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Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles
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It is experimentally observed that adding a dimeric cationic amphiphile to the erythrocyte suspension results
in a release of stable tubular microexovesicles from the erythrocyte membrane. Theoretical description starts
from the single-inclusion energy, which takes into account anisotropic shape of the dimeric amphiphile. It is
shown explicitly that the tubular shape of the microexovesicle is the extremal to the functional yielding the
maximum of the average curvature deviator. It is derived for which intrinsic shapes of the membrane inclusions
created by the intercalated amphiphiles the maximum of the average curvature deviator coincides with the
minimum of the membrane free energy—thereby determining the stable tubular shape.

PACS number~s!: 87.16.Dg, 87.15.Kg
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Cell membrane vesiculation, which occurs spontaneou
in disordered erythrocytes@1#, can be induced in norma
erythrocytes by changing the conditions of the erythroc
suspension. Spontaneous vesiculation of cell membran
common also in cancer cells@2#. Understanding the mecha
nisms of shape transformation and vesiculation is import
since it could lead to new methods for manipulating the d
ordered cells@1#.

At sublytic concentrations exogenously added a
phiphiles induce changes of the normal discoid shape
erythrocytes into either spiculated echinocytic or invagina
stomatocytic shapes@3#. When incubated with high sublytic
concentrations of echinocytogenic amphiphiles the eryth
cyte spicules eventually become thinner and shorter w
the mother cell becomes spherical@4#. At a certain point,
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microexovesiculation occurs@5–7#, mostly at the top of the
spicules where the skeleton becomes detached from
membrane bilayer. The microexovesiculation starts wit
some minutes and is completed in about 30 min@6#. The
released microexovesicles are so small that they can no
detected under an optical microscope. Analysis of the pro
composition of the isolated microexovesicles@7# showed that
the microexovesicles are depleted in the membrane ske
components spectrin and actin, suggesting that a local
ruption of the interactions between the membrane skele
and the membrane bilayer occurred prior to microexoves
lation @5,7,8#. Most species of amphiphiles induce spheric
daughter microexovesicles that are formed from sphere-
skeleton free buds@Fig. 1~a!#. However, a cationic dimeric
amphiphile N,N’-bisdimethyl-1,2-ethanediamine dichlorid
derivative
C8H17OOCCH2~CH3!2N CH2CH2N~CH3!2CH2COOC8H17
21

•2Cl2
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er-
~dioctyldiQAS! @9# in which two head-tail entities are con
nected by a spacer at the headgroup level, induces pred
nantly tubular daughter microexovesiclesicles that
formed from cylindrical buds@Fig. 1~b!#. A certain high sub-
lytic concentration is needed to induce microexovesiculati
The concentration interval where the vesiculation occur
narrow and close to the concentration that causes hemol
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However, the buds on the cell are cylindrical also at low
concentrations than those used to induce the vesicula
Since the tubular microexovesicles maintained their struc
even when isolated prior to fixation this indicates that th
are stable for several hours at least.

The currently acknowledged mechanism for descript
of erythrocyte shape changes is based on the genera
bilayer couple, i.e., area-difference-elasticity model~ADE
model! @11# where the equilibrium membrane shape is det
mined by the minimum of its elastic energyWel
4230 © 2000 The American Physical Society
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Wel5
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2 E ~C11C22C0!2dA1
kr

2Ah2
~DA2DA0!

2. ~1!

Here,kc is the membrane local bending constant,C1 andC2
are the principal curvatures describing the local shape of
membrane,C0 is the spontaneous curvature of the membra
continuum,kr is the membrane nonlocal bending constanh
is the distance between the two membrane layer neutral a
andDA0 is the area difference of the unstressed layers.
integration is performed over the membrane areaA. At large
deformations the contribution of the shear energy of
membrane skeleton should also be included@12,13,4#.

It was proposed that by intercalating into the membra
the amphiphilic molecules may importantly affect the c
shape, mostly by changing the area differenceDA0. If the
molecules intercalate into both membrane layers,DA0 is
changed for (Nout2Nin)a0, whereNout andNin are the num-
ber of the intercalated amphiphilic molecules in the outer a
the inner membrane layer, respectively, anda0 is the area
occupied by a single intercalated amphiphilic molecule in
membrane@14#.

Fig. 3 shows a sequence of closed axisymmetrical pro
shapes of a given membrane areaA and enclosed volumeV,
and increasing imposedDA @14,15#. The shapes were calcu
lated by minimizing the membrane elastic energy@Eq. ~1!#
for C050 andkr5` @15#. A nonzeroC0 and finitekr do not
affect the calculated shape at givenDA @16#. It can be seen
that the shape composed of a cylinder with hemispher
caps corresponds to the minimal possibleDA while the

FIG. 1. Transmission electron microscope micrograph o
spherical bud at the top of the echinocyte spicule induced by ad
dodecylzwittergent (263mM) to the erythrocyte suspension~a!
and of a tubular protrusion at the top of the echinocyte spic
induced by adding dioctyldiQAS (100mM) to the erythrocyte sus-
pension~b!. Bars denote 100 nm.
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shape composed of spheres corresponds to the maximal
sible DA within the given class of shapes.

In our experiments the erythrocytes first underwen
discocyte-echinocyte transformation@4# and proceeded to
develop exovesicles, so it is evident that within the giv
class of shapes the area differenceDA continuously in-
creased in the process. At the present state of the deve
ment of the theoretical models we cannot describe the wh
process of the transformation of the erythrocyte from
discocyte to the state of microexovesiculation. We can ho
ever study the final shape of the microexovesicles. Fig
shows that at given relative volume the spherical micro
ovesicles yield a higherDA than the tubular ones. Moreove
the tubular microexovesicles give the lowest possibleDA
within this class. According to the bilayer couple model t
process of increasing the area difference of the unstre
membrane layersDA0 would increase the equilibriumDA,
leading to spherical daughter microexovesicles. Howev
the tubular character of the daughter microexovesicles th
evident already from the shape of the bud@Fig. 1~b!# persists

a
g

e

FIG. 2. Transmission electron microscope micrograph of
isolated tubular daughter microexovesicles induced by adding
ctyldiQAS to the erythrocyte suspension. The method for prepa
the microexovesicles for observation is described in Ref.@10#. The
microexovesicles in the sample were oriented randomly. The w
bar denotes 100 nm.

FIG. 3. A sequence of axisymmetric vesicle shapes of the areA
and the volumeV given by the relative volumev5A36pV2/A3

51/31/2. The sequence was obtained by increasing an imposed
tive difference between the outer and the inner membrane la
areas DA/8pRsph, i.e., the relative average mean curvatu

Rspĥ C̄&. HereRsph is the radius of the sphere of the areaA, Rsph

5(A/4p)1/2. The corresponding values of the relative average m

curvature and the relative average curvature deviatorRspĥ uĈu& are
given. All the shapes but the first one were calculated by minim
ing the membrane elastic energy@Eq. ~1!# ~Ref. @15#!. The first
shape was obtained by combining the solutions of Eq.~8! represent-
ing the sphere and the cylinder.
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also when the vesicles are pinched off from the membr
~Fig. 2!, although their area difference could be further
creased by yielding spherical microexovesicles. It is the
fore concluded that the ADE model in its present fo
cannot give an explanation for the stable tubular micro
ovesicle shape. These conclusions are supported by th
cent theoretical results@17#, which claim that stable tubula
structures of the membrane can not be explained by the A
model.

In order to explain the observed tubular shape of
erythrocyte daughter microexovesicles we upgrade the A
model @11# by taking into account the specific shape of t
dimeric amphiphile dioctyldiQAS. In the dioctyldiQAS mo
ecule the two head-tail entities are joined by a spacer in
headgroup level thereby forming an anisotropic molecu
We assume that intercalated anisotropic amphiphiles in
membrane create anisotropic inclusions that can orient in
curvature field of the membrane@18–20#.

We pursue the basic mechanism deriving from the c
pling between the orientation of the anisotropic inclusion a
the difference between the two principal membrane cur
tures @18#. Due to this coupling the anisotropic inclusion
undergo orientational ordering in the regions where the
ference between the two principal curvatures is large eno
~e.g., in thin tubular protrusions and in narrow neck!
thereby stabilizing the shape with thin tubular protrusio
and/or narrow necks@20#.

The orientation of the inclusion is given by the rotation
the principal directions of the intrinsic shape relative to t
membrane principal directionsv. The single-inclusion en-
ergy derives from the mismatch between the local membr
shape and the intrinsic shape of the inclusion@19,20#,

E~v!5
j

2
~C̄2C̄m!2

1
1

2

j1j!

2
@Ĉ222ĈĈm cos~2v!1Ĉm

2 #, ~2!

wherej andj! are positive interaction constants,C̄5 1
2 (C1

1C2), Ĉ5 1
2 (C12C2), C̄m5 1

2 (C1m1C2m), Ĉm5 1
2 (C1m

2C2m), and C1m and C2m are the principal curvatures de
scribing the intrinsic shape of the inclusion. IfĈm50 the
inclusion is isotropic while ifĈmÞ0 the inclusion is aniso-
tropic.

It was found@21# that dimeric amphiphilic molecules in
which the headgroups are joined by a CsH2s , (s
51,2,3. . . ) spacer form cylindrical micelles in water whe
the spacer is short~low s values!. In the dioctyldiQAS mol-
ecule s52, therefore we assume that at least one of
intrinsic principal curvatures of the inclusion is much larg
than any curvature on the erythrocyte membrane. Con
quently, uĈmu is much larger than anyuC̄u or uĈu on the
membrane. The intrinsic average curvatureuC̄mu may also be
large. Therefore, we retain in the single-inclusion ene
only the terms proportional toC̄m and Ĉm,

E~v!52jC̄C̄m2
j1j!

2
ĈĈm cos~2v!, ~3!
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where we disregarded the constant contributions.
To account for the different orientational states the pa

tion function of a single inclusion is introduced@18,20#, q
5 1/2p *0

2pexp@2E(v)/kT# dv, where k is the Boltzmann
constant,T is the temperature andE(v) is given by Eq.~3!.
The corresponding free energy of the single inclusionF i5
2kT ln q is

F i52jC̄mC̄2kT lnF I 0S j1j!

2kT
ĈmĈD G , ~4!

where the integration overv yielded the modified Besse
function I 0 @18#. For (j1j!)uĈuuĈmu/2kT>1 @20#, the
single-inclusion free energy is up to a constant equal to

F i52jC̄mC̄2
1

2
~j1j!!uĈuuĈmu. ~5!

The absolute value ofĈ is called the curvature deviator@22#.
We limit the study to the analysis of the shape of t

daughter microexovesicles~Figs. 2 and 3!. We found that the
membrane skeleton is not present in shed microexovesic
Therefore we need not consider the shear energy of the m
brane skeleton. The free energy of the membraneF is the
sum of the two contributions: the membrane elastic ene
and the energy of the interaction between the inclusions
the membrane continuum.

Considering the above arguments regarding the m
larger intrinsic curvature of dioctyldiQAS-induced inclusion
than any curvature attained by the membrane, we can neg
all the terms in Eq.~1! aside possibly from the contributio
due to the intercalated dioctyldiQAS, to the area differen
DA0 , (Nout2Nin) a0 @23#. Also, it is assumed that the mem
brane is very thin so thatDA52h*C̄ dA. Therefore, the
membrane elastic energy is up to a constant given by
approximate expression Wel.2(kr /Ah2)DADA05

2(2kra0 /Ah)(Nout2Nin)*C̄dA. The energy of the interac
tion between the inclusions and the membrane continuumFm
is obtained by multiplying the free energy of a single incl
sion @Eq. ~5!# by the area density of the inclusions and int
grating over the corresponding layer area. The contributi
of both layers are added up,Fm5*noutF i(C1 ,C2)dA
1*ninF i(2C1 ,2C2)dA. We assume for simplicity that the
inclusions are distributed homogeneously over the me
brane layer area so that the respective area densities
nout5Nout/A andnin5Nin /A. The membrane free energyF
is

F52a^C̄&2b^uĈu&, aÞb, ~6!

where a5(nout2nin)A(jC̄m12kra0 /h), b5 1
2 (nout

1nin)A(j1j!)uĈmu, the average mean curvature is^C̄&
5(1/A)*C̄dA and the average curvature deviator is^uĈu&
5(1/A)* uĈudA. The parameterb is always positive, while
for echinocytogenic amphiphilesa is also positive.

The instantaneous equilibrium shape is determined by
minimum of the membrane free energy. To find the mi
mum of the membrane free energyF @Eq. ~6!# at a given area
of the membraneA, and a given volume enclosed by th
membraneV, we construct a functionalG
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G5F2lAS E dA2AD2lVS E dV2VD , ~7!

wherelA andlV are the Lagrange multipliers, and dV is the
volume element. The symmetry axis of the body has b
chosen to coincide with thex axis, so that the shape is give
by the rotation of the functiony(x) around thex axis. In this
case the principal curvatures are expressed byy(x) and its
derivatives with respect tox; y85]y/]x and y95]2y/]x2,
asC151/yA11y82 andC252y9/(11y82)3/2. The area el-
ement is dA52pA11y82ydx, and the volume element i
dV5py2dx. The sign of the principal curvatures is taken
be positive for a sphere. We take into account thatC1 is
always larger thanC2 for the elongated shapes with hig
anisotropy. The above variational problem can be expres
by the Euler-Poisson equation@24#. By using the expression
for C1 , C2 , dA and dV the Euler-Poisson equation attain
the form

2y9

~11y82!2
1lAF 1

A11y82
2

yy9

~A11y82!3G2ylV50, ~8!

where2lA/2p(a2b)→lA , lV/2p(a2b)→lV . The so-
lution of Eq. ~8! given by the ansatzy5lA /lV represents a
cylinder of the radiusr cyl5lA /lV while another solution
given by a circle of the radiusr cir and the origin (x0,0), y
5Ar cir

2 2(x2x0)2, fulfills Eq. ~8! for two different radii,
1/r cir,1,25(lA6AlA

222lV)/2. By combining the above so
lutions it can be shown that the cylinder closed by two he
spheres fulfills the conditions for the extreme@24# when the
two Lagrange multipliers are interdependentlA

252lV ,
while r cyl5r cir .

In this work we introduce the average curvature devia

^uĈu&max as a parameter that is important in determination
the vesicle shape. Figure 3 shows that the shape compos
the cylinder and two hemispheres corresponds to the m
mal average curvature deviator^uĈu&max and the minimal av-
erage mean curvaturêC̄&min . The shape composed of thre
spheres corresponds to the maximal average mean curv
.
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^C̄&max @16,25,15# while its average curvature deviator is
and therefore minimal. It follows from Eq.~6! that the tubu-
lar shape corresponds to the minimum of the membrane
energy if

b.a~^C̄&max2^C̄&min!/^uĈu&max, ~9!

else the shape of the minimal membrane free energy is c
posed of spheres. The tubular shape would be favored
by anisotropic molecules that intercalate into both membr
layers while the spherical shape would be favored best
isotropic molecules that intercalate into one membrane la

To conclude, our results indicate that the deviatoric pro
erties of the membrane induced by orientational ordering
the anisotropic inclusions are a possible plausible expla
tion for the observed stable tubular shape of the micro
ovesicles released from erythrocyte membrane upon incu
tion with dimeric amphiphiles at high sublyti
concentrations.

The deviatoric properties of the membrane were also s
gested to explain the experimentally observed tubular st
tures in the geraniol-dimyristoylphosphatidylcholine-wa
system@26# that could not be explained by the ADE mode

For smoothly and slowly varying curvatures of the th
membrane, the bilayer part of the membrane can be w
described as a two-dimensional liquid. However, whene
the membrane due to some reason develops regions of
difference between the two principal curvatures, the ani
tropic membrane constituents orient in these regions. We
say that the membrane there exhibits properties of a t
dimensional liquid crystal which importantly influence th
cell shape.

Another effect that may play an important complementa
role in development of the tubular protrusions and micro
ovesicles is a nonuniform lateral distribution of the me
brane constituents@27,19,20#.

Considering other mechanisms that may be relevant in
physics of tubular structures it should be noted that thin
bular structures of surfactant molecules were observed
in shear flow without the presence of the dimeric a
phiphiles@28#.
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