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Stabilization of Pores in Lipid Bilayers by Anisotropic Inclusions
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Pores in lipid bilayers are usually not stable; they shrink because of the highly unfavorable line tension of the
pore rim. Even in the presence of charged lipids or certain additives such as detergents or isotropic membrane
inclusions, membrane pores are generally not expected to be energetically stabilized. We present a theoretical
model that predicts the existence of stable pores in a lipid membrane, induced by the presence of anisotropic
inclusions. Our model is based on a phenomenological free energy expression that involves three
contributions: the energy associated with the line tension of the pore in the absence of inclusions, the
electrostatic energy of the pore for charged membranes, and the interaction energy between the inclusions
and the host membrane. We show that the optimal pore size is governed by the shape of the anisotropic
inclusions: saddle-like inclusions favor small pores, whereas more wedgelike inclusions give rise to larger
pore sizes. We discuss possible applications of our model and use it to explain the observed dependency of
the pore radius in the membrane of red blood cell ghosts on the ionic strength of the surrounding solution.

Introduction live long enough to be observed experimentaft§.2° The
Biological cells exchange material with the surrounding gquestion arises what mechanisms could be responsible for the

environment through the cell membrane. One of the mechanismsstabilization of pores againstimmediate and spontaneous closure
for transmembrane transport involves the presence of pores inor widening.
the lipid bilayer, through which a substantial flow of material ~ One such mechanism has recently been suggested by Bet-
can take place. For example, pores were observed in red blooderton and Brennet: It applies to charged membranes and is
cell ghostd;~3 where the pore size depends on the ionic strength based on competition between line tension and electrostatic
of the surrounding fluid. The formation of pores in the mem-  repulsion between the opposed membrane rims within a pore.
brane can also be induced by applying an AC electric field An analysis based on linearized Poiss@oltzmann theory
across the membrarteThis phenomenon is known as elec- showed for certain combinations of membrane charge density,
troporation and has become widely used in medicine and bi- o, line tension,A, and Debye lengthlg, that holes become
ology5~7 Finally, the formation of pores plays an important role ~energetically stabilized. However, for common lipid membranes,
in the action of many antimicrobial peptidg#\ number of  the depth of the minimum is so shallevbelow kT wherek is
theoretical studies have been made to understand the physicaBoltzmann’s constant and the absolute temperatur¢hat
basis of electroporatidi® and peptide-induced pore forma- additional stabilizing effects are required to explain the existence
tion11-14 However, the mechanisms responsible for the energet- of experimentally observed porés.
ics and stability of membrane pores are still obscure and require  In the present work, we suggest and analyze a different
further clarification. explanation for the stabilization of pores in fluid membranes,
The formation of a pore in a lipid bilayer implies the existence the presence of anisotropic inclusions. Inclusions are rigid,
of a bilayer edge. It is likeRp~17 that in the process of pore  membrane-inserted bodies that appear in biological or model
formation the lipid molecules near the edge of the pore rearrangemembranes such as (often transmembrane) proteins or peptides,
themselves in such a way that their polar headgroups shielddetergents, or sterols. If not all in-plane orientations of the
the hydrocarbon tails from water (Figure 1). Modified molecular inclusion are energetically equivalent, then the inclusion is
packing of the phospholipid molecules at the bilayer edge causesreferred to agnisotropic Anisotropic inclusions are candidates
the membranes to have high line tensianthat is, highexcess for the formation of membrane pores because the pore rim
energy per unit length of the exposed edge, making poresprovides a lipid packing geometry with which anisotropic
energetically unfavorable. In fact, even if the membrane is inclusions can favorably interagt.2” Of particular interest in
subject to a lateral tension, holes in membranes are not stablethis respect are certain antimicrobial peptides. These peptides
they either shrink, or above a critical size, they grow. On the are positively charged and amphipathic, often exhibiting their
other hand, there are various examples in which membrane poredytic activity through the cooperative formation of membrane
pores®1®Most importantly in connection with the present work,
* Corresponding author. E-mail:  may@lily.molebio.uni-jena.de. antimicrobial peptides are typically elongated in shape, which
Phone: ++49-3641-657582. Fax:+49-3641-657520. renders their interaction with curved membranes highly aniso-
Faculty of Electrical Engineering, University of Ljubljana. . . . . . .
* Faculty of Medicine, University of Ljubljana. tropic. Examples of anisotropic inclusions also include various
§ Friedrich-Schiller-University. lipids?8 (certain cationic lipid? glycolipids, or lipoprotein¥),
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gemini detergent&! or detergents with a large and anisotropic
headgroup?

The abundance of proteins in biological membranes has
motivated numerous theoretical studies on membramgusion
interactions; see, for example, the reviews by Gil ealnd
Gouliar?* and references therein. Among the various lines of
research, some focus has recently been putaoisotropic
inclusions. These inclusions are nonaxisymmetric but, for Figure 1. A planar lipid bilayer with a pore in the center. The figure
simplicity, are usually considered to still have quadrupolar shows the cross-section in tke z plane. Rotational symmetry around
symmetry. One principal question concemns the lateral organiza-€ Zaxis is indicated. On the left side, the packing of the lipid
tion of anisotropic inclusions and the corresponding response molecules is shown s_chema_ltlcally. The headgroups of lipid molecules

> . are represented by filled circles. The arrow denotes the membrane
of the membrane shape. This question was addressed recentlycjusion, which is shown schematically.
on two different levels of approximation.

The first approach consideisdizidual inclusions. Here, an ~ semitoroidal cap to shield the hydrocarbon chains from contact
angular matching condition between a given inclusion and the with the aqueous environment. The height of the cap fits the
host membrane is imposed. For example, a single isotropic bilayer thickness 12, implying a radiusb, of its circular cross-
inclusion induces a catenoid-like membrane shape (for which sectional shape. The pore geometry is schematically shown in
the mean curvature vanishes at each given point). InterferenceFigure 1. A parametrization of the semitoroidal cap is given by
of the inclusion-induced membrane perturbations gives rise to x =b cos¢ (r/b + 1+ cosf),y = b sing (r/b + 1 + cosf),
membrane-mediated interaction between inclusions. For twoandz = b sin 6 with 0 < ¢ < 27 andnz/2 < 6 < 3n/2. The
isotropic inclusions, this interaction is known to be repulsive, principal curvatures of the cap are then
at least in the low-temperature lin#ft.However, more than
two inclusions (isotropic or anisotropic) cause nontrivial many- _1 - cosé

: .  har C, C, 1)
body effects that induce complex spatial patterns of the inclusion b r + b(1 + cosé6)
arrangementé—38

There is a second, mean-field level apprddamhich we  and the area elemenfd = b[r + b(1 + cos#)] de d6. The
adopt in the present work. Here, a given small membrane patch'oca| geometry within the rim is saddle-like everywhere_ and
contains an ensemble of inclusions. The inclusions do not Most pronounced & = 7 where Ci/C; = —r/b. Note again
individually deform the membrane but energetically couple to that the semitoroidal shape of the rim is an assumption;
the shape of the membrane patch. Note that the shape of thedlternative chomt_es could be considered but are not expected to
membrane patch is prescribed (but may later be optimized). Thealter the conclusions of the present work. _ _
coupling between the inclusions and the membrane results from  Our objective is to analyze the influence of anisotropic
a mismatch of the given membrane curvatures and the preferrednclusions on the energetics of a membrane pore. As is well-
(“spontaneous”) curvatures of the inclusions. Thus, the mem- !(nown, I|_p|d m_embranes_are_ two-dimensional fluids that allow
brane curvatures act as a mean-field that must self-consistentlyinserted inclusions to redistribute laterally. Consequently, inclu-
be determined so as to minimize the overall free energy, yielding Sions accumulate at energetically beneficial membrane regions
the local inclusion density everywhere on the membrane and Of €ven induce their formation. The creation of a membrane
the corresponding optimal membrane shape. poreis adrastlc example for an mclgs_lon-lnqluceo_l reorganization

We will show that anisotropic membrane inclusions are of a lipid membrane. Obviously, if |ncIu3|0|js induce stable
candidates for the stabilization of pores in lipid bilayers. To POres. they must be able to affect substantially the pore free
this end, we analyze the energetics of a single membrane poreEN€rgyF as a function of the pore radius
in a binary lipid membrane, consisting of (charged) lipids and 10 obtain the equilibrium size of the pore, the overall free
anisotropic inclusions. The free energy of the inclusion-doped €Neray,F, of the pore is minimized. We assume tifats the
membrane contains the line tension contribution due to the SUm of three contributions:
rearrangement of lipids within the pore region, the interaction F—W
energy between the anisotropic inclusions and the membrane, edge
and the electrostatic energy of the charged lipids. The latter is
taken into account to allow a prediction of how the pore size
depends on the salt concentration.

+ Uy +F, @

whereWeqgels the energy due to the line tension of a lipid bilayer
without the inclusionsUg is the electrostatic energy of the
charged lipids, and-; is the energy due to the interactions
between the membrane inclusions and the host membrane. We
note thatF and all its contributions arexcesdree energies,

We consider a lipid membrane that contains a single pore. measured with respect to a planar, pore-free membrane. We also
For our purpose, it is most convenient to assume a perfectly note that our work does not involve any additional constraints
planar membrane and a pore of circular shape, say of apertureof the membrane ared,. Hence, we work at vanishing lateral
radiusr. We locate a Cartesian coordinate system at the poretension, as should be appropriate for most bilayers.
center with the axis of rotational symmetry (thaxis) pointing Line Tension of a Lipid Bilayer. The modified molecular
normal to the bilayer midplane. The presence of the membranepacking of the lipid molecules at the edge of the pore (see Figure
pore is likely to imply some structural rearrangement of the 1) entails an energy co®¥qge For an inclusion-free membrane,
lipids at the bilayer rim. This reorganization is driven by the this energy cost is given Beqge= 27Ar, wherer is the radius
unfavorable interaction of the lipid tails when exposed directly of the circular membrane pore ardis the line tension (i.e.,
to the aqueous environment. Even though experimentally energy per unit length of the exposed edge) of the lipid bilayer.
obtained evidence is currently not available, it seems a reason-One can easily obtain a rough estimate foion the basis of
able approximation to assume (and we base our present workthe elastic energy required to bend a lipid monolayer into a
on this notion) that the lipids within the rim assemble into a semicylindrical micellar cap. Adopting the usual quadratic

Theoretical Model
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curvature expansion for the free energy according to Helfich,
one find$® A = zk /(2b) wherek; is the lipid layer's bending
rigidity. Typically for a single lipid layerb = 2.5 nm and<; =
10KT, implying A ~ 6kT/nm ~ 2 x 1071 J/m (at room
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Equation 5 can be further processed analytically. By subtracting
the electrostatic energy of the charged pore-free membrane, one
obtains an explicit expression for te&ces®lectrostatic energy

of the pore:

temperature). Indeed, this order of magnitude corresponds to

experimental results for the line tension of lipid bilay&t4041
It is worth noting that the semicylindrical micellar cap has large
curvaturesC; = 1/b and |C,| < 1/r, for which the quadratic
curvature expansion might completely f&ilThe fact that it

does not fail indicates the robustness of the membrane elasticity
approach; it is often used successfully to model experimentally
observed structural reorganization of lipid assemblies, even if

that involves large changes in curvatdfé?

If rigid membrane inclusions are present within the membrane
pore, they replace some of the lipids, depending on their lateral
extensions. The replaced lipids no longer contribute to the line
tensionWeqge We shall account approximately for this reduction
in line tension by writing

Wedge= 2A(Jt|’ - NPRi) (3)
whereNp denotes the number of inclusions within the membrane
rim and R; is the lateral extension of the cross-sectional shape
of the inclusions. Steric interactions limit the number of
inclusions within the membrane rifdp < N5 = ar/R.. Thus
Wedge> 0, and the line tension always provides a tendency for
the pore to shrink.

Electrostatic Energy of a Pore. The calculation of the

electrostatic energy of a membrane pore follows Betterton and

Brennef! who derived an expression valid for a very thin
membrane if — 0) in linearized PoissonBoltzmann (PB)
theory. It is well-known that linearized PB theory greatly

UeI -

2
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This is the result of Betterton and Brenrfémvhich we shall
use in our present work.

Free Energy of Inclusions.Membrane inclusions are embed-
ded within the host membrane, and the inclusiamembrane
interactions are mainly governed by the hydrophobic effect. To

(6)

|describe the corresponding free enerfy,we use a phenom-

enological modéP in which the mismatch between the effective

intrinsic shape of the inclusions and the actual shape of the
membrane at the site of the inclusions causes an interaction
energy. The actual shape of the membrane at the site of the
inclusion can be described by the diagonalized curvature tensor

C,
_|G o0
c=[5" &)

(7)
where C; and C, are the two principal curvatures. Similarly,
the intrinsic shape of a given inclusion can be described by the
diagonalized curvature tens@r,,

5.
CZm

C
0
whereC;m andCyr, are the two intrinsic principal curvatures of

(8)

m

overestimates the electrostatic free energies for lipid membranesthe inclusion. In general, inclusions are anisotrggit27:28:31

Yet, solutions within nonlinear PoissetBoltzmann theory (and
for more realistic choices o) are numerically demanding.

which means tha€C;y, # C,m. The principal directions of the
tensorC deviate in general from the principal directions of

Hence, to keep our model tractable, we adopt the result of linearthe tensoCy,; say, a certain angle quantifies this mutual rota-

PB theory where the equatioW?p = k¢ determines the
(dimensionless) electrostatic potentiglat a given Debye length

lg = ka7t = y/e,ekTI(2nN,&,). Here e, is the dielectric

constant of the aqueous solutian,is the permittivity of free
spacefg is the ionic strength of the surrounding solution (i.e.,
bulk salt concentration, assuming a 1:1 salt such as N&xl),
is Avogadro’s number, aneg, is the unit charge.

The solution of the linear PB equation is written as the
difference,p(x,2) = ¢«(2) — ¢o(x,2), between the electrostatic
potential of a flat infinite pore-free membrang.j and the
electrostatic potential of the circular flat membrane segment with
radiusr (¢o), both having constant surface charge density,
The value ofde iS* ¢u(2) = (0l(eweokd)) expkqz). The
expressions fogy can be obtained using the Hankel transforma-
tion and taking into account the boundary conditigifz—co)
= 0 andag(z=0) = 0 for x > r, 94(z=0) = —al(ewco) for x
< r. Then the electric potenti@(x,2) can be written as

o
€wCod

or_ ooJO(kX)Jl(kI’) eﬁZ(Kdz Hk2)V/2 dk
€ Kdz + K

—KdZ __

d(x2) =+ ego

(4)

whereJp andJ; are Bessel functions.

Using eq 4 for the electric potential, we can derive the
electrostatic free energy via a charging procgss:
27 [ o(X)$(z=0)x dx (5)

Uel,tot =

tion. The single-inclusion energ¥{) can then be expressed in
terms of the two invariants (trace and determinant) of the
mismatch tensoM = RC,R~1 — C whereR is the rotation
matrix,

9)

Terms up to second order in the elements of the teNsare
taken into account:

__[cosw —sinw
sinw cosw

E= g(tr M)? + K detM (10)
where K and K are the interaction constants between the
inclusion and the surrounding membrane. Using eg&Q, we

can write the single-inclusion energg) in the forn?¥’

E = (2K + K)(H — H,,)* — K[D* — 2DD,, cos(2v) + D,,/]
(11)

QuantitiesH = (C; + Cy)/2 andHp, = (Cim + Com)/2 are the
respective mean curvatures, whide= (C; — C)/2 andDpy, =
(Cim — Com)/2 are the curvature deviators. Curvature deviator
D, describes the intrinsic anisotropy of the single membrane
inclusion26.28

The time scale for orientational changes of the anisotropic
inclusions is usually small compared to shape changes of the
lipid bilayer. It is therefore reasonable to employ an orientational
averaging of the inclusions according to the rules of statistical



12522 J. Phys. Chem. B, Vol. 107, No. 45, 2003 Fosaric et al.

mechanics. To this end, we take into account that the inclusions
can rotate around the axis defined by normal to the membrane
at the site of the inclusion. Then the partition functignpf a
single inclusion %28

_1 j; p( E(“’)) do (12)

where wg is an arbitrary angle quantum. Inclusions can also
move laterally over the phospholipid layer, so they can distribute
laterally over the membrane in the way that is energetically the
most favorablé32” The lateral distribution of the inclusions in Figure 2. Cross sections through a lipid layer containing a single
a membrane of ov_era_lll arms in general nonur_nfo_rm_. Tre_atlng cylindrical inclusion (black square). Some lipids are shown schemati-
inclusions as pointlike, independent, and indistinguishable, cally. In the planar layer (a), all lipids pack, on average, into a
we can derive the expression for the contribution of the in- cylindrical shape (schematized by the shaded rectangle). Bending the
clusions to the membrane free energy on the basis of eqs 11monolayer (b) induces a splay deformation of the lipids. Because the
and 1227 inclusion is rigid, it cannot participate in the splay deformation, thus
inducing an extra (excess) splay of the lipids in its vicinity.

==—Nln Aﬁ\qc O( DD )dA] (13)
. ) ) . density, themApr < Np andF; ~ —NpkT. Hence, each inclusion
yvh;rng '3 the total number of inclusions in the membrage,  that enters the membrane pore in excess to the bulk density
is defined as

contributes kT to the inclusion free energy. The inclusion size

2K + K. determines the maximal numb@y™, that can enter the pore

0. = exr( (H* = 2HH,) + k‘ID ) (14) rim. For rather large inclusiong ~ b and small pores ~ b,
we expect thalNp™ is of the order of a very few inclusions.

and lo is the modified Bessel function. The integration in That seems to lndicate that for small pofgsis not able to
eq 13 is performed over the whole areéq,of the membrane,  decreaseF by more than a fewkT. Below we show that
including the pore region of ares and the two flat monolayers ~ nevertheless, for charged membranes, anisotropic inclusions can
that constitute the planar bilayer part. Recall thain eq 13 dramatically reducé (substantially more thasNpkT).
(together with eq 14) is aaxcesdree energy with respect to Estimation of the Constants.We discuss a simple generic,
the pore-free planar membrane, as was defined in eq 2. Indeedmolecular-level model for the interaction between a single
it is Fi(H=D=0) = 0 and hence only those inclusions that are anisotropic inclusion and a lipid bilayer of principal curvatures
located within the pore rim (but not those in the planar C; andC; into which the inclusion is embedded. The model

membrane) contribute t&;. Because the overall area is allows us to estimate the phenomenological constafits,
assumed to be large, we can expandwith respect toA, Hm, and Dp, in terms of the inclusion shape and the elastic
yielding properties of the lipid bilayer.

F Bending a lipid layer implies a change in the average
i molecular shape of each individual lipid: a splay (or saddle-
KT anpll e 0( Db )] dA (15) splay) deformation is imposed by the membrane curvature.
Membrane-embedded inclusions cannot participate in the cur-
wheren = N/A is the area density of the inclusions in the vature-induced splay deformation because of their stiffness. That
membrane and where the integration extends only over the areajs, some lipids in the vicinity of the inclusion have to compensate
Ap, of the membrane rim. The influence of the inclusion’s for the stiffness of the inclusion by adopting an additional
anisotropy is contained in the Bessel functig(2DDynK/(kT)) (“excess”) splay, beyond that of the lipids far from the inclusion.
(the coefficientd is independent ob). Becausdo = 1, we Figure 2 provides a schematic illustration of this mechanism
see from eq 15 that the anisotropy of inclusions always tends for a cylindrical inclusion of radiu®. The energy associated
to |0W€rFi. Yet, whether inclusions eventually lower or increase with the excess Sp|ay determines the inclusion enﬁ’igyt

F depends on all inclusion properties, on the geomé2ry4gnd depends on both the inclusion’s shape and size and the elastic
Hm) and on the interaction constants &énd K). properties of the lipid layer.
We also note that the number of inclusions contained within  The inclusion’s shape can conveniently be characterized by
the membrane rim is given by a circular cross section (of radiu®) and a modulated “cone
angle” 6i(¢) = 6; + A6; cos(2) along its circumference with
= anch 0( )dAP (16) a corresponding azimuthal angfe The average “coneness”

of such an inclusion i#;, and the deviation along the inclu-

sion’s circumference ia;. Clearly, for A6; = 0, the inclu-

sion is isotropic, and forA®; = 6, = 0, the inclusion is

F, cylindrical.

kT~ Ao — Np (17) The elastic properties of a lipid layer can be characterized
by the bending constaikt and the area stretching modulkis

Of course, if no energetic preference exists for the inclusions From membrane elasticity theory, it is well-knot’ that the

to partition into the membrane ringdo = 1), then eq 16 predicts ~ decay length of the perturbation induced by a single inclusion

Ne/Ap = n and thug=; = 0. On the other hand, if the density of is & = «/_b(kc/(chZ))”4 If the inclusion radius is not much

the inclusions within the pore region greatly exceeds the bulk smaller thanf (that is, forR = &), one can roughly estimate

Combination of egs 15 and 16 yields
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the interaction constants

3 R’ _ 2
as well as
Hp,= g = ﬂ (19)
R " R

The derivation of eqs 18 and 19 will be given elsewhere. Note
that the interaction constantsandK depend not only on the
monolayer’s bending stiffnesg but also on the area stretching
modulusK:; (through&). The presence df. implies that local
changes in the thickness of the monolayer leaflets are involved
in the spatial relaxation of the inclusion-induced perturbation.
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Figure 3. The pore free energy, as a function of the pore size,

The dashed lines correspond to a charged inclusion-free membrane of
charge density = —0.05 A s/n? with Debye lengtHy = (a) 2.6, (b)

2.8, and (c) 3.0 nm. The solid lines describe the effect of adding
anisotropic inclusions (characterized Ky= 98kT nn?, K = —2K/3,

Cim = —Com = 1/b) to the charged membrane with= —0.05 A s/n?

This is not obvious because we do not impose any thicknessandly = 2.8 nm. The inclusion concentrations are (dj 1/70 000

mismatch between the inclusion and the membrane. However,

as Figure 2 illustrates, insertion of the inclusion imposes an
angular mismatch which spatially relaxes with the same decay
length as a thickness mismatth?® The relaxation involves a
compromise between splay and dilation of the lipid chains.

Typically for a lipid layeré = 1 nm,k; = 10kT, and thuK
~ 50R3kT/nm andK ~ — 33R3kT/nm. The interaction constants
increase strongly with the inclusion radil. Because the
validity of eq 18 require® = 1 nm (below we shall usB; =
b/2 = 1.25 nm), our present estimate will necessarily predict a
strong membraneinclusion interaction. To this end, we note
that eq 11 withD, = 0 has the same structure as the Helfrich
bending energy for isotropic membranes. The corresponding
interaction constantK, (and similarly for K) for a lipid
membrane could thus be identifidvith K = k.ag, wherek;
~ 10KT is the bending constant of an ordinary lipid monolayer
(that is part of a bilayer membrane) aagl= 0.6—0.8 nn? is
the cross sectional area per lipid. THysy ~ 7kT nnm?, which
is at least an order of magnitude smaller than the interaction
constanK in eq 18. Hence, sufficiently large, rigid membrane
inclusions are generally expected to partition strongly into
“appropriately curved” membrane regions.

We note that partitioning rigid inclusions into the rim of a
membrane porebesides causing an extraxgesy splay, see
above—also replaces some structurally perturbed lipids. These
lipids no longer contribute to the energy of the pore. The
corresponding energy gain is not contained-jrbecause we
have taken it into account already WWkqge (SE€ €Q 3).

Results and Discussion

All of the following results are derived for a fixed thickness,
b = 2.5 nm, of the lipid layer, for a line tension of = 10711
J/m, and for a surface charge density= — 0.05 A s/n? =
—e/3.2 nn? of the lipid layer. Taking into account a typical
cross-sectional area per lipid a§ = 0.6—0.8 nn?, the value
for o would correspond roughly to a 1:4 mixture of (monov-
alently) charged and uncharged lipids. This is not an unusual
situation in (biological and model) membranes.
Inclusion-Free Membrane. Let us start with an inclusion-

nn? and (e)n = 1/14 000 nrA. The inset shows the corresponding
numbersNp as function ofb/r for curves d and e.

give rise to stable pores. As an illustration, we i¢t) in Figure

3 for three different choices d§, namely,lq = (a) 2.6, (b) 2.8,
and (c) 3.0 nm; a local minimum iR(r) is present only in curve

b. Figure 3 exemplifies a general finding: the local minimum
of F(r) is very shallow-belowkT—and appears in a very narrow
region of lg. Hence, pores in lipid membranes cannot be
stabilized solely by electrostatic interactions. Whether the local
minimum in F(r) will be preserved in a full nonlinear PB
treatment is not known to us.

Saddle-Shaped Inclusion.Let us now add anisotropic
inclusions to the charged membrane. As argued above, we shall
employ the interaction constarkKs~ 50R:3kT/nm andK = —2K/

3. The inclusion radiu® should be larger thaé ~ 1 nm; we
shall useR = b/2 = 1.25 nm. To illustrate the effect of the
inclusion’s anisotropy, we chose a perfectly saddle-like inclusion
with Cy = —Cony = 1/b. Figure 3 shows+(r) for two examples

of different area densityp, of the inclusions:n = 1/70 000
nn? (curve d), anch = 1/14 000 nm (curve e). We clearly see
the pronounced ability of the inclusions to lower and deepen
the local minimum of(r). Because of their favorable interac-
tion, the anisotropic inclusions tend to accumulate within the
membrane rim. The corresponding numkgg, of inclusions

in this region is given in eq 16. This number is plotted in the
inset of Figure 3 fom = 1/70 000 nm (curve d) andn =
1/14 000 nrA (curve e). Recall that the statistical mechanical
approach leading to eq 15 is based on pointlike particles. Within
this approach, the inclusion size will not limit entry into the
pore rim. Yet, for a realistic (that is, nonvanishing) size (recall
our choiceR, = b/2), Np should stay sufficiently small to ensure
steric fitting of the inclusions into the pore. In fact, rat b,
there is full coverage foNp = Nf™* = 7b/R = 27. More
precisely, the interactions of the inclusions with the membrane
rim should dominate over direct inclusieinclusion interac-
tions. For the examples shown in Figure 3, the inclusion number,
Np, is not prohibitively high. But abova = 1/14 000 nr, our
present approach (with the present choice of interaction

free membrane. This case has recently been analyzed byparameters, particularly witym = —Com = 1/b), is no longer

Betterton and Brennét. The free energy consists only of the
line tension contribution (see eq 3) and the electrostatic free
energy (see eq 6); the former favors shrinking and the latter

applicable.
The minimum forn = 1/14 000 nm (curve e in Figure 3) is
roughly F = — 30KT. It arises from the presence of inclusions

growing of a membrane pore. The parameter that governs thein the pore region. On the other hand, eq 17 predicts that the

resulting behavior is the Debye length, For smallly, pores
close; for largdq, pores grow. Betterton and Brenner have found
that for intermediatéy a local minimum inF(r) exists that may

inclusion energy; ~ —NpkT. The inset of Figure 3 shows that
Np < 6. Hence, the deep minimum &f does not arise solely
from the inclusion contributiorF;. It is also the electrostatic
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Figure 4. The pore free energy, as a function of the pore size,
for differently shaped anisotropic inclusion€;,/Cim = (a) —1, (b)
—0.8, (c)—0.6, and (d) 0. In all cases, the membrane is charged (
—0.05 A s/n}, Iy = 2.8 nm), and it isC;n = 1/b andn = 1/14 000 _ : - _
nn?. The inset shows the position of the local mininf&, as a function r11 b alnlg (():C;Er)lglrﬁ f“fo”f E;éﬁliﬁeitglrejglrﬂeéi?g r;;frsﬁoﬁﬁ")
m — ) .

S gi’;{)tclm (solid line). The dashed line in the inset ShowS2n/Cun The inset shows the actual number of inclusidNg, residing in the
' pore of optimal size;°"t (solid line), and the maximal numbeMp®* =

ar°PYR; (broken line).

Figure 5. The optimal pore size as a function of the ionic strength
of the surrounding aqueous medium. The charge density of the
membrane isr = —0.05 A s/n%, the area density of the inclusions is

energy,Ue, which lowersF. To explain the mechanism, we
recall that in the inclusion-free membrane the electrostatic . . o
energy and the line tension nearly balance each other. If '€S€NVOIr in the membrane favors additional partitioning into
inclusions enter the pore region, they reduce the line tensionth® membrane rim, which increases the pore size. Below a
(see eq 3). As a resultly is no longer counterbalanced Mege critical ratio _of |C2m(C_1m|, th_|s process never stops. We also
and thus strongly lower. It can be therefore concluded that "NOt€ that forisotropic inclusions (whereCim = Com), we do
also in the case of the charged membranes the deepness of thaot find energetically stabilized pores. Even more generally, if
minimum of F is mainly determined by the inclusions, directly ~Cim @nd Cem have the same sign, stable pores cannot be

because of their energy contributiéhand indirectly because predicted. Stabilization of the pore derives from the matching
of their influence orUe + Wedge of the rim geometry with the inclusion’s preference. The rim

Influence of Inclusion Shape.Deepening of the minimum ~ Provides a saddie-like geometry (that is, different sign<of
in F(r) occurs in Figure 3 at ~ b [see curves d and e]. This ~ NdC2); consequently, a saddle-like inclusion geometry (that
reflects our choice of the inclusion geometfim = —Com = is, different signs oCym andCzyy) is needed to stabilize a pore.
1/b. In fact, forr = b, the principal curvatures of the rim @t Salt Concentration and Pore Sizeln all of the examples
= 7 (see eq 1) ar€, = —C, = 1/b, coinciding with the presented so far, we added anisotropic inclusions to charged
inclusion’s preference. This observation suggests the possibility Membranes with a specifically selected Debye lenigti; 2.8 -
of increasing the optimal size of the pore by altering the intrinsic nM. We recall from Figure 3 that this was the choice for which
curvatures of the inclusion from a saddle-lik&/Cim ~ —1) an inclusion-free membrane already exhibits a (shallow) mini-
toward a more wedgelike shap€,(/Cim ~ 0). The smaller mum_in F(r). The question arises whether pores can also be
the magnitude ofCn/Canl, the larger should be the preferred ~Stabilized for uncharged membranes or, more generally, under
pore size. With regard to the principal curvatures at the waist Varying electrostatic conditions. In this respect, it is interesting

of the rim, C; = 1/b andC, = —1/r, one would expect the  t0 note the experimental observation of stable pores in red blood
optimal pore sizer°?, to be determined by the relation ghosts for which data exison the optimal pore radius?®{n),
as a function of the salt concentratiog, Our present theoretical
Com C b approach is able to reproduce the experimental data as shown
TC.C G, pom (20) in Figure 5. We used a charge densitypof —0.05 A s/n?, an
im 1 area density of the inclusions af = 1/2000 nmM, and an
In Figure 4, we add anisotropic inclusions of area density ~ Inclusion geometry characterized Bym = 1/b andCan/Cim =
1/14 000 nrA to a charged membrane & — 0.05 A s/, |4 —0.4. The inset of Figure 5 shows the corresponding number
= 2.8 nm); the shape of the inclusions is characterize@y ~ Of inclusions (solid line), as well as the maximal numbgF*
= 1/b and (@)Con/Cim = —1, (b) Con/Cim = —0.8, (c) Con/ = nr°YR; (broken line) at which the inclusions would sterically

max

Cim= —0.6, and (d)C,n/C1m = 0. Indeed, the local minimum  occupy the entire rim. The observatibla < Nz indicates the
of F(r) shifts to larger pore sizes as the inclusions become more applicability of our approach for the selected area density (
wedge-shaped [compare the position of the local minimum of 1/2000 nrd). Of course, the number of approximations in our
curves a-c]. The solid line in the inset of Figure 4 shows how approach may still render the good agreement in Figure 5
the optimal pore radiug’® changes withtCa/Cim. The broken fortuitous. What adds to this uncertainty is the complexity of
line in the inset displays the prediction according to eq 20. the red blood cell membrane. In particular, the attached
Clearly, the optimal pore size°" is even larger than what cytoskeleton can be expected to affect the membrane pore
would be expected from the inclusion’s geometry. The reason energetics. Therefore, Figure 5 should be understood as an
can be found in the presence of the inclusion reservoir in the illustration of the principal ability of anisotropic membrane
bulk membrane. Increasing the pore size allows incorporation inclusions to stabilize membrane pores, even under changing
of more inclusions that interact only somewhat less favorably electrostatic conditions.
with the membrane rim. In our present investigation, we included electrostatic interac-
Our calculations also show that below a critical ratio@f,,/ tions to allow a prediction of how the pore size depends on salt
Cim| the local minimum inF(r) vanishes (in Figure 4, we find  content. Note that it is generally the anisotropy of the inclusions
|Con/Ciml < 0.4), and the pore grows. Again, the inclusion but not electrostatic interactions that stabilizes pores. Thus, for
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uncharged membranes or in the limit of high salt content, perhaps the most simple way to capture the underlying physics
qualitatively similar considerations as those presented aboveof peptide-induced pore formation in lipid membranes.
account for pore stability. However, the minimum of the overall Discussion of Approximations.We analyzed the energetics
free energyF would be less deep compared to the case of of a single membrane pore on the basis of a simple, physically
charged membranes. transparent model. It involves a number of approximations that
Isotropic vs Anisotropic Inclusions. The influence that  we discuss in the following.
admixed inclusions have on the energetics (particularly the line  We adopted a phenomenological expression for the mem-
tension) of membrane pores is often interpreted in terms of brane-inclusion interaction energy. This expression is valid on
altering the elastic properties of the membrane. For example,a mean-field level. The “mean field” is provided by the local
the addition of cosurfactants typically reduces the bending membrane curvature§; and C, that adjust to minimize the
stiffness of a membrarfé Even more important for membrane  system’s free energy. This approach is, similar to the Helfrich
pores, the presence of conelike (and analogously, invertedbending energy, valid if the local curvatur&,andCy, do not
conelike) inclusions can induce a shift in the spontaneous change too drastically. On the other hand, the membrane rim
curvature. This shift can be translated into a change in line provides local curvatures that differ greatly from those of the
tension, which provides a common basis for analyzing the planar membrane (the latter, in fact, vanish). Hence, formation
energetics of a membrane pdf®ur present approach contains  of a pore in a planar membrane necessarily involves large
this scenario as a special case, namely, if the inclusions arecurvature changes. Yet, as we have seen, the Helfrich bending
isotropic Om = 0). In fact, it is the spontaneous mean curvature, energy describes the line tension of an inclusion-free membrane;
Hm, that plays the role of the spontaneous curvature. Beyond on the same ground, we are confident about the applicability
the effect of conelike and inverted conelike inclusions, our of the inclusion free energy.
present approach also allows us to analyze other inclusion The phenomenological expression for the inclusion free
shapes, such as wedgelike or saddle-like inclusions. Thesegnergy F;, contains four interaction constants, (K, Hp, and
inclusions can be characterized by an appropriate combinationp ). Two of them,Hy, and D, characterize the shape of the
of Hn and D In the following, we shortly discuss a few  anjsotropic inclusion. If the lipid bilayer is required to exactly
examples in which we think that the anisotropy of admixed match the angular shape of individual inclusions, then no further
inclusions could be particularly relevant to the pore energetics. interaction constants are needed. In this case, the angular
Electroporation is a method of artificial formation of pores matching appears as a boundary condition for an appropriate
in biological membranes by applying an electric field across differential equatior§>363854 In our present approach, an
the membrane. A problem in the electroporation of living tissue ensemble of inclusions interacts (in a mean-field fashion) with
is that it often causes irreversible damage to the exposed cellsa membrane patch of prescribed principal curvatures (the
and tissué. Increasing the amplitude of the electric field in  curvatures may afterward be optimized). In this case, there
electroporation diminishes cell survival rafe®n the other hand,  appear two additional interaction constartsand K. These
if the applied electric field is too low, stable pores are not constants account for the energy to insert anisotropic inclusions
formed. A way to improve the efficacy of electroporation is into a bilayer patch of fixed principal curvatures. This process
chemical modification of the membranes. It has been reportedis supposed to locally perturb the two monolayer leaflets of the
recently’52 that adding the nonionic surfactant octaethylene- bilayer. One can thus roughly obtain the interaction constants,
glycol dodecyl ether (GEg) to the outer solution of the K andK, by estimating the microscopic (short-range) interaction
phospholipid membrane or the cell membrane causes a decreasbetween the perturbed monolayers and the inclusion. To this
in the threshold for irreversible electroporation. In other words, end, we used membrane elasticity thetryyhich involves a
Ci2Es molecules make transient pores in a membrane more spatial decay lengthf ~ 1 nm, of the inclusion-induced
stable. G;Es molecules were recently suggested to act as perturbation. Note that the discreteness of the lipids should not

anisotropic inclusions in bilayer membrartés. be neglected at these length scales, yet membrane elasticity
Our theoretical model could add to the understanding of pore theory actually does neglect it. Still, this approach is commonly
energetics as recently investigated by Karatekin é¢ &or used to estimate membranmclusion interactions and, where

example, these authors measured a dramatic increase of th@ossible, gives good agreement with experimental observa-
transient pore lifetime induced by the detergent Tween 20, which tions?%:%
has an anisotropic polar headgroup. The importance of the There are structural approximations concerning the membrane
anisotropy of such polar heads of the detergents for the stability pore. Its shape is assumed to be circular, covered by a
of anisotropic membrane structures has been indicated recentlysemitoroidal rim. These assumptions seem to us the most
It has been shown that a single-chain detergent with an reasonable ones. Still, there could be, say, an inclusion-induced
anisotropic dimeric polar head (dodecyimaltoside) may induce ~ change in the cross-sectional shape of the membrane rim. In
tubular nanovesiclé3 in a way similar to those induced by fact, we performed additional calculations in which we allowed
strongly anisotropic dimeric detergerts. for a semiellipsoidal shape of the membrane rim. The free
Our approach could also add to the understanding of pore €nergy was then minimized with respect to the corresponding
formation induced by certain antimicrobial peptidég These ~ a@spect ratio. With this additional degree of freedom, we found
peptides are often amphipathic, partially penetrating the host qualitatively the same results as with the semitoroidal rim.
membrane. In addition to that, they have a pronounced elongated The statistical mechanical approach to derive the inclusion
shape, which arises from theirhelical backbone structure and, free energyF; in eq 13 assumes noninteracting, pointlike
apparently, renders them highly anisotropic. Some of these particles. Even though we ensured that the number of inclusions
peptides are believed to cooperatively self-assemble into in the poreNp, never exceeds the sterically possible maximal
membrane pores. Thus, they not only facilitate pore formation, number, N5, we cannot exclude direct inclusieinclusion
but theyactively induce it. Despite their importance, there are interactions within the pore. In fact, such interactions are
currently few theoretical investigations about the energetics of important in nearly all realistic situations. The average distance
peptide-induced pore formatid®1214530ur model provides  between neighboring inclusions in membrane pores is generally
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of the order of molecular dimensions. Hence, direct interactions
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interactions add to the mechanisms specified in our work.

655.
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being carried out.

None of the approximations employed can detract from our

principal conclusion:

candidates for the energetic stabilization of membrane pores.
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