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We calculate the membrane-mediated interaction between two cylindrical inclusions in a symmetric
lipid bilayer. Our theory takes two contributions to the free energy into account, the elastic behavior
of the membrane and the conformational restrictions that the flexible hydrocarbon chains of the
lipids experience in the vicinity of a rigid inclusion. The description of the elastic behavior is based
on two order parameters, the hydrophobic thickness of the membrane and a director field that
characterizes the average tilt of the lipid chains. Conformational restrictions of the lipid chains are
taken into account by a simple director model. We show that the short-range interaction potential
between two inclusions sensitively depends on the degree of hydrophobic mismatch and on the
spontaneous curvature of the lipid layers. In particular, we find pronounced attraction if the
hydrophobic mismatch is positive. For negative mismatch the attraction is much less pronounced
and, additionally, an energetic barrier appears. The inclusions prefer a small but notable negative
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hydrophobic mismatch. Positive spontaneous curvature amplifies these behaviors.
© 2003 American Institute of Physics. [DOI: 10.1063/1.1607305]

I. INTRODUCTION

Partitioning of transmembrane inclusions, like proteins
or peptides, into a fluid lipid membrane and subsequent in-
teraction between the inclusions is modulated by the physical
state in which the membrane resides. A number of lipid prop-
erties, like the hydrocarbon chain length, phase state, head
group structure and charge, as well as the composition of the
membrane, affect the lateral organization of transmembrane
inclusions.! Particular interest currently receives the question
how transmembrane proteins (or peptides) adjust to changes
in the membrane thickness.>~* Differences between the hy-
drophobic thicknesses of transmembrane protein segments
and the host membrane, commonly referred to as hydro-
phobic mismatch,>® can have various consequences for
the proteins: failure of membrane insertion,”® lateral
oligomerization,'®* conformational changes,*? and possibly
also tilt of transmembrane helices.® Note that positive
(negative) hydrophobic mismatch refers to a larger (smaller)
thickness of the hydrophobic protein span compared to that
of the host bilayer. Recently it has become possible to detect
individual association processes among single transmem-
brane helices, and to estimate the corresponding interaction
free energy.X*~® In particular, it was shown that the free
energy of dimerization between two transmembrane helices
ranges from a few kg T up to more than 10 kgT (where kg is
Boltzmann’s constant and T is the absolute temperature), and
depends on bilayer thickness. However, no clear picture so
far has emerged regarding the energetic origin of the ten-
dency to form dimers.

Interactions of various origin contribute to the dimeriza-
tion energy. Some of them act directly between inclusions,
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like van der Waals, steric, or electrostatic interactions, and
depend on the molecular details of the inclusion structure.
Besides direct there are also indirect, membrane-mediated,
interactions. One of these, nonspecific, interaction is caused
by the hydrophobic mismatch and thus depends on the hy-
drophobic thickness of the bilayer. Another nonspecific
membrane-mediated interaction arises from the decrease in
motional freedom of the flexible hydrocarbon chains due to
the rigid surfaces of the transmembrane helices.

Membrane-mediated interactions between inclusions
have been studied in the past on the basis of different theo-
retical approaches. Perhaps the most simple method is mem-
brane elasticity theory.}’~?? Here, the lipid bilayer is modeled
as an elastic material that responds to the local inclusion-
imposed perturbation. The perturbation typically decays over
a distance of a few lipid molecules. Interference of the per-
turbed regions of two (or more) inclusions gives rise to an
interaction. Note that membrane elasticity theory takes the
material properties of the membrane only through (uniform)
phenomenological constants into account; the material prop-
erties of the membrane are assumed to remain unaffected by
the inclusions.

Besides membrane elasticity theory there are a number
of microscopic models that describe membrane-inclusion in-
teractions on a molecular level.2-2% These models generally
take the conformational freedom of individual lipid chains
into account. For example, Fattal and Ben-Shaul® have used
a chain packing theory to calculate the free energy of the
interaction between a large inclusion (represented as a long
wall of length L) and a lipid bilayer, as a function of the
hydrophobic mismatch. They (i) obtained a lipid-protein in-
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teraction energy of about 0.37kgT L/A, (ii) showed that the
bilayer prefers slightly negative hydrophobic mismatch, and
(iii) found the lipid chains to be tilted—on average—away
from the inclusion wall. However, the model did not allow to
fully optimize the shape of the interfacial profile near the
wall, and its application to more complex geometries is com-
putationally impracticable.

The chain packing theory was also used to calculate the
membrane-mediated interaction between two flat and parallel
walls.?* The interfacial profile between the walls was as-
sumed to be flat (that is, no hydrophobic mismatch was con-
sidered). The free energy of the interaction between the walls
as a function of their mutual distance was nonmonotonic; an
energetic barrier separated short range attraction from longer
range repulsion. This behavior can be rationalized on the
basis of the conformational constraints that the inclusion
walls impose on the flexible lipid chains. A simple phenom-
enological model, the so-called director model (which we
shall also use in the present work), qualitatively accounts for
this finding.?

It should be noted that a nonmonotonic interaction po-
tential is not a surprising prediction. It is a common obser-
vation in dense fluids,*® and mainly results from the granu-
larity of the solvent. Also computational studies of lipid
bilayerlike fluids predict nonmonotonic interaction poten-
tials. Using Monte Carlo simulations Sintes and
Baumgartner®® found two different attraction regimes be-
tween two proteins embedded in a membrane. At short dis-
tances the attraction was depletion induced. For longer dis-
tances it was ascribed to the gradients of density and
orientational fluctuations of the lipids. In between, for
protein—protein distances somewhat larger than the lipid di-
ameter, a repulsive energy barrier occurred. In another series
of studies Lagile et al.?”?® have applied hypernetted chain
integral equation formalism to a lipid bilayerlike fluid me-
dium. The lateral density—density response function of the
hydrophobic core was extracted from MD simulations. It was
found that, upon approaching, two proteins first experience a
repulsive interaction which then transforms into short range
attraction.

The combination of membrane elasticity theory with the
director model can be expected to lead to similar results
compared with a molecular-level chain packing calculation.
Moreover, such a combined model can easily be applied to
more complex geometries and allows a full optimization of
the membrane shape. A first attempt to combine both models
was recently made,®! and used to calculate the free energy
between a long wall and a lipid bilayer, as a function of the
hydrophobic mismatch. Indeed, the results qualitatively re-
produced the above-mentioned findings of Fattal and
Ben-Shaul.?® The present study again is based on the combi-
nation of membrane elasticity theory with the director model
but this time we use it to calculate the interaction between
two individual inclusions. Particularly, we consider two iden-
tical inclusions of cylindrical shape, embedded in a symmet-
ric bilayer membrane. We analyze the membrane-mediated
inclusion—inclusion interaction as a function of both the
hydrophobic mismatch and the material properties of the
membrane.
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FIG. 1. Schematic representation of the inclusion-containing membrane.

Il. PHENOMENOLOGICAL THEORY

Consider a symmetric one-component lipid bilayer in
which two rigid transmembrane inclusions reside at distance
d from each other. The shape of the two inclusions is cylin-
drical, each with fixed radius R and length 2hp . The surface
that separates the two monolayer leaflets from each other,
also referred to as the midplane of the bilayer, is a flat sur-
face because of the mirror symmetry. We identify the plane
z=0 of a Cartesian coordinate system {x,y,z} with the mid-
plane. The midaxis of each inclusion, one intersecting the
X,y-plane at x=0, y=—(d/2+R) and the other at x=0, y
=d/2+R, is parallel to the z-axis, as schematically dis-
played in Fig. 1.

Generally, the two inclusions experience a potential
F(d) as a function of their mutual distance, d. This potential
can be caused by direct (for example electrostatic or van der
Waals'®) and indirect (membrane-mediated) interactions. We
shall not consider direct interactions in the present work and
only focus on the indirect contribution to F(d).

Our model for F(d) takes two characteristic properties
of the inclusion-containing membrane into account. First, the
inclusions are coupled to the membrane host through the
hydrophobic effect.? If a rigid inclusion does not fit the
thickness of the membrane host, then the fluidlike (and hence
much softer) bilayer must adjust its local thickness accord-
ingly. We describe the corresponding energy penalty, F,, by
membrane elasticity theory. Second, and equally important,
the rigid structure of the inclusions directly affects the neigh-
boring lipid chains by reducing their conformational free-
dom. That is, in the hydrophobic core of an unperturbed lipid
membrane the hydrocarbon chains explore a large number of
conformational states. This number is only limited through
interactions of the lipid chains with other—equally flexible—
chains. However, the presence of a rigid inclusion excludes
all chain conformations that would penetrate into its interior.
Hence, the lipids in the vicinity of a stiff inclusion are con-
formationally more restricted than those far away from it. We
shall denote the corresponding contribution to the free en-
ergy by F..

The two free energies, Fg and F., result from the sum
over the individual contributions of all perturbed lipids.
Adopting a continuum description we express F and F. as
an integral of the respective area densities, f. and f., over
the entire area A= [da of the midplane,

F:Fe|+FC:2f da(fe|+fc), (1)
A



J. Chem. Phys., Vol. 119, No. 14, 8 October 2003

where the factor of 2 accounts for the two equivalent mono-
layers of the bilayer. Note that Eq. (1) assumes additivity of
F¢ and F.; this assumption will be further discussed in Sec.
V E. In the following, we present our models for f, and f.

A. Elastic free energy

Due to the mirror symmetry with respect to the bilayer
midplane we only need to consider, say, the upper mono-
layer. At any position r={x,y} within the midplane we de-
scribe the (upper) monolayer by two order parameters. The
first is the relative change in hydrophobic thickness u(r)
=h(r)/hy—1, where h=h(r) is the local hydrophobic
monolayer thickness and hy the corresponding equilibrium
value of an unperturbed membrane. Note that membrane
elasticity theory is commonly based on only one order pa-
rameter, namely u(r). The choice of this particular order
parameter expresses the preconceived believe that stretching
and splay deformations of the lipid tails are crucial determi-
nants of the membrane energetics. Currently we are not
aware of any experimental evidence that would suggest a
different choice. Yet, our aim is to also take into account the
influence of inclusion-induced conformational restrictions of
the lipid tails. The corresponding energetic contribution can
be expected to diminish upon the aggregation of inclusions.
To account for conformational restrictions it is convenient to
introduce a second functional degree of freedom of the mem-
brane. This second order parameter is the director field
n(r)={n,,n,} that characterizes the tilt of a given lipid
chain at position r. The lipid tilt provides the link between
elasticity theory and the director model. The director field
n(r) is defined within the midplane of the bilayer; it points
along the normalized projection of the average lipid’s head-
to-tail vector. In particular, n,=sinfcos¢ and n,
=sin #sin ¢ are directly related to the average tilt angle, 6,

with respect to the z-axis, and to the azimuthal angle, ¢, that
specifies the tilt direction. For small deformations the elastic
free energy density, fy, is obtained as an expansion with
respect to u and n and their first derivatives up to quadratic
order,

K, K 2
fe|=§u +§(V~n) + kCy(V-n)

!

Kt K
+?(n—h0Vu)2+7(V><n)2. 2)

Note that f, in Eq. (2) is an excess free energy density with
respect to an unperturbed membrane where u=0 and n=0.
The first term describes the chain stretching contribution in
which K is the corresponding chain stretching modulus. Be-
cause the hydrophobic volume of a lipid membrane is com-
monly considered to be conserved during a deformation, we
can identify 2K ~0.4 kg T/A? with the experimentally acces-
sible area stretching modulus of a lipid bilayer.®®

The second and third terms in Eq. (2) account for the
splay energy of the lipid chains. It was recently shown®* that
« and ¢, correspond to the well-known bending stiffness and
spontaneous curvature of a lipid monolayer, respectively.®®
The positive sign in front of the term «cy(V-n) reflects a
convention: the spontaneous curvature of a lipid monolayer
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increases with the bulkiness of the lipid’s head groups. Note
that c, refers to a single lipid monolayer; the spontaneous
curvature of a symmetric bilayer, cg', necessarily vanishes;
c'=0. In case of c,#0 the corresponding bilayer resides in
an energetically frustrated state.*® Typically, for lipid mem-
branes k~10kgT and —0.03<c,A=<0.03.%

The fourth term in Eq. (2) is the tilt energy of the mono-
layer where «, denotes the tilt modulus.2®® Note that |n
—hoVu| specifies the average tilt angle 6= 6—hy|Vu| of the
lipid chain with respect to the normal direction of the mono-
layer’s height profile, h(r). Specifically, in the limit x;— o it
is n=hyVu and the lipid chain at r points normal to the
surface h(r). Note that in writing Eq. (2) it is assumed that
f; depends only on 8, but it does not depend directly on 6.
The most general expression of the (quadratic order) tilt en-
ergy would involve three individual terms ~n?, ~(Vu)?,
and ~n-Vu, each with its own prefactor.3® However, for a
lipid membrane the main contribution to f results from the
head groups and the part of the hydrocarbon chain region
near the head groups.>®*° Close to the bilayer midplane the
hydrocarbon chains are much more disordered than close to
the head groups.*! Therefore, the spatial orientation, 6, of the
lipid chains with respect to the bilayer midplane does not
directly affect f,;. We note that the tilt modulus «; has never
been determined by experiment, but it was estimated theo-
retically that it is approximately 0.1< x,A2/kgT<0.2.31%

The last term in Eq. (2) describes the twist of the lipid
molecules within the lipid layer. The corresponding coeffi-
cient K’ is unknown. Yet, it was argued previously that K’ is
considerably smaller than the bending modulus «.*2

B. Conformational chain restrictions

The hydrophobic core of a fluid membrane consists of
flexible hydrocarbon chains that rapidly change their confor-
mations. The director field n(r) [see Eq. (2)] thus represents
average orientations of the corresponding lipid chains. In the
vicinity of a rigid inclusion the number of available confor-
mations is reduced because the lipid chains are not able to
penetrate into the inclusion interior. The closer the (average)
distance of a lipid chain to the inclusion, the larger the num-
ber of inaccessible chain conformations. The free energy f,
=f.(n,r), expressing the conformational chain restrictions
in Eq. (1), must therefore be an explicit function of r. It also
depends on the director field, n; however to keep our model
simple we shall not consider any direct dependence of f; on
u or Vu (see also the discussion in Sec. VE). For an
inclusion-containing membrane there will be a particular di-
rector field n(r)=ny(r) which yields the minimal conforma-
tional chain energy, f2=fc(n0,r). We refer to ng=ng(r) as
the spontaneous director field. For an inclusion-free mem-
brane the spontaneous director field vanishes identically
(ng(r)=0) and so do the inclusion-induced conformational
restrictions, implying F0=2f ,dafl=0. On the other hand,
in the absence of elastic interactions, n(r)=ny(r) at all po-
sitions r, and F=FC:F2. In general however, the elastic
energy competes with the inclusion-induced conformational
energy cost. Then, the optimal director field, n, must be cal-
culated by a minimization of the full free energy F=F,
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+F., and no longer coincides with ny. For sufficiently
small deviations of n from n, we can expand f. up to qua-
dratic order

fo=f2+Af, (3)
with
Afe=3(n=ng)kg(n—ny), (4)

where ¢ is @ modulus that describes an additional resistance
of the lipid layer with respect to tilt. [Recall that a tilt modu-
lus x; was already introduced in Eq. (2). This tilt modulus
has its origin in the tilt-induced stretching of the hydrocarbon
chains.] The tilt modulus «; has its origin in the conforma-
tional chain restrictions. Generally «¢, is a tensor because
near the inclusion the lipid layer is no longer isotropic. Only
sufficiently far away from the inclusion the membrane is
laterally isotropic, implying n,=0, f2=0 and xf=«f 1

where 1 is the unit tensor. The chain conformational free
energy f.=k{n?/2=«¢6%/2 then provides a contribution to
the free energy which directly depends on 6.

Ill. MICROSCOPIC MODEL

In the following we employ the director model®* to de-
scribe the inclusion-induced conformational restrictions of
the lipid chains. This model enables us to calculate ng, fg,
and «¢. The underlying idea of the director model is rather
simple but its consequences compare well with much more
involved mean-field, molecular-level, chain packing
calculations.?*2®

In the director model, any given lipid chain is repre-
sented by a fluctuating director h=hgy{cos ¢sin 6,sin ¢sin 6,
cos 6} of length hy and orientation w={6, ¢}. All chain con-
formations that point into the same spatial direction w are
represented by a particular h(w). Our main assumption is to
assign the same internal energy to any possible h(w) (this
energy can then be set to zero). Physically it seems plausible
to introduce an orientation dependent internal energy, say,
w(w)=«’(h/hg)?> with a microscopic tilt modulus «?.
However, it was recently shown that even for «?=0 the
predictions of the director model agree qualitatively with the
results of the molecular-level chain packing calculations. (As
mentioned in the Introduction, both approaches predict very
similar interaction behavior between two large rigid
membrane-matching inclusions.?*) We have therefore set «?
=0 in the present work which also considerably simplifies
the numerical procedure used to find the optimal membrane
perturbation.

An unperturbed director is able to adopt all orientations
0= ¢=2m and 0= 6= =/2 within the hydrocarbon core. The
conformational space thus corresponds to the area [dw
=27-rh§ of a hemisphere with radius hy. If the lipid chain
resides close to a rigid inclusion it suffers from conforma-
tional restrictions. Within the director model we account for
these restrictions by excluding all those orientations from the
partition sum q for which the director would penetrate into
the inclusion interior. The presence of one or more inclusions
(of arbitrary shape and spatial orientation) is described by a
function 6(¢) that characterizes the reduction of the confor-
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mational space at given azimuthal angle ¢ to 0<< 0= 6(¢).
In fact the function 6(¢) describes a curve on the inclusion
surface which is at distance hy away from the director origin.
If at a particular ¢ no inclusion can be “seen” (because
either there is no inclusion or the distance to the inclusion
surface is larger than hy for all 0=<#</2), then 0(¢)
=7/2. We see that within the director model only a corona
of width h, around a given inclusion contributes to F.. The
chains of all lipids further away than h, do not “see” the
inclusion surface and hence remain unperturbed. If the dis-
tance between the two inclusions is d<<2h, then some direc-
tors will be perturbed simultaneously by both inclusions.
This interference of the coronas of the two inclusions gives
rise to an interaction.

The partition sum associated with the director model is

2m 0(¢)
q:fdwzhgf d¢f désin 6. (5)
0 0

The corresponding partition sum of an unperturbed director
is qo=q[ 8(¢)=m/2]=2h? and thus

q
%=1—<COS 0(h)) g (6)

where (cos 6§(¢)),=1/(2 ) [37d¢ cos 6(¢) denotes averag-
ing over the azimuthal angle ¢. The free energy Fg
=2[ daf? associated with the inclusion-induced conforma-
tional restrictions results from an integration of the free en-
ergy density

o__1 4

fe a In " W)
where here and in the following we express all energies in
units of kgT. In Eq. (7) a denotes the cross-sectional area per
lipid chain; typically 30<a A~2<35. The spontaneous di-
rector field ng=(np)=[dwnp/q is given by the midplane
projection, np={h,,hy}/hy=sin 6{cos ¢,sin ¢}, of the nor-
malized director, h/h,, averaged over all accessible orienta-
tions. Thus

[} (10
no_q<[sin¢> jo sin 0d0>¢. (8)

As outlined above, the function 6(¢) is determined by the
inclusion geometry and by the distance between the inclu-
sion and the director origin. For an inclusion-free membrane
0(p)=m/2 and thus np=0 everywhere. In the presence of
one or more (arbitrarily shaped) inclusions, n, can be com-
puted numerically according to Eq. (8). Let us also calculate
the tilt modulus xS=x !, given in Eq. (4). It is the inverse
of the tilt susceptibility,

x=a({(np—ng)e(Np—ny)), 9)

where o denotes the outer product. In an unperturbed mem-
brane patch the response with respect to tilt is laterally iso-
tropic. Indeed, using 6(¢)=/2 in Eg. (9) we obtain
ki = ki1 with

3

Ktcza. (10)
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In the present work we shall ignore the inclusion-induced
modifications of «{ and simply work with the scalar result
indicated in Eq. (10) so that

C

K
Afc=7t(n—n0)2. (11)

Let us shortly recall some explicit results for a few char-
acteristic situations that have been discussed in previous
works.?*3! Consider the most simple case, namely a single
sufficiently large inclusion that can be represented as a long
planar wall (of length L>hg), oriented normal to the mem-
brane midplane and located along the y-axis. If the distance
from the wall to the director origin is X, then q/qq
=(1+x/hg)/2 and F2=N(1—1In2), where N=2Lhg/a is
the number of directors (that is, lipid chains) perturbed by
the wall. Each director contributes, on average, only a frac-
tion of kgT. However, the number of directors scales with
the length L, and can become large. For a director at distance
x<h, away from a single straight wall we also find ng
={(1—-x/hg)/2,0}, exemplifying the general result that the
average director points away from the inclusion. The corre-
sponding tilt modulus [see Eq. (4)] connected with confor-
mational restrictions,

+
5?25[ 12/(1+x/hg) 0] 12)
a 0 3
(with 0=x=hg) shows a rigidification of the lipid bilayer in
the vicinity to the inclusion.

Another simple case is that of two parallel walls, located
at distance d from each other. For d>2h, the walls do not
interfere with each other, and consequently the conforma-
tional free energy penalty is F2=2N(1—In 2) with N as
given above. For d<<2hg the walls do interact with each
other. Particularly, within the region 0=<d=h, one obtains

F=—N d | d 13

c hO n2h0 ( )

which has a maximum of F=2N/e at d=2h, /e. Hence the

free energy of the interaction between two parallel walls,

AFY(d)=F2(d)— F2(2hy), is nonmonotonic, exhibiting an
energy barrier of height AF.(2hy/e)=0.122XN.

IV. EULER EQUATIONS, BOUNDARY CONDITIONS,
AND NUMERICAL PROCEDURE

In order to find the optimal configuration of the per-
turbed membrane we functionally minimize F in Eq. (1).
This requires us to solve the Euler equations that follow from
Egs. (2), (3), and (11),

kih3Au=Ku+hgk(V-n),

KV (V1) = ry(n—hVU) + k5(n—ng) + KV (V). 1Y)
These equations need to be solved subject to three boundary
conditions at the inclusion surfaces rg. The first one as-
sumes hydrophobic matching between the inclusion and the
host membrane, implying

u(rg)=up, (15)
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where uy=hp/h, quantifies the extent of hydrophobic mis-
match [recall hp=h(rg)]. To obtain the remaining two
boundary conditions at r g we assume that the corresponding
directors are free to optimize their spatial orientation. That is,
they are allowed to reorient in order to optimally compro-
mise between the elastic interactions and the conformational
chain restrictions. This degree of freedom leads to the so-
called natural boundary conditions,*®

(V-Mle=Co, (VXM =0, (16)

that we shall employ in the present work. At this point we
note that recent molecular-level chain  packing
calculations®*? clearly show that the lipid directors at the
inclusion boundary can tilt away from the inclusion surface
without leaving a void region inside the hydrocarbon core.
We thus do not impose in the present work the commonly
used boundary condition n|rG=0 (Refs. 19, 21, 44, 45)
which would imply angular matching between the surface of
the cylindrical inclusion and the neighboring lipid directors.
All remaining boundary conditions for the Euler equa-
tions [namely, ny|x—o=0, (dny/X)x—o=0, (Ju/IX)x—o=0
and analogously along the x-axis] follow from the mirror
symmetry with respect to the x- and y-axes. In addition to
that, far away from the inclusions the membrane is unper-
turbed, implying u(|r|—)=0 and n(|r|—«)=0.
Obtaining the free energy, F=Fq+F2+AF,, of an
inclusion-containing membrane involves two steps. The first
is the calculation of FS defined by Egs. (6) and (7). The
second step involves the computation of Fy+ AF . which is
based on the numerical calculation of the Euler equations;
Egs. (14). To solve the Euler equations for two cylindrical
membrane inclusions we have used bipolar coordinates

within the x,y-plane,
sin @
X("D’U)_bcoshvﬂ:os @’

sinho (17

y((P’U):bcosthrcos(p’

with b=d+/(1+4R/d)/2. Because of the symmetry along
both the x and y axis, we only need to solve the Euler equa-
tions outside the cylinders in the region 0<x<<w and 0<y
<, The corresponding ranges of the variables, ¢ and v, in
Egs. (17) are 0<¢<a and 0<v<arcsinh(b/R). The three
coupled partial differential equations, Egs. (14), were solved
iteratively. Each iteration step consisted of solving either one
of the equations for u, n,, or n, while using the solution
obtained in the previous iteration. After about 20 iterations
we obtained a self-consistent solution.

V. RESULTS AND DISCUSSION

Our results are based on the following set of material
parameters: ho=14 A, k=10kgT, K=0.2kgT/A? K’
=5kgT, and x,=0.1kgT/A2. The choice of these values is
discussed in the Theory. For the inclusion radius we use R
=7 A. This value accounts for both the hard core radii of the
inclusion and a lipid tail. The latter contributes about one
half of the cross-sectional extension of a stretched hydrocar-
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FIG. 2. The director fields, n(r) and ny(r). The left-hand side (x<0; un-
filled arrowheads) displays hqony(r)/2; the right-hand side (x=0, filled ar-
rowheads) displays hon(r). The factors of hy/2 and h,, respectively, were
added to improve the visual appearance of the directors. The calculation
corresponds to d=10 A and u,=0.

bon chain (=1.5 A). A typical choice of the cross-sectional
area per chain in a lipid membrane is a=32.5 A%;*® it gives
rise to x{=0.1kgT/A2? [see Eq. (10)]. In the following we
are interested in variations of the distance, d, between the
inclusions, of the hydrophobic mismatch, uy, and of the
spontaneous curvature, Cg.

A. Membrane conformation for matching inclusions

We first present the membrane conformation for the par-
ticular case d=10 A and uy=0. That is, no hydrophobic
mismatch is present. Figure 2 displays the numerically cal-
culated director fields, n(r) and ng(r) [the left-hand side
where x<0 shows hgny(r)/2, and the right-hand side where
x=0 shows hgn(r). The factors of hy/2 and hy, respec-
tively, were added to improve the visual appearance of the
directors]. The relative change in hydrophobic thickness,
u(r), is displayed in Fig. 3.

The directors are generally tilted away from the inclu-
sion, indicating their unfavorable interaction with the rigid
inclusion surface. Whereas for a single inclusion cylinder all

BT B
NN
NN
TN

FIG. 3. The relative hydrophobic monolayer thickness, u(r), corresponding
to Fig. 2.
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FIG. 4. Interaction free energy AF(d) for ug=—0.3 (<), uy=-0.2 (>),
Ug=—0.1 (O), ug=0 (<), up=0.1 (*), uy=0.2 (@), and uy=0.3 (x). The
broken line shows AF9(d)=F%(d)—F2(2h,). The spontaneous curvature
of the lipid layers vanishes for all curves (c,=0). The inset shows AF(d)
for the case that inclusion-induced conformational chain restrictions are not
taken into account (n,=0). For all curves, the boundary conditions at the
inclusion are the natural ones as given by Eq. (16).

directors point exactly in radial direction, the presence of two
interacting inclusions gives rise to a more intricate spatial
pattern of director orientations. Consider the spontaneous di-
rector tilt ng(r) (Fig. 2, left-hand side). Here, the director
orientations are no longer cylindrically symmetric for those
directors that are closer than h, to both inclusion surfaces.
For example, a director located at x=8, y=13 would “see”
a small part of the second inclusion, and will contribute
(even though to a very small extent) to the membrane-
mediated inclusion—inclusion interaction.

In the presence of elastic interactions the optimal direc-
tor orientations n(r) deviate in a characteristic fashion from
No(r). Most notably, in the immediate vicinity to the inclu-
sion surfaces n is much shorter than ny(r). This directly
reflects the competition between elastic interactions and
inclusion-induced conformational restrictions of the flexible
hydrocarbon tails: The tendency of n(r) to adopt the sponta-
neous tilt field, ny(r), cannot be realized because this would
induce a too high elastic free energy penalty. Closer inspec-
tion reveals another feature: The changes of n(r) are less
pronounced compared to ng(r) but, due to the elastic re-
sponse of the bilayer, they extend over a larger spatial region.
Recall that there is no hydrophobic mismatch between the
inclusion and the membrane. Nevertheless, owing to the cou-
pling between the elastic free energy and the conformational
chain restrictions there is a small but notable membrane
thickening in the vicinity of the inclusion (see Fig. 3). This
thickening results from the fact that ny(r) points away from
the inclusion surface, thus inducing a monolayer bending
towards the midplane.

B. Interaction between two inclusions

Of greatest interest in the present work is the interaction
free energy,

AF(d)=F(d)—F(«) (18)

as a function of the distance, d, between the inclusions. Fig-
ure 4 shows AF(d) for various different values of the hy-
drophobic mismatch, ugy, and for vanishing spontaneous cur-
vature of the two lipid monolayers (c,=0). Figure 4 also
displays the contribution AF2(d)=F9(d) —F2(2h,) (broken
line) which is independent of uy and c,. Similarly to the
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results for two straight walls,?* AFg(d) is nonmonotonic: an
energy barrier near d=2h,/e=10 A separates an attractive
from a repulsive region. This similarity is not unexpected
because the chain conformational confinement between two
walls is qualitatively the same as for two rigid cylinderlike
inclusions. For the present inclusion size (R=7 A) the mag-
nitude of the interaction free energy |AF2(d)| is generally
small; |AF(d)|<kgT.

The consequences of adding the elastic contribution to
the free energy strongly depends on the extent of hydropho-
bic mismatch, ug. Yet, even without any hydrophobic mis-
match (where uy=0) the elastic energy affects the interac-
tion between the two inclusions. The changes with d of
elastic and nonelastic interactions partially compensate each
other, leading to a very weak dependence of AF on d. We
thus do not expect a notable membrane-mediated association
tendency for two matching inclusions in a lipid bilayer.

Let us now discuss AF(d) in the presence of hydropho-
bic mismatch (still with vanishing spontaneous curvature of
the lipids; c,=0). Figure 4 shows a pronounced asymmetry
of AF with respect to the hydrophobic mismatch, ugy. In
particular, positive mismatch gives rise to strong attraction
between inclusions. Negative mismatch merely leads to an
energy barrier with no appreciable gain in free energy upon
close association. The asymmetry of AF(d) with respect to
Ug has its origin in the presence of the nonvanishing sponta-
neous director field, ny. Generally, the spatial pattern of ng
exhibits positive spontaneous splay (see Fig. 2). The actual
director field, n, tends to follow this pattern but the presence
of elastic interactions leads to deviations. For example, the
elastic interactions arising from positive hydrophobic mis-
match favor negative splay. We then have two opposed ten-
dencies (one promoting positive and the other promoting
negative splay) that induce a high free energy penalty for a
single isolated membrane inclusion. Consequently, if two in-
clusions dimerize, we expect a correspondingly high gain in
free energy. For negative mismatch we encounter a different
situation because uy<<0 enhances the tendency to adopt posi-
tive splay (as does ng). In this case, AF changes only mod-
erately with d, as seen in Fig. 4.

The asymmetry of AF with respect to ug is no longer
present if we neglect the inclusion-induced conformational
restrictions of the lipid chains. To illustrate this, we display
in the inset of Fig. 4 AF for ny(r)=0. Then, the free energy
contains only the elastic part [see Eq. (2)] and the conforma-
tional chain restrictions for an inclusion-free membrane [see
Eq. (11) with ny=0]. The boundary conditions for deriving
the curves in the inset of Fig. 4 are, again, given by the
natural ones [see Eg. (16)]. Recall that the natural boundary
conditions allow optimal relaxation of the director field, n, at
the surface of the membrane inclusions. We note that another
commonly used set of boundary conditions is based on n|rG

=0 which imposes angular matching of the boundary direc-
tors to the shape of the cylindrical inclusions.?®?*** In any
case, irrespective of the boundary conditions, np=0 implies
F(d,ug)=F(d,—up), and leads to attractive interactions be-
tween membrane inclusions for any nonvanishing hydropho-
bic mismatch.
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FIG. 5. Interaction free energy AF(d) of two rigid inclusions for uy=—0.3
(<0, ug=—0.2 (), ug=—0.1 (O), up=0 (<), up=0.1 (*), uy=0.2 (@),
and uy=0.3 (x). The two diagrams correspond to different values of the
spontaneous curvature: c,=0.02/A, c,=—0.02/A.

C. Influence of the spontaneous curvature

Figure 5 shows how the spontaneous curvature, c,, af-
fects AF(d). The two diagrams are derived for cg
==+0.02 A1, Recall that both the presence of the sponta-
neous director field, ny, and a negative hydrophobic mis-
match, u,<0, favor the development of positive splay in the
director field, n. In this case, lipid layers with c,>0 should
benefit from the interaction with rigid inclusions. Indeed, the
upper diagram in Fig. 5 shows that for uy<<O two isolated
inclusions are energetically preferred over a single dimer. In
other words, repulsive interactions dominate. For positive
mismatch (uy,>0) we recall that the elastic membrane inter-
actions favor negative splay in the spatial pattern of n. The
opposed tendencies that originate from uy>0 and c,>0 ex-
plain the enhanced attraction between two inclusions as com-
pared to c,=0.

Figure 5 predicts lipid layers with negative spontaneous
curvature (cy<<0) to generally induce attractive interactions
for both positive and negative mismatch. The reason is the
presence of the spontaneous director field, ny, which induces
n to exhibit positive splay near the inclusions. The ensuing
high free energy penalty of isolated inclusions is partially
relieved upon inclusion—inclusion association.

D. Single isolated inclusion

Figure 6 displays the free energy, F, of a single isolated
inclusion as a function of the hydrophobic mismatch for dif-
ferent values of the spontaneous curvature, c,. We point at
two important features of F that have previously been de-
rived and analyzed for a single isolated wall on the basis of
both molecular-level chain packing calculations®® and within
the approach used in this work.%!

First, the minimum of F with respect to ug is typically
found for negative uy. Hence, membrane inclusions prefer
negative hydrophobic mismatch. This property has its origin
in the coupling between the elastic membrane interactions
and the inclusion-induced conformational restrictions of the
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FIG. 6. Free energy F as a function the hydrophobic mismatch, u,, for
a single, isolated, inclusion. The three curves correspond to different
spontaneous curvature of the lipid layer: c,=0 (®); c,=0.02 A~1 (0);
co=—0.02 A7 (O).

lipid chains. That is, both the spontaneous director field, ny,
and a moderate negative hydrophobic mismatch simulta-
neously favor a similar positive splay pattern of n near a
rigid inclusion. This then creates the energetically most op-
portune situation as reflected in Fig. 6.

Second, positive spontaneous curvature (cy>0) of the
lipid layers drastically lowers F for negative hydrophobic
mismatch. Again, the reason is the formation of the positive
splay pattern for moderate negative hydrophobic mismatch.
An intrinsic tendency of the lipid layers to adopt positive
splay (that is c,>0) should then further lower F as Fig. 6
indeed shows. In this case, the elastic free energy density
near an inclusion is lower than far away from it. That is,
cylindrical inclusions relieve part of the frustration that a
planar membrane with positive spontaneous splay suffers
from. However, the gain in elastic free energy does not com-
pensate for the loss of chain conformational energy. In fact
we always find F>0. Our results thus suggest that the spe-
cific structure of the lipid bilayer provides a positive contri-
bution to the insertion free energy of a rigid inclusion (like a
transmembrane protein or peptide). This contribution adds to
the classic hydrophobic effect.*’8

E. Discussion of the simplifications, possible
extensions, and experimental relevance

We have only focused on the interaction between two
individual inclusions. This situation is appropriate for low
inclusion densities. At high densities, where multibody inter-
actions dominate, different approximations like the often em-
ployed cell model are more appropriate,1%-214°

We have neglected the possibility of the cylindrical in-
clusions to tilt. While tilt has been suggested to occur for
positive mismatch® a recent study® showed that modifica-
tions in the degree of hydrophobic mismatch need not nec-
essarily affect the tilt angle of a single transmembrane pep-
tide. Hence, it is currently not clear whether experimentally
observed tilt of membrane inclusions is induced by hydro-
phobic mismatch or whether it is an intrinsic property that
arises from an asymmetry of the inclusion itself.

The present work employs a number of rather strong
assumptions, like the neglect of an orientational energy de-
pendence in the director model, or the spatial uniformity of
the modulus, «f. However, our main goal to qualitatively
illustrate the implications of conformational chain restric-
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tions for the dimerization of membrane inclusions should not
be affected by these assumptions. Moreover, we expect the
two assumptions to partially neutralize each other. This is
because, on the one hand, by the assumption of a spatially
uniform «{ we have neglected a localized stiffening of the
lipid layers and thus we underestimate F(d). On the other
hand, an additional orientational energy dependence in the
director model would weaken the inclusion—inclusion inter-
actions predicted by the director model and thus we overes-
timate F(d).

We have used a continuum approach, although the rela-
tive changes in hydrophobic thickness take place at distance
over only a few molecular diameters. The use of continuum
elasticity theory is certainly an approximation. However, the
hydrocarbon tails constituting the core of a fluid membrane
are extremely flexible and adopt a large number of different
states. This conformational averaging weakens the correla-
tions between individual lipid chains. Also experimental
findings point at the applicability of continuum elasticity
theory. For example, Harroun et al.** measured the thinning
of lipid membranes upon insertion of short transmembrane
peptides. Nielsen and Anderson®! analyzed the mismatch de-
pendent changes of gramicidin A channel lifetime. In both
cases membrane elasticity theory—even in its most simple
version—was found in agreement with experimental data.
We can thus expect that even spatial changes over a small
number of lipid tails can usefully be described by continuum
elasticity theory.

Let us discuss the additivity of F and F. in Eqg. (1).
Generally, both F and F reflect conformational fluctua-
tions of the fluidlike lipid tails in the lipid layer. F, and F
are only additive if there are two statistically independent
mechanisms of which one mainly contributes to F and the
other to F.. (If so, the partition sum for F factorizes and F
itself turns additive.) Our approach is indeed based on two
such mechanisms. One corresponds to stretching of the lipid
tails for fixed orientation. The other changes the average
chain orientation and leaves the chain length unaffected. As a
consequence, we have obtained two distinct tilt moduli, &
and «;, as appearing in Egs. (2) and (11). The physical basis
for the separability of F can be understood as follows: the
contribution to the tilt deformation that involves stretching of
the lipid tails («;) mainly affects those lipid conformations
that point into the stretching direction. On the other hand, a
pure tilt deformation (with no concurrent stretching) depends
mainly on the chain conformations that are close to the in-
terfacial region of the lipid layer. In fact (so far unpublished)
mean-field chain packing calculations support this notion.

Recall that we did not consider any direct dependence of
f. on the hydrophobic thickness u. This can be justified in
terms of the director model. Assume we would have consid-
ered statistical averaging of the director projection along the
z-direction [we did consider only averaging of the director
projection onto the x,y-plane; see Eq. (8)]. The presence of a
rigid body in the vicinity of a given director affects the av-
eraging. However, averaging along the z direction is modi-
fied to a much lesser extent than averaging of the director
projection onto the x,y-plane. This is seen easily for a planar
wall where (h,)=h/2 is the same for x=0 and x=h,, and
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only increases slightly in between (the same argument is true
for the corresponding stretching modulus in z-direction
which depends on (h2)). This is in strong contrast to the
averaging normal to the wall as outlined in Sec. Ill. Thus, as
a first approximation the conformational restrictions can be
treated as independent of the hydrophobic mismatch.

We also emphasize again that our study only considers
indirect (that is membrane-induced) interactions between
two inclusions. However, interactions between inclusions
can also arise from direct forces such as van der Waals and
electrostatic forces. For uncharged inclusions (or in solutions
with high salt concentrations where electrostatic interactions
are screened) the short-ranged forces between inclusions
would be determined by both, the van der Waals interactions,
which are always attractive, and the short-ranged membrane-
induced interactions, which can be either attractive or
repulsive.

We have estimated the energy of the van der Waals in-
teraction between two equal cylinders immersed in the mem-
branous continuum of the same height as the cylinders.*® The
membranous continuum was composed of two regions: one
corresponding to the headgroups and the other corresponding
to the phospholipid tails. The cylinders, the headgroup region
and the tail region were characterized by different dielectric
constants (e, €y, and &, respectively). This interaction is
always attractive. Taking e.=4, ¢,=35, and £,=2 we have
obtained that for d=10 A the values of this energy are
smaller than 10~ 2kg T, however, they may for example reach
the values of 0.2kgT for d=2 A. As in some cases the lipid-
mediated interaction between the cylinders is also of this
order (see Figs. 4 and 5) the contribution of the van der
Waals interaction may in these cases not be negligible. It can
be noted that the energies of the single isolated inclusion are
generally an order of magnitude higher than the energies of
the lipid-mediated interaction between the inclusions even
when the distance between the inclusions is only less than a
nanometer (compare Fig. 6 and Figs. 4 and 5). Accordingly,
the director field is of non-negligible strength only in a small
region in the vicinity of the inclusions. These notions are
important in validating the assumptions and estimating the
constants within the theoretical description of the mutual de-
pendence between the lateral distribution of the inclusions
and the shape of a closed membrane. The single-inclusion
energy can be taken as a starting point in the statistical me-
chanical derivation of the free energy of the pool of laterally
mobile inclusions within the membrane.’*®® If the lateral
density of the inclusions is small enough, the single inclusion
energy applied within the mean curvature field model®? may
be considered as a fair approximation. In this work we have
considered cylindrical inclusions that are inserted in a flat
membrane segment. In reality, inclusions may have different
shapes while the closed membrane is generally curved.
Therefore it would also be of importance to generalize the
problem considered in this work as to include various shapes
of inclusions and take into account a nonzero local mem-
brane curvature.

Our study is motivated by a number of recent experi-
ments in which association processes between two (and
sometimes more) synthetically designed transmembrane pep-
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tides were observed.'%%** For example, Yano et al.™ find a
completely hydrophobic ““inert” model peptide to adopt
transmembrane orientation in a particular lipid bilayer and to
dimerize with a corresponding association free energy of
about 5kgT (unfortunately so far, no results are available for
varying hydrophobic mismatch). The fact that the model
peptide was lacking any specific interaction and nevertheless
showed a tendency to self-aggregate promoted the authors to
suggest some kind of “basal’ driving force for helix asso-
ciation. Our present theoretical approach suggests the mem-
brane as the actual driving force. Self-association of trans-
membrane helical peptides was also observed by Renthal and
Velasquez'® with the particular focus on the influence of
smooth versus rough helix interface. Association energies
were generally found somewhat larger than 10kgT with
higher values for smoother helices. Note that the lipids re-
sided in a micellar environment which may influence the
aggregation energetics and does not permit direct compari-
son with the present study. Still, it would be interesting to
have results available as function of the lipid chain length.
An experimental attempt to directly correlate transmembrane
helix association with the thickness of the host bilayer was
recently presented by Mall et al.®® Peptides of two different
hydrophobic lengths were incorporated into phosphatidyl-
choline bilayers of various lipid chain lengths. The experi-
mental data obtained by a fluorescent quenching method
could best be fitted by a model that assumes dimerization
between helices. The corresponding association free energy
was generally found to increase from about 2kgT for thin
membranes to ~4kgT for thick membranes; at the same time
it was essentially independent on the peptide length. Thus, a
mismatch hypothesis would not be in agreement with the
particular system studied by Mall et al. Yet, for other sys-
tems the mismatch hypothesis has proven to be a useful con-
cept. Among many available examples (for a recent review,
see Lee*) we mention a study by Ren etal.’ who find a
membrane-matching poly-leucine peptide to reside in the
host membrane in transmembrane orientation. For suffi-
ciently large positive or negative mismatch the peptide was
found to either oligomerize or to adopt a nontransmembrane
orientation.

In summary, currently available experimental results on
transmembrane helix association point at a rather complex,
system dependent, energetics. Even though the predictions of
our present study are not sufficient to explain the various
experimental findings they can—due to their generic
nature—be expected to contribute to the energetics of all
events of helix dimerization in lipid membranes.

VI. CONCLUDING REMARKS

The present approach allow us to derive the membrane-
mediated interaction between two cylindrical inclusions em-
bedded in a lipid bilayer. This interaction was analyzed in
terms of the bilayer properties and the hydrophobic mis-
match. The new aspect in this work is the consideration of
the inclusion-induced conformational confinement of the
lipid chains. We have cast the underlying physics into a
simple (approximate) theoretical description. Our analysis
suggests that there is a direct (nonmonotonic) contribution to
the inclusion—inclusion interaction arising from the confor-
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mational confinement of the lipid chains. However, even
more important is the influence of the conformational restric-
tions on the elastic membrane interactions. The coupling be-
tween both leads to a characteristic asymmetry of the
inclusion-induced interactions with respect to the hydropho-
bic mismatch. That is, positive hydrophobic mismatch gen-
erally leads to strong attraction whereas negative mismatch
merely gives rise to an energetic barrier.
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