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Derivation of the Langevin Poisson-Boltzmann
equation for point-like ions using the functional
density theory
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Abstract. The Langevin Poisson-Boltzmann equation for point-like ions describing an electrolyte solution in
contact with a planar charged surface is derived within the functional density theory. In the model, the water
molecules are considered as the Langevin dipoles. It is shown that due to the increased orientational ordering
of the water dipoles, the dielectric permittivity of the electrolyte close to the charged surface is decreased.
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1 INTRODUCTION

The contact between a negatively charged surface and
an electrolyte solution results in rearrangement of the
ion distribution and formation of the so-called electrical
double layer (EDL) takes place [1], [2], [3], [4]. Most of
the models, describing this phenomenon [1], [5], [6], [7],
[8] assume constant dielectric permittivity throughout
the system. But actually, close to the charged surface,
the water dipoles are oriented thus leading to a varying
dielectric permittivity [8].

In this paper, the Langevin Poisson-Boltzmann mean-
field equation for the point-like ions is derived within
the functional density theory, where the orientational
ordering of water molecules is taken into account. In the
model, the dielectric permittivity is consistently related
to distribution of the involved ions and the electric field
strength. The water molecules are considered as the
Langevin dipoles [9], [10], [11] which is a very rough
treatment of the dielectric properties of the solvent.
The finite volume of ions and water [7], [11] in the
electrolyte solution (i.e. the excluded volume effect) is
not taken into account. The volume density of water is
therefore constant in the whole electrolyte solution [12].
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2 THEORY

We consider a planar charged surface in contact with
a water solution of monovalent ions (counterions and
coions). The planar charged surface bears a charge with
surface charge density σ. The Langevin dipole describes
the water molecule with a non-zero dipole moment (p).
A self-consistent statistical mechanical description of
the orientational ordering of the water Langevin dipoles
is presented. Using the calculus of variation, the ion
number density profiles and average orientation of the
water dipoles corresponding to the minimum free energy
are calculated. The free energy of system F is written
as :
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=

1

8πlB
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where averaging over all angles Ω is defined as:〈
F (x)

〉
ω

=
1

4π

∫
F (x, ω) dΩ , (2)

ω is is the angle between the dipole moment vector p
and the vector n = ∇φ/|∇φ|, φ(x) is the electrostatic
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potential, dΩ = 2π sinω dω is an element of a solid
angle, nw is the constant number density of the Langevin
dipoles, n+(x) and n−(x) are the number densities of
counterions and coions, respectively,

Ψ(x) = e0φ(x)/kT , (3)

is the reduced electrostatic potential, Ψ′ is the first
derivative of Ψ with respect to x, e0 is the elementary
charge, kT is the thermal energy, n0 is the bulk number
density of positively and negatively charged monovalent
ions in the electrolyte solution, dV = Adx is the volume
element with thickness dx, where A is the area of the
charged surface. The Bjerrum length lB = e20/4πε0kT ,
where ε0 is the permittivity of the free space. The
first term in Eq.(1) corresponds to the energy of the
electrostatic field. The second and the third line in
Eq.(1) account for the mixing free energy contribution
of the positive and negative salt ions. We assumed
φ(x→∞) = 0. The fourth line Eq.(1) accounts for the
orientational contribution of the Langevin dipoles to the
free energy. P(x, ω) is the probability that the Langevin
dipole located at x is oriented for angle ω with respect
to the normal to the charged surface. The last line is the
local constraint for orientation of the Langevin dipoles
(valid at any position x):〈

P(x, ω)
〉
ω

= 1 , (4)

where η(x) is the local Lagrange multiplier.
The results of the variation in the above free energy

gives :

n+(x) = n0 exp(−Ψ) , (5)

n−(x) = n0 exp(Ψ) , (6)

P(x, ω) = Λ(x) exp(−p0|Ψ′| cos(ω)/e0) , (7)

where Λ(x) is the constant for given x.
The charges of counterions, coions and water

molecules (Langevin dipoles) contribute to the average
microscopic volume charge density:

%(x) = e0 (n+(x)− n−(x))− dP

dx
. (8)

Polarization P is given by

P (x) = n0w

〈
p(x, ω)

〉
B

, (9)

where p is the water (Langevin) dipole moment and〈
p(x, ω)

〉
B

is its average over the angle distribution in
thermal equilibrium. In our case of negatively charged
planar surface (σ < 0) the projection of the polarization
vector P points in the direction opposite to the direction
of x-axis. Hence P (x) is considered negative. According

to Eq.(7) the values of
〈
p(x, ω)

〉
B

can be calculated as
follows :
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〉
B

=
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0

p0 cosω P(x, ω) 2π sinω dω

π∫
0

P(x, ω) 2π sinω dω

=

= −p0 L
(
p0|Ψ′|
e0

)
. (10)

A function L(u) = (coth(u) − 1/u) is the Langevin
function. Langevin function L(p0|Ψ′|/e0) describes the
average magnitude of the Langevin dipole moments at
given x. In our derivation we assumed an azimuthal
symmetry and negative surface charge density σ.

Inserting the Boltzmann distribution functions of ions
(Eqs.(5) and (6)) and expression for polarization (Eqs.(9)
and (10)) into Eq.(8), we get the expression for the
volume charge density in an electrolyte solution:

%(x) = −2 e0 n0 sinh Ψ + (11)

+ n0w p0
d

dx

[
L(p0|Ψ′|/e0)

]
.

Inserting the above expression for volume charge density
%(x) (Eq.(11)) into the Poisson equation

Ψ′′ = −4π lB%/e0 , (12)

we get the Langevin Poisson-Boltzmann equation for the
point-like ions :

Ψ′′ = 4πlB

(
2n0 sinh Ψ − (13)

− n0w
p0
e0

d

dx

[
L(p0|Ψ′|/e0)

])
,

where Ψ′′ is the second derivative of Ψ with respect to
x. The Langevin Poisson-Boltzmann differential equa-
tion (13) is subject to two boundary conditions. The
first boundary condition is obtained by integrating the
differential equation (13) :

Ψ′(x = 0) = −4πlB
e0

[
σ + (14)

+ n0w p0 L(p0|Ψ′|/e0)
∣∣∣
x=0

]
.

The condition requiring electro-neutrality of the whole
system was taken into account in derivation of Eq.(14).
The second boundary condition is :

Ψ′(x→∞) = 0 . (15)

Based on Eqs.(9)-(10), we can express the effective
permittivity of electrolyte solution (εeff ) in contact with
the planar charged surface as :

εeff = 1 +
|P |
ε0E

= 1 + n0w
p0
ε0

L(p0E/kT )

E
, (16)

where E = |φ′| = φ′ (since σ < 0) is the magnitude of
the electric field strength.
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Figure 1. A schematic figure of the electrical double layer near
a negatively charged planar surface. The water molecules in
the vicinity of the charged surface are predominantly oriented
towards the surface.

3 RESULTS AND CONCLUSION

Eq.(16) describes the dependence of effective permit-
tivity εeff on the magnitude of electric field strength
E, calculated within the presented Langevin Poisson-
Boltzmann theory, which takes into account the orien-
tational ordering of water molecules (or water clusters)
near a charged surface (Fig.1) by considering them as
the Langevin dipoles. The finite size of ions is not taken
into account in Eq.(16).

For p0E/kT < 1 we can expand the Langevin
function in Eq.(16) into a Taylor series up to the cubic
term: L(x) ≈ x/3− x3/45 to get:

εeff ∼= 1 +
n0wp0

2

3ε0kT
− n0wp

2
0

45ε0kT
(p0E/kT )

2
. (17)

It can be seen in Eq.(17) that εeff decreases with
the increasing magnitude of electric field strength E.
Since the value of E increases towards the charged
surface (see for example [5]), εeff decreases towards
the charged surface. It can therefore be concluded that
due to the preferential orientation of water dipoles in
the close vicinity of the charged surface, the effective
permittivity of electrolyte εeff near the charged surface
is reduced relative to its bulk value as shown also in
Fig.2.

Recently, a similar Langevin PB equation for the
point-like ions (as given in Eq.(13) was derived start-
ing from a partition function of the system [13]. The
Langevin PB equation for the point-like ions, given in
Abrashkin et al. [13] can be derived also in a somewhat
different way by assuming the Boltzmann distribution
function also for the water (Langevin) dipoles [14]. The
expression for εeff from [13] can be expanded into
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Figure 2. Effective dielectric permittivity εeff as a function of
the distance from the charged surface x within the presented
Langevin PB theory for point-like ions. Eqs.(13)-(15) were
solved numerically using Finite Element Method within the
program package Comsol Multiphysics 3.5a Software. Dipole
moment of water p0 = 4.794D, bulk concentration of salt
n0/NA = 0.15mol/l, bulk concentration of water n0w/NA =

55mol/l, surface charge density σ = −0.3As/m2.

series to get:

εeff ∼= 1 +
n0wp0

2

3ε0kT
+

n0wp
2
0

30ε0kT
(p0E/kT )

2
. (18)

It can be seen in Eq.(18) that εeff increases with the
increasing magnitude of electric field strength E. Since
the magnitude of the electric field strength in the elec-
trolyte solution increases towards the charged membrane
surface, Eq.(18) predicts the incorrect increase of εeff
in the vicinity of the charged membrane surface. This is
a consequence of the accumulated water dipoles near
the charged surface (due to the assumed Boltzmann
distribution for water molecules) (see also [15]) which
prevails over the decrease of εeff due to an increased
orientational ordering of water molecules in a strong
electric field as predicted by Eqs. (16) and (17).

To conclude, in this work, the PB theory for the
point-like ions was modified by introducing the orienta-
tional ordering of water molecules. The corresponding
Langevin Poisson-Boltzmann equation was derived. The
water dipoles are described as the Langevin dipoles
with a given dipole moment. It is shown that the
effective dielectric permittivity of the electrolyte solution
decreases with the increasing magnitude of the electric
field strength. Due to the increased magnitude of the
electric field in the vicinity of the charged surface
in contact with the electrolyte solution, the effective
permittivity of electrolyte solution in the region near
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the charged surface is decreased. The predicted decrease
in the permittivity relative to its bulk value is the
consequence of the orientational ordering of the water
dipoles in the vicinity of the charged surface. It has
recently been shown, that for finite sized ions the drop
in the number density of water near a charged surface
results in an additional decrease of permittivity [11],
[14].
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