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ABSTRACT: We considered general mechanisms enabling the
stabilization of localized assemblies of topological defects (TDs).
There is growing evidence that physical fields represent
fundamental natural entities, and therefore these features are of
interest to all branches of physics. In general, cores of TDs are
energetically costly, and consequently, assemblies of TDs are
unfavorable. Owing to the richness of universalities in the physics
of TDs, it is of interest to identify systems where they are easily
experimentally accessible, enabling detailed and well-controlled
analysis of their universal behavior, and cross-fertilizing knowledge
in different areas of physics. In this respect, thermotropic nematic
liquid crystals (NLCs) represent an ideal experiment testbed for
such studies. In addition, TDs in NLCs could be exploited in several applications. We present examples that emphasize the
importance of curvature imposed on the phase component of the relevant order parameter field. In NLCs, it is represented by the
nematic tensor order parameter. Using a simple Landau-type approach, we show how the coupling between chirality and saddle splay
elasticity, which can be expressed as a Gaussian curvature contribution, can stabilize Meron TDs. The latter have numerous analogs
in other branches of physics. TDs in 2D curved manifolds reveal that the Gaussian curvature dominantly impacts the assembling and
stabilization of TDs. Furthermore, a strong enough curvature that serves as an attractor for TDs is a respective field that could be
imposed in a fast enough phase transition. Assemblies of created TDs created in such a disordered environment could be stabilized
by appropriate impurities.

1. INTRODUCTION
Continuous symmetry breaking phase transitions are ubiq-
uitous in nature and appear at all length scales, including
particle physics, condensed matter systems, and cosmology.1

To describe the essential properties of the resulting broken
phase one should identify the broken symmetry and examine
its elementary excitations and topological defects.2 For this
purpose, Landau-type approaches are particularly convenient,
in which the broken phase configuration is presented by an
order parameter field.3 The modeling is based on symmetry
and topology, for which a microscopic system’s details are of
secondary importance. This is fingerprinted in the emergent
rich pallet of universal behaviors. Furthermore, it seems that
physical fields might constitute fundamental natural entities.4

Interpreting natural phenomena from this perspective might
unveil several unresolved fundamental problems in under-
standing nature. For example, hot topics of constant interest
for decades include the intriguing behavior of neutrinos and
the origin of dark matter and dark energy; physicists are still
struggling to fully understand the proton.5 In these
phenomena, localized field structures6 might play an important
role. To study in detail universal behaviors, it is of interest to
identify experimentally accessible systems where such features

could be studied in detail. Gained knowledge might shed light
on behavior of their analogs in related systems, which are
otherwise hardly experimentally accessible.7

Landau-type modeling of symmetry-breaking phase tran-
sitions introduces order parameter fields describing order in
the broken phase. In general, an order parameter field consists
of two qualitatively different components:8 amplitude fields and
phase fields. Amplitude fields measure the strength of
established order and are in bulk equilibrium characterized
by a single value. In the absence of external ordering fields,
they equal zero in the higher symmetry phase. Phase fields
determine the symmetry breaking system’s choice among an
infinitely degenerate set of competing states. This degeneracy
enables long-range forces and topological defects (TDs). The
latter corresponds to topologically protected localized order
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parameter configurations.9 TDs are classified using group
theory approaches. For this purpose, order parameter manifold

0 is introduced,8 consisting of all equilibrium order
parameter phase configurations. For example, the existence of
the topologically protected wall, line, or point TDs is reflected
in nontrivial homotopic groups7,10 ( )0 0 , ( )1 0 , and

( )2 0 , respectively. These defect configurations are
commonly described by conserved topological charges which
are topological invariants.

Liquid crystal (LC) phases represent an ideal laboratory
system to study the general physics of order parameter
excitations.8,11 They consist of relatively weakly interacting
anisotropic molecules. Weak mutual couplings allow fast
noncollective fluctuations which efficiently average out micro-
scopic details. The resulting mesoscopic orientational order is
described by molecular fields exhibiting in general p-atic
order12,13 (e.g., cases p = 1 and p = 2 can be described by
vector and line fields, respectively). The orientational order is
in several LC phases accompanied also by translational order.
Resulting configurations possess a unique combination of
liquid character, orientational and/or translational order,
softness (capability to respond strongly to even weak stimuli),
optical anisotropy, and optical transparency. This extraordinary
symbiosis of properties allows relative ease of experimental
observations.11,14 In particular, owing to optic anisotropy,
order parameter excitations could be monitored using simple
optic polarization microscopy.10,15−20 Furthermore, a rich
pallet of existing LC phases possesses analogs of almost all
physical phenomena. For example, smectic A (SmA)
configurations bear some resemblance to superconductors21

and Abrikosov lattices,22 coarsening dynamics of defect
structures in a fast enough isotropic−nematic (I−N) quenches
provides clues of the early universe evolution,15,23 and studies
of topological defects7,10,16,17,24 and knots18,20 in LCs give
insight into particle-like excitations in nature.

In this paper, we consider excitations in relatively simple
achiral and chiral nematic thermotropic LC phases. They can
be reached on cooling from the isotropic, i.e., ordinary, liquid
phase. For illustration ease, we consider rod-like LC molecules.
Their local orientational order is at the mesoscopic level
commonly described by the tensor nematic order parameter8

Q. In bulk equilibrium it, can be expressed in terms of the
scalar uniaxial order parameter S ∈ [−1/2,1] (amplitude field)
and pseudovector n (phase field), where states ± n are
physically equivalent. The unit vector n, also referred to as the
nematic director field, points along the local uniaxial direction.
In the achiral nematic phase, Q is spatially homogeneous. In
the chiral LCs, various structures can appear, which include the
helical cholesteric phase and different blue phases.8 The order
parameter phase space8

0 equals the two-sphere with
antipodal points identified (S2/Z2). Its homotopy reads

Z( )1 0 2= and Z( )2 0 = , while ( )0 0 is trivial.
Therefore, these systems can exhibit topologically protected
line and point defects. On the other hand, the wall defect could
be stabilized only due to energy reasons.

2. MESOSCOPIC MODEL
We focus on bulk thermotropic achiral and chiral uniaxial LCs.
We also consider cases where LC is manipulated by an external
electric field E. In the frame of the Landau−de Gennes
mesoscopic model, one commonly expresses the free energy

functional in terms of the traceless and symmetric tensor
nematic order parameter8

Q s e e
i

i i i
1

3

=
= (1)

Here, si stands for the amplitude fields (Q eigenvalues) and ei
are the phase fields (normalized eigenvectors of Q). In the case
of uniaxial order, Q is simplified to

SQ n n I( /3)= (2)

2.1. Free Energy. We express the free energy density f = fc
+ fe + f f as a sum of condensation ( fc), elastic ( fe), and external
ordering field ( f f) contributions:8,25

f
a

T T Tr
b

Tr
c

TrQ Q Q
3

2
( )

9
2

9
4

( )c
0 2 3 2 2= * +

(3a)

f
L

q LQ Q Q
2

2e
2

0= | | + · ×
(3b)

f E QE
3f

0= ·
(3c)

We included only the most essential symmetry allowed terms
to describe phenomena of our interest. Numerical coefficients
are introduced for later convenience. The condensation term
determines the local amplitude S imposed by inherent LC
properties. These are defined by positive phenomenological
material parameters a0, b, c, and T*. The term enforces first

order phase transition at T T b
a cIN 4

2

0
= * + , where the

e q u i l i b r i u m v a l u e o f S i s g i v e n b y
i
k
jjj y

{
zzzS T T( ) 3 9 8S T T

T Teq IN 4
0

IN
= + *

* and Seq (T > TIN) =

0, where S S T( ) b
c0 eq IN 2

= = . LC elasticity is approximated by
a single positive elastic constant L. q0 represents the LC
inherent chirality wave vector. ε0 is the vacuum permittivity,
and Δε measures the dielectric anisotropic response in an
external electric field E. We limit to LCs exhibiting positive
anisotropies, where n tends to be aligned along E. One
commonly assumes that the material quantities described
above are temperature independent.

The model is characterized by numerous material-dependent
lengths. For later convenience, we introduce the uniaxial (ξ)
and biaxial (ξb) coherence lengths.8,11 In the nematic phase,
they are expressed as

L
f

S
L bS/ , /( )

2
c
(eq)

2 b eq= =
(4)

2.2. Nematic Director Field Distortions. Let us focus on
the nematic director field excitations which are, in general,
relatively easily (i.e., the corresponding energy costs are low)
established. It has been recently shown that the tensor gradient
∇n can be decomposed into four fundamental modes,26,27

referred to as the bend, double splay, double twist, and
tetrahedral splay modes. Each of these modes could be
separately excited.

The classical Oseen−Frank free energy9,26 is expressed as a
sum of symmetry-allowed terms:
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weighted by temperature-dependent Frank splay (K11), twist
(K22), bend (K33), and saddle-splay (K24) elastic constants.
However, these terms are generally coupled. The saddle splay
distortions in general includes also splay and twist distortion.
In particular, this contribution plays a particularly important
role concerning topology. Namely, the saddle splay term can
be expressed8 as the Gaussian curvature Kg of a small surface
patch whose surface normal points along n:

Kn n n n( ) 2 g· · + × × = (6)

In pioneering studies, this term has been commonly discarded
because it can be transformed into the surface enclosing the
LC body. It has been expected that for strong enough surface
anchoring the anchoring contribution is dominating at the
surface, overshadowing the saddle-splay contribution. How-
ever, this term determines volume LC elastic properties. By
neglecting it, we discard possibilities to stabilize topological
defects,28 as will be shown in the following. In particular, we
will illustrate that the Gaussian curvature plays an essential role
in the physics of TDs.
2.3. Topological Excitations. As the simplest illustration,

we first consider an achiral two-dimensional (2D) nematic
where LC behavior is dictated only by the condensation and
elastic free energy penalties. In the (x,y) Cartesian plane, we
use parametrization n = ex cos θ + ey sin θ and assume spatially
homogeneous uniaxial order. The unit vectors (ex,ey) point
along the Cartesian (x,y) coordinates. Solutions to the
equilibrium Euler−Lagrange equation ∇2θ = 0 read:8

m 0= + (7)

Here, ( )arctan y
x

= , m stands for the winding number, and θ0

is a constant. Structures with m = 0 describe equilibrium
spatially homogeneous nematic configurations where the
symmetry breaking direction is given by θ0. Furthermore,
cases m ≠ 0 correspond to topological defects centered at (x,y)
= 0. Due to head-to-tail invariance of n, the winding number
can exhibit half integers. In 2D, m plays the role of topological
charge, which is a topological invariant. Conservation of m
dictates merging, decaying, and transformations of TDs. TDs
bearing m > 0 and m < 0 are commonly referred to as defects
and antidefects, respectively. Figure 1a depicts an m = 1 defect.
In general, TDs exhibiting a minimal value of m (i.e., |m| = 1/
2) can be locally stable,8,29,30 and defect pairs {−m,m} in the
nematic phase tend to annihilate into a defectless state. In
Figure 1b, we show a defect pair {1/2, −1/2}, which could be
induced by a local thermal fluctuation, prior to annihilation.
On increasing the temperature above TIN, numerous pairs {1/
2, −1/2} are formed, where their mutual interaction is
overshadowed by thermal fluctuations. The resulting “gas” of
TDs corresponds to the isotropic phase.31 A representative
time snapshot, where several pairs are present, is shown in
Figure 1d.

In 2D, only point defects are possible. In 3D, in addition,
line defects (disclinations) are ubiquitous.8,23,32 These can
either form closed loops9,33−37 or originate and terminate at an
LC limiting substrate.9,11,38,39 In 3D, one assigns to TDs in
addition to winding number (which reveals the local structure
of disclinations) also 3D integer topological charge q, which is

an integer. It is defined10,40,41 by an integral over a closed
surface parametrized by variables u and v:

q
u v

u vn
n n1

4
d d= · ×

(8)

Note that the sign of q is not uniquely defined due to the head-
to-tail invariance of n.

A closed loop of a wedge disclination, which is locally
defined by winding number m = 1/2 or m = −1/2, bears
topological charge |q| = 1. On the other hand, the twist
disclination, in which the winding number switches the sign of
m, holds q = 0 (i.e., it is chargeless). Therefore, the far director
field of a closed wedge disclination resembles that of a point
defect of charge |q| = 1. An example is schematically sketched
in Figure 2a. On the other hand, the far field of an isolated
closed twist disclination is essentially spatially homogeneous.
Due to their chargeless character twist, disclination loops are
not topologically stable.

In nematics, wall defects could be stabilized only energeti-
cally (i.e., not topologically) by imposing contradicting
orientational order on distances comparable to the biaxial
coherence length.42,43 Furthermore, to avoid singularity at the
centers of defects their cores35,44,45 locally enter either
isotropic or biaxial states.

3. RESULTS
In the following, we demonstrate key TD creation and
stabilization mechanisms. Note that, in general, bulk nematic
equilibrium tends to be defectless. Namely, the cores of TDs
are, in general, energetically expensive, and furthermore q ≠ 0
fingerprints elastic distortions in n.
3.1. Chirality and Saddle-Splay Imposed Stabiliza-

tion. In Figure 1c, we show a 2D assembly of three defects

Figure 1. Characteristic director field of nematic point defects in 2D.
(a) m = 1 defect. (b) Pair of defects {1/2, −1/2}. (c) An assembly of
three defects {−1/2, 1, −1/2}. (d) An example of numerous defects
which are excited by strong enough thermal fluctuations. In cases b
and c, the far nematic director field is essentially spatially
homogeneous.
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bearing topological charges {m = −1/2, m = 1, m = −1/2} so
that the total charge of the system equals zero. Under what
conditions could this or a similar assembly be stable? Note that
this three-component “quasi-particle” roughly resembles a
neutron (i.e., its electric charge is zero, and it consists of three
charged quarks).

In the following, we illustrate that a similar assembly could
be stabilized in chiral 3D LCs in merons,46 members of the
skyrmion6,24,28 family. For this purpose, we consider the
double twist27,28 nematic director field excitations. Locally, the
corresponding n is roughly approximated in the cylindrical
coordinate system (ρ, φ, z) by46

Q Qn e esin( ) cos( )z= + (9)

where the double-twist (DT) periodicity Q is a variational
parameter. The nematic distortion of this elastic mode nearby
the symmetry axis at ρ = 0 is depicted in Figure 2b. To
estimate the equilibrium value of Q, we calculate the free
energy penalty of the DT solution, eq 9, within a cylinder of
length h and radius R

Q2
= (i.e., n(ρ = R) = −eφ). The

corresponding free energy reads

i
k
jjjj

y
{
zzzzf

K
q Q

Q K Q

K
Q

Q

2
sin(2 )

2 2
sin ( )

sin(2 )

e
22

0

2
33

4

2

24

= +

(10)

The DT saddle-splay penalty is given by

F K h QR K h2 sin ( ) 224 24
2

24= = (11)

Therefore, the saddle splay elasticity promotes DT excitation
for K24 > 0. Of interest to us is obtaining conditions that

minimize the free energy penalty f h f2 d
V

R
DT

1
0 e= of

DT solution per LC volume V = πR2h. In terms of
dimensionless quantities Q

q0
= , k K

K3
33

22
= , k K

K24
24

22
= , and

x
R

= , one calculates f DT(μ), which is minimized for
Q

qmin
min

0
. It follows that

i
k
jjjjj

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ
y
{
zzzzz

k k

k k

k

(4 )/ 8 EulerGamma(1 3 ) 16

4 CosIntegral ( 1)

CosIntegral 2 log 2 log
2

min
2

3 24

2
3 3

3

3

= + + +

+ [ ] +

[ ] + [ ] +
(12)

In Figure 3, we plot μmin for different anisotropies of Frank
elastic constants. One sees that for reasonable values of K24 the
DT periodicity monotonically increases upon increasing K24.

Next, we illustrate how a simple Landau-type analysis reveals
conditions promoting DT-like local excitations. We introduce
scaled dimensionless periodicities

Q q R Q, QR0 0 DT= = (13)

and integrate the free energy density given by eq 10 in the
cylindrical volume of the height h and radius R and expand the
resulting free energy expression ΔFDT in powers of QDT.
Therefore, we consider examples satisfying the condition QR <
1 (e.g., QR ∼ π/4 in the so-called half skyrmions realized in
conventional blue phases46). Landau expansion yields

F
hK

k Q k k Q

k Q Q k Q Q F

2
(1 )

1
24

( 8 8 3 )

1
6

DT

22
24 DT

2
24 3 DT

4

2 DT 0 2 DT
3

0 0

= + + +

+ +
(14)

where F0 is independent of QDT. In achiral samples, it follows

Figure 2. (a) The far field of a closed m = 1/2 disclination loop (red
line) resembles the director field of the q = 1 hedgehog point defect.
This nematic structure is commonly stabilized in LCs confined within
a droplet, whose surface imposes a homeotropic anchoring condition
(i.e., n is aligned along the local surface normal direction). (b) Sketch
of the DT local structure close to the cylindrical symmetry axis of the
excitation. (c) Schematic structure of a lattice of merons within the x/
y plane. The dashed rectangle represents a chargeless region. It
consists of an escaped m = 1 nonsingular structure and two singular m
= −1/2 defects.

Figure 3. μmin = Qmin/q as a function of k24 = K24/K22 for different
values of k3 = K33/K22. Full line, k3 = 1; dashed line, k3 = 2; dashed-
dotted line, k3 = 3.
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24 3 DT

4
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= + + +
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Therefore, the double-twist excitation could be stabilized only
for k24 > 1, which is not realized in conventional LCs due to
the Ericksen stability condition,47 which limits the maximal
value of K24.

On the contrary, in chiral samples, the DT excitations are
always (meta) stable. Minimization of ΔFDT taking into
account the expansion up to the quadratic term in QDT yields

Q
q

K K2(1 / )
0

24 22
=

(16)

and

F
hK

k Q

k2 4(1 )
DT

22

24 0
2

24
=

(17)

Note that ΔFDT < 0 for k24 < 1.
We next discuss the stability of the Meron46-type structure,

which could be observed in thin films. Merons are determined
by DT cylinders for which QR = π/2. They can form periodic
structures which are enabled by a lattice of line disclinations m
= −1/2 running along the cylinder axis as depicted in Figure
2c. Their presence is required topologically. Note that the
central regions of DTs correspond to nonsingular 3D patterns,
characterized by m = 1 winding number in the x/y plane. This
structure avoids singularity via local escape of the nematic
director field along the z axis. The total LC structure is
topologically neutral (i.e., the total 3D charge and 2D charge in
each plane equal to zero). Consequently, within the x/y plane,
each DT’s imposed m = 1 “escaped” singularity must be
compensated by two m = −1/2 disclinations.

Further pieces of evidence that suggest the stability of the
separated local assembly of {−1/2, 1, −1/2} TDs results from
the analysis of the saddle-splay elasticity within the Meron
structure. The related free energy density contribution can be
expressed as f 24 = −2K24KG (see eq 6). The Meron-type
excitation exhibits regions displaying KG > 0 (the central
“escaped” volume) and KG < 0 (the outer part). 2D studies
suggest48 that regions exhibiting KG > 0 (KG < 0) attract
defects with m > 0 (m < 0). Therefore, if a Meron-like
excitation is formed in the nematic fluid, one expects that
regions exhibiting KG > 0 (KG < 0) attract m > 0 (m < 0)
defects. In addition, the saddle-splay elasticity locally

renormalizes temperature. To illustrate this, we focus on the
quadratic condensation term and the saddle-splay elastic term
(we label them as f 2) close to the I−N phase transition, where
quadratic terms in S dominate. Taking into account8 K24 ∼
LS2, it follows that f 2 = a0(T − T*)S2 − 2K24KG = a0(T − Teff* )
S2, where

T T L
a

K2
Geff

0

* = * +
(18)

Note that in the absence of other elastic contributions, the

resulting phase transition temperature reads T T b
a cc eff 4

2

0
= * + .

Therefore, LC regions exhibiting KG > 0 (KG < 0) exhibit
effectively lower (higher) temperatures. Consequently, regions
with KG > 0 promote orientational order and consequently
unsplit m = 1 local structure escaping49 along the third
dimension. On the other hand, in KG < 0 regions, singular m =
−1/2 structures are preferred.
3.2. Curvature Driven Stabilization. The impact of

curvature on TDs is well explored in 2D curved manifolds
exhibiting in-plane ordering. Most studies48,50−53 have been
based on XY-type modeling. Note that there are several
experimental systems where such predictions could be realized.
Examples include biological membranes54 and LC
shells.51,52,55−57 Theoretical studies and simulations reveal
that surface patches possessing KG > 0 and KG < 0 are an
attractor for point TDs bearing m > 0 and m < 0, respectively.
This could be intuitively guessed by considering the Gauss−
Bonnet and Poincare−Hopf theorems.58 According to them,
the total winding number mtot of TDs hosted by the ordering
field on a closed surface equals

m K dA
1

2tot G= =
(19)

Here, dA stands for the infinitesimally small surface patch, χ =
2(1 − g) is the Euler characteristic of the closed surface, and
the genus g counts the number of the holes that the surface
exhibits. For example, for spherical topology, it holds g = 0 and
mtot = 2. The differential form of eq 19 suggests

dm
dA

K
2tot G=

(20)

Therefore, KG > 0 (KG < 0) locally enforces dmtot > 0 (dmtot >
0). According to the Effective Topological Charge Cancella-
tion59 (ETCC) mechanism, each surface patch, to which one
assigns a characteristic spatially average value of KG, tends to

Figure 4. Order parameter profiles of equilibrium prolate nematic shell shape. (a) The nematic director field is superimposed onto the order
parameter profile λ/λ0 in the φ/s plane (λ0 describes the bulk equilibrium value of λ). (b) 3D shell shape. (c) Gaussian curvature (Kg), mean
curvature (Hc), and deviatoric curvature (Dc) of the shape. v = 0.80, R/ξ = 7, k = κ. Positions of TDs are marked with capital letters. R A/4= .
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be topologically neutral. Therefore, the “smeared Gaussian
curvature charge” (the right-hand of eq 20) is screened by
winding number or “real” (the left-hand of eq 20). This local
tendency can be realized by rearranging existing TDs or by
creating additional pairs {defect, antidefect}. The latter process
is possible if regions exhibiting strong enough local curvatures
are present.

To illustrate this curvature driven assembling of TDs, we
consider closed surfaces (shells) of revolution exhibiting in-
plane nematic order. The corresponding 2D Landau−de
Gennes−Helfrich model54 is summarized in the Appendix.
The orientational order is presented by in-plane nematic
director field n and 2D order parameter field λ, which equals
zero exactly at the center of a point defect. The relationship
between 3D and 2D tensor nematic order parameters is
described in ref 60. In modeling, we change the shape of shells
and calculate the related nematic texture. The shape is
determined by a relative volume v 0, 1V

V0
= [ ] of a shell.

Here, V refers to the volume enclosed by an axially symmetric
shape of total surface area A, and V0 is the volume of the
sphere having the same surface area.

In Figures 4−6, we plot a characteristic pattern of defects in
different shell geometries which all exhibit spherical topology
which imposes mtot = 2. Consequently, in a large enough
spherical shell (i.e., its radius is much larger than the nematic
order parameter correlation length), such a structure would
exhibit four m = 1/2 defects. These defects are mutually
repelling and in a spherical shell occupy corners of a
hypothetical tetrahedron52,57 inscribed within the sphere. In

prolate shells (Figures 4), which are stable for relatively large
values of v, these TDs are shifted toward the poles of a shape.
Namely, at its poles, the Gaussian curvature exhibits a maximal
positive value, and consequently the poles represent attractors
for TDs bearing m > 0. The position of defects reveals the
compromise between the attraction of m = 1/2 defects to the
poles and their mutual repulsion. In the regime of intermediate
values54 of the relative volume, disk-like shapes are established,
see Figure 5. This geometry exhibits maximal Gaussian
curvature at the equatorial line. Consequently, the four
mutually repelling TDs are assembled along this line. Finally,
for relatively low values of v, the so-called stomatocyte shapes
are formed, see Figures.6. In these structures, neck-like regions
exhibiting relatively large values of |Kg| exist, which enable local
formation of an additional two {defect, antidefect}. The two m =
−1/2 antidefects are assembled within the neck where Kg < 0.
The remaining six mutually repelling m = 1/2 defects are
assembled in regions where Kg > 0.
3.3. Phase Transition and Disorder Driven Stabiliza-

tion of TDs. The most ubiquitous source of TDs is fast
enough symmetry breaking phase transitions, which is
explained by the universal Kibble−Zurek mechanism.1,61

Note that the mechanism was originally introduced in
cosmology to model coarsening dynamics of topological
defects in the Higgs field in the early universe. The only two
conditions that need to be fulfilled for the KZ mechanism are
continuous symmetry breaking and a finite velocity of
information propagation. According to it, the following
features are expected. If a phase change is realized on a short
enough time scale with respect to the relevant amplitude order

Figure 5. Order parameter profiles of equilibrium oblate nematic shell shape. (a) The nematic director field is superimposed onto the order
parameter profile λ/λ0 in the φ/s plane. (b) 3D shell shape. (c) Gaussian curvature (Kg), mean curvature (Hc), and deviatoric curvature (Dc) of the
shape. v = 0.60, R/ξ = 7, k = κ. Positions of TDs are marked with capital letters.

Figure 6. Order parameter profiles of equilibrium stomatocyte nematic shell shape. (a) The nematic director field is superimposed onto the order
parameter profile λ/λ0 in the φ/s plane. (b) 3D shell shape. (c) Gaussian curvature (Kg), mean curvature (Hc), and deviatoric curvature (Dc) of the
shape. v = 0.20, R/ξ = 7, k = κ. Positions of TDs are marked with capital letters.
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parameter relaxation time, then order in well-enough separated
spatial regions is not correlated due to the finite speed of
information propagation. Consequently, different symmetry
breaking directions are in general selected. Domains are
formed, within which the phase ordering field points along a
similar direction. At domain interfaces, topological defects are
created.

The subsequent domain growth is enabled by the
annihilation of defects and antidefects. This reduces the
concentration of energetically expensive domain walls. In
common cases and in the absence of “impurities,” the
characteristic linear size of domains grows with time, exhibiting
a universal scaling law62,63 ξd ∝ tγ, where γ is the scaling
coefficient. Note that qualitatively different TDs appear for
polar and axial (i.e., quadrupole) symmetry breaking fields.
The former can exhibit topologically stable point defects. On
the contrary, nematic-like order also allows line defects.

The presence of “impurities”, which often act effectively as
random-field like disorder, can arrest the domain growth and
consequently stabilize TDs. In particular, phases reached by
continuous symmetry-breaking phase transition are particularly
susceptible to disorder due to the existence of easily excitable
Goldstone modes. According to the Imry−Ma theorem,64 even
an infinitesimally weak random-field type of disorder can
destroy long-range order of a pure system. The resulting
structure is expected to exhibit short-range order, characterized
by the Imry−Ma domain size ξd(IM) ∝ w−2/(4−d). Here, w
measures the disorder strength and d stands for the spatial
dimensionality. However, several studies reveal65−68 that, for
weak enough disorder, quasi-long-range order or even long-
range order might be established.

In the following, we illustrate the derivation of the
characteristic size ξd(p) of protodomains that are nucleated via
the universal Kibble−Zurek (KZ) mechanism. We show that
created domains could significantly depress the resulting phase
transition temperature, which has not yet been reported. As a
demonstrating example, let us consider a fast enough
isotropic−nematic phase transition. Let us describe the
temperature variation by the dimensionless temperature r =
(T − T*)/T*, where T* stands for the supercooling
temperature. Namely, in a fast enough isotropic phase,
supercooling is very likely. We characterize the fast quench
by linear time dependence characterized by the quench rate τQ:

t rQ= (21)

Here, τQ describes the time needed to increase the temperature
from T = 0 to T*. Close to weakly first-order I−N phase
transition, the characteristic amplitude order parameter
relaxation length and relaxation time obey equations

r r
, v

0 0

| | | | (22)

τ0 and ξ0 determine characteristic responses deep in the
symmetry broken phase, and in typical nematic LC it holds η ∼
1 and v ∼ 1/2. These values of critical exponents are also
predicted by the mean-field description.

To estimate the size of first formed domains, the so-called
protodomains of size ξp, one originates from the disordered
phase. The maximal size of fluctuations exhibiting locally
(para) nematic order within the disordered isotropic “sea” is
estimated by ξ (see eq 22). The temperature regime where |t| >
τ is referred to as the “impulse” regime. In it, the dynamic of
the system is fast enough to adapt to changes in temperature,

and the system displays a roughly equilibrium-like order. The
qualitative change in behavior is expected when the time to
reach the phase transition becomes comparable to the
relaxation time. This time is termed as the Zurek time and is
defined by the condition |tz| = τ. It follows

t ( )z Q Q0
1/1

0| | +
(23)

In the so-called adiabatic time regime −|tz| < t < |tz|, the order
parameter dynamics are relatively slow. In approximate
treatment, one assumes that the dynamics are frozen in and
the system falls out of equilibrium. When the system exits the
adiabatic regime at t = |tz|, the dynamics unfreeze. The size of
the largest fluctuation generated clusters in the isotropic phase,
which “survive” the phase adiabatic time regime crossing, is
estimated by
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(24)

and ξp ∼ ξ(max).
We suggest that the elastic free energy contribution should

also be included in the analysis, which was neglected in the
original estimates made by Zurek. Below, we present expected
related consequences which could be experimentally tested.

We express the free energy density as f ∼ fc + fe, where (see
eq 3)

f a T T S bS cS( )c 0
2 3 4* + (25a)

f LS L Sne
2 2 2| | + | | (25b)

We thus neglect biaxial states. We assume that the quench is
realized fast enough so that domain structure in the director
field is established after the Zurek time. With this in mind, we
set |∇n|2 ≈ 1/ξd2, where ξd describes a typical domain size. As a
reminder, the director relaxation is slower than that of S. It
follows that

f a T T S bS cS
LS

a T T S bS cS

( )

( )
d

c 0
2 3 4

2

2

0 eff
2 3 4

* + +

= * + (26)

where ( ) ( )T T T1 1L
a Teff

d d0
2

0
2

2
* = * + * +* . Note that in

bulk equilibrium it holds that TIN = T* + b2/(4a0b). Therefore,
the elastic distortions effectively decrease the local phase
transition temperature:

T T T
d

IN
(eff)

IN
0
2

2= *
(27)

For example, for the 5CB LCs request, ΔTIN = |TIN − TIN
(eff)| ≈

1K would suggest that T T/ 52 nmd 0 IN* , which is a
sensible value.

4. DISCUSSION
In most familiar examples, TDs in nematic LCs are stabilized
by appropriate boundary conditions at LC-confining body
interfaces.10,14,30,34,38,39 In these cases, surface conditions
impose topological constraints (embodied in nonzero topo-
logical charges) that stabilize various configurations of TDs.
Within a region, the total topological charge qtot (i.e., mtot in
2D) is determined by topologically imposed constraints. Note
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that for a given value of qtot there can be different
configurations of defects, which however must obey the
topological charge conservation law. Therefore, for instance,
strong thermal fluctuations could trigger a transformation
between two different competing structures hosting TDs;
however, qtot remains unchanged.

In the present paper, we consider first cases where the total
topological charge of the system equals zero. In such a setting,
TDs are not enforced topologically but can be stabilized on
energy grounds. For illustration, we use a simple Landau-type
analysis. It reveals conditions that set fertile ground to form
TDs. We demonstrate that a combination of chirality and
saddle-splay elasticity may promote strong enough double-
twist fluctuations. The latter might stabilize localized phase
field distortions which are in a relevant 2D cross-section
characterized by winding numbers {−1/2, 1, −1/2}. Such an
assembly is topologically neutral and could be embedded in a
uniform director far-field. Furthermore, the resulting saddle-
splay deformation changes local effective temperature. For K24
> 0 (which is commonly realized8 in nematic LCs), the local
director field exhibits a positive Gaussian curvature Kg profile
which effectively decreases local temperature. Consequently,
this region favors the escaped nonsingular m = 1 deformation,
which does not require local LC melting. On the contrary,
regions possessing Kg < 0 (and a concomitant local increase in
T) are more favorable for m = −1/2 distortions whose cores
require a local change of LC amplitude. Such assemblies are in
LCs referred to as merons.46 In confined geometries,16,24

merons could be stable even as isolated entities, where their
structure could be studied using relatively simple confocal
polarizing microscopy.16 Furthermore, in such a setting, their
structure could be enlarged, i.e., making it even better
experimentally approachable, by approaching the critical
point.69 Namely, close to critical points, relevant order
parameter amplitude correlation time and correlation length
diverge.8 One could tune critical conditions70−73 simply by
reducing the cell thickness, supposing that the surface-wetting
interaction has a term that is linearly conjugated with the order
parameter amplitude. Note that merons are members of the
skyrmion family,46 which has several analogs6,74 in other
branches of physics. Experiments in LCs evidence that strong
enough chirality allows stabilization of quarter skyrmions, half
skyrmions, or structures between the mentioned two
configurations.75 Indeed, skyrmions (the so-called full-sky-
rmions) were first introduced in particle physics to explain the
structure of mesons and baryons.6 Therefore, LCs provide a
particularly convenient testbed to study in detail the
fundamental properties of such localized structures.

The importance of Kg in stabilizing TDs is evidently shown
in 2D structure via Gauss−Bonnet and Hopf−Poincare
theorems.58 Note that these theorems are based on universal
parallel transport.76−79 It was originally introduced to describe
parallel lines in curved manifolds.76,79,80 Based on that, general
relativistic theory was developed in which the curvature of
space−time emerges as a gravitational force. Parallel transport
was also used in nematic LCs to determine the presence of
defects57,81,82 (i.e., regions exhibiting nonzero winding
number) in a given surface patch hosting nematic order.
Furthermore, using it, one can define intrinsic and extrinsic
geometric potentials82 which determine regimes where defects
are likely to appear without solving Euler−Lagrange equations.
Extremes of the intrinsic geometric potential are in general
attracting TDs. On the contrary, regions exhibiting a large

absolute value of the extrinsic geometric potential repel TDs.
To calculate the potentials, one essentially needs only
information about the geometry54 of the manifold which
hosts nematic order. These and other studies reveal that
nematic LCs are perfectly suited to study the impact of
curvature on TDs. Furthermore, concepts developed in 2D,
where phenomena could be relatively visualized, could be
applied to higher manifolds exhibiting higher dimension-
alities.58

Efficient generators of TDs are also sudden changes in
systems. Due to them, distant enough regions cannot
synchronize their ordering. Resulting frustrations are often
resolved by the creation of TDs. Consequently, in fast enough
symmetry phase transition domains are formed. Note that the
early I−N coarsening dynamic is dominated by chargeless
(twist) disclination loops.32 Therefore, these TDs are most
ubiquitous in the early regime. They weakly interact with the
surrounding nematic structure, and they gradually vanish
because they are not topologically protected.83,84 Recent
studies39,85 suggest that these disclinations can act simulta-
neously like defects and antidefects. This remains somehow for
Majorna particles86 and neutrinos, the behaviors of which are
still not fundamentally understood. Note that recent
experimental18,41,87 studies suggest that twist nematic loops
could be stabilized by toroidal topology. In these studies,
colloids of toroidal topology, where their surface enforces
homeotropic anchoring (i.e., nematic director tends to be
aligned along the local surface normal), are immersed in
nematic LC. Note that in 3D the torus does not enforce the
3D topological charge.41 However, 2D analysis reveals that
TDs must be present. Therefore, either pair or pairs
{defect,antidefect} are formed, or chargeless loops. Namely, a
torus possesses regions exhibiting Kg > 0 and Kg < 0, which
individually attract different signs of winding number. Recent
experiments87 reveal that torus geometry efficiently stabilizes
twist loops in chiral LCs. Hence, if neutrinos have roughly
similar local structures, they could be stabilized by an
appropriate topology of higher dimensional space (exhibiting
alternating Kg > 0 and Kg < 0 regions) in the string theory
description of nature.

Finally, if impurities are present, they could stabilize88,89

TDs which are formed in a fast enough quench. The resulting
phase might exhibit glass behavior,89,90 which also represents
an open problem in physics. Therefore, looking at the glass
problem from the perspective of curvature-trapped TDs might
yield some additional understanding in the field.

5. CONCLUSIONS
TDs in a physical field are inevitably formed in symmetry-
breaking phase transitions. Such transitions allow the existence
of competing configurations whose coexistence is enabled by
TDs. Namely, their local structure permits realization of large
changes in ordering on relatively short length scales, and for
this reason they serve as mediators between “conflicting”
regions. There are several pieces of evidence that curvature
plays a crucial role in stabilizing TDs. An ideal testing bed to
study curvature-driven stabilization of TDs is thermotropic
nematic LCs. They exhibit temperature-driven isotropic−
nematic phase transition in which continuous rotational
symmetry is broken. Established orientational order is
commonly described by the second rank traceless and
symmetric tensor nematic order parameter, which is in bulk
equilibrium determined by scalar order parameter (amplitude)
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field and nematic director (phase) field. The equilibrium
degeneracy of the latter enables the existence of TDs. We have
illustrated using a simple Landau-type analysis how the
combining effect of chirality and saddle splay elasticity could
stabilize TDs in a system whose total topological charge equals
zero. In this case, TDs are stabilized due to inherent “defect-
fertile” conditions within the system. The saddle-splay
deformation is in turn related to the Gaussian curvature of
hypothetical planes whose normal is pointing along local
nematic director field n. In general, the impact of Gaussian
curvature and curvature on TDs is well explored in 2D systems,
and we have provided typical examples which manifest these
effects. Furthermore, curvature in n patterns could be
nucleated in a fast enough phase transion, and generated
TDs could be stabilized by impurities present in the system.
Similar phenomena are expected to appear in other systems
reached via continuous symmetry-breaking phase transitions.

■ APPENDIX: 2D LANDAU−DE GENNES−HELFRICH
MESOSCOPIC APPROACH

The geometry of the shape, whose local normal is given by v, is
determined by the curvature tensor90,91 C, and the orienta-
tional ordering on the shape is described by the 2D nematic
tensor order parameter81 Q(2D). These tensors are expressed in
their eigenframes as

C CC e e e e1 1 1 2 2 2= + (A1)

Q n n n n( )(2D) = (A2)

In eq A1, the unit vectors {e1,e2} determine a local principal
curvature frame, where {C1,C2} are the corresponding principal
curvatures. In eq A2, the nematic director fields n and n⊥
correspond to the Q(2D) eigenvectors, where v = n × n⊥, and λ
∈ [0, 1/2] is the orientational order parameter. The free
energy contributions f = fH + fc + fe are expressed as follows:

f Tr C
2

( )H
2=

(A3)

f T T Tr TrQ Q( )
4

( )c 0 c
(2D) (2D) 22 2

= +
(A4)

f k Q
1
2e s

(2D) 2= | |
(A5)

where f H stands for the classical Helfrich contribution,90 which
resists surface bending deformations for a positive bending
modulus κ. The nematic condensation contribution fc is
enforcing equilibrium nematic orientational order

T T( )/0 0 c= below a critical temperature Tc. The
quantities α0 and β are positive phenomenological constants.
The elastic contribution fe is weighted by the positive elastic
constant k; ∇s stands for the surface gradient operator.81

In simulations, we restrict to closed axisymmetric two-
dimensional shells exhibiting spherical topology. The shell
surface is constructed by the rotation of the profile curve about
the z axis by an angle of φ = 2π in order to obtain a surface of
revolution. A generic point on the surface is given by59

s s z sr e e e( ) cos ( ) sin ( )x y z= + + (A6)

where ρ(s) and z(s) are the coordinates of the profile in the ρ/
z plane and s represents the arc length of the profile curve. The
total length of the arc of a profile is denoted by Ls. We define
that the principal directions (e1, e2; see eq A1) point along

meridians (φ = const) and parallels (s = const), since these are
the lines of principal curvatures {C1,C2}. On any point on the
surface, we can calculate the Gaussian curvature Kg = C1 C2,
the mean curvature H C C( )c

1
2 1 2= + , and the deviatoric

curvature D C Cc
1
2 1 2= | |.
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Mertelj, A.; Petelin, A.; Nych, A.; Marincǐc,̌ M.; Pusovnik, A.; Ravnik,
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