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Abstract

Ž .The shape of the newly described torocyte red blood cell endovesicles induced by octaethyleneglycol dodecylether C12E8 is
characterized. A possible explanation for the origin and stability of the observed torocyte endovesicles is suggested. Three partly
complementary mechanisms are outlined, all originating from the interaction of C12E8 molecules with the membrane. The first is a
preferential intercalation of the C12E8 molecule into the inner membrane layer, resulting in a membrane invagination which may finally

Ž .close, forming an inside-out endovesicle. The second is a preference of the C12E8-induced membrane inclusions clusters for small local
curvature which would favour torocyte endovesicle shape with large regions of small or even negative membrane mean curvatures, the
C12E8 membrane inclusion being defined as a complex composed of the embedded C12E8 molecule and some adjacent phospholipid
molecules which are significantly distorted due to the presence of the embedded C12E8 molecule. The preference of the C12E8 inclusions
for zero or negative local curvature may also lead to the nonhomogeneous lateral distribution of the C12E8 inclusions resulting in their
accumulation in the membrane of torocyte endovesicles. The third possible mechanism is orientational ordering of the C12E8-induced
inclusions in the regions of torocyte endovesicles with high local membrane curvature deviator. q 2000 Elsevier Science S.A. All rights
reserved.
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1. Introduction

By intercalating preferentially into one of the membrane
bilayer leaflets, amphiphilic molecules may significantly

w xchange the erythrocyte shape 1–4 . We have recently
Žreported that octaethyleneglycol dodecylether CH -3

Ž . Ž . . Ž .CH OCH CH OH Fig. 1a may induce in erythro-2 11 2 2 8
Ž .cytes usually one stable endovesicle having a torocyte
w x Ž .shape 5 . The octaethyleneglycol dodecylether C12E8 -

induced torocyte endovesicle consists of a compressed
Ž .plate-like central region and a toroidal periphery Fig. 2 .

It was observed that the torocyte endovesicle originates
from a primary large stomatocytic invagination which
upon continuous intercalation of the C12E8 molecules into
the membrane loses volume. The invagination may finally
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close, forming an inside-out endovesicle with small rela-
Ž . Ž .tive volume Õ , i.e. with large surface area A and small

Ž .enclosed volume V .
At the present state of the development of the mathe-

matical models for determination of the cell shape, it is not
possible to describe the whole transformation of the ini-
tially normal discoid erythrocyte shape into the final
rounded shape containing the torocyte endovesicle. Our
study is, therefore, limited to the analysis of the final shape
of the torocyte endovesicle.

The phase diagram of stable shapes of vesicles with no
w xinternal structure has been extensively studied 6–9 . How-

w xever, aside from an early work of Deuling and Helfrich 6 ,
the class of the torocyte shapes was not given attention.
Therefore, it is of interest to understand general as well as
specific mechanisms that take place in the C12E8-induced
torocyte endovesiculation.

w xIn the previous work 5 , the possible explanations of
the formation of the torocyte endovesicle shape were
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Ž . Ž .Fig. 1. Schematic illustration of the chemical structure of three different amphiphilic molecules: a octaethyleneglycol dodecylether, b chlorpromazine
Ž .and c Triton X-100.

briefly indicated. In the present work, we present in detail
specific effects of C12E8 molecules within the theory
based on the interaction between the C12E8 molecule and
the membrane. The molecular features of C12E8 are com-
pared to the molecular features of stomatocytogenic am-

Ž . Žphiphiles chlorpromazine Fig. 1b and Triton X-100 Fig.
.1c which induce small spherical endovesicles in erythro-

w xcytes 5 . A possible region in the geometrical phase
diagram belonging to the class of the axisymmetrical
torocyte endovesicle shapes with equatorial mirror symme-
try is investigated.

2. Geometrical characterization of the class of the toro-
cyte shapes within the bilayer couple model

w xWithin the bilayer couple model 2,7,10,11 , the cell
shape is determined by minimization of the local isotropic

w x Ž .bending energy 12 at given vesicle volume V , mem-

Ž .brane area A and difference between the areas of the two
Ž .membrane lipid layers D A

D Ash C qC d A. 1Ž . Ž .H 1 2

Here, h is the distance between the neutral surfaces of
the outer and the inner membrane lipid layers, C and C1 2

are the principal membrane curvatures and d A is the
infinitesimal membrane area element.

Within the bilayer couple model the vesicle shape de-
pends on two geometrical parameters, i.e. the relative

Ž 2 3.1r2vesicle volume Õs 36p V rA and the relative dif-
ference between the areas of the two membrane lipid

Ž 2 .1r2 w xlayers DasD Ar 16p Ah 7,11 . Both of these pa-
rameters are normalized relative to the corresponding val-
ues for the spherical cell that has the same membrane area.
In accordance with the definition, the relative volume Õ

and the relative area difference Da of the spherical vesicle
w xare equal to one 6,7 . A class of vesicle shapes is defined

Ž w x.Fig. 2. Transmission electron micrographs of torocyte endovesicles of human erythrocytes incubated with C12E8 adapted from Ref. 5 .
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to contain all the stationary shapes of the same symmetry
that can be continuously transformed into each other by
continuously varying relative vesicle volume Õ and relative

w xarea difference Da 8,13 .
Fig. 3 shows a sequence of shapes corresponding to an

increasing Da within the torocyte–discocyte class of
shapes. The shapes within this class have mirror symmetry
with respect to the equatorial plane. The calculated shapes
are obtained numerically by minimizing the local mem-

w x w xbrane bending energy at fixed A, V 6,14 and D A 7 as
w xdescribed in detail elsewhere 15,16 . In the case of the

Ž .torocyte shapes Fig. 3a,b , an additional constraint for the
Ž .fixed zero distance between the opposing membranes

along the circle bounding the flat central part of the
torocyte is taken into account in the minimization proce-

w xdure. It follows from the minimization procedure 14,16
that the principal curvature along the meridians is zero on

Žthis circle. There is a shape for Das1.0832 shape c in
.Fig. 3 where the two poles are touching each other. This

shape represents the upper bound of the torocyte class and
at the same time a lower bound of the discocyte class, i.e.
below Das1.0832 the vesicle shapes are torocytic while
above Das1.0832 the vesicle shapes are discocytic.

The possible region in the two-dimensional Õ–Da phase
diagram belonging to the class of the axisymmetrical
torocyte vesicle shapes with equatorial mirror symmetry is
shown in Fig. 4. The right boundary line represents dis-
coidal shapes with two poles touching each other. The
upper bound of discocyte class is the limiting shape resem-
bling a shell composed of two equal sections of sphere
Ž w x .see Ref. 7 and references therein . At small Da the
region of the torocyte class is bounded by the shapes

Fig. 3. Some characteristic shapes within the class of axisymmetric
torocyte and discocyte oblate vesicles with equatorial mirror symmetry at
relative vesicle volume Õs0.2 for different values of relative area

Ž . Ž . Ž . Ž . Ž .difference Da: a 1.0278, b 1.0608, c 1.0832, d 1.0896 and e
1.0960.

Fig. 4. Region in the Õ – Da phase diagram belonging to the class of the
axisymmetrical torocyte vesicle shapes.

composed of a compressed plate-like central part and a
w x Ž .toroidal periphery 17 see also Fig. 7 . For Da lower than

the boundary representing the limiting torocytes, there is a
w xclass of codocytes 6 . The class of codocytes partially

overlaps with the class of torocytes.

3. Molecular properties of C12E8-induced membrane
inclusions and the stability of the observed torocyte
endovesicles

3.1. Basic assumptions

Ž .Since intercalation of C12E8 Fig. 1a into the erythro-
cyte membrane induces inward membrane bending
Ž .stomatocytosis , we assume that C12E8 is preferentially

w xlocated in the inner erythrocyte membrane layer 2 , i.e. in
the outer layer of the torocyte endovesicles. This is in
agreement with the results of previous studies, which

Ž .indicate a rapid flip-flop rate of C12E8 in seconds across
w xthe lipid bilayers 18,19 . By intercalating into the outer

layer of the endovesicle membrane, the conical shaped
w xC12E8 molecule 20 perturbs the membrane structure, e.g.

causes a change in packing of the neighbour lipid
molecules, partially also due to dehydration of their hy-

w xdrophilic head groups 20–22 . As a consequence, C12E8-
Ž .induced inclusion cluster is formed in the membrane

w x5,22 , defined as a complex composed of the embedded
C12E8 molecule and some adjacent phospholipid molecules
which are significantly distorted due to the presence of the
embedded C12E8 molecule. Since the acyl chains of the
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individual phospholipid molecule in the neighborhood of
w xC12E8 are moved apart sideways 21 , the average acyl

chain length of the phospholipid molecule shortens while
w xits average area increases 23 . Consequently, the effective

shape of the surrounding phospholipid molecules changes
from a cylinder to an inverted truncated cone. Based on
these experimental data, we take that the inclusion formed

Ž .by the C12E8 molecule has the preference for small zero
w xor even negative local membrane curvature 5,22 .

3.2. Membrane free energy

To obtain the equilibrium shape of the vesicle at given
external conditions, we should minimize the membrane
free energy consisting of the contribution of the membrane
continuum W and the contribution of the C12E8-induced
membrane inclusions F :i

FsWqF , 2Ž .i

Ž . Ž .at given cell volume V , membrane area A and area
Ž .difference D A .

For the contribution of the membrane continuum W we
take the energy of the isotropic elasticity within the area-
difference-elasticity model with spontaneous curvature
Ž . w xADE-SC model 13,24 . Within the ADE-SC model, the

Ž .membrane elastic energy W which is the sum of the
Ženergy of the local isotropic bending the first and second

. Žterm and the energy of the nonlocal isotropic bending the
.third term is

1 2Ws k C qC d Aqk C C d AŽ .H Hc 1 2 G 1 22

k r 2q D AyD A , 3Ž . Ž .ef22 Ah

where k and k are the local and Gaussian bendingc G
w xmoduli and k is nonlocal bending modulus 6,13,24,25 .r

The effective optimal area difference D A is the sum ofef
Ž .the area difference of the unstressed layers D A and theo

term proportional to the membrane spontaneous curvature
Ž . w xC 24,26o

D A sD A qg C , 4Ž .ef o o

where g is the constant which depends on the cell size and
membrane properties. The experimentally determined value

w xof ratio k rk (2 27 .r c
w xThe shear energy of the membrane skeleton 25,28,29

is neglected. Inclusion of the nonlocal bending energy
Ž Ž ..third term in Eq. 3 in the minimization procedure does
not change the calculated shapes at given D A. Only the

w xenergies of the obtained shapes are changed 13,15 . Con-
sequently, the equilibrium value of D A at which the

Ž Ž .. w xenergy W Eq. 3 is at its minimum, is changed 26,30 .
Phospholipid bilayers forming a closed surface and

decorated with anisotropic inclusions that can orient in the
plane of the membrane according to the local membrane

w xcurvature have been considered theoretically 31–33 . The

orientation of the inclusion is given by the rotation of the
principal directions of its intrinsic shape relative to the

Ž .membrane principal directions v . The energy of the
single inclusion expresses a mismatch between the intrin-
sic shape of the inclusion and the local membrane shape
w x33 :

2
E v sj CyC r2Ž . Ž .m

) ˆ2 ˆ ˆ ˆ2q jqj C y2CC cos 2v qC r4,Ž . Ž .ž /m m

5Ž .

where j and j ) are the constants representing the strength
of the interaction between the inclusion and the membrane

Ž .continuum, Cs C qC r2 is the membrane mean cur-1 2
ˆ ˆŽ . Ž .vature, Cs C yC r2, C s C qC r2, C s2 1 m 1m 2m m

Ž .C yC r2 and C and C are the principal curva-2m 1m 1m 2m

tures of the intrinsic shape of the inclusion. If C sC ,1m 2m

the inclusion is isotropic while if C /C , the inclusion1m 2m

is anisotropic, i.e. nonaxisymmetric with respect to the
membrane normal vector.

w xAccording to statistical mechanics 34 , the average
orientation of the single anisotropic inclusion, described

Ž .here by the average value of cos 2v , is

2p

cos 2v exp yE v rkT dvŽ . Ž .Ž .H
0² :cos 2v s , 6Ž . Ž .

2p

exp yE v rkT dvŽ .Ž .H
0

where k is the Boltzmann constant and T is the tempera-
Ž .ture. The integration of the expressions in Eq. 6 gives the

quotient of the modified Bessel functions I and I0 1

) ˆ ˆI jqj CC r2kTŽ .ž /1 m² :cos 2v s . 7Ž . Ž .
) ˆ ˆI jqj CC r2kTŽ .ž /0 m

For illustration, Fig. 5 shows the average orientation of
the anisotropic inclusion in dependence of the curvature

² Ž .:Fig. 5. The average orientation cos 2v of an anisotropic membrane
ˆinclusion in dependence of the local curvature deviator C.
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ˆŽ .deviator C . It can be seen in Fig. 5 that the orientational
ordering monotonously increases with increasing curvature

ˆŽ .deviator C .
The free energy of the inclusions F sharply decreasesi

in the membrane regions with the favourable membrane
ˆmean curvature C andror favourable curvature deviator C

w x33 . It has been shown recently that lateral distribution
and local orientation of anisotropic inclusions may stabi-
lize the narrow neck connecting the daughter vesicle and

w xthe mother cell 33 .
The free energy of the inclusions in a given membrane

w xlayer can be written as 33

1 2
F syM kT ln exp yj C"C r2kTŽ .Hi T mžž A

) ˆ2 ˆ2y jqj C qC r4kTŽ . ž /m /
= ) ˆ ˆI jqj CC r2kT d A , 8Ž . Ž .ž /0 m /

where M is the total number of the inclusions in the layerT

and I is the modified Bessel function obtained by the0

integration within the partition function of a single inclu-
w x Ž .sion over all possible orientations 32 . The sign "

denotes the choice of the innerrouter membrane area. The
Ž .integration in Eq. 8 is performed over the entire mem-

brane area.
As the free energy of the membrane inclusions depends

on the shape and interactions of the C12E8 molecule, the
vesicle shape would be determined in a specific manner.
Currently, the model parameters j , j ) , C and C are1m 2m

not known for C12E8-induced inclusion so that we cannot
make a definite prediction of how these molecules affect
the vesicle shape. We can, however, indicate different
possibilities that provide an explanation of the observed
torocyte shape.

3.3. Preference of the C12E8-induced membrane inclu-
sions for small or negatiÕe local curÕature

The effective shape of the C12E8 membrane inclusion
depends on the molecular shape of the intercalated C12E8
molecule and on its interaction with the surrounding lipids.

w xBased on experimental data 20–23 , it can be speculated
that the effective shape of the membrane inclusion formed
by the C12E8 molecule in the outer layer of the vesicle
membrane can be characterized by small C with them

w xpreference for small local membrane curvature 22 or
even negative C with the preference for negative localm

w xcurvature 5 . The C12E8 membrane inclusions with C (m
w x w x0 22 or slightly negative C 5 would favour the vesiclem

shape with large regions of small or negative mean curva-
Ž .ture leading to torocyte vesicle shape Figs. 2 and 3 .

The influence of small or negative value of C ofm

C12E8 inclusions on the vesicle shape can be described
very illustratively in the limit of weak interaction between

the C12E8 inclusion and the membrane, which leads to
simple renormalization of the constants of the standard
ADE-SC model. Namely, in this case the exponential and

Ž .the logarithmic functions in Eq. 8 can be expanded. If
further, at least one of the intrinsic curvatures of the
inclusion C , C is much larger than any of the curva-1m 2m

tures attained by the membrane C , C , the obtained free1 2

energy of the inclusions renormalizes the constants of the
w xstandard membrane elastic energy 31–33 . The corrected

Ž . w xspontaneous curvature C is 33o

j M CT m
C (C q . 9Ž .o o 2 Akc

If C of C12E8 membrane inclusions is small, them

spontaneous curvature C very slowly increases with in-o

creasing number of intercalated C12E8 molecules while if
C -0, the spontaneous curvature C decreases with in-m o

creasing number of intercalated C12E8 molecules.
The optimal area difference of the endovesicle is in-

creased mostly due to the preferential intercalation of the
C12E8 molecules into the outer layer of the endovesicle,
DA sD A qM A , where A is the optimal areao o T om om

occupied by one C12E8 molecule. In the effective optimal
area difference,

D A sD A qg C , 10Ž .ef o o

the effects of the spontaneous curvature may be small or
even negative.

We propose that the above described effects of the
C12E8-induced membrane inclusions on the effective opti-

Ž Ž ..mal area difference D A Eq. 10 causes that the shapeef

of the extreme area difference within the given class of
w xshapes 13,35 cannot be reached.

In contrast, some other stomatocytogenic amphiphiles
w x Ž . Ž5,36 like chlorpromazine Fig. 1b and Triton X-100 Fig.
.1c may increase the value of D A of the endovesicles upef

to the maximal possible value within the given shape class.
This may be achieved by intercalating preferentially into

Žthe inner layer of the erythrocyte membrane outer layer of
.the endovesicle and also by increasing the spontaneous

curvature if the amphiphiles have the conical or truncated
Ž . w xconical shape C )0 5 . For example, if erythrocytesm

are treated with sublytic concentrations of chlorpromazine,
w xthey reach the shape of extreme D A 13,35 composed of a

spherical mother cell and many more or less spherical
w xendovesicles 5 .

To compare these two situations quantitatively, we made
a simple calculation. For example, in the torocyte en-
dovesicle with the relative volume Õs0.2, Da is around

Ž .1.05 Fig. 3 . The value of Da corresponding to 25
equivalent spherical endovesicles of the same enclosed
total relative volume is together 5.0, i.e. approximately
five times higher. We can see that the value of D A of the
endovesicles obtained by chlorpromazine is much larger
than of the corresponding D A of the torocyte endovesicle
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induced by C12E8. We may conclude that C12E8 may
induce the torocyte endovesicles due to small effect on
D A caused by the specific properties of the C12E8ef

inclusions.
If the interaction between the C12E8-induced mem-

brane inclusion and the membrane is stronger the prefer-
ence of the C12E8 inclusions for zero or negative local
curvature may lead to nonhomogeneous lateral distribution

w xof C12E8 inclusions 31,33 . Consequently, the C12E8
membrane inclusions could accumulate in the membrane
of torocyte endovesicles.

3.4. Possible role of anisotropic properties of membrane
inclusions in the stability of torocyte endoÕesicles

Ž .If the inclusions are anisotropic C /C and1m 2m

strongly interact with the membrane, the torocyte shape is
additionally favoured. In the regions of the membrane
where the difference between C and C is large the1 2

inclusions become orientationally ordered and the mem-
w xbrane exhibits deviatoric properties 32,33,37 .

It can be shown that for large enough difference be-
tween the membrane principal curvatures C and C the1 2

contribution of the orientational ordering of the anisotropic
inclusions to the free energy of the membrane can be
expressed in the approximation of the constant area density
of the inclusions up to a constant factor as

) ˆ ˆF sykTm ln I jqj CC r2kT d A , 11Ž . Ž .H ž /ž /o 0 m

where msM rA is the area density of the inclusions andT

the integration is performed over the entire membrane
) ˆ ˆŽ . < < < <area. In the case of jqj C C r2kTG1, the orienta-m

tional contribution of the inclusions to the free energy of
Ž Ž ..the membrane F Eq. 11 may be written as a linearo

w xfunction 38 of the integral of the curvature deviator D

) ˆ< <F (yM jqj C Dr2 A , 12Ž . Ž .o T m

ˆ< <Ds C d A. 13Ž .H
The integration is performed over those parts of the

) ˆ ˆŽ . < < < <membrane where the values of jqj C C r2kTG1.m
Ž .It can be seen from Eq. 12 that the orientational ordering

of the inclusions lowers the membrane free energy.
Fig. 6 shows the calculated values of the integral of the

curvature deviator D for the class of the axisymmetric
torocyte endovesicle shapes with equatorial mirror plane
symmetry given in Figs. 3 and 4. It can be seen in Fig. 6
that the integral of the curvature deviator of the torocyte
vesicle continuously increases with decreasing relative area
difference Da of the torocyte vesicle which means that the

Ž Ž .orientational membrane free energy F Eqs. 12 ando
Ž ..13 is smaller for more pronounced torocytic shapes, i.e.
for torocyte shapes with large central compressed region
and small toroidal periphery. It can be, therefore, con-

Ž .1r2Fig. 6. The relative integral of the curvature deviator ds Dr Ar4p

Ž .of the axisymmetric torocyte vesicle shape Fig. 3 as a function of the
relative area difference Da for the relative volume Õs0.2. The shapes
presented are the same as some of the shapes presented in Fig. 3.

cluded that ordering of anisotropic membrane inclusions
which orient as quadrupoles in the curvature field may
additionally favour the formation of torocyte endovesicle
shape.

The minimization of the orientational free energy Fo
Ž Ž .. ŽEq. 12 reduces to the problem of the extreme maxi-

. Ž .mal integral of the curvature deviator D at fixed area
Ž . Ž .A and fixed enclosed volume V . For this purpose, a
variational problem is stated by constructing a functional

GsDyl d AyA ql dVyV , 14Ž .H HA Vž / ž /
where l and l are the Lagrange multipliers and dV isA V

the volume element.
The analysis is restricted to axisymmetric shapes. It is

chosen that the symmetry axis of the body coincides with
the x-axis, so that the shape is given by the rotation of the

Ž .function y x around the x-axis. In this case, the principal
Ž .curvatures are expressed by y x and its derivatives with

respect to x: yX sd yrd x and yY sd2 yrd x 2 as
y1r2X 2 y1C s" 1qy y , 15Ž .Ž .1

y3r2Y X 2C s.y 1qy . 16Ž .Ž .2

Ž X 2 .1r2The area element is d As2p 1qy yd x, and the
2 Ž .volume element is dVs"p y d x. By 1" it is taken

Ž .into account that the function y x may be multiple
valued. The upper sign is taken for the convex regions and
the lower sign is taken for the concave regions. The sign
changes in the points where yX

™`.
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The above expressions for C , C , d A and dV are1 2
Ž .inserted into Eq. 14 and rearranged to yield, Gs

Ž X Y .pHg x, y, y , y d x, where

1r2Y X 2 X 2 2< <gs .1.yy 1qy y2l y 1qy .l y .Ž . Ž .A V

17Ž .

Ž .The variation dGs0 is performed by solving the
Euler–Poisson equation

Eg d Eg d2 Eg
y q s0. 18Ž .X Y2ž / ž /E y d x E y E yd x

The solutions of the variational problem are found by
Ž .inserting different probe functions into Eq. 18 . The sys-

Ž 2 2 .1r2tem of circles of the radius r : ys r yx representss s

spheres or spherical sections with at most two different
Ž .radii r , r . For this solution Ds0 so that these shapess1 s2

correspond to the absolute minimum of the average curva-
ture deviator. Another solution is obtained by the constant
ysl rl . This solution represents the cylinder. Further,A V

the combination of functions

1r22 2ysRq r yx 19Ž . Ž .

and

1r22 2ysRy r yx 20Ž . Ž .

Ž .represents the torus or the limiting torocyte Fig. 7 .
All the above shapes of extreme D are characterized by

two parameters, respectively, which can be determined
from the constraints for the vesicle volume and area. As
the number of the parameters equals the number of con-
straints, these shapes fulfill the requirement for the ex-

w xtreme 39 . The solutions representing torocyte shapes
correspond to the observed endovesicle shapes that are the
scope of this work.

At the present state of the knowledge about the geomet-
rical structure of chlorpromazine and Triton X-100 in the
lipid bilayer and the nature of their interactions with the
adjacent phospholipid molecules it is impossible to make
definite predictions about the ordering of chlorpromazine
or Triton X-100 in the membrane.

Fig. 7. Schematic presentation of the limiting torocyte composed of a
plate-like central part of the radius R and a toroidal periphery of the
radius r.

4. Discussion and conclusions

Recent experimental results show that C12E3 and
C12E4 have no capacity to induce torocyte endovesicles
Ž .Hagerstrand et al., in preparation . The torocyte endovesi-¨
cles can be observed only with homologues having five or
more ethylene units. This correlates well with the latest

w xresults of Heerklotz et al. 22 which show that the cooper-
Ž .ative interactions of C12En ns3–6 with a larger num-

Žber of neighbouring lipid molecules and consequent for-
Ž .mation of detergent–lipid inclusion clusterrraft can be

observed only for larger head-group detergents C12E5 and
C12E6 and not for C12E3 and C12E4. Consequently, this
strongly supports the idea that the creation of C12E8
membrane inclusion is essential for the formation of toro-
cyte endovesicle.

Triton X-100, which induces small spherical endovesi-
cles in erythrocytes, has similar hydrophilic head group as
C12E8. However, while C12E8 bears a straight alkyl chain
Ž . ŽFig. 1a Triton X-100 has a bulky hydrophobic part Fig.
.1c . This could be taken to indicate that both the hy-

drophilic and hydrophobic part of C12E8 may be essential
in the capacity of C12E8 to induce the detergent–lipid
inclusion.

It can be shown that the main relative radius of the
limiting torocyte shape R increases while the relative
radius r decreases with decreasing Õ. It can be also shown
that the relative integral of the curvature deviator ds

Ž .1r2Dr Ar4p of the limiting torocyte shape increases
with decreasing relative vesicle volume Õ. Consequently,
the enclosed relative volume of the limiting torocyte en-
dovesicle should be as small as possible in order to render
the relative integral of the curvature deviator d the largest.
This agrees well with our experimental observations which
show that the observed C12E8-induced torocyte endovesi-

Ž .cle shapes Fig. 2 have very small relative volume Õ.
Ž .The limiting torocyte shape Fig. 7 is the shape of the

Ž .extreme maximal integral of the curvature deviator D
which can actually never be reached due to its very high
Ž .infinite local bending energy but is however very close to

Ž .the observed shapes Fig. 2 .
ˆ< <Since the absolute value of the curvature deviator C

depends on the dimension of the vesicle, the energy F iso

not scale invariant as is the case in the local bending
w xenergy of the membrane 26 . Because the absolute value

of F increases with decreasing dimensions of the vesicleo
Ž Ž . Ž ..the approximative expression for F Eqs. 12 and 13o

w xcan be used only for highly curved vesicles 38 where the
ˆ< <values of C are large enough. In the case of limiting

Ž .torocyte vesicles Fig. 7 , the orientational contribution to
Ž .the free energy of the membrane F may be considerableo

only for small r. It can be seen in Fig. 2 that the radius of
the bulby end of the observed torocyte endovesicle is
indeed very small. Consequently, the curvature deviator
ˆ< <C as well as the orientational energy F of these regionso

Ž .may be considerably large and negative .
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A problem related to the formation of the torocyte
endovesicles and concerning cylindrical structures has re-
cently been considered. Stable cylindrical structures com-
posed of the phospholipid and geraniol were observed
w x38,40,41 . Geraniol molecules are dimeric amphiphiles

w xand therefore highly anistropic 40,41 . It has been sug-
w xgested 32,33,38,41,42 that the stable cylindrical struc-

tures could not be predicted within the standard membrane
elastic energy models and that the deviatoric properties of
the membrane may provide a plausible explanation for the
observed shapes. Further, also in erythrocytes, stable cylin-

w xdrical microexovesicles were observed 28,36,38 . Mainly
cylindrical microexovesicles were observed upon adding

Žthe anisotropic amphiphile dodecyl maltoside which has
.a bulky dimeric polar head and an anisotropic dimeric

w xcationic amphiphile to the erythrocyte suspension 38 .
w xRegarding the ADE-SC model 13,24 , it should be

stressed that this model is the limiting case of the more
general models which take into account the nonhomoge-
neous lateral distribution of the membrane constituents
w x31,33,43–45 . It has been shown in many studies that
standard ADE-SC model itself cannot account for some of
the observed phenomena in the liposome physics as well
as in the physics of erythrocytes. For example, it cannot
describe completely the observed budding transions in

w xphospholipid vesicles 33,46 or explain the stability of
w xtubular structuresrvesicles 33,38,41,42 . Furthermore, in

the case of erythrocyte, the shear energy of the skeleton,
the skeleton–bilayer interactions and some other interac-
tions in the membrane should be taken into account to fit

w xadequately the experimental results 30,47–52 . To con-
clude, the ADE-SC model can explain many of the ob-
served phenomena, however, in some cases including the
one considered in this work the ADE-SC model should be
upgraded.

The above theoretical predictions and the fact that we
occasionally observed cylindrical endovesicles in addition
to the torocyte endovesicles upon adding C12E8 to the
erythrocyte suspension, indicate that the deviatoric proper-
ties of the membrane and a nonhomogeneous lateral distri-
bution of the C12E8 inclusions might contribute to the
stabilization of nonspherical erythrocyte daughter vesicles
w x33,38 . However, definite answers regarding the strength
and the nature of the interaction between the inclusion and
the membrane could not be given without additional exper-
imental results.

We show that due to the possible orientational ordering
of the phospholipid molecules within the C12E8–lipid

Ž .complexes inclusions in the toroidal regions of the ery-
throcyte membrane the torocyte endovesicle shapes with
very small relative volume Õ are favoured in order to have
a large integral of the curvature deviator D, and conse-

Žquently, the smallest orientational free energy F Eq.o
Ž ..12 .

Since membrane intercalation of C12E8 induces stoma-
tocytosis and because the C12E8 membrane inclusion

Ž .seems to be characterized by small C (0 or slightlym
Ž .negative value of C we assumed on the basis of Eqs. 9m

Ž .and 10 that C12E8 is preferentially located in the inner
w xerythrocyte lipid layer 5 . However, if the C value ofm

Ž .C12E8 inclusions would be strongly negative C <0 itm
Ž Ž . Ž ..would be also possible see Eqs. 9 and 10 that C12E8

is preferentially located in the outer lipid layer of erythro-
Ž w x.cyte membrane see also Ref. 53 .

In conclusion, we suggest that the stable torocyte en-
dovesicle shape may be explained by three partly comple-
mentary mechanisms: by the preferential intercalation of
the C12E8 molecules into the inner membrane layer, by
the preference of the C12E8-induced membrane inclusions
for small or slightly negative local curvature which may
lead also to the nonhomogeneous lateral distribution of the
C12E8 inclusions and by the orientational ordering of the
C12E8 molecules in the regions of high local membrane
curvature deviator.
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