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The influence of a finite volume of ions and orientational ordering of water Langevin dipoles on the dielectric
permittivity profile in the vicinity of charged surface is studied theoretically via a numerical solution of the
modified Poisson–Boltzmann equation. It is shown that the dielectric permittivity profile close to the charged
surface is mainly determined by two mechanisms; specifically, the depletion of dipoles at the charged
surface due to accumulated counterions and the increased orientational ordering of the water dipoles.
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1. Introduction

The distribution of the ions in the electrolyte solution close to the
charged surface is determined mainly by competition between
electrostatic and van der Waals interactions, configurational and
rotational entropy of particles as well as by steric effects [1–8]. Due to
the attractive electrostatic forces between charged surface and ions in
the solution, the counterions are accumulated close to the charged
membrane surface. In addition, the water molecules in electrolyte
solution can better organize their hydrogen bonding network without
ions, therefore it is favourable that the ionsbreaking thewaterhydrogen
bonding network are moved from the bulk toward the charged surface
[9].

Within standard Poisson–Boltzmann (PB) theory [1,10] the ions are
considered as point-like, therefore the number density of counterions at
charged surface may exceed the upper value corresponding to their
close packing. Different attempts have been made to incorporate steric
effects into modified PB theory in order to prevent the prediction of
unrealistically high number densities of counterions close to the
charged surface.

The first attempt to include finite size of ions in modified PB theory
was made by Freise [11] who introduced the excluded volume effect
by a pressure-dependent potential, whileWicke and Eigen [12] used a
thermodynamic approach. More recently, the finite size of particles
has been incorporated into the PB theory, based on a lattice statistics

model [3,13–15], by using other functional density approaches [16–
18] and by considering the ions and solventmolecules as hard spheres
[4,5]. Also Monte Carlo simulations are widely used in order to
describe the finite-sized counterions [5,19,20].

In addition to excluded volume effect, the standard PB theory also
doesn't consider the solvent structure. Therefore the PB theory has
been upgraded by the hydration model, where the interplay between
solvent polarization and diffuse double layer takes place [21–23]. The
study of the orientational ordering of dipoles at the charged surface
has shown that the dipoles predominantly orient perpendicular to the
charged surface [24]. The spatial decay of the solvent polarization for
increasing distance from the charged surface was predicted [21].
Recently Abrashkin et al. [25] introduced Langevin dipoles into PB
theory to study the polarization of the solvent close to the charged
surface. Mengistu et al. [26] incorporated a solvent of interacting
Langevin dipoles into the PB theory. This approach allows for a
surface-induced structural perturbation of the solvent.

The ions may change the dielectric permittivity of electrolyte
water solution [9,25]. Therefore in this work the modified PB equation
was solved numerically where the finite volumes of the ions were
taken into account. Dipolar nature of watermolecules is introduced by
Langevin dipoles. It is shown that the dielectric permittivity profile
close to the charged surface is mainly determined by two mechan-
isms, i.e. the depletion of dipoles at the charged surface due to
accumulation of counterions and decreased orientational ordering of
dipoles as the function of the increased distance from the charged
surface. The spatial dependence of dielectric permittivity as a function
of electric potential and electric field strength is given analytically.
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2. Theory

We consider a charged surface in contact with a solution of
monovalent ions (counterions and coions) and Langevin dipoles of
finite size. The counterions are accumulated near the charged surface
and coions are depleted from this region, thereby creating a diffuse
electric double layer [1]. We assume that the surface is uniformly
charged with surface charge density σ. The lattice with an adjustable
lattice site is introduced in order to describe the system of water and
salt ions. All lattice sites are occupied by ions or water.

Free energy of the above defined system (F), measured in units of
thermal energy kT, can be written as

F
kT

=
1

8πlB
∫ð∇ΨÞ2dV

+ ∫ nþðrÞ ln
nþðrÞ
n0

+ n−ðrÞ lnn−ðrÞ
n0

� �
dV

+ ∫ nðr;ωÞlnnðr;ωÞ
n0w

� �
dV

+ λ∫½ns− nðr;ωÞh i−nþðrÞ−n−ðrÞ�dV ;

ð1Þ

where the first term corresponds to electrostatic field energy. Here
Ψ(x)=e0ϕ(x)/kT, where e0 is the elementary charge and ϕ(x)
electrostatic potential. The Bjerrum length lB=e0

2/4π�0kT, where ε0 is
the permittivity of the free space. The second and the third line account
for contributions of translational entropy of the ions and orientational
entropy of water Langevin dipoles, where n(r,ω)=nw(r)P(r,ω). Here
nw(r) is the number density ofwater, P(r,ω) is probability that Langevin
dipoles located at r are oriented for the angle ω with respect to the
normal to the charged surface, n0w is bulk number density of water, n+
and n− are the number densities of positively and negatively charged
ions, respectively, while n0 is the bulk number density of positively and
negatively charged ions, wherewe assumeϕ(x→∞)=0. The last line in
Eq. (1) is the constraint due to finite size of particles, ns being the
number density of lattice sites: ns=1/a3, where a is the width of the
single lattice site. The number density of water nw(r) in Eq. (1) can be
expressed as nw(r)=bn(r,ω)N, where the averaging over all angles ω
(projections) is defined as:

FðrÞh i = 1
4π

∫F r;ωð ÞdΩ: ð2Þ

The charges of counterions, coions and dipoles contribute to the
average microscopic volume charge density

ϱðrÞ = e0ðnþðrÞ−n−ðrÞÞ−∇ · P; ð3Þ

where the polarization is given by P=bp n(r,ω)N, p is the dipole
moment.

The free energy F=F(n+, n−, n) fully specifies the system. In
thermal equilibrium F adopts minimum with respect to the functions
n+(r), n−(r) and n(r, ω). The result of the variational procedure is:

nþðrÞ = n0e
−Ψ + λ

; ð4Þ

n−ðrÞ = n0e
Ψ + λ

; ð5Þ

nðr;ωÞ = n0we
−p ·∇Ψ=e0 + λ

: ð6Þ

Inserting Eqs. (4)–(6) into the constraint (last line of Eq. (1)) we
can calculate the parameter λ

eλ =
ns

2n0coshΨ + e0n0w

p0 j∇Ψ j sinh
p0 j∇Ψ j

e0

; ð7Þ

where we took into account

e−p⋅∇Ψ=e0
D E

=
e0

p0 j∇Ψ j sinh
p0 j∇Ψ j

e0
: ð8Þ

Note that due to the term eλ (Eq. (7)) Eqs. (4)–(6) are not
Boltzmann distribution functions. Inserting the distribution functions
(4)–(6) into the average microscopic volume charge density ϱ(r)
(Eq. (3)) we get the following expression:

ϱ = −2e0n0e
λ sinhΨ−n0w∇ p e−p⋅∇Ψ=e0eλ

D E
; ð9Þ

where the last term is:

p e−p⋅∇Ψ=e0
D E

= −p0
∇Ψ
j∇Ψ j · F p0 j∇Ψ j

e0

� �
: ð10Þ

The function FðuÞ is defined as:

FðuÞ = LðuÞ sinhu
u

; ð11Þ

where L(u)= coth(u)−1/u is Langevin function. The function
L(p0|∇Ψ|/e0) describes the average magnitude of dipole moments
at given r.

Inserting the volume charge density (Eq. (9)) into Poisson
equation ΔΨ=−4πlBϱ/e0 we get [25]

ΔΨ = 8πlBn0ns
sinhΨ
H −4πlBn0wns

p0
e0

∇ ∇Ψ
j∇Ψ j

Fðp0 j∇Ψ j = e0Þ
H

� �
; ð12Þ

where the function H, related to the finite size of ions, is given by

H = 2n0 coshΨ +
e0n0w

p0 j∇Ψ j sinh
p0 j∇Ψ j

e0
: ð13Þ

Differential Eq. (12) has two boundary conditions. The first
boundary condition is obtained by integrating differential Eq. (12):

∇Ψ jS = −4πlB
σ
e0

n−4πlBnsn0w
p0
e0

∇Ψ
j∇Ψ j

Fðp0 j∇Ψ j =e0Þ
H

� �
S
; ð14Þ

where the condition of electro-neutrality of the whole system was
taken into account. The second boundary condition is ∇Ψ|∞=0.

In the case of one large planar surface differential Eq. (12) reduces to

Ψ″ = 4πlBns
2n0sinhΨ

H −n0w
p0
e0

d
dx

Fðp0 jΨ′ j = e0Þ
H

" # !
; ð15Þ

with boundary conditions

Ψ′ðx = 0Þ = 4π
lB
e0

−σ−nsn0wp0
Fðp0 jΨ′ j =e0Þ

H j
x=0

" #
ð16Þ

and

Ψ′ðx→∞Þ = 0: ð17Þ

In the limit of p0→0 the differential Eq. (15) transforms to [3]

Ψ″ = 8πlBn0ns
sinhΨ

n0w + 2n0coshΨ
; ð18Þ

with boundary conditions Ψ′(x=0)=−4πlBσ/e0 and Ψ′(x→∞)=0.
The effective dielectric permittivity is defined as:

�eff = 1 +
P
�0E

; ð19Þ
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where the polarization is calculated via the expression P=bp n
(r,ω)N:

P = −p0n0wns
∇Ψ
j∇Ψ j ⋅

F p0 j∇Ψ j
e0

� �
H : ð20Þ

Inserting Eq. (20) into Eq. (19) and taking into account the
definition E=−∇Ψ we can calculate the effective dielectric permit-
tivity:

�eff = 1 + n0wns4πlB
p0
e0

⋅
F p0 j∇Ψ j

e0

� �
j∇Ψ j · H : ð21Þ

In the case of charged planar surface Eq. (21) reads:

�eff ðxÞ = 1 + n0wns4πlB
p0
e0

⋅
F p0 jΨ′ j

e0

� �
jΨ′ jH : ð22Þ

In the approximation of small electrostatic energy and small
energy of dipoles in electric field compared to thermal energy, i.e.
|Ψ|b1 and p0|Ψ′|/e0b1, we can expand Eq. (15) in Taylor series up to
third order to get:

Ψ″ =
2Ψ + 2 −n0

ns
+ 1

6

� �
Ψ3 + n0w

3ns

p0
e0

� �2
ΨΨ′

2

1
4πlBn0

+ n0w

3n0

p0
e0

� �2
−n0w

3ns

p0
e0

� �2
Ψ2 + n0w

n0
−n0w

6ns
+ 1

10

� �
p0
e0

� �4
Ψ′

2
:

ð23Þ

The boundary condition (16) expanded up to third order is:

Ψ′ð0Þ =
−σ

e0

1
4πlB

+ n0w

3
p0
e0

� �2
1−n0

ns
½Ψð0Þ�2 + p0

e0

� �2
−n0w

6ns
+ 1

10

� �
½Ψ′ð0Þ�2

� 	� � ;

ð24Þ

while the effective dielectric permittivity can be expressed as:

�eff ðxÞ = 1 +
4πlB
3

n0w
p0
e0

� �2
1−n0

ns
Ψ2 + −n0w

6ns
+

1
10

� �
p0
e0

� �2
Ψ′2

� �� �
:

ð25Þ

In the limit of very small |Ψ| and |Ψ′| Eq. (25) transforms into
�eff=1+n0wp0

2/3�0kT. In the following Eqs. (23)–(25) were used to
calculate the spatial profile of the effective dielectric permittivity.

3. Results and discussion

Fig. 1 shows the number densities of counterions and water
molecules as a function of the distance from the charged surface. The
number density of counterions (n+(x)) decreases with increasing
distance from the charged surface, while the number density of water
(nw(x)=ns−n+(x)−n−(x)) increases with increasing distance from
the charged surface and reaches a plateau value far away from the
charged surface. Near the charged surface the number density of
coions is very small compared to the number density of counterions.

The spatial variation of effective dielectric permittivity, calculated
according to Eq. (25), is shown in Fig. 2. In calculations the dipole
moment p0 was chosen as 5 Debyes (D) in order to reach the effective
dielectric permittivity 78 of pure water far away from the charged
surface. The bulk concentration (n0w/NA) was chosen 55 mol/l, where
NA is Avogadro number. The results are obtained from the approx-
imative differential Eq. (23) derived by expansion of exact differential

Eq. (15) in Taylor series up to third order. As we can see in Fig. 2 the
predicted effective dielectric permittivity (�eff) profile only slightly
changes in the vicinity of the charged surface. Nevertheless, a clear
tendency of decreasing �eff(x) in the direction towards the charged
surface can be observed in Fig. 2.

Fig. 3 shows average cosine of the angle ω between the Langevin
dipole vector and the axis perpendicular to the charged surface

cosω =
cosω e−p0Ψ

′
= e0

D E
e−p0Ψ

′ =e0
D E = −Lðp0Ψ′

= e0Þ ð26Þ

as a function of the distance from the charged surface for two different
surface charge densities and bulk ion number density. As shown in
Eq. (26) cosω is given as a negative value of Langevin function. Fig. 3
shows that the dipole moment vectors at the charged surface are
predominantly oriented towards the surface. Far away from the charged
surface all orientations of dipoles are equally probable, therefore
cosω = 0 (see Fig. 3).

The calculated decrease of the effective dielectric permittivity close to
the charged surface (Fig. 2) is a consequence of increased orientational
ordering of thedipoles (Fig. 3) and the depletion ofwater dipoles near the
charged surface due to accumulated counterions (Fig. 1).

Fig. 1. Number densities of counterions n+ (left figure) and water nw (right figure) as a
function of the distance from the charged planar surface. Dipolemoment of water p0=5 D,
bulk concentration of saltn0/NA=0.1mol/l, bulk concentration ofwater n0w/NA=55mol/l,
surface charge density σ=−0.02 C/m2. The width of a single lattice site is a=0.318 nm.

Fig. 2. Effective dielectric permittivity close to charged planar surface. Dipole moment
of water p0=5 D, bulk concentration of salt is n0/NA=0.1 mol/l, bulk concentration of
water n0w/NA=55 mol/l, surface charge density σ=−0.02 C/m2. The width of a single
lattice site is a=0.318 nm.
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The surface charge densityσ=−0.02 C/m2 in Fig. 2 is in the range of
values typical for biological membrane surface (|σ|≤0.05 C/m2)
[1,27,28] and too small to induce significant decrease of permittivity
in the vicinity of the charged surface. However, the surface charge
densities of themodelmembranes [27] or the surface chargedensities of
titanium surfaces may bemuch higher [29], i.e. up to σ≈−0.5 C/m2 or
even higher if the external potential is applied [30]. In the case of high
magnitudes of σ the depletion of water (see Fig. 4) and water
orientational ordering are much stronger and consequently the
decrease of the effective dielectric permittivity close to the charged
surface is very large.

In the present theoretical study we have analysed the electrical
properties of monovalent salt water solution in contact with charged
surface by solving numerically the modified Poisson–Boltzmann
equation where the finite volumes of ions were taken into account.
Our mean field approach involves a number of approximations, as for
example we didn't take into account the image forces [37]. Also we
neglected the short-range attractive van der Waals forces, long [38]
and short-range attractive or oscillatory hydration forces [2]. The
oscillatory behavior of water polarization near the charged surface is
mainly the consequence of direct interactions between water dipoles
[9] which are in our mean field theory, similarly as all other direct
particle–particle interactions (ion–ion and ion–dipole), not taken into
account. In the case of charged biological and model membranes the
membrane surface is not smooth [39], therefore water molecules in

the close vicinity of charged membrane are not organized in perfect
successive layers which smooth out the polarization oscillations [40].

To conclude, in this work, the PB theory was improved by
introducing the orientational ordering of water dipoles and excluded
volume effect through the lattice statistics model. The lattice sites are
occupied by ions or water. The water dipoles are described as Langevin
dipoles with given dipole moment. Using the calculus of variation, the
ion and water number density profiles were calculated. The differential
equation for electrostatic potential was expanded in Taylor series up to
third order in electrostatic potential and then solved numerically.

Based on Eqs. (4)–(7) it can be concluded for sufficient large
surface charge density and lattice constant close to the charged
surface nearly all lattice sites are occupied by counterions (see also
Fig. (4)), i.e. the plateau of counterion number density close to the
charged surface may be observed. The counterion number density in
plateau reaches the value close to 1/a3. On the other hand the number
density of water near the charged surface may approach to zero. Quite
the opposite effect is observed far away from the charged surface,
where the number density of water reaches plateau.

In the present theory, two effects contribute to the spatial variation
of effective dielectric permittivity. First is related to the decrease of the
number density of water near the charged surface. The drop of the
numberdensity ofwater results in thedecrease of the effective dielectric
permittivity. The second is connected to relatively high electric field at
charged surface and consequent strong polarization of water in the first
layers at the charged surface. Far from the charged surface the number
density of water dominate and the effective dielectric permittivity
converge to the effective dielectric permittivity of pure water.

Electric double layer theory has different applications in theoret-
ical description of physical properties of biologically important
systems as for example in the description of electrostatic properties
of biological membranes. Electrostatic properties of biological
membranes are among essential functional properties of the mem-
branes [1] which determine the binding of charged ligands to the
membrane surface, the interactions of vesicles with the membrane
(exocytosis and vesiculation) and transmembrane transport of
charged molecules [1,27,31]. Electrostatic interactions are also
important for the successful integration of bone metal implants. The
negatively charged surface of the metal (titanium) implant attracts
cations and repels anions, and consequently an electric double layer is
formed [32,33]. Many studies in the past have shown that the negative
surface potential of metal implants promotes osteoblast adhesion and
consequently the new bone formation [34,35]. Electrostatic interac-
tions, described within the electric double layer theory, are therefore
considered as predictors for osteoblast attachment to biomaterials
[36]. As shown in the past the properties of electric double layer in
biological systems may be strongly influenced by water ordering in
the region of electric double layer [2,27,30] which was also the subject
of the present work.
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