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Quadrupolar Ordering of Phospholipid Molecules
in Narrow Necks of Phospholipid Vesicles
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Shapes of phospholipid vesicles that involve narrow neck(s) were studied theoretically.
It is taken into account that phospholipid molecules are intrinsically anisotropic with
respect to the membrane normal and that they exhibit quadrupolar orientational ordering
according to the difference between the local principal membrane curvatures. Direct
interactions between oriented molecules were considered within a linear approximation
of the energy coupling with the deviatoric field. The equilibrium shapes of axisymmetric
closed vesicles were studied by minimization of the free energy of the phospholipid
bilayer membrane under relevant geometrical constraints. The variational problem was
stated by a system of Euler-Lagrange differential equations that revealed a singularity
in the derivative of the meridian curvature at points where the effect of the orientational
ordering exactly counterbalances the effect of the isotropic bending. The system of
Euler-Lagrange differential equations was solved numerically to yield consistently
related equilibrium orientational distribution of the phospholipid molecules and vesicle
shape. According to our estimation of the model constants the formation of the neck is
promoted if direct interactions between the oriented molecules are taken into account.
It was shown that the energy of the equilibrium shapes is considerably affected by the
quadrupolar ordering of phospholipid molecules.
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Ljubljana, Slovenia

3 Research group “Lipid Membranes,” Friedrich-Schiller University, Neugasse 25, Jena 07745,
Germany

4 Present address: North Dakota State University, Department of Physics, Box 5566, Fargo, ND 58105-
5566, U.S.A

727

0022-4715/06/1100-0727/0 C© 2006 Springer Science+Business Media, Inc.



728 Kralj-Iglič et al.

1. INTRODUCTION

Phospholipid bilayers that form the basis of cellular membranes are the
subject of extensive studies, as they exhibit a large variety of interesting physical
phenomena regarding the configuration of the phospholipid molecules, as well as
regarding the macroscopically observable shapes of vesicular structures. In the last
30 years most attention was devoted to shapes where the principal curvature radii
of the membrane are much larger than the dimensions of the membrane(1) so that
the membrane could be treated as an almost flat, elastic, laterally isotropic, two
dimensional continuum.(2,3,4) Minimization of the energy of isotropic bending(2,3)

by solving a system of Euler differential equations(5) yielded a phase diagram of
possible equilibrium shapes. To assess the relevant energy of these shapes it is now
acknowledged that the area–difference–elasticity model (ADE model)(8,9) provides
an explanation of many interesting features in bilayer membrane systems(4),(9−12).

More recently, it became evident that the phospholipid membrane also
forms nanostructures such as long thin tubes attached to almost flat parts of
the membrane,(13−18) while indirect evidence on membrane permeability indicates
that pores are formed within cellular membranes.(19−20) At least one of the prin-
cipal curvature radii of the membrane is small in nanotubular protrusions and in
pores (of the order of tens of nanometers in the case of nanotubes and of the order
of the membrane layer thickness in the case of membrane pores). Further, within
these nanostructures the two local principal curvatures are considerably different.

Experiments with erythrocytes have shown that the erythrocyte membrane
undergoes budding after addition of amphiphilic substances to the erythrocyte
suspension, as the amphiphilic molecules intercalate into the phospholipid bi-
layer. For certain amphiphilic substances, micro and nanostructures with regions
of considerably different principal curvatures were observed. These structures
include tubular buds and vesicles,(21) nonspherical micro and nanovesicles,(21)

torocyte endovesicles(22,23) and thin tubular connections between the membrane
compartments.(14) It was found that addition of octaethyleneglycol (C12E8) to the
erythrocyte suspension induces formation of torocytic endovesicles(22) - thin flat
structures with a toroid-like end and that the same substance stabilizes membrane
pores induced by electroporation in the DC3F cell line.(24)

Recently, a theoretical description was put forward providing a possible ex-
planation for the stability of all the above described membrane shapes with con-
nected nanostructures.(18),(25−27) The proposed theory is based on the notion that
a membrane constituent is characterized by its intrinsic shape - i.e. the shape of
the surrounding continuum that would require no energy to accommodate the
constituent. However, due to constraints within the many-constituent system, such
a situation is not possible for all the constituents. The energy cost of inserting a
phospholipid molecule into the membrane at a particular site reflects the mismatch
between the intrinsic shape given by the intrinsic principal curvatures and the ac-
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tual shape given by the local principal curvatures. The two intrinsic principal
curvatures are in general different which allows for quadrupolar ordering of the
membrane constituents according to the local difference between the two principal
curvatures(28,25) Derivation of the free energy of the phospholipid membrane by
the methods of statistical physics(18) yields the expression for the energy of local
isotropic bending(3) while it also yields a new term of negative sign that contributes
at regions where the two principal curvatures are different.(18) Quadrupolar order-
ing of the constituents in the deviatoric field at such regions thus lowers the free
energy of the system.

Notable changes in collective ordering of phospholipid molecules within
bilayers are exhibited by phase transitions(29,30) and reflected in the vesicle shape.
It was shown(31) that a collective tilt of phospholipid molecules promotes a saddle
shape of the membrane. The existence of a phase transition indicates the existence
of direct interactions between the phospholipid molecules which are therefore
also present above the phase transition temperature causing a weaker, yet possibly
significant effect (similar to the interaction of magnetic moments with an external
magnetic field and with other magnetic moments that are above the phase transition
temperature, exhibited in the susceptibility of the system).

It has also been observed(32) that the main phase transition is sensitive to
the curvature of the membrane layer which therefore acts as an effective external
field. These data support our assumption that ordering of the molecules may be
different in different parts of the membrane, depending on the local curvature of
the membrane.

As well as in previously studied systems that involve nanotubular protrusions,
torocytes and pores, a high difference between the principal membrane curvatures
could also be attained in a stable narrow neck that is eventually formed in the
process of budding.

Stability of a narrow neck was observed, for example, in spontaneous shape
transformation of a POPC (palmitoyl-oleoyl-phosphatidylcholine) vesicle ob-
tained by electroformation where the undulated tubular protrusion slowly short-
ened and integrated into the globular mother vesicle.(25) If a small void was left in
the observation chamber that allowed for slight evaporation of water, the beads that
formed the protrusion became sphere-like while the necks became very thin so
that they could not be observed by the phase contrast microscope. In this case the
sequence leading to a globular vesicle did not evolve and the observed shape with
"spherical" beads stayed stable for hours.(25) The possibility should be considered
that the necks that connect the vesicular compartments are very thin, of the order
of tens of nanometers, and that a mechanism similar to that explaining the stability
of connected nanotubes and pores is also important in necks.

In this work we apply the above mentioned theoretical description that
provides an explanation for the observed membrane shapes with connected
nanostructures (where the two principal curvatures strongly differ) to the shapes
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of phospholipid vesicles with neck(s). We study the sequence where with increas-
ing average mean curvature of the vesicle the prolate vesicle shape transforms
into a shape composed of two spheres connected by a narrow neck whose width
decreases in the process. The membrane free energy for a one-component phospho-
lipid membrane was derived previously.(18) Here we introduce some modifications
in the description. We introduce a two-state model of the orientational ordering
so as to obtain simple analytical expressions in the formulation of the variational
problem. The variational problem for axisymmetric vesicle shapes can then be
expressed by a system of Euler-Lagrange differential equations(5) and solved nu-
merically to yield an equilibrium shape and an orientational distribution of the
constituents that are consistently related. The consistently related effects of the
orientational ordering and the vesicle shape are to our knowledge rigorously con-
sidered for the first time. Within the applied approach, direct interactions between
the oriented molecules are taken into account. The expression of the variational
problem and the obtained solutions may add to the understanding of the stabil-
ity of narrow necks of phospholipid membranes and support the hypothesis of
quadrupolar ordering of the membrane constituents as a possible mechanism that
is important in phospholipid bilayer systems.

2. THEORY

2.1. The Two State Model

A single phospholipid molecule is treated as a point-like constituent in a
two-dimensional continuum curvature field imposed by the other phospholipid
molecules. We assume that the phospholipid molecule, due to its structure and
local interactions, energetically would prefer a local geometry that is described
by the two principal curvatures C1m and C2m. As the phospholipid molecule is
composed of two tails and a headgroup, the intrinsic principal curvatures are
in general not identical i.e. the intrinsic shape of the phospholipid molecule is
anisotropic.(18) If the area and the volume of the vesicle are fixed, the shape cannot
attain the curvatures that would equal the intrinsic curvatures in all its points and
the energy of the molecules is increased. The energy of a single molecule derives
from the mismatch between the actual membrane shape given by the two principal
curvatures C1 and C2 and the intrinsic shape given by the intrinsic principal
curvatures C1m and C2m,(25,28)

E(ω) = ξ

2
(H − Hm)2 + ξ + ξ ∗

4

(
Ĉ2 − 2ĈĈm cos (2ω) + Ĉ2

m

)
, (1)

where ξ and ξ ∗ are constants describing the strength of the interaction between the
molecule and the surrounding membrane, H = (C1 + C2)/2 is the mean curvature
of the membrane, Hm = (C1m + C2m)/2 is the mean curvature of the continuum
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intrinsic to the molecule, Ĉ = (C1 − C2)/2, Ĉm = (C1m − C2m)/2 and ω is the
orientation of the principal axes of the intrinsic shape relative to the principal axes
of the local curvature of the continuum.

It can be seen from (1) that the single-molecule energy attains a minimum
when cos(2ω) = 1, i.e. when the two systems are aligned or mutually rotated by
an angle π , while the single-molecule energy attains a maximum when cos(2ω) =
−1, i.e. when the two systems are mutually rotated by an angle π/2 or 3π/2. In
the first case the single-molecule energy is

Emin = ξ

2
(H − Hm)2 + ξ + ξ ∗

4

(
D2 + D2

m

) − ξ + ξ ∗

2
DDm, (2)

whereas in the second case the single-molecule energy is

Emax = ξ

2
(H − Hm)2 + ξ + ξ ∗

4

(
D2 + D2

m

) + ξ + ξ ∗

2
DDm, (3)

where D =| Ĉ | and Dm =| Ĉm | are the curvature deviator and the intrinsic curva-
ture deviator, respectively. The states ω = 0, π and ω = π/2, 3π/2, respectively,
are degenerate. We say that the ordering is quadrupolar.

2.2. Local Equilibrium of Independent Molecules

Each monolayer is described separately. The contributions to the free en-
ergy of the two monolayers are then summed to obtain the energy of the bilayer
membrane.

The monolayer area is divided into small patches which however contain a
large number of molecules so that methods of statistical physics can be used. The
membrane curvature is taken to be constant over the patch. We consider that all
phospholipid molecules are equal and independent and are subject to the curvature
field. The lattice statistics approach is used, drawing an analogy from the problem
of noninteracting magnetic dipoles in an external magnetic field,(33) the curvature
deviator D taking the role of the external magnetic field.

In the idealized case, we assume a simple model where we have M equivalent
molecules in the patch, each of which can exist in one of two possible states
corresponding to the energies Emin and Emax, respectively (Eqs. (2) and (3)); N
molecules are taken to be in the state with higher energy Emax and (M − N )
molecules are taken to be in the state with lower energy Emin. The energy of the
lipid molecules within the patch in the mean curvature field, divided by kT where
k is the Boltzmann constant and T is the temperature, is

ED

kT
= N

Emax

kT
+ (M − N )

Emin

kT
. (4)
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Inserting Eqs. (2) and (3) into Eq. (4) gives

ED

kT
= M

Eq

kT
− (M/2 − N )deff , (5)

where

Eq

kT
= ξ

2kT
(H − Hm)2 + ξ + ξ ∗

4kT

(
D2 + D2

m

)
, (6)

and

deff = (ξ + ξ ∗)Dm D

kT
. (7)

We call deff the effective curvature deviator.
Direct interactions between the molecules are taken into account. The cur-

vature field that is considered in this description is produced by the molecules
themselves, i.e. the molecules pack together in such way as to form the local shape
of the membrane. Therefore, the orientation of a given molecule is important
regarding the interaction with its nearest neighbors. In describing the direct inter-
action between the nearest neighbor molecules, we propose it should be taken into
account that the molecules which are oriented in such way that their orientational
energy in the mean curvature field is lower, also exhibit more favorable packing.
By attaining the shape that is in tune with the local curvature field, the tails of the
favorably oriented molecules come on the whole closer together, which gives rise
to additional lowering of the energy of the patch due to direct interactions, relative
to the situation where the molecules are randomly oriented within the patch. On
the other hand, if we consider that the molecules which are oriented in such way
that their orientational energy in the mean curvature field is higher, exhibit less
favorable packing in which the tails are on the whole further apart. This causes a
rise of the energy of the interaction between such oriented molecules within the
patch with respect to the situation where the molecules are randomly oriented. The
effect depends on the local curvature field, on the intrinsic shape of the molecule
and the strength of the interaction. We take it that the effect is proportional to the
local effective curvature deviator. The direct interaction of N molecules in the
patch that have higher energy Emax, with their neighbors is therefore described by
a positive contribution,

EN

kT
= k̃

kT
Ndeff , (8)

where k̃ is the interaction constant. Accordingly, the direct interaction of (M − N )
molecules that have lower energy Emin, with their neighbors is described as

EM−N

kT
= − k̃

kT
(M − N )deff . (9)



Quadrupolar Ordering of Phospholipid Molecules in Narrow Necks 733

The total energy of the patch due to direct interaction Ei/kT is (EN /kT +
EM−N /kT )/2, where we divide by 2 as to avoid counting each molecule twice.
Therefore,

Ei

kT
= − k̃

kT
(M/2 − N )deff . (10)

The total energy of the patch EP is obtained by summing the contribution of
the orientation of the molecules according to the local curvature deviator ED and
the contribution of the direct interaction between the molecules within the patch
Ei,

Ep

kT
= ED

kT
+ Ei

kT
. (11)

The chosen patch is considered as a system with a constant area Ap and
a constant number of molecules M . The system is immersed in a heat bath so
that its temperature T is constant. There are two possible energy states for the
molecules in the patch. Within the given energy state the molecules are treated
as indistinguishable. We assume that the system is in thermodynamic equilibrium
and follow the description of a two-orientation model of noninteracting magnetic
dipoles.(33) Analogous, if there are N molecules in the state with higher (maximal)
energy and (M − N ) molecules in the state with lower (minimal) energy, the
number of possible arrangements consistent with this N is M!/N !(M − N )!,
while the corresponding energy of the system is EP. However, when calculating
the partition function, we must consider all possibilities, e.g., N can be any number
from 0 to M ; N = 0 means that all the molecules are in the state with lower energy,
N = 1 means that one molecule is in the state with higher energy while M − 1
molecules are in the state with lower energy, etc.. The canonical partition function
Qp(M, T, D) of M molecules in the small patch of the membrane is therefore

Qp =
M∑

N=0

M!

N !(M − N )!
exp

(
− EP

kT

)
, (12)

where k the Boltzmann constant.
Considering Eqs. (2)–(12) yields

QP = q M
M∑

N=0

M!

N !(M − N )!
exp

(
deff (1 + k̃/kT )(M/2 − N )

)
, (13)

where by considering Eq. (6)

q = exp

(
− Eq

kT

)
. (14)
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Using the binomial (Newton) formula in summation of the finite series in
Eq. (13) gives

QP = (2q cosh(deff (1 + k̃/kT )/2))M . (15)

The Helmholtz free energy of the patch is FP = −kT lnQP,

F P = M(3ξ + ξ ∗)

4
H 2 − Mξ H Hm − M(ξ + ξ ∗)

4
C1C2

− MkT ln

(

2 cosh

(
deff (1 + k̄

kT )

2

))

+ Mξ

2
H 2

m + M(ξ + ξ ∗)

4
D2

m

(16)

where we used the relation

D2 = H 2 − C1C2. (17)

The energy of the membrane bilayer is then obtained by summing the contri-
butions of the all patches in both monolayers,

F =
∫

Aout

mout F
P(C1, C2) dA +

∫

Ain

m in FP(−C1,−C2) dA, (18)

where mout and m in are the area densities of the lipid molecules in the outer and in
the inner monolayer, respectively, while FP is given by Eq. (16). It is considered
that the signs of the principal curvatures in the inner layer are opposite to the signs
of the principal curvatures in the outer layer.

We assume that mout = m in = m0. Also, in integration, we neglect the dif-
ference between the areas of the two monolayers (Aout = Ain = A), where A is
the membrane area. The latter approximation is not valid for strongly curved
membranes, but in the system that will be considered in this work, the area cor-
responding to strong curvature (i.e. the area of the neck(s)) is small compared to
the area of the entire vesicle. It follows from Eqs. (16) and (18) that

F = (3ξ + ξ ∗)

8
m0

∫
(2H )2dA − (ξ + ξ ∗)m0

2

∫
C1C2dA

− 2m0kT

∫
ln (2 cosh (deff (1 + k̃/kT )/2))dA, (19)

where the constant terms are omitted. The first two terms of the above expression
yield the bending energy of a nearly flat thin membrane.(3) In the following, the
constant contribution −2m0kT A ln 2 that is included in the third term of Eq. (19)
is omitted. Also the second term in Eq. (19) is not considered further since
according to the Gauss-Bonnet theorem it is constant for the closed surfaces that
are considered in this work. Therefore we will further consider the expression for
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the free energy F ,

F = (3ξ + ξ ∗)

8
m0

∫
(2H )2dA − 2m0kT

∫
ln cosh(deff (1 + k̃/kT )/2)dA. (20)

2.3. The Degree of Ordering of Phospholipid Molecules

The average number of molecules in each of the energy states represents
the local quadrupolar ordering of the molecules. Knowing the canonical partition
function of a patch QP we can calculate the average number of molecules with
higher energy within the patch (Emax),

〈N 〉 =
∑M

N=0 N M!
N !(M−N )! e

−deff (1+k̃/kT )N

∑M
N=0

M!
N !(M−N )! e

−deff (1+k̃/kT )N
, (21)

while the average number of the molecules with lower energy within the patch
(Emin) is

〈M − N 〉 =
∑M

N=0(M − N ) M!
N !(M−N )! e

−deff (1+k̃/kT )N

∑M
N=0

M!
N !(M−N )! e

−deff (1+k̃/kT )N
, (22)

Equation (21) can be rewritten in the form

〈N 〉 = − ∂ ln QP
0

∂(deff (1 + k̃/kT ))
, (23)

where

QP
0 =

M∑

N=0

M!

N !(M − N )!
e−deff (1+k̃/kT )N = (

1 + e−deff (1+k̃/kT )
)M

. (24)

It follows from Eqs. (23) and (24) that the average fraction of the molecules
in the higher energy state Emax can be expressed as

〈N 〉
M

= 1

1 + edeff (1+k̃/kT )
, (25)

while the average fraction of the molecules in the lower energy state Emin is

〈M − N 〉
M

= 1

1 + e−deff (1+k̃/kT )
. (26)

It can be seen from Eqs. (25)–(26) that at deff = 0, i.e. when the principal curvatures
are equal, both energy states are equally occupied (〈N 〉/M = 〈M − N 〉/M =
1/2). The fraction of the number of molecules in the lower energy state increases
with increasing deff to 1, while the fraction of molecules in the higher energy state
decreases to 0.
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2.4. Global Thermodynamic Equilibrium

The equilibrium configuration of the system (the equilibrium shape and the
corresponding distribution of the quadrupolar ordering) is sought by minimizing
the membrane free energy

δF = 0 (27)

under relevant geometrical constraints. We require that the membrane area A be
fixed

∫
dA = A, (28)

that the enclosed volume V be fixed
∫

dV = V (29)

and that the average mean curvature 〈H〉

〈H〉 = 1

A

∫
HdA (30)

be fixed.
For clarity, the above problem is expressed in dimensionless form. We in-

troduce the dimensionless curvatures c1 = RsC1, c2 = RsC2, h = Rs H, hm =
Rs Hm, 〈h〉 = Rs〈H〉, d = Rs D, dm = Rs Dm, the relative area a = A/4π Rs

2 = 1,
the relative volume v = 3V /4π Rs

3, the relative area element da = dA/4π R2
s and

the relative volume element dv = 3dV /4π R3
s . The normalization unit Rs is the

radius of the sphere of the required area A, Rs = √
A/4π . The free energy of the

phospholipid bilayer F (Eq. (20)) is normalized relative to (3ξ + ξ ∗)2πm0,

f = wb + fd, (31)

where

wb = 1

4

∫
(c1 + c2)2da, (32)

fd = −κ

∫
ln cosh(deff (1 + k̃/kT )/2)da (33)

and

κ = 4kT Rs
2
/

(3ξ + ξ ∗). (34)

We consider only axisymmetric shapes. The geometry of the shape is de-
scribed in terms of the arc length l. We use the coordinates ρ(l) and z(l) where ρ is
the perpendicular distance between the symmetry axis and a certain point on the
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contour and z is the position of this point along the symmetry axis. The principal
curvatures are

c1 = sin ψ

ρ
, c2 = dψ

dl
≡ ψl , (35)

where ψ is the angle between the normal to the surface and the symmetry axis.
The dimensionless area element is da = ρdl/2 and the dimensionless volume
element is dv = 3ρ2 sin ψdl/4. Using the above coordinates, the dimensionless
free energy is

f =
∫

1

8

(
sin ψ

	
+ ψl

)2

ρdl −
∫

κρ

2
ln cosh

(
ϑ

(
sin ψ

	
− ψl

))
dl. (36)

where

ϑ = (ξ + ξ ∗)Dm

4kT Rs

(

1 + k̃

kT

)

, (37)

while the dimensionless global constraints are
∫

1

2
ρdl = 1, (38)

∫
3

4
ρ2 sin ψdl = v (39)

and
∫

1

4
(sin ψ + ψlρ)dl = 〈h〉. (40)

Also, we must consider a local constraint between the chosen coordinates,

dρ

dl
= cos ψ. (41)

A functional is constructed,

G =
∫

Ldl , (42)

where

L = 1

8

(
sin ψ

	
+ ψl

)2

ρ − κρ

2
ln cosh

(
ϑ

(
sin ψ

	
− ψl

))

+ λa
ρ

2
+ λv

3

4
ρ2 sin ψ + λ〈h〉

1

4

(
sin ψ

	
+ ψl

)
ρ + λ(ρl − cos ψ), (43)
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λa, λv and λh are the global Lagrange multipliers and λ is the local Lagrange
multiplier. The above variational problem is expressed by a system of Lagrange-
Euler differential equations,

∂L
∂ρ

− d

dl

(
∂L
∂ρl

)
= 0, (44)

∂L
∂ψ

− d

dl

(
∂L
∂ψl

)
= 0. (45)

It follows from Eqs. (44) and (43) that

dλ

dl
= 1

8

(
χ2 − sin2ψ

ρ2

)
+ λa

2
+ 3

2
λv	sin ψ + 1

4
λ〈h〉

χ

ρ

−κ

2
ln cosh

(
ϑ

(
sin ψ − χ

	

))
+ κϑ

2ρ
sin ψ tanh

(
ϑ

(
sin ψ − χ

	

))
,

(46)

while it follows from Eqs. (45) and (43) that

dχ

dl
= A

B (47)

where

B =
⎛

⎝1 − 2κϑ2

cosh2
(
ϑ

(
sin ψ−χ

	

))

⎞

⎠ , (48)

A = sin ψ cos ψ

ρ

⎛

⎝1 + 2κϑ2

cosh2
(
ϑ

(
sin ψ−χ

	

))

⎞

⎠ − 4κϑ2χ cos ψ

ρ cosh2
(
ϑ

(
sin ψ−χ

	

))

+ 3λv	
2cos ψ + 4λ sin ψ − 4κϑcos ψ tanh

(
ϑ

(
sin ψ − χ

	

))
, (49)

and

ψl = χ

ρ
. (50)

At the poles ψl = sin ψ/ρ. The system of Eqs. (41) and (46)–(50) is solved
numerically. The integration over the arc length l is performed from both poles so
that the relative area of the calculated shape is equal to 1. Then, the validity of
the constraints is tested and new initial values of the above quantities are set. The
procedure is repeated until the constraints and the smoothness of the variables at
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the meeting point are fulfilled up to a prescribed accuracy. The contour of the cell
shape is determined using the relation

dz

dl
= − sin ψ. (51)

2.5. Estimation of Constants

In order to solve the variational problem, the values of the model constants
κ and ϑ should be estimated. It was previously considered(18) that the interaction
constant ξ can be estimated from the bilayer bending constant. The other interac-
tion constant ξ ∗ was for reasons of simplicity taken to be equal to ξ . Also here we
adopt the above so that ξ = ξ ∗ = kca0, where kc is the bilayer bending constant
and a0 is the area per phospholipid molecule. The values of these quantities are
taken from the literature (kc � 20 kT , a0 = 60 × 10−20 m2.(30)) Further, we take
it that for a giant phospholipid vesicle Rs is 10−5 m, corresponding to samples
of vesicles obtained by electroformation.(34) It was taken that T = 300 K. The
intrinsic curvature deviator Dm was estimated as 2 × 108 m−1.(18,26) For k̃ = 0 we
thereby obtain using Eq. (37) that ϑ � 1.5 × 10−4, while using Eq. (34) we obtain
κ � 7 × 106.

Being aware of diverse contributions to the direct interaction between the
phospholipid molecules, we will only attempt to give a rough estimate of its order
of magnitude. We estimate the energy k̃/kT by the van der Waals interactions
between the tails of orientationally ordered and orientationally disordered nearest
neighbors of a given molecule. We take that the phospholipid molecules are
distributed in a quadratic lattice and take into account the nearest tails of the
neighboring molecules. The tail of a phospholipid molecule is described as a
cylinder. The energy of van der Waals interaction between two cylinders with
aligned geometrical axes is wW(δ) = AHL

√
r0/24δ3/2, where AH is the Hamaker

constant, L is the length of the cylinders, δ is the distance between the cylinders
and r0 is the radius of the cylinders. For hydrocarbons AH = 3 kT/4(35) while
we take for the lipid molecules L = 1.5 nm, r0 = 3.5 nm and δ = 0.3 nm. The
estimated energy is k̃/kT = 2wW(δ)/kT � 1.

3. RESULTS

If follows from Eqs. (47)–(48) that a singularity in dχ/dl occurs when the
denominator (48) becomes equal to 0,

1 − 2κϑ2

cosh2(ϑ( sin ψ

ρ
− ψl ))

= 0. (52)
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Fig. 1. a: Lagrange coefficients as a function of the interaction constant ϑ , b: bilayer membrane free
energy f and the energy contributions: energy of isotropic bending wb, and contribution of orientational
ordering fd as a function of the interaction constant ϑ ; v = 0.95, 〈h〉 = 1.0422, κ = 7 × 106.

Equation (52) is fulfilled when

sin ψ

ρ
− ψl = ± 1

ϑ
ln(

√
2κϑ +

√
2κϑ2 − 1), (53)

i.e. when the curvature deviator attains a certain constant value determined by the
constants κ and ϑ . For almost globular shapes (shapes that exhibit small principal
curvatures over all their area) the argument of the cosh is almost zero so that
cosh � 1. For such shapes there would be a relatively narrow interval of chosen
constants κ and ϑ , (2κϑ2 � 1) for which the singularity could occur. Fig. 1 shows
how the global Lagrange multipliers of an almost globular shape with chosen
relative volume and average mean curvature and a chosen constant κ change
upon increase of the constant ϑ . It could be expected that the singularity would
eventually be reached for high enough values of ϑ . We call the shape where the
singularity first occurs the critical shape. We were able to overcome the interval of ϑ

corresponding to shapes with at least one singularity by extrapolating the solution
(the Lagrange multipliers and the boundary conditions) over this narrow interval.
Within this interval we could not solve the variational problem numerically. This



Quadrupolar Ordering of Phospholipid Molecules in Narrow Necks 741

is indicated by the gap in the curves (Figs. 1a,b). It can also be seen in Fig. 1a that
all the Lagrange multipliers approach zero within this interval.

Figure. 1b shows the corresponding dependence of the energy contributions
on the value of the constant ϑ . The isotropic bending energy wb, the deviatoric
energy fd and the sum of these two terms f = wb + fd are depicted. It can be seen
that close to the interval where the singularity occurs and the Lagrange multipliers
approach zero, the dependence of the energy on ϑ indicates no discontinuity. When
the interaction constant ϑ is increased over the entire range where the shapes could
be calculated (Fig. 1) the shape change is so minute that the shape appears the
same (see inset).

Increasing the constant ϑ in a shape that attains many different values of
c1 and c2 along the contour (such as the pear-shape with a narrow neck) would
first yield a singularity (reach the critical shape) at a single point on the contour
(on a ring of axisymmetric shape) in the neck region. It is of interest to study the
behavior of the solutions of the variational problem close to the critical shape.
Starting with the constants κ and ϑ that are high enough to yield a solution above
the interval where the singularity occurs in at least one point on the contour, we
approached the critical shape with a somewhat narrower neck by decreasing the
constant κ .

Figure 2 shows the contour of the shape and the corresponding fraction of
the molecules in the lower energy state, i.e. the ordering of the phospholipid
molecules; gray lines correspond to the shape that is more remote to the critical
ϑ while black lines correspond to the shape that is closer to the critical ϑ . It can
be seen in both cases that the fraction of the molecules in the lower energy state
increases in the neck region. In the neck the curvature deviator is higher and the
orientational ordering becomes more pronounced. As the critical ϑ is approached,
the maximum of the orientational distribution function becomes narrower and the
peak becomes sharper. The neck of the pear-shape becomes shorter and exhibits
a more abrupt width change for the shape that is closer to the critical ϑ .

Figure 3 shows the numerator (Eq. (49)), the denominator (Eq. (48)) and the
derivative dχ/dl = A/B along the contour as a function of the symmetry axis of
the shapes depicted in Fig. 2. In the shape that is closer to the critical shape (case
b) the denominator attains lower absolute values along the whole contour while it
approaches 0 at a certain point in the neck region. Correspondingly, the derivative
dχ/dl reaches higher values and changes abruptly in the vicinity of this point
forming sharp peaks. In the shape that is more remote to the critical shape (case
a), the absolute values of the denominator and of the numerator are higher, while
the values of the derivative dχ/dl are lower. The peaks formed by the derivative
dχ/dl are milder. The arc length where the derivative dχ/dl strongly changes
diminishes as the critical shape is approached.

We studied the formation of narrow neck(s) i.e. the sequence of shapes of
increasing average mean curvature.(36) Figure 4 shows how the free energy of
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Fig. 2. Two shapes illustrating the approach to the critical shape with singularity in the Euler–Lagrange
differential equation and the corresponding orientational distribution functions. The shape that is closer
to the critical shape (κ = 1735.5, black) has a shorter neck and a sharper distribution peak than the
shape that is more remote from the critical shape (κ = 2800, gray). For both shapes v = 0.95, ϑ =
0.02456, 〈h〉 = 1.11543.
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Fig. 3. Approach to the critical shape with singularity in the Euler differential equation. The numerator
A, the denominator B and the derivative dχ/dl are shown for both shapes (a and b, respectively)
presented in Fig. 2.
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Fig. 4. Bilayer membrane free energy as a function of the average mean curvature of the vesicle
with v = 0.95; a: isotropic bending, b: orientational ordering of independent molecules ϑ = 1.5 ×
10−4, κ = 7 × 106, c: orientational ordering of interacting molecules ϑ = 3 × 10−4, κ = 7 × 106.

the vesicle changes upon increase of the average mean curvature for a vesicle
of a given relative volume v = 0.95 and size Rs = 10−5 m. Case a corresponds
to isotropic bending only, case b corresponds to the quadrupolar ordering of
independent molecules (k̃/kT = 0), while case c also considers direct interactions
between phospholipid molecules (k̃/kT = 1). The energy of isotropic bending
wb increases along the sequence(38) while the energy of deviatoric bending fd

decreases along the sequence. The behavior of the sum of the two contributions
exhibits the difference in the relative rate of change of the two contributions. In the
case b (if the molecules are considered as independent) the decrease of the energy
of the deviatoric bending is not strong enough to overcome the increase of the
energy of isotropic bending wb and f increases with increasing 〈h〉. In the case c
(if direct interaction between phospholipid molecules is considered), the increase
of the energy of isotropic bending wb is overcome and the vesicle free energy
decreases with increasing 〈h〉. However, for any choice of κ and ϑ , a critical shape
is eventually reached at a certain 〈h〉 along the sequence. We were not able to
obtain a numerical solution beyond this critical 〈h〉. For larger ϑ the critical 〈h〉 is
smaller (not shown). In the results shown in Fig. 4 the critical shape was reached
near the boundary of the class of pear shapes. As we could not obtain numerical
solutions for 〈h〉 beyond the critical shape, we cannot say whether the limit shape
composed of two spheres connected by an infinitesimal neck is eventually reached
upon increase of 〈h〉.
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4. DISCUSSION

In this work we studied the interdependence between quadrupolar ordering
of phospholipid molecules (that are anisotropic with respect to the membrane
normal) in the deviatoric curvature field and the shape of the phospholipid vesicle.
The description derives from the assumption that the energy of the molecule at
a given site depends on its orientation with respect to the membrane normal;
the molecule spends on the average more time in the orientation that yields a
lower energy according to the local deviatoric field. The model parameters are
determined from the data on the intrinsic properties of the constituent molecules
and their mutual interactions. A rigorous solution of the variational problem for
axisymmetric shapes is sought numerically to yield the equilibrium shape and the
corresponding orientational ordering distribution over the vesicle surface.

Previously, orientational ordering was described by a one-molecule parti-
tion function considering all orientations of the molecule within the plane of the
membrane.(18,37,38) In this work, orientational ordering was described by a two
energy state model. In using the new approach we have expressed the energy in
terms of hyperbolic functions. As the hyperbolic functions are analytical, this sim-
plified and clarified the derivation of the Euler–Lagrange equations which require
analytical expression of the functional L. More important, the two state model
enabled us to introduce a simple model describing the direct interactions between
phospholipid molecules.

The model describing the direct interactions between phospholipid molecules
that is introduced in this work reflects close contact between the tails that is different
if the molecules align in a particular way within the deviatoric field while packing
to form the local curvature field. We assumed that the energy is additionally
lowered if the molecules are ordered when oriented favorably, while it is increased
if the molecules are ordered when oriented unfavorably. The obtained formalism
renormalizes (enhances) the constant ϑ which describes the interaction of the
phospholipid molecule with the deviatoric field. Therefore, the simple analytical
form of the functional is also retained when the direct interactions between the
molecules are taken into account. The linear approximation (Eqs. (8) and (9))
which is valid for small deff overestimates the effect of the direct interactions
between phospholipid molecules for large effective deviators. In the considered
sequence (Fig. 4) the shapes with a wide neck have small values of the effective
deviator over the whole vesicle surface, therefore the linear approximation well
represents the direct interactions between phospholipid molecules. As the slope of
the f (〈h〉) curve is determined early in the sequence when the neck of the shape is
wide, the deviation of the linear approximation from exact dependence at larger 〈h〉
does not change the conclusion that the direct interactions between phospholipid
molecules promote the formation of the narrow neck. On replacing the linear
approximation by a more realistic one expressing the saturation of the ordering, a
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minimum in the f (〈h〉) curve may however be formed, corresponding to the shape
with a finite narrow neck that would be energetically the most favorable.

A singularity was found in the differential equation for dχ/dl (Eqs. (47)–
(48)). This singularity occurs at sites where the opposing effects of isotropic
and deviatoric bending become equal in magnitude, i.e. where the deviatoric
effects renormalize the isotropic bending to zero. A geometry is reached where
the curvature is so high that the approximate model is no longer valid. Fig. 3 shows
that the derivative dχ/dl increases when we approach the critical shape, while the
numerator and the denominator both decrease over the entire shape. In the point on
the contour close to the narrowest width of the neck, the denominator approaches
zero. From the numerical results we could not come to a definite conclusion that the
regularity condition can be imposed. We could not exclude the possibility that the
derivative dχ/dl may in some cases increase beyond any limit. This would mean
that the discontinuity in the meridian curvature that is consistent with divergence
in dχ/dl corresponds to a finite energy. Changes of the meridian curvature over a
minute arc length were recently observed in two component phospholipid vesicles
with added cholesterol, where the two phospholipids were in two different liquid
phases (ordered/disordered).(39) Segregation of the phospholipid was observed
whereby an abrupt change in the meridian curvature could be noted in some of
the two-photon micrographs. The abrupt changes in curvature appear close to the
line where the two phases are in contact, but rather within the disordered phase
region. In some shapes the abrupt change in meridian curvature appears within the
disordered phase. It is argued(39) that the shape is determined by the preference of
the phospholipid for a certain curvature and by the effects on the edges where the
two phases meet, however the abrupt changes in the curvature within the given
phase are not explained.

Experiments show that besides flat or almost flat structures, phospholipid
molecules also favor other structures (hexagonal and cubic).(40−42) In hexagonal
and cubic structures the principal curvatures strongly differ, so it is obvious that in
these structures the molecules are sensitive to the difference between the principal
curvatures. Within our description two situations are energetically favorable: the
state H = D = 0 (flat membrane) where both the energy of isotropic bending and
the deviatoric energy are zero, or the state H �= 0, D �= 0, where the deviatoric
energy contribution is large and negative so that it counterbalances the positive
energy contribution of isotropic bending.

As the model of quadrupolar ordering successfully described shapes with
connected nanotubes in one-component phospholipid bilayer membranes,(18) we
suspected that it might prove successful also in explaining the stability of the
narrow neck in such systems. We found our expectations to be correct, as the free
energy of the vesicle decreases with narrowing of the neck of the vesicle.

This result reveals a possible role of quadrupolar ordering in phospholipid
bilayer systems that is more general than initially expected. In previous works
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involving inclusions, most of the effect was found to derive from strongly
anisotropically curved regions with accumulated inclusions.(21−27), (38) Similarly,
in describing the stability of nanotubular protrusions in a one-component phos-
pholipid membrane (18) where we used a parametric model composed of a sphere
(where the deviatoric field is zero and there is no ordering) and a protrusion
(where the deviatoric field is high), the effect came from quadrupolar ordering
of phospholipid molecules on the nanotubular protrusion. The rigorous solution
of the variational problem (Fig. 4) shows that the effect of quadrupolar ordering
on the free energy of the vesicle is also important in shapes where there are no
regions of very high curvature deviator. Except for in the vicinity of the singularity,
the local ordering is low over most of the membrane area, while the equilibrium
shape could hardly be distinguished from the corresponding shape calculated by
minimization of the Helfrich local bending energy. However, as the values of the
free energy are considerably affected, the quadrupolar ordering of phospholipid
molecules provides a particular interpretation of the trajectories representing the
observed processes within the phase diagram of possible shapes.

A possible explanation for the stability of the narrow neck was proposed by
the area-difference-elasticity model.(9) The ADE model(8−9) is based on the mini-
mization of the Helfrich local energy of isotropic bending while another important
energy contribution comes from a nonlocal term - the relative stretching of the
two membrane layers. The nonlocal bending energy is given by two parameters,
the nonlocal bending constant κ̄ and the relaxed area difference between the two
membrane monolayers A0. The set of possible shapes obtained by the numerical
solution of the relevant system of Euler-Lagrange differential equations is identi-
cal to the set obtained by the minimization of the local bending energy,(9) but by
considering the nonlocal bending energy, for chosen data, the shape of the lowest
total energy may differ from the shape with the lowest energy of local bending.
In the sequence of shapes starting from a pear shape and leading to two spheres
connected by an infinitesimal neck, the energy of isotropic bending monotonously
increases with 〈h〉, while adding the nonlocal bending energy consisting of the
quadratic function of 〈h〉 may, for appropriate choice of the relaxed area difference
between the two monolayers A0, result in a decrease of the free energy towards
the limit shape. The limit shape therefore becomes the shape of minimal free
energy which is interpreted as the stability of the infinitesimal neck. Within the
area-difference-elasticity model, a certain threshold value of A0 is therefore nec-
essary to obtain a stable neck, assigned by a line Lpear within the (v,A0/(2δRs))
phase diagram,(9) where δ is the distance between the two monolayer neutral sur-
faces. If we take the experimentally determined value of α = κ̄/πkc � 0.64,(8.5,9)

we get for v = 0.95 the threshold value A0/(2δRs) � 3 which yields for the
membrane free energy normalized by 8πkc (equivalent to the relative free energy
depicted in Fig. 4), f ∈ [8.5, 9] for the range of 〈h〉 corresponding to Fig. 4. For a
vesicle with the narrow neck (at the end of the sequence), about one fourth of the
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whole free energy comes from the local bending term and the rest from the relative
stretching term. The relatively high energy of relative stretching implies that the
tension within the membrane is high. It could be argued that the membrane would
tend to relax, for example by a tension - induced transport of molecules between
the layers through transient pores.(44) By considering the mechanism proposed
in this work the formation of the neck is energetically favorable for any initia-
tion mechanism. The membrane free energy decreases as the region of increasing
curvature deviator increases while the free energy values remain within the same
range (Fig. 4). Similar to exovesiculation (Fig. 4), an energy decrease could also
be expected for endovesiculation, by using the same values of the model constants
(ϑ and κ). The deviatoric effects could not determine the general direction of the
shape change of the globular vesicle, but once the neck(s) start(s) to form, the
deviatoric effects will provide a mechanism for its stabilization.

The formation of a stable neck needs to be further clarified. The mechanism of
quadrupolar ordering is complementary to the mechanisms of local and nonlocal
isotropic elasticity of the ADE model. Both mechanisms can be considered in
describing the stable neck. The quadrupolar ordering decreases the free energy,
therefore a lower value of A0/(2δRs) is needed to obtain a minimum of free
energy at the average mean curvature corresponding to the vesicle with a narrow
neck. Taking both mechanisms into account, for ϑ = 1.5 × 10−4, κ = 7 × 106

and α = 0.64 we obtain a shallow minimum of free energy close to the limit shape
at 〈h〉 = 1.16 for A0/(2δRs) = 1.9 (instead of � 2.4 as estimated by the ADE
model alone). Consequently, throughout the sequence, the free energy and the
corresponding energy of relative stretching are considerably lowered (� 2.7) with
respect to the ADE model alone (� 5). The two mechanisms support each other
in promoting the formation of the neck and in its stabilization.

The proposed hypothesis of quadrupolar ordering of phospholipid molecules
in a deviatoric field can describe the stability of shapes with strongly anisotropi-
cally curved structures in heterogeneous membranes,(21−27),(38) in inorganic micro
and nanostructures(28) and in one-component phospholipid vesicles.(18) An expla-
nation of the above features could not be provided by the mechanism of isotropic
elasticity (a more extensive discussion on this issue can be found in(18,21,25,45)).
In this work we further support the hypothesis of quadrupolar ordering of phos-
pholipid molecules in a deviatoric field by showing that the quadrupolar ordering
of phospholipid molecules promotes the formation of a narrow neck. Also, it was
shown that this effect may significantly affect the energy of phospholipid vesicles
even when they are not connected to strongly anisotropically curved structures.
Owing to above, we suggest that quadrupolar ordering in a deviatoric field should
be considered as a possible relevant mechanism that complements the description
of bilayered vesicular structures.

A description of the phospholipid membrane by deviatoric elasticity that
was inspired by the problem of the stable neck was previously proposed by
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Fischer.(46,47) The deviatoric effect was characterized by a constant called the
spontaneous warp. However, the value of the spontaneous warp was then consid-
ered to be zero by the argument that the phospholipid membrane as observed in
experiments is locally flat. Nanostructures of phospholipid membrane that were
detected experimentally(13,15) prove that the phospholipid membrane is not always
locally flat. We elaborated the problem of deviatoric elasticity by deriving the
deviatoric properties of the phospholipid membrane from the microscopic picture.
Our work therefore supports the ideas proposed by Fischer. (46,47)

Also, evidence was presented(48) that the neck may elongate. This indicates
that in the sequence starting with a pear shape and promoting a neck, the formation
of the limit shape composed of two spheres connected by an infinitesimal neck
would not be reached. To further explore such a process, more insight into the solu-
tion of the variational problem beyond the singularities and a deeper understanding
of the behavior of the system on the molecular level would be required.

APPENDIX

In the Appendix we present a generalized form of the Euler-Lagrange dif-
ferential equations for axisymmetric shapes, where the functional L is given as a
function of the mean curvature h and the difference d =| c1 − c2 | /2,

L = F(h)ρ + G(d)ρ + λa
ρ

2
+ λv

3

4
ρ2 sin ψ + ρ

2
λ〈h〉h + λ(ρl − cos ψ), (A.1)

By considering that

∂L
∂ρ

=
(

∂F
∂ρ

+ ∂G
∂ρ

)
ρ + F(h) + G(d) + 3

2
λvρ sin ψ

+ λa
1

2
+ 1

2
λ〈h〉

(
∂h

∂ρ
ρ + h

)
, (A.2)

∂L
∂ψ

=
(

∂F
∂ψ
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∂ψ

)
ρ + 3

4
λvρ

2 cos ψ + 1

2
λ〈h〉

∂h

∂ψ
ρ + λ sin ψ), (A.3)

∂L
∂ψl

= 1

2

(
∂F
∂h
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∂d

)
ρ + 1

4
λ〈h〉ρ, (A.4)
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∂L
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∂F
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∂G
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+ 1

4
λ〈h〉 cos ψ, (A.5)
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∂F
∂ρ

= ∂F
∂h

∂h

∂ρ
,

∂G
∂ψ

= ∂G
∂d

∂d

∂ψ
,

∂F
∂ψ

= ∂F
∂h

∂h

∂ψ
,

∂G
∂ρ

= ∂G
∂d

∂d

∂ρ
, (A.6)

we obtain a system of differential equations

dλ

dl
= −1

2

sin ψ

ρ

(
∂F
∂h

+ ∂G
∂d

)
+ F(h)

+G(d) + 3

2
λvρ sin ψ + 1

2
λa + 1

4
λ〈h〉ψl , (A.7)

d

dl

∂F
∂h

− d

dl

∂G
∂d

= 2

ρ
cos ψ

∂G
∂d

+ 3

2
λvρ cos ψ + 2

ρ
λ sin ψ. (A.8)

In our case, where

F(h) = 1

2
h2, (A.9)

G(d) = −κ

2
ln cosh 2ϑd. (A.10)

we obtain the system of equations (46)–(50).
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12. H. G. Döbereiner, E. Evans, M. Kraus, U. Seifert and M. Wortis, Mapping vesicle shapes into the
phase diagram: A comparison of experiment and theory, Phys. Rev. E 55:4458–4474 (1997).

13. L. Mathivet, S. Cribier and P. F. Devaux, Shape change and physical properties of giant phospholipid
vesicles prepared in the presence of an AC electric field, Biophys. J. 70:1112–1121 (1996).
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inclusions, Eur. Phys. J. B 10:5–8 (1999).
39. T. Baumgart, S. T. Hess and W. W. Webb, Imaging coexisting fluid domains in biomembrane

models coupling curvature and line tension, Nature 425:821–824 (2003).
40. B. deKruijff, Lipids beyond the bilayer, Nature 386:129–130 (1997).
41. S. S. Funari and G. Rapp, A continuous topological change during phase transitions in amphiphile

- water systems, Proc. Natl. Acad. Sci. U.S.A. 96:7756–7759 (1999).
42. M. Rappolt, A. Hickel, F. Bringezu and K. Lohner, Mechanism of the lamellar/inverse hexagonal

phase transition examined by high resolution x-ray diffraction, Biophys. J. 84:3111–3222 (2003).
43. W. C. Hwang and R. A. Waugh, Energy of dissociation of lipid bilayer from the membrane skeleton

of red blood cells, Biophys. J. 72:2669–2678 (1997).
44. R. M. Raphael and R. E. Waugh, Accelerated interleaflet transport of phosphatidylcholine

molecules in membranes under deformation, Biophys. J. 71:1374–1388 (1996).
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