant.

There is a difference in the qualitative behaviour of the

dependence of the ratio (n0/nR) on the parameter n when

calculated by using the PB theory and by considering the

finite size of ions (a nonzero lattice constant). For a > 0, the

dependence of the n0/nR on n reaches a plateau for large

values of the parameter n (Fig. 3A). In contrast, the

corresponding result of the PB theory shows a monotonous

increase of the ratio (n0/nR) with increasing n. A similar

effect of the finite size of ions was obtained in the planar

geometry [31]. Recently, these results were supported by the

experimental data [29].

The ratio n0/nR in the cylindrical geometry is lower than

the corresponding ratio in the planar geometry. The same is

true for the potential AU0A. For large r0 the results obtained
in the cylindrical geometry coincide with the results

obtained in the planar geometry (Fig. 4A,B). It can be seen

in Fig. 4B that regarding n0/nR the regime of the flat electric

double layer is for the data used reached already for radii as

small as f 1 nm.

The thickness of the electric double layer in the cylin-

drical geometry is described by the characteristic length r1/2,

i.e. the distance from the charged surface where the excess

of the counterions drops to half of its value at the distance of

the closest approach to the charged cylindrical surface

(Eq. (23)). Within the presented theory including steric

effects, the thickness of the diffuse layer r1/2 is always larger

than within the PB theory. When finite size of ions is

considered, the shielding of the electric field of the charged

surface is less effective than in the PB theory where there is

no limit regarding to the number density of counterions. For

small parameters n the effective thickness of the electric

double layer is decreasing with increasing n (Fig. 5) in both

models as the surface bearing higher charge attracts in its

vicinity larger number of counterions. Consequently, the

screening is more effective. If we further increase the

parameter n, the influence of the excluded volume effect

increases with increasing n. The effective thickness r1/2
after reaching its minimum, begins to increase with increas-

ing n. This is the result of the fact that the excluded volume

imposes an upper limit on the density of the number of

counterions. There is no upper limit of the density of the

number of ions in the PB theory and the effective thickness

in the PB theory decreases monotonously with n. No mini-

mum is reached (Fig. 5).

In our model we do not take into account the direct ion–

ion interactions. It was established [4,19], that for 1-1

electrolyte (that was studied in this work) the effect of the

direct interactions is negligible. However, this effect could

be important in the case of multivalent ions [4,18].

The force between two identical parallel charged rods

predicted by the PB theory was found to be repulsive at all

distances for all surface charge densities [4]. By including

the short range ion–ion interactions, the attractive forces

between identical parallel charged rods were obtained at

certain conditions such as in the limit of high electrolyte

concentrations in the case of multivalent counterions and/or

low bulk dielectric constant. Therefore, it would be interest-

ing in the future to study the influence of the ion size on the

force between two charged cylindrical structures in electro-

lyte solution.

To conclude, we showed that the effect of finite ion size

on the density of the number of counterions and on the

electrostatic field near the charged cylindrical surface is

considerable also in the cylindrical geometry although it is

weaker than in the flat geometry.

Appendix A. Free enery of the electrolyte solution in

contact with the charged cylindrical surface

Assuming local thermodynamic equilibrium and taking

into account energies of the individual particles in the

solution, the expression for the free energy within the mean

field approximation is derived.

We divide the system into cells of volume V c = 2prlDr,

where Dr is the dimension of the cell in the r direction. We

assume that Dr is small comparing to the distance over

which macroscopic properties change essentially. In the cell

we have Nj ions of the j-th species, j = 1, 2,. . ., M, and N0

solvent molecules. The finite size of particles is introduced

by means of the excluded volume effect. A lattice is

introduced with all sites occupied: the particles are distrib-

uted over Ns
c lattice sites of equal volume

XM
j¼0

Nj ¼ N c
s : ðA:1Þ

Any cell is open with respect to heat, and closed with

respect to matter. The cell is characterized by the volume

V c, the temperature T and the number of the particles of all

species Nj, j = 0, 1, 2,. . ., M.
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A particle in the cell is described by using the statistical

mechanical approach. The canonical partition function qmj j

of the mj-th particle of the j-th species is

qmj j ¼
X
i

expð��mj ji=kTÞ,

mj ¼ 1,2, . . . ,Nj, j ¼ 0,1, . . . ,M , ðA:2Þ

where �mj ji
=Kmj ji

+ ej(U(rmj j
)�Uref) is the energy state of

the mj-th particle, which consists of the electrostatic poten-

tial energy of the charged particles situated at rmj j
,

ej(U(rmj j
)�Uref), and other contributions Kmj ji

to the

energy; U(rmj j
) is the potential of the electric field, ej is

the charge of the ion of the j-th species, k is the Boltzmann

constant and i is the index that runs through all possible

energy states Kmj ji
of the mj-th particle. The electrostatic

potential energy of the ion is calculated relative to the

potential energy of the reference system in which the ions

are infinitely far apart, so that the electrostatic field in this

case vanishes and its potential is constant. For the reference

potential we chose Uref = 0.

We assume that the electrostatic field in the system does

not influence the contributions to the energy Kmj ji
. There-

fore, by inserting �mj ji
=Kmj ji

+ ejU(rmj j
) into Eq. (A.2) and

summing over all energy states of ions, the electrostatic

potential energy can be written before the sum,

qmj j ¼ q0mj j
expð�ejUðrmj jÞ=kTÞ, ðA:3Þ

where q0mj j
¼
X

i
expð�Kmj ji=kTÞ, mj ¼ 1,2, . . . ,Nj, j ¼

1,2, . . . ,M :
The solution in the chosen cell is a system with constant

volume V c, constant temperature T and constant number of

ions and solvent molecules. It is assumed that the particle–

particle correlations are described by the mean electrostatic

field and by the excluded volume effect so that the particles

in the cell are explicitly considered to be independent.

The particles of the j-th species are also considered to be

equal with respect to all energy states Kmj ji

q0mj j
¼ q0j , mj ¼ 1,2, . . . ,Nj, j ¼ 0,1, . . . ,M , ðA:4Þ

where qj
0 is the particle partition function subject to non-

electrostatic interactions. It is assumed that the solution in

the cell is in thermodynamic equilibrium. Taking into

account all possible nonequivalent distributions of particles

in the cell, the canonical partition function of the cell Qc can

be written as

Qc ¼ exp �DW el

kT

� �
!
M

j¼0
ðq0j Þ

Nj

� �
N c
s !

!
M

j¼0
Nj!

� � , ðA:5Þ

where

DW el ¼
X
k

ekUðrkÞ: ðA:6Þ

The summation is performed over all ions in the cell.

The expression for the free energy of the solution in the

cell can be obtained by the statistical mechanical relation

DF =� kT lnQc,

DF ¼ DW el þ kT
XM
j¼0

njln
nj

nsq
0
j

 !
2prlDr: ðA:7Þ

The Stirling approximation for large Nj was used while the

density of the number of particles of the j-th species nj, j = 0,

1,. . ., M and the density of the number of sites ns were

introduced

Nj ¼ nj2prlDr and N c
s ¼ ns2prlDr: ðA:8Þ

Eq. (A.7) represents the free energy of the chosen cell. To

obtain the free energy of the whole system, we sum the

contributions of all the cells. This summation can be

expressed by the integration over the extension of the

system in the radial direction. The expression for the

electrostatic potential energy of the system is calculated

by taking into account that the potential at the site of a given

ion is created by all other ions and the charged cylindrical

surface. We consider that the ions in the solution are

distributed with volume charge density .e(r) so that expres-

sion (A.6) can be transformed into

W el ¼ 1

2
��0

Z R

r0

E2ðrÞ2prldr: ðA:9Þ

Here � is the permittivity of the solution, �0 is the influence
constant, E is the electric field strength and E0 is the electric

field strength near the cylindrical charged surface. The

electric field strength is constant in the region [r0, r0 + a/2]

and is determined by Eq. (19). Therefore, the integral in Eq.

(A.9) is divided into two parts.

For the free energy of the whole system, subject to the

local thermodynamic equilibrium, we finally get

F ¼ 1

2
��0E

2
0ðpðr0 þ a=2Þ2 � pr20Þl

þ 1

2
��0

Z R

r0þa=2

E2ðrÞ2prldr

þ kT

Z R

r0þa=2

XM
j¼0

njðrÞln
njðrÞ
nsq

0
j

 !
2prldr: ðA:10Þ
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[31] E. Wicke, M. Eigen, Über den Einfluss des Raumbedarfs von Ionen
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