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Monte Carlo methods used in inverted hexagonal lipid phase
and in simulations of thermally fluctuating lipid vesicles

Samo Penič1 • Šárka Perutková1 • Miha Fošnarič1 • Aleš Iglič1

� Indian Institute of Technology Madras 2016

Abstract Two different uses of Monte Carlo methods in

soft matter physics are presented in the following work.

Firstly, the Monte Carlo simulated annealing is used to

minimize the elastistic energy of the inverted hexagonal

phase (HII) optimal geometry.Wewill do a brief overviewon

the mechanics of the HII lipid phase. In our model the

expression for the lipid monolayer free energy consists of

two energy contributions: the bending energy which

involves also a deviatoric term, and the interstitial energy

which describes the deformation energy due to stretching of

the phospholipidmolecule chains. On the basis of the derived

expression for the lipid monolayer free energy, we will

theoretically predict optimal geometry and physical condi-

tions for the stability of the inverted hexagonal phase. Using

the Monte Carlo simulated annealing method, we will the-

oretically describe first steps in the LaHII phase transition.

Another interesting subject investigated by means of Monte

Carlo simulations are the thermal fluctuations of nearly

spherical vesicles. The theoretical basis of this analysis was

done by Milner and Safran (Phys Rev A 36(9):4371–4379,

1987. doi:10.1103/PhysRevA.36.4371) that uses the mean

field approximation. In this work we will show the applica-

tion of theMonte Carlo simulations and show the correlation

between the time mean simulated thermal fluctuations

decomposed into spherical harmonics and the bending

stiffness in 2-dimensional and 3-dimensional space.

Keywords Monte Carlo methods � Simulations �
Phospholipid membrane � Inverted hexagonal phase �
Bending stiffness

1 Introduction

Biological cells are enveloped by thin membrane, so-called

plasma membrane [1]. The plasma membrane is enclosing

the cell and shielding it from the extracellular surrounding

already since the first prokaryotes developed [2]. It consists

of lipid, protein and sugar molecules. A soft and fluid

backbone of plasma membrane is the lipid bilayer in which

proteins and sugars are embedded, and are in general free

to move in lateral direction and also jump between both

lipid layers (flip-flops). The cell membrane has crucial

functions for cell life, i.e. it acts as a semipermeable barrier

which controls the supply of the cell with different mole-

cules through active or passive transport [2]. The mem-

brane enables cell communication through glycolipid

molecules on its surface. In eucaryotic cells the membrane

also encloses organelles in cytoplasm. Furthermore, on

membrane surface, the synthesis of ATP is taking place.

The membrane electrical properties are also important for

cell functioning and play and important role in fission and

fusion of cells.

Lipid bilayer is a self-assembled structure of amphi-

philic lipids. The most abundant sort of membrane lipids

are phosphoglycerides. They consist of glycerol backbone

where phosphate group is attached to the 3rd carbon

through ester bond and first and second carbon ends are

esterified by two long chain fatty acids. On its other end,

the phosphate group is esterified by alcohol or amino

alcohol, such as choline, ethanolamine, serine, inositol or

glycerol, see Fig. 1 [3]. Another frequent membrane
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phospholipids are sphingomyelines which have sphin-

gosine as the backbone instead of glycerol.

The characteristic structure of lipid bilayer is stable due

to hydrophobic effect. Amphiphatic membrane lipid

molecule consists of two different moieties: polar lipid

head group which is hydrophilic, can create hydrogen

bonds with neighboring water molecules [1]. On the other

hand, fatty acid chains are hydrophobic and cannot make

bonds with the water molecules. Thus when pure phos-

pholipid molecules are spreaded in water they self-assem-

ble into clusters. In order to lower their free energy they

hide hydrophobic chains from water and self-assemble into

different structures. According to different conditions such

as concentration, temperature or pH they self-assemble into

micelles, lipid bilayers which closed themselves into

spherical vesicles or other more complicated three

dimensional structures such as cubic or hexagonal meso-

phases [4].

The unique and very important characteristic of mem-

brane lipids is that unlike proteins, sugars, nuclear acids,

where their building blocks are linked by chemical bonds

(usually covalent), membrane lipids spontaneously create

assemblies that are held together by much weaker inter-

actions—the hydrophobic interactions, screened electro-

static forces, hydrogen bonds and van der Waals forces.

From the point of view of physicists, a biological

membrane or even a simple lipid bilayer is therefore very

interesting structure. It is a semipermeable barrier with

structural and functional asymmetry. Lipid bilayers have

very specific electrical properties such as conductivity and

capacitance. The self-assembling properties lipid bilayers

may be treated as liquid crystals of smectic type [5].

Therefore many physical properties can be theoretically

described within different soft matter physics theories. In

fact, the first liquid crystalline phase ever recorded were

regularly stacked layers of myelin membranes. Myelin is a

biological material that coats nerve fibers [6].

Computational algorithms often used in soft matter

physics are Monte Carlo methods. They are used, for

example, as optimization methods in multi-parameter

phase-space, or for generating draws from appropriate

probability distributions. In this work we present an

example of each of the above mentioned uses of Monte

Carlo simulations, applied on two quite distinct phospho-

lipid structures.

First, in Sect. 2, we present the analysis of an inverted

hexagonal phase as an example of non-lamellar phospo-

holipid self-assembly structures, where we used simulated

annealing Monte Carlo optimization method [7].

Then, in Sect. 3, we present Monte Carlo simulations of

thermal fluctuations of phospholipid vesicle and its analy-

sis for obtaining membrane elastic properties as previously

reported in [8, 9]. Here the Metropolis–Hastings Monte

Carlo algorithm was used to generate the appropriate

statistics of the canonical ensemble that corresponds to the

vesicle fluctuating in thermodynamic equilibrium.

2 Inverted hexagonal phase

2.1 Introduction to non-lamellar lipid

self-assemblies

It is known that different types of phospholipids that occur

in biological organisms may self-assemble into non-

lamellar structures if they are extracted from cells and

rehydrated in aqueous solution. However, despite the fact

that many non-lamellar phases have been undoubtedly

identified also in various biological systems [10], still little

is understood concerning their function. The induction of

non-planar lipid mesophases might play a role in the reg-

ulation of protein function. Further, membrane fusion for

instance in endo- and exocytosis is thought to be dependent

on such highly curved lipid structures [11]. It is also sup-

posed that interbilayer tight junctions host non-bilayer
Fig. 1 Phospholipid molecule of POPC is shown schematically.

Some physically relevant data are shown on the left
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structures [12, 13]. Last, but not least, lipids forming the

non-lamellar structures are indispensable in providing the

lipid matrix with special properties, like tuning its flexi-

bility and altering its lateral pressure profile [14], and

hence assure the proper function of integral membrane

proteins, even in changing environmental conditions [15–

17].

The non-lamellar structures of phospholipids are also

common in some species of bacteria. It was suggested that

the membrane lipid bilayers of bacteria are close to the

transition from lamellar to non-lamellar structure [5]. Many

different types of bacteria can enzymatically change the

intrinsic curvature of phospholipids, consequently, they can

prefer the non-lamellar phases [5]. Under laboratory con-

ditions, also higher ordered systems of non-lamellar phases

can be prepared such as hexosomes and cubosomes

promising applications in nanomedicine [18].

The bicontinuous cubic phases (Im3m, Pn3m, Ia3d),

inverse hexagonal phase (HII) and inverse micellar cubic

phase (Fd3m) belong to the biologically most relevant non-

lamellar mesophases, Fig. 2. These mesophases resist

excess of water and can be stable under certain conditions

also in biological systems [19–21]. They can be assembled

only from certain kinds of lipids. The most known non-

bilayer forming lipids are phosphatidylethanolamines

(PEs). They are unique with respect to their headgroup

consisted of ethanolamin which is considerably smaller

than the tail fatty acid region, (compare Figs. 1 and 2).

Their spontaneous shape already prefers the inverse non-

bilayer structure. PEs are quite abundant in nature. For

example, membrane of Escherichia coli contains 70 % of

PEs and a great deal of PEs (up to 20 %) can be also found

in mitochondrial membranes and red blood cell plasma

membranes [22].

To mathematically describe the non-lamellar inverted

hexagonal phase HII we may adopt 2D model which can

be easily solved. Two dimensional nature of HII phase

offers simple geometry, modelling and numerical calculus.

The HII-phase of biomimetic model systems has been

intensively studied in order to characterize its geometric

and energetic properties [24–27]. Most commonly the

bending modulus and intrinsic (spontaneous) radii of dif-

ferent lipid/water systems were evaluated. Note that due to

the simple geometry of the HII-phase, a mathematical

relationship between the intrinsic shape of the lipid

molecules and the given packing frustration can be

determined [28, 29].

It is important to note that the commonly used models of

the HII-phase assume isotropic lipid intrinsic shapes, and

further suppose the polar/apolar interface cross-section to

be perfectly circular [30, 31], a simplification that has also

been applied in some of our model calculations [25, 32].

According to experimental observations different other

models of intrinsic lipid shapes were suggested, such as the

sharp hexagonal cross-section. In our present theoretical

consideration we further generalized our HII-phase model

allowing for deviations of the pivotal plane from a circular

cross-section. The pivotal plane is defined as the plane in

which the area per lipid molecule is not changed upon

applying a bending moment [33, 34]. Indeed, in reality the

cross-section of HII-phase is not purely circular, but

appears to be hexagon-like with smoothed corners [35–37]

(Fig. 3). Although the approximation of circular geometry

is sufficient for robust free energy determination of the HII-

phase, allowing for deviations from a circular cross-section

yields a more accurate evaluation of the lipid membrane

material parameters. However, for this it is necessary that

the theoretical predictions are compared to highly resolved

electron-density maps as available, for instance, for di-

oleoyl-phosphatidylethanolamine (DOPE) [37].

Recently by Mareš et al. [25] pointed out that by using

the concept of the anisotropic shape of lipid molecules may

better explain the La � HII phase transition and the stability

of the HII-phase at higher temperatures than by considering

the isotropic lipid shapes only. A similar idea was also

expressed earlier [39], but not applied to any model cal-

culations. Hence the model of wedge-like shaped phos-

pholipid molecules was favored over the axisymmetric

inverted cone-like model lipid shapes [25, 27] and the

corresponding deviatoric energy term averaging the rota-

tional states of the anisotropic compartments was consid-

ered [40].

A

D

E

B C

Fig. 2 Schematic figures of non-bilayer self-assemblies: a–c bicon-

tinuous cubic phases (adopted from [23]) d inverted hexagonal phase

and e inverse micellar cubic phase
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2.2 Calculations of the elastic energy of the inverted

hexagonal phase by the Monte Carlo simulation

2.2.1 Elastic energy

To calculate the HII-phase optimal geometry by Monte

Carlo simulation, we have to first define the free energy of

the lipid monolayer in HII-phase. The lipid monolayers in

the HII-phase have a strong anisotropic curvature therefore

the average orientational ordering of the lipids cannot be

neglected. The free energy of a lipid monolayer has been

derived [40, 41] starting from the energy of a single

molecule and using the methods of statistical physics. The

local bending energy of the lipid monolayer in the HII-

phase [42] includes the contribution of the deviatoric

bending [32, 40] as an additional contribution due to the

average orientational ordering of the phospholipids. The

whole monolayer free energy is then:

F ¼ Fb þ Fv ð1Þ

where Fb is the monolayer bending energy comprising the

anisotropy of lipids and Fv the stretching energy of the

lipid chains [25]:

Fb ¼
Z
A

n0n
2

ðH � HmÞ2 þ D2 þ D2
m

� �
dA

� n0kT

Z
A

ln 2 cosh
nð1þ ~k=kTÞDmD

kT

� �� �
dA

ð2Þ

Here H ¼ ðC1 þ C2Þ=2 is the local mean curvature of the

monolayer, D ¼ j C1 � C2 j =2 is the local curvature

deviator, Hm ¼ ðC1m þ C2mÞ=2 is the intrinsic mean

curvature, Dm ¼ j C1m � C2m j =2 is the intrinsic

curvature deviator (for details see Ref. [25, 32]), n0 is the

area density of the lipid molecules, n is a constant

describing the strength of the interaction between a single

lipid molecule and the surrounding membrane continuum

which is connected to the monolayer bending modulus

(n ¼ 2kcn
�1
0 ), ~k is a constant describing the direct

interaction between lipid molecules [40], k is the

Boltzmann constant, T is temperature and dA is the area

element of the monolayer surface. The stretching energy Fv

of the lipid chains has the form [25]:

Fv ¼ sn0

Z

A

ðf� f0Þ2dA: ð3Þ

where f is the length of the lipid molecule, f0 is the

reference length of the molecule and s is the stretching

modulus of the lipid molecule. Considering the HII-phase

geometry (Fig. 4), the length of the hydrocarbon chain in

polar coordinates may be expressed as:

f ¼ a

2 cosu
� qðuÞ; ð4Þ

where a is the unit cell parameter. The aim of our calcu-

lations was to obtain the equilibrium contour of the pivotal

cross-section represented by the unit cell parameter, a, and

the polar coordinates qðuÞ for the different membrane

parameters Hm and s with the constants kc ¼ 11 kT [43] for

three different lipids; dioleoyl-phosphatidylethanolamine

(DOPE), stearoyl-oleoyl-phosphatidylethanolamine (SOPE)

A B

C

Fig. 3 Schemes of different models of inverted hexagonal phase.

a Circular cross-section—[30, 31], b hexagonal cross-section—[38],

c intermediate between circular and hexagonal cross-section—[35–

37]

Fig. 4 Cross-section of the HII-phase showing the geometrical

parameters: radius vector of the pivotal plane, q, unit cell parameter,

a, equilibrium length of the hydrocarbon chain, f0, and polar angle, u.
Adopted from [7]
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and palmitoyl-oleoyl-phosphatidylethanolamine (POPE).

The values of f0 and n�1
0 are given in Table 1. Using the

definition of the arc length l and the angle w leads to

expression: 2H ¼ 2D ¼ dw=dl (see Fig. 5). For the sake of
simplicity, we consider the anisotropic shape of the lipids

at higher temperature as wedge-like, having C2m ¼ 0 and

C1m\0 which yields Hm ¼ Dm ¼ C1m=2, [7]. Because of

the hexagonal symmetry it is sufficient to determine the

equilibrium contour shape for only one twelfth of the

pivotal plane cross-section.

2.2.2 Monte Carlo simulated annealing simulations

Equation (1) was minimized numerically by using the

Monte Carlo simulated annealing method (MC) [44]. The

Monte Carlo simulated annealing method may efficiently

find the global minimum of the energy. The contour of the

pivotal plane was described by the polar coordinates of

radius vector, q, and polar angle, ui ¼ ½0; p=6�; i ¼
1; . . .;N which divided a twelfth of the contour line into

N = 60 points. The starting contour for the MC method

was the equilibrium geometry where deviations from cir-

cularity were not taken into account (computed as descri-

bed in Mareš et al. [25]). The boundary conditions were

wu¼0 ¼ 0 and wu¼p=6 ¼ p=6. In the MC computations q1,
wi and a were randomly changed in each step and the

energy of the contour was evaluated with respect to the

Metropolis criterion, while according to the cooling

schedule of simulated annealing T ¼ ð100=ð1þ 0:01 � kÞÞ
the temperature parameter was decreased after each step

until it reached zero [44]. The number of steps for each

computation was 107. The radius vector length qi was

calculated by using the expression:

qiþ1 ¼
qiðcosui þ sinuitanwiÞ
ðcosuiþ1 þ sinuiþ1tanwiÞ

: ð5Þ

which can be easily derived from the Fig. 5.

The validity of our MC simulation method was tested by

variational calculus of the free energy for few different

parameters with obtaining an excellent agreement [7].

2.2.3 Results

We obtained the calculated HII-phase contour which cor-

responds to minimal free energy determined by Monte

Carlo simulated annealing method. The results show slight

deviations from circularity of the cross-section for given

parameters.

The good agreement of the HII-phase pivotal plane

cross-section contour shape between experiments and the-

oretical predictions for both DOPE and SOPE phospho-

lipids can be seen in Figs. 6 and 7, respectively. Good

agreement for the pivotal plane cross-section contour was

predicted for several combinations of Hm and s. The range
of possible pairs of parameters is restricted to a rather small

region in the Hm�s plane. To reproduce a realistic non-

circular shape of the pivotal plane which was obtained

from experiments s should not drop below 2kT nm2,

otherwise even at low temperatures the shape is too circular

(D\0:5%) [7]. The upper limit of possible values for s is

restricted by the magnitude of realistic value of the mean

radii, which become too small for higher s. The values of

the mean intrinsic curvature Hm are also restricted by the

mean radius, namely for higher values of jHmj the mean

radius is too small to match the experimental contour.

It is obvious that taking into account deviations from

circularity slightly lowers the membrane free energy with

respect to the case of a purely circular geometry. The

decrease is more pronounced for higher deviations from

circularity.

It can be concluded that when the hydrocarbon chains

are very stiff the membrane must bend towards the hexa-

gon corners in order to help fill the empty parts in hexagon

corners. Thus the pivotal plane contour deviates more from

Table 1 Values of the optimal (relaxed) length f0 and area per lipid

molecule at the pivotal plane a0 ¼ n�1
0 obtained from experiments

[25, 37]

SOPE 68 �C DOPE 20 �C POPE 74 �C

f0=nm 1.33 1.20 1.13

n�1
0 =nm2 5.84 5.97 0.65

Fig. 5 Illustration of parametrization of the pivotal plane cross-

section. The contour is described by Cartesian z(x) and polar qðuÞ
coordinates. w is the angle between vertical and normal (n) in each

point. Adopted from reference [7]
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a circle. On the other hand, when the stiffness of the

hydrocarbon chain is lower the chains can easily stretch

themselves in order to fill the empty parts with keeping the

pivotal plane more circular.

In this review, we focussed on the simple two-dimen-

sional inverted hexagonal phase. Nevertheless, there is a

possibility to extend the concept for the three-dimensional

structures such as hexosomes by taking into account that

the axis of the HII cylinder is not straight line with infinite

length. This can be done by using the curvilinear

coordinates for the axis of the HII cylinder and by addition

of the expression for energy of HII cylinder’s endings into

the free energy. Other three-dimensional task would be

solving the stability of bicontinuous cubic phases where

some symmetries can be used in order to simplified

mathematical description. The anisotropic model of phos-

pholipid molecules, as presented in this manuscript, is also

important in bicontinuous cubic phases. Besides the

wedge-like molecules the saddle-like molecules with one

intrinsic principal curvature negative and the second one

positive are important as there are few saddle points in the

structure. In this problem, one also should take into account

that instead of the monolayer bending energy the bilayer

bending energy has to be employed.

3 Monte Carlo simulations of lipid vesicle thermal
fluctuations

Cell membranes and lipid bilayers are subject to thermal

fluctuations. As for example, the flickering of red blood

cells was observed with optical microscopy and reported

by Browicz [45]. Cell membrane that separates the interior

of the cell from its surroundings is soft and is subjected to

water molecules collisions due to their Brownian motion

resulting in membrane undulations, which are observed as

fluctuations of the shape of the membrane. Spectral anal-

ysis of membrane’s shape thermal fluctuations can be used

to determine elastic properties of the membrane, as we

shall discuss below. Experimentally, giant unilamellar lipid

vesicles (GUVs) are especially useful for observations of

fluctuations, since they have controlled membrane com-

position and are of the adequate size to be observed under

the phase-contrast microscope [46]. Also computer simu-

lations of thermally fluctuating membranes can be applied

to explore membrane properties and structure. Using

Monte Carlo simulations of nearly spherical lipid vesicles

for obtaining elastic properties of vesicle’s membrane is

the main topic of this section.

3.1 Metropolis–Hastings Monte Carlo algorithm

Models for numerical studies of thermal fluctuations can

consider the membranes on atomic level, coarse-grained

molecular level, or can take advantage of the high level

modelling of the phospholipid bilayer structure and repre-

sent the membrane as smoothly curved surface [47].

Phospholipid bilayer membranes can be treated due to

its small thickness in first approximation as two dimen-

sional liquid, allowing the continuum approach in the

theoretical description of membrane surfaces [47]. In the

model presented in this section we discretize the membrane

into patches consisting of many molecules. A single patch

Fig. 6 The best agreement of the experimentally obtained pivotal

plane cross-section of DOPE (full lines) and theoretical predictions

(dashed line), where x ¼ q cosðuÞ and z ¼ q sinðuÞ. The parameters

are Hm ¼ 0:14 nm-1, s ¼ 14:95 kT nm�2. Adopted from [7]

Fig. 7 The best agreement of the experimentally obtained pivotal

plane cross-section of SOPE (full lines) and theoretical predictions

(dashed line), where x ¼ q cosðuÞ and z ¼ q sinðuÞ. The parameters

are Hm ¼ 0:15 nm�1, s ¼ 1:9 kTnm�2. Adopted from [7]

Int J Adv Eng Sci Appl Math

123

Author's personal copy



is represented by a vertex in a triangulated surface model.

The main model parameter that defines mechanical bilayer

properties is bending stiffness.

The vesicle is represented by a set of N vertices that are

linked by tethers (i.e. bonds) of flexible length d to form a

closed, randomly triangulated, self-avoiding network [48,

49]. The lengths of the tethers can vary between a minimal

(dmin) and a maximal (dmax) value. The self-avoidance of

the network can be implemented by ensuring that no vertex

can penetrate through the triangular network. The maximal

possible random displacement of the vertex in a single step

(s), should be small enough that the fourth vertex can not

move through the plane of the other three to the minimal

allowed distance, dmin, from the three vertices.

Let us consider the ratio between the maximal and

minimal bond lengths, dmax=dmin. For s ¼ 0:15 dmin the

self-avoidance constraint gives dmax\1:7272 dmin. In our

simulations we use s ¼ 0:15 dmin and dmax ¼ 1:7 dmin. For

details about the expressions to calculate self-avoidance

constraint dmax see [8].

The initial state of triangulated surface is a pentagonal

dipyramid with all the edges divided into equilateral bonds

so that the network is composed of 3(N - 2) bonds forming

2(N - 2) triangles. The system is initially thermalized—

evolved into the nearly spherical equilibrium state using

same procedure as to acquire the microstates from the

simulations. The thermalized structure is shown in Fig. 8.

In our Monte Carlo simulations, the microstates of the

vesicle membrane are sampled according to the Metropo-

lis-Hastings algorithm. Evolution of the system is mea-

sured in Monte Carlo sweeps (mcs). One mcs consists of

individual attempts to displace each of the N vertices by a

random increment in the sphere with radius s—the action

we will refer to as vertex move. Membrane fluidity is

maintained by flipping bonds within the triangulated net-

work. In each mcs, the vertex move attempts are followed

by 3N attempt to flip a randomly chosen bond. A single

bond flip involves the four vertices of two neighboring

triangles. The tether between the two vertices is cut and

reestablished between the other two, previously uncon-

nected, vertices (see Fig. 9).

Thermal fluctuations of a lipid vesicle in thermodynamic

equilibrium are being studied. To obtain the canonical

ensemble representing the system in a thermodynamical

equilibrium, each individualMonteCarlo step (vertexmoveor

bond flip) is accepted with probability min 1; exp �DE=kTð Þ½ �
according to Metropolis-Hastings algorithm, where DE is the

energy change due to the vertex move or bond flip.

For the bending energy Wb of the membrane we use the

standard Helfrich expression [50] for a tensionless mem-

brane with a zero spontaneous curvature and a fixed

topology (the contribution of the Gaussian curvature to the

bending energy does not depend on the fluctuations):

Wb ¼
j
2

I

A

ðc1 þ c2Þ2 dA; ð6Þ

where j is the bending stiffness of the membrane, c1 and c2
are the principal curvatures of the vesicle membrane at the

point under consideration and the integration is performed

over the membrane area A.

For the discretization of the bending energy (Eq. 6) we

used the relation [51, 52]

Z

A

ðc1 þ c2Þ2 dA ¼
X
i

1

ri

X
jðiÞ

rij
dij

ðRi � RjÞ

2
4

3
5
2

; ð7Þ

where the outer summation runs over all vertices and the

inner summations run over all their nearest neighbors, Ri is

the radial vector of vertex i, dij is the distance between

vertices i and j,

ri ¼
1

4

X
jðiÞ

rijdij ð8Þ

is the area of the cell in the dual lattice [52] in vertex i.

Here rij ¼ dij½cotðh1Þ þ cotðh2Þ�=2 is the distance between

vertices in the dual lattice, h1 and h2 being opposite angles

Fig. 8 An example of the triangulated network with N = 407

vertices, representing the evolved thermalized structure of the nearly

spherical vesicle. The radius of the structure is approximately 7dmin

it

km

k

kp

lm lp

it

km

k

kp

Fig. 9 A bond flip within the triangulated network; this involves the

four vertices (it, k, km and kp) of the two neighboring triangles (lm and

lp). The minimal bond ( i.e. tether) length is also shown
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to side ij in the two triangles that share the common bond ij

(see Fig. 10).

The lipid bilayer is on a timescale of thermal fluctua-

tions impermeable for water molecules and due to the low

compressibility of water we can assume the vesicle’s vol-

ume to be constant during thermal fluctuations. The volume

of the vesicle in simulations is kept constant at the given

value V0 by the constraint jV � V0j\eV , where eV must be

small enough to fulfill the condition eV � V0, but still not

so small to completely suppress the out-of-plane shape

fluctuations of the membrane. The choice of eV depends on

the discretization and is in our work taken to be the volume

of the tetrahedron consisting of equilateral triangles with

areas A0=Nt, where A0 is the area of the spherical vesicle

with volume V0 and Nt is the number of triangles in the

triangulated surface:

eV ¼ 4
ffiffiffiffiffiffi
2p

p

33=4
V0

N
3=2
t

: ð9Þ

With thermal fluctuations some lateral stretching of the

membrane occurs on the scale of phospholipid molecules,

however, the energy required to significantly change the

area of the membrane greatly exceeds the thermal energy

kT (product of the Boltzmann constant and the absolute

temperature), therefore we can assume that the overall area

A of the membrane remains almost constant during thermal

fluctuations (DA � A).

Constant volume and area constraints are required for

applying the theory of Milner and Saffran [53] to calculate

the bending stiffness of nearly spherical phospholipid

vesicles by analyzing the thermally fluctuating shapes of

vesicles by decomposing them into spherical harmonics.

3.2 Obtaining elastic properties through spectral

analysis of thermal fluctuations in two

dimensions

For the sake of simplicity and comparison, we first analyze

in details thermal fluctuations of phospholipid vesicles in

two dimensions. For a lipid vesicle in three dimensions, the

Helfrich bending energy [50] for a membrane with zero

spontaneous curvature (symmetric lipid bilayer) and with

fixed topology (so the contribution of the Gaussian cur-

vature to the bending energy does not depend on the

fluctuations) is described by Eq. 6.

To make a correspondence with a two-dimensional

treatment, imagine a lipid membrane forming a cylinder,

namely a bilayer wrapped into a straight tube, long enough

that the effects at the both ends of the tube can be

neglected. Then one principal curvature is zero and

dA ¼ h dl, where h is the cylinder’s height and dl is the

length element of the cross-section’s contour. We can

define kc ¼ h j, with kc being the two-dimensional analog

of the bending stiffness of the membrane with units of

energy 9 length. In this analogy we also have to assume

the form of a cylinder for the thermal shape fluctuations.

As the lipid bilayer fluctuates, the deviations from a

cylinder with a circular cross-section are independent of

the coordinate parallel to the cylindrical symmetry axis, or

in other words, shape undulations are the same over the

whole length of the tube. Another possible analogy is a

closed linear polymer of almost circular shape, enclosed in

a thin planar film of liquid so that its out of plane fluctu-

ations are completely suppressed. The constant kc is then

kc ¼ kT n, where kT is the thermal energy and n is the

polymer persistence length [8].

Let us consider a nearly circular closed planar curve in

the plane that encloses constant area A ¼ pR2
0, where R0 is

the radius corresponding to a circle with the same area A.

In polar coordinates the curve is described by the radial

coordinate R ¼ Rðu; tÞ, depending on the polar angle u and

on time t. The bending energy of the curve can then be

written as

Wb ¼
1

2
kc

I

LðtÞ

C2 dl ¼ 1

2
kc

Z2p

0

C2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R02

p
du; ð10Þ

with curvature C ¼ Cðu; tÞ and the element of contour

length dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R02

p
du of the closed curve with total

length L = L(t). Note that curvature C, radial coordinate R

and contour length in general all change with time t due to

thermal fluctuations. We use the prime symbol for denoting

the operator of the first partial derivative with respect to u.
Similarly we use the double prime symbol for denoting the

second partial derivative with respect to u. In polar

coordinates the curvature C can then be written as

C ¼ R2 þ 2R02 � RR00

ðR2 þ R02Þ3=2
: ð11Þ

Note that the constant kc in Eq. 10 has units of ener-

gy 9 length and represents the ‘‘two-dimensional’’ bend-

ing stiffness [8].

i

jm

j

jp

θm
θp

Fig. 10 Part of the network involved in calculation of the distance

between vertices in dual lattice rij
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For the circle with radius R0, Eq. 10 yields the bending

energy

W0 ¼
1

2
kc

Z2p

0

1

R2
0

R0 du ¼ pkc
R0

: ð12Þ

Consider the relative deviations, r ¼ rðu; tÞ, from the

circle with radius R0,

Rðu; tÞ ¼ R0ð1þ rðu; tÞÞ: ð13Þ

Then we can express the squared curvature, which we will

need for calculating the bending energy (from Eq. 10) as

C2 ¼ ½1þ 2r þ r2 þ 2r02 � ð1þ rÞr00�2

R2
0 ½ð1þ rÞ2 þ r02�3

: ð14Þ

Now we assume that thermal fluctuation do not cause too

much deviation of the contour from a circular shape. More

specifically, we assume that the relative deviations from a

circle and its first and second derivatives with respect to u
are small:

rðu; tÞ � 1; ð15Þ

r0ðu; tÞ � 1; ð16Þ

r00ðu; tÞ � 1: ð17Þ

Therefore we can expand C2 (from Eq. 14) up to the

second order in r, r0, r00 to get

C2 ¼ 3r2 þ r02 þ ðr00 � 1Þ2 þ rð6r00 � 2Þ
R2
0

: ð18Þ

Expanding the length element,

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R02

p
du ¼ R0 1þ r þ r02

2

� �
du; ð19Þ

the bending energy from Eq. 10 becomes

Wb ¼
kc

2R0

Z2p

0

r2 þ 3

2
r02 þ ðr00 þ 1Þ2 þ rð4r00 � 1Þ

� �
du:

ð20Þ

Further, the relative deviations from a circle are expended

into the Fourier series:

rðu; tÞ ¼
Xnmax

n¼�nmax

znðtÞeinu; ð21Þ

where the cutoff nmax �R0=kmol is introduced, with kmol is

typical intramolecular distance. For brevity the limits are

omitted in the summation signs in all expressions below

[8].

Note that the complex amplitudes have the property

z�nðtÞ ¼ z�nðtÞ, assuring that relative deviations rðu; tÞ are

real numbers. The first and the second derivatives with

respect to u are then

r0ðu; tÞ ¼ i
Xnmax

n¼�nmax

n znðtÞeinu; ð22Þ

r00ðu; tÞ ¼ �
Xnmax

n¼�nmax

n2znðtÞeinu: ð23Þ

Inserting the above expressions 22 and 23 into Eq. 20, and

performing integration over the polar angle u, we can get

Z2p

0

r du ¼
X
n

zn

Z2p

0

einudu ¼ 2pz0; ð24Þ

Z2p

0

r2 du ¼
X
n;m

znzm

Z2p

0

eiðnþmÞudu ¼ 2p
X
n

jznj2 ð25Þ

and similarly

Z2p

0

r02 du ¼ 2p
X
n

n2jznj2; ð26Þ

Z2p

0

r00 du ¼ �
X
n

n2zn

Z2p

0

einudu ¼ 0; ð27Þ

Z2p

0

r002 du ¼ 2p
X
n

n4jznj2; ð28Þ

Z2p

0

rr00 du ¼ �2p
X
n

n2jznj2: ð29Þ

Therefrom we obtain DWb ¼ Wb �W0, where W0 ¼
pkc=R0 (see Eq. 12) is the bending energy of the circle

with radius R0,

DWb ¼
pkc
R0

�z0 þ
X
n

n4 � 5

2
n2 þ 1

� �
jznj2

" #
: ð30Þ

The zero-mode amplitude z0 can be expressed using the

equation of area conservation A ¼ pR2
0. Taking into

account

A ¼
Z2p

0

R2

2
du ¼ pR2

0 1þ 2z0 þ
X
n

jznj2
" #

ð31Þ

we see

z0 ¼ � 1

2

X
n

jznj2 ð32Þ

and therefore the expression for the bending energy is
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DWbðtÞ ¼
pkc
R0

X
n 6¼0

n4 � 5

2
n2 þ 3

2

� �
jznðtÞj2; ð33Þ

where n in the summation runs over all nonzero integers

from �nmax to nmax. The term jz0j2 is not taken into account
in the above summation, since it is of the fourth order in the

amplitudes zn, as seen from Eq. 32.

The total elastic energy of our fluctuating closed contour

is the sum of the bending contribution (Eq. 33) and the

stretching contribution. The stretching energy can be rep-

resented as

WsðtÞ ¼
I

LðtÞ

1

2

½kðtÞ�2

ks
dlr ¼

1

2

½kðtÞ�2

ks
Lr; ð34Þ

where ks is the ‘‘stretching modulus’’ (with units of

energy 9 length), L = L(t) is the contour length,

kðtÞ ¼ ks
LðtÞ � Lr

Lr
ð35Þ

is the tension and Lr is the tension-free contour length

(relaxed membrane). Let us note that tension k ¼ kðtÞ
fluctuates with time t, but can be taken as constant along

the contour (or vesicle membrane in 3D) [54]. The reason

why the integral in Eq. 34 runs over the length element

dlrðtÞ of the tension-free membrane (and not, say, dl(t)) lies

in the fact that dlrðtÞ is proportional to the number of

molecules in the length dlðtÞ and that what we calculate is

the energy per molecule (or, in other words, energy for the

part of the membrane with a fixed number of molecules in

it) [8].

Introducing the time averaged tension as

kh i ¼ ks
Lh i � Lr

Lr
; ð36Þ

and using the relation

kðtÞ � kh i ¼ ks
LðtÞ � Lh i

Lr
; ð37Þ

we can rewrite the stretching energy from Eq. 34 as:

WsðtÞ ¼
1

2
ks
½LðtÞ � Lr�2

Lr

¼ 1

2
ks
½LðtÞ � Lh i þ Lh i þ Lr�2

Lr

¼ kh i LðtÞ � Lh i½ � þ Lr kh i2

2 ks

þ 1

2
kðtÞ � kh i½ � LðtÞ � Lh i½ �:

ð38Þ

Note that in the second line of the expression 38 the second

term is the stretching energy of the contour with the

average length hLi is independent of time. We define

DWsðtÞ ¼ kh i LðtÞ � L0½ �

þ 1

2
kðtÞ � kh i½ � LðtÞ � Lh i½ � þ const:;

ð39Þ

where the constant term does not depend on time and L0 ¼
2pR0 is the contour length of the circle with area A. It can

be seen that

LðtÞ � L0 ¼
I

LðtÞ

dl� L0 ¼ pR0

X
n6¼0

ðn2 � 1ÞjznðtÞj2 ð40Þ

and that

LðtÞ � Lh i ¼ pR0

X
n 6¼0

ðn2 � 1Þ jznðtÞj2 � jznðtÞj2
D Eh in o

:

ð41Þ

Therefore the second term in Eq. 39 is the product of the

fluctuations of the molecular (mean) field (namely,

kðtÞ � hki½ �, created by the squares jznðtÞj2 of the

amplitudes of all modes available) and the fluctuations of

the square jznðtÞj2 � hjznðtÞj2i
h i

of the amplitude of the

mode under consideration. The main idea of the mean-field

approximation is to disregard the correlations of the

molecular field with fluctuations of its conjugated

quantity. Therefore the second term in Eq. 39 is omitted

and this gives us

DWðtÞ ¼ DWbðtÞ þ DWsðtÞ

¼ pkc
R0

X
n 6¼0

ðn2 � 1Þ n2 þ �k� 3

2

� �
jznðtÞj2

þ const:;

ð42Þ

where we introduced the dimensionless average tension
�k ¼ hkiR2

0=kc.

Performing the time averaging of the above expression

and taking into account the equipartition theorem that each

fluctuation mode on the average contributes kBT=2 to the

energy, we finally obtain the expression for the mean

squared amplitudes:

jznj2
D E

¼ kT

2

R0

pkc

1

ðn2 � 1Þ �kþ n2 � 3
2

	 
 : ð43Þ

The mean squared amplitudes for the modes n� 2 diverge

for negative values of the lateral tension, as expected

(hjz2j2i diverges for �k ¼ �2:5) [8].

3.3 The determination of elastic properties of lipid

bilayer vesicle through spectral analysis

of thermal fluctuations in three dimensions

Similar expression as the above Eq. 43 for two dimensions

was derived for three dimensions by Milner and Safran

[53]. Their theory allows us to obtain the bending stiffness
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Kc of the membrane from the spectral analysis of thermal

fluctuations of the nearly spherical vesicle. In this section

we apply the theory of Milner and Safran on our randomly

triangulated surfaces simulations. Note that the bending

stiffness j is an input parameter in our simulations and that

we used a different symbol (Kc) for the bending stiffness

obtained from the spectral analysis of thermal fluctuations

(in two dimensional case, the symbol kc was used). From

now on, to distinguish the two values j and Kc, we name

them the input bending stiffness and the measured bending

stiffness, respectively.

Consider now triangulated nearly spherical vesicle with

volume V0 and let R0 be the radius of a sphere with the

same volume. The length of the radial vector RiðtÞ ¼
Rð#i;ui; tÞ from the origin to the vertex i at time t is then

defined as

Rð#i;ui; tÞ ¼ R0½1þ rð#i;ui; tÞ�; ð44Þ

where #i and ui are the spherical coordinates of the ith

vertex and rð#i;ui; tÞ is the relative displacement of the ith

vertex [9].

Relative displacements rð#i;ui; tÞ are decomposed into

a series with respect to the spherical harmonics Ym
l ð#i;uiÞ:

rð#i;ui; tÞ ¼
Xlmax

l¼0

Xl

m¼�l

uml ðtÞYm
l ð#i;uiÞ; ð45Þ

where cutoff lmax is of the order of R0=dmin and the

spherical harmonics are defined as

Ym
l ð#;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p
ðl� mÞ!
ðlþ mÞ!

s
Pm
l

	
cosð#Þ



eimu ð46Þ

using associated Legendre polynomials Pm
l [9].

The complex coefficients uml ðtÞ can then be calculated

using the relation

uml ðtÞ ¼
Z
X
rð#;u; tÞ Ym

l ð#;uÞ
	 
�

dX; ð47Þ

where the integration runs over the solid angle X of the

sphere. The discretization of the above expression can be

done as

uml ðtÞ ¼
XN
i¼1

XiðtÞriðtÞ Ym
l ð#iðtÞ;uiðtÞÞ

	 
�
; ð48Þ

where XiðtÞ is the solid angle corresponding to vertex i and

the sum runs over all vertices of the triangulated surface

[9].

The mean squared amplitudes of spherical harmonics

hjuml j
2i are calculated by averaging the juml ðtÞj

2
values over

an ensemble of microstates of the vesicle in the thermal

equilibrium. Using the expression of Milner and Safran

[53],

juml j
2

D E
¼ kT

Kc

1

ðl� 1Þðlþ 2Þð�rþ lðlþ 1ÞÞ ; ð49Þ

the bending stiffness Kc and the dimensionless mean lateral

tension �r of the membrane can be obtained.

Since the rhs of Eq. 49 do not depend on the order of

spherical harmonics m, the mean squared amplitudes of

spherical harmonics obtained from simulations are first

averaged over m and then the obtained values hjulj2i are

used on the lhs of Eq. 49:

julj2
D E

¼ kT

Kc

1

ðl� 1Þðlþ 2Þð�rþ lðlþ 1ÞÞ : ð50Þ

To obtain the bending stiffness Kc and the dimensionless

mean lateral tension �r of the membrane together with their

standard errors, the hjulj2i from simulations are fitted with

the formula of Milner and Safran (Eq. 50) using an inverse

squared variance weighted nonlinear fit [9].

3.4 Results and discussion

For each set of parameters the system is initially thermal-

ized into a nearly spherical vesicle and then the volume is

fixed. The squared amplitudes of spherical harmonics juml j
2

are obtained from Monte Carlo simulations as described in

Sect. 3.3.

To obtain the ensemble of microstates that are statisti-

cally independent, the autocorrelations of squared ampli-

tudes f ðjuml j
2; sÞ are calculated with the autocorrelation

function

f ðx; sÞ ¼
PT�s

t¼1 ðxðtÞ � xh iÞðxðt þ sÞ � xh iÞPT�s
t¼1 xðtÞ � xh ið Þ2

; ð51Þ

where the sums run over the discrete ‘‘time’’ t denoting

consecutive microstates and T is the number of microstates

used in the calculation of the mean hxi. Let us define the

decay time of juml j
2
as the value of s when the autocorre-

lation function f ðjuml j
2; sÞ falls bellow 1/e.

Figure 11 shows the autocorrelation functions of the few

lowest relevant modes for a system with N = 1127 vertices

and input bending stiffness j ¼ 20 kT . It can be seen that

the longest decay times are for jum2 j
2
i.e. the decay time

decreases with the increasing degree of the spherical har-

monics l, as expected. Let us denote the largest decay time

of all the relevant modes for a given system with N vertices

as sN (in Fig. 11 we have s1127 	 60;000). The largest

decay time sN decreases with the increasing input bending

stiffness j, while it increases with the number of vertices

N in the triangulated network.

The decay time sN is important for our spectral analysis

since it can be used to estimate the ‘‘time’’ interval between

two microstates that can be regarded as statistically

uncorrelated. The ensemble of statistically uncorrelated
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states is needed for the estimation of the standard errors

together with the means of squared amplitudes of spherical

harmonics. Those standard errors of hjuml j
2i have to be

taken into account in the fitting procedure in Eq. 50, to

obtain relevant values of the bending stiffness Kc and the

dimensionless mean lateral tension �r of the membrane. The

interval between two consecutive microstates in an

ensemble of statistically uncorrelated states, i.e. between

two consecutive ‘‘measurements’’, was always larger than

three times the largest decay time sN . In Fig. 11, for

example, the x-axis spans the ‘‘time’’ interval between

consecutive measurements for a system with N = 1127 and

j ¼ 20 kT .

When squared amplitudes juml j
2
are averaged over the

ensemble of microstates, the obtained hjuml j
2i with the same

order m converge towards the same value, as shown in

Fig. 12 for jum2 j
2
. This is in accordance with the theory of

Milner and Safran (rhs of Eq. 49 are independent of m).

Also Fig. 13 shows that the mean squared amplitudes

obtained from simulations are independent of m. Note that

our previously reported [8] inability to observe this inde-

pendence of hjuml j
2i on m was a result of numerical errors.

The measured bending stiffness Kc and the dimension-

less mean lateral tension �r are obtained from the mean

squared amplitudes as described in Sect. 3.3. The result of

a fitting procedure for Kc is shown in Fig. 14 as a function

of the maximal degree l of spherical harmonics used in the

fitting of hjulj2i in Eq. 50 (Eqs. for all values from l = 2 up

to the maximal degree l are taken into account).

The measured bending stiffness Kc is shown in Fig. 15

as a function of the number of vertices N of the triangulated

surface. As expected, the difference between the measured

bending stiffness Kc and the input bending stiffness j ¼
20 kT decreases as we increase the number of vertices in

the triangulation (i.e. as we increase the resolution of the

discretization).

Figure 15 also shows the obtained values of the

dimensionless mean lateral tension �r for the same sets of

measurements. Let us note that the measured values of Kc

should not depend on the value of �r. The mean lateral

tension in the membrane depends on the value of the fixed

volume of the vesicle, i.e. how much the vesicle is

‘‘swollen’’. This is somewhat arbitrarily chosen by picking

a random microstate in the thermodynamical equilibrium

when fixing the volume and starting the measuring proce-

dure for Kc and �r. As expected, the exact choice of the

equilibrium microstate used when fixing the volume, i.e.

the value of �r, does negligibly influence the measured Kc.

Figure 16 shows the relative difference between the

measured and the input bending stiffness, Kc=j� 1, for

different values of the input bending stiffness j. It can be

seen that increasing the input bending stiffness decreases

the mismatch between the input and the measured bending

stiffness. Note that, as already reported above, the corre-

lation times of squared amplitudes decrease with the

increasing bending stiffness of the membrane.

4 Conclusions

In this section we presented two Monte Carlo methods

applied to phospholipid systems.

We solved the stability of inverted hexagonal phase by

minimizing the free energy of the lipid monolayer by

Monte Carlo simulated annealing method. It is an example

of using the stochastic method instead of the variational

calculus or other analytical methods and more effective

then methods using different kinds of approximations. The

next step could be to model three-dimensional bicontinu-

ous phases and their stability.
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Fig. 11 Autocorrelation functions f ðjuml j
2; sÞ of the lowest relevant

degrees of spherical harmonics l = 2 and l = 3, for N = 1127 and

j ¼ 20 kT . The dashed gray horizontal line indicates the value 1/e.

The decay time of a given mode is defined as time when the

autocorrelation function falls below this value [9]
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Fig. 12 Mean squared amplitudes hju02j
2i (full), hju12j

2i (dashed) and
hju22j

2i (dotted) as a function of the number of statistically indepen-

dent measurements used in the averaging. The input bending stiffness

j ¼ 20 kT and the membrane is triangulated with N = 1127 vertices

[9]
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We also presented Monte Carlo simulations of thermal

fluctuations of phospholipid vesicle and its analysis for

obtaining membrane’s elastic properties [9]. The theoreti-

cal basis of this analysis, proposed by Milner and Safran

[53], uses the mean field approximation. In the presented

work, the error of the determination of the bending stiffness

due to the approximations used in the theory was

estimated.

Monte Carlo simulations of the fluctuating nearly

spherical lipid vesicle have been performed using ran-

domly triangulated surface. The time mean squares of the

amplitudes of the fluctuations, obtained from the simula-

tions, can be determined with an arbitrarily high precision,

depending only on the length of the simulation. One of the

parameters in the simulations is the input value of the

bending stiffness. The obtained time mean squares of the

amplitudes of the fluctuations are considered as experi-

mental values, which are then used for the determination of

the output value of the bending stiffness by means of the

theory of Milner and Safran. The presented theory would

be ‘‘exact’’ if the output value of the bending stiffness

would have been equal to the input one. Our results show

that the difference between the two values of the bending

stiffness decreases with the increase of the resolution of the

triangulated network and can be well below 10 %.

Therefore, we can conclude that the theory of Milner

and Safran can be successfully used in the determination of

the bending stiffness of the membrane of a nearly spherical

lipid vesicle. According to our results, the errors due to the

approximations adopted in the theory are less than 10 %.

The analysis of the Monte Carlo simulations of thermal

fluctuations of phospholipid vesicles can also be a useful

tool to predict the change of the bending stiffness of bio-

logical membranes due to their chemical modification.

Altering the properties of the triangulated surface and/or

introducing other membrane-interacting objects in the

simulations, and then measure the change of the bending
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0.001

0.002

m

|u
m 2
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Fig. 13 Mean squared amplitudes hjuml j
2i for l = 2, 3 and 4, obtained

from 1000 measurement for a vesicle with input bending stiffness

j ¼ 20 kT and triangulated with N = 1127 vertices. The error bars

indicate the standard error (standard deviation divided by the square-

root of the number of measurements). Lines connect the points with

the same degree l and are for the guide-of-eye only. Adapted from [9]
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Fig. 14 Measured bending stiffness Kc together with standard error

(error bars) as a function of the maximal degree l of spherical

harmonics used in the calculation of Kc and �r. The value of the input
bending stiffness j ¼ 20 kT is indicated with a horizontal dashed line.

The membrane is triangulated with N = 3127 vertices and 200

statistically independent microstates are measured (between each

measured microstate is an interval of 2
 106 mcs). Lines connecting

the points are for the guide-of-eye only. Adapted from [9]
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Fig. 15 Measured bending stiffness Kc together with standard error

(error bars) as a function of the number of vertices N used in the

triangulation of the membrane, for the input bending stiffness

j ¼ 20 kT . The dimensionless mean lateral tension �r for the same

sets of measurements is also shown. Lines connecting the points are

for the guide-of-eye only. Adapted from [9]
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Fig. 16 Relative difference between the measured and the input

bending stiffness as a function of the input bending stiffness for the

membrane triangulated with N = 1447 vertices. Adapted from [9]
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stiffness, offers many useful applications. Multicomponent

lipid bilayers, membranes decorated with inclusions like

peptides, polymer coated vesicles like PEGylated or

polyelectrolyte-grafted vesicles.
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