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Figure 1: Upper picture: a transmission electron microscope image of the tubular
nanoexovesicles released from the erythrocyte membrane. The erythrocyte suspen-
sion was incubated with a detergent dodecylmaltoside (which induced budding of
the membrane) and then peletted by centrifugation. A drop of therefrom isolated
nanoexovesicles was applied on a fornwar-coated grid. After drying, fixing and stain-
ing the nanoexovesicles were observed under Joel 100SX electron microscope ([32]).
Lower picture: a transmission electron microscope image of the MoS2 nanotube
grown by chemical transport reaction at 1010 K. The nanotube is hollow with open
end. Its wall, 8 nm in thickness is composed of chirally grown S – Mo – S molecular
layers ([33]).

1 The systems

In this section we will briefly describe the two systems forming the substance of the
nanotubes that are the subject of our experimental study: phospholipid bilayer in
the aqueous solution and a single MoS2 molecular layer composed of coaxial sulphur
- molybdenum - sulphur cylinders.

1.1 Phospholipid bilayer

Phospholipid molecules can be described as composed of two parts: a multipolar
headgroup and two carbohydrate (CH2)n − CH3 tails. The two tails may be of dif-
ferent lengths and may also contain double bonds between the carbon atoms (for
a thorough description of different phospholipid molecules see for example an ex-
cellent book by Cevc and Marsh [34]). When mixed with water above a certain
threshold concentration the phospholipid molecules assemble into a bilayer (Fig.2)
so that the tails are hidden from the water. In this way the least of the hydrogen
bonds between the water molecules are broken due to the presence of phospho-
lipid molecules. Additionally, the phospholipid headgroups can interact with the
adjacent water molecules. The thickness of the bilayer is around 5 nm [34]. It is
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Figure 2: A scheme of a phospholipid bilayer. A phospholipid molecule is composed
of a headgroup and two tails.

also energetically favorable that the bilayer closes upon itself to avoid the contact
of hydrocarbon chains with water at the boundaries. Closing of the bilayer yields
phospholipid bilayer vesicles. Various shapes and sizes of the vesicles were observed
[35]. In simple systems composed of water solution and phospholipid, the shape of
the phospholipid vesicle is determined by the properties of the phospholipid bilayer
and by the external fields (if any). Therefore, the experiments where the shape can
be observed in a controlled environment give important information on the physical
mechanisms that are acting in the phospholipid bilayer membrane.

It is established that the phospholipid bilayer is an essential constitutive part
of cellular membranes [36]. In this light phospholipid vesicles can be viewed as a
convenient system where we expect to learn more about the function of the cellular
membranes and ultimately, how to influence the function of the cell.

1.2 S – Mo – S molecular layer

The MoS2 compound belong to Group VI family of transition metal dichalcogenides
with extremely non-isotropic layer type structure. The weak interaction holding the
layers is in great part of van der Walls type. The single S-Mo-S molecular layer
shows a trigonal symmetry (Fig.3a). The transition metal atom is co-ordinated by
six sulphur atoms situated at corners of a trigonal prism. The molecular layers
can be stacked in two ways, as a hexagonal polytype 2Hb (Fig. 3b) with two
molecular layers (P63/mmc) and as rhombohedral polytype 3R (Fig. 3c) with three
molecular layers per unit cell (R3m). At special conditions both polytypes can
nucleate simultaneously [37].

In materials with low-dimensional structures, the instability of weakly bonded
crystalline sheets against folding and the saturation of dangling bonds in self-
terminated planes stabilize spherical or cylindrical crystal shapes in opposition to
flat geometry. The nonalloyed nanotubes are always found in the helical forms
[38, 23, 39]. Projection of a tube axis onto the basal [0001] plane of the wall is
rotated with respect to the 〈101̄0〉 lattice directions for an angle of chirality α.
Different chiralities were found in the nanotubes, from a few degrees up to 20o.
Frequently, several chiralities are present even in a same nanotube, especially in the
thick-walled nanotubes with diameters bellow 100 nm.
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Figure 3: Two possible stacking of adjacent MoS2 molecular layers: a) 3-dimensional
model of the stable 2Hb stacking; b) and c) the [1120] sections of 2H and 3R stacking,
respectively. Black circles represent Mo atoms while light circles represent S atoms.

The nanotubes’ walls compose of different number of molecular layers, from two
molecular layers in an extreme case up to several tens molecular layers in thick-walled
nanotubes. Up to now, a single molecular layer MoS2 nanotube with a diameter
above 1 nm was not yet confirmed by experiment. Reducing the diameter, a new
family of inorganic nanotubes appeared (assigned in the first report [26] as MoS2-
I1/3 nanotubes. The MoS2 − x-Iy , (0 ≤ x < 1, y < 1), nanotubes respresenting the
smallest known inorganic nanotubes have been proposed to have a single molecular
layer structure. However, their structure differs strongly from known MoS2 structure
and it can not represent a limit structure in the extrapolation toward the minimal
diameter and wall thickness.

2 Experiments proving the existence of phospholipid
nanotubes

It was previously observed [7] that the giant unilamellar phospholipid vesicles pre-
pared by the method proposed by Angelova et al. [40] are rigid and spherical. It
was further indicated [7] that the vesicles are connected by thin tubular membrane-
ous structures. These indications were drawn from an experiment [7] where a few
percent of fluorescent phospholipid NBD-PC was mixed with the unlabelled phos-
pholipid rendering the vesicles fluorescent. A laser beam was applied to the vesicles
and suppressed the fluorescence in the affected part of the sample. However, after a
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very short time (about 2 minutes) the fluorescence reappeared. Such quick restora-
tion of fluorescence could not happen due to transport of phospholipid through the
water solution, therefore it was suggested that the vesicles must be connected by
very thin and fragile membraneous structures [7]. These structures were not directly
observed, however, tubular connections between vesicles were directly observed in a
system subject to osmotic stress [7].

When the vesicles are made of phospholipid POPC and observed under the op-
tical microscope they undergo a slow spontaneous shape transformation in which
the difference between the areas of the two layers of the phospholipid membrane
diminishes [8]. The mechanism of the shape transformation is not known; the sug-
gested possibilities are the inequality of the chemical potential of the phospholipid
molecules in the vesicle membrane and in the solution that causes a slow but con-
tinuous loss of the phospholipid molecules from the outer membrane layer into the
solution, the drag of the phospholipid molecules from the outer solution of the vesi-
cles by the glass walls of the chamber, by slight evaporation of the liquid caused
by imperfect sealing of the chamber by the grease, by chemical modification of the
phospholipid molecules and by their flip-flop [8]. Consequently, the tubular struc-
tures, if present, would become shorter and thicker with time. We therefore assumed
that after a certain period of time the tubular structures (if present) would become
thick enough to be visible under the optical microscope. These assumptions proved
to be correct. Some time after the solution containing the vesicles is placed into
the observation chamber (usually about half an hour) long myelin-like structures
appear as attached to the spherical part of the vesicle at one end while the other
end is usually free. A small amount of myelin-like vesicles with very low volume
to area ratio can also be observed. These myelin-like structures derive from the
remnants of the nanotubular network created during the vesicle formation phase in
the electroformation chamber; the network is partially torn when the vesicles are
rinsed from the chamber.

The description of the experiments proving the existence of phospholipid nan-
otubes and the results are shown below.

2.1 Preparation of phospholipid vesicles connected by nanotubes

The phospholipid 1-Palmitoyl-2-Oleoyl-sn- Glycero-3-Phosphocholine (POPC) was
purchased from Avanti Polar Lipids. The fluorescent phospholipid probe (2-(12-(7-
nitrobenz-2-oxa-(1,3-diazol-4-yl)amino) dodecanoyl-1-hexadecanoyl-sn-
glycero-3-phosphocholine)) (NBD-PC) was purchased from Molecular Probes, Inc..
Giant phospholipid vesicles were made from POPC and also from the mixture of
POPC and 1.5% NBD-PC by the modified method of electroformation[40] as de-
scribed in[41]. All the described features regarding the shapes of the vesicles were
the same in the system with and in the system without the fluorescent probe.

The experiment was performed at room temperature. In the procedure, 20 µl
of phospholipid (or mixture of phospholipid and fluorescent probe), dissolved in 2:1
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Figure 4: A fluorescence microscope image of the vesicle made of POPC and 1.5%
NBD-PC. The length of the myelin-like protrusion was several diameters of the
spherical part. The fluorescence measurements were done on the inverted optical
microscope (IMT-2, Olympus, Japan), using the reflected light fluorescence attach-
ment IMT2-RFL. The dichroic mirror unit (IMT-DMB) allowed the excitation from
405 to 490 nm and the observation of the fluorescence on the wavelengths higher
than 515 nm (from [8]).

chloroform/methanol mixture, was applied to a pair of Pt electrodes. The solvent
was allowed to evaporate in low vacuum for two hours. The electrodes were placed 4
mm apart in the electroformation chamber that was filled with 2 ml of 0.2 M sucrose
solution (or with 2 ml of pure water). An AC electric field (1 V/mm, frequency 10
Hz) was applied for two hours. Then, the AC field was reduced to (0.75 V/mm, 5
Hz) and applied for 15 min, to (0.5 V/mm, 2 Hz) and applied for 15 min, and to
(0.25 V/mm, 1 Hz) and applied for 30 min.

The contents of the chamber were poured out into a plastic beaker. The cham-
ber was then filled with 2 ml 0.2 M glucose solution (or with 2 ml of pure water,
respectively) that contained no phospholipid. This solution was also poured out
adding to the solution that was already in the plastic beaker. The contents of the
plastic beaker were gently mixed by turning the beaker upside down.

Immediately after the preparation, the solution containing the vesicles was placed
into the observation chamber made by a pair of cover glasses and sealed by vacuum
grease. The vesicles were observed by the phase contrast microscope and by the
fluorescence microscope.

2.2 Phospholipid vesicles with myelin-like protrusions

Immediately after being placed into the observation chamber the vesicles appeared
spherical and had different sizes. The myelin-like protrusions were not visible nor
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were the long-wavelength shape fluctuations. The short-wavelength shape fluctua-
tions were barely visible. After a certain period of time (of the order of about half
an hour) long thin myelin-like protrusions became visible under the fluorescence
microscope (Fig.4) and later also under the phase contrast microscope (Fig.6A).
Usually, when recognized, the myelin-like shapes appeared as very thin long tubes
connected to the vesicle surface at one end while the movement of the myelin-like
shapes indicated that they are otherwise free.

The vesicles were prepared in sugar solution [8] as we wanted to obtain a good
focus on the vesicle and on the protrusion: the vesicles were grown in sucrose solu-
tion and rinsed out of the electroformation chamber by the glucose solution. The
two solutions were equiosmolar, however, as sucrose has larger molecular weight
than glucose, the density of the vesicle content was higher than the density of the
surrounding solution and the vesicles sunk to the bottom of the observation cham-
ber while the protrusion aligned with it. Thereby a good focus can be obtained
simultaneously on the spherical part and on the protrusion.

A possibility was considered that chirality of system constituents might be essen-
tial in determination of the stable tubular shape of the protrusion. Namely, a theory
was proposed [42] where stable tubular shape was explained on the basis of chiral-
ity. It was shown [42] that the stable tubular shape corresponds to the minimum
of the membrane free energy obtained by expansion over the curvature and nematic
fields. For nonzero chirality parameter, stable tubes were obtained with uniform
orientational ordering of bilayer constituents and also with a periodic helical vari-
ation in orientational ordering within stripe - like domains. Further, the proposed
theory described modulation of the degree of twist of the ribbons formed by dimeric
surfactants associated with chiral counterions [6]. It was of our interest to find out
whether the chirality of the bilayer constituents is a prerequisite factor that is re-
sponsible for the stability of the thin tubular structures of phospholipid membrane.
The POPC molecules are not chiral, however, chirality of the constituents may de-
velop also due to their association with the ions or molecules from the adjacent
solution [6] (glucose) [9]. In order to clarify this issue the vesicles were prepared and
rinsed from the electroformation chamber by pure water. Figure 5A shows a first
sight of the vesicle with the protrusion in pure water. The protrusion is barely seen.
The mother sphere is floating in the solution while the protrusion is wobbling, so
that it is difficult to obtain a focus on the mother sphere and the protrusion at the
same time or even to obtain a sharp picture of the protrusion. The line in Fig.5B is
drawn to help in locating the protrusion. As stable tubular structures were found
also in system containing pure water [9], this experiment supports the notion that
chirality is not a prerequisite mechanism for stability of phospholipid nanotubes.

From the above observations (Figs.4,5) we cannot determine the radius of the
protrusion. The radius may be much smaller than the width of the shade seen in
the pictures. Further, the direction of the slow shape transformation indicates that
the protrusion exists before it becomes visible and is therefore then even thinner.
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Figure 5: A: A giant phospholipid vesicle (made of POPC in pure water) with long
thin tubular protrusion. The vesicle was observed in the closed chamber made of
cover glasses, several hours after the preparation. The figure shows the barely visible
protrusion, as it is observed in the beginning of the process. B: A duplicate of the
picture with a line that is drawn to help in locating the protrusion. The vesicles
were observed under the inverted microscope Zeiss IM 35 with the phase contrast
optics (from [9]).
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The possibility should be considered, that the radius of the tubular protrusion is
immediately after the formation very small - of the order of phospholipid bilayer
thickness.

2.3 Shape transformation of the vesicle with the myelin-like pro-
trusion

A vesicle was chosen and followed for several hours. A typical time course of the
shape transformation can be seen in Fig.6. The sequence started from a spherical
mother vesicle with a long thin myelin-like protrusion that appeared as a cylinder
(A). The barely visible protrusion was perceived about three hours after the solution
containing the vesicles was placed into the observation chamber. By the time the
myelin-like protrusion thickened and shortened (B,C), while the undulations of the
cylinder became noticeable and more pronounced. The mother vesicle remained
more or less spherical. In the shortened myelin-like protrusion, the necks seemed
to persist while exhibiting oscillations in their width making the final phases of
the process to look like the beads were stepwise integrated into the mother vesicle
(D,E,F). Finally, the neck of the only remaining daughter vesicle opened (G) yielding
a globular vesicle (H). Before opening, the neck widened and shrunk several times.
The subsequent transformation of the vesicle into the pear shape and further into
the prolate shape was completed in seconds (Fig.6F-H).

The long wavelength fluctuations of the mother vesicle increased with shortening
of the myelin-like protrusion and became vigorous when the myelin-like protrusion
was completely incorporated into the membrane of the mother vesicle.

3 Experiments on inorganic nanotubes

3.1 Synthesis of MoS2 nanotubes

Nanotubes of transition metal dichalcogenides have been firstly synthesized by sul-
phurisation of transition metal oxides [43]. The longitudinal length of nanotubes
was determined by geometry of precursor crystals. The dimensions of precursor
crystals dictated the size of nanotubes also during reduction of needle-like transi-
tional metal three-sulphides and recrystallization to disulphide cylindrical structure
[44]. They size up to several tens of micrometers in length with diameter from few
tens nanometers up to hundreds nanometers. Besides, the dimensions of TMD nan-
otubes can be controlled using a template method with thermal decomposition of
(NH4)2MoS4 and (NH4)2Mo3S13 in porous aluminium oxide membrane [45]. The
MoS2 nanotubes produced by such a way were equal shaped, that were ' 30 nm
long with diameters of 50 nm and wall thickness of about 10 nm.

Besides by the sized controlled techniques, the MoS2 nanotubes were synthe-
sised also by chemical transport reaction, which is a standard method for growth
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Figure 6: Shape transformation of the giant phospholipid vesicle (made of POPC
and 1.5 % NBD-PC) with time. The times after the preparation of the vesicles are
A:3 h, B:3h 20 min, C:4 h, D:4 h 2 min, E:4 h 4 min 30 s, F:4 h 8 min 15 s, G:4
h 14 min 25 s, H:4 h 14 min 30 s. The black arrows indicate the protrusion while
the white arrows indicate the mother vesicle. The vesicles were observed under the
inverted microscope Zeiss IM 35 with the phase contrast optics (from [8]).
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of transition metal dichalcogenides [38]. They grow together with strongly undu-
lated plate-like crystals from vapor phase. The nearly equlilibrium conditions enable
growth with extremely low density of structural defects. The nanotubes of different
geometry produced by such a way can be used as a typical example of thermody-
namically stable structures.

3.2 Chemical transport reaction

The chemical transport reaction is a standardard method for growing plate-like
crystals of transition metal dichalcogenides in two zone furnace. Modifications of
growth parameters, as example temperature, temperature gradient, and/or partial
pressures of components in the transport reaction change the crystal growth from
plane geometry to cylindrical one. The MoS2 nanotubes grow at 10−3 Pa with
temperature gradient of 5.6 K/cm [38, 23, 39]. The transport agent, iodine in our
case, reacts with transition metal at high temperature (above 1120 K) forming the
volatile product, which decomposes at lower temperature (1010 K), where transition
metal reacts again with sulphur to solid transition metal disulphide. In three weeks,
a few percents of the starting material was transported by the reaction to form
nanotubes, while the rest of the transported material grown as strongly undulated
thin plate-like crystals.

The origin of undulation of very thin crystal flakes, which constitute the nucle-
ation sites for the tubes, was explained by stacking mismatch between nucleation
islands of the rhombohedral and hexagonal stacking causing an appearance of inter-
nal strain [39]. When the tube form is nucleated, the tube continues to grow up to
relatively large distances, in some cases up to several millimeters. The diameters in
multiwall nanotubes range from several micrometers to less than ten nanometers.
The growth is rigid resulting in straight tubes of homogeneous diameter.

3.3 Collapse

In synthesizing MoS2 micro and nanotubes, an interesting phenomenon, that we
refer to as a collapse, was noted [23]; usually, MoS2 micro and nanotubes are hollow
cylinders composed of many S-Mo-S molecular layers (Fig.7A), however some stable
flattened (i.e. collapsed) multilayer structures also appear (Fig.7B). Although the
MoS2 tubes are very soft against radial forces, it seems that the collapse is not caused
by mechanical manipulation during the sample preparation [23]. The collapse could
rather be triggered by an obstacle that would affect the tube growth [23] so that
the tube becomes thicker due to increasing number of layers.

4 Theoretical description of nanotubes

The systems described above (the phospholipid bilayer and the S – Mo – S molecular
layer) can be considered as systems with one of the extensions (thickness) much
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Figure 7: High-resolution transmission electron micrograph of the MoS2 nanotube.
Dark fringes correspond to molybdenum atomic layers. The nanotube consists of
seven MoS2 layers (upper); transmission electron micrograph of the collapsed MoS2

microtube. The thickness of the tube estimated from the ribbon turn is approxi-
mately 70 nm (lower) (from [46]).

smaller than the other two. Therefore the configuration of such system resembles a
two-dimensional surface embedded into a three dimensional space.

In describing the shape of the of the system as a shape of a two-dimensional
surface in a three dimensional space we should have in mind that our system is really
a three-dimensional structure. The system is regarded as composed of particles
(building units). These building units act one upon another; the building unit
directly perceives the local curvature of the surface. In other words, the energy of
the building unit depends on the local curvature of the surface. In our description,
such systems can be conveniently described by the curvature of the surface while
the “third dimension” is accounted for in the free energy of the system.

It is the main purpose of this contribution to present a simple general theory
that can be used for description of nanotubes. This theory is based on the evidence
that it is energetically favorable for the material to assemble into tubular shape. It
is considered that the intrinsic shape of individual building units (atoms, molecules,
small patches) is anisotropic. In deriving the free energy of the system this is taken
into account by choosing a relevant reference state. In effect, the classical theory of
elasticity of isotropic thin surfaces [47] is upgraded by an additional term referred
to as the deviatoric contribution.

In particular, we will use the proposed theory to describe the experiments pre-
sented in the previous section.
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4.1 Curvature field

Let us imagine a surface and chose a point in it. We cut the surface by a plane
through the normal to the surface. The intersection forms a curve in space – the
normal cut. The curvature of the normal cut at the chosen point is given by the
inverse of the radius if the circle that fits the normal cut at the chosen point. There
are infinitely many normal cuts that can be made through the chosen point. The
curvature of the surface is given by knowing the curvatures of all the normal cuts.
The possible normal cuts in general attain the values between the minimal and the
maximal value. These extreme curvatures are called the principal curvatures. The
respective directions are perpendicular to each other and are called the principal
directions. The shape of the surface can be deduced by knowing the curvature of
the surface in each point.

In describing the physical structure we must take into account that the “sur-
face” is composed of building units (atoms, molecules, clusters, small patches). The
conformation of the building unit is constrained by the interactions of the chosen
building unit with its surroundings, e.g. with the neighboring building units. The
energy states of the building unit depend on the local curvature of the surface as it is
this quantity that determines the mutual configuration of the neighboring building
units. We will follow the mean field approach where we assume that the neighboring
building units are forming a curvature field and that the energy of a chosen building
unit depends on the local curvature field.

If the “surface” were composed of intrinsically equal building units, one could
imagine the surface shape that would be energetically the most favorable for the
particular kind of building unit. In other words, no energy should be spent to adjust
the unit into the surface. We will refer to such shape as a shape intrinsic to the
building unit or - intrinsic shape. The intrinsic shape of the building unit depends
on the properties of the unit and its interactions with the surroundings. In real
systems, we can not necessarily expect that such shape is actually attained, due to
various constraints imposed upon the system. For example, when the phospholipid
bilayer vesicles are formed in water, the shapes tend to close in order to avoid the
contact of the hydrophobic hydrocarbon chains with water. As the surface area
and the enclosed volume are fixed, the shape subject to the geometrical constraints
cannot have the same curvature in every point. Some (or all) building units must
therefore attain energetically less favorable states, i.e. states of higher energy. For
some intrinsic shapes, such as the shape of a chosen point of the saddle it is not
possible to form a surface that would have equal curvature even in a small region
around this point.

We assume that the shapes of nanotubes considered in this contribution are
(quasi)equilibrium shapes so that they correspond to the minimum of the relevant
thermodynamic potential that depends on the energy state of the system building
units. We are seeking the shape of the surface that gives the lowest energy of the
whole surface at given constraints imposed upon the system. This problem differs
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somewhat from a problem where we are seeking the equilibrium configuration of the
system subject to a certain field within a chosen geometry (such as for example a
problem of a flat electrical double layer [48, 49, 34]) since in the problem considered
in this work the relevant field itself determines the geometry of the system.

4.2 The deviatoric elasticity of a surface

We propose that the energy of a single building unit derives from the mismatch
between the local shape of the surface and the intrinsic shape of the building unit.
The local curvature of the surface is represented by curvatures of all possible normal
cuts of the surface through the site of the building unit. In deriving the energy the
building unit is treated as dimensionless while the surrounding surface is treated as
a continuum. This implies that the building unit behaves as a quadrupole in the
curvature field.

The energy of a single building unit energy is given by a phenomenological
expression consisting of two terms [50],

E =
ξ

4π

∫ 2π

0
(C − Cm)2dψ +

ξ?

16π

∫ 2π

0

(
d

dψ
(C − Cm)

)2

dψ, (1)

where ξ and ξ? are positive interaction constants, C is the curvature of the normal
cut that is for an angle ψ rotated in the principal axes system of the surface, Cm

is the curvature of the normal cut corresponding to the intrinsic shape in the same
direction. The first contribution takes into account the differences of the curvatures
of the normal cuts of the two systems while the second contribution takes into
account the coupling between the neighboring curvatures of the normal cuts of the
two systems.

The orientation of the building unit is described by considering that the principal
directions of the surface are in general different from the principal directions of the
intrinsic shape. The mutual orientation of the two systems is determined by the
angle ω. We consider the Euler equations for the curvatures of the respective normal
cuts of the continuum

C = C1 cos2 ψ + C2 sin2 ψ (2)

and
Cm = C1m cos2(ψ + ω) + C2m sin2(ψ + ω), (3)

where C1 and C2 are the principal curvatures describing the local shape of the
surface, and C1m and C2m are the principal curvatures describing the intrinsic shape.

By performing the necessary integrations in Eq.(1) we get

E(ω) =
ξ

2
(H −Hm)2 +

1
2
ξ + ξ?

2
(Ĉ2 − 2ĈĈm cos(2ω) + Ĉ2

m), (4)

where
H =

1
2
(C1 + C2), (5)
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Figure 8: A schematic presentation of four different intrinsic shapes: A: flat shape
(Hm = Ĉm = 0) , B: saddle shape (Hm 6= 0, Ĉm 6= 0), C: cylinder (Hm > 0, | Ĉm |=
Hm), D: inverted cylinder (Hm < 0, | Ĉm |= −Hm). The shape A is isotropic while
the shapes B, C and D are anisotropic (from [9]).

Ĉ =
1
2
(C1 − C2), (6)

Hm =
1
2
(C1m + C2m) (7)

and
Ĉm =

1
2
(C1m − C2m). (8)

The quantities H and Hm are the mean curvatures of the local membrane shape
and of the intrinsic shape, respectively, while the quantities Ĉ and Ĉm represent the
difference between the two principal curvatures of the local membrane shape and of
the intrinsic shape, respectively.

The building unit is called isotropic if C1m = C2m while it is called anisotropic if
C1m 6= C2m. Fig. 8 gives a schematic presentation of four different intrinsic shapes.

The expression (4) can be derived also in an elegant way by curvature tensors
C and Cm. At the site of the chosen building unit the surface shape is described by
the diagonalized curvature tensor C,

C =

[
C1 0
0 C2

]
, (9)

while the intrinsic shape is described by the diagonalized curvature tensor Cm

Cm =

[
C1m 0
0 C2m

]
. (10)

The principal directions of the tensor C are in general different from the principal
directions of the tensor Cm, the systems being mutually rotated by an angle ω.
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We introduce the mismatch tensor M [46],

M = RCmR
−1 − C (11)

where R is the rotation matrix,

R =

[
cosω − sinω
sinω cosω

]
. (12)

The single-building unit is determined by terms composed of two invariants of the
mismatch tensor M . Terms up to the second order in the tensor elements are taken
into account. The trace and the determinant are considered as the fundamental
invariants [46],

E =
K

2

(
Tr(M)

)2
+ K̄Det(M), (13)

where K and K̄ are constants. Performing the necessary operations and using the
expressions (9) - (13) yields the expression for the single-building unit energy (Eq.
4)

E =
ξ

2
(H −Hm)2 +

ξ + ξ?

4
(Ĉ2 − 2Ĉm Ĉ cos(2ω) + Ĉ2

m). (14)

The constants used in Eq.(14) are

ξ = 2K̄ + 4K (15)

and
ξ? = −6K̄ − 4K. (16)

It can be seen in Eq.(14) that the energy E depends on the angle ω coupled to the
difference between the two intrinsic curvatures Ĉm. This means that for anisotropic
building units, the orientation with respect to the surface coordinate system is im-
portant.

4.2.1 Building units that are free to rotate within the surface plane

If the units are free to rotate within the surface, all orientations do not have the same
energy and it can be expected that the building unit would spend on the average
more time in the orientation that is energetically more favorable. If it is assumed
that the building unit can attain any orientation from 0 to 2π, the partition function
of a single building unit (q) is [51]

q =
1
ω0

∫ 2π

0
exp

(
−E(ω)
k T

)
dω, (17)

with ω0 an arbitrary angle quantum and k the Boltzmann constant. In the partition
function of the building unit the contribution of the orientational states qorient is
distinguished from the contribution of the other states qc, q = qc qorient [50],

qc = exp
(
− ξ

2k T
(H −Hm)2 − ξ + ξ?

4k T
(Ĉ2 + Ĉ2

m)
)
, (18)
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qorient =
1
ω0

∫ 2π

0
exp

(
(ξ + ξ?)Ĉm Ĉ cos(2ω)

2k T

)
dω. (19)

Integration in Eq. (19) over ω yields

qorient =
1
ω0

I0

(
(ξ + ξ?)Ĉm Ĉ

2k T

)
, (20)

where I0 is the modified Bessel function. The free energy of the building unit is then
obtained by the expression

Fu = −k T ln q, (21)

which yields [50] ,

Fu =
ξ

2
(H −Hm)2 +

ξ + ξ?

4
(Ĉ2 + Ĉ2

m) − k T ln

(
I0

(
(ξ + ξ?)Ĉm Ĉ

2k T

))
. (22)

Since the modified Bessel function and the quadratic function are even functions
of the difference Ĉ , the difference Ĉ can be in (Eq.(22)) replaced by the curvature
deviator D

D = |Ĉ | (23)

that is an invariant of the curvature tensor as it can be expressed by its trace and
determinant,

D =
√

(Tr(C)/2)2 − Det(C). (24)

Considering that
Tr(C) = 2H (25)

and
Det(C) = C1 C2. (26)

it follows that
D =

√
H2 − C1C2. (27)

Thereby the free energy of a single building unit is expressed in a simple and trans-
parent way by two independent invariants of the curvature tensor: the trace and the
absolute value of the difference of the main curvatures i.e. by the mean curvature
H and the curvature deviator D,

Fu =
ξ

2
(H −Hm)2 +

ξ + ξ?

4
(D2 +D2

m) − k T ln

(
I0

(
(ξ + ξ?)DmD

2k T

))
, (28)

where
Dm =

√
H2

m − C1mC2m. (29)
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Figure 9: Average orientation of the building unit 〈cos(2ω)〉 as a function of the
curvature deviator D (from [52]).

The average orientation of the building unit may be given by 〈cos(2ω)〉 [52],

〈cos(2ω)〉 =
I1
(

(ξ+ξ?)Dm D
2k T

)

I0
(

(ξ+ξ?)Dm D
2k T

) . (30)

where I1 is the modified Bessel function.
Fig. 9 shows the average orientation of the anisotropic building unit as a function

of the curvature deviator D. For small D, i.e. in nearly isotropic regions, the units
are randomly oriented. The orientational ordering increases with increasing D and
approaches the state where all the units are aligned at large D, i.e. in strongly
anisotropic regions.

4.3 Determination of stability of phospholipid nanotubes by devi-
atoric elasticity

It is assumed that the stable shape of the phospholipid vesicle is determined by the
minimum of the free energy of the phospholipid bilayer. A variational problem is
stated where we require that the variation of the free energy with respect to the
curvature field vanishes at given constraints. The principal curvatures as functions
of the position are the relevant extremales. A rigorous solution of the variational
problem would be obtained by stating and solving the corresponding Euler-Lagrange
equations [53]. However, at the present state of knowledge it is more appropriate to
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Figure 10: Schematic representation of the intrinsic anisotropy of phospholipid
molecules in the phospholipid layer. Two kinds of phospholipid molecules are pre-
sented where the anisotropy derives from the tail structure. Front and side view are
shown.

estimate the behavior of the system by applying an adjustable parametrical ansatz
for the shape. As in this contribution we are focusing on the general properties of
the system and not on the details of the shape we will not consider the rigorous
solution of the variational problem but will rather follow the method based on the
parametrical model.

First we must write the relevant free energy and geometrical constraints. It is
taken that a single phospholipid molecule represents the building unit of the surface.
It is accounted for that in the phospholipid bilayer there are two opposing surfaces
that are in close contact. It is considered that the phospholipid molecules are due
to their structure anisotropic with respect to the axis pointing in the direction of
the normal to the bilayer (Fig.10). They are free to rotate within the plane of the
bilayer [34], however, at given site of the molecule (given local curvature of the layer)
it could be expected that different orientational states have different energies and
that the molecule would spend on the average more time in the configuration with
lower energy. It is therefore appropriate to use Eq.(28) to calculate the contribution
of a single phospholipid molecule to the free energy of the bilayer.

In the first approximation the free energy of the phospholipid bilayer is obtained
by summing the contributions of the individual phospholipid molecules of both lay-
ers,

F =
∫
noutFu(C1, C2)dA +

∫
ninFu(−C1,−C2)dA, (31)

where nout and nin are the area densities of the molecules in the outer and the
inner layer, respectively. The integration is performed over the bilayer area A. Note
that the principal curvatures in the inner layer have the sign opposite to the sign
of the principal curvatures of the outer layer due to the specific configuration of the
phospholipid molecules within the layers - touching by the tails.

If we assume for simplicity that the area densities are constant over the respective
layers and also equal nout = nin = n0, and insert the expression for the single-unit
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energy (Eq.(28)) into Eq.(31), we obtain [9]

F = n0ξ

∫
H2dA+ n0

ξ + ξ?

2

∫
D2dA − 2n0kT

∫
ln
(
I0(
ξ + ξ?

2kT
DDm)

)
dA. (32)

In integrating, the differences in the areas of the inner and the outer layer were
disregarded, so that the contributions proportional to the intrinsic mean curvature
Hm of the inner and the outer layer cancelled and there is no spontaneous curvature
for the bilayer vesicles composed of a single species of molecules. Also, in Eq.(32),
the constant terms were omitted.

It follows from Eq.(32) that the free energy of the phospholipid bilayer is ex-
pressed by two first-order invariants of the curvature tensor - trace (2H) and devi-
ator (D).

4.3.1 Thermodynamic link

The first and the second term of Eq.(32) can be combined by using the connection
between H and D following from Eq.(27),

H2 = D2 + C1C2, (33)

to yield [9]
F = Wb + Fd, (34)

where

Wb = n0
3ξ + ξ?

8

∫
(2H)2dA − n0

ξ + ξ?

2

∫
C1C2dA (35)

and

Fd = −2kTn0

∫
ln
(
I0(
ξ + ξ?

2kT
DDm)

)
dA. (36)

The obtained expressions (34) - (36) are compared to the local bending energy of
a thin, almost flat, laterally isotropic continuum (local bending energy of isotropic
continuum) [47, 54]

Wb =
kc

2

∫
(2H)2dA+ kG

∫
C1C2dA, (37)

where kc and kG are the membrane local and Gaussian bending constants, respec-
tively. We can see that the statistical mechanical derivation (Eq.(32)) recovers the
expression (37), where

n0(3ξ + ξ?)/4 = kc (38)

and
−n0(ξ + ξ?)/2 = kG, (39)
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and yields also an additional contribution (Eq.(36)) due to the orientational ordering
of the phospholipid molecules. This contribution which is always negative is called
the deviatoric elastic energy of the membrane (originating in the curvature deviator
D). It can also be seen that the constant before the Gaussian curvature in Eq.(35)
is negative.

For isotropic building units Dm = 0. Taking into account that I0(0) = 1 it
follows from Eq.(36) that

Fd(Dm = 0) = 0 (40)

and from Eq.(34)
F (Dm = 0) = Wb. (41)

It follows from Eqs.(40), (41), (32) and (37) that for isotropic building units the free
energy of the system can be expressed in an equally transparent way by either set
of invariants of the curvature tensor: trace and determinant or trace and deviator
(see also Eqs.(25)-(27)).

Introducing the dimensionless quantities, the energy F (Eq.(34)) and its terms
(Eqs.(35) and (36)) are normalized by 2πn0(3ξ + ξ?),

f = wb + fd, (42)

wb =
1
4

∫
(2h)2da + κG

∫
c1c2da, (43)

fd = −κ
∫

ln(I0(ϑdmd))da, (44)

where
da = dA/4πR2, (45)

R = (A/4π)1/2, (46)

κG = −(ξ + ξ?)/(3ξ + ξ?), (47)

κ = 4kTR2/(3ξ + ξ?), (48)

ϑ = (ξ + ξ?)/2kTR2, (49)

c1 = RC1, (50)

c2 = RC2, (51)

h = RH, (52)

d = RD (53)

and
dm = RDm. (54)
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Alternatively, we obtain the dimensionless local bending energy of isotropic con-
tinuum (Eq.(43)) if we normalize the expression (37) by 8πkc. Thereby,

κG = kG/2kc. (55)

To estimate the interaction constants, we assume that the conformation of the
phospholipid molecules is equal all over the membrane and take for simplicity that
ξ = ξ?. In this case, κG = −1/2. It follows then from Eq.(55) that kG = −kc. By
comparing the constants before the first terms of Eqs.(35) and (37) we can express
the interaction constant ξ by the measured quantities: the local bending constant
kc and the area density of the number of phospholipid molecules n0, so that

ξ = kc/n0. (56)

It follows from Eqs.(48) or (49) and (56) that

κ = 1/ϑ = kTR2n0/kc. (57)

We consider that kc ' 20kT [55, 56] and that n0 = 1/a0 where a0 is the area
per molecule, a0 ' 0.6nm2 [34], T = 300K and R = 10−5m. This gives κ = 1/ϑ '
8.3 · 106. We estimate that the upper bound of Dm is the inverse of the molecular
dimension (' 108 m−1) so that in our case dm = RDm would be of the order 103.

4.3.2 Determination of the equilibrium shape of the phospholipid vesicle
with thin protrusion

The equilibrium shape is determined by the minimum of the membrane free energy
(Eqs.(34)-(36)). The relevant geometrical constraints are taken into account: the
bilayer area A and the enclosed volume V are fixed,

A =
∫

dA, (58)

V =
∫

dV. (59)

Considering the bilayer couple principle [57, 58, 59] another constraint requires that
the difference between the two membrane layer areas ∆A is fixed [60],

∆A = δ

∫
(2H)dA, (60)

where δ is the distance between the two layer neutral areas. In expression (60) it is
taken that δ is small with respect to 1/H . The quantity ∆A is assumed to reflect the
conditions in which the vesicle formation took place and is determined for example
by the number of the phospholipid molecules that constitute the respective layers.
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The membrane area, the enclosed volume and the area difference (Eq.(60)) are
also given in dimensionless form. According to the choice of unit length R (Eq.(46)),
the dimensionless membrane area is

a = 1, (61)

the dimensionless volume (i.e. the relative volume) is

v = (36πV 2/A3)1/2 (62)

while the area difference ∆A is normalized by 8πδR to yield the dimensionless form

∆a =
∫
hda. (63)

To determine the equilibrium shape, we will due to simplicity compare two shapes
that represent the limits of the class of shapes with the long thin protrusion. In the
first case the protrusion consists of equal small spheres (Fig.11A) while in the second
case the protrusion consists of a cylinder closed by hemispherical caps (Fig.11B). It
is expected that these two limit shapes are continuously connected by a sequence
of shapes with decreasingly exhibited undulations of the protrusion. As we focus
on the general behavior of the system we do not consider the intermediate shapes
explicitly.

Each of these two limit cases involves three geometrical model parameters (Fig.11).
In the shape with small spheres these parameters are the radius of spherical mother
vesicle Rsph, the radius of small spheres rsph and the number of small spheres N
(Fig.11A). As in long thin protrusions N is expected to be large, any real number
is allowed for the parameter N . In the shape with the cylinder these parameters
are the radius of spherical mother vesicle Rscyl, the radius of the cylinder and the
closing hemispheres rcyl, and the length of the cylinder l (Fig.11B).

From geometrical constraints for the relative area (Eq.61)), the relative volume
v (Eq.(62)) and the relative area difference ∆a (Eq.(63)) the three parameters that
determine the shape in both cases (the radius of the mother sphere (Rsph/Rcyl), the
radius of small spheres/cylinder (rsph/rcyl) and the number of small spheres/length
of the cylinder (N/l) are derived.

It is taken that the relative volume is close to 1. For the shape with small
spheres, the radius of the mother sphere Rsph is

Rsph ' 1 − x, (64)

where x is small. Fulfilling the constraints by keeping the terms of the lowest order
in x yields

Rsph =
2 + v

3
, (65)

rsph =
2(1− v)

3(∆a− 2+v
3 )

, (66)





Deviatoric Elasticity as a Mechanism describing Stable Shapes of Nanotubes 135

while the shape with the cylindrical protrusion would yield

wb,cyl = 2 +
l

8rcyl
+ κG. (73)

As the topology of both shapes is the same, the respective Gaussian terms are equal.
By inserting N from Eq.(67), l from Eq.(71) and rcyl from Eq.(70), we can see that

wb,cyl = wb,sph + 1. (74)

It follows from Eq.(74) that within the elasticity theory of the isotropic bilayer mem-
brane, the shape with the protrusion composed of small spheres that are connected
with infinitesimal necks would always be favored over the shape with the tubular
protrusion. Therefore, this theory is unable to explain stable tubular protrusions.

In considering the deviatoric effect, we assume that there is no deviatoric con-
tribution in the shape composed of spheres connected by infinitesimal necks. At
spherical parts there is no deviatoric contribution as the local deviator is equal to
zero. In the infinitesimal neck, the curvature deviator is very large, however, the
area of the neck is very small. Numerical calculations of the membrane free en-
ergy of the shape sequence leading to two spheres connected by infinitesimal neck
have shown that as the limit shape is approached, the deviatoric contribution of the
neck diminishes [50]. Therefore, for the shape composed of spheres connected by
infinitesimal necks the free energy is expressed by Eq.(72).

In the shape with the cylindrical protrusion we consider the deviatoric con-
tribution of the cylindrical part. There is no deviatoric contribution of the neck
connecting the mother sphere and the protrusion, on the spherical caps of the pro-
trusion and on the mother sphere. As the relative deviator d = 1/2rcyl is constant
over the area of the cylindrical part rcyll/2, we obtain by using Eqs.(44) and (70)
[9]

fd,cyl = −2
3
κ(1− v) ln

(
I0(
ϑdm3(∆a− 2+v

3 )
2(1 − v)

)

)
. (75)

By chosing the parameters v and ∆a, the geometrical parameters for both shapes
(Fig.11, A and B) are determined (Eqs.(65)-(67) and (69)-(71), respectively), and
the energies for both shapes are calculated. The values of the free energies are then
compared in order to determine which shape yields the lowest membrane free energy
at chosen v and ∆a. If ∆a is chosen to be high the shape has a long protrusion.
As the membrane area and the enclosed volume are fixed, this protrusion is very
thin and consequently its mean curvature is large. For the tubular protrusions the
deviatoric contribution is large enough to compensate for the less favorable isotropic
local bending energy of the cylinder. On the other hand, for lower ∆a, the protrusion
of the same membrane area and enclosed volume is shorter and broader, therefore
its mean curvature is lower. The corresponding deviatoric term of the cylinder is
too small to be of importance and the shape with the beadlike protrusion has lower
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Figure 12: A (dm,∆a) phase diagram of calculated equilibrium shapes with pro-
trusions. The regions where the shapes with the respective kind of protrusions are
energetically more favorable are marked. The sequence of shapes shown in the fig-
ure indicates the process of diminishing ∆a at constant v that could be observed in
experiment (Fig.6). It was considered that a0 = 0.6 nm2, R = 10−5m, kc = 20 kT ,
so that κ = 1/ϑ = 8.3 · 106 while v = 0.95 (see text). The shapes corresponding to
different ∆a are depicted with the center of the spherical part at the respective ∆a
values (from [9]).

free energy. At a chosen intrinsic anisotropy dm, the shapes with small spheres
are energetically more favorable below a certain ∆a while above this threshold the
shapes with cylinders are favored.

Fig.12 shows the (dm,∆a) phase diagram exhibiting the regions corresponding
to the calculated stable shapes composed of the spherical mother vesicle and tubular
protrusion and to the stable shapes composed of the spherical mother vesicle and
the protrusion consisting of small spheres connected by infinitesimal necks.

The calculated geometrical parameters and energy contributions for the three
shapes depicted in Fig.12 are given in Table 1. The deviatoric contribution of
the shape with the cylinder is given also in kT units. It can be seen that the
corresponding deviatoric energies are larger than the estimated energy of thermal
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∆a rsph N fsph rcyl l fcyl fdev Fdev/kT

1.3 0.100 3.0 4.0 0.050 1.27 4.65 -0.36 -181
1.6 0.054 11.41 12.41 0.027 2.47 12.04 -1.37 -688
1.9 0.036 25.21 26.21 0.018 3.67 24.18 -3.02 -1520

Table 1: The geometrical parameters and the energies of the shapes depicted in
Fig.2: ∆a: the normalized difference between the two membrane layer areas, rsph:
the normalized radius of the small spheres, N : the number of small spheres, fsph: the
normalized free energy of the shape with spherical beads, l: the normalized length
of the cylindrical part of the protrusion, fcyl: the normalized free energy of the
shape with the cylindrical protrusion, fdev: the normalized deviatoric contribution
to the membrane free energy of the cylindrical protrusion, Fdev/kT : the deviatoric
contribution to the membrane free energy in kT units. The data used in calculation
are kc = 20kT , a0 = 0.6nm2, R = 10−5 m, v = 0.95, dm = 1000, which gives
κ = 1/ϑ = 8.3 · 106 and Rsph = Rcyl = 0.98 (from [9]).

fluctuations. It can also be seen from Table 1 that for this particular choice of the
parameters the dimensionless radius of the stable cylindrical protrusions is about
0.02 - 0.04 which means that the corresponding cylinder radius would be about 200
- 400 nm.

The sequence of shapes shown in Fig.12 roughly simulates the transformation
observed in the experiment (Fig.6). Initially, ∆a is large and the shape is composed
of a mother sphere and long thin nanotube. Assuming that the volume of the vesicle
remains constant, the number of phospholipid molecules in the outer layer diminishes
with time, therefore ∆a decreases and the tubular protrusion becomes thicker and
shorter. In the experiment [8], the undulations of the protrusion become increasingly
noticeable along the process. Our theoretical results shown in Fig.12 exhibit a
discontinuous transition from the tubular protrusion to the protrusion composed
of small spheres connected by infinitesimal necks as we consider only the limits of
the given class of shapes. Therefore, the phase diagram and the sequence (Fig.12)
should be viewed only as an indication to the tendency of the shape transition and
not to the details of the shape.

4.3.3 Discussion on the stability of phospholipid nanotubes attached to
the mother globule

It follows from the above analysis that the deviatoric contribution to the membrane
free energy is considerable only in those regions of the vesicle shape where there is
a large absolute value of the difference between the two principal curvatures (1/D
of the order of micrometer or smaller). Elsewhere the deviatoric contribution is
negligible. Further, for 1/D downto tenths of nanometers, the argument of the
Bessel function can be approximated by an expansion I0(x) ' 1 + x2/4. Also,
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the logarithmic function in Eq.(44) can be expanded up to linear term to yield
the dimensionless local bending energy of isotropic continuum with renormalized
constants

f =
1
4
(1− 1

4
ϑd2

m)
∫

(2h)2da+ (κG +
1
4
ϑd2

m)
∫
c1c2da. (76)

It was taken into account that (Eq.(27))

d2 = h2 − c1c2. (77)

We have used in our calculations presented in Fig.12 and in Table 1 the modified
Bessel function, however, we have checked the results also by using Eq.(76) for the
shape with the cylindrical protrusion. There was no difference between the results
obtained both ways. Therefore for the considered tubular shapes the isotropic local
bending energy (Eqs.(37) and (43)) with renormalized constants can be used. It
should however be outlined that in the shape with the protrusion composed of small
spheres connected by infinitesimal necks such renormalization cannot be used as in
the infinitesimal necks the local deviator increases beyond limit. As stated above,
the numerical results indicate that there is no contribution of the infinitesimal necks
to the free energy. There is also no deviatoric contribution from the spherical parts
as the local deviator is there equal to 0. Therefore in the case of spherical beads the
isotropic local bending energy (Eq.(43)) with original constants is used,

f =
1
4

∫
(2h)2da+ κG

∫
c1c2da. (78)

Although the form of the energy is the same in both cases, there is a difference in
the energy due to renormalization of the constants in the case of the shape with
cylindrical protrusion (see Eq.(76)). Also, it can be seen that the Gaussian term
should be considered too as the Gaussian bending constant is renormalized in the
case of nonzero deviatoric contribution. For example, if Eq.(76) is used for a single
sphere where c1 = c2 = 1/r and r is the normalized radius of the sphere, the terms
due to renormalization cancel leaving the free energy in the form of Eq.(78). In
other words, if the deviatoric effect is taken into account by renormalized isotropic
local bending energy (Eq. (43)), the respective shapes that have the same topology,
may have different Gaussian contributions.

The mechanism of the spontaneous shape transformation that was observed in
experiments [8] remains largely obscure. The tubular character of the protrusions
may persist even when the protrusions become thicker while more peculiar shapes
with undulated protrusions can also be found (Fig.13). Also, the timing of the
transformation may vary from minutes to hours, as the protrusions are initially of
very different lengths (Fig.13). If the tubular protrusion becomes thicker in the
process of the spontaneous shape transformation the curvature decreases and the
deviatoric contribution may become negligible, unless the protrusion develops necks
that render minima in the f(∆a) curve [50]. Indeed, oscillations of the neck width
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Figure 13: A giant phospholipid vesicle (made of POPC in pure water). Note
undulations of the protrusion and a multi-lamellar structure inside the globular part.
The vesicle was observed several hours after the solution containing the vesicles was
placed into the observation chamber under the inverted microscope Zeiss IM 35 with
the phase contrast optics (from [9]).

with time were observed, indicating increased stability of the necks (not shown). A
similar effect - the persistence of the neck connecting a spherical daughter vesicle
and a mother vesicle was observed also in the opening of the neck induced by cooling
while the formation of the neck by heating was quick and took place at higher tem-
perature, indicating the hysteresis [61]. The undulations of the protrusion producing
narrow but finite necks could therefore provide a mechanism that would also in the
shapes of lower ∆a keep the curvature deviator as high as possible and therefore the
membrane free energy as low as possible.

It was suggested already by Fischer [62, 63] that the phospholipid molecules
with two hydrocarbon chains are in general anisotropic despite of the motion of
their segments within the membrane layer. Based on decomposition of the elastic
continuum into isotropic and deviatoric bending, he proposed an expression for the
membrane local free energy

F = 2Bs

∫
(H − C0/2)2dA + 2Ba

∫
(| D | − θ)2dA, (79)

where Bs and Ba are the constants of local isotropic and deviatoric bending, respec-
tively, C0 is the spontaneous curvature of the membrane and θ is the spontaneous
warp. The spontaneous warp should originate from the anisotopy of the constituent
molecules. However, he then claimed that spontaneous warp is negligible for one
component phospholipid membrane due to the fact that the membrane of such vesi-
cle, as observed in experiments, is locally flat. He argued that for a nonzero spon-
taneous warp the membrane would be corrugated. Experimental results presenting
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shapes with tubular protrusions [8, 9] show that the membrane is not flat. However,
the bilayer is organized rather in few longer protrusions than in numerous shorter
folds. This seems to be energetically more favorable taking into account that the
beginning and the end of the protrusion have high local bending energy of isotropic
continuum . It must be also considered that the shape of the vesicle is subject to
constraints regarding the membrane area, enclosed volume and the numbers of the
molecules constituting both layers. The shape with folds would have considerably
lower relative volume and higher difference between the two membrane layer areas
than the smooth shape of roughly equal appearance, therefore the two shapes would
be rather far apart in the phase diagram of the possible shapes. Shifting from one
point to the other may involve processes required to overcome energy barrier(s)
for example due to local bending energy of isotropic continuum [50]. Further, it is
shown theoretically that the deviatoric effect is usually not uniformly distributed
over the area of the vesicle so that in this respect the description by spontaneous
warp (Eq.(79)) is oversimplified. Nevertheless, our results support the general ideas
of deviatoric elasticity proposed by Fischer.

Some models of phospholipid bilayer membrane consider that the area per mole-
cule may be different in the two membrane layers, but equal within each layer [64,
59]. This effect is referred to as the relative stretching of the two layers. Considering
the relative stretching of the two layers, an additional nonlocal term appears in the
expression for the bending energy of closed isotropic membrane bilayer [64, 59, 65]:

Fb =
kc

2

∫
(2H − C̄0)2 dA+ kG

∫
C1 C2 dA + knA(〈H〉)2 , (80)

where
〈H〉 =

1
A

∫
H dA, (81)

is the average mean curvature and kn is the nonlocal bending constant [64]. The
effective spontaneous curvature of the bilayer C̄0 [59, 66, 67] may derive from the
bilayer asymmetry due to different environments on the two sides of the bilayer, due
to their different compositions and due to different number of molecules in the two
constituent monolayers [59, 64]. Eq.(80) can be rewritten in the equivalent form :

Fb = Wb + knA(〈H〉 −H0)2 , (82)

where Wb is given by Eq.(37) while the spontaneous average mean curvature H0

is proportional to the parameter C̄0. Using the relation between ∆A and 〈H〉
(Eqs.(60) and (81)) the energy Fb can be expressed also by the area difference ∆A
and the effective area difference ∆A0 = 2AδH0 [65, 66, 67]. Now, ∆A0 and H0

depend on asymmetry in composition, environment and number of molecules be-
tween both monolayers. In accordance with the previous considerations [59, 66] it
was established that these effects should not enter the expression for the bending
energy of closed isotropic membrane bilayer (Eqs.(80) and(82)) independently but
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only in the form of the (effective) spontaneous curvature of the bilayer C̄0 or alter-
natively in the form of spontaneous average mean curvature H0 (or effective relaxed
area difference ∆A0) [67]. However, in determining the equilibrium shape of the
phospholipid vesicle with protrusion the estimated effect of the nonlocal bending
(relative stretching of the two membrane layers) on the calculated stable shape was
found to be negligible in the region of long thin protrusions [9].

If the tube radius were only several nanometers, the thickness of the membrane
itself (' 5nm) is comparable to the radius of the protrusion. Therefore the expres-
sion for the area difference (Eq.(60)) should be restated [68] by considering that the
membrane thickness is not very small comparing to the dimensions of the protrusion.

The crude model nevertheless shows that the deviatoric elasticity provides the
explanation for the stability of the phospholipid nanotubes attached to the giant
spherical phospholipid vesicles and for the observed shape transformation of the
protrusion from the cylinder-like to the bead-like shape.

4.4 Description of the collapse of inorganic nanotubes by deviatoric
elasticity

We assume (similarly as in phospholipid nanotubes in the previous subsection) that
the stable shape of the inorganic nanotube is determined by the minimum of the
free energy of the nanotube wall; a variational problem is stated where it is required
that the variation of the free energy with respect to the curvature field vanishes
at given relevant constraints. For simplicity we consider a tube of a single S –
Mo – S molecular layer. Also here we do not determine the rigorous solution of
the variational problem; for description of the shape a parametrical model is used.
Possible undulations of the tube are disregarded as we are focusing on the collapse
of the tube where the cross section of the tube changes from a circle to a flattened
shape while the cross section of the tube remains the same along the tube. It is
assumed that the tube is very long so that the end effects can be neglected. The S –
Mo – S layer is imagined to be divided into small patches so that the curvature of can
be taken uniform over the patch. The patch is considered as the building unit. It is
taken that the orientation of all the building units with respect to the geometrical
axes of the tube are equal. The energy per area of a single unit is calculated by
using Eq.(4),

dE
dA

=
ξ

2
(H −Hm)2 +

ξ + ξ?

4
(Ĉ2 − 2ĈĈm cos(2ω) + Ĉ2

m). (83)

It can be seen from Eq.(83) that the area density of the energy of the tube is
characterized by two constants ξ and ξ? and three parameters ω, Hm and Ĉm.

We consider only the shapes with a constant cross-section along the longitudinal
(ζ) axis. The cross-section of the tube lies in the (χ, ψ) plane and is described by
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the variational ansatz [46]

ψ(χ) = ±(a +
(cχ)2

1 + (cχ)2
)
√
b2 − χ2, (84)

where a, b and c are parameters and χ ∈ [−b,+b]. The sign + pertains to the
contour above the χ axis and the sign − pertains to the contour below the χ axis.
By taking into account the definition of the principal curvatures [69],

C1 = 0, (85)

and

C2 = − ψ′′

(1 + ψ′2)3/2
, (86)

the mean curvature H and the curvature deviator D can be expressed as

H = − ψ′′

2(1 + ψ′2)3/2
(87)

and
D =| H |, (88)

where ψ′ = dψ/dχ and ψ′′ = d2ψ/dχ2. The infinitesimal area element is

dA =
√

1 + ψ′2dχdζ. (89)

The mean curvature defined by Eq.(87) is positive for the convex regions (such as
parts of sphere or cylinder) and automatically negative for the concave regions. The
normal direction to the surface is outwards for all points. The curvature deviator
(Eq.(88)) is always positive.

In the following, dimensionless quantities are used. The elastic energy of the
tube is divided by ξ/2 and calculated per unit of the normalized length L to yield
a dimensionless quantity dE/dζ [46],

dE
dζ

=
2
ξL

∫ dE
dA

dA. (90)

The minimum of the elastic energy is sought at constant dimensionless contour
perimeter

2π
∫ √

1 + ψ′2dχ = 2πR0, (91)

where R0 is the dimensionless radius of the cylindrical tube with the circular contour.
As the tube at the beginning grows into a cylindrical shape from a cylindrical

shape of the S – Mo – S we start with the assumption that the initial equilibrium
shape of the S – Mo – S layer is a cylinder (Hm = Dm > 0) with certain orientation
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Figure 14: The calculated cross-sections of the equilibrium shapes of a single molec-
ular layer for increasing relative perimeter of the tube; R0: 1.0 (1), 1.5 (2), 2.0 (3)
and 2.5 (4) at Hm = Dm = 1 and ω = 0. The cross-section of the tube is circular
for R0 < 1.87 while the tube is in the collapsed state for larger R0 (from [46]).

of the atomic lattice with respect to the geometrical axes of the cylinder (for sim-
plicity, it is taken that ω = 0). In the minimization of the free energy (Eq.(90)) the
parameter c as the function of the parameters a and b is determined numerically
from the constraint (91). The parameters a and b are then determined by the mini-
mization of dE/dζ. The integrals in Eqs. (90) and (91) are calculated numerically.
The material properties of the tube are described by the intrinsic mean curvature
Hm and intrinsic curvature deviator Dm.

In general, for anisotropic thin closed plates (i.e. for Dm 6= 0) the energy per
unit of normalized length dE/dζ has two minima with respect to a and b. One
minimum corresponds to the cylindrical tube with the circular contour, while the
second minimum corresponds to the collapsed tube. At smaller values of R0 the
minimum of dE/dζ corresponding to the cylindrical tube is the global minimum of
dE/dζ. However, with increasing R0, at a certain threshold, the minimum of dE/dζ
corresponding to the collapsed tube, becomes the global minimum of dE/dζ.

Fig.14 shows the cross section of the calculated equilibrium shapes of the material
with anisotropic properties (Hm = Dm = 1). For simplicity, it is taken that ξ = ξ?.
The contour length R0 is increased from the top to the bottom. The tube cross-
section is circular at smaller values of R0 while it is in the collapsed state above some
threshold value ofR0. In contrast, for isotropic thin plates (Dm = 0 andHm ≥ 0) the
calculated equilibrium state of the tube is cylindrical for all values of R0. A nonzero
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Figure 15: A (R0, Dm) phase diagram of equilibrium shapes of the single-molecular-
layer-tube with constant cross-section along the longitudinal axis; Hm = Dm, ω = 0
(from [46]).

intrinsics curvature deviator is therefore prerequisite for the initiation of the collapse
of the cylindrical tube with a large contour length. Based on these theoretical results
we suggest that the observed collapse of the cylindrical MoS2 micro and nanotubes
that occurs during growth of the tube into a multilayer structure [23] is spontaneous,
in order to keep the elastic energy of the tube as low as possible. Namely, during the
growth of the tube into the multilayer structure the perimeter of the layers increases.
For the outer layers the collapsed state becomes energetically more favorable. When
this effect becomes large enough to render the collapsed state of the whole tube
energetically the most favorable, the collapsed state becomes the stable state of the
tube.

Fig.15 shows the (R0, Dm) phase diagram exhibiting the regions corresponding
to the stable shapes of the single-layer tube with constant closed cross-section along
its longitudinal axis. The phase diagram shows two different regions of shapes: the
region of cylindrical tubes with circular cross-section and the region of collapsed
tubes. The critical value of R0 where the collapse of the tube occurs, decreases with
increasing intrinsic curvature deviator Dm (Fig.15).

The collapsed shapes were observed also in carbon nanotubes [21]. It was sug-
gested that the collapse of the carbon nanotube is initiated by some external me-
chanical force while the collapsed structure is kept stable by the van der Waals
attractive forces between the nanotube walls [21]. The van der Waals forces are
important also in stabilizing the collapsed shapes of MoS2 micro and nanotubes,
however, based on the presented results we argue that some other mechanism such
as the intrinsic anisotropy of the molecular layer (described by the parameters Hm

and Dm) is necessary to trigger the collapse. The intrinsic anisotropy of the molec-
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ular layer may be a consequence of the interaction between the layers. A perfect
match of the two adjacent layers cannot be obtained, as the curvature of the adja-
cent layers is different. While in the direction of the tube axis the distance between
the atoms may stay the same, the differences in the interatomic distances between
individual layers are necessarily present along the tube circumference. In order to
yield the most favorable match, defects in the structure may appear [18]. We may
say that here the layer is described as a thin elastic plate with uniformly distributed
anisotropic defects.

5 Deviatoric elasticity as a mechanism describing stable

shapes of nanotubes

The presented results show that the deviatoric elasticity deriving from orientational
order of the building units of the system is a plausible mechanism that can explain
some interesting features in hollow nanotubes. These features could not be ex-
plained by the standard continuum theory of elasticity where the material is treated
as laterally isotropic. The basic assumption taken into account in the presented
theory comprises the evident fact that the stable state of the nanotube is strongly
anisotropically curved. Taken the tubular state as the state of the lowest energy
for an individual building unit it is derived that the free energy of the system is
conveniently expressed by two invariants of the curvature tensor: the mean curva-
ture and the curvature deviator. The principle of deviatoric elasticity is useful in
organic and in inorganic systems. To conclude, we propose that deviatoric elasticity
should be taken into consideration as an essential feature in the systems of micro
and nanometer scale.

6 Importance of the deviatoric effects in biology and

technology

6.1 The hypothesis of the subjacent membrane pool

Within the fluid mosaic model of the structure of cell membranes [70] the membrane
is described as a two dimensional liquid. Phospholipid bilayer forms a matrix while
amphipathic proteins and/or oligosaccharides form inclusions that are embedded in
the matrix. The inclusions may undergo translational diffusion within the membrane
and normally have no long-range order [70]. It was suggested [70] that the general
principles of the fluid mosaic model apply to most biological membranes such as
plasmalemmal and intracellular membranes, including the membranes of different
cellular organelles, such as mitochondria and chloroplasts (thereby called functional
membranes). It was also suggested that there existed some membranous systems
such as myelin or lipoprotein membranes of small animal viruses that may be rigid
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and have different properties than the functional membranes. These latter systems
were considered rather as special cases.

Thirty years of experimental evidence strongly supports the general features of
the fluid mosaic model referring to functional membranes. However, as we have
argued in this contribution, it is indicated that the behavior of the cellular mem-
branes in highly anisotropically curved regions may deviate from the behavior of
two dimensional liquid and rather exhibits properties of a two dimensional liquid
crystal with in-plane orientational order of the membrane constituents [51, 50, 13].

Membrane constituents are in general nonaxisymmetric with respect to the axis
pointing in the direction normal to the membrane. The energy states of these
molecules therefore depends on the in-plane orientation of the molecule and an
orientation exists that is the most favorable for such molecule. In almost flat regions
the effect of the orientational ordering of the membrane constituents is negligible,
however, it may become important in highly anisotropically curved regions such as
in cylindrical and toroidal regions pertaining to the blebs [12, 71] or toroidal regions
pertaining to the edge of the pores [72] thereby stabilizing these structures. Adding
detergent dodecylmaltoside to the suspension of erythrocytes causes the erythrocyte
membrane to develop spicules (Fig.16). Thin tubular protrusions are formed on top
of the spicules (Fig.16) [12]. These protrusions grow in length and are eventually
detached from the cell (Fig.1) probably due to external forces that are acting in the
solution.

As the wrinkling of the membrane and formation of the vesicles and pores are
common processes in cells, the highly anisotropic structures that are not directly
visible may be commonly present in cells. A possibility exists that the pool of the
membrane material in this state is rather large and that it forms the infrastructure
for the processes taking place in the cell interior as well as for the communication
with the cell exterior. We call the pool of the membraneous material present in
highly anisotropic curved structures the subjacent pool of the membraneous ma-
terial. For clarity, we call the membraneous material in almost flat regions the
superficial pool. We propose a hypothesis that the presence and state of the subja-
cent pool of the membraneous material is a general feature in cells. This hypothesis
is essentially a refinement of the fluid mosaic model of the membrane structure, how-
ever, we believe that this refinement may provide an insight into vitally important
phenomena that generally take place in cells.

One such phenomenon is directed transport of membrane vesicles in cellular
processes. Transport vesicles play a central role in the traffic of molecules between
various membrane-enclosed compartments of cellular secretory pathways and in the
transport of materials taken up at the cell surface [73].

Recently, it was observed that the transport vesicles (blebs) may travel along the
tube attached to the giant phospholipid vesicle while the existence of small blebs of
membrane micro and nanotubes was also observed in red blood cells [75]. Based on
these results it can be anticipated that micro and nanotube directed transport of
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Figure 16: Upper picture: a scheme of the spiculated erythrocyte (echinocyte).
Lower picture: a scanning electron micrograph of the replica of the erythrocyte
membrane following the freeze fracture method [32]; the echinocytosis and devel-
opment of tubular buds on top of echinocyte spicules was induced by incubating
erythrocyte suspension with detergent dodecylmaltoside [74]. The cells were fixed
and freeze-fractured. The freeze-fracture replicas were examined by a Cambridge
Instrument S360 microscope [32]. Bar = 500nm.
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Figure 17: A bleb (black arrow) of phospholipid tube (white arrow) (a) that acts
as a transport vesicle for the enclosed material. One end the phospholipid tube is
attached to the bilayer membrane (b), while the other end of the tube is attached to
the glass surface of the observation chamber (c). The vesicles were observed under
the inverted microscope Zeiss IM 35 with the phase contrast optics (from [75]).
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Figure 18: Transport of a small phospholipid prolate bleb (black arrow) along a
thin phospholipid tube (white arrow). Note that the bleb (transport vesicle) is an
integral part of the tube membrane. Scale bar, 10µm. The vesicles were observed
under the inverted microscope Zeiss IM 35 with the phase contrast optics (from
[75]).
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vesicles could have an important role in the selectivity of specific pathways of trans-
port vesicles in cellular systems where the transport vesicles must move specifically
from one membrane enclosed compartment to another compartment. The trans-
port to the target point would be much more efficient if the nanotubes directed the
vesicles. We would like to point to this possibility.

As the nanotubes may be very thin the connected vesicles may seem as diffusing
freely in the solution. It was observed in erythrocytes that the daughter vesicles
may be connected by nanotubes to the parent cell [13]. The nanotubes could not be
directly observed, however the vesicles moved synchronously with the mother cell
indicating their connection with the parent cell by nanotubes [13].

In observing a sample of POPC vesicles that were prepared as described in
the subsection “Preparation of phospholipid vesicles connected by nanotubes” an
interesting phenomenon was observed [75]: a giant spherical vesicle was attached
to the glass by a long thin tether. On the tether, a small bleb slowly moving
towards the mother sphere was observed. Fig.17a shows a bleb (black arrow) of the
phospholipid tube. One end of the tube is attached to the bilayer membrane of the
giant POPC vesicle (Fig. 17b) while the other end of the nanotube is attached to
the glass surface of the observation chamber (Fig.17c). The length of the tube is
several diameters of the mother vesicle.

Fig.18 shows transport of a small prolate bleb (black arrow) along the thin
phospholipid tube. In the beginning the bleb was far away from the surface of
the giant phospholipid vesicle (Fig. 18a). The bleb moved continuously towards
the surface of the giant phospholipid vesicle (Figs.18a, b, c). In the vicinity of the
surface of the giant liposome the bleb started to oscillate slightly back and forth
along the tube. Also, the shape and size of the bleb changed, i.e. the bleb became
elongated and appeared to lose volume. In the final stage the contents of the bleb
fused with the giant liposome (Fig.18d).

We cannot say how the observed bleb of the phospholipid membrane was pro-
duced, however, a following time course was speculated [75]: when after the elec-
troformation the vesicles were rinsed into the observation chamber, a configuration
where two vesicles were connected by a thin tether was produced. One of the vesicles
was large, the other was small. The small vesicle may have attached to some defect
(Fig.17c) in the glass. There is always slight convective current in the observation
chamber. This current caused the excess pressure on both vesicles. The movement
of the larger vesicle caused the nanotube to straighten while the excess pressure on
the small vesicle pushed it along the nanotube. The small vesicle started moving
and became a bleb (Fig.17a). The bleb was followed from the moment it was spotted
to the integration with the larger vesicle (Fig.18d) for about half an hour [75]. The
observation started about an hour after the process of electroformation was com-
pleted and the vesicles were rinsed out from the electroformation chamber. When
spotted, the bleb was about halfway between the origin of the tube on the glass and
the insertion of the tube on the larger vesicle. It was moving slowly towards the
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Figure 19: A micrograph showing a small prolate vesicle of a red blood cell membrane
tube connecting the two membrane-enclosed parts of a disintegrated red blood cell.
The red blood cells were observed in isotonic physiological solution with added
dibucaine at pH ≈ 8.5. Scale bar, 3µm (from [75]).

larger vesicle retaining its shape and size throughout. When the bleb reached the
larger vesicle (Fig.18c), the current pressure eventually pushed its contents through
the neck connecting the bleb and the larger vesicle.

There are related phenomena where beads corresponding to transient excited
states were produced by a sudden tension in the membrane tubes that is induced
either by laser tweezers [76] or by mechanical manipulation [77] (see also [78]). No
such procedure was involved in the above experiment. The vesicles produced by
electroformation pertain to quasi-equilibrium states and not to transient excited
states. The blebs (transport vesicles) are regarded as stable. On the other hand,
excited states of the membrane [76] are relaxed after a certain time (depending on
the shape of the blebs; slight undulations are relaxed in seconds while sphere-like
blebs connected by thin tubular parts are relaxed in minutes [76]).

Small blebs (vesicles) of thin membrane tubes were also observed in red blood
cells [75]. The erythrocyte suspension was pipetted into an Eppendorf tube contain-
ing a high pH buffer. Incubation of the red blood cells at high pH resulted first in an
echinocytic shape transformation (development of spicules) and microvesiculation.
As incubation continued, large spherical daughter vesicles were shed from the cell
surface. The release of the rather large vesicles was accelerated by addition of dibu-
caine. The erythrocytes were observed by optical microscope with phase contrast
optics. Fig.19 shows a small prolate bleb of the thin membrane tube connecting
two membrane-enclosed parts of the red blood cell into which the cell disintegrated
under the described external conditions. The bleb was observed for about half an
hour during which it more or less retained its size and shape.

The observed blebs (Figs.17)-(19) are large regarding intracellular mechanisms,
however, the same mechanism of the transport by blebs should be relevant also for
smaller blebs, provided that they are made stable. In the intracellular transport
the shape of transport vesicles may be additionally stabilized by mechanisms that
are not present in the simple system of one-component phospholipid vesicles, as
for example by clathrin coating [79] or other protein and lipid domain formation
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Figure 20: Schematic presentation of a possible mechanism of micro and nanotube
directed traffic of transport vesicles between two membrane-enclosed compartments
(from [75]).

mechanism [80, 81]. In the transport, the contents of the nanotube and of the bleb
are expected to mix, however, if the nanotube is very thin, it could not contain
much volume.

Since the nanotubes are difficult to visualize and are also very fragile, the pro-
posed mechanism of directed vesicle transport may have been overlooked in biolog-
ical systems, though it could have an important role in the function of the Golgi
system and other cellular transport systems involving vesicles.

6.2 Aspects of possible applications of MoS2 nanotubes

Due to their cylindrical geometry, these novel advanced nano-materials have a low
mass density, a high porosity and an extremely large surface to weight ratio. Their
potential applications range from high porous catalytic and ultralight anticorro-
sive materials, atomic probes and electron field emitters to non-toxic strengthening
fibers. This may lead to a more efficient use and an increase in durability of ma-
terials. Doping of these semiconducting nano-structured materials may also allow
further miniaturization of electronic systems and may lead to new optoelectronic ma-
terials. The helical structure of undoped tubes with semiconductor behaviour and
their optical activity enable possible applications in nonlinear optics and in solar cell
technology. By functionalizing the nanotubes, e.g. using specific Mo containing en-
zymes, novel functional biomaterials could be made. Using capilar forces the MoS2

nanotubes could be used as nanopipes or at storage containers for biomaterials.
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[12] V. Kralj-Iglič, A. Iglič, H. Hägerstrand and P. Peterlin, Phys. Rev. E 61, 4230
(2000).

[13] V. Kralj-Iglič, A. Iglič, H. Hägerstrand and M. Bobrowska - Hägerstrand, Col-
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