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Abstract: The elastic properties of a thin anisotropic nano-strip are characterized by its 
intrinsic mean curvature and intrinsic curvature deviator. It is shown that minimization 
of the elastic energy of the strip including the deviatoric contribution may explain 
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the stability of the observed helical and twisted shapes of inorganic nano-strips 
(helix A and B). 
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INTRODUCTION 

Flat, helical and twisted micro and nano-strips (Fig. 1) can be found in 
different inorganic ( I ) ,  organic (2-4) and biological systems (5-7). Their 
equilibrium shapes are usually not flat and therefore in general they cannot 
always be considered as isotropic (3, 8, 9). The stable shapes of isotropic 
thin strips (10) and multilayered organic (1 1) and inorganic (12) closed 
shells have often been determined by minimization of the Landau-Helfrich 
bending energy ( 13) 

Figure 1. Transmission electron micrograph of a cylindrical MoSz nanotube, 2.2 p m  
in diameter (white arrow), and a collapsed nanotube-strip, 3.3 p m  in width 
(black arrow) (A); helix A-helically wound WS2 strip. 2.1 p m  in width, rolled up 
around thin-walled microtube, 1.35 p m  in diameter (B); and helix B-a twisted WS2 
strip, 58 nm in width (C) .  
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where H  = (CI  + C2)/2 is the mean curvature, C,, is the spontaneous 
curvature, K = ClC2 is the Gaussian curvature, while kc and kG are the 
splay and saddle-splay modulus, respectively. The above expression for the 
isotropic bending was upgraded for the case of anisotropic bending by consid- 
ering the tilt and chirality (8, 14), or in-plane orientational ordering 
(3 ,  6, 9, 15) of the material constituents. In this work we consider the aniso- 
tropic bending of inorganic thin strips by taking into account the deviatoric 
properties of the material (16). In this model we introduce two spontaneous 
curvatures; the spontaneous mean curvature Hm and the spontaneous 
curvature deviator Dl,. We show that the variation of HI,  and Dm may 
explain the observed differences in topology of inorganic strips (helix A, 
helix B, flat strip) (Fig. 1). The theory presented may be used to determine 
the elastic constants of anisotropic micro- and nano-strip5. 

FREE ENERGY 

In our model a strip is treated as the two-dimensional surface of a continuum, 
taking into account that the strip is in general anisotropic in two dimensions. It 
is considered that the elastic energy of a given very small element of the strip 
in the absence of external forces is equal to zero if its principal curvatures C1 
and C2 are equal to its intrinsic principal curvatures C,,,, and C2m If a given 
shape has such principal curvatures in all its points, the elastic energy of such a 
shape is zero. 

We define the elastic energy per unit area of a very small element of the 
strip with area dA as the energy of mismatch between the actual curvature of 
this element and its intrinsic curvature. The shape of both continua are 
described by the curvature tensors C and C,, respectively. The tensor C 
describes the actual curvature while the tensor G I ,  describes the intrinsic 
curvature, i.e., the curvature which would be energetically the most favourable 
(Fig. 2). In the respective principal systems the curvature tensors include only 
diagonal elements: 

Figure 2. Schematic figure of the most favourable shapes of a small surface clement 
having different values of the spontaneous mean curvature H ,  and spontaneous 
curvature deviator Dm. 
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The principal systems of these two tensors are in general rotated in the 
tangential plane of the surface by an angle w with respect to each other. 
The mismatch between the actual local continuum curvature of the surface 
and the intrinsic curvature in the absence of external forces is characterized 
by the tensor M = R C,,, R - I  - C, where R is the rotation matrix (16). 

The small patch of the strip should overcome this mismatch in order to fit  
into its place in the actual membrane. This is reflected in the energy that is 
needed for such a deformation. The elastic energy per unit area w is a 
scalar quantity. Therefore each term in the expansion of w must also be 
scalar (13), i.e., invariant with respect to all transformations of the local 
cool-dinate system. In this work, the elastic energy density \v is approximated 
by an expansion in powers of the invariants of the tensor @ up to the second 
order in the components of M. The trace and the determinant of the tensor are 
taken as the set of invariants, 

K1 
11; =, (Tr M)% K2 Det M 

.L 

(3) 

where KI and K2 are constants. Taking into account Eqs. (2)-(3) and the 
definition of the tensor M, the energy density ,v can be written as 

where D = (C1 - C2)/2 is the curvature deviator (16, 17), HI,,= (CI,, + Czrn)/2 
is the spontaneous mean curvature and Dl, = (CI, - C2,)/2 is the sponta- 
neous curvature deviator. It can be seen from Eq. (4) that the material 
properties of an anisotropic thin strip can be expressed in a simple way 
by only two parameters: the spontaneous mean curvature HI,, and the 
spontaneous curvature deviator D,,,. Fig. 2 shows schematically cylindrical, 
flat, and saddle-like intrinsic shapes of the thin strip. 

If the element of the surface is isotropic (i.e., Dl,, = O), Eq. (4) transforms 
into the Helfrich-Landau expression for the area density of the energy 
of isotropic bending (Eq. (I)), where kc = K1, kG = K2 and Co = 

Kl)Hrn/Kl. 

EQUILIBRIUM SHAPES OF STRIPS 

In this work we shall consider two kinds of helical strips: helix A and helix B 
(Figs. 1 ,  3). The surface of the helical strips r = (~(11, I>) ,  y(zr, I)) ,  : ( l r ,  v) )  is 
described parametrically by two independent parameters zr and v. A simple 
example of parametric form is adopted where zr is equal to :, while x and ~1 

are determined by the rotation of the curve f ( v )  around the longitudinal 
symmetry axis ,- in the plane perpendicular to this axis as follows: 
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Here the parameter 11 is the radial distance from the symmetry axis. while 
the constant k dermines the pitch. Equation (5) yields 

r = (11 cos kz - f ( v )  sink;, v sin kz + f (v) cos kz, z ) .  (6) 

Helix A 

First we shall consider a twisted strip in the form of helix A (Fig. 3). In order to 
describe the helical shape (helix A) the function f(v) = (p2 - v')''~, i.e., part 
of a circle is chosen. The circle arc of length 1 is determined by the angle 
4 = I/p. Here p is the radius of the imaginary cylinder on which the strip 
of width 2vo is helically wound. The pitch is P = 2.rr/k, while the pitch 
angle is = (arctan ( I  lkp) (Fig. 3). Using the above definitions, the surface 
of the wound strip in the form of helix A can be written in the parametric 
representation as 

2 r = ( \-cos kz - (p' - v2)'I2 sin kz, v sin kz + (p  - v2)'I2 cos kz, z )  ( 7 )  

where v E [-p sin(l/2p), + p sin(l/2p)] and z E [O,:]. The length of the arc 
( I )  can be determined as 1 = 2vo/sin$. 

The mean curvature H and the curvature deviator D are constant over the 
whole of helix A strip (H = D = 1 /2p). Therefore the energy density kv can be 
written as 

where we assumed for the sake of simplicity that K2 = - K 1 .  

Helix A Flat strip Helix B 

Figure 3. Schematic presentation of helical (A and B) and flat nano-strips. 
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Let us now consider the special case where Hm = Dm, which means that 
the intrinsic principal curvature C2, is zero (Fig. 2A). If the intrinsic principal 
axis corresponding to CZm is rotated by an angle /3 with respect to the longitudi- 
nal axis of the flat strip, then for helix A the angle w = 90" - P - $r. Therefore 
the energy density w~ and also the corresponding total energy of the strip in the 
form of helix A is minimal for p = 1/2Hm = 1/20, and w = 0. Since in this 
case the energy density tvA is zero this also means that this is the minimal 
possible value of wA (without mechanical stress). From w = 0 it also follows 
that the equilibrium value of the pitch angle is $r = 9 0  - P. 

Based on the presented results it can therefore be concluded that the A 
helix configuration of the strip is favoured by equal spontaneous curvatures 
H,, and Dm, where the pitch angle of the helix A is determined by the orien- 
tation of the principal system of the intrinsic curvature tensor c, with respect to 
the longitudinal axis of the strip in the flat configuration (P). 

From the observed shape of the helically wound WS2 strip with the 
pitch angle $r = 55' (Fig. lB), the rotation of the intrinsic principal axis 
p = 90': - $ = 35" can be determined assuming w = 0. Further, by taking 
into account p = 1.35 km (Fig. lB), the spontaneous curvature deviator 
D,, = 1/2p of the observed Helix A WS2 strip was estimated to be 
-7.10-~nm-'.  

As well as in inorganic systems (Fig. I) ,  stable twisted helical structures 
can also be found in organic systems such as collagen molecules in which 
three polypeptide chains (a-chains) are wound together in a triple helix (5) 
or in binary lipid monolayers (4). 

Helix B 

In the second step we shall consider a strip twisted in the form of helix B 
(Fig. 3). For the sake of simplicity we assume that the cross-section of the 
strip in the x - y plane is always a straight line of length 2vo regardless of 
the grade of deformation. Therefore the functionflv) in Eq. (6) is identically 
equal to zero Cf(v) = 0) yielding 

r = (V cos kz, v sin kz, z) ,  (9) 

where v E [- vo, f v o ]  and z E [O, 201. The equations of differential geometry 
(see for example ([I 11)) yield the following expressions for H, D, and CIA 

dA = Jl+k'vz dv dz. (12) 

The result H = 0 yields C2 = - C, which means that for each point on 
the strip there exists at least one normal cross-section with a curvature 
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equal to zero. Using the Euler formula we can write for the curvature of this 
particular cross-section C = clcos2cp + c2sin2cp = 0 where cp is the angle 
between one of the principal directions and the plane of the normal cross- 
section having the curvature C = 0. From the preceding equations it follows 
that tancp = = -t 1 or cp = +45". This means that the principal 
directions of the strip are rotated by an angle of 45" with respect to the 
C = 0 normal cross-section plane. For the sake of simplicity we shall 
assume that the principal directions of the intrinsic continuum curvature of 
the strip coincide with the principal directions of its actual local continuum 
curvature at this point so that w = 0. This means that the principal directions of 
the intrinsic curvature tensor are rotated by 45' with respect to the transversal 
axis of the strip. 

Let us now derive the energy of the strip. For the sake of simplicity we 
assume that K2 = - K1 (see Eq. (4)) and introduce dimensionless quantities 
where vo is taken as the unit of length (h,, = Hmvo, dm = D,vo). The area 
density of elastic energy w (Eq. (4)) is integrated over the area of the 
strip, divided by K 1  and zo to yield the elastic energy of the strip per unit of 
normalized length of the helix (zO): ~ ( k )  = ( J w  dA)/zo K, 

where we assume that w = 0. The equilibrium shape of the twisted strip is 
determined by minimization of the energy ~ ( k )  as a function of k, where the 
integral in the expression for ~ ( k )  is calculated numerically. Fig. 4 shows 
the equilibrium shapes of a B helical strip for different values of d,, at 
h, = 0. It can be seen that for isotropic strips having h, = dm = 0 a flat 
strip is the most favourable shape (k = 0), while for hm = 0 and nonzero 
values of dm the B helical shape (k # 0) is energetically more favourable. 

From a comparison of the observed shape 01' the twisted WS2 strips 
(Fig. 1C) and the predicted theoretical shapes of the B helical strips with 
minimal elastic energy (Fig. 4), the normalized spontaneous curvature 
deviator dm - 0.015 was determined. By taking into account vo -- 30nm 
(Fig. 1C) the spontaneous curvature deviator D,, of the observed twisted 
WS2 strips was estimated to be -5. 1oP4nm-'. 

CONCLUSION 

Recently, an interesting phenomenon, referred to as the collapse of micro and 
nanotubes, has been observed (16, 18). Usually, MoS2 micro and nanotubes 
are hollow cylinders composed of many S-Mo-S trilayers (Fig. lA, white 
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Figure 4. Calculated B helical shapes with minimal energy for different values of 
d,,, and h, = 0. 

arrow), but some collapsed (flattened) tubes also appear (Fig. IA, black 
arrow), which may be considered as flat strips. It was indicated that deviatoric 
elasticity may provide an explanation for the observed collapse of multishell 
inorganic micro and nanotubes (16). It was found that if the tube perimeter 
exceeds a certain threshold, the collapsed shape corresponds to the absolute 
minimum of elastic energy (16). 

Based on these results we were encouraged to explore the possible role of 
deviatoric elasticity in the stability of helical and twisted shapes observed in 
inorganic strips. We assumed that thin inorganic strips are in general not 
flat when they are in a state of minimal free energy. In the past, the preference 
of thin isotropic strips and shells for bent states was usually mathematically 
characterized by a material constant called the spontaneous curvature Co. 
The corresponding elastic free energy per unit area may then be written in 
the form of Eq. (1) (12, 13). In this work we assumed that the observed 
inorganic strips are in general anisotropic. Consequently, in the contrast to 
the case of isotropic strips and shells considered in previous studies, the 
preference of anisotropic thin strips for bent states are described by two 
intrinsic parameters, the spontaneous mean curvature Hm and the spontaneous 
curvature deviator Dm (Eq. (4)). The stable shapes of strips were then 
determined by minimization of their elastic energy, including the deviatoric 
contribution. 

Based on the results presented we conclude that for an isotropic nano-strip 
having H,,, = Dm = 0 flat geometry is the most favourable, while for an 
anisotropic nano-strip having H, = 0 and nonzero values of Dm, B helical 
geometry is more favourable. Helix A is favoured by equal spontaneous 
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curvatures, i.e. H,,, = D,,,, where the pitch angle I,!J is determined by the 
orientation of the principal axes system of the intrinsic curvature tensor. 
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