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Interaction between similarly charged surfaces can be attractive at high electrostatic coupling con-
stants � = lB Z2/μGC, where lB is the Bjerrum length, μGC the Gouy–Chapman length, and Z the
valency of counterions. While this effect has been studied previously in detail, as a function of sur-
face charge density and valency of the pointlike counterions, much less is known about the effect
of counterion size. We apply the Wang–Landau sampling Monte Carlo (MC) simulation method to
compute the free energy F as a function of the scaled distance between the plates D̃ = D/μGC for
a range of � and scaled counterion radii R̃ = R/μGC. We find that for large � and small ion radius,
there is a global equilibrium distance D̃ = D̃eq = 2(1 + R̃), correctly giving the expected value at
the point counterion limit. With increasing R̃ the global minimum in F(D̃) changes to a metastable
state and finally this minimum vanishes when R̃ reaches a critical value, which depends on �. We
present a state diagram indicating approximate boundaries between these three regimes. The Wang–
Landau MC method, as it is applied here, offers a possibility to study a wide spectrum of extended
problems, which cannot be treated by the use of contact value theorem. © 2010 American Institute
of Physics. [doi:10.1063/1.3506896]

I. INTRODUCTION

Interaction between charged bodies is one of the oldest
problems studied in physics. The fact that it remains an ac-
tive area of research even today indicates the complexity of
this problem and its importance in a wide variety of areas.1

It has been shown that valency, charge distribution, and size
of the ions can play a major role in determination of the
nature of this interaction, leading to nontrivial effects like
attraction between like-charged surfaces and repulsion be-
tween oppositely charged surfaces.2–4 Also, the present work
draws motivation from experimental observation of attractive
interaction between two charged phospholipid membranes
of giant unilamellar vesicles when oppositely charged pro-
teins or antibodies were present in the solution.5, 6 Till re-
cently most of the theoretical models of the ion mediated
interaction between charged surfaces focused on the role of
point counterions (CIs) in mediating the attractive interaction
between two charged plates. Strong coupling theories have
been successful in explaining the attraction between similarly
charged surfaces mediated by pointlike counterions at high
coupling constants.7 Properties of an electrical double layer
of one charged plate and an electrolyte solution with point
ions have also been extensively studied theoretically and by
simulations.8, 9

One of the dominant view points on ion specificity is that
it is determined by the solvation factor.10 Recently there has
been some effort to understand the effect that finite ion size
has on the electrostatic interactions. It is believed that size
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of the ions is one major factor leading to ion specificity ob-
served in biological systems, e.g., selective ion transport in
charged pores.11, 12 Though systematic investigations on the
effect of finite ion size were not carried out, it was recog-
nized quite early that they play an important role in the inter-
action between two similarly charged plates.13–16 The impor-
tance of finite ion size in the electric double layer calculations
was also looked into in Refs. 17–23. A recent study of this
problem took into account only the finite size effects of con-
densed counterions and plate charges, assuming them to be in
the same plane.24

In the past Monte Carlo (MC) simulations have been car-
ried out in parallel with the theoretical calculations for point
counterions confined between two similarly charged plates7

as well as for counterions of finite size (primitive model).14, 15

These simulations were limited to calculation of the density
distribution of the counterions between the plates, from which
electrostatic potential and pressure profile between the plates
were determined using the contact value theorem.25, 26 The
study reported here differs from that carried out in the past
on two aspects: (a) we determined the free energy of the sys-
tem as a function of distance between plates using the Wang–
Landau (WL) sampling scheme27, 28 and (b) we carry out a
systematic investigation of the interaction between plates as a
function of the counterion size. From the free energy we can
compute the pressure profile as a function of distance between
plates. The method used is validated by comparing the results
obtained in the limit of point counterions,7 in the limit of hard
sphere fluid,29 and those obtained from contact value theorem
for counterions of finite size.14 In all cases our simulations
show good agreement with previous simulations and theory
for hard sphere fluid.
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FIG. 1. Schematic presentation of simulation model. Hard spherical counte-
rions with centered charges between two similarly charged hard walls.

II. MODEL

We consider two equally charged impermeable plates
with surface charge density σ , extending in the yz plane.
The plates are separated in the x direction for a distance D
(Fig. 1). Periodic boundary conditions are employed along
the yz plane and hard boundary conditions along the x direc-
tion. The medium in between the plates is considered to be a
dielectric continuum with a permittivity ε = 80. CIs are
modeled as hard spheres of radius R with a charge of valency
Z at its center. Surface charge density of the plates σ and va-
lency Z of the CIs are of opposite sign. The strength of the
interaction between plates is determined by the size R of the
CIs and the electrostatic coupling constant:

� = 2π Z3l2
Bσ

e0
, (1)

where lB = e2
0/(4πεε0kB T ) is the Bjerrum length.7 All dis-

tances are rescaled in terms of the Gouy–Chapman length:

μGC = e0

(2πlB Zσ )
. (2)

Rescaled distances are marked with tilde: x̃ = x/μGC. The
lateral dimension of the simulation box L̃ = L/μGC and the
number of CIs, N , are related through the electroneutrality
condition: L̃ = √

π N�. In the simulations reported in this
article we set N = 100 for charged particles and N = 300 for
the uncharged ones.

The maximum value of R̃ is chosen in the simulations
such that at the minimum separation between plates D̃ = 2R̃
the ions can be accommodated in a single layer. At the same
time, the fraction of volume occupied by the counterions is
always below the freezing transition for hard spheres.30

Total electrostatic energy of the system is composed
of the contributions from counterion–counterion interactions,
counterion–plate interactions, and plate–plate interaction. Fi-
nite size of the ions is taken into account through hard-core
interactions between the counterions themselves and between
plates and counterions. To compute electrostatic interaction
energy between plates, Eσσ , we take the energy per unit area

for two infinite plates with a continuous charge density σ on
them and multiply it by the area of the plates to get

Eσσ = −σ 2L2 D

(2εε0)
. (3)

Similarly, electrostatic energy of interaction between counte-
rions and the two plates EZσ is

EZσ = −σ N Ze0 D

(2εε0)
. (4)

Eσσ and EZσ depend only on the distance between the plates
and not on the particle positions. The counterion–counterion
interactions are calculated using periodic boundary conditions
in the y and z directions.7 The total electrostatic contribution
due to counterion–counterion interactions EZ Z is

EZ Z = Z2e2
0

4πεε0

∑
i, j>i

∑
n

1

|ri − r j + n| , (5)

where ri and r j refer to counterion positions. To carry out the
sum over the periodic images n, we use the method developed
by Lekner31 by writing the sum in Eq. (5) as∑

n

1

|ri − r j + n| = A − ln(cosh(2π�x) − cos(2π�y))

+ 4
P∑

p=1

cos(2πp�z)
M∑

m=−M

K0

× (2πp
√

(�y + m)2 + �x2), (6)

where we have used the dimensionless quantities defined as:
�x = |xi − x j |/L ,�y = |yi − y j |/L , �z = |zi − z j |/L .
|yi − y j |, and |zi − z j | are the minimum image dis-
tance between two particles along the y and z direction,
respectively. A is a constant that depends on the refer-
ence state and K0 is the Bessel function. For values of
ρ =

√
(ξ + m)2 + �x2 < 1/3 (where ξ is the smaller among

�y and �z), we replace the sum of Bessel functions with the
Sperb formula32

4
P∑

p=1

cos(2πp�z)K0 (2πp ρ)

= −1.386 294 + 2 ln(ρ)

+ 1√
�z2 + ρ2

− 	(1 + �z) − 	(1 − �z)

+
S∑

s=1

(− 1
2

s

)
ρ2s[ζ (2s + 1, 1 + �z)

+ ζ (2s + 1, 1 − �z)]. (7)

Here 	 is the digamma function and ζ is the Hurwitz zeta
function. This makes the calculation more accurate since the
Bessel function diverges for small arguments. We found that
using P = 4, M = 2, and S = 3 is sufficient to get numeri-
cally consistent results for coupling constants and distances
presented in this paper.
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III. SIMULATION DETAILS

In this paper the free energy F , as a function of the
distance D between the plates, is evaluated using the
Wang–Landau sampling scheme. The Wang–Landau algo-
rithm was originally proposed for the calculation of density
of states ρ(E) and its usefulness was demonstrated explic-
itly for discrete phase space of the Ising model.28 Soon the
extensions of the original method followed, including sam-
pling of two-dimensional density of states,33, 34 continuum
(off-lattice) systems,35 quantum systems,36 and expanded
ensembles.37–39 The expanded ensemble is usually character-
ized by some reaction coordinate D, which groups states of
a system to substates with different values of reaction coor-
dinate. Each substate of the expanded ensemble is weighted
by the probability density g(D). In our simulations D corre-
sponds to the distance between the plates.

In the original Wang–Landau method the density of states
is initially set to unity for all points within a specified range of
energy. A random walk is performed in energy space, within
this specified interval. Transition probabilities between states
are determined by the ratio of the density of these states. Ev-
ery time a state is visited, the corresponding density of state is
multiplied by a modification factor (larger than one) and the
histogram of energies is updated by adding a constant factor
to the corresponding histogram bin. The procedure is repeated
till the histogram is flat, which is then reset to zero and the
modification factor reduced to its square root. The iteration is
repeated till the required accuracy (modification factor close
to unity) is achieved. In the work presented here this idea is
applied to expanded ensemble which includes the distance D
between the plates as a reaction coordinate. We keep the sam-
pling still to one dimension with the density of states now re-
placed by probability density g(D) and instead of a histogram
in energy space, a histogram of distances H (D) is sampled.
Different states are sampled using a Metropolis scheme with
the Hamiltonian E + �(D), where E = Eσσ + EZ Z + EZσ ,
and �(D) is related to the probability density g(D) and free
energy F(D) through

F(D) = −kB T ln g(D) = −kB T �(D) . (8)

In the simulations reported here, one Monte Carlo
sweep (MCS) consists of N counterion moves and one
plate move, where N is the number of CIs between the
plates. Within one MCS, a particle move or a plate move is
chosen randomly with probabilities N/(N+1) and 1/(N+1),
respectively.40 When a CI is picked an attempt is made to
move it to a new position within a predetermined box centered
about it. This move is accepted with the standard Metropolis
scheme. During a plate move the distance between plates is
changed by δ D̃ from D̃old to D̃new = D̃old ± δ D̃. The value
of δ D̃ is between 0.7 and 1.0. After each plate move the CIs’
positions are rescaled to

x̃new = R̃ + (̃xold − R̃)(D̃new − 2R̃)/(D̃old − 2R̃),

ỹnew = ỹ, z̃new = z̃. (9)

The transition probability for such moves is35, 41

A(old→new) = ND e−[(�new+Enew)−(�old+Eold)]. (10)

The prefactor ND = [
(D̃new − 2R̃)/(D̃old − 2R̃)

]N
comes in

because of the volume change of the system.40 The important
thing to note is that only the ratio of the volume available to
the centers of hard spheres has to be taken into account. Any
move that violates the hard-core condition between ions and
that between an ion and a surface is rejected.

The separation between plates in a chosen interval D̃min

to D̃max is binned to a certain number of discrete states. The
values of �(D̃) and H (D̃) are initially set to 0 for all values of
D̃ in the chosen interval. Each time the state corresponding to
the distance D̃ is visited, the value of �(D̃) is increased by a
constant convergence factor f : �(D̃) = �(D̃) + f , and the
histogram of distances is updated H (D̃) = H (D̃) + 1. The
flatness of the histogram is checked each 1000 MCS and when
H (D̃) is regarded as “flat,” the convergence factor is rescaled
f = f × 0.5 (initially f = 0.5 is taken), the histogram H (D̃)
is reset to zero, and the sampling is repeated. The flatness cri-
teria require that for all possible D̃ the histogram H (D̃) is
not less than 80% of the average histogram value 〈H (D̃)〉. As
the value of f approaches zero the function �(D̃) approaches
the logarithm of the true probability density. The simulation
proceeds until f reaches a certain low threshold value.

As observed by Kim et al.37 in the case of sampling along
a reaction coordinates, the convergence factor need not be as
precise as when density of states is calculated. We found that
f < 10−4 is sufficiently small for good convergence of �(D̃),
and good agreement with theoretical results and earlier simu-
lations was obtained. As already proposed in the original pa-
per of Wang and Landau,28 the total range of values of D̃ that
we want to sample can be divided into smaller segments (we
used segments spanning over a distance of 3 Gouy–Chapman
lengths) and the simulations are run separately for each seg-
ment. The values of �(D̃) should be such that nearby seg-
ments overlap at least in three points. Different segments are
then put together by matching values in the overlapping end
regions. No attempt is made to relate probability density to a
known reference state; therefore �(D̃) and F(D̃) are only de-
termined up to an additive constant. One should keep in mind
that free energy as well as Lekner–Sperb electrostatic energy
can only be determined up to a constant. For convenience we
shift all the free energy curves such that they approach 0 at
large D̃.

IV. RESULT AND DISCUSSION

First the correctness of the method is checked for the case
of point CIs. The standard practice in the field of electrical
double layer simulations is to use Metropolis MC scheme to
evaluate the density distribution of ions between the plates at
a fixed distance, from which, with the use of contact value
theorem,1 the pressure normal to the plates can be extracted.

Hence to compare our results with results published ear-
lier by others, we computed the rescaled normal pressure
P̃N = PN e2

0/(2πlBσ 2), where

PN = −L−2 d F

d D
(11)
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FIG. 2. Rescaled pressure P̃N = PN e2
0/(2πlbσ

2) as a function of rescaled
distance D̃ for different coupling constants. Smooth lines show the pressure
obtained by differentiation of the free energy obtained by WL method. Points
show data from Moreira and Netz (Ref. 7).

is the derivative of the unscaled free energy with respect to
the unscaled distance between plates. As shown in Fig. 2 our
results agree well with the results obtained by Moreira and
Netz.7

Next we checked the applicability of the method to ob-
tain the equation of state for a hard sphere fluid. Equation
of state of the hard sphere fluid in a cubical geometry (all
sides of equal length, i.e., D = L), with periodic boundary
condition in all directions, is plotted in Fig. 3. The pressure
P obtained by differentiating the Wang–Landau free energy
F with respect to the volume and the theoretical results from
Carnahan–Starling equation of state29 are shown. Excellent
agreement is found between the Carnahan–Starling theoreti-
cal prediction and our simulations.

In an earlier work, Valleau et al. had computed the nor-
mal pressure between two charged plates, with hard spherical
counterions in between,14 using contact value theorem that
takes into account the finite size of ions.25, 26 In Fig. 4 we com-

FIG. 3. Equation of states of hard spheres in a cubic box geometry, obtained
from the Wang–Landau free energy (open circles) and with the Carnahan–
Starling theory (continuous curve).

FIG. 4. Normal pressure and free energy (inset) as a function of the space
between plates (D − 2R) available to the CIs. Surface charge density is
σ = −0.224 As/m2, valency Z = 2, and ion radius R = 3 Å. The open
squares are from Ref. 14.

pare the results obtained from our Wang–Landau approach
with that from Ref. 14. The pressure is computed by using
Eq. (11) where the free energy was obtained for the same pa-
rameters as used in Ref. 14. Note that, to make the comparison
easy, here we plot the unscaled pressure. The data from these
two approaches agree well.

Having convinced ourselves about the validity and ap-
plicability of the method, to compute the interaction between
charged plates, we now compute F(D̃) for different coupling
constants and CI radii. For coupling constant � = 10 (Fig. 5),
where the interactions are repulsive over the whole range of
values of D for pointlike CIs, increasing ion size only results
in increasing the distance of closest approach between the
plates. However, the behavior becomes more interesting for
higher coupling constants (i.e., � ≥ 20) where, in the point
ion limit, long range attraction is observed (Fig. 6). We are
interested in the effect that the size of ions has on this attrac-
tive interaction. In order to explore this, we computed the free
energy for coupling constants � = 20 (not shown), � = 40

FIG. 5. Free energy as a function of the rescaled distance D̃ for coupling
constant � = 10 and different ion radii R̃.
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FIG. 6. Free energy as a function of the rescaled distance D̃ for coupling
constant � = 40 and different ion radii R̃.

(Fig. 6), � = 65 (not shown), and � = 100 (not shown).
From these calculations, we see that there is a systematic shift
in the free energy profile. The interaction between the plates
changes from attractive to repulsive as R̃ is increased and the
value of R̃ at which this happens increases with �. We will
explore this in greater detail below.

The dependence of free energy on the effective separa-
tion between plates D̃ − 2R̃, for coupling constant � = 40,
is shown in Fig. 8. We see that for small enough R̃ the free
energy curves, shifted by 2R̃, coincide with the curve corre-
sponding to point ions (e.g., see curves for R̃ = 1.436 and
2.873 in Fig. 8). If the ion size is increased beyond a cer-
tain value, which depends on �, the depth of the minimum
in the free energy starts to decrease and the interaction under-
goes a change from attractive to repulsive regime. We show in
Fig. 7 the normal pressure as a function of the distance be-
tween plates, where this can be clearly observed.

Plotting the pressure as a function of the size of the ions,
for a given distance between the plates, reveals another picture
(see Fig. 10). In the region where attraction is still present,
the pressure as a function of R̃ first decreases and then in-

FIG. 7. Pressure as a function of the rescaled distance D̃ for coupling con-
stant � = 40 and different ion radii R̃.

FIG. 8. Free energy as a function of the rescaled effective separation D̃ − 2R̃
for coupling constant � = 40 and different ion radii R̃.

creases. The nonmonotonic behavior of the pressure in this
region arises from the competition between the electrostatic
and hard-sphere contributions. The contribution to the pres-
sure from the total electrostatic interactions alone, for a given
plate separation, is a decreasing function of the ion radius.
This is a consequence of the fact that the electrostatic energy
curves for different ionic radii fall on each other if plotted
against D̃ − 2R̃ (Fig. 13 left). On the other hand, the hard
sphere contribution to the pressure, which for these plate sep-
arations is a monotonically increasing function of ion radius,
is significant only when the scaled ion radius is larger than
four42 (Fig. 13 right). As can be seen from Fig. 10, this is in-
deed the range at which we have a minimum in the pressure
indicating that beyond this size of ions, the negative pressure
arising from the electrostatic interaction is overwhelmed by
steric effects.

We show the equilibrium distance between the plates D̃eq

(the minimum in the free energy), as a function of the ion ra-
dius R̃, in Fig. 11. For each coupling constant, D̃eq is a lin-
ear function of R̃. Again, deviations from this linear behavior
are observed just before the minimum disappears for large R̃.

FIG. 9. Pressure as a function of the rescaled effective separation D̃ − 2R̃
for coupling constant � = 40 and different ion radii R̃.
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FIG. 10. The rescaled pressure as a function of the rescaled ion size for three
different distances between the plates.

In the limit of point ions (i.e., R̃ = 0) the value of D̃eq ap-
proaches the value 2 as the coupling constant is increased,
which is also the prediction of strong coupling theory.43 At
the same time, the slope also approaches 2 with increasing
coupling constant (Fig. 11). This essentially means that for
small ion radii the effect of the ion size is only to shift the
free energy minima by 2R̃. The positions of the first mini-
mum in free energy can thus approximately be predicted for
intermediate coupling constants, e.g., 20 ≤ � ≤ 65. Though
we did not check it explicitly, we expect the dependence of
D̃eq on R̃ for higher coupling constants � > 65 to be simi-
lar to that for � = 65. However, when the ion radius is large
enough, the first minimum in free energy disappears and re-
pulsive regime is observed over the whole range of D̃, as is the
case for R̃ = 5.5 in Fig. 6. This is seen even better in Fig. 7,
where we show that for R̃ = 5.5 the normal pressure remains
positive, which means that no attraction is present for these
parameters.

Looking at the free energy, which is shifted by an ar-
bitrary factor to match zero value at large distances be-
tween plates, we observe four different regimes of interaction,

FIG. 11. Positions of the first minimum in free energy as a function of the
rescaled radius of ions for different coupling constants together with a linear
fit for each coupling constant.

depending on the size of the ions and the coupling constant.
(A) For sufficiently small R̃, the minimum value of the free
energy remains constant while its position, compared to that
for point ions, is shifted by 2R̃ to the right. (B) By increasing
the radius of ions, the depth of the minimum starts to decrease
but its position follows the same relation as described in (A).
(C) In the third regime the minimum of F(D̃) is followed by
a maximum, as can be seen for R̃ = 5.0 in Fig. 8. The posi-
tion of the minima is no longer obtained by shifting that for
point ions by 2R̃. (D) In the fourth regime the free energy is
a monotonically decreasing function of the distance between
plates, as is seen for R̃ = 5.5 in Fig. 8.

Since the electrostatic interaction depends only on the
coupling constant � and the steric interaction is characterized
by the finite ion size R̃, a parameter which can qualitatively
characterize the interaction between the plates is the ratio of
the two-dimensional volume fraction η2 = Nπ R2/L2 and the
square root of the coupling constant

√
�. We name this quan-

tity the interaction parameter: ip = η2/
√

�. In the strong cou-
pling theory

√
� is connected to the lateral distance between

the point ions ã⊥ ∼ √
�.43 The interaction regimes, described

in the previous paragraph, can be roughly determined with
the use of the parameter ip, as is shown in Fig. 12. The data
obtained from simulations are marked as points, where dif-
ferent symbols correspond to different regimes from A to D
described above. Dashed straight lines are drawn to indicate
approximate boundary between different regimes.

As pointed out earlier13 the ionic radius affects electro-
static, entropic, and steric terms via the distribution of ions.
However, we observe that for the parameters used in our sim-
ulations, the electrostatic energy contribution to the free en-
ergy (FE ) is much less influenced by the ion size than the
rest of the terms (FH = F − FE ). The total electrostatic en-
ergy of the system, with CIs having radius R̃, can thus be
overlapped with that for point ions if plotted against D̃ − 2R̃
(Fig. 13 left). Small deviations from this curve are observed
only for the largest ion sizes. Or in other words, as far as
the electrostatic energy is concerned, the effect of the hard-
core interaction between the ions is mainly to decrease the

FIG. 12. Rough state diagram of the different regimes of interaction as a
function of “interaction” parameter η2/

√
� and ion radius. Dashed lines de-

note approximate boundaries between regimes: A, B, C, and D. Dotted lines
are only to indicate data points for a given value of �.
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FIG. 13. Total electrostatic energy FE (left) and entropic+steric contribution obtained by subtracting FE from the free energy F (right), for the coupling
constant � = 40 and different ion radii.

effective separation between the double layers by 2R̃. On
the other hand, rest of the free energy depends much more
strongly on the ion size due to the steric interactions between
ions. This is shown in Fig. 13 (right) where FH plotted against
D̃ − 2R̃ shows clear deviation from the curves for point coun-
terions even for moderate size of the ions. However, as already
recognized by others, the steric interactions are negligible as
long as the ion size is much smaller than the average lateral
separation between ions and therefore for very small values of
the ion radius we see FH overlapping with the curve for point
ions when plotted against D̃ − 2R̃.

This implies that, for small CI diameters where the steric
effects are negligible, the free energy and pressure curves
overlap with curves for point CIs when shifted by 2R̃ (see
Figs. 8 and 9). On increasing the CI radius, the free energy
and pressure curves, even though shifted by 2R̃, start to devi-
ate from that of point ions. The amount of deviation from the
point CI curve is identified by regimes B–D described above.
Hence we conclude that these deviations (transitions from
regimes A to D) are mainly driven by steric effects, which are
most dominant for 2R̃ + 2 < D̃ < 4R̃ + 2. From Fig. 9 we
can clearly see that independent of the CI size R̃, the pressure
curves are identical for D̃ − 2R̃ < 2 and D̃ > 4R̃ + 2, which
supports the above argument. For large ion radii the steric ef-
fects dominate and the free energy curves are similar to that
for neutral hard sphere fluids in similar confining geometries.
At intermediate size of the ions, the barrier in the free energy
curves appears when D̃ is approximately between 2R̃ + 2 and
4R̃ + 2 (e.g., see curves for � = 40 and R̃ = 5.0 in Fig. 6).
This is the region wherein the counterions rearrange from a
single layer in the midplane to two layers at the plates.

V. SUMMARY

In this manuscript we have presented a systematic
investigation of the effect of counterion size on the inter-
action between two similarly charged plates. By computing
the free energy as a function of the distance between the
plates we have identified four interaction regimes depend-
ing on the size of the ions and electrostatic coupling con-
stant. More specifically, we show that as the counterion size

is increased, the well known attraction between plates at
high coupling regime can become repulsive. We show that
the attractive contribution to the pressure from the electro-
static terms is a monotonically decreasing function of ion
radius while the strength of the repulsive steric terms in-
creases with ion radius. The latter starts to assert when
the interaction parameter is greater than approximately (ip
> 0.06), turning the interaction repulsive. We also observe
that the finite ion size only affects the interaction for dis-
tances between the plates 2R̃ + 2 < D̃ < 4R̃ + 2 which cor-
respond to the ordering of ions from one to two layers.

Though the electric double layer has been extensively
studied in the past, by theoretical and numerical simulation
techniques, further theoretical work is required to better un-
derstand the contribution of the hard core on the interaction
between similarly charged plates. To the best of our knowl-
edge there are no reports on the calculation of the free energy
of two interacting double layers. Here we have used a Wang–
Landau approach to calculate the free energy of two interact-
ing charged plates as a function of separation between them.
The advantage of the Wang–Landau method over the use of
the contact value theorem is in its extensibility to broader
range of problems. Where the contact value theorem fails,
a properly adjusted Wang–Landau MC simulations could
step in.
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