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Pores in lipid bilayers are usually not stable; they shrink because of the highly unfavorable line tension of the
pore rim. Even in the presence of charged lipids or certain additives such as detergents or isotropic membrane
inclusions, membrane pores are generally not expected to be energetically stabilized. We present a theoretical
model that predicts the existence of stable pores in a lipid membrane, induced by the presence of anisotropic
inclusions. Our model is based on a phenomenological free energy expression that involves three
contributions: the energy associated with the line tension of the pore in the absence of inclusions, the
electrostatic energy of the pore for charged membranes, and the interaction energy between the inclusions
and the host membrane. We show that the optimal pore size is governed by the shape of the anisotropic
inclusions: saddle-like inclusions favor small pores, whereas more wedgelike inclusions give rise to larger
pore sizes. We discuss possible applications of our model and use it to explain the observed dependency of
the pore radius in the membrane of red blood cell ghosts on the ionic strength of the surrounding solution.

Introduction
Biological cells exchange material with the surrounding

environment through the cell membrane. One of the mechanisms
for transmembrane transport involves the presence of pores in
the lipid bilayer, through which a substantial flow of material
can take place. For example, pores were observed in red blood
cell ghosts,1-3 where the pore size depends on the ionic strength
of the surrounding fluid.2 The formation of pores in the mem-
brane can also be induced by applying an AC electric field
across the membrane.4 This phenomenon is known as elec-
troporation and has become widely used in medicine and bi-
ology.5-7 Finally, the formation of pores plays an important role
in the action of many antimicrobial peptides.8 A number of
theoretical studies have been made to understand the physical
basis of electroporation9,10 and peptide-induced pore forma-
tion.11-14 However, the mechanisms responsible for the energet-
ics and stability of membrane pores are still obscure and require
further clarification.

The formation of a pore in a lipid bilayer implies the existence
of a bilayer edge. It is likely15-17 that in the process of pore
formation the lipid molecules near the edge of the pore rearrange
themselves in such a way that their polar headgroups shield
the hydrocarbon tails from water (Figure 1). Modified molecular
packing of the phospholipid molecules at the bilayer edge causes
the membranes to have high line tension,Λ, that is, highexcess
energy per unit length of the exposed edge, making pores
energetically unfavorable. In fact, even if the membrane is
subject to a lateral tension, holes in membranes are not stable:
they either shrink, or above a critical size, they grow. On the
other hand, there are various examples in which membrane pores

live long enough to be observed experimentally.2,18-20 The
question arises what mechanisms could be responsible for the
stabilization of pores against immediate and spontaneous closure
or widening.

One such mechanism has recently been suggested by Bet-
terton and Brenner.21 It applies to charged membranes and is
based on competition between line tension and electrostatic
repulsion between the opposed membrane rims within a pore.
An analysis based on linearized Poisson-Boltzmann theory
showed for certain combinations of membrane charge density,
σ, line tension,Λ, and Debye length,ld, that holes become
energetically stabilized. However, for common lipid membranes,
the depth of the minimum is so shallowsbelow kT wherek is
Boltzmann’s constant andT the absolute temperaturesthat
additional stabilizing effects are required to explain the existence
of experimentally observed pores.21

In the present work, we suggest and analyze a different
explanation for the stabilization of pores in fluid membranes,
the presence of anisotropic inclusions. Inclusions are rigid,
membrane-inserted bodies that appear in biological or model
membranes such as (often transmembrane) proteins or peptides,
detergents, or sterols. If not all in-plane orientations of the
inclusion are energetically equivalent, then the inclusion is
referred to asanisotropic. Anisotropic inclusions are candidates
for the formation of membrane pores because the pore rim
provides a lipid packing geometry with which anisotropic
inclusions can favorably interact.22-27 Of particular interest in
this respect are certain antimicrobial peptides. These peptides
are positively charged and amphipathic, often exhibiting their
lytic activity through the cooperative formation of membrane
pores.8,19Most importantly in connection with the present work,
antimicrobial peptides are typically elongated in shape, which
renders their interaction with curved membranes highly aniso-
tropic. Examples of anisotropic inclusions also include various
lipids28 (certain cationic lipids,29 glycolipids, or lipoproteins30),
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gemini detergents,31 or detergents with a large and anisotropic
headgroup.32

The abundance of proteins in biological membranes has
motivated numerous theoretical studies on membrane-inclusion
interactions; see, for example, the reviews by Gil et al.33 and
Goulian34 and references therein. Among the various lines of
research, some focus has recently been put onanisotropic
inclusions. These inclusions are nonaxisymmetric but, for
simplicity, are usually considered to still have quadrupolar
symmetry. One principal question concerns the lateral organiza-
tion of anisotropic inclusions and the corresponding response
of the membrane shape. This question was addressed recently
on two different levels of approximation.

The first approach considersindiVidual inclusions. Here, an
angular matching condition between a given inclusion and the
host membrane is imposed. For example, a single isotropic
inclusion induces a catenoid-like membrane shape (for which
the mean curvature vanishes at each given point). Interference
of the inclusion-induced membrane perturbations gives rise to
membrane-mediated interaction between inclusions. For two
isotropic inclusions, this interaction is known to be repulsive,
at least in the low-temperature limit.35 However, more than
two inclusions (isotropic or anisotropic) cause nontrivial many-
body effects that induce complex spatial patterns of the inclusion
arrangement.36-38

There is a second, mean-field level approach27 which we
adopt in the present work. Here, a given small membrane patch
contains an ensemble of inclusions. The inclusions do not
individually deform the membrane but energetically couple to
the shape of the membrane patch. Note that the shape of the
membrane patch is prescribed (but may later be optimized). The
coupling between the inclusions and the membrane results from
a mismatch of the given membrane curvatures and the preferred
(“spontaneous”) curvatures of the inclusions. Thus, the mem-
brane curvatures act as a mean-field that must self-consistently
be determined so as to minimize the overall free energy, yielding
the local inclusion density everywhere on the membrane and
the corresponding optimal membrane shape.

We will show that anisotropic membrane inclusions are
candidates for the stabilization of pores in lipid bilayers. To
this end, we analyze the energetics of a single membrane pore
in a binary lipid membrane, consisting of (charged) lipids and
anisotropic inclusions. The free energy of the inclusion-doped
membrane contains the line tension contribution due to the
rearrangement of lipids within the pore region, the interaction
energy between the anisotropic inclusions and the membrane,
and the electrostatic energy of the charged lipids. The latter is
taken into account to allow a prediction of how the pore size
depends on the salt concentration.

Theoretical Model

We consider a lipid membrane that contains a single pore.
For our purpose, it is most convenient to assume a perfectly
planar membrane and a pore of circular shape, say of aperture
radiusr. We locate a Cartesian coordinate system at the pore
center with the axis of rotational symmetry (thez-axis) pointing
normal to the bilayer midplane. The presence of the membrane
pore is likely to imply some structural rearrangement of the
lipids at the bilayer rim. This reorganization is driven by the
unfavorable interaction of the lipid tails when exposed directly
to the aqueous environment. Even though experimentally
obtained evidence is currently not available, it seems a reason-
able approximation to assume (and we base our present work
on this notion) that the lipids within the rim assemble into a

semitoroidal cap to shield the hydrocarbon chains from contact
with the aqueous environment. The height of the cap fits the
bilayer thickness 2b, implying a radius,b, of its circular cross-
sectional shape. The pore geometry is schematically shown in
Figure 1. A parametrization of the semitoroidal cap is given by
x ) b cosæ (r/b + 1 + cosθ), y ) b sin æ (r/b + 1 + cosθ),
andz ) b sin θ with 0 e æ e 2π andπ/2 e θ e 3π/2. The
principal curvatures of the cap are then

and the area element dAP ) b[r + b(1 + cosθ)] dæ dθ. The
local geometry within the rim is saddle-like everywhere and
most pronounced atθ ) π whereC1/C2 ) -r/b. Note again
that the semitoroidal shape of the rim is an assumption;
alternative choices could be considered but are not expected to
alter the conclusions of the present work.

Our objective is to analyze the influence of anisotropic
inclusions on the energetics of a membrane pore. As is well-
known, lipid membranes are two-dimensional fluids that allow
inserted inclusions to redistribute laterally. Consequently, inclu-
sions accumulate at energetically beneficial membrane regions
or even induce their formation. The creation of a membrane
pore is a drastic example for an inclusion-induced reorganization
of a lipid membrane. Obviously, if inclusions induce stable
pores, they must be able to affect substantially the pore free
energyF as a function of the pore radiusr.

To obtain the equilibrium size of the pore, the overall free
energy,F, of the pore is minimized. We assume thatF is the
sum of three contributions:

whereWedgeis the energy due to the line tension of a lipid bilayer
without the inclusions,Uel is the electrostatic energy of the
charged lipids, andFi is the energy due to the interactions
between the membrane inclusions and the host membrane. We
note thatF and all its contributions areexcessfree energies,
measured with respect to a planar, pore-free membrane. We also
note that our work does not involve any additional constraints
of the membrane area,A. Hence, we work at vanishing lateral
tension, as should be appropriate for most bilayers.

Line Tension of a Lipid Bilayer. The modified molecular
packing of the lipid molecules at the edge of the pore (see Figure
1) entails an energy costWedge. For an inclusion-free membrane,
this energy cost is given byWedge) 2πΛr, wherer is the radius
of the circular membrane pore andΛ is the line tension (i.e.,
energy per unit length of the exposed edge) of the lipid bilayer.
One can easily obtain a rough estimate forΛ on the basis of
the elastic energy required to bend a lipid monolayer into a
semicylindrical micellar cap. Adopting the usual quadratic

Figure 1. A planar lipid bilayer with a pore in the center. The figure
shows the cross-section in thex-z plane. Rotational symmetry around
the z-axis is indicated. On the left side, the packing of the lipid
molecules is shown schematically. The headgroups of lipid molecules
are represented by filled circles. The arrow denotes the membrane
inclusion, which is shown schematically.

C1 ) 1
b

C2 ) cosθ
r + b(1 + cosθ)

(1)

F ) Wedge+ Uel + Fi (2)
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curvature expansion for the free energy according to Helfrich,39

one finds16 Λ ) πkc/(2b) wherekc is the lipid layer’s bending
rigidity. Typically for a single lipid layer,b ) 2.5 nm andkc )
10kT, implying Λ ≈ 6kT/nm ≈ 2 × 10-11 J/m (at room
temperature). Indeed, this order of magnitude corresponds to
experimental results for the line tension of lipid bilayers.18,40,41

It is worth noting that the semicylindrical micellar cap has large
curvatures,C1 ) 1/b and |C2| e 1/r, for which the quadratic
curvature expansion might completely fail.18 The fact that it
does not fail indicates the robustness of the membrane elasticity
approach; it is often used successfully to model experimentally
observed structural reorganization of lipid assemblies, even if
that involves large changes in curvature.42,43

If rigid membrane inclusions are present within the membrane
pore, they replace some of the lipids, depending on their lateral
extensions. The replaced lipids no longer contribute to the line
tensionWedge. We shall account approximately for this reduction
in line tension by writing

whereNP denotes the number of inclusions within the membrane
rim and 2Ri is the lateral extension of the cross-sectional shape
of the inclusions. Steric interactions limit the number of
inclusions within the membrane rim;NP e NP

max ) πr/Ri. Thus
Wedgeg 0, and the line tension always provides a tendency for
the pore to shrink.

Electrostatic Energy of a Pore. The calculation of the
electrostatic energy of a membrane pore follows Betterton and
Brenner21 who derived an expression valid for a very thin
membrane (b f 0) in linearized Poisson-Boltzmann (PB)
theory. It is well-known that linearized PB theory greatly
overestimates the electrostatic free energies for lipid membranes.
Yet, solutions within nonlinear Poisson-Boltzmann theory (and
for more realistic choices ofb) are numerically demanding.
Hence, to keep our model tractable, we adopt the result of linear
PB theory where the equation∇2φ ) κd

2φ determines the
(dimensionless) electrostatic potential,φ, at a given Debye length

ld ) κd
-1 ) xεwε0kT/(2n0NAe0

2). Here εw is the dielectric
constant of the aqueous solution,ε0 is the permittivity of free
space,n0 is the ionic strength of the surrounding solution (i.e.,
bulk salt concentration, assuming a 1:1 salt such as NaCl),NA

is Avogadro’s number, ande0 is the unit charge.
The solution of the linear PB equation is written as the

difference,φ(x,z) ) φ∞(z) - φ0(x,z), between the electrostatic
potential of a flat infinite pore-free membrane (φ∞) and the
electrostatic potential of the circular flat membrane segment with
radiusr (φ0), both having constant surface charge density,σ.
The value ofφ∞ is44 φ∞(z) ) (σ/(εwε0κd)) exp(-κdz). The
expressions forφ0 can be obtained using the Hankel transforma-
tion and taking into account the boundary conditionsφ(zf∞)
) 0 and∂zφ(z)0) ) 0 for x > r, ∂zφ(z)0) ) -σ/(εwε0) for x
< r. Then the electric potentialφ(x,z) can be written as

whereJ0 andJ1 are Bessel functions.
Using eq 4 for the electric potential, we can derive the

electrostatic free energy via a charging process:44,45

Equation 5 can be further processed analytically. By subtracting
the electrostatic energy of the charged pore-free membrane, one
obtains an explicit expression for theexcesselectrostatic energy
of the pore:

This is the result of Betterton and Brenner,21 which we shall
use in our present work.

Free Energy of Inclusions.Membrane inclusions are embed-
ded within the host membrane, and the inclusion-membrane
interactions are mainly governed by the hydrophobic effect. To
describe the corresponding free energy,Fi, we use a phenom-
enological model26 in which the mismatch between the effective
intrinsic shape of the inclusions and the actual shape of the
membrane at the site of the inclusions causes an interaction
energy. The actual shape of the membrane at the site of the
inclusion can be described by the diagonalized curvature tensor
C,

whereC1 and C2 are the two principal curvatures. Similarly,
the intrinsic shape of a given inclusion can be described by the
diagonalized curvature tensorCm,

whereC1m andC2m are the two intrinsic principal curvatures of
the inclusion. In general, inclusions are anisotropic,22,23,27,28,31

which means thatC1m * C2m. The principal directions of the
tensorC deviate in general from the principal directions of
the tensorCm; say, a certain angleω quantifies this mutual rota-
tion. The single-inclusion energy (Ei) can then be expressed in
terms of the two invariants (trace and determinant) of the
mismatch tensorM ) RCmR-1 - C whereR is the rotation
matrix,

Terms up to second order in the elements of the tensorM are
taken into account:

where K and Kh are the interaction constants between the
inclusion and the surrounding membrane. Using eqs 7-10, we
can write the single-inclusion energy (Ei) in the form27

QuantitiesH ) (C1 + C2)/2 andHm ) (C1m + C2m)/2 are the
respective mean curvatures, whileD ) (C1 - C2)/2 andDm )
(C1m - C2m)/2 are the curvature deviators. Curvature deviator
Dm describes the intrinsic anisotropy of the single membrane
inclusion.26,28

The time scale for orientational changes of the anisotropic
inclusions is usually small compared to shape changes of the
lipid bilayer. It is therefore reasonable to employ an orientational
averaging of the inclusions according to the rules of statistical

Wedge) 2Λ(πr - NPRi) (3)

φ(x,z) ) + σ
εwε0κd

e-κdz - σr
εwε0

∫0

∞J0(kx)J1(kr)

xκd
2 + k2

e-z(κd
2+k2)1/2

dk

(4)

Uel,tot ) 2π∫0

∞
σ(x)φ(z)0)x dx (5)

Uel ) - πσ2r2

εwε0κd
+ 2πσ2r3

εwε0
∫0

∞ J1(x)2

xxx2 + κd
2r2

dx (6)

C ) [C1 0
0 C2] (7)

Cm ) [C1m 0
0 C2m] (8)

R ) [cosω -sin ω
sin ω cosω ] (9)

Ei ) K
2

(tr M )2 + Kh detM (10)

Ei ) (2K + Kh )(H - Hm)2 - Kh [D2 - 2DDm cos(2ω) + Dm
2]

(11)
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mechanics. To this end, we take into account that the inclusions
can rotate around the axis defined by normal to the membrane
at the site of the inclusion. Then the partition function,q, of a
single inclusion is22,28

whereω0 is an arbitrary angle quantum. Inclusions can also
move laterally over the phospholipid layer, so they can distribute
laterally over the membrane in the way that is energetically the
most favorable.23,27The lateral distribution of the inclusions in
a membrane of overall areaA is in general nonuniform. Treating
inclusions as pointlike, independent, and indistinguishable,
we can derive the expression for the contribution of the in-
clusions to the membrane free energy on the basis of eqs 11
and 12:27

whereN is the total number of inclusions in the membrane,qc

is defined as

and I0 is the modified Bessel function. The integration in
eq 13 is performed over the whole area,A, of the membrane,
including the pore region of areaAP and the two flat monolayers
that constitute the planar bilayer part. Recall thatFi in eq 13
(together with eq 14) is anexcessfree energy with respect to
the pore-free planar membrane, as was defined in eq 2. Indeed,
it is Fi(H)D)0) ) 0 and hence only those inclusions that are
located within the pore rim (but not those in the planar
membrane) contribute toFi. Because the overall areaA is
assumed to be large, we can expandFi with respect toA,
yielding

where n ) N/A is the area density of the inclusions in the
membrane and where the integration extends only over the area,
AP, of the membrane rim. The influence of the inclusion’s
anisotropy is contained in the Bessel functionI0(2DDmKh /(kT))
(the coefficientqc is independent ofDm). BecauseI0 g 1, we
see from eq 15 that the anisotropy of inclusions always tends
to lowerFi. Yet, whether inclusions eventually lower or increase
F depends on all inclusion properties, on the geometry (Dm and
Hm) and on the interaction constants (K andKh ).

We also note that the number of inclusions contained within
the membrane rim is given by

Combination of eqs 15 and 16 yields

Of course, if no energetic preference exists for the inclusions
to partition into the membrane rim (qcI0 ) 1), then eq 16 predicts
NP/AP ) n and thusFi ) 0. On the other hand, if the density of
the inclusions within the pore region greatly exceeds the bulk

density, thennAP , NP andFi ≈ -NPkT. Hence, each inclusion
that enters the membrane pore in excess to the bulk density
contributes 1kT to the inclusion free energy. The inclusion size
determines the maximal number,NP

max, that can enter the pore
rim. For rather large inclusionsRi ≈ b and small poresr ≈ b,
we expect thatNP

max is of the order of a very few inclusions.
That seems to indicate that for small poresFi is not able to
decreaseF by more than a fewkT. Below we show that
nevertheless, for charged membranes, anisotropic inclusions can
dramatically reduceF (substantially more than-NPkT).

Estimation of the Constants.We discuss a simple generic,
molecular-level model for the interaction between a single
anisotropic inclusion and a lipid bilayer of principal curvatures
C1 and C2 into which the inclusion is embedded. The model
allows us to estimate the phenomenological constants,K, Kh ,
Hm, and Dm, in terms of the inclusion shape and the elastic
properties of the lipid bilayer.

Bending a lipid layer implies a change in the average
molecular shape of each individual lipid: a splay (or saddle-
splay) deformation is imposed by the membrane curvature.
Membrane-embedded inclusions cannot participate in the cur-
vature-induced splay deformation because of their stiffness. That
is, some lipids in the vicinity of the inclusion have to compensate
for the stiffness of the inclusion by adopting an additional
(“excess”) splay, beyond that of the lipids far from the inclusion.
Figure 2 provides a schematic illustration of this mechanism
for a cylindrical inclusion of radiusRi. The energy associated
with the excess splay determines the inclusion energyFi. It
depends on both the inclusion’s shape and size and the elastic
properties of the lipid layer.

The inclusion’s shape can conveniently be characterized by
a circular cross section (of radiusRi) and a modulated “cone
angle” θi(φ) ) θh i + ∆θi cos(2φ) along its circumference with
a corresponding azimuthal angleφ. The average “coneness”
of such an inclusion isθh i, and the deviation along the inclu-
sion’s circumference is∆θi. Clearly, for ∆θi ) 0, the inclu-
sion is isotropic, and for∆θi ) θh i ) 0, the inclusion is
cylindrical.

The elastic properties of a lipid layer can be characterized
by the bending constantkc and the area stretching modulusKc.
From membrane elasticity theory, it is well-known46,47 that the
decay length of the perturbation induced by a single inclusion
is ê ) x2b(kc/(Kcb2))1/4. If the inclusion radius is not much
smaller thanê (that is, forRi J ê), one can roughly estimate

q ) 1
ω0
∫0

2π
exp(-

Ei(ω)

kT ) dω (12)

Fi

kT
) -N ln[1A∫A

qcI0(2Kh
kT

DDm) dA] (13)

qc ) exp(- 2K + Kh
kT

(H2 - 2HHm) + Kh
kT

D2) (14)

Fi

kT
) n∫AP[1 - qcI0(2Kh

kT
DDm)] dAP (15)

NP ) n∫AP
qcI0(2Kh

kT
DDm) dAP (16)

Fi

kT
) nAP - NP (17)

Figure 2. Cross sections through a lipid layer containing a single
cylindrical inclusion (black square). Some lipids are shown schemati-
cally. In the planar layer (a), all lipids pack, on average, into a
cylindrical shape (schematized by the shaded rectangle). Bending the
monolayer (b) induces a splay deformation of the lipids. Because the
inclusion is rigid, it cannot participate in the splay deformation, thus
inducing an extra (excess) splay of the lipids in its vicinity.
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the interaction constants

as well as

The derivation of eqs 18 and 19 will be given elsewhere. Note
that the interaction constantsK andKh depend not only on the
monolayer’s bending stiffnesskc but also on the area stretching
modulusKc (throughê). The presence ofKc implies that local
changes in the thickness of the monolayer leaflets are involved
in the spatial relaxation of the inclusion-induced perturbation.
This is not obvious because we do not impose any thickness
mismatch between the inclusion and the membrane. However,
as Figure 2 illustrates, insertion of the inclusion imposes an
angular mismatch which spatially relaxes with the same decay
length as a thickness mismatch.47-49 The relaxation involves a
compromise between splay and dilation of the lipid chains.

Typically for a lipid layerê ) 1 nm,kc ) 10kT, and thusK
≈ 50Ri

3kT/nm andKh ≈ - 33Ri
3kT/nm. The interaction constants

increase strongly with the inclusion radiusRi. Because the
validity of eq 18 requiresRi J 1 nm (below we shall useRi )
b/2 ) 1.25 nm), our present estimate will necessarily predict a
strong membrane-inclusion interaction. To this end, we note
that eq 11 withDm ) 0 has the same structure as the Helfrich
bending energy for isotropic membranes. The corresponding
interaction constant,K, (and similarly for Kh ) for a lipid
membrane could thus be identified28 with K ) kca0, wherekc

≈ 10kT is the bending constant of an ordinary lipid monolayer
(that is part of a bilayer membrane) anda0 ) 0.6-0.8 nm2 is
the cross sectional area per lipid. Thuskca0 ≈ 7kT nm2, which
is at least an order of magnitude smaller than the interaction
constantK in eq 18. Hence, sufficiently large, rigid membrane
inclusions are generally expected to partition strongly into
“appropriately curved” membrane regions.

We note that partitioning rigid inclusions into the rim of a
membrane poresbesides causing an extra (excess) splay, see
abovesalso replaces some structurally perturbed lipids. These
lipids no longer contribute to the energy of the pore. The
corresponding energy gain is not contained inFi because we
have taken it into account already inWedge(see eq 3).

Results and Discussion

All of the following results are derived for a fixed thickness,
b ) 2.5 nm, of the lipid layer, for a line tension ofΛ ) 10-11

J/m, and for a surface charge densityσ ) - 0.05 A s/m2 )
-e0/3.2 nm2 of the lipid layer. Taking into account a typical
cross-sectional area per lipid ofa0 ) 0.6-0.8 nm2, the value
for σ would correspond roughly to a 1:4 mixture of (monov-
alently) charged and uncharged lipids. This is not an unusual
situation in (biological and model) membranes.

Inclusion-Free Membrane. Let us start with an inclusion-
free membrane. This case has recently been analyzed by
Betterton and Brenner.21 The free energy consists only of the
line tension contribution (see eq 3) and the electrostatic free
energy (see eq 6); the former favors shrinking and the latter
growing of a membrane pore. The parameter that governs the
resulting behavior is the Debye length,ld. For smallld, pores
close; for largeld, pores grow. Betterton and Brenner have found
that for intermediateld a local minimum inF(r) exists that may

give rise to stable pores. As an illustration, we plotF(r) in Figure
3 for three different choices ofld, namely,ld ) (a) 2.6, (b) 2.8,
and (c) 3.0 nm; a local minimum inF(r) is present only in curve
b. Figure 3 exemplifies a general finding: the local minimum
of F(r) is very shallowsbelowkTsand appears in a very narrow
region of ld. Hence, pores in lipid membranes cannot be
stabilized solely by electrostatic interactions. Whether the local
minimum in F(r) will be preserved in a full nonlinear PB
treatment is not known to us.

Saddle-Shaped Inclusion.Let us now add anisotropic
inclusions to the charged membrane. As argued above, we shall
employ the interaction constantsK ≈ 50Ri

3kT/nm andKh ) -2K/
3. The inclusion radiusRi should be larger thanê ≈ 1 nm; we
shall useRi ) b/2 ) 1.25 nm. To illustrate the effect of the
inclusion’s anisotropy, we chose a perfectly saddle-like inclusion
with C1m ) -C2m ) 1/b. Figure 3 showsF(r) for two examples
of different area density,n, of the inclusions:n ) 1/70 000
nm2 (curve d), andn ) 1/14 000 nm2 (curve e). We clearly see
the pronounced ability of the inclusions to lower and deepen
the local minimum ofF(r). Because of their favorable interac-
tion, the anisotropic inclusions tend to accumulate within the
membrane rim. The corresponding number,NP, of inclusions
in this region is given in eq 16. This number is plotted in the
inset of Figure 3 forn ) 1/70 000 nm2 (curve d) andn )
1/14 000 nm2 (curve e). Recall that the statistical mechanical
approach leading to eq 15 is based on pointlike particles. Within
this approach, the inclusion size will not limit entry into the
pore rim. Yet, for a realistic (that is, nonvanishing) size (recall
our choiceRi ) b/2), NP should stay sufficiently small to ensure
steric fitting of the inclusions into the pore. In fact, atr ) b,
there is full coverage forNP ) NP

max ) πb/Ri ) 2π. More
precisely, the interactions of the inclusions with the membrane
rim should dominate over direct inclusion-inclusion interac-
tions. For the examples shown in Figure 3, the inclusion number,
NP, is not prohibitively high. But aboven ) 1/14 000 nm2, our
present approach (with the present choice of interaction
parameters, particularly withC1m ) -C2m ) 1/b), is no longer
applicable.

The minimum forn ) 1/14 000 nm2 (curve e in Figure 3) is
roughlyF ) - 30kT. It arises from the presence of inclusions
in the pore region. On the other hand, eq 17 predicts that the
inclusion energyFi ≈ -NPkT. The inset of Figure 3 shows that
NP e 6. Hence, the deep minimum ofF does not arise solely
from the inclusion contributionFi. It is also the electrostatic

Figure 3. The pore free energy,F, as a function of the pore size,r.
The dashed lines correspond to a charged inclusion-free membrane of
charge densityσ ) -0.05 A s/m2 with Debye lengthld ) (a) 2.6, (b)
2.8, and (c) 3.0 nm. The solid lines describe the effect of adding
anisotropic inclusions (characterized byK ) 98kT nm2, Kh ) -2K/3,
C1m ) -C2m ) 1/b) to the charged membrane withσ ) -0.05 A s/m2

and ld ) 2.8 nm. The inclusion concentrations are (d)n ) 1/70 000
nm2 and (e)n ) 1/14 000 nm2. The inset shows the corresponding
numbersNP as function ofb/r for curves d and e.

K ≈ 3
2
πkc

Ri
3

ê
, Kh ≈ - 2

3
K (18)

Hm )
θh i

Ri
, Dm )

∆θi

Ri
(19)
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energy,Uel, which lowersF. To explain the mechanism, we
recall that in the inclusion-free membrane the electrostatic
energy and the line tension nearly balance each other. If
inclusions enter the pore region, they reduce the line tension
(see eq 3). As a result,Uel is no longer counterbalanced byWedge

and thus strongly lowersF. It can be therefore concluded that
also in the case of the charged membranes the deepness of the
minimum ofF is mainly determined by the inclusions, directly
because of their energy contributionFi and indirectly because
of their influence onUel + Wedge.

Influence of Inclusion Shape.Deepening of the minimum
in F(r) occurs in Figure 3 atr ≈ b [see curves d and e]. This
reflects our choice of the inclusion geometry,C1m ) -C2m )
1/b. In fact, for r ) b, the principal curvatures of the rim atθ
) π (see eq 1) areC1 ) -C2 ) 1/b, coinciding with the
inclusion’s preference. This observation suggests the possibility
of increasing the optimal size of the pore by altering the intrinsic
curvatures of the inclusion from a saddle-like (C2m/C1m ≈ -1)
toward a more wedgelike shape (C2m/C1m ≈ 0). The smaller
the magnitude of|C2m/C1m|, the larger should be the preferred
pore size. With regard to the principal curvatures at the waist
of the rim, C1 ) 1/b and C2 ) -1/r, one would expect the
optimal pore size,ropt, to be determined by the relation

In Figure 4, we add anisotropic inclusions of area densityn )
1/14 000 nm2 to a charged membrane (σ ) - 0.05 A s/m2, ld
) 2.8 nm); the shape of the inclusions is characterized byC1m

) 1/b and (a)C2m/C1m ) -1, (b) C2m/C1m ) -0.8, (c) C2m/
C1m ) -0.6, and (d)C2m/C1m ) 0. Indeed, the local minimum
of F(r) shifts to larger pore sizes as the inclusions become more
wedge-shaped [compare the position of the local minimum of
curves a-c]. The solid line in the inset of Figure 4 shows how
the optimal pore radiusropt changes withC2m/C1m. The broken
line in the inset displays the prediction according to eq 20.
Clearly, the optimal pore size,ropt, is even larger than what
would be expected from the inclusion’s geometry. The reason
can be found in the presence of the inclusion reservoir in the
bulk membrane. Increasing the pore size allows incorporation
of more inclusions that interact only somewhat less favorably
with the membrane rim.

Our calculations also show that below a critical ratio of|C2m/
C1m| the local minimum inF(r) vanishes (in Figure 4, we find
|C2m/C1m| < 0.4), and the pore grows. Again, the inclusion

reservoir in the membrane favors additional partitioning into
the membrane rim, which increases the pore size. Below a
critical ratio of |C2m/C1m|, this process never stops. We also
note that forisotropic inclusions (whereC1m ) C2m), we do
not find energetically stabilized pores. Even more generally, if
C1m and C2m have the same sign, stable pores cannot be
predicted. Stabilization of the pore derives from the matching
of the rim geometry with the inclusion’s preference. The rim
provides a saddle-like geometry (that is, different signs ofC1

and C2); consequently, a saddle-like inclusion geometry (that
is, different signs ofC1m andC2m) is needed to stabilize a pore.

Salt Concentration and Pore Size.In all of the examples
presented so far, we added anisotropic inclusions to charged
membranes with a specifically selected Debye length,ld ) 2.8
nm. We recall from Figure 3 that this was the choice for which
an inclusion-free membrane already exhibits a (shallow) mini-
mum in F(r). The question arises whether pores can also be
stabilized for uncharged membranes or, more generally, under
varying electrostatic conditions. In this respect, it is interesting
to note the experimental observation of stable pores in red blood
ghosts for which data exist2 on the optimal pore radius,ropt(n0),
as a function of the salt concentration,n0. Our present theoretical
approach is able to reproduce the experimental data as shown
in Figure 5. We used a charge density ofσ ) -0.05 A s/m2, an
area density of the inclusions ofn ) 1/2000 nm2, and an
inclusion geometry characterized byC1m ) 1/b andC2m/C1m )
-0.4. The inset of Figure 5 shows the corresponding number
of inclusions (solid line), as well as the maximal numberNP

max

) πropt/Ri (broken line) at which the inclusions would sterically
occupy the entire rim. The observationNP < NP

max indicates the
applicability of our approach for the selected area density (n )
1/2000 nm2). Of course, the number of approximations in our
approach may still render the good agreement in Figure 5
fortuitous. What adds to this uncertainty is the complexity of
the red blood cell membrane. In particular, the attached
cytoskeleton can be expected to affect the membrane pore
energetics. Therefore, Figure 5 should be understood as an
illustration of the principal ability of anisotropic membrane
inclusions to stabilize membrane pores, even under changing
electrostatic conditions.

In our present investigation, we included electrostatic interac-
tions to allow a prediction of how the pore size depends on salt
content. Note that it is generally the anisotropy of the inclusions
but not electrostatic interactions that stabilizes pores. Thus, for

Figure 4. The pore free energy,F, as a function of the pore size,r,
for differently shaped anisotropic inclusions:C2m/C1m ) (a) -1, (b)
-0.8, (c)-0.6, and (d) 0. In all cases, the membrane is charged (σ )
-0.05 A s/m2, ld ) 2.8 nm), and it isC1m ) 1/b and n ) 1/14 000
nm2. The inset shows the position of the local minima,ropt, as a function
of C2m/C1m (solid line). The dashed line in the inset shows-C2m/C1m

) b/ropt.

Figure 5. The optimal pore sizer as a function of the ionic strength
of the surrounding aqueous medium. The charge density of the
membrane isσ ) -0.05 A s/m2, the area density of the inclusions is
n ) 1/2000 nm2, and the inclusion’s preferred curvatures areC1m )
1/b and C2m/C1m ) -0.4. Experimental values2 are also shown (b).
The inset shows the actual number of inclusions,NP, residing in the
pore of optimal size,ropt (solid line), and the maximal number,NP

max )
πropt/Ri (broken line).

-
C2m

C1m
) -

C2

C1
) b

ropt
(20)
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uncharged membranes or in the limit of high salt content,
qualitatively similar considerations as those presented above
account for pore stability. However, the minimum of the overall
free energyF would be less deep compared to the case of
charged membranes.

Isotropic vs Anisotropic Inclusions. The influence that
admixed inclusions have on the energetics (particularly the line
tension) of membrane pores is often interpreted in terms of
altering the elastic properties of the membrane. For example,
the addition of cosurfactants typically reduces the bending
stiffness of a membrane.50 Even more important for membrane
pores, the presence of conelike (and analogously, inverted
conelike) inclusions can induce a shift in the spontaneous
curvature. This shift can be translated into a change in line
tension, which provides a common basis for analyzing the
energetics of a membrane pore.18 Our present approach contains
this scenario as a special case, namely, if the inclusions are
isotropic (Dm ) 0). In fact, it is the spontaneous mean curvature,
Hm, that plays the role of the spontaneous curvature. Beyond
the effect of conelike and inverted conelike inclusions, our
present approach also allows us to analyze other inclusion
shapes, such as wedgelike or saddle-like inclusions. These
inclusions can be characterized by an appropriate combination
of Hm and Dm. In the following, we shortly discuss a few
examples in which we think that the anisotropy of admixed
inclusions could be particularly relevant to the pore energetics.

Electroporation is a method of artificial formation of pores
in biological membranes by applying an electric field across
the membrane. A problem in the electroporation of living tissue
is that it often causes irreversible damage to the exposed cells
and tissue.6 Increasing the amplitude of the electric field in
electroporation diminishes cell survival rates.7 On the other hand,
if the applied electric field is too low, stable pores are not
formed. A way to improve the efficacy of electroporation is
chemical modification of the membranes. It has been reported
recently51,52 that adding the nonionic surfactant octaethylene-
glycol dodecyl ether (C12E8) to the outer solution of the
phospholipid membrane or the cell membrane causes a decrease
in the threshold for irreversible electroporation. In other words,
C12E8 molecules make transient pores in a membrane more
stable. C12E8 molecules were recently suggested to act as
anisotropic inclusions in bilayer membranes.26

Our theoretical model could add to the understanding of pore
energetics as recently investigated by Karatekin et al.18 For
example, these authors measured a dramatic increase of the
transient pore lifetime induced by the detergent Tween 20, which
has an anisotropic polar headgroup. The importance of the
anisotropy of such polar heads of the detergents for the stability
of anisotropic membrane structures has been indicated recently.
It has been shown that a single-chain detergent with an
anisotropic dimeric polar head (dodecylD-maltoside) may induce
tubular nanovesicles32 in a way similar to those induced by
strongly anisotropic dimeric detergents.31

Our approach could also add to the understanding of pore
formation induced by certain antimicrobial peptides.8,19 These
peptides are often amphipathic, partially penetrating the host
membrane. In addition to that, they have a pronounced elongated
shape, which arises from theirR-helical backbone structure and,
apparently, renders them highly anisotropic. Some of these
peptides are believed to cooperatively self-assemble into
membrane pores. Thus, they not only facilitate pore formation,
but theyactiVely induce it. Despite their importance, there are
currently few theoretical investigations about the energetics of
peptide-induced pore formation.11,12,14,53Our model provides

perhaps the most simple way to capture the underlying physics
of peptide-induced pore formation in lipid membranes.

Discussion of Approximations.We analyzed the energetics
of a single membrane pore on the basis of a simple, physically
transparent model. It involves a number of approximations that
we discuss in the following.

We adopted a phenomenological expression for the mem-
brane-inclusion interaction energy. This expression is valid on
a mean-field level. The “mean field” is provided by the local
membrane curvatures,C1 andC2, that adjust to minimize the
system’s free energy. This approach is, similar to the Helfrich
bending energy, valid if the local curvatures,C1 andC2, do not
change too drastically. On the other hand, the membrane rim
provides local curvatures that differ greatly from those of the
planar membrane (the latter, in fact, vanish). Hence, formation
of a pore in a planar membrane necessarily involves large
curvature changes. Yet, as we have seen, the Helfrich bending
energy describes the line tension of an inclusion-free membrane;
on the same ground, we are confident about the applicability
of the inclusion free energy.

The phenomenological expression for the inclusion free
energy,Fi, contains four interaction constants (K, Kh , Hm, and
Dm). Two of them,Hm andDm, characterize the shape of the
anisotropic inclusion. If the lipid bilayer is required to exactly
match the angular shape of individual inclusions, then no further
interaction constants are needed. In this case, the angular
matching appears as a boundary condition for an appropriate
differential equation.35,36,38,54 In our present approach, an
ensemble of inclusions interacts (in a mean-field fashion) with
a membrane patch of prescribed principal curvatures (the
curvatures may afterward be optimized). In this case, there
appear two additional interaction constants,K and Kh . These
constants account for the energy to insert anisotropic inclusions
into a bilayer patch of fixed principal curvatures. This process
is supposed to locally perturb the two monolayer leaflets of the
bilayer. One can thus roughly obtain the interaction constants,
K andKh , by estimating the microscopic (short-range) interaction
between the perturbed monolayers and the inclusion. To this
end, we used membrane elasticity theory,46 which involves a
spatial decay length,ê ≈ 1 nm, of the inclusion-induced
perturbation. Note that the discreteness of the lipids should not
be neglected at these length scales, yet membrane elasticity
theory actually does neglect it. Still, this approach is commonly
used to estimate membrane-inclusion interactions and, where
possible, gives good agreement with experimental observa-
tions.55,56

There are structural approximations concerning the membrane
pore. Its shape is assumed to be circular, covered by a
semitoroidal rim. These assumptions seem to us the most
reasonable ones. Still, there could be, say, an inclusion-induced
change in the cross-sectional shape of the membrane rim. In
fact, we performed additional calculations in which we allowed
for a semiellipsoidal shape of the membrane rim. The free
energy was then minimized with respect to the corresponding
aspect ratio. With this additional degree of freedom, we found
qualitatively the same results as with the semitoroidal rim.

The statistical mechanical approach to derive the inclusion
free energyFi in eq 13 assumes noninteracting, pointlike
particles. Even though we ensured that the number of inclusions
in the pore,NP, never exceeds the sterically possible maximal
number,NP

max, we cannot exclude direct inclusion-inclusion
interactions within the pore. In fact, such interactions are
important in nearly all realistic situations. The average distance
between neighboring inclusions in membrane pores is generally
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of the order of molecular dimensions. Hence, direct interactions
matter. Yet, these interactions are specific, depending on
molecular details. Our approach is of generic nature; specific
interactions add to the mechanisms specified in our work.

Finally, we employed linearized PB theory. Calculations
within nonlinear PB theory with regard to the semitoroidal shape
of the membrane rim and the local demixing between charged
and uncharged lipids are much more demanding but are currently
being carried out.

None of the approximations employed can detract from our
principal conclusion: anisotropic membrane inclusions are
candidates for the energetic stabilization of membrane pores.

Conclusions

Our theoretical approach adds three aspects to the analysis
of pores in lipid membranes. First, the modification of the elastic
properties of the membranes in the presence of inclusions is
taken into account, as is reflected in the calculation of the
membrane-inclusion interaction constants. Second, we allow
for anisotropy of the inclusions, which enables us to consider
various inclusion shapes, conelike, inverted conelike, wedgelike,
and saddle-like inclusions. Third, the lateral density of the
inclusions is not kept constant. Instead, we calculate the pore
energetics for a fixed chemical potential of the inclusions. The
last point is especially important in studies where the admixed
compounds are predominantly localized in the region of the pore
edges, such as the detergent sodium cholate18 or the protein
talin.57 Our model is simple and approximate, but it provides a
lucid and reproducible framework to analyze pore formation in
lipid membranes.

Acknowledgment. We are indebted to A. Ben-Shaul, S.
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