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Abstract: We numerically studied localized elastic distortions in curved, effectively two-dimensional
nematic shells. We used a mesoscopic Landau-de Gennes-type approach, in which the orientational
order is theoretically considered by introducing the appropriate tensor nematic order parameter, while
the three-dimensional shell shape is described by the curvature tensor. We limited our theoretical
consideration to axially symmetric shapes of nematic shells. It was shown that in the surface regions
of stomatocyte-class nematic shell shapes with large enough magnitudes of extrinsic (deviatoric) cur-
vature, the direction of the in-plane orientational ordering can be mutually perpendicular above and
below the narrow neck region. We demonstrate that such line-like nematic distortion configurations
may run along the parallels (i.e., along the circular lines of constant latitude) located in the narrow
neck regions of stomatocyte-like nematic shells. It was shown that nematic distortions are enabled by
the order reconstruction mechanism. We propose that the regions of nematic shells that are strongly
elastically deformed, i.e., topological defects and line-like distortions, may attract appropriately
surface-decorated nanoparticles (NPs), which could potentially be useful for the controlled assembly
of NPs.

Keywords: nematic shells; orientational order; topological defects; stomatocytes; order reconstruction
mechanism

1. Introduction

Nature displays diverse soft materials [1,2] that may exhibit axial (i.e., nematic) orienta-
tional orders where the topology of the system is spherical. Typical examples of systems of
spherical topology possessing in-plane order are biological membranes [3–12] and nematic
liquid crystalline (LC) shells [13–15]. These structures are expected to play an important
role in natural [3] and man-made [15] applications. Furthermore, they exhibit a rich pal-
let of different universal behaviors [16], particularly with respect to their topology and
topological defects (TDs) [17], which we address in this paper.

The simplest class of such systems, where the largest number of investigations have
been carried out, are two-dimensional (2D) closed manifolds [3–5,13–15] exhibiting ax-
ial nematic in-plane order. Such systems are typically represented by closed biological
membranes (e.g., vesicles) or LC structures (e.g., colloids). The biological or artificial li-
posome membrane is very thin, and is considered to be a 2D structure; however, a closed
membrane (a cell or a vesicle) is a 3D structure embedded in 3D space. Similarly, thin LC
film is a 2D structure that forms a closed 3D shell embedded in 3D space. Consequently,
2D closed manifolds of our interest were exposed to a 3D curvature field. In our paper,
we henceforth refer to such systems as nematic shells. These systems are relatively easily
accessible, mathematically and experimentally (biological membranes and thin LC films
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covering colloids). Furthermore, different ordering mechanisms that can be systematically
studied in 2D [2,13,14] are also manifested in higher dimensional systems [18–21], which
are generally more difficult to analyze mathematically [21,22]. Consequently, one can
often exploit 2D systems as a testbed of universal phenomena that are observed in diverse,
physically distinct systems.

Nematic order is commonly presented by the uniaxial nematic director field
→
n [1].

This unit field points along the local uniaxial direction, where the states ±→
n are physically

equivalent. Closed 2D manifolds with nematic order unavoidably exhibit TDs [15]. The
latter refer to topologically stable localized distortions [17], to which one can assign a
discrete topological charge, which is a conserved quantity. In 2D, it is given by the winding
number m, which measures the total reorientation of

→
n divided by 2π on encircling the

center of a defect counterclockwise. A locally topologically stable TD is characterized
by a discrete value of the winding number [1]: m ∈

{
± 1

2 ,±1,± 3
2 . . .

}
. Note that half of

the integers are possible due to the head-to-tail axial symmetry. Furthermore, defects
bearing opposite charge signs tend to annihilate into a defectless state. One commonly
refers to TDs bearing m > 0 and m < 0 as defects and antidefects, respectively. Common TD
structures and their combinations are shown in Figure 1. The total winding number mtot
of a closed 2D manifold is given by the Gauss–Bonnet and Poincare–Hopf theorems [23]:
mtot = 1

2π

‚
Kgd2→r = 2(1 − g). Here, Kg stands for the Gaussian curvature of a local

surface patch of area d2→r , whose surface integral is a conserved quantity, defined by the
genus g (i.e., the number of holes) of a closed manifold surface. In the case of spherical
geometry, it holds that g = 0 and mtot = 2. In common conditions, a locally enforced
TD bearing |m| > 1/2 tends to decay into its elementary units [24,25] bearing m = m0,
where m0 = ±1/2, due to energy reasons. In addition, surface patches exhibiting Kg > 0
( Kg < 0

)
attract [26] TDs bearing m > 0 (m < 0) due to the effective topological charge

cancellation (ETCC) mechanism [27]. The latter determines the local impact of the so-called
intrinsic curvature [23], which is independent of how a 2D manifold is embedded in 3D
Euclidean space. The effect of the 3D curvature field is measured by the so-called extrinsic
curvature [3–6,10,28–30], also referred to as the deviatoric curvature [4–6,28,31–36]. In its
simplest form, the extrinsic curvature is quantified by the difference between the local
principal curvatures, and in general tends to align the local nematic ordering along the
direction exhibiting the lower curvature. However, if one also considers the intrinsic
curvature of the molecules exhibiting nematic order (e.g., curved proteins or nematics), the
preferred average orientation of molecules can be at any angle. In such cases, molecules
tend to orient in the direction at which they best fit onto the curved surface, which was
studied in [10] by taking into account the deviatoric bending energy of the surface-attached
curved nematic molecules, originally introduced in [36].

In effectively 2D systems (i.e., the relevant variational parameters exhibit essential
spatial variations only along two coordinates of a 3D system), TDs commonly exhibit
point-like structures [14,15,26,29]. Analysis of TDs in 3D reveals that the core structure
of such defects, whose local structure is described by the local winding number [1,17]
m = ±1/2, is strongly biaxial [18], where the defect core center exhibits negative uniaxial
order. To describe such configurations mathematically, one needs to introduce the nematic
tensor order parameter Q [1]. On crossing the defect center, Q exhibits the exchange of
its eigenvalues [18]. Later, the described mechanism, which mediates relatively large
orientational conflicts imposed on a distance comparable to the biaxial order parameter
correlation length ξb, was dubbed the order reconstruction (OR) mechanism [19–21]. This
mechanism was originally introduced to explain line-like distortions in thin hybrid nematic
cells [19] of thickness h ∼ ξb.

In this research, we show that OR-type distortions can enable localized line-like
distortions bearing m = 0 in 2D nematic shells strongly curved in 3D space.
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2. Phenomenological Model of Nematic Ordering
2.1. Order Parameter

Within the mesoscopic Landau-de Gennes-type approach, nematic orientational order
is commonly presented by tensor nematic order parameters. In 3D, it is generally expressed
in terms of five variational parameters. In 2D systems, nematic order is commonly presented
only in terms of two variational parameters. In our contribution we show that in general,
key features of TDs in thin LC films are nevertheless well described by such 2D approaches.

In three-dimensional (3D) space, nematic order within the Landau-de Gennes-type
approach is represented by the following traceless and symmetric tensor nematic order
parameter [22]:

Q = ∑3
i=1 si

→
e i⊗

→
e i, (1)

where si and
→
e i stand for the Q eigenvalues and eigenvectors, respectively. Uniaxial states

are commonly expressed as follows [1]:

Q = s
(→

n ⊗→
n − I/3

)
(2)

where this is expressed in terms of the nematic director field
→
n and the nematic uniaxial

order parameter s =∈
{
− 1

2 , 1
}

. Here, s > 0 and s < 0 geometrically mimic prolate-
and oblate-like mesoscopic orders, respectively (these structures are characterized by
different fluctuation probability distributions [1]), which is absent for s = 0. In bulk,
equilibrium nematic order is commonly positively uniaxial. In case of elastic distortions, Q
can enter biaxial states [24]. The degree of biaxiality is measured by the following biaxial
parameter [37,38]:

β2 = 1 −
6
(

TrQ3
)2

(
TrQ2

)3 ∈ [0, 1]. (3)

where β2 = 0 and β2 = 1 reflect states exhibiting uniaxial states and maximal biaxiality,
respectively [37].

Note that in general, due to the condition TrQ = s1 + s2 + s3 = 0, only two “amplitude”
parameters are needed to describe the eigenvalues of Q. A convenient parametrization
of eigenvalues is expressed by the biaxiality angle γ and the effective amplitude s0, as
follows [39]:

s1 =
2s0

3
cosγ, s2 = −2s0

3
cos

(
γ − π

3

)
, s3 = −2s0

3
cos

(
γ +

π

3

)
, (4a)
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s0 =

√
3
2

TrQ2. (4b)

For a fixed nematic order parameter tensor Q eigen-frame {
→
e 1,

→
e 2,

→
e 3}, the possible

nematic configurations on varying s0 and γ are depicted in Figure 2a. The melted isotropic
state (in which orientational order is absent) refers to the point s0 = 0. Configurations
determined by γ = 0, γ = − 2π

3 and γ = 2π
3 (γ = π, γ = π/3 and γ = −π/3) correspond

to positive (negative) uniaxial states aligned along
→
e 1,

→
e 2 and

→
e 3, respectively. The degree

of biaxiality attains its maximum for γ = ±π/6, γ = ±π/2 and γ = ±5π/6.
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Figure 2. Schematic presentation of the order reconstruction (OR) mechanism. (a) System subjected
to conflicting boundary condition at z = 0 and z = h. The imposed frustration could be realized
via the OR mechanism (b–d), where representative states of the transformation are labeled with the
numbers 1 to 5. Due to topological reasons, the negative uniaxial state along

→
e 2 must be realized

in between (b–d). Furthermore, this state takes place between the two regions exhibiting maximal
biaxiality (β2 = 1) (c,d).

In the following, we consider cases where the nematic order is confined in the 2D plane
{
→
e 1,

→
e 2} of the 3D space. In such cases, one Q eigenvalue always points along

→
e 3, which

coincides with the local surface normal of a 2D submanifold. A convenient representation
in terms of variational parameters {q1, q2, q3} reads as follows [39]:

Q = (q3 + q1)
(→

e 1 ⊗
→
e 1

)
+ (q3 − q1)

(→
e 2 ⊗

→
e 2

)
+ q2

((→
e 1 ⊗

→
e 2

)
+

(→
e 2 ⊗

→
e 1

))
− 2q3

(→
e 3 ⊗

→
e 3

)
= Q(3D)

u + q. (5)

where Q(3D)
u stands for a 3D uniaxial order parameter, and q for an effectively 2D order

parameter, as follows:

Q(3D)
u = q3

((→
e 1 ⊗

→
e 1

)
+

(→
e 2 ⊗

→
e 2

))
− 2q3

(→
e 3 ⊗

→
e 3

)
, (6a)

q = q1

((→
e 1 ⊗

→
e 1

)
−

(→
e 2 ⊗

→
e 2

))
+ q2

((→
e 1 ⊗

→
e 2

)
+

(→
e 2 ⊗

→
e 1

))
. (6b)

Note that Q(3D)
u exhibits negative and positive uniaxiality for q3 > 0 and q3 < 0,

respectively (for q3 = 0, the system exhibits maximal biaxiality). In terms of parameters
{q1, q2, q3}, the degree of biaxiality reads as follows:

β2 =

(
q2

1 + q2
2
)(

q2
1 + q2

1 − 9q2
3
)2(

q2
1 + q2

1 + 3q2
3
)3 . (7)
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In this parametrization, Q eigenvalues are expressed as follows:

s1 = q3 +
√

q2
1 + q2

2, (8a)

s2 = q3 −
√

q2
1 + q2

2, (8b)

s3 = −2q3. (8c)

Note that the exchange of eigenvalues s1 ↔ s2 coincides with the condition√
q2

1 + q2
2 = 0. Furthermore, configurations with q3 = 0 display maximal biaxiality

(i.e., β2 = 1).

2.2. Order Reconstruction

The OR mechanism is activated when a large enough orientational frustration is
imposed on a distance that is comparable to the biaxial coherence length ξb [21,40]. The
latter measures a characteristic distance on which locally imposed biaxial order decays to
essentially uniaxial order in bulk uniaxial LC shells. Within this mechanism, a relatively
localized LC transformation is achieved by changes in order parameter amplitude space,
while the Q framework can remain fixed.

A representative transformation is shown in Figure 2. In Figure 2a, we present a system
subjected to conflicting boundary condition. It illustrates a uniaxial orientational variation
within an LC body confined in a plane-parallel cell along the z-axis of the (x, y, z) Cartesian
system, where the confining planes at z = 0 and z = h strongly impose

→
n (z = 0) =

→
e x

and
→
n (z = h) =

→
e z. At the lateral boundaries, one assumes free boundary conditions. If

h > ξb, the imposed frustration can be resolved by gradual reorientation of
→
n , whereby the

nematic states everywhere exhibit essentially uniaxial order. These changes correspond to
the rotation of the amplitude parameter space frame in Figure 2b, where the state at z = 0
corresponds to

→
n (z = 0) =

→
e x =

→
e 1, and on increasing z, the eigenvector

→
e 1 gradually

reorients into
→
n (z = 0) =

→
e z. On the other hand, the imposed frustration could be realized

via the OR mechanism [19] when h ∼ ξb, which is illustrated in Figure 2b–d. In these
figures, we label representative states of the transformation with the numbers 1 to 5. During
the transformation, the amplitude order parameter remains fixed, i.e.,

→
e x =

→
e 1,

→
e y =

→
e 2

and
→
e z =

→
e 3, which is valid for z ∈ [0, h]. Consequently, biaxial states must be realized

within the distance h, which is shown in Figure 2d. In Figure 2c, we plot the corresponding
geometric presentation of mesoscopic states. Note that OR does not require melting of
nematic order. In the case shown in Figure 2b–d, we set that s0 remains constant during
the transformation. This is justifiable, deep in the nematic phase [38,41]. One sees that due
to topological reasons, the negative uniaxial state along

→
e y must be realized in between

(number 3 in Figure 2b–d). Furthermore, this state takes place between the two regions
exhibiting maximal biaxiality (i.e., β2 = 1, see the numbers 2 and 4 in Figure 2b–d). Note
that uniaxial states exhibit locally cylindrical symmetry, which is broken in biaxial states.

2.3. 2D Model of Nematic Ordering

In 2D, we describe the nematic order by the effectively 2D tensor order parameter field
q (Equation (6b)). Therefore, we neglect spatial variations in q3; see Equations (5) and (6).
In general, this is justifiable. Namely, studies [38,39,42] in 3D systems that exhibit similar
orientation frustrations as we consider in the present study, reveal that q3 generally de-
creases on crossing a defect core. However, these variations do not qualitatively affect the
phenomena of our interest.

In its eigen-frame, determined by the nematic director field
→
n , 2D tensor order param-

eter field q can be expressed within the Landau-de Gennes-type approach as follows [43]:
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q = s
(→

n ⊗→
n −→

n⊥ ⊗→
n⊥

)
, (9)

where
{→

n ,
→
n⊥

}
are its eigenvectors with the corresponding eigenvalues {s , −s}. Here,

s ∈ [0, 1/2] is the amplitude of nematic order in an infinitesimally small part of the surface
determined by the surface normal

→
v =

→
n × →

n⊥. In terms of tour parametrization (see
Equation (5)), the following holds:

s =
√

q2
1 + q2

2. (10)

Therefore, the order reconstruction in 3D space is realized when s = 0 in the 2D sub-
manifold. Furthermore, studies on similar systems [39] reveal that q3 exhibits a relatively
weak quantitative (it does not change its sign) change in amplitude in the eigenvalues
s1 ↔ s2 exchange. For this reason, we assume a constant value of q3 and numerically deter-
mine the remaining variational parameters {q1, q2} using a 2D model in the corresponding
2D submanifold. Then, the relevant order parameter is given by Equation (6b). To visualize
our results in a common 3D presentation given by Equation (5), we impose a finite value of
q3 = 0.04, which is suggested by our previous simulations for similar conditions [39]. Note
that q3 = 0 would correspond to a state exhibiting maximal biaxiality (see Equation (7)).

The free-energy density f = fc + fe consists of the condensation ( fc) and elastic ( fe)
contributions, as follows [3]:

fc = a0(T − T∗) Tr q2 +
b
4

(
Tr q2

)2
, (11a)

fe =
1
2

kiTr
(→
∇s q

)2
+ keTr

(
qC2

)
. (11b)

In Equation (11a), the quantities a0, b and T∗ are positive phenomenological constants.
The condensation term (Equation (11a)) enforces nematic orientational order below the
critical temperature Tc (in a flat geometry Tc = T∗). The degree of equilibrium nematic order
for T < T∗ is given by s0 =

√
a0(T∗ − T)/b. The elastic free energy term (Equation (11b))

consists of the {intrinsic, extrinsic} curvature contributions weighted by positive elastic
moduli {ki, ke}. In Equation (11b), C = σ1

→
e 1 ⊗

→
e 1 + σ2

→
e 2 ⊗

→
e 2 stands for the curvature

tensor, where σ1 (σ2) is the principal curvature along
→
e 1 (

→
e 2) [3].

Equilibrium nematic textures are calculated on fixed closed 2D manifolds, where
T < Tc. We consider axially symmetric shapes of spherical geometry with the surface area
A. In a 3D Cartesian system (x, y, z), defined by the unit vectors {

→
e x,

→
e y,

→
e z

}
, the position

vector
→
r , defining such shapes, is given by the following [3,10,44]:

→
r = ρ(l)cos(φ)

→
e x + ρ(l)sin(φ)

→
e y + z(l)

→
e z, (12)

where ρ(l) and z(l) are the shape profile coordinates in the (ρ, z)-plane. Here, φ ∈ [0, 2π]
is the azimuthal angle and l is the arc length of the profile curve. The total length of the
profile curve is denoted by Ls. All of the distances in our model are scaled with respect
to R =

√
A/(4π) [10], which is the radius of a sphere with the same surface area A as

the surface area of the investigated shape. The tensor order parameter s is scaled with
respect to the bulk equilibrium order parameter s0. The typical distance, on which a locally
perturbed nematic amplitude is recovered, is estimated by the following nematic order
parameter correlation length [3]:

ξ =
√

ki/(a0(T∗ − T)). (13)
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3. Results and Discussion

In Figure 3, we plot a reference configuration on a spherical shape in terms of 2D-
(Figure 3a,b) and 3D (Figure 3c,d)-order parameters. The equilibrium configuration hosts
four m = 1/2 TDs that reside in the vertices of a hypothetical inscribed tetrahedron
(Figure 3a,b) to maximize their separation, since TDs with the same charge repel each
other [26,27]. The extrinsic curvature contribution (weighted by ke in Equation (11b)) does
not have any effect on isotropic surfaces. Therefore, on a spherical surface presented in
Figure 3, the configuration is the same for any value of ke. In the center of TDs, the 2D
amplitude of nematic order is melted (i.e., s = 0, see red patches in Figure 3a,b). In 3D
presentation, these points correspond to negative uniaxial order parameters (see Figure 3d).
The degree of biaxiality β2 (Figure 3c,d) is low on most of the surface because the conden-
sation free-energy term favors uniaxial states. The cores of TDs exhibit uniaxial states, as
evidently shown in Figure 3d. The centers of defects are surrounded by strongly biaxial
states exhibiting volcano-like profiles, with circular rings exhibiting maximal biaxiality in
β2 presentation.
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In Figure 4, we present the orientational ordering configuration and the degree of 
biaxiality on a stomatocyte (invaginated) 3D shape of a closed, thin 2D nematic shell. The 
orientational ordering on this shape is highly affected by the extrinsic (deviatoric) curva-

Figure 3. Orientational ordering configuration and the degree of biaxiality on a spherical shell. (a) The
amplitude of nematic order s/s0 (presented with color coding) and the orientation of molecules
(denoted by the rods) in the (φ, l)-plane. (b) 3D visualization of the equilibrium texture of the
amplitude of nematic order s/s0. The degree of biaxiality β2 presented as a 3D plot (c) and with color
coding (d). Ls stands for the length of the shape profile curve. The parameters used in the simulations
are R/ξ = 5, ke = ki/2, q3 = 0.04.

In Figure 4, we present the orientational ordering configuration and the degree of
biaxiality on a stomatocyte (invaginated) 3D shape of a closed, thin 2D nematic shell.
The orientational ordering on this shape is highly affected by the extrinsic (deviatoric)
curvature contribution weighted by ke in Equation (11b), because the shape contains many
anisotropic surface curvature regions where the principal curvatures differ, i.e., σ1 ̸= σ2.
The extrinsic term is minimized when the molecules are locally oriented along the principal
curvature direction with the lower absolute value of the principal curvature. This tendency
is clearly demonstrated in Figure 4a,b, where different orientations are enforced below and
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above the stomatocyte neck. Below the neck (on the stomatocyte outer surface), molecules
are oriented perpendicular to the shape’s axis, as that is the direction of lower principal
curvature. On the other hand, above the neck (on the invagination), molecules are oriented
parallel to the shape’s axis because the shape is less curved in that direction. Consequently,
we observe a rapid change in the orientation of molecules in the neck. Such a rapid change
requires local melting of orientational order (s = 0, see the red line in Figure 4a,b), giving
rise to a localized line-like distortion without the topological charge (m = 0). Additionally,
we have two m = 1/2 TDs on the outer stomatocyte surface, and two m = 1/2 TDs on the
invagination part of the surface, so that the total topological charge mtot = 2 is dictated by
topology (Gauss–Bonnet and Poincare–Hopf theorems [23]). Note that the above-described
orientation preference of molecules above and below the stomatocyte (cup shape) neck
region and the consequent formation of a localized line-like distortion in the neck are valid
if the outer part of the stomatocyte surface is qualitatively different from the invagination
part of the surface. In our case, the outer part of the stomatocyte is slightly oblate, while the
invagination is slightly prolate (see Figure 4b). Furthermore, these orientation preferences
are true for non-curved molecules described by the extrinsic term given in Equation (11b).
If the molecules were curved, their orientation preference would also depend on their
intrinsic curvature, as predicted in [10], by considering the deviatoric bending energy of
curved nematic molecules attached to the surface [36].
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Figure 4. Orientational ordering configuration and the degree of biaxiality on a stomatocyte vesicle
shape. (a) The amplitude of nematic order s/s0 (presented with color coding) and the orientation
of molecules (denoted by the rods) in the (φ, l)-plane. (b) Equilibrium texture of the amplitude of
nematic order s/s0 plotted on half of the stomatocyte shape. The degree of biaxiality β2 presented
as a 3D plot (c) and with color coding (d). Ls stands for the length of the shape profile curve. The
parameters used in the simulations are R/ξ = 7, ke = ki/2, q3 = 0.04.

Again, the degree of biaxiality around the TDs is at the maximum, as previously
described and discussed in Figure 3 (yellow rings surrounding the TDs in Figure 4d). As
for the line-like distortion in the neck, we observe a high degree of biaxiality just above
and below the neck (see Figure 4c,d). This wall-like biaxial profile is characteristic for the
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OR-type transformation. One sees that the line displaying uniaxial order lies between the
two lines exhibiting maximal biaxiality.

Coupling between Topological Defect and Nanoparticles

Next, we considered the impact of nanoparticles (NPs) on nematic ordering within
nematic shells. Their influence depends on the dimensionless quantity µ = RNPW/K,
where RNP stands for the characteristic NP’s linear size, W measures the anchoring strength
of the NP–LC interface, and K is the representative Frank elastic constant [1]. In the regimes
µ ≪ 1 and µ ≫ 1, nanoparticles have negligible and strong effects [17] on the surrounding
nematic order, respectively. NPs usually exhibit spherical topology (i.e., they do not have
holes), and in the strong anchoring limit (i.e., µ ≫ 1) they effectively act as topological
point defects bearing topological charge one (therefore, m = 1 in effectively 2D systems).
The coupling of NPs with TDs is qualitatively different in the respective regimes. In the
regime µ ≪ 1, NPs are attracted to the cores of defects owing to the universal defect core
replacement (DCR) mechanism [45–48]. Namely, the key local penalty of introducing a TD
into a uniform LC order arises due to the energetically expensive, essentially melted defect
core. In effectively 2D systems, this penalty is roughly given by ∆F ∼ | fc|Vc, where the core
volume is given by Vc ∼ πξ2d, where d estimates the LC film thickness. If an NP is trapped
within the defect core, and it negligibly influences n̂ (i.e., it does not introduce additional
LC elastic penalties), the core free-energy contribution reads ∆F ∼ | fc|(V c − VNP), where
VNP is the NP’s volume and one assumes RNP ≤ ξ. Therefore, the core penalty is reduced
because the melted regime is partially replaced by the NP’s volume. On the other hand,
NPs characterized by µ ≫ 1 tend to create additional TDs in LC media. For example,
an NP exhibiting spherical topology would enforce either one m = −1 defect or two
m = −1/2 defects in an initially uniform LC pattern within a flat LC film. In such a way,
the total topological charge of the film would equal to zero, allowing the realization of
effectively spatially homogeneous far-nematic director fields.

In Figure 5, we illustrate the impact of a 2D circular NP on an effectively 2D nematic
order within a spherical nematic shell enforcing mtot = 2, where the NP–LC interaction is
characterized by µ ≪ 1 (Figure 5a,c) and µ ≫ 1 (Figure 5b,d). Furthermore, we assume that
the NP–LC interface favors homeotropic anchoring, and consequently the NP effectively
acts as an m = 1 point defect in the regime µ ≫ 1. Note that mtot = m(LC)

tot + m(NP)
tot counts

the total topological charge in the film, where m(LC)
tot and m(NP)

tot represent the total charge of
“real” TDs realized in the LC body and the effective charge imposed by NPs, respectively.
Individual “real” 2D TDs are commonly carriers of |m| = 1/2 charges [24,25]. On the
other hand, a circular-shaped NP is an m = 1 carrier in the µ ≫ 1 regime. The nematic
pattern shown in Figure 5a (µ ≪ 1) is essentially the same as in the absence of an NP (see
Figure 3), although the total free energy of the system is slightly lowered (owing to the
DCR effect). On the contrary, the pattern in Figure 5b (µ ≫ 1) is qualitatively different.
Such a configuration was also predicted in [27]. Namely, topology requests mtot = 2, and
the system tends to exhibit minimal free energy. The resulting compromise is realized by
introducing two m = 1/2 TDs into the LC medium because m(NP)

tot = 1 (Figure 5b,d).
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Figure 5. Orientational ordering configuration (a,b) and the degree of biaxiality (c,d) on a spherical
nematic shell with a nanoparticle represented as a green circle with the inscribed “NP”. The NP–LC
interaction is characterized by µ ≪ 1 in (a,c) and by µ ≫ 1 in (b,d). The amplitude of nematic order
s/s0 is presented with color coding, while the orientation of molecules is denoted by the rods in the
(φ, l)-plane (a,b). The degree of biaxiality β2 is presented with color coding (c,d). Ls stands for the
length of the shape profile curve. The parameters used in the simulations are R/ξ = 3.5, ke = ki/2,
q3 = 0.04.

4. Conclusions

In the present study, we focused on order reconstruction-resolved frustrations in
closed deformable nematic shells curved in 3D space. Sphere-like shells typically possess
four m = 1/2 point defects [27,43]. Strong local elastic distortions of orientational order
within the cores of these defects can be realized by the OR mechanism. In such a way,
large differences in orientational order are reflected on the biaxial order parameter length
scale (typical of the order of 50 nm), which roughly determines the core size of point
defects [49]. The center of each defect exhibits negative uniaxiality [18,50]. The local biaxial
configuration of TDs has a volcano-like structure (see Figures 3 and 4) characterized by
circular rims of maximal biaxiality [38]. In addition, strongly deformed shells can exhibit
line-like distortions in the neck regions exhibiting high curvature deviator values (Figure 4),
where the order parameter exhibits an exchange of eigenvalues (i.e., OR transformation) on
crossing them. We illustrated such structures in stomatocyte-type 3D shell shapes (config-
urations) with invaginations (Figure 4). This OR-type deformation displays a valley-like
biaxial profile of β2 spatial dependence, where the central line exhibits negative uniaxi-
ality and is enclosed by two lines exhibiting maximal biaxiality (Figure 4c,d). Contrary
to point defects, which bear topological charges |m| = 1/2, the predicted narrow region
of practically discontinuous change in the orientational ordering along the parallels (i.e.,
distortions in the narrow region at the border line between the two domains in orientational
ordering) in the stomatocyte neck (Figure 4a,b) is without topological charge (chargeless).
Note that this phenomenon of sharp discontinuous line changes in orientational/nematic
ordering is mainly due to the head-to-tail nematic symmetry of molecules [51]. The present
study suggests that one can realize point or line-like distortions in effectively 2D systems
deformed in 3D space exhibiting nematic order.
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Regarding the possible applications of the theoretical results presented in this paper,
it should be pointed out that the predicted line-like distortion regions (distortion sites)
could act as attractors for certain types of nanoparticles (NPs), exploiting the defect core
replacement (DCR) mechanism [45–47]. According to the DCR mechanism, the condensation
free-energy penalty (due to essentially melted LC structures or energetically unfavorable
biaxial orders) can be reduced by replacing a part of a deformed LC with nanoparticles (NPs).

Strongly anisotropic neck regions (like the stomatocyte neck region in Figure 4) could
be formed by encapsulation of spherical particles by the membrane [52], as schemati-
cally presented in Figure 6. In biological cells, endocytosis and phagocytosis represent
similar processes. Wrapping of the membrane around particles [53–59] occurs when it
is energetically favorable for the membrane to bind to the particle [60–66], i.e., when the
binding/adhesion energy between the particle and the membrane is negative [67]. Even
though the line-like distortion in the neck region of our stomatocyte presented in Figure 4
is not a TD, it represents a source of large local elastic penalties due to an essentially
melted LC structure, which means that the local interactions between the neighboring
nematic molecules within the neck are weakened. Consequently, the neck may rupture,
leading to the membrane fission (vesiculation) process [10,68] where two distinct closed
shells (i.e., parent and daughter shells) would be formed, as schematically presented in
Figure 6e. The process of intercalating nanoparticles (for example small proteins) in the
line-like distortion region in the membrane neck could further facilitate neck constriction,
and consequently fission/vesiculation [69].
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lating TDs on nematic shells, one could control the positions of trapped NPs within them, 
which may be useful for diverse applications. If, for example, conductive NPs assemble 
within a localized line-like distortion [70], they could serve as a conducting wire. By con-
trolling the position of line-like distortions, one could develop tunable metamaterials and 
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Figure 6. Schematic representation of the endocytosis process in biological membranes, illustrating
cross-sections of the membrane around the particle in different phases of particle engulfment. Panel
(a) shows a free particle (drawn in red) in the vicinity of the membrane (drawn in black). Panel
(b) shows the initial stage of particle engulfment by the membrane, and panel (c) illustrates the
progressive engulfment driven by particle-membrane adhesion/binding forces [67] and the non-
homogeneous distribution of membrane constituents [3]. At the end of the engulfment process, a
thin membrane neck is formed, as schematically shown in panel (d), which may then disappear in
the process of fission [68], where the membrane-enveloped particle is detached from the membrane
(see panel (e)).

The intercalation of NPs in the region of TDs or line-like distortions could be very
effective if the NP’s interface does not strongly distort the surrounding nematic director
field [48] (i.e., the principal Q eigenvalue). In experiments, this could be enabled either us-
ing small enough NPs, or NPs coated with flexible polymer chains (the latter can rearrange
to accommodate the surrounding LC orientation structure). Therefore, by manipulating
TDs on nematic shells, one could control the positions of trapped NPs within them, which
may be useful for diverse applications. If, for example, conductive NPs assemble within a
localized line-like distortion [70], they could serve as a conducting wire. By controlling the
position of line-like distortions, one could develop tunable metamaterials and rewirable
nano- or micro-wires [71]. Furthermore, recent results reveal that line-like distortions
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could be rewired [71] using external electric fields. In these scenarios, controlled and
pre-established arrays of line-like distortions would resemble a complex network of con-
ductive nano- or micro-wires with rewiring capability, where various arrangements would
correspond to different functionalities [71]. This may lead to a variety of applications in
soft matrices such as multistable optical displays, electronics and charge carrier pathways
for photovoltaics [71]. For experimental purposes, one could also use quantum dots as
nanoparticles, as they can emit in the visible electromagnetic spectrum, making it easier to
determine their location.

Furthermore, in biological systems, interactions between TDs and nanosized objects
could play a vital role in several biological mechanisms [72,73]. For example, TDs in an
epithelial cell organization are exploited to efficiently remove dead cells [73]. Therefore, they
act as an attractor for qualitatively different cells with respect to the “healthy” background,
which is certainly governed by the energy minimization process. Interactions between
NPs and TDs may also play a role in cross-membrane transport. Namely, TDs introduce
inhomogeneities, which could be exploited to facilitate the transport of nano-objects needed
for the activation of certain biological cell processes [74,75].
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