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Abstract: In this review paper, we theoretically explain the origin of electrostatic interactions between
lipid bilayers and charged solid surfaces using a statistical mechanics approach, where the orienta-
tional degree of freedom of lipid head groups and the orientational ordering of the water dipoles
are considered. Within the modified Langevin Poisson–Boltzmann model of an electric double layer,
we derived an analytical expression for the osmotic pressure between the planar zwitterionic lipid
bilayer and charged solid planar surface. We also show that the electrostatic interaction between the
zwitterionic lipid head groups of the proximal leaflet and the negatively charged solid surface is
accompanied with a more perpendicular average orientation of the lipid head-groups. We further
highlight the important role of the surfaces’ nanostructured topography in their interactions with
biological material. As an example of nanostructured surfaces, we describe the synthesis of TiO2 nan-
otubular and octahedral surfaces by using the electrochemical anodization method and hydrothermal
method, respectively. The physical and chemical properties of these nanostructured surfaces are
described in order to elucidate the influence of the surface topography and other physical properties
on the behavior of human cells adhered to TiO2 nanostructured surfaces. In the last part of the
paper, we theoretically explain the interplay of elastic and adhesive contributions to the adsorption
of lipid vesicles on the solid surfaces. We show the numerically predicted shapes of adhered lipid
vesicles corresponding to the minimum of the membrane free energy to describe the influence of
the vesicle size, bending modulus, and adhesion strength on the adhesion of lipid vesicles on solid
charged surfaces.

Keywords: lipid bilayer electrostatics; zwitterionic lipid bilayers; electric double layer; osmotic
pressure; orientational degree of freedom of lipid headgroups; orientational ordering of water
dipoles; adhesion of lipid vesicles; lipid bilayer elasticity; lipid vesicle shapes

1. Introduction

Biological membranes are an essential constituent of living cells. Their main role is to
separate the interior of the cell from its surroundings, allowing for selective transport of spe-
cific materials across the membrane [1]. This article focuses on the interaction of biological
membranes with nanostructured surfaces and nanoparticles [1–3]. The main building block
of the biological membranes is the lipid bilayer with embedded inclusions such as proteins
and glycolipids. Isotropic and anisotropic membrane proteins may induce local changes in
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the membrane curvature [1,4,5], often resulting in global changes in the cell shape [6–12].
The nonhomogeneous lateral distribution and the phase separation of membrane inclusions
(nanodomains) can induce local changes in the membrane curvature and are, therefore,
the driving force for transformations of the cell shape [6–9,12–14]. The biological and
lipid membranes possess some degree of in-plane orientational ordering [1,7,8,10,15–18],
including the nematic type of ordering [19–21], which are also important for the stability of
different membrane shapes.

The configuration and shape changes of membranes are, in general, correlated with
many important biological processes [1,6,13,22]. The shapes of cells are also influenced
by the membrane skeleton and cytoskeleton forces [1,11,13,22–28]. Among them, the ATP
consuming forces of the membrane skeleton and cytoskeleton are of major importance
for sustaining different cell functions [11,12,22,28,29]. Consequently, new theoretical ap-
proaches for modeling these cell shape changes under the influence of energy-consuming
active forces have been developed recently [11,12,28,29].

The focus of this paper (partially a mini review) is the interaction of nanoparticles (NPs)
and nanostructured solid surfaces with cell membranes and lipid bilayers. Certain aspects
of membrane–solid surface electrostatics and adhesive interactions are elucidated too.

2. Interaction of Nanoparticles with Cell Membrane

The shape and biological functions of membranes can be strongly influenced by
attached, encapsulated (Figure 1) [30], or intercalated inclusions such as nanoparticles
(NPs). Unique optical, electronic, catalytic, and magnetic properties of NPs make them
very interesting for a variety of biomedical applications [1,31–34]. For example, functional
NPs and quantum dots are potential candidates for drug delivery, as well as carriers for
cancer therapy [33,35]. When NPs interact with cells, the first barrier that NPs encounter
is the plasma membrane. Intra- and extracellular transport of NPs are possible by a dy-
namic membrane shape transformation that involves a change in the membrane curvature
(encapsulation) [30,32,33,36] (Figure 1). Membrane deformations may progress passively,
that is, without employing an additional energy source, driven solely by the interaction
between the membrane and NPs. Viral budding comprises such an example [37]. The
intracellular entry of genetic material is presently receiving considerable attention due
to the COVID-19 crisis. Electrostatic interactions [38,39] may facilitate NP or virus inter-
nalization via encapsulation [30,33] (Figure 1). Understanding the interplay between the
membrane elastic and electrostatic properties of the NP–membrane complex, toward the
encapsulation of NPs by the cell membrane, is also relevant for cellular drug uptake, viral
budding, biotechnological applications, and studying the interactions of inorganic NPs
with biological membranes [32,33].
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Figure 1. Encapsulation of a spherical charged particle macro-ion. Snapshots of representative con-
figurations obtained from Monte Carlo simulations for different numbers of charged lipids (each 
having one unit charge) in the membrane: 15, 60, and 150 (from left to right). The right figure corre-
sponds to the situation of nearly complete encapsulation of the macro-ion. The spherical particle 

Figure 1. Encapsulation of a spherical charged particle macro-ion. Snapshots of representative
configurations obtained from Monte Carlo simulations for different numbers of charged lipids (each
having one unit charge) in the membrane: 15, 60, and 150 (from left to right). The right figure
corresponds to the situation of nearly complete encapsulation of the macro-ion. The spherical particle
carries 65 uniformly distributed, point-like cations of valence 2. Reprinted from [30] with permission
of AIP Publishing.
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Another possible interaction of NPs with the membrane is the attachment (adsorption)
of the former on the membrane surface [34,38,40], encapsulation [30], or their intercalation
in the membrane [41–43]. The resulting configuration could be driven by the NP shape,
charge, size, and stiffness; it also depends on the nature of the NP–membrane interac-
tion [30,34,38,39,41,44]. For example, hydrophobic or cationic NPs with diameters smaller
than 5 nm can be successfully embedded within the membrane bilayer. On the other hand,
anionic NPs of the same size or larger NPs can only interact with the outer surface of the
membrane [45]. NPs interacting with membranes may induce lateral tension that results
in pore formation, either transient or permanent; the pores are actually stabilized by NPs.
Nanoparticles could also cluster within the membrane, and the resulting change in the
membrane mechanics could significantly influence its biological function and could even
result in membrane disruption [46]. Simulations demonstrated that the properties of both
the membrane and the NPs are equally important in explaining the membrane uptake of
the latter [30,41].

3. Interaction of Cells with Nanostructured Surfaces

Apart from exploiting the NP–membrane interactions in biomedical applications,
the applications of micro- and nano-structured surfaces (Figure 2) in biomedicine have
also attracted significant attention. Among them, of particular interest is the design of
nanotopographic features such as biomimetic interfaces for implantable devices [47–49].
In vitro results have shown that the surface features on the nanometer scale stimulate and
control several molecular and cellular events on tissue/implant interfaces, which can be
observed by differences in the cell morphology, orientation, cytoskeleton organization,
proliferation, and gene expression [47–49]. In the last decade, TiO2 nanotubes fabricated via
electrochemical anodization (Figures 3 and 4) have attracted significant attention toward
medical applications [1,50].
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Among others, nanotopography on TiO2 surfaces exhibits reduced activation and the
aggregation of platelets [52], and the controlled adhesion and proliferation of endothelial
and smooth muscle cells [3]. The excellent potential of TiO2 nanotubes in medicine and
biotechnology is mainly due to their high effective surface area, increased surface charged
density [47,48], and the possibility to vary their geometry (diameter and length), which
could be specially designed/adapted for a desired biological response (cell selectivity).
TiO2 nanotubes have also been shown to increase selective protein adsorption [53] and, thus,
they enhance the biological response. For example, studies have shown that TiO2 nanotubes
increase bone growth/regeneration, are antibacterial, and reduce inflammation [54,55].
Moreover, the endothelium formed on the surfaces with nanoscale topography exhibits an
enhanced expression of anti-thrombogenic genes, providing a more extended coagulation
cascade, probably due to a thicker oxide layer and specific topography [49].

Several reports have shown that nanotopography significantly influences cell behav-
iors, i.e., adhesion, proliferation, and differentiation [47,56,57]. It was recently shown
that the specific nanotopography of TiO2 used for cardiovascular stents can improve their
bio-/hemo-compatibility via the increased adhesion and growth of human coronary artery
endothelial cells and reduced adhesion and activation of platelets [3]. The surface nanos-
tructurization of titanium (specifically the formation of TiO2 nanotubes with different
diameter) was shown to alter physicochemical properties, such as wettability [2] and sur-
face chemistry, which consequently affect the interactions of TiO2 nanostructured surfaces
with cells [3,47,58]. In vivo studies have shown improved endothelization and reduced
neointimal thickening on nanostructured stents compared to bare-metal stents [58]. More-
over, the study performed by Peng et al. [59] showed that the TiO2 nanotubular surface
significantly enhances endothelial cell proliferation, while, at the same time, the growth of
vascular smooth muscle cells is reduced.
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Surface nanotopography may thus strongly influence the adhesion and proliferation
of cells [47]. Experimental studies of the interaction between lipid bilayers and solid
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surfaces have indicated that the specific structure of the surface can induce even the phase
transitions in the membrane upon its adhesion to the surface [62].

Among TiO2 nanostructured surfaces presented in Figure 3, TiO2 nanotubular sur-
faces were synthesized by electrochemical anodization [3,48,53,63], while hydrothermal
treatment was employed for synthesizing other structures. To illustrate the interaction
of nanostructured surfaces with biological systems, two nanostructuring procedures—
electrochemical anodization and hydrothermal treatment—were used for the synthesis of
TiO2 nanotubes (Figure 3b) and octahedral nanostructures (Figure 3d), respectively. In the
case of electrochemical anodization, nanotubes with a diameter of 100 nm were synthesized
by using HF and ethylene gylcol as electrolytes (described in detail in Refs. [60,61]), whereas
for the hydrothermal method, Ti foils were exposed to a basic medium of Ti isopropoxide
suspension. Briefly, in the hydrothermal method, Ti foil (0.1 mm, 99.6+%, Advent) was
washed in acetone, ethanol, and water (in each for 5 min). Afterward, the samples were
dried at 70 ◦C in the furnace. Ti isopropoxide (1 mL, 99.999% trace metals basis, Sigma
Aldrich) was used as an ion precursor, and KOH (flake, 85%, Alfa Aesar) was added to the
solution until the pH reached 10. The cleaned and dried Ti foil was placed at the bottom
of a Teflon vessel in a hydrothermal reactor and poured with Ti isopropoxide suspension.
The reaction was carried out at 200 ◦C for 24 h. Samples were then vigorously washed with
deionized H2O, dried under the stream of N2, and used for further experiments.

As-prepared nanostructured surfaces were used to study interactions with blood
platelets to evaluate the materials’ potential thrombogenic nature as in [3]. It is of tremen-
dous importance that metal implants, used as vascular stents, inhibit or decrease potentially
fatal thrombosis and restenosis conditions. The stent surface should prevent excessive
adhesion and aggregation of platelets as it can lead to blood clot formation/thrombosis.
The adhesion and activation of platelets on the surface presented in Figure 5 is an indicator
of how hemocompatible a material is; the lower platelet adhesion and activation, the
higher is material compatibility with blood (hemocompatibility) [64,65]. It has already
been recognized that protein adsorption and its conformation play an important role in
platelet adhesion. Fibrinogen adsorption has been so far recognized as an important factor
determining platelet adhesion and activation [66]. Studies have already shown that surface
nanotopography may significantly influence platelet adhesion and activation, mainly due
to nanotopography-induced changes in fibrinogen adsorption [66]. The study showed that
the confirmation of adsorbed fibrinogen is highly linked to nanotopographic features of
the surface. In the present study, other surface features such as wettability, roughness, and
chemistry remained unchanged. However, when designing nanomaterials, it is sometimes
hard to eliminate other surface features, which may even change over time. It was shown
that TiO2 nanotubular surfaces (Figure 3) tend to age with time and lose their hydrophilic
characteristic [2]. The altered surface wettability and slight changes in chemistry signifi-
cantly influence platelet adhesion. In this case, a decrease in the wettability of nanotubes
15, 50, and 100 nm in diameter resulted in a higher platelet adhesion and activation com-
pared to more hydrophilic nanotubes [3]. However, the optimal surface nanostructure may
significantly influence the biological response when other surface features are optimized.

In Figure 6, the scanning electron microscopy (SEM) images of plain Ti foil, TiO2
nanotubes, and hydrothermally treated Ti foil are presented. TiO2 nanotubes prepared
by electrochemical anodization are 100 nm in diameter, while the nanostructured surface
of hydrothermally treated Ti foil consists of octahedral nanoparticles with sizes of about
150–300 nm. More detailed information about surface roughness can be obtained from
images taken via atomic force microscopy (AFM). The 3D image of surface topography
obtained from AFM reveals that plain Ti foil has no special surface morphology, and the
estimated surface roughness (Ra) evaluated from the images is about 11.7 nm. However,
both nanostructured surfaces have a higher surface roughness (Ra), about 40 and 49 nm
for the TiO2 nanotubular and hydrothermal surface, respectively. It should be mentioned
that in the case of nanotubes, the ability of the AFM tip to enter the hollow interior of
the nanotube is limited; however, it gives us some additional information about surface
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topography, especially the variation in the height of nanotubes. The evaluated difference
in height between nanotubes is about 190 nm. In the case of hydrothermal treatment, the
difference in the height of octahedral particles is very similar, about 185 nm. Thus, the
main difference between both surfaces is in the width and shape of the nano-features.

Surface chemistry should also be considered when designing the biomaterial surface.
Using the XPS technique, it is possible to determine the chemical composition of the
elements on the top surface (about 5 nm in depth), which interact with the biological
environment. The plain, as well as the nanostructured, surfaces were analyzed by X-ray
photoelectron spectroscopy (XPS). The results from XPS analysis are presented in (Table 1).
An increase in titanium and oxygen concentration after both hydrothermal and anodization
processes is observed compared to the control (Ti foil), partially also due to the removal of
surface hydrocarbon contamination (lower carbon content). In the case of the anodization
process, fluorine is also detected on the surface due to HF used as an electrolyte. Thus,
after altering the surface nanotopography, changes in surface chemistry should also be
considered, as they may influence biological interactions. As the wettability of surfaces is
also highly correlated with biological response, it should be mentioned that both freshly
synthesized nanostructured (nanotubular and octahedral) surfaces are hydrophilic with
water contact angle (WCA) below 5◦, while the WCA measured on plain Ti foil exhibits a
more hydrophobic characteristic (WCA of about 75◦). A detailed description of wettability
studies can be found in Ref. [3].

Table 1. Atomic concentration (%) of detected elements by XPS on: Ti foil, hydrothermally treated Ti
foil (HT), and TiO2 nanotubular (NT) surface (diameter of the nanotubes = 100 nm).

O C Ti F

Ti foil 37.1 51.6 11.3 /
HT 47.9 31.4 20.7 /
NT 40.2 37.9 16.5 5.4

After analyzing the surface properties, the interaction of surfaces with the biological
environment should be studied. For the application of biomaterial for vascular implants,
the interaction with whole blood should be evaluated. According to Goodman et al. [64],
platelet adhesion and activation can be evaluated from their shape. The activation of
platelets can be described in three steps: adhesion, spreading/aggregation of platelets, and
activation of platelets/formation of a thrombus clot [67]. The morphology of adherent
platelets is commonly described as round (R), dendritic (D), spreading dendritic (SD),
spreading (S), and fully spreading (FS). Platelets with F and FS are considered activated
platelets (Figure 5) [64,68].
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toelectron spectroscopy (XPS). The results from XPS analysis are presented in (Table 1). 
An increase in titanium and oxygen concentration after both hydrothermal and anodiza-
tion processes is observed compared to the control (Ti foil), partially also due to the re-
moval of surface hydrocarbon contamination (lower carbon content). In the case of the 
anodization process, fluorine is also detected on the surface due to HF used as an electro-
lyte. Thus, after altering the surface nanotopography, changes in surface chemistry should 
also be considered, as they may influence biological interactions. As the wettability of sur-
faces is also highly correlated with biological response, it should be mentioned that both 
freshly synthesized nanostructured (nanotubular and octahedral) surfaces are hydro-
philic with water contact angle (WCA) below 5°, while the WCA measured on plain Ti foil 
exhibits a more hydrophobic characteristic (WCA of about 75°). A detailed description of 
wettability studies can be found in Ref. [3]. 

Table 1. Atomic concentration (%) of detected elements by XPS on: Ti foil, hydrothermally treated 
Ti foil (HT), and TiO2 nanotubular (NT) surface (diameter of the nanotubes = 100 nm). 

 O C Ti F 
Ti foil 37.1 51.6 11.3 / 

HT 47.9 31.4 20.7 / 
NT 40.2 37.9 16.5 5.4 

After analyzing the surface properties, the interaction of surfaces with the biological 
environment should be studied. For the application of biomaterial for vascular implants, 
the interaction with whole blood should be evaluated. According to Goodman et al. [64]., 
platelet adhesion and activation can be evaluated from their shape. The activation of plate-
lets can be described in three steps: adhesion, spreading/aggregation of platelets, and ac-
tivation of platelets/formation of a thrombus clot [67]. The morphology of adherent plate-
lets is commonly described as round (R), dendritic (D), spreading dendritic (SD), spread-
ing (S), and fully spreading (FS). Platelets with F and FS are considered activated platelets 
(Figure 5) [64,68]. 

 
Figure 5. Platelet’s morphology after the adhesion. Their shape is marked as: round (R), dendritic 
(D), spreading dendritic (SD), spreading (S), and fully spread (FS). Reprinted with permission from 
Ref. [68].  

Figure 5. Platelet’s morphology after the adhesion. Their shape is marked as: round (R), dendritic (D),
spreading dendritic (SD), spreading (S), and fully spread (FS). Reprinted with permission from
Ref. [68] copyright 2014 American Chemical Society.

The interaction of whole blood and Ti surfaces is presented in Figure 6. On the smooth,
non-treated Ti foil surface (control), the platelets are preferentially in dendritic form, and
platelet-to-platelet adhesion (aggregation) is observed (Figure 6g). Platelets are aggregated
and activated as the specific platelet shape change is observed, i.e., the multiple filopodial
extensions from the platelet body and lamellipodia formation can be seen (SD and S shape).
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On the surface of the TiO2 nanotubular layer, the platelets are extensively spread (S and FS
shape), agglomerated, and express lamellipodia and numerous filopodia (Figure 6h). The
area of spreading is significantly higher than on the surface of Ti foil.

On the surface of hydrothermally treated Ti foil, individual discoid/dendritic platelets
with no obvious pseudopods are observed. Platelets are mainly in the round (R) and
dendritic (D) form, indicating low surface interaction. Moreover, compared to the TiO2
nanotubular layer (Figure 6h), a lower number of platelets is detected on these surfaces
(Figure 6i), and platelets seem to not be in the activated form. The results presented in this
section suggest that nanostructured surfaces may reduce or even increase platelet adhesion
and activation. Although both nanostructured surfaces (i.e., nanotubular and octahedral)
have similar surface chemistry (higher concentration of Ti and O atoms, with the addition
of F for the case of the nanotubular layer) and wettability (hydrophilic) compared to
plain Ti foil, their interaction with platelets seems to differ significantly in attachment and
proliferation. Thus, it is important to note that a specific surface nanotopography may
significantly affect the surface interaction with platelets. In Refs. [64,68], it was also shown
that platelets, endothelial cells, and smooth muscle cells selectively interact with the TiO2
nanotubes with various diameters, which, again, implies that surface nanotopography
plays a significant role in the adhesion of biological material. Hence, by modifying the
surface and with the appropriate surface chemistry, the influence of surface hydrothermally
treated Ti can potentially prevent thrombosis, which could, to some extent, be correlated
with its specific nanotopographic features, as the surface wettability, as well as chemistry,
of both nanostructured materials was shown to be very similar.
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surface (c,f), and the adhered blood platelets on these three kinds of surfaces (g–i).

4. On the Role of Electrostatic Interactions

Electrostatic interactions between the charged surface and the electrolyte solution
result in the formation of the electric double layer (EDL) [38,69–77]. In an EDL, ions with
an electric charge of the opposite sign compared to the charged surface (counterions) are
accumulated close to the charged surface, and the ions with a charge of the same sign as the
surface (coions) are depleted from this region [69–71,78–81]. Due to a nonhomogeneous
distribution of ions in the EDL, the electric field strength is screened at larger distances
from the charged surface. Due to high magnitudes of the electric field in the EDL, the water
dipoles near the charged surface are strongly oriented (Figure 7) [38,82–90].
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In the past, the first theoretical description of the EDL was introduced by Helmholtz [91,92],
who assumed that a single layer of counterions forms at the charged surface. Later, the
spatial distribution of point-like ions in the vicinity of the charged surface was described
by the Boltzmann distribution function for the counter-ions and co-ions in the Poisson
equation [69,70] within the so-called classical Poisson–Boltzmann (PB) model [69,70]. The
PB model neglects the finite size of molecules and considers the relative permittivity
as a constant throughout the whole electrolyte solution, i.e., PB approach neglects the
spatial dependence of relative permittivity. A constant relative permittivity is a relatively
good approximation for small magnitudes of surface charge density, but not for higher
magnitudes of surface charge density where a substantial decrease in relative permittivity
due to the strong orientational ordering of water dipoles in the vicinity of the charged
surface was predicted [38,86,88]. In addition, the PB model also does not take into account
the spatially dependent volume electric charge distribution in the zwitterionic lipids
headgroup region, which depends on the interaction with neighboring charged bodies and
also on the composition of the electrolyte solution [38,39,43].

The finite size of ions in the theoretical description of the EDL was first incorporated
by Stern [78] with the so-called distance of closest approach and later developed further
by [71,79–81]. Their work was further improved by numerous theoretical studies and
simulations taking into account the asymmetry of the size of the ions, direct interactions
between ions, orientational ordering of water dipoles, discrete charge distribution of the
surface, quantum mechanical approach, etc. [1,72–74,76,84–86,88,90,93–115]. The physical
properties of the EDL are crucial in understanding the interaction between charged surfaces
in electrolyte solutions [34,38,43,116–124].

4.1. Modified Langevin Poisson–Boltzmann model

In the following, we shall describe the theoretical consideration of the electrostatic
interaction (adhesion) between lipid head groups of the proximal leaflet of the lipid bilayer
and charged solid surface where the orientational degree of freedom of lipid headgroups is
taken into account. Among others, we shall derive, within the modified Langevin Poisson–
Boltzmann [38,125,126] model, an analytical expression for the osmotic pressure between
two charged surfaces, which can then also be used for the calculation of osmotic pressure
between the planar lipid bilayer and charged planar surface.

We shall start with a short description of the modified Langevin Poisson–Boltzmann
(LPB) model of the electric double layer [38,125,126], which presents the generalization
of classic Poisson–Boltzmann (PB) theory for point-like ions by taking into account the
orientational ordering of water molecules in an EDL. In the modified LPB model, the
orientational ordering of water dipoles is also considered close to the saturation regime or
in the saturation regime, which leads to the prediction that the relative permittivity close
to the charged surface is considerably reduced. The modified LPB model also accounts
for the electronic polarization of the water [38,126]. The space dependency of the relative
permittivity within the modified LPB model is [38,43,126]:

εr(r) = n2 +
nw p0

ε0

(
2 + n2

3

)(
L(γp0E(r)β)

E(r)

)
, (1)

where n is the refractive index of water, nw is the bulk number density of water, p0 is
the magnitude of the dipole moment of a water molecule, L(u) = cot h(u)− 1/u is the
Langevin function, γ =

(
2 + n2)/2, E(r) is the magnitude (absolute value) of the electric

field strength, β = 1/kT, and kT is the thermal energy. The above expression for the space
dependency of the relative permittivity (Equation (1)) then appears in the modified LPB
equation for electric potential φ [38,43,126]:

∇ · [ε0εr(r)∇] = 2e0n0 sin h(e0φ(r)β), (2)
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where we take into account the macroscopic (net) volume charge density of the electrolyte
solution written in the form:

ρ(r) = e0 n+(r)− e0 n−(r) = −2e0n0sinh(e0φ(r)β) (3)

and Boltzmann distribution functions for the number densities of monovalent cations
and anions:

n+(r) = n0 exp(−e0φ(r)β), n−(r) = n0(e0φ(r)β) (4)

where n0 is the bulk number density of ions. In the limit of vanishing electric field strength,
the above expression for the relative permittivity (Equation (1)) yields the Onsager limit
expression for bulk relative permittivity [38,43,82]:

εr,b = n2 +

(
2 + n2

3

)2 nw p2
0β

2ε0
(5)

At room temperature T = 298 K, p0 = 3.1 Debye (the Debye is 3.336 × 10−30 C/m),
and nw/NA = 55 mol/L, Equation (5) gives εr,b = 78.5 for bulk solution. The value
p0 = 3.1 Debye is smaller than the corresponding value in previous similar models of electric
double layers, also considering orientational ordering of the water dipole (p0 = 4.86 Debye)
(see, for example, [86,127]), which did not take into account the cavity field and electronic
polarizability of water molecules. In addition, the model [127] predicts the increase in the
relative permittivity in the direction toward the charged surface contrary to the prediction
of the modified LPB model, which predicts the decrease in relative permittivity in the
electrolyte solution near the charged surface [38,43,82] in agreement with experimental
results. The predicted substantial increase in relative permittivity near the charged surface
in [127], therefore, opposes the experimental results and defies the common principles in
physics [87,123,125,126].

4.2. Osmotic Pressure between Two Charged Surfaces within Modified Langevin
Poisson–Boltzmann Model

In the following, we shall derive, within the modified LPB theory, the expression for os-
motic pressure between two charged planar surfaces (see Figure 7). First, we shall rearrange
the modified LPB equation (Equation (2)) into a planar geometry in the form [38,43,125]:

− d
dx

[
ε0n2 dφ

dx

]
− n0w p0

(
2 + n2

3

)
d

dx
L(γp0E(x)β) + 2e0n0 sin h(e0φβ) = 0, (6)

where we take into account Equation (1) for relative permittivity. Equation (6) is first
multiplied by φ′ = dφ/dx and then integrated to obtain [38,43]

− 1
2 ε0n2E(x)2 + 2n0kT cos h(−e0φβ)− nw p0

(
2+n2

3

)
E(x)L(γp0E(x)β)+(

2+n2

3

)
nw
γβ ln

[
sin h(γp0E(x)β)

γp0E(x)β

]
= K,

(7)

where the constant K in Equation (7) is the local pressure between the charged surfaces.
Equation (7) is equivalent to the contact theorem. In the second step, we subtract the
bulk values (outside the space between the charged surfaces) from the local pressure
between the charged surfaces to obtain the expression for the osmotic pressure difference
Π = Πinner −Πbulk in the form [38,43]:

Π = − 1
2 ε0n2E(x)2 + 2n0kT(cos h(−e0φ(x)β)− 1)−

nw p0

(
2+n2

3

)
E(x)L(γp0E(x)β) +

(
2+n2

3

)
nw
γβ ln

[
sin h(γp0E(x)β)

γp0E(x)β

]
.

(8)
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By taking into account Equation (4), we can rewrite Equation (8) in the form:

Π = − 1
2 ε0n2E(x)2 + kT(n+(x) + n−(x)− 2n0)−

nw p0

(
2+n2

3

)
E(x)L(γp0E(x)β) +

(
2+n2

3

)
nw
γβ ln

[
sin h(γp0E(x)β)

γp0E(x)β

]
.

(9)

The osmotic pressure is constant everywhere in the solution between the charged
plates (Figure 7).

If both surfaces have equal surface charge density (σ1 = σ2), the electric field strength
in the middle (x = H/2 in Figure 7) is zero; therefore, Equation (8) simplifies to the
form [38]:

Π = 2n0kT(cos h(−e0φ(x = H/2)β)− 1). (10)
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Figure 7. Schematic figure of an electrolyte solution between two charged surfaces at the distance H,
where the surface charge densities σ1 < 0 and σ2 > 0.

For small values of γp0E(x)β everywhere in the solution between the two charged
surfaces, we expand the third and fourth term in the above Equation (9) into series to obtain:

Π ≈ − 1
2 ε0

(
n2 +

(
2+n2

3

)2 nw p2
0β

2ε0

)
E(x)2 + kT(n+(x) + n−(x)− 2n0)

= − 1
2 ε0εr,bE(x)2 + kT(n+(x) + n−(x)− 2n0)

= − 1
2 ε0εr,bE(x)2 + 2n0kT(cos h(−e0φβ)− 1) ,

(11)

where εr,b is the Onsager expression for relative permittivity, defined by Equation (5). As,
in thermodynamic equilibrium, the osmotic pressure is equal everywhere between the two
charged surfaces (Figure 7), we can calculate the value of the magnitude of the electric field
strength in Equation (10) also at the right charged surface (Figure 7) from the corresponding
boundary condition, so Equation (11) then reads

Π ≈ −
σ2

2
2ε0εr,b

+ 2n0kT(cos h(−e0φ(x = H)β)− 1), (12)

where H is the distance between the two charged surfaces.
Figure 8 presents the osmotic pressure between negatively and positively charged flat

surfaces as a function of the decreasing distance (H) between them, calculated within the
modified LPB model.
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Figure 8. The calculated osmotic pressure between negatively and positively charged flat surfaces as
a function of the distance between the two surfaces (H) (see Figure 7), calculated within the modified
LPB model (Equations (1) and (2)) for two values of the bulk salt concentration. Other model
parameters are: σ1 = 0.2 As/m2, σ2 = −σ1, T = 298 K, concentration of water nw/NA = 55 mol/L,
and dipole moment of water p0 = 3.1 Debye, where NA is the Avogadro number.

4.3. Osmotic Pressure between Dipolar Zwitterionic Lipid Bilayer and Charged Rigid Surface

In the model, the zwitterionic dipolar lipid headgroup is composed of the lipids with
a positively charged trimethylammonium group and a negatively charged carboxyl group,
theoretically described by two charges at fixed distance, D (see Figure 9) [38,43,128]. The
negative charges of the phosphate groups of dipolar (zwitterionic) lipids are described
by negative surface charge density, σ1 at x = 0, while the opposite charged surface with
surface charge density σ2 is located at x = H. The corresponding Poisson equation in a
planar geometry then reads [38,43,128]:

d
dx

[
ε0εr(x)

dφ

dx

]
= 2e0n0 sin h(e0φ(x)β)− ρZW(x), (13)

where ρZW(x) is the volume charge density due to the positively charged trimethylammo-
nium group (Figure 9):

ρZW(x) =
|σ1|P(x)

D
and ρZW(x > D) = 0, (14)

and P(x) the probability density function [38,43,128]:

P(x) = Λ
α exp(−e0φ(x)β)

α exp(−e0φ(x)β) + 1
, 0 < x ≤ D (15)

The normalization constant is determined from the condition:

1
D

∫ D

0
P(x)dx = 1. (16)

.
P(x) describes the probability that the positive charge of a dipolar lipid headgroup is

located at the distance x from the negatively charged surface at x = 0. The parameter α is
equal to the ratio between the average volume of the positively charged parts of dipolar
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(zwitterionic) headgroups and the average volume of the salt solution in the headgroup
region, meaning that the finite size of the positively charged part of the zwitterionic lipid
headgroup is taken into account. The corresponding boundary conditions at x = 0 and
x = H should be taken into account [38]. The predictions of the model agree well with the
results of MD simulations, as shown in [38,129].

To calculate the osmotic pressure between the zwitterionic headgroup region and
positively charged surface (Figure 9), we can use Equation (8) with the input φ(x) and E(x)
determined from Equations (13)–(16) at appropriate boundary conditions, where the values
φ(x) and E(x) inserted in Equation (8) can be calculated for any D ≤ x ≤ H because, in
thermodynamic equilibrium, the osmotic pressure is equal everywhere between the two
charged surfaces. However, as we are using expression Equation (8), which neglects ρZW(x)
(Equation (14)), we can calculate the osmotic pressure between the dipolar zwitterionic
lipid bilayer and charged rigid surface (Figure 10) by using Equation (8) only in the region
D ≤ x ≤ H, where ρZW(x) is different from zero.
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Figure 9. Schematic figure of the headgroup region composed of zwitterionic lipids with a positively
charged trimethylammonium group and a negatively charged carboxyl group. The negative charges
of the phosphate groups of the dipolar (zwitterionic) lipids are described by a negative surface charge
density σ1 at x = 0, while the electric charge due to the positively charged trimethylammonium
group is described by the spatially dependent volume charge density ρZW(x), defined in the region
0 < x ≤ D (see Equations (14)–(16)). An example of a zwitterionic lipid is SOPC.

When the zwitterionic lipid layer approaches the negatively charged surface (σ2 < 0),
the average orientation of the lipid headgroup orientation angle (〈ω〉) decreases with
decreasing H due to the electrostatic attraction between the positively charged parts of the
lipid headgroups and the negatively charged surface, as schematically shown in Figure 11,
based on the results presented in [38,43]. Accordingly, the osmotic pressure between the
headgroups and the negatively charged surface decreases with decreasing H, as calculated
in [38,43].
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Figure 10. Calculated osmotic pressure between the dipolar headgroups and planar negatively
charged surface as a function of the distance between the plane of the lipid phosphate groups
and the charged surface (H) for alpha = 5. The values of model parameters are: T = 298 K,
σ1 = –0.30 As/m2, σ2 = 0.30 As/m2, dipole moment of water p0 = 3.1 Debye, bulk concentration of
salt n0/NA = 0.01 mol/L, and concentration of water nw/NA = 55 mol/L. Reprinted from [38] with
permission from Elsevier.
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Figure 11. Schematic of the average orientation of the zwitterionic head-group at two different
distances from the negatively charged surface. The figure, based on the results of theoretical modeling
and MD simulations [38,128], shows that at smaller distances from the charged surface, the average
orientation of the zwitterionic head-groups is more perpendicular to the charged surface.

5. Adhesion of Lipid Vesicles to Rigid Surface

In this section, we describe the interplay of membrane elasticity, geometrical con-
straints, and adhesive forces between the lipid bilayer and charged solid surface in the
adsorption of lipid vesicles to the solid surface. The numerically calculated shapes of
adhered lipid vesicles based on the system free-energy minimization are presented.

The shape of a vesicle upon adsorption to a surface is determined by the interplay
of adhesion, bending, and geometrical constraints. This interplay is theoretically studied
starting from a simple model in which the membrane experiences a contact potential arising
from the attractive surface. Let us recall the free energy F expression of an adsorbed vesicle
in terms of a simple model that takes into account the local bending energy terms, the
adhesion energy and two geometrical constraints [130,131]:

F =
1
2

κ
∮

(C1 + C2 − C0)
2dA + κG

∮
C1C2dA−WAc + PV + ΣA, (17)
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where κ is the local bending modulus; κG is the Gaussian curvature modulus; C1, C2, and C0
denote the two principal curvatures and the (effective) spontaneous curvature, respectively;
and dA is an infinitesimal membrane area element. In the third term, W is the strength
of adhesion and Ac is the contact area of the membrane and the surface. The last two
terms represent the volume (V) and area (A) constraints with corresponding Lagrange
multipliers P and Σ. The normalization of the membrane free energy (Equation (17)) by
the bending energy of a sphere for zero spontaneous curvature 8πκ leads to the expression
for the reduced free energy f = Fb/8πκ:

f =
1
4

∮
(c1 + c2 − c0)

2da− w
2

(
Ac

A

)
+ p

∮
dv + σ

∮
da, (18)

where v = V/
(
4πR3

s /3
)

is the reduced volume (see, for example, [131,132]); a = A/4πR2
s = 1

is the reduced area; c0 = C0Rs, c1 = C1Rs, and c2 = C2Rs are the reduced curvatures; p
and σ are the reduced Lagrange multipliers; and

w = WR2
s /κ, (19)

is a dimensionless parameter, where Rs =
√

A/4π. The ratio Ac/A = Ac/4πR2
s is the

reduced contact area and varies between zero for a spherical vesicle with reduced volume
v = 1.0 and 0.5 for pancake-shaped vesicles for a very small reduced (zero) volume v. The
above energy expression (Equation (18)) is minimized numerically, as described in [133].
Note that, in Figure 12 (for c0 = 0), the calculated nonadhered vesicle shapes corresponding
to minimal bending energy and reduced volumes v ≤ 0.591 are stomatocytic, while the
shapes for 0.592 ≤ v ≤ 0.651 are oblate and, for v ≥ 0.652, prolate (see also [134,135]). It
can be seen in Figures 12 and 13 that for high reduced adhesion strength w, the calculated
shapes of adhered vesicles approach the limiting shapes composed of the sections of
spheres corresponding to the maximal reduced contact area at a given reduced volume v.
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Figure 12. The calculated shapes of free (nonadsorbed) and adsorbed vesicles obtained by the
minimization of the free energy given by Equation (18), determined for c0 = 0 and different values of
reduced volume: v = 0.5 (A), 0.6 (B), 0.8 (C), and 0.95 (D), and different values of reduced adhesion
strength w, defined by Equation (18).
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6. Conclusions

The growing number of nanomaterial-based commercial products (medical implants,
biosensors, antibacterial surfaces, cancer therapy, etc.) has generated an increasing need
for thorough scientific studies to evaluate the interactions of nanomaterials with biological
cells and the influence of these interactions on the stability and growing of cells. The cell
membrane is a nanoscale barrier that protects the cell and constitutes the initial contact area
with the nanostructured surface. The nanomaterial–membrane interactions are strongly
dependent on the membrane curvature and is influenced by geometrical/topological
constraints and mechanical and electrical properties of the membranes and nanostructured
surfaces [1,2,22,47,49,53,54,62,66,67]. Hence, in the future, one of the major goals of the
research will be to gain a deeper understanding into the mechanisms of nanomaterial–cell
membrane interactions.

In this article, we describe briefly some selected experimental methods for studying
the interactions between nanostructured surfaces and biological cells. As an example, we
chose TiO2 nanotubular and octahedral surfaces and characterized them via AFM and XPS.
The adhesion of human blood platelets to these surfaces was studied via SEM to elucidate
the influence of the surface topography on the behavior of human cells adhered to TiO2
nanostructured surfaces.

In the theoretical part of the article, it is shown, among others, that the electrostatic
interaction between the zwitterionic lipid head groups of the proximal leaflet of the lipid
bilayer and the negatively charged solid surface is accompanied with a more perpendicular
average orientation of the lipid head-groups. This may induce, among others, a more
tightly packed gel phase of lipids in the adhered part of the vesicle membrane and stronger
orientational ordering of water dipoles between the proximal lipid layer and the supporting
solid surface. In the final part of the paper, we theoretically examined the influence of
the vesicle size, bending modulus, and adhesion strength on the shapes of adhered lipid
vesicles. The next step would be a thorough study of the changes in the thermodynamic
properties such as the phase behavior of lipid bilayers associated with the lipid bilayer
response to the supported nanostructured surface [62].
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7. Kralj-Iglič, V.; Heinrich, V.; Svetina, S.; Žekš, B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J.
B-Condens. Matter Complex Syst. 1999, 10, 5–8. [CrossRef]
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135. Mesarec, L.; Góźdź, W.; Iglič, A.; Kralj-Iglič, V.; Virga, E.G.; Kralj, S. Normal red blood cells’ shape stabilized by membrane’s

in-plane ordering. Sci. Rep. 2019, 9, 1–11. [CrossRef]

http://doi.org/10.1021/acs.jpclett.7b03048
http://www.ncbi.nlm.nih.gov/pubmed/29220577
http://doi.org/10.1016/j.physd.2017.12.008
http://doi.org/10.1021/acs.langmuir.9b01275
http://doi.org/10.1111/ejss.12801
http://doi.org/10.1016/j.coelec.2018.12.002
http://doi.org/10.1016/j.molliq.2019.111368
http://doi.org/10.1021/acs.langmuir.0c00024
http://doi.org/10.1016/0009-2614(86)80304-9
http://doi.org/10.1209/epl/i2004-10250-2
http://doi.org/10.1063/1.2972980
http://doi.org/10.1007/s00232-010-9278-x
http://doi.org/10.1063/1.4794784
http://doi.org/10.1021/acs.langmuir.7b04199
http://doi.org/10.4149/gpb_2011_02_130
http://doi.org/10.3390/e22091054
http://www.ncbi.nlm.nih.gov/pubmed/33286823
http://doi.org/10.1103/PhysRevLett.99.077801
http://doi.org/10.3390/ijms14022846
http://doi.org/10.1016/j.bioelechem.2016.04.006
http://doi.org/10.1080/00268949108035656
http://doi.org/10.1051/jphys:0197600370110133500
http://doi.org/10.1016/S0021-9290(99)00136-0
http://doi.org/10.1021/la049776u
http://www.ncbi.nlm.nih.gov/pubmed/15323480
http://doi.org/10.1103/PhysRevA.44.1182
http://www.ncbi.nlm.nih.gov/pubmed/9906067
http://doi.org/10.1038/s41598-019-56128-0

	Introduction 
	Interaction of Nanoparticles with Cell Membrane 
	Interaction of Cells with Nanostructured Surfaces 
	On the Role of Electrostatic Interactions 
	Modified Langevin Poisson–Boltzmann model 
	Osmotic Pressure between Two Charged Surfaces within Modified Langevin Poisson–Boltzmann Model 
	Osmotic Pressure between Dipolar Zwitterionic Lipid Bilayer and Charged Rigid Surface 

	Adhesion of Lipid Vesicles to Rigid Surface 
	Conclusions 
	References

