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A membrane inclusion can be defined as a complex of protein or peptide and the surrounding significantly
distorted lipids. We suggest a theoretical model that allows for the estimation of the influence of membrane
inclusions on the curvature elastic properties of lipid membranes. Our treatment includes anisotropic inclusions
whose energetics depends on their in-plane orientation within the membrane. On the basis of continuum
elasticity theory, we calculate the inclusion-membrane interaction energy that reflects the protein or peptide-
induced short-ranged elastic deformation of a bent lipid layer. A numerical estimate of the corresponding
interaction constants indicates the ability of inclusions to sense membrane bending and to accumulate at
regions of favorable curvature, matching the effective shape of the inclusions. Strongly anisotropic inclusions
interact favorably with lipid layers that adopt saddlelike curvature; such structures may be stabilized
energetically. We explore this possibility for the case of vesicle budding where we consider a shape sequence
of closed, axisymmetric vesicles that form a (saddle-curvature adopting) membrane neck. It appears that
not only isotropic but also strongly anisotropic inclusions can significantly contribute to the budding energetics,
a finding that we discuss in terms of recent experiments.

INTRODUCTION membrane inclusion

Biological membranes are multicomponent mixtures of
lipids and associated biopolymers. They exhibit remarkable
physical properties that have become a major focus of current
research. Among those properties is the curvature elastic disturbed "rigid" core of
behavior of the underlying lipid matrix which has been lipids  the inclusion
recognized to be involved in various cellular processes suchFigure 1. Schematic representation of the membrane inclusion
as vesicle budding, membrane fusion and fission, and pore(also called microdomaii The membrane inserted molecule
formation. Moreover, the elastic properties of lipid mem- represents the “rigid” core of the inclusion. The surrounding lipids
branes play a vital role in the lateral organization of that are significantly distorted due to the presence of the core define

. . the effective size of the membrane inclusion.
membrane-associated biopolymers.

Various theoretical models are available to describe the sions. That is, short- or even long-range attraction between
elastic behavior either of single component or mixed membrane inclusions may induce the formation of membrane
membrané:2 Membrane-inserted biopolymers, such as mem- domains®® Conversely, membrane inclusions may influence
brane-penetrating or integral proteins and amphipathic pep-the conformation of the host membrane, a drastic example
tides, are sometimes represented as rigid membrane inclubeing the formation of nonbilayer phases induced by certain
sions® In this work, the termmembrane inclusioms used transmembrane proteins or peptides.
for the membrane-inserted molecule and the surrounding An interesting class of membrane inclusions argso-
lipids that are significantly distorted due to the presence of tropic inclusions. These inclusions interact with a curved
the inserted molecule> The membrane-inserted molecule membrane in an orientation-dependent manner. Alpha-helical
alone is referred to as the “rigid” cdref the inclusion amphipathic peptides and dimeric surfactéhtdand also
(Figure 1). certain membrane-penetrating proteins, ligitfs,and lipo-

The elastic nature of the host membrane has profoundproteind® can be considered as possible realizations of
implications on the lateral organization of membrane inclu- anisotropic inclusions. There is some evidence for anisotropic
inclusion-induced structural reorganization of lipid mem-
branes, ranging from the formation of membrane nanottibes
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structures is the formation of a membrane neck during the membrane interaction constants. Based on that model, the
budding process of a closed vesieln living cells it has third subsection Qurvature-Induced Segregation of Inclu-
been indicated that the formation of a bud is accompanied siong further quantifies the degree of curvature-induced
by lateral redistribution and subsequent accumulation of segregation of membrane inclusions. In the sectiesicle
certain membrane components (both lipids and proteins) atBuddingwe apply our model to a practical situation, namely
highly and nonuniformly curved membrane regiéhs. The to the budding of an axisymmetric closed vesicle, for which
physical basis, namely the coupling between saddlelike we compare the influence of isotropic and anisotropic
membrane curvature and local composition of a mixed (that inclusions. In the final sectiorDjscussion and Conclusiofs
is, inclusion-containing) membrane, has recently received we discuss the relevance of our results and the approxima-
some attentio®?2231t should be noted that, in addition to tions we have invoked.
the accumulation of anisotropic membrane components at
the saddlelike region of a membrane neck, the budding THEORETICAL MODEL
process may also be driven by the enrichment of (possibly
isotropic) membrane components within the spherical region
of a bud?*-30 Both mechanisms may complement each other.
Recent theoretical work on anisotropic inclusions falls into
i lfrent ctegores 1 e s e T core ofach ummarized
curvature field. The defelzts then serve as boundary conditions Cor_15|der a smglg molecular membrane constltut_ant, which
subject to whic.:h the membrane curvatures around the defec can either be a !|p|d ora membra}ne embedded blopo[ymer
are optimized!~33 Note that here the inclusions interact via Such as a protein, peppde, steroid, or surfactanlt. As Intro-
: duced above, we define a membrane inclusion as the

[)noimioggﬂgﬁf:’ﬁﬁgienrént%éhgeﬁgggu;rfgflt?f,fg?'Zr?)tt';;nff considered membrane constituent and some additional lipids
P " (jf any) that are significantly distorted due to the presence

The second approach, used also in the present work, is base f the inclusion. Obviously, if the considered constituent is

gﬂstehrﬁbrlgeci‘nigfllfsii)exslénztrari’ti:;Iea:a?erlgg?sl v?/gﬁlgorrr]{e?nn- a lipid molecule, the inclusion is only this lipid molecule.
9 y However, some biopolymers might locally deform the

brane of locally prescribed curvaturés, where the mem- surrounding membrane significantly, and then the effective

%rgﬂgiocnusr\{rz:[grrae; ?r%teisur?/gtjr)g?igglazzl?h;v:g;e\;\g;Iggn:[s?te radius of the inclusion can be (somewhat) larger than the
' Y actual radius of the biopolymer in the membrane.

of the inclusions are then determined self-consistently so as To distinguish between different types of membrane

ey chey LI COMPaNens (nclusons) we 831 0 each speces lbe
9y (withi =1, 2...). The interaction of the membrane inclusion

B e i he siauncing membrane Gves ris 0 & e enery
ina membrane free ener ty P contribution E;, which, generally, depends on both the
9 gy curvature of the membrane and on the in-plane orientation

The major goal of the present work is to provide estimates of the molecule under consideration. The single-inclusion

of these interaction constants and to analyze the consequenceénergyE_ reflects a mismatch between the local shape of
|

with respect to the ability of inclusions to migrate toward the membrane and the intrinsic shape of the membrane

membrane_reglons (.)f preferred curvatures. Besides fOcusm‘%nclusion. The curvature tensors describing the respective
on _isotropic mclgsmns we ;hall par_tlcularly focus on shapes are represented by diagonalized2matrices. The
anisotropic inclusions and their potential to accumulate at local curvature tensor is represented ®y(with principal

r?gtl)ql_ns t.Of saoddlehbe cturv?tutrrt]e, '|ntclud|?g their tenﬁrg?ltlc curvaturesC; andGC; as diagonal elements), and the intrinsic
stabilization. Our estimates for the interaction constants allow o\ a1 re tensor is represented G, (with principal

us to argue that membrane components (like peptides Orcurvaturesclm,i andCon; as diagonal elements). The corre-

proteins), having a reasonably large degree of an'SOtrOpY’sponding principal axes systems are mutually rotated by an
can be expected to sense and accumulate at Saddle“k%nglew. The interaction energ§ = E(H, D) is obtained

membrane curvatures if the curvatures fit those preferred byby expansion in terms of the invariants of the so-called

the inclusion. mismatch tenséf represented biyl; = RC,,jR™* — C, where

\l/)Ve ?_ave orggmzed c;ut:] workt. a§rhfollovJ\[/'s. ITI\;w d f'IrSt R is the matrix describing the rotation by an angleTaking
subsection kree Energy o € sectiontheoretical viode into account terms up to the second order in curvature results
recapitulates the (above-mentioned) mean-field approach Ofin5

inclusion-membrane interactions and shows how to calculate
the lateral distribution of anisotropic inclusions within a

Free Energy. We use the above-mentioned mean-field
approach for the energetics of a lipid monolayer that contains
anisotropic constituents. The underlying interaction model
has been discussed previodsfPeand will only shortly be

nonhomogeneously curved membrane, thereby taking into— = (2K, + K)(H — H,, i)2 -
account the excluded volume effect that prevents unrealisti- _ 2 5
cally high local inclusion concentrations. Still in the first K[D® — 2DD,;cos() + Dy, ] (1)

subsection we also introduce a structural criterion of aniso- ~

tropic inclusions to bstronglyanisotropic: they are ableto  whereK; andK; are phenomenological constarkd, is the
render the Gaussian elastic modulus positive; see below. Inthermal energyt = (C, + C,)/2 is the mean curvature, and
the second subsectioMicroscopic Interaction Modg| we D = (C; — Cy)/2 denotes the curvature deviat®rThe
employ a microscopic model (which extends a recent work quantitiesHm i = (Cim, + Com,)/2 andDpj = (Cim,; — Com,)/2

of Fourniet% to calculate estimates of the inclusion- are the spontaneous mean and deviatoric curvatures that
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Figure 2. Two different orientations of an anisotropic membrane
inclusion are schematically illustrated. They lead to mininaaK
0) or maximal {p = 7/2) interaction energ¥; (w) with the host.
Note thatw is the mutual rotation angle between the principal axes

systems of the local curvature tensors of the membrane and the

intrinsic curvature tensor of the inclusior8; and C, denote the
two principal curvatures of the lipid monolayer (for the sake of
clarity, the caseC; = 0 is displayed).

reflect the preferred local geometry of the membrane
constituent. Maximum and minimum & are adopted for
mutual rotation angle® = 0 andw = 71/2, respectively, as
schematically illustrated in Figure 2.

Note that the curvature deviatby,; describes the intrinsic
anisotropy of the single membrane inclusion. IndeedDigr
= 0 the w-dependence Of; disappears. Generally, the in-
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F [ m i
—=|Dm f+KTmin——m+m (5)
N L m

In thermal equilibriumF adopts its minimum with respect
to the compositionmy, (or, equivalently, with respect to
compositionm, = 1 — my), subject to particle conservation,
[, 0= my. This results in the local composition

o (=TT

m =
g]‘ :ml) e—(fl—fz)/kTD+ o (kT
m,

Obviously, forf; = f, there is no incentive for a segregation
process, and we obtaim, = my. Also, note the two limits,
f, > f, implying m; — 0, andf; < f, leading tom, — 1.

If the lipid monolayer is composed of a single type of
(lipid) molecule (say, component= 2), thenmy = 0, m, =
m = 1, and the free energy /N = [{;0wheref; is given
in eq 3 withi = 2. Note that the term 1§(2K,DDp,>)
describes the anisotropy of the lipids. Without an anisotropic

(6)

plane rotational degree of freedom of the membrane inclusion contribution,F is equivalent to the familiar Helfrich bending

gives rise to a single-inclusion free enerfly which is
obtained through statistical averaging over all available
orientationsw; that is

£ E(H,D) - E (0,0
=—|n{2—1ﬂjj”exp[— ( )kT ( )]]da)} @)

KT
where we have chosen a planar membrathe=(D = 0) as
the reference state for measurifigWWe obtain

f _
= (@K + K)(H® = 2HH, ) —
KiD* — In 1,(2K,DD,,) (3)

wherel, denotes the modified Bessel function.

Consider now a single (sufficiently large) lipid monolayer
of lateral areaA and local mean and deviatoric curvatures,
H andD, respectively. The lipid monolayer is composed of
two inclusion specied\; inclusions of typad = 1 andN, =
N — N inclusions of type = 2 whereN denotes the overall
number of inclusions in the lipid monolayer (see also note

39). For the sake of simplicity we assume that both inclusions

occupy the same lateral cross-sectional aaea A/N per

energy! of a lipid layer withk = KxkT/a andk = KxkT/a
being the bending stiffness and the Gaussian modulus,
respectively. Even for small anisotropy, wherky(r) = x%/4
with X = |2K;,DDno| < 1, the free energyF remains
guadratic in the curvatures with renormalized elastic moduli.
As pointed out recently by Fourniétthe bending stiffness,
k = [Kz — (K:Dm2)%2]kT/a, decreases, whereas the Gaussian
modulus,k = [K; + (K:Dm2)3kT/a, shifts to more positive
values, the latter signifying a decreased stability with respect
to the formation of saddlelike curvatures. It has been
indicated recentff that the anisotropy of membrane lipids
has implications on the shape and energetics of lipid
membranes. It has been also suggéstéal explain the
stability of long cylindrical protrusions, emerging out of
single-component phospholipid vesicles. Based on a mini-
mization of the Helfrich-like bending energy, such cylindrical
protrusions do not represent equilibrium shapes; they would
rather form a chain of connected spherical microvesicles.
Adding the contribution of anisotropy to the bending energy
was shown to stabilize the cylindrical shape of the protru-
sions, that is observed in experimehits.

Consider now a two-component lipid monolayer, consist-
ing of isotropic lipid molecules (inclusion species= 2)

inclusion within the lipid monolayer. The fluidlike nature ~&nd anisotropic inclusions (inclusion species: 1). The

of the lipid layer allows its constituents to laterally redis- iS0tropy of the lipid matrix implie®m, = 0, which we shall
tribute. That is, in a nonhomogeneously curved lipid layer, Use in the following. As for a one-component lipid layer we
the inclusions of both species are able to migrate toward ¢@n calculate fof2K;DDm| < 1 the effective elastic moduli,
their energetically preferred membrane regions so as tonamely the bending stiffnesei, and the Gaussian modulus,
minimize the free energy (see note 40). We describe this k" For a two-component lipid layer the elastic moduli will
degree of freedom by the local compositions,andm, = depend on the composition of the inclusiong)( One may

any physical quantity via compositionmy, = My is fixed for a given (small, and hence,

uniformly curved) membrane patch. And in the second case,
we allow for exchange of inclusions between the considered
membrane patch and a planar bulk layer; in this case the
chemical potential of the inclusions is fixed. Both scenarios
lead to the same result for the bending stiffrtéss

1
Q0= 5 /,Q dA @
we note the average compositioms = Ni/N = [in[] The
free energy per inclusioR/N of the lipid monolayer contains
both the single-inclusion free energids, and the corre-

KT
sponding demixing entropies }

' ={mK, ~ 3 R + @ - myk T @)
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and also for the Gaussian modulus
_eff _ ;= iz = 2 iz 1 KT
Kk ={m[K; + (KD, )T+ (1 - m1)K2}E (8)

We see that both elastic moduli depend linearly on
composition, which is a consequence of linearly combining
the single-inclusion free energies in eq 5. Again, we clearly
see the influence of the inclusion’s anisotropy in downshift-
ing ¢ and upshifting<s™. Obviously, for

KD < —1 )
and sufficiently large concentrationg the Gaussian modu-
lus k¢ adopts a positive sign. We shall refer to inclusions
that fulfill eq 9 asstrongly anisotropidnclusions. Otherwise
the inclusions argveakly anisotropicBelow, we investigate
the ability of anisotropic inclusions to accumulate at (and to
stabilize) regions of saddlelike curvature. As we shall see,
only strongly anisotropic inclusions possess this ability.

Eq 6 takes into account saturationrof for f; < f,. Often
however (and also relevant for the present work) the
compositionny is sufficiently small everywhere so that the
small composition limit f, < 1) applies. From eq 6 we
then obtain the Boltzmann distribution

ml B e (f1—f)/KT

m, - (KT (10)
and the corresponding free energy
E= 1,0~ kTmynfe” @20 (11)

If in the small composition limit the (curved) lipid lay®iis
in contact with a reservoir of inclusions in the planar bulk

membrane and the inclusions are allowed to exchange with

this reservoir (of compositiom)

11 asb

, We can re-express eq

= 0,0 KT(m, — b (12)
HereNm, = N [s the actual number of inclusions residing
in the (curved) lipid monolayer, ankslr‘ﬁl’“'k would be that
number forf; = f,. Differently expressed\(m — ﬁ'ﬁ“'k) is
the excessnumber of inclusions in the lipid monolayer,
implying that each inclusion that migrates into the lipid layer
from the bulk membrane lowers the free energy biyTl
Microscopic Interaction Model. Here we suggest a
microscopic interaction model for a mixed lipid monolayer
that contains an anisotropic constituent. As above, we
consider a two-component lipid layer € 1, 2). One
component (labeled as inclusion spegies?) is an isotropic

J. Chem. Inf. Model., Vol. 45, No. 6, 2004655

Figure 3. Schematic illustration of a rigid anisotropic core of the
inclusion embedded in a lipid monolayer. The core of the inclusion
is characterized by a “cone-anglé#(¢) that varies with the
azimuthal anglep. At the lipid headgroup region, the inclusion’s
core is circular with radiuR. The curvature of the lipid monolayer,
measured in radial direction, &¢). The equilibrium thickness of
the monolayer’s hydrocarbon coretig

subject of interest in the present work are inclusions with
rigid, anisotropic core (Figure 1), such as membrane-
penetrating or transmembrane proteins (or peptides). Such
proteins are anchored within the lipid layer through hydro-
phobic interactions. Owing to its softness, the hydrocarbon
core of the host lipid layer can adjust to the shape of the
(rigid) protein. The corresponding elastic lipid perturbation
energy can be expected to depend on the curvature of the
membrane. In fact, the curvature dependence determines the
interaction constantXi, Ki, Hn1, and Dna, of the rigid
inclusion with the host. In the following, we suggest a simple
model to calculate the membrane-inclusion interaction
constants, based on membrane elasticity theory.

Consider a single, conelike, core of the inclusion that spans
the host lipid monolayer as schematically illustrated in Figure

To render the inclusion anisotropic we introduce a
dependency of the cone angle= 6(¢) on the azimuthal
angle¢; see Figure 3. For small variations @fve can write

0(¢) = 6 + A cos(2) (13)
whered is the average “coneness” of the core of the inclusion
andA®@ is the corresponding deviator.

The core of the inclusion is embedded in a lipid monolayer
of mean and deviatoric curvatuté and D, respectively.
Hence, according to the Lemma of Euler, the curvature
measured in the radial direction of the inclusion, at the
azimuthal anglep, is

C(¢) = H + D cos(2) (14)
Formally, the inclusion-induced perturbation free enefgy,
= f fdL = (L/27) [ f(¢)dg, of the lipid monolayer can be
expressed as an integration of the free energy def(gily
per unit length of the circumference of the inclusion’s core,
L = 27R, whereR is the radius of the inclusion’s core; see

lipid, and the other denotes the (anisotropic) inclusion speciesFigure 3. For a sufficiently large radiu, we expect that
(i = 1). As discussed above, the interaction constants of the= f[C(¢),0(¢)] depends only parametrically ap, namely

lipid host, K, = ax/kT andK, = ak/KkT, directly relate to the
bending stiffnessx, and Gaussian modulug, of the

via the relationsC(¢) and 6(¢). More generallyf should
also depend on the derivatives@fp) and6(¢) with respect

corresponding one-component lipid layer. We also assumeto ¢. This additional dependence should become relevant if

that the lipids tend to assemble into a flat layer, implying
Hm2 = Dm2 = 0.

_ The interaction constants of the anisotropic comportent (
K1, Hm1, andDn1) depend on its molecular structure. Our

the radiusR is smaller than the characteristic decay length
of membrane perturbations; below we estimate this length
to be smaller than 1 nm. Hence, assuming Rat & we

can simply write
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f ~

D=2 [EICH). 0@ d (15)
In this casef can be calculated using a one-dimensional
model for the elastic interaction of a lipid layer with an

infinitely long, rigid wall. Such models have frequently been
suggested in previous wofk?¢ and they canas we show

in the following—easily be generalized to a bent lipid layer
of curvatureC. Consider first a planar lipid monolayez,=

0. The 6-dependence of can be written as a series

expansion up to quadratic order

k1
2§

wherex is the bending stiffness of the lipid monolayer and

f(C=00)=-Z6°+CH (16)

FOSNARIC ET AL.

K1~R3 on the core radius (fdR> £); this is a consequence
of both the rigidity of the inclusion core (contributingR?)
and the linear increase of the circumference viRth-

From eq 19 we can calculate the quantly,:K; =
—(kAOR) (1 + R/IE)/(2kT), which coincides (up to a
numerical prefactor of order 1) with a recent estimate by
Fournier (eq 5 in ref 19).

Curvature-Induced Segregation of Inclusions. The
single-inclusion free energy depends on the curvature of the
host layer, implying the possibility of a curvature-induced
segregation of inclusions. In this case, the local composition
of inclusions, my, varies over the lipid monolayer, as is
qguantified by eq 6. This equation somewhat simplifies if we
consider equilibrium of a (sufficiently small) patch of
(uniform) mean and deviatoric curvaturésandD, respec-
tively, with a large and flatl = H = 0) membrane of

Co is the spontaneous curvature. Using membrane elasticityjnclusion compositionmy. In this case, equality of the

theory, the characteristic length

K K
\/; + hor;
E=hyf——— @av)
K |, K

has recently been calculatééor a planar C = 0) lipid layer

in contact with a wall tilted by an angk it depends on the
thickness of the lipid layeh,, the lateral stretching modulus
K, and the tilt modulusk. (In contrast to ref 46, no
hydrophobic mismatch is included in eq 16.) Typically, for
a lipid monolayerhy = 1.25 nmx ~ 10kT, andK ~ 20kT/
nm.4” There is some uncertainty about the magnitude of the

tilt modulus as it has never been determined experimentally.

In the limit k; < K we obtainé = (k/k)2° while k; > K
yields & = (ho/(4K))¥4.48 A recent molecular-level calcula-
tion*® predictedk; = 20kT/n?, just the same magnitude as
the stretching modulus. It leads &= 0.9 nm.

Let us generalize the result for the planar lipid monolayer
(eq 16) to the bent one. This is achieved by applying the
transformation® — 6§ — CRandC, — Cy, — C. The first
transformation accounts for the rigidity of the inclusion’s

core, which cannot relax its shape upon bending. The second

transformation represents the actual bending of the lipid
monolayer. We obtain

f(co) = 2%(9 —~CR?+(C,— C)(6 —CR (18)

After inserting6(¢) from eq 13 andC(¢) from eq 14 into
eq 18 and identifying with w in eq 1 (fori = 1) we obtain

A1 = g(RR:zgg) R icg goome A_RH(FKL—ZES) (19)
K, = fﬂ—k" (§+ 2), K,=— %Kl (20)

This is an important result of the present work on which
our further discussion will be based. It confirms the expecta-

inclusion’s chemical potential with that in the (planar) bulk
membrane leads to the composition of inclusions at the
curved membrane patch

o (=TT

T 1m,

—f)IKT

my ~ me ™ (21)

+e (f1—f2)/kT

where the last approximation refers to the small composition
limit, my << 1. Indeed, eq 21 follows directly from eq 6 as
it is f; = f, = 0 everywhere at the flat membrane reservoir.

Below, we shall show that for reasonable estimates of the
inclusion interaction parameters (given in eq 19) we expect
K1 > Ky and|K;| > |K;| (recall the sign of bothK; andK;
is negative.) In this case, on which we focus in the following,
we simply havef; — f, ~ f; wheref; is given in eq 3 (with
i =1).

At this point, we ask which curvatures are energetically
most preferred by an inclusion. For strongly anisotropic
inclusions (whereK;Dpn? < —1) we may use the ap-
proximation Irig(x > 1) = x — In(27x)/2, and minimization
of f; results in the optimal mean and deviatoric curvatures

1¥m1

respectively, and in the corresponding free energy per
inclusion

1k—T2= —(2K, + K)Hp 2+ KD 2+

1
16|Zle,lz

S In(—47K,D,, ) (23)

+

For weakly anisotropic inclusions the minimum of the
deviatoric curvature is attained f@°" = 0; hence, these
inclusions do not tend to migrate toward favorably curved
membrane regions. ~

In eq 22, the term~1/(K1Dn1?) provides a correction to
the strong coupling regime (wheB" = Dy, 1) attained for

tion that the shape of the inclusion’s core translates into a |KiDm12| > 1. Becaus&; < O this correction predict®o"|
spontaneous mean curvature and spontaneous curvatures |Dys|. The preference for an optimal curvature deviator,

deviator of ordeHp,1 = /R andDp,; = AO/R, respectively.
Note the strong dependence of the interaction constants

DePt somewhat smaller than the spontaneous one is a
consequence of the inclusion’s in-plane orientational entropy.
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0.12 — are constant over the patch. The patch is in equilibrium with
0.10} a large and flat membrane with inclusion composititn
0.08L i.e. the chemical potential in the patch and in the bulk
006k membrane are equal.
m Transfer of each inclusion into the saddle-region of
0.041 a deviatoric curvatur® = Dp,; is accompanied by a gain for
0.02 —2r N\ the single molecule free energy of about R leading to
0.00F _%I.o 03 06 a exp(2.5)~12-fold increase in the concentration of inclu-
0.0 0.1 02 03 04 05 06 sions. The gain in overall free energy(see eq 5, which
D/am-1 includes the segregation-opposing demixing entropy of the

Figure 4. The compositionm, as function of the saddle-curvature inclusions) is XT per inclusion as is shown in eq 12.

D = C; = —C; (with H = 0) for m, = 0.01, calculated according
to eq 21. The inset shows the correspondifag(f,)/kT for K, = VESICLE BUDDING

-3 nn?, K; = —49 nn¥, andD,1 = 1/3.4 nm; see eq 3. ) . . . .
' m . In this section we apply our considerations to the budding

In the strong coupling regime whefDp2 < —1 we of bilayer vesicles. There are two possible scenarios of how

can disregard the last two terms in eq 23, the last term of it inclusions can contribute to the energetics of bud formation.
being only a weak logarithmic correction. Then, after _ 1he first concerns isotropic inclusions (whedg,, = 0).

inserting the expressions of eq 19 into eq 23, we obtain These inclusions tend to migrate into the spherelike region
of a bud. The fully developed bud consists essentially of a

fo—f 1 (RIE + 1)2 spherical vesicle to which the mother vesicle is connected
2 ”_%‘_(32 + _Agz) SR (24) via a small and highly curved neck. Let us assume that the
KT K 2 RIE+2 inclusions are weakly cone-shaped, such thigt (2 K;)H, 2

< 1 and where the radius of the buRl= 1/H,1, allows an
optimal interaction with the inclusions; see eq 22. The
composition of inclusions in the bud is them ~ mexp[—

(fi — f)/KT] ~ my[l + (2K; + Ki)Hm1%. Note also the
number of inclusions in the bud = 47R?my/a. From eq 12

we estimate that each inclusion that migrates toward the bud
contributes a singlekT to the free energy gain. The
stabilization energy due to the migration of isotropic and
(weakly) anisotropic inclusions is thus

which predicts an accumulationf( — f, has negative sign)

of inclusions in a region of a lipid monolayer that adopts
the preferred curvaturdd = HoPt and D = D°P', Equation

24 is a major result of the present work because it relates
the energetic preference of an inclusion for an optimally bent
lipid monolayer to the geometryR( 6, and Af) of that
inclusion and to the elastic properties of the host layer (
andg).

Let us estimate whether for a reasonable choice of the
inclusion geometry we indeed obtajf; — f,| > kT and _|_167r_
| 1] > | f,| as we have assumed in the derivation of eq 24. AF = —K glel (25)

To that end, we assume for the sake of simplicity that a lipid

monolayer is characterized B> = Dm2 = 0, a bending which is independent of the bud radius (and thus, independent
stiffness ofc = 10kT and cross-sectional area per ligic= of Hm1). According to our numerical estimate aboke =

0.6 nn?, leading toK, = xa/lkT = 6 nn?. The Gaussian 73 nn¥, implying that even at small compositioms; the
modulus is unknown for nearly all bare lipid membranes; free energy gaim\F ~ 2000 mKkT can be substantial even
yet there are indications to be of a smaller magnitude thanthough the inclusions are weakly cone-shaped. In the case
the bending modulus. In fact, it was recently determined for of more pronounced cone-shaped inclusions the effect can
the particular system of N-monomethylated dioleoylphos- be much larger.

phatidylethanolamine to He = —0.82¢.5° Hence, we expect The second case is that of anisotropic inclusions. From

0> K, > —6 nn?. the above analysis we know that ordfrongly anisotropic
Next, we estimate the inclusion interaction parameters. We inclusions are expected to sense saddle-curvatures of lipid

consider a saddlelike inclusion geometry (implyifg= O; membranes. They tend to accumulate at regions of saddle-

a nonvanishing would further increase the magnitude of curvatures that roughly match the inclusion’s spontaneous
fi — f2 in eq 24) with inclusion radiu®k = 1.0 nm and deviator. The membrane neck that connects a vesicle bud
“cone”-angle variatiom = 0.44 (corresponding to varia-  with the host exhibits pronounced saddle-curvatures. Here,
tions in the “cone”-angle within the regioft 25°). Based we study the coupling between the nonhomogeneous lateral
on eq 19 (withc = 10kT and& = 0.9 nm) we findK; = 73 distribution of anisotropic membrane inclusions and mem-
nm?, Ky = —49 nnt, andDy,; = 1/3.4 nm. These values are  brane neck formation (see also note 52). To that end, we
expected to be representative as helix tilt angles of even moredisplay in Figue 5 a well-known sequence of closed,
than 23 are not uncommon for transmembrane protéins. axisymmetric vesicle shapes, starting from a pearlike shape

Hence, our estimate confirms our assumptions, naiely — proceeding to the limiting shape of two connected spherical
> Ky, |Ky| > |Ky|, and alsdDy,1°K; < —1. In fact, for the vesicles.

latter we obtairD,,1?K; = —4.2, indicating strong orienta- The sequence was calculated as a function of the average
tional ordering of the anisotropic inclusions in a lipid mean curvaturéHLl] at fixed areaA and volumeV of the
monolayer of optimal (saddlelike) curvature. closed vesicle. As is convenient, we express these quantities

As an illustration, Figure 4 show$§ — f, and the with respect to a spherical vesicle of radil& (and
compositionmy of the patch (see eq 21) as a function of the corresponding areds = 47R¢ so that the relative area of
curvature deviator of the patcb). The values oH andD each shape is normalized £, = A/As = 1). In Figure 5,
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W—m> e m m m component membrane fam = 0.01 (see also note 54). The
N T 2 inclusions are assumed to be of saddlelike geometry with
J interaction parameters as specified in the last section, namely,
Ky =73 nn’?, Ky = —49 nn?, Dm,l =1/3.4 nm,Hmvl =0.

The properties of the host membrane (again as discussed in
the previous section) atéy,, = D2 = 0, Kz = 6 nn¥, and
Ko=—-4 nmne.

The free energy of théner monolayer (broken line in
Figure 5) increasemonotonicallyfrom somewhat more than
the single sphere value~ 47kT(2K; + Kz)/a ~ 170KT to
that of two connected spherés~ 4nkT(4K, + Kj)/a ~
420 KT. In contrast to that, the free energy of the outer
inclusion-containing monolayer of the pear-shaped vesicle
has a pronounced minimum for a specific shape of the vesicle
with a thin neck. The saddlelike curvatures of that neck
indeed match the ones preferred by the anisotropic inclusions.
The magnitude of inclusion accumulation at these regions
(which is also displayed in Figure 5) corresponds to the
prediction in Figure 4. While the outer monolayer of the
vesicle contains about#RAmM/a ~ 8000 inclusions, only

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16
Ry<H>

Figure 5. The free energyAF of the outer, anisotropic inclusion-

containing monolayer (solid line) and the inner (inclusion-free) -
monolayer (broken line) of a closed vesicle, displayed as a function f"‘bOUt 1% of them accumulate at the neck region where they

of increasing relative average mean curvatR&tL]for a sequence  induce an energetic gain fax= of about 1kT per inclusion.

of axisymmetric pear shapes. Also shown are cross sections of three  Accumulation of anisotropic inclusions in the necklike
shapes, calculated for relative average mean curv&tiel 1.04, ; &
1.16, and 1.17, and the corresponding lateral distribution of '(;urved regli)n gf the b.Ud hastalrelady tbe_en plroposed k rel.
anisotropic ) and isotropicif, = 1 — my) membrane components | or exar_np e )_/namlns (cy OSO_ proteins p aying a_ (_ay-ro e
in the outer monolayer. The values of the parameters are asin clathrin-mediated endocytosis) partly insert within the
follows: m; = 0.01 (O for inner monolayerX; = 73 nn¥, K; = membrane and seem to accommodate cylindrical (anisotro-
—49 nn¥, Hing = 0, Dy = 1/(3.4 nm), and for the host membrane  pic) curvature. Fournier et &t.indicated that the coupling

Kz = 6 n#, Kz = —4 nn?, Hmz = Dmz = 0. Furthermore, it i between dynamins and the necklike curved membrane of the

= 0.6 n¥, Vier = 0.95, andR, = 200 nm. clathrin bud can result in a dynamin collar around the neck

the relative volume i/, = 3V/47R$ = 0.95 andRs = 200 of the. bud. ) ) o i
nm. Note that the mean curvatuiiéCis proportional to the Various kinds of inclusion-induced vesicle shape trans-
area difference between the outer and inner monolayer formations hgve recently_ been_ c_Jbserved exp_erlmentally.
(if the distance between the two monolayeyki¢ sufficiently ~ Among them is the formation of lipid nanotubes induced by
small). Hence, theelative average mean curvatuRH[  Certain synthetic alpha-helical, amphipathic peptfdés.
measures the relative area difference between the two!€Se peptides have a cylinderlike shape and partially insert
monolayers relative to that of a spherical vesicle of radius INto the membrane with their long axis being parallel to the
Rs (RHO= AAe = AABTORY). We have choseR{Has membrane plane, rende_rlng them anisotropic (Wdth, =
our “reaction coordinate” with respect to which the energy 0 @nd Cam:= 0). Inducing tubular vesicles through the
of the vesicle is displayed ag{can be manipulated coupllng ofthelrcylllndt_arllke shape with the actual membrane
experimentally by changing the temperature or by inserting Shape is one application of the present work; see also refs
additional molecules into one of the two monolayers. 19 and 11. It appears that another (synthetic, amphipathic,
The shape sequence in Figure 5 is computed for an anq. p05|_t|vely charggd) peptlde;, called pgpt@e-l, _has the
inclusion-free vesicle. based on a minimization of the ability to induce budding or to drive a pearling instability of

. . a cylindrical vesiclé? The corresponding mechanism is
Helfrich free energy as explained elsewh&rklere we use . ; Lo .
. . . . likely to be a peptide adsorption-induced increase of the
that sequence to estimate the influence of inclusions on the

energetics of budding. To that end, we consider the presencen:"latlve area difference between the two monolayers (or,

of inclusions only in theouter monolayer, while thénner equivalently, an increase iRJFJas shown in Figure 5).

monolayer remains inclusion-free. Thereby we assume thatHowever, the energetics of the budding (or pearling) process

the presence of inclusions does not affect the vesicle shapesaS well as the spatial distribution of the peptides on the bent

This assumption is justified by the small concentratimn, VES'&';Z c;?]?;gtrignlflcantly be affected by the degree of
= 0.01, of inclusions in the outer monolayer. Note that a bep Py

solution of the full shape equations (those taking into account
the coupling between the bending energy and the local DISCUSSION AND CONCLUSIONS

monolayer composition self-consistently) can only leadto a  The interaction between a single inclusion and a membrane
lower free energyF than predicted by our approach. That of prescribed curvatures is characterized by a number of
would even more underline the role of anisotropic inclusions phenomenological interaction constants. These interaction
for stabilizing saddle-shaped vesicle necks than Figure 5constants reflect a local structural perturbation of the
already does. membrane in the vicinity of the inclusion’s core. Estimates
Figure 5 shows the free energids) (of the outer (solid of the interaction constants are derived based on a simple
line) and inner (broken line) monolayérof the two- microscopic model, similar to the one suggested by Fourn-
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ier.!® The corresponding results (see egs 19), together withinclusions—even in the absence of direct interactioniend
the expression for the inclusion free energy (eq 24), constituteto migrate from planar into saddlelike membrane regions,
the major results of the present work and provide a completethe extent of which is dictated by the difference in the
energetic description of the inclusion-containing membrane inclusion’s standard chemical potentfal— f;; see eq 21.
up to the second order in curvatures. To illustrate the Clearly, direct interactions between inclusions amplify this
consequences that the presence of anisotropic inclusions cabehavior. That is, if inclusions effectively attract (repel) each
have one the conformation of a membrane, we have studiedother, the migration toward the saddlelike region is enhanced
the budding of an axisymmetric closed vesicle for which we (diminished). Note that this amplification is partially opposed
find a strong stabilization of the bud. by the loss of translational entropy associated with changes
In our model the membrane inclusion consists of a rigid in the local inclusion concentration within the membrane.
core and the surrounding lipids that are significantly distorted A mathematical treatment can be based on the mean-field
due to the presence of this core (Figure 1). If the local level of regular solution theory which would add to the free
distortion of the lipids around the core propagates far into energy per molecule of the lipid layer (eq 5) two additional
the membrane, the effective size of the whole inclusion can terms; one quadratic in the composition of inclusirand
be significantly larger than that of the core. In this case the another one quadratic in the gradient of the composition.
presented lattice statistics approach with the assumption ofNote that ultimately, for sufficiently strong attractive interac-
equal lattice sites for all membrane components can no longertions between the inclusions, lateral phase separation will
be justified®® However, such long-ranged relaxations around take place, which too may couple to the membrane shape.
a rigid inclusion core are often suppressed by additional Although our approach suffers from neglecting direct
constraints. For example, for closed membrane shapes, thenteractions and correlations between inclusions, it offers
fixed numbers of molecules in both membrane monolayers computational advantages that allow us to employ it for
and the fixed volume of the cell (vesicle) determine the modeling of various experimental observations, like vesicle
overall shape of the membra3€° and thus greatly reduce  budding (section 3) or the formation of stable lipid nanotu-
the local relaxation of the membrane shape around the corebular protrusion’$68 and membrane porés.

of an inclusion. Extreme examples are (nearly) spherical To summarize, our results support and quantify the notion
vesicles or the vesicles with shapes close to the limiting of a coupling between the lateral distribution of membrane
shapes composed of a spherical mother vesicle and sphericahclusions and the membrane curvature. We expect that some
daughter vesicles (see Figure 4 in section 2). In addition, membrane proteins or peptides, if they exhibit conelike or
the local membrane stress imposed by the inclusion’s coresaddlelike shape (for example, due to a bundle of tilted trans-
can be partially relaxed by the accumulation of hydrophobic membrane helices), are able to migrate toward a favorably
solutes in the hydrophobic region of lipid tatlsOne should  curved membrane region or to induce the formation of such
also bear in mind that there exist various types of (semi- regions. The present work has focused on saddlelike mem-
flexible) membrane inclusions, which may disturb the brane inclusions which favorably interact with saddlelike
membrane in a very different way than the rigid core of the membrane curvatures; yet, a similar reasoning is valid for
inclusion considered in section 3. Namely, due to specific the migration of cone-shaped proteins toward membrane
lipid—protein interactions and their intrinsic shapes the regions of spherelike curvature, occurring in caveolae or
preferential clustering of lipids and protefisnay resultin  budding regions. Most notably, membrane inclusions are
the formation of small proteinlipid membrane complexeé$,  expected to significantly contribute to the energy required
which may be considered as membrane inclusfonA. to form a curved membrane region. For example, as we
typical example of such proteirlipid membrane inclusions  suggest in section 3, the budding of a vesicle can be
are lipid—prominin complexes composed of the membrane- supported by lowering the energy of its neck via saddlelike
spanning domains of the protein prominin and the intermedi- inclusions.

ate space being filled with cholesterol and other lipids. In
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