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Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles
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It is experimentally observed that adding a dimeric cationic amphiphile to the erythrocyte suspension results
in a release of stable tubular microexovesicles from the erythrocyte membrane. Theoretical description starts
from the single-inclusion energy, which takes into account anisotropic shape of the dimeric amphiphile. It is
shown explicitly that the tubular shape of the microexovesicle is the extremal to the functional yielding the
maximum of the average curvature deviator. It is derived for which intrinsic shapes of the membrane inclusions
created by the intercalated amphiphiles the maximum of the average curvature deviator coincides with the
minimum of the membrane free energy—thereby determining the stable tubular shape.

PACS numbds): 87.16.Dg, 87.15.Kg

Cell membrane vesiculation, which occurs spontaneouslynicroexovesiculation occuf&—7], mostly at the top of the
in disordered erythrocytefl], can be induced in normal spicules where the skeleton becomes detached from the
erythrocytes by changing the conditions of the erythrocytenembrane bilayer. The microexovesiculation starts within

suspension. Spontaneous vesiculation of cell membrane fOMe minutes and is completed in about 30 6h The
common also in cancer cellg]. Understanding the mecha- €l€ased microexovesicles are so small that they can not be
nisms of shape transformation and vesiculation is importani€t€cted under an optical microscope. Analysis of the protein

since it could lead to new methods for manipulating the dis_Composition of the isolated microexovesicl@$ showed that
P 9 the microexovesicles are depleted in the membrane skeletal

ordered cellg1]. . components spectrin and actin, suggesting that a local dis-

At sublytic concentrations exogenously added am-yyption of the interactions between the membrane skeleton
phiphiles induce changes of the normal discoid shape 0ind the membrane bilayer occurred prior to microexovesicu-
erythrocytes into either spiculated echinocytic or invaginatedation [5,7,8). Most species of amphiphiles induce spherical
stomatocytic shapgs8]. When incubated with high sublytic daughter microexovesicles that are formed from sphere-like
concentrations of echinocytogenic amphiphiles the erythroskeleton free budgFig. 1(a)]. However, a cationic dimeric
cyte spicules eventually become thinner and shorter whilamphiphile N,N’-bisdimethyl-1,2-ethanediamine dichloride
the mother cell becomes spheriddl]. At a certain point, derivative

CgH1700CCHy(CHz) ;N CH,CH,N(CHs) ,CH,COOGHZ - 2CI

(dioctyldiQAS) [9] in which two head-tail entities are con- However, the buds on the cell are cylindrical also at lower
nected by a spacer at the headgroup level, induces predonmdencentrations than those used to induce the vesiculation.
nantly tubular daughter microexovesiclesicles that areSince the tubular microexovesicles maintained their structure
formed from cylindrical bud§Fig. 1(b)]. A certain high sub- even when isolated prior to fixation this indicates that they
lytic concentration is needed to induce microexovesiculationare stable for several hours at least.
The concentration interval where the vesiculation occurs is The currently acknowledged mechanism for description
narrow and close to the concentration that causes hemolysisf erythrocyte shape changes is based on the generalized
bilayer couple, i.e., area-difference-elasticity modaDE
mode) [11] where the equilibrium membrane shape is deter-
*Electronic address: “vera.kralj-iglic@biofiz.mf.uni-lj.si” mined by the minimum of its elastic energyy,
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FIG. 2. Transmission electron microscope micrograph of the
isolated tubular daughter microexovesicles induced by adding dio-
ctyldiQAS to the erythrocyte suspension. The method for preparing
the microexovesicles for observation is described in Ref]. The
microexovesicles in the sample were oriented randomly. The white
bar denotes 100 nm.

shape composed of spheres corresponds to the maximal pos-
— sible AA within the given class of shapes.
In our experiments the erythrocytes first underwent a
(b) discocyte-echinocyte transformatidd] and proceeded to
develop exovesicles, so it is evident that within the given
FIG. 1. Transmission electron microscope micrograph of aclass of shapes the area differenad@ continuously in-
spherical bud at the top of the echinocyte spicule induced by addingreased in the process. At the present state of the develop-
dodecylzwittergent (263uM) to the erythrocyte suspensio@  ment of the theoretical models we cannot describe the whole
and of a tubular protrusion at the top of the echinocyte spiculeprocess of the transformation of the erythrocyte from the
induced by adding dioctyldiQAS (10@.M) to the erythrocyte sus-  discocyte to the state of microexovesiculation. We can how-
pension(b). Bars denote 100 nm. ever study the final shape of the microexovesicles. Fig. 3
shows that at given relative volume the spherical microex-
ovesicles yield a highek A than the tubular ones. Moreover,
_“f 2gp 4+ K 2 the tubular mi icles give the lowest possible
We=—= | (C;+C,—Cy)2dA+ (AA—AAQZ (1) e tubular microexovesicles give the lowest poss
2 2Ah? within this class. According to the bilayer couple model the
process of increasing the area difference of the unstressed
membrane layerd A, would increase the equilibriumA,
Here, k. is the membrane local bending consta®4,andC,  |eading to spherical daughter microexovesicles. However,
are the principal curvatures describing the local shape of thehe tubular character of the daughter microexovesicles that is
membraneC, is the spontaneous curvature of the membranewvident already from the shape of the . 1(b)] persists
continuum,k; is the membrane nonlocal bending constant,
is the distance between the two membrane layer neutral areas
andAA, is the area difference of the unstressed layers. The
integration is performed over the membrane akeat large

deformations the contribution of the shear energy of the ' a
membrane skeleton should also be inclufi&?,13,4. _
It was proposed that by intercalating into the membrane B 0 N A I A "

RepicC> 1431 1.432 1.439 1.636 1.732
<>

the amphiphilic molecules may importantly affect the cell
shape, mostly by changing the area differedo®,. If the
molecules intercalate into both membrane layexg\, is
changed for Ng,— Ni,)ag, whereNg,; andN;, are the num-
ber of the intercalated amphiphilic molecules in the outer and |G, 3. A sequence of axisymmetric vesicle shapes of the/area

the inner membrane layer, respectively, angis the area and the volumeV given by the relative volume = 367 VZ/AZ
occupied by a single intercalated amphiphilic molecule in the=1/3"2 The sequence was obtained by increasing an imposed rela-
membrang 14]. tive difference between the outer and the inner membrane layer
Fig. 3 shows a sequence of closed axisymmetrical prolat@reas AA/87Rg,;, i.e., the relative average mean curvature
shapes of a given membrane akeand enclosed volumé¥, Repr{C). HereRg,y,is the radius of the sphere of the araRgy,
and increasing imposetlA [14,15. The shapes were calcu- =(A/4x)Y2 The corresponding values of the relative average mean
lated by minimizing the membrane elastic enef@y. (1)]  curvature and the relative average curvature deviBtgy |C|) are
for Co=0 andk,=c [15]. A nonzeroC, and finitek; do not  given. All the shapes but the first one were calculated by minimiz-
affect the calculated shape at givAr [16]. It can be seen ing the membrane elastic energiq. (1)] (Ref. [15]). The first
that the shape composed of a cylinder with hemisphericadhape was obtained by combining the solutions of(Borepresent-
caps corresponds to the minimal possitdé while the ing the sphere and the cylinder.

Rypr€IC> 1,023 1.015 0.971 0.506 0
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also when the vesicles are pinched off from the membranahere we disregarded the constant contributions.

(Fig. 2), although their area difference could be further in- To account for the different orientational states the parti-
creased by yielding spherical microexovesicles. It is theretion function of a single inclusion is introducdd8,20, q
fore concluded that the ADE model in its present form= 1/27 [3"exd —E(w)/kT]dw, wherek is the Boltzmann
cannot give an explanation for the stable tubular microexconstantT is the temperature arfl( ) is given by Eq.(3).

ovesicle shape. These conclusions are supported by the rghe corresponding free energy of the single inclusion:
cent theoretical resulfsl7], which claim that stable tubular —kTInqis

structures of the membrane can not be explained by the ADE

model. E+E . .
In order to explain the observed tubular shape of the 2kT CmC

erythrocyte daughter microexovesicles we upgrade the ADE

model[11] by taking into account the specific shape of thewhere the integration ove® yielded the modified Bessel

dimeric amphiphile dioctyldiQAS. In the dioctyldiQAS mol- fynction 1, [18]. For (¢£+¢&*)|C||C,|/2kT=1 [20], the

ecule the two head-tail entities are joined by a spacer in theingle-inclusion free energy is up to a constant equal to
headgroup level thereby forming an anisotropic molecule.

We assume that intercalated anisotropic amphiphiles in the E— S ANA
membrane create anisotropic inclusions that can orient in the Fi=—&CnC— §(§+ &)IClCl. ®)
curvature field of the membrarjé8—20.

_We pursue the basic mechanism deriving from the couTne apsolute value d is called the curvature deviatf22)].
pling between the orientation of the anisotropic inclusion and \we |imit the study to the analysis of the shape of the
the difference between the two principal membrane curvagayghter microexovesiclésigs. 2 and 3 We found that the
tures[18]. Due to this coupling the anisotropic inclusions memprane skeleton is not present in shed microexovesicles.
undergo orientational order_lng_ in the regions .where the dif-Therefore we need not consider the shear energy of the mem-
ference between the two principal curvatures is large enough,ane skeleton. The free energy of the membrénie the
(e.g., in thin tubular protrusions and in narrow necks gym of the two contributions: the membrane elastic energy
thereby stabilizing the shape with thin tubular protrusionsyng the energy of the interaction between the inclusions and
and/or narrow neckf20]. S _ the membrane continuum.

The orientation of the inclusion is given by the rotation of Considering the above arguments regarding the much
the principal directions of the intrinsic shape relative to thejarger intrinsic curvature of dioctyldiQAS-induced inclusions
membrane principal directions. The single-inclusion en-  than any curvature attained by the membrane, we can neglect
ergy derives from the mismatch between the local membrang|| ine terms in Eq(1) aside possibly from the contribution

F,=—&C,C—kTIn , (4)

lo

shape and the intrinsic shape of the inclusii®@,20], due to the intercalated dioctyldiQAS, to the area difference
AAg, (Noui— Nin) 2o [23]. Also, it is assumed that the mem-
E(w)zg(g_g )2 brane is very thin so thaAA=2hfC dA. Therefore, the
2 m membrane elastic energy is up to a constant given by an

approximate  expression We=—(k;/Ah?)AAAA=
[C2-2CCco092w)+C2], (20  —(2kK@ao/Ah)(Noy—Ni,)JCdA. The energy of the interac-

tion between the inclusions and the membrane continbpym

o is obtained by multiplying the free energy of a single inclu-

where ¢ and & are positive interaction constan8=3(C,;  sion[Eq. (5)] by the area density of the inclusions and inte-
+C,), C= 1(C,—Cy), Em: 1(Cym+Copm), (‘;m: i(c,, grating over the corresponding layer area. The contributions
—C,p), andCy,, and C,,, are the principal curvatures de- of both layers are added upFm=/nouFi(C1,Co)dA
scribing the intrinsic shape of the inclusion. @,=0 the JNinFi(=C1,—C;)dA. We assume for simplicity that the
inclusion is isotropic while ifC. =0 the inclusion i . inclusions are distributed homogeneously over the mem-
't?gp?:'on IS 1Sotropic while 1 € INClusion 1S aniso- 1y 4pe layer area so that the respective area densities are

It was found[21] that dimeric amphiphilic molecules in Nou=Nou/A andnip=Nip/A. The membrane free energy

+1§+§*
2 2

which the headgroups are joined by agHg, (s 'S

=1,2,3...) spacer form cylindrical micelles in water when Fe—al(C)— (& + 6
the spacer is shoftow s values. In the dioctyldiQAS mol- o{C)=B(Cl),  arB, ©)
ecules=2, therefore we assume that at least one of the,, .. a=(Ngy— i) A(EC, + 2k ag/h), B=1(Ngut

intrinsic principal curvatures of the inclusion is much larger A T h S
than any curvature on the erythrocyte membrane. Conse! MinA(E+ € )|Crl, the average mean curvature (€)

quently, || is much larger than anyC| or |&| on the =(1/A)JCdA and the average curvature deviator(j€|)

membrane. The intrinsic average curvati@g,| may also be = (L/A)[|C|dA. The parametep is always positive, while

large. Therefore, we retain in the single-inclusion energ)for ech|_nocytogen|c amph_|ph|_les Is also positive.
. o~ - The instantaneous equilibrium shape is determined by the
only the terms proportional t€,, andC,,,

minimum of the membrane free energy. To find the mini-
g mum of the membrane free energyEq. (6)] at a given area

— fre AR of the membraned, and a given volume enclosed by the
E(w) ¢CCn 2 CCmeod20), © membraneV, we construct a functionab
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where\ 4 and\y, are the Lagrange multipliers, an® ds the

G=F—>\AUdA—A

STABLE TUBULAR MICROEXOVESICLES OF THE . ..

4233

(C)max [16,25,19 while its average curvature deviator is 0
and therefore minimal. It follows from Ed6) that the tubu-

lar shape corresponds to the minimum of the membrane free
energy if

volume element. The symmetry axis of the body has been

chosen to coincide with theaxis, so that the shape is given
by the rotation of the functiog(x) around thex axis. In this
case the principal curvatures are expressed/(y and its
derivatives with respect t®; y'=dy/dx andy”= 9%yl 9x?,
asC,;=1\1+y'? andC,=—y"/(1+Yy'?)%2 The area el-
ement is d=2m\1+y’ ?ydx, and the volume element is

dV=my?dx. The sign of the principal curvatures is taken to

be positive for a sphere. We take into account tBatis

,8>a(<6>max_<6>min)/<|é|>maxv 9

else the shape of the minimal membrane free energy is com-
posed of spheres. The tubular shape would be favored best
by anisotropic molecules that intercalate into both membrane
layers while the spherical shape would be favored best by
isotropic molecules that intercalate into one membrane layer.
To conclude, our results indicate that the deviatoric prop-
erties of the membrane induced by orientational ordering of

always larger tharC, for the elongated shapes with high the anisotropic inclusions are a possible plausible explana-
anisotropy. The above variational problem can be express&ghn for the observed stable tubular shape of the microex-
by the Euler-Poisson equati¢pp4]. By using the expressions qyesicles released from erythrocyte membrane upon incuba-

for C;, C,, dA and d/ the Euler-Poisson equation attains tjgn

the form

"

2y yy"
22 T ha 2 72,3
(1+y'9) Vi+y (N1+y'?)

- y)\V: O! (8)

where =\ 27 (a—B)—Np, MN/27m(a—B)—\y. The so-
lution of Eq.(8) given by the ansatg=\,/\y represents a
cylinder of the radiusr.;=\a/\y while another solution
given by a circle of the radius;, and the origin X,,0), y
= \/rczir—(x—xo)z, fulfills Eq. (8) for two different radii,
Urgr1o=(Na= \/)\AZ—Z)\V)IZ. By combining the above so-

with  dimeric amphiphiles at high sublytic
concentrations.

The deviatoric properties of the membrane were also sug-
gested to explain the experimentally observed tubular struc-
tures in the geraniol-dimyristoylphosphatidylcholine-water
system[26] that could not be explained by the ADE model.

For smoothly and slowly varying curvatures of the thin
membrane, the bilayer part of the membrane can be well
described as a two-dimensional liquid. However, whenever
the membrane due to some reason develops regions of large
difference between the two principal curvatures, the aniso-
tropic membrane constituents orient in these regions. We can

lutions it can be shown that the cylinder closed by two hemi-Say that the membrane there exhibits properties of a two-

spheres fulfills the conditions for the extreii&f] when the
two Lagrange multipliers are interdependenﬁ=2)\v,
while r oy =r .

In this work we introduce the average curvature deviato
({|C|)max @s a parameter that is important in determination o
the vesicle shape. Figure 3 shows that the shape composed 0
the cylinder and two hemispheres corresponds to the max'bh

mal average curvature deviatg€|)ma, and the minimal av-

dimensional liquid crystal which importantly influence the
cell shape.
Another effect that may play an important complementary

fole in development of the tubular protrusions and microex-
fovesicles is a nonuniform lateral distribution of the mem-

br]ane constituent27,19,2Q.

Considering other mechanisms that may be relevant in the
ysics of tubular structures it should be noted that thin tu-
bular structures of surfactant molecules were observed also

erage mean curvatur(é}mm. The shape composed of three in shear flow without the presence of the dimeric am-
spheres corresponds to the maximal average mean curvatyskiphiles[28].
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