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Abstract
The budding of phospholipid bilayer membrane is studied theoretically. The description

starts from a single-constituent energy that reflects intrinsic shape of the constituent, and

uses methods of statistical physics to obtain membrane free energy. The membrane free

energy is minimized to yield the equilibrium shape and distribution functions of constit-

uents. It is shown that two mechanisms based on internal degrees of freedom: in-plane

orientational ordering of phospholipids in the narrow neck connecting the bud with the

mother membrane and clustering of membrane inclusions in the budding region, are

complementary mechanisms that promote budding of liposomes.
1. INTRODUCTION

The budding of the bilayer membrane is a process that is vitally important for

cells. Accordingly, it is of interest to understand the mechanisms that are in-

volved in the budding. For this, the budding in bilayer membrane vesicles com-

posed of a single phospholipid species have been investigated [1–3]. Changes in

the suspension of vesicles, such as changes in temperature and changes in

shape of vesicles may in certain conditions induce formation of buds of the
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membrane bilayer [4]. The cell membrane is a multi-component structure,

therefore it is of special interest to study the budding of multi-component bi-

layer membranes. In such membranes, laterally mobile membrane consti-

tuents that favor certain membrane curvature, distribute between buds and the

mother membrane [5]. Buds may develop into vesicles that alienate from

the mother body leading to a loss of the mother membrane material [6]. This is

especially significant in vesicles composed of more than one species, since

due to the redistribution of the membrane constituents certain substances are

accumulated in buds/daughter vesicles [7]. Lateral distribution of membrane

constituents can be considered as an internal degree of freedom. The constit-

uents distribute in such a way so as to minimize the membrane free energy

[1,8–12]. Besides the lateral distribution of membrane constituents, another in-

ternal degree of freedom – lateral distribution of the in-plane orientational

ordering of anisotropic constituents – has recently been considered [13–15].

A method has been developed [9,17] starting from the microscopic description of

the membrane constituents and applying methods of statistical physics to ob-

tain the membrane free energy. To obtain the equilibrium configuration of

the vesicle, the membrane free energy is minimized taking into account the

relevant geometrical constraints. The intrinsic properties of membrane consti-

tuents and interactions between them are thereby revealed in macroscopic

features such as the equilibrium shape of the vesicle. Here, we apply this

method while focusing on the effect of the intrinsic shape of the membrane

constituents on the internal degrees of freedom, i.e. the equilibrium configuration

of the membrane (the orientational ordering and/or the equilibrium membrane

shape and the corresponding lateral distribution of constituents). The results

presented may contribute to the understanding of abrupt changes in curvature

derivatives, the stability of narrow necks that connect buds with the mother

membrane, the stability of pear shapes and mechanisms of raft accumulation on

the buds.

The description is based on the energy of a single constituent, which depends

on the intrinsic shape of the constituents. The introduction of the single-inclusion

energy is followed by the statistical mechanical model of the membrane

composed of a single species of phospholipid molecules that may undergo in-

plane orientational ordering, and a rigorous solution of the variational pro-

blem (the minimization of the free energy) yielding equilibrium shapes and

the corresponding orientational order distributions of the one-component

phospholipid vesicles. Then, the same formalism for the single-inclusion en-

ergy and the statistical mechanical model are used to describe spherical bud-

ding in the two-component membrane. The solution of the variational problem

by a simple parametrical model yields the equilibrium shape and the corre-

sponding lateral distribution of the membrane constituents. The role of the in-

trinsic shape of the membrane constituents can be recognized throughout the

presentation.
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2. THE SINGLE-CONSTITUENT ENERGY

Any membrane constituent may be treated as a very small inclusion in a two-

dimensional continuum curvature field imposed by other membrane constituents.

We assume that the inclusion, due to its structure and local interactions, ener-

getically would prefer a local geometry that is described by the two-intrinsic prin-

cipal curvatures C1m and C2m. The intrinsic principal curvatures are in general not

identical (Fig. 1). If they are identical (C1m ¼ C2m), then the in-plane orientation of

the inclusion is irrelevant. Such inclusion is called isotropic. If C1m 6¼C2m the

inclusion is called anisotropic. The orientation of such inclusion is important for its

energy. It is assumed that the inclusion will spend on an average more time in the

orientation, which is energetically most favorable, than in any other orientation.

If the area and the volume of the vesicle are fixed, the shape cannot attain the

curvatures that would equal the intrinsic curvatures in all its points and the energy

of the molecules is increased. The energy of a single inclusion derives from

the mismatch between the actual membrane shape given by the two principal

curvatures C1 and C2 and the intrinsic shape given by the intrinsic principal
Fig. 1. Schematic representation of different intrinsic shapes of some membrane
constituents. Front and side views are shown. Upper: isotropic constituent
(C1m ¼ C2m), lower: examples of anisotropic constituents (C1m 6¼C2m).



A. Iglic and V. Kralj-Iglic256
curvatures C1m and C2m [16,17],

EðoÞ ¼
x
2
ðH� HmÞ

2
þ

xþ x%

4
ðĈ

2
� 2ĈĈmcos ð2oÞ þ Ĉ

2

mÞ ð1Þ

where x and x% are constants describing the strength of the interaction between

the inclusion and the surrounding membrane continuum and in the case of larger

multicomponent flexible membrane inclusion also the bending rigidity of the in-

clusion. H ¼ (C1+C2)/2 is the mean curvature of the membrane,

Hm ¼ (C1m+C2m)/2 is the mean curvature of the continuum intrinsic to the in-

clusion, Ĉ ¼ ðC1 � C2Þ=2; Ĉm ¼ ðC1m � C2mÞ=2 and o is the orientation of the

principal axes of the intrinsic shape relative to the principal axes of the local

curvature of the continuum.

It can be seen from equation (1) that the single-inclusion energy attains a

minimum when cos(2o) ¼ 1, i.e., when the two systems are aligned or mutually

rotated by an angle p, while the single-inclusion energy attains a maximum when

cos(2o) ¼ �1, i.e., when the two systems are mutually rotated by an angle p/2 or

3p/2. In the first case the single-inclusion energy is

Emin ¼
x
2
ðH� HmÞ

2
þ

xþ x%

4
ðD2

þ D2
mÞ �

xþ x%

2
DDm ð2Þ

whereas in the second case the single-inclusion energy is

Emax ¼
x
2
ðH� HmÞ

2
þ

xþ x%

4
ðD2

þ D2
mÞ þ

xþ x%

2
DDm ð3Þ

where D ¼ Ĉ
��� ��� and Dm ¼ Ĉm

��� ��� are the curvature deviator and the intrinsic

curvature deviator, respectively. The states o ¼ 0,p and the states p/2, 3p/2,
respectively, are degenerate so that the ordering is quadrupolar.
3. LIPOSOMES COMPOSED OF A SINGLE KIND OF PHOSPHOLIPID
MOLECULES

3.1. The two-state model

A single phospholipid molecule is treated as a very small inclusion in a two-

dimensional continuum curvature field imposed by other phospholipid molecules.

We assume that the phospholipid molecule, due to its structure and local inter-

actions, energetically would prefer a local geometry that is described by the

two principal curvatures C1m and C2m. As the phospholipid molecule is composed

of two tails and a headgroup, the intrinsic principal curvatures are not identical

(Fig. 1), i.e., the intrinsic shape of the phospholipid molecule is anisotropic [18].

Each monolayer is described separately. The contributions to the free energy

of the two monolayers are then summed to obtain the energy of the bilayer

membrane.
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The monolayer area is divided into small patches that, however, contain a large

number of molecules so that the methods of statistical physics can be used. The

membrane curvature is taken to be constant over the patch. This curvature field is

produced by the molecules themselves, i.e., the molecules pack together in such

way as to form the local shape of the membrane. We consider that every

phospholipid molecule in the patch is subject to this field. The lattice statistics

approach is used, drawing an analogy from the problem of non-interacting mag-

netic dipoles in an external magnetic field [19], the curvature deviator D taking the

role of the external magnetic field.

In the idealized case, we assume a simple model where we have M equivalent

molecules in the patch, each existing in one of the two possible states corre-

sponding to the energies Emin and Emax, respectively (equations (2) and (3)); N

molecules are taken to be in the state with higher energy Emax and (M�N) mol-

ecules are taken to be in the state with lower energy Emin. The energy of the lipid

molecules within the patch in the mean curvature field, divided by kT where k is

the Boltzmann constant and T is the temperature, is

ED

kT
¼ N

Emax

kT
þ ðM� NÞ

Emin

kT
ð4Þ

Inserting equations (2) and (3) into equation (4) gives

ED

kT
¼ M

Eq

kT
� ðM=2� NÞdeff ð5Þ

where

Eq

kT
¼

x
2kT

ðH� HmÞ
2
þ

xþ x%

4kT
ðD2

þ D2
mÞ ð6Þ

and

deff ¼
ðxþ x%

ÞDmD

kT
ð7Þ

We call deff the effective curvature deviator.

Direct interactions between the membrane constituents are taken into account.

Here we assume that the relative orientation of two anisotropic molecules gives

rise to a contribution to the direct interaction that is the most important and

neglect all other contributions. In describing the direct interaction between the

nearest-neighbor molecules, we propose it should be taken into account that the

molecules that are oriented in such way that their orientational energy in the

mean curvature field is lower, also exhibit more favorable packing. By attaining

the shape that is in tune with the local-curvature field, the tails of the favorably

oriented molecules come, on the whole, closer together, which gives rise to

additional lowering of the energy of the patch due to direct interactions, relative to

the situation where the molecules are randomly oriented within the patch. On the
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other hand, if we consider that the molecules that are oriented in such way that

their orientational energy in the mean curvature field is higher, exhibit less fa-

vorable packing, in which the tails are on the whole further apart. This causes a

rise of the energy of the interaction between such oriented molecules within the

patch with respect to the situation where the molecules are randomly oriented.

The effect depends on the local-curvature field, on the intrinsic shape of the

molecule and the strength of the interaction. We consider the effect to be pro-

portional to the local effective curvature deviator. The direct interaction of N

molecules in the patch that have higher energy Emax with their neighbors is

therefore described by a positive contribution [14],

EN

kT
¼

~k

kT
Ndeff ð8Þ

where ~k is the interaction constant. Accordingly, the direct interaction of (M�N)

molecules that have lower energy Emin, with their neighbors is described as

EM�N

kT
¼ �

~k

kT
ðM� NÞdeff ð9Þ

The total energy of the patch due to direct interaction Ei/kT is (EN/kT+EM�N/kT)/

2, where we divide by 2 as to avoid counting each molecule twice. Therefore,

Ei

kT
¼ �

~k

kT
ðM=2� NÞdeff ð10Þ

The total energy of the patch EP is obtained by summing the contribution of the

orientation of the molecules according to the local curvature deviator ED and the

contribution of the direct interaction between the molecules within the patch Ei,

Ep

kT
¼

ED

kT
þ

Ei

kT
ð11Þ

Ep

kT
¼ M

Eq

kT
� ð1þ

~k

kT
Þ ðM=2� NÞdeff ð12Þ

It follows from the above equation that the direct interactions renormalize

(enhance) the interaction of the phospholipid molecule with the deviatoric field.

The chosen patch is considered as a system with a constant area Ap and a

constant number of molecules M. The system is immersed in a heat bath so that

its temperature T is constant. There are two possible energy states for the mole-

cules in the patch. Within the given energy state the molecules are treated as

indistinguishable. We assume that the system is in thermodynamic equilibrium

and follow the description of a two-orientation model of noninteracting magnetic

dipoles [19]. Analogous, if there are N molecules in the state with higher (maxi-

mal) energy and (M�N) molecules in the state with lower (minimal) energy, the

number of possible arrangements consistent with this N isM!/N!(M�N)!, while the
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corresponding energy of the system is EP. However, when calculating the par-

tition function, we must consider all possibilities, e.g., N can be any number from

0 to M; N ¼ 0 means that all the molecules are in the state with lower energy,

N ¼ 1 means that one molecule is in the state with higher energy while M�1

molecules are in the state with lower energy, etc. The canonical partition function

Qp(M,T,D) of M molecules in the small patch of the membrane is therefore

Qp
¼
XM
N¼0

M!

N!ðM� NÞ!
exp �

EP

kT

� �
ð13Þ

where k is the Boltzmann constant.

Considering equations (2–13) and using the binomial (Newton) formula in

summation of the finite series yields

QP
¼ ð2qcoshðdeffð1þ ~k=kTÞ=2ÞÞM ð14Þ

where

q ¼ exp �
Eq

kT

� �
ð15Þ

The Helmholtz free energy of the patch is FP
¼ �kT ln QP,

FP ¼
Mð3xþ x%

Þ

4
H2

�MxHHm �
Mðxþ x%

Þ

4
C1C2

�MkT ln 2 cosh
deffð1þ

~k
kT

2

 ! !

þ
Mx
2

H2
m þ

Mðxþ x%
Þ

4
D2

m ð16Þ

where

D2
¼ H2

� C1C2 ð17Þ

The energy of the membrane bilayer is then obtained by summing the contri-

butions of the all patches in both monolayers,

F ¼

Z
Aout

moutF
PðC1;C2Þ dAþ

Z
Ain

minF
Pð�C1;�C2Þ dA ð18Þ

wheremout andmin are the area densities of the lipid molecules in the outer and in

the inner monolayer, respectively, while FP is given by equation (16). It is con-

sidered that the signs of the principal curvatures in the inner layer are opposite to

the signs of the principal curvatures in the outer layer.

We assume that mout ¼ min ¼ m0. Also, in integration, we neglect the differ-

ence between the areas of the two monolayers (Aout ¼ Ain ¼ A0), where A is

the membrane area. The latter approximation is not valid for strongly curved

membranes, but in the system that will be considered in this work, the area
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corresponding to strong curvature (i.e. the area of the neck(s)) is small compared

to the area of the entire vesicle. It follows from equations (16) and (18) that

F ¼
ð3xþ x%

Þ

8
m0

Z
ð2HÞ2 dA

�
ðxþ x%

Þm0

2

Z
C1C2 dA� 2m0kT

Z
ln 2coshðdeffð1þ

~k

kT
Þ=2Þ

 !
dA ð19Þ

The first two terms of the above expression yield the bending energy of a nearly

flat thin membrane [20]. In the following, the constant contribution �2m0kTA ln2

that is included in the third term of equation (19) is omitted. Also the second term

in equation (19) is not considered further since according to the Gauss–Bonnet

theorem it is constant for the closed surfaces that are considered in this work.

Therefore, we will further consider the expression for the free energy F [14],

F ¼
ð3xþ x%

Þ

8
m0

Z
ð2HÞ2dA� 2m0kT

Z
ln coshðdeffð1þ ~k=kTÞ=2Þ dA ð20Þ

The average number of molecules in each of the energy states represents the

local quadrupolar ordering of the molecules. Knowing the canonical partition

function of a patch QP we can calculate the average fraction of the molecules with

higher energy within the patch (Emax) [14],

Nh i

M
¼

1

1þ edeffð1þ
~k=kTÞ

ð21Þ

while the average fraction of the molecules in the lower energy state Emin is [14],

M� Nh i

M
¼

1

1þ e�deffð1þ ~k=kTÞ
ð22Þ

It can be seen from equations (21) and (22) that at deff ¼ 0, i.e. when the principal

curvatures are equal, both energy states are equally occupied (/NS/M ¼

/M�NS/M ¼ 1/2). The fraction of the number of molecules in the lower energy

state increases with increasing deff to 1, while the fraction of molecules in the

higher energy state decreases to 0.
3.2. Global thermodynamic equilibrium

The equilibrium configuration of the system (the equilibrium shape and the cor-

responding distribution of the quadrupolar ordering) is sought by minimizing the

membrane free energy

dF ¼ 0 ð23Þ

under relevant geometrical constraints. We require that the membrane area A
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be fixed, that the enclosed volume V be fixed and that the average mean

curvature /HS be fixed,Z
dA ¼ A;

Z
dV ¼ V;

1

A

Z
HdA ¼ Hh i ð24Þ

For clarity, the above problem is expressed in dimensionless form. We introduce

the dimensionless curvatures c1 ¼ RsC1,c2 ¼ RsC2,h ¼ RsH,hm ¼ RsHm,

/hS ¼ Rs/HS,d ¼ RsD,dm ¼ RsDm, the relative area a ¼ A=4pR2
s ¼ 1, the rel-

ative volume v ¼ 3V=4pR3
s ; the relative area element da ¼ dA=4pR2

s and the

relative volume element dv ¼ 3dV=4pR3
s. The normalization unit Rs is the radius

of the sphere of the required area A, Rs ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
. The free energy of the

phospholipid bilayer F (equation (20)) is normalized relative to ð3xþ x%
Þ2pm0,

f ¼ wb þ fd ð25Þ

where

wb ¼
1

4

Z
ðc1 þ c2Þ

2da ð26Þ

fd ¼ �k
Z

ln coshðdeffð1þ ~k=kTÞ=2Þ da ð27Þ

and

k ¼ 4kTR2
s=ð3xþ x%

Þ ð28Þ

We consider only axisymmetric shapes. The geometry of the shape is described

in terms of the arc length l. We use the coordinates r(l) and z(l) where r is the

perpendicular distance between the symmetry axis and a certain point on the

contour and z the position of this point along the symmetry axis. The principal

curvatures are

c1 ¼
sinc
r

; c2 ¼
dc
dl

� cl ð29Þ

where c is the angle between the normal to the surface and the symmetry axis.

The dimensionless area element is da ¼ rdlX2 and the dimensionless volume

element is dv ¼ 3r2sincdlX4. Using the above coordinates, the dimensionless

free energy is

f ¼

Z
1

8

sinc
R

þ cl

� �2

r dl�

Z
kr
2
ln cosh W

sinc
R

� cl

� �� �
dl ð30Þ

where

W ¼
ðxþ x%

ÞDm

4kTRs
1þ

~k

kT

 !
ð31Þ
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while the dimensionless global constraints areZ
1

2
r dl ¼ 1;

Z
3

4
r2sinc dl ¼ v;

Z
1

4
ðsincþ clRÞ dl ¼ hh i ð32Þ

Also, we must consider a local constraint between the chosen coordinates,

dr
dl

¼ cos c ð33Þ

A functional is constructed, G ¼
R
L dl, where

L ¼
1

8

sinc
R

þ cl

� �2

r�
kr
2
ln cosh W

sinc
R

� cl

� �� �

þla
r
2
þ lv

3

4
r2sincþ l hh i

1

4

sinc
R

þ cl

� �
rþ lðrl � coscÞ ð34Þ

la,lv and loh4 are the global Lagrange multipliers and l is the local Lagrange

multiplier. The above variational problem is expressed by a system of La-

grange–Euler differential equations,

@L

@r
�

d

dl

@L

@rl

� �
¼ 0 ð35Þ

@L

@c
�

d

dl

@L

@cl

� �
¼ 0 ð36Þ

It follows from equations (35) and (34) that [14]

dl
dl

¼
1

8

w2 � sin2c
r2

 !
þ

la
2
þ

3

2
lvRsincþ

1

4
l hh i

w
r

�
k
2
ln cosh W

sinc� w
R

� �� �
þ

kW
2r

sinctanh W
sinc� w

R

� �� �
ð37Þ

while, it follows from equations (36) and (34) that [14]

dw
dl

¼
A

B
ð38Þ

where

B ¼ 1�
2kW2

cosh2 W sin c� wð Þ=R
� �

 !
ð39Þ

A ¼
sinccosc

r
1þ

2kW2

cosh2 W sinc�w
R

� �� �
0
@

1
A�

4kW2wcosc

rcosh2 W sinc�w
R

� �� �
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þ3lvR2coscþ 4lsinc� 4kWcosctanh W
sinc� w

R

� �� �
ð40Þ

and

cl ¼
w
r

ð41Þ

At the poles cl ¼ sincXr.
It follows from equations (38) and (39) that a singularity in dw/dl occurs when

the denominator (39) becomes equal to 0,

1�
2kW2

cosh2ðWðsinc=r� clÞÞ
¼ 0 ð42Þ

equation (42) is fulfilled when

sinc
r

� cl ¼ �
1

W
lnð

ffiffiffiffiffiffi
2k

p
Wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kW2 � 1

p
Þ ð43Þ

i.e. when the curvature deviator attains a certain constant value determined by the

constants k and W. This singularity occurs at sites where the opposing effects of

isotropic and deviatoric bending become equal in magnitude, i.e., where the de-

viatoric effects renormalize the isotropic bending to zero. A geometry is reached

where the curvature is so high that the approximate model is no longer valid.
3.3. Solution of the variational problem – the equilibrium shape and
orientational distribution

The system of Lagrange–Euler differential equations (37) and (38) is solved nu-

merically. The contour of the axisymmetric equilibrium shape is then given by the

two coordinates (r,z), where dzXdl ¼ sinc. In order to solve the problem nu-

merically, the model constants should be estimated: the interaction constant x%

was for reasons of simplicity taken to be equal to x, x ¼ x%
¼ kca0, where kc is the

bilayer bending constant and a0 is the area per phospholipid molecule, kcC20kT,

a0 ¼ 60� 10�20m2, Rs is 10�5m, T ¼ 300K, Dm ¼ 2� 108m�1, W ’ 1:5� 10�4,

k ’ 7� 106 and ~k=kT ’ 1 [14]. As a0m0 ¼ 1, it follows from above and from the

normalization given after equation (24) that the normalization factor of the en-

ergies is ð3xþ x%
Þ2pm0 ¼ 8pkc.

Figure 2 shows how the global Lagrange multipliers of an almost globular shape

with chosen relative volume and average mean curvature and a chosen constant

k change upon increase of the constant W. It could be expected that the singularity

would eventually be reached for high-enough values of W. We call the shape where

the singularity first occurs, the critical shape. We were able to overcome

the interval of W corresponding to shapes with at least one singularity by extra-

polating the solution (the Lagrange multipliers and the boundary conditions) over



(a)

(b)

Fig. 2. (a) Lagrange coefficients as a function of the interaction constant W. (b)
Bilayer membrane free energy f and the energy contributions: energy of isotro-
pic bending wb, and contribution of orientational ordering fd as a function of the
interaction constant W. The values of model parameters are v ¼ 0.95,
/hS ¼ 1.0422, k ¼ 7�106 (from Kralj-Iglic et al [14]).
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this narrow interval. Within this interval we could not solve the variational problem

numerically. This is indicated by the gap in the curves (Figs. 2a,b). It can also be

seen in Fig. 2a that all the Lagrange multipliers approach zero within this interval.

Figure 2b shows the corresponding dependence of the energy contributions on

the value of the constant W. The isotropic bending energy wb, the deviatoric

energy fd and the sum of these two terms f ¼ wb+fd are depicted. It can be seen

that close to the interval where the singularity occurs and the Lagrange multipliers

approach zero, the dependence of the energy on W indicates no discontinuity.

When the interaction constant W is increased over the entire range where the
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shapes could be calculated (Fig. 2) the shape change is so minute that the shape

appears the same (see inset).

Increasing the constant W in a shape that attains many different values of c1 and

c2 along the contour (such as the pear-shape with a narrow neck) would first yield

a singularity (reach the critical shape) at a single point on the contour (on a ring of

axisymmetric shape) in the neck region. It is of interest to study the behavior of

the solutions of the variational problem close to the critical shape. Starting with

the constants k and W that are high enough to yield a solution above the interval

where the singularity occurs in at least one point on the contour, we approached

the critical shape with a somewhat narrower neck by decreasing the constant k.
Figure 3 shows the contour of the shape and the corresponding fraction of the

molecules in the lower energy state, i.e., the ordering of the phospholipid mole-

cules; gray lines correspond to the shape that is more remote to the critical W
while black lines correspond to the shape that is closer to the critical W. It can
be seen in both cases that the fraction of the molecules in the lower energy state

increases in the neck region. In the neck, the curvature deviator is higher and the

orientational ordering becomes more pronounced. As the critical W is approached,

the maximum of the orientational distribution function becomes narrower and the

peak becomes sharper. The neck of the pear-shape becomes shorter and ex-

hibits a more abrupt width change for the shape that is closer to the critical W.
Figure 4 shows the numerator (equation (40)), the denominator (equation (39))

and the derivative dw/dl along the contour as a function of the symmetry axis of

the shapes depicted in Fig. 3. In the shape that is closer to the critical shape

(case b) the denominator attains lower absolute values along the whole contour,

while it approaches 0 at a certain point in the neck region. Correspondingly, the

derivative dw/dl reaches higher values and changes abruptly in the vicinity of this

point forming sharp peaks. In the shape that is more remote to the critical shape

(case a), the absolute values of the denominator and of the numerator are higher,

while the values of the derivative dw/dl are lower. The peaks formed by the

derivative dw/dl are milder. The arc length, where the derivative dw/dl strongly
changes diminishes as the critical shape is approached.

Figure 4 shows that the derivative dw/dl increases when we approach the

critical shape, while the numerator and the denominator both decrease over the

entire shape. In the point on the contour close to the narrowest width of the neck,

the denominator approaches zero. From the numerical results we could not come

to a definite conclusion that the regularity condition can be imposed. We could not

exclude the possibility that the derivative dw/dl may in some cases increase be-

yond any limit. This would mean that the discontinuity in the meridian curvature

that is consistent with divergence in dw/dl corresponds to a finite energy. Changes

of the meridian curvature over a minute arc length were recently observed in

two-component phospholipid vesicles with added cholesterol, where the

two phospholipids were in two different liquid phases (ordered/disordered) [21].



Fig. 3. Two shapes illustrating the approach to the critical shape with singularity
in the Euler–Lagrange differential equation and the corresponding orientational
distribution functions. The shape that is closer to the critical shape (k ¼ 1735.5,
black) has a shorter neck and a sharper distribution peak than the shape that is
more remote from the critical shape (k ¼ 2800, gray). For both shapes v ¼ 0.95,
W ¼ 0.02456, /hS ¼ 1.11543 (from Kralj-Iglic et al [14]).
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(a)

(b)

Fig. 4. Approach to the critical shape with singularity in the Lagrange–Euler
differential equation. The numerator A, the denominator B and the derivative dw/dl
are shown for both shapes (a and b, respectively) presented in Fig. 3 (from [14]).
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Segregation of the phospholipid was observed whereby an abrupt change in the

meridian curvature could be noted in some of the two-photon micrographs. The

abrupt changes in curvature appear close to the line where the two phases are in

contact, but rather within the disordered phase region. In some shapes, the

abrupt change in meridian curvature appears within the disordered phase. It is

argued [21] that the shape is determined by the preference of the phospholipid for

a certain curvature and by the effects on the edges where the two phases meet;

however, the abrupt changes in the curvature within a given phase are not ex-

plained.



A. Iglic and V. Kralj-Iglic268
3.4. Stability of the narrow neck(s)

We studied the sequence of shapes of increasing average mean curvature within

the class of pear shapes [2]. It was observed in experiments that the shapes with

narrow neck(s) show increased stability [4,17]. For example, in spontaneous

transformation of pure palmitoyl oleyl phosphatidylcholine (POPC) vesicles,

where the initially long thin protrusion shortens with time, a shape composed of a

globular mother vesicle and almost spherical protrusion connected by a narrow

neck is attained. Further, the opening of the neck starts; however, the process

reverses so that the neck becomes very thin again (Fig. 5). There may be several

such oscillations before the neck opens and the vesicle attains its flaccid shape.

This indicates an energy minimum of the shape composed of two globular parts

connected by a narrow neck. It will be shown below that the orientational ordering

of phospholipid molecules in the narrow neck may explain stability of shapes with

narrow neck(s).

Figure 6 shows how the free energy of the vesicle changes upon increase of

the average mean curvature for a vesicle of a given relative volume v ¼ 0.95 and

size Rs ¼ 10�5m. Case a corresponds to isotropic bending only, case b corre-

sponds to the quadrupolar ordering of independent molecules ( ~k=kT ¼ 0), while

case c also considers direct interactions between phospholipid molecules

( ~k=kT ¼ 1). The energy of isotropic bending wb increases along the sequence

[22], while the energy of deviatoric bending fd decreases along the sequence. The

behavior of the sum of the two contributions exhibits the difference in the relative

rate of change of the two contributions. In case b (if the molecules are considered

as independent) the decrease of the energy of the deviatoric bending is not

strong enough to overcome the increase of the energy of isotropic bending wb

and f increases with increasing /hS. In case c (if direct interaction between

phospholipid molecules is considered), the increase of the energy of isotro-

pic bending wb is overcome and the vesicle free energy decreases with increas-

ing /hS. The rigorous solution of the variational problem (Fig. 6) shows that the

effect of quadrupolar ordering on the free energy of the vesicle is also important in

shapes, where there are no regions of very high-curvature deviator. Except for in

the vicinity of the singularity, the local ordering is low over most of the membrane
Fig. 5. Oscillations of the neck width before the neck opens and the vesicle
attains its flaccid shape indicating that the shape with the narrow neck is en-
ergetically favorable, bar ¼ 20 mm (adapted from Iglic and Kralj-Iglic [17]).



Fig. 6. Bilayer membrane free energy as a function of the average mean cur-
vature of the vesicle with v ¼ 0.95; (a) isotropic bending, (b) orientational ordering
of independent molecules W ¼ 1.5� 10�4,k ¼ 7� 106, c: orientational ordering of
interacting molecules W ¼ 3�10�4,k ¼ 7� 106 (adapted from [14]).
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area, while the equilibrium shape could hardly be distinguished from the corre-

sponding shape calculated by minimization of the Helfrich local bending energy.

However, as the values of the free energy are considerably affected, the quad-

rupolar ordering of phospholipid molecules provides a particular interpretation

of the trajectories representing the observed processes within the phase diagram

of possible shapes. The formation of the neck is energetically favorable for any

initiation mechanism. The membrane free energy decreases as the region of

increasing curvature deviator increases, while the free energy values remain

within the same range (Fig. 6). Similar to exovesiculation (Fig. 4), an energy

decrease could also be expected for endovesiculation, by using the same values

of the model constants (W and k). The deviatoric effects could not determine

the general direction of the shape change of the globular vesicle, but once

the neck(s) start(s) to form, the deviatoric effects provide a mechanism for its

stabilization.
3.5. Stability of the pear shape and the ADE model

The mechanism of quadrupolar ordering is complementary to the mechanisms of

local and non-local isotropic elasticity of the area-difference-elasticity (ADE)

model [3]. The contribution of the non-local isotropic elasticity to the membrane

free energy is expressed within the ADE model as [23,3]

WADE ¼ 2krAð Hh i � H0Þ
2

ð44Þ
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where kr is the non-local bending constant and H0 determines the average mean

curvature of the membrane under lowest possible stress. The contribution of the

non-local isotropic bending normalized by ð3xþ x%
Þ2pm0 ¼ 8pkc is

wADE ¼ qð hh i � h0Þ
2

ð45Þ

where q ¼ krXkc and h0 ¼ H0Rs.

Within the ADE model, where the free energy consists of the local (26) and

non-local (45) isotropic bending, the absolute minimum of the free energy may be

by an appropriate choice of the parameters q and h0 shifted to the limit shape

composed of the two spheres connected by an infinitesimal neck. However, a

higher value of q than the experimentally estimated one [24] is needed to obtain

this effect [3], while the values of h0 should be taken much larger than any of /hS
within the sequence of pear shapes, which gives a significant increase in the free

energy and concomitant tension within the membrane. It seems unlikely that

the vesicle would favor high tension within the membrane as it may develop pro-

cesses to relax, such as transient pore formation [25,26]. It will be shown be-

low that a decrease of the free energy due to the orientational ordering of

phospholipid molecules may complement the non-local isotropic bending in sta-

bilizing pear shapes, including shapes with neck(s).

Figure 7 shows the dependence of the free energy of the vesicle on the av-

erage mean curvature /hS including the non-local bending of the ADE model for

two choices of the parameter h0 (A: h0 ¼ 1.9, B: h0 ¼ 2.1). Cases a, show the

isotropic local and non-local bending (ADE model) while, cases b show the iso-

tropic local and non-local bending and the deviatoric bending due to the quad-

rupolar ordering of independent molecules ( ~k=kT ¼ 0). Since in both cases, A and

B, the constant h0 is larger than any /hS of the sequence (/hSo1.74), adding a

quadratic term of non-local bending to the isotropic local bending increases the

membrane free energy (Fig. 7, curves a). If the energy contribution of the de-

viatoric bending is considered (Fig. 7, curves b), a shallow minimum is obtained

for h0 ¼ 1.9 close to the limit shape (at /hS ¼ 1.16) (A), while for h0 ¼ 2.1 (B) the

free energy is decreasing toward the shape with the narrow neck. It can be seen

that without considering the deviatoric effect (ADE model alone) the formation of

the neck is not favored if the experimental value of the parameter q ¼ 2 [24] and

the values of h0 that are comparable to the values of /hS within the sequence of

the pear shapes are considered. Including the deviatoric effect to the membrane

local and non-local isotropic bending renders a minimum close to the shape with

the narrow neck. The quadrupolar ordering diminishes the increase of the free

energy due to local isotropic bending. Therefore, the sequence becomes more

sensitive to the effect of the non-local isotropic bending.

By varying constants W,k and h0 within the range that still gives contributions to

the free energy that are comparable to the isotropic bending energy, it is also

possible to obtain stable pear shapes with a wider neck and deeper minima of the

free energy that would exceed the energies of thermal fluctuations. Figure 8



(a)

(b)

Fig. 7. Bilayer membrane free energy including non-local isotropic bending as a
function of the average mean curvature of the vesicle with v ¼ 0.95 and q ¼ 2.
Curves a: local and non-local isotropic bending (W ¼ 0, k ¼ 0). Curves b: local
and non-local isotropic bending and deviatoric bending due to the orientational
ordering (W ¼ 1.5� 10�4,k ¼ 7� 106).
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shows the dependence of the free energy of the vesicle on the average mean

curvature including the non-local bending of the ADE model for three choices of

the parameter h0 as given in the figure. It can be seen that it is possible to obtain

an absolute minimum also for the shape with a wider neck.
4. SPHERICAL BUDDING IN LIPOSOMES COMPOSED OF TWO
KINDS OF MOLECULES

We consider a system composed of phospholipid molecules and membrane-

inserted molecules that form together with distorted nearby phospholipid mole-

cules the membrane inclusions [15,22,27]. It is assumed that the inclusions



Fig. 8. Bilayer membrane free energy including non-local isotropic bending as a
function of the average mean curvature of the vesicle with v ¼ 0.95 and q ¼ 2 for
two choices of the parameter h0, as given in the figure. The respective shapes,
which correspond to the absolute minimum of the free energy within the class of
the pear shapes are shown. The values of the model parameters are
W ¼ 3� 10�4,k ¼ 7� 106.
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are formed by complexes seeded for example by a protein or a detergent mol-

ecule. As such inclusions can be rather large, we take that the energy of a single

phospholipid molecule is much smaller than the energy of a single inclusion and

will therefore be neglected. For simplicity, inclusions are considered to distribute

only in one layer of the bilayer. Due to the lateral mobility of inclusions they

accumulate in regions of favorable curvature, while they are depleted from re-

gions of unfavorable curvature [5,22,28]. The influence of the intrinsic shape of

the phospholipid molecules on the equilibrium configuration of the system has

been described in detail in the previous section, therefore, here we study the

effect of the intrinsic shape of larger membrane inclusions seeded, for example,

by the intercalated protein or detergent molecule in the membrane.

In order to avoid too high local lateral densities of the inclusions we consider

the excluded volume principle, i.e., the finite volume of the membrane compo-

nents by applying the lattice statistics [19].

As previously, the outer monolayer area is divided into small patches that,

however, contain a large number of molecules so the methods of statistical

physics can be used. The membrane curvature is taken to be constant over the

patch. A lattice is imagined with all its M sites occupied either with a phospholipid

molecule or an inclusion. In the chosen patch, there are N inclusions with energy

EN and (M�N) phospholipid molecules with energy 0. The inclusions are taken to

be isotropic so that Dm ¼ 0. It follows from equation (1)

EN ¼
x
2
ðH� HmÞ

2
ð46Þ
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In this case direct interactions between isotropic inclusions are taken into account

by using the Bragg–Williams approximation [19]. We assume that the direct in-

teractions [29] are possible only between the inclusions, while there is no direct

interaction between the inclusion-phospholipid pairs,

Wii ¼
�Niiw ð47Þ

where w is the interaction energy of an inclusion–inclusion pair (for wo0 the

interaction between the inclusions is attractive) and �Nii is the average number of

nearest–neighbor inclusions,

�Nii ¼
1

2
Nc

N

M
ð48Þ

where, c is the number of nearest neighbors (c ¼ 4 for two-dimensional square

net. The factor 1X2 was inserted in order to avoid counting each inclusion-

inclusion pair twice. Such direct-interaction energy was used in [8].

The canonical partition function of the inclusions in the patch is

QP
¼ expð�EN=kTÞ expð�cN2w=2MkTÞ

M!

N! ðM� NÞ!
ð49Þ

The Helmholtz free energy of the patch is FP
¼ �kTlnQP,

FP ¼ N
x
2
ðH� HmÞ

2
þ

cwN2

2M
þ kTNlnðN=MÞ þ kTðM� NÞlnððM� NÞ=MÞ ð50Þ

The membrane free energy is obtained by summing the contributions of all

patches in the outer layer. The contribution of the inner layer composed of

phospholipid molecules yields a constant contribution since the energy of the

phospholipid molecules is taken to be 0, and since all the lattice sites are oc-

cupied by equal and indistinguishable molecules. This constant contribution is

omitted. Free energy of the vesicle is therefore

F ¼

Z
A

xm0

2
ðH� HmÞ

2n dAþ

Z
A

cwm0

2
n2dA

þ kTm0

Z
A

ðnlnnþ ð1� nÞlnð1� nÞÞdA ð51Þ

where n ¼ NXM and m0 ¼ MXdA.

The equilibrium configuration of the system (the equilibrium shape and the

corresponding distribution of the membrane inclusions) is sought by minimizing

the free energy

dF ¼ 0 ð52Þ

under relevant geometrical constraints.
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We require that there is a fixed number of inclusions in the membrane

1

A

Z
n dA ¼ �n ð53Þ

where, �n is the average value of n.

For clarity, dimensionless quantities are used. The dimensionless curvatures

and the area and volume elements are defined as above (equation (24)). Here,

the free energy is normalized relative to kTm0A,

f ¼

Z
x

2kT
ðH� HmÞ

2n daþ

Z
cw

2kT
n2 daþ

Z
ðnlnnþ ð1� nÞlnð1� nÞÞ da ð54Þ

The dimensionless form of constraint (53) isZ
n da ¼ �n ð55Þ

Here, we will rigorously solve the variational problem only with respect to the

distribution of the inclusions n. A functional is constructed, G ¼
R
L dl, where

L ¼
x

2kT
ðH� HmÞ

2nþ
cw

2kT
n2 þ ðnlnnþ ð1� nÞlnð1� nÞÞ þ lnn ð56Þ

and ln is the global Lagrange multiplier. The relevant Lagrange–Euler differential

equation

@L

@n
¼ 0 ð57Þ

yields

ln
n

1� n
exp

cwn

kT

h i
¼ �l�

x
2kT

ðH� HmÞ
2

ð58Þ

For simplicity, we take exp(cwnXkT)E1+cwnXkT, therefore,

ln
n

1� n
ð1þ

cwn

kT
Þ

h i
¼ �l�

x
2kT

ðH� HmÞ
2

ð59Þ

After rearrangement, equation (59) is solved to obtain

n ¼ �
ð1þ e�ðlþbÞÞkT

8w
þ

ð1þ e�ðlþbÞÞkT

8w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

16w=kT
� �

e�ðlþbÞ

ð1þ e�ðlþbÞÞ
2

s
ð60Þ

where, b ¼ xn(H�Hm)
2X2kT and c ¼ 4. In the limit of weak interaction (small w)

equation (60) transforms into

n ffi
W expð�bÞ

ð1þ W expð�bÞÞ
1�

4w

kT

W expð�bÞ

ð1þ W expð�bÞÞ2

	 

ð61Þ



Budding of Liposomes – Role of Intrinsic Shape of Membrane Constituents 275
where W ¼ exp(�l) and wo0 for attractive interactions. The parameter W is de-

termined from constraint (53).

To perform minimization of the membrane free energy with respect to the

membrane shape, we use a simple parametric model that we consider relevant to

discuss a possible physical mechanism explaining the observed curvature-in-

duced sorting of membrane components. We limit our study to buds that have

spherical shape. In the model, the membrane is divided into two parts, the planar

part (part 1) with the relative area a1 and the respective fraction of the area

covered by the inclusions n1, and spherically curved part of the membrane (part

2) with the constant mean curvature H ¼ 1/r, the relative area a2 and the re-

spective fraction of the area covered by inclusions equal to n2. The parameter W is

determined numerically from the condition

n1a1 þ n2a2 ¼ �n ð62Þ

where we take into account

a1 þ a2 ¼ 1 ð63Þ

As previously stated, the curved membrane region (region 2) corresponds to the

budding (invaginated or evaginated) membrane regions or vesicles.

Figure 9 shows the fraction of the area of the membrane budding (invaginated of

evaginated) region covered by inclusions (n2) as a function of its curvature radius

(r) for three values of the intrinsic mean curvature of the inclusions (Hm). It can be

seen that for the values of r close to 1XHm the fraction of the membrane curved

area occupied by inclusions (n2) is much larger than �n even if w ¼ 0. This indicates
Fig. 9. Fraction of the area of the membrane invaginated or evaginated (budding)
region covered by inclusions (n2) as the function of its curvature radius (r) for
three values of the intrinsic mean curvature of the inclusions (Hm): 0.03 nm

�1 (a),
0.05 nm�1 (b) and 0.07 nm�1 (c). The values of the other model parameters are:
�n ¼ 0:02, a2 ¼ 0.02, w ¼ 0 and x ¼ 5000 kT nm�2 [28].
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the possibility of the curvature-induced clustering of the membrane inclusions in

the highly curved membrane regions, i.e., the formation of rafts on membrane

invaginations or evaginations and vesicles, due to the preference of inclusions for

certain (non-zero) membrane curvature. It can be also seen in Fig. 9 that for high-

enough values of the intrinsic mean curvature of the inclusions (Hm) the value of

(n2) approaches unity indicating the possibility of the lateral phase separation of

the inclusions for high-enough values of (Hm). For given Hm, the value of r cor-

responding to maximum of n2(r) (Fig. 9) also corresponds to minimum of the free

energy F, i.e., this value of r is energetically most favorable for given Hm.

Recently, upgradation of the standard model for the cellular membranes [30]

with consideration of lateral inhomogeneities of the membrane constituents –

rafts [31,32], indicates that budding is important in formation of rafts. Clustering of

membrane constituents into larger domains (rafts) in highly curved spherical re-

gions (invaginations) of cell membranes have been observed in biological mem-

branes [33]. It was suggested that small protein–cholesterol membrane

complexes (inclusions) may coalesce into larger domains (rafts) [34] upon cur-

vature-induced enrichment of inclusions in highly curved spherical parts of the

budding region [35]. The size of membrane inclusions can be very small, com-

prising just a few molecules (proteins and lipids) [36], but also larger.

For example, it was indicated recently that after generation of ceramidine from

sphingomyelin in giant sphingomyelin liposomes, lateral distribution of ceramidine

becomes non-homogeneous. Lateral phase separation, i.e., the formation of

ceramidine domains, takes place leading to the formation of ceramidine-enriched

membrane evaginations/invaginations [5]. It is suggested that the observed lat-

eral segregation of the ceramidine molecules may be a consequence of the

interdependence between the local-membrane shape, the local area density of

ceramidine molecules and the intrinsic shape of the ceramidine molecules. The

role of the direct intermolecular (nearest-neighbor) interactions between cerami-

dine molecules is also indicated [5].

In the presented theoretical consideration the applied value for the interaction

constants x is considerably larger than the corresponding value for a single

phospholipid molecule [18]. This means that the inclusions considered in Fig. 9

can be membrane proteins, protein–lipid complexes or small clusters of lipid

molecules (nanorafts). Therefore they can not be considered as completely rigid

bodies as they can adjust their shape to local membrane curvature also by

bending. As it is shown in Fig. 9 such inclusions may coalesce into larger rafts

upon curvature-induced clustering as indicated in previous studies [34,35].
5. CONCLUSION

In-plane orientational ordering of lipids in the narrow neck connecting the bud with

the mother membrane and clustering of membrane inclusions in the budding
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region are considered to be complementary driving mechanisms in budding of

liposomes (Fig. 10). Both these internal degrees of freedom diminish the mem-

brane free energy. Thereby they counteract the mechanism of isotropic bending

and contribute to the relaxation of the membrane. In one-component membrane

anisotropic shape of phospholipid molecules (Fig. 1) induces an internal degree of

freedom exhibited by in-plane orientational ordering of molecules according to the

local membrane curvature. Higher degree of ordering is localized in regions with

large difference between the two principal curvatures, e.g., narrow neck(s) (Fig.

10). In multi-component membranes, intrinsic shape of the inclusions induces an

internal degree of freedom exhibited by segregation of components (Fig. 9).

Inclusions segregate in the buds (Fig. 10), which fit the intrinsic shape of the

inclusions (Fig. 9). Attractive direct interactions between the inclusions promote

this effect.

Regions of higher order may present an environment that is favorable for

raft formation. Budding with internal degrees of freedom may therefore represent

a sorting mechanism that regulates composition of the membrane and la-

teral distribution of its constituents according to their intrinsic shape and mutual

interactions.
accumulation
of inclusions

orientational
ordering of lipids

Fig. 10. Schematic presentation of two different complementary driving mech-
anisms of membrane budding, i.e., clustering of membrane inclusions in the
budding region and in-plane orientational ordering of lipids in the narrow neck
connecting the bud with the mother membrane.
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tubes and nanotubes of a phospholipid bilayer membrane, J. Phys. A: Math. Gen. 35
(2002) 1533–1549.

[19] T.L. Hill, An Introduction to Statistical Thermodynamics, General Publishing Com-
pany, Toronto, 1986, pp. 209–211..

[20] W. Helfrich, Elastic properties of lipid bilayers – theory and possible experiments, Z.
Naturforsch. 28c (1973) 693–703.

[21] T. Baumgart, S.T. Hess, W.W. Webb, Imaging coexisting fluid domains in biomem-
brane models coupling curvature and line tension, Nature 425 (2003) 821–824.

[22] V. Kralj-Iglic, V. Heinrich, S. Svetina, B. Zeks, Free energy of closed membrane with
anisotropic inclusions, Eur. Phys. J. B 10 (1999) 5–8.



Budding of Liposomes – Role of Intrinsic Shape of Membrane Constituents 279
[23] E.A. Evans, R. Skalak, Mechanics and Thermodynamics of Biomembranes, CRC
Press, Boca Raton, FL, 1980.

[24] W.C. Hwang, R.A. Waugh, Energy of dissociation of lipid bilayer from the membrane
skeleton of red blood cells, Biophys. J. 72 (1997) 2669–2678.
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