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The dipole moment of a water molecule in liquid water differs from that of an isolated one because each mol-
ecule is further polarized by the electric field of its neighbours. In this work a formula for the spatial depen-
dence of the relative permittivity of an electrolyte near a highly charged surface is obtained in which the
mutual influence of the water molecules is taken into account by means of the cavity field. The orientational
ordering of water dipoles is considered in the saturation regime. It is predicted that the relative permittivity
of an electrolyte solution near the highly charged surface (i.e. in saturation regime) may be substantially de-
creased due to orientational ordering of water (saturation effect) and depletion of water molecules (excluded
volume effect) due to accumulation of counterions.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The contact between a charged metallic or membrane surface and
an electrolyte implies a particular spatial and orientational distribu-
tions of ion and water molecules near the charged surface [1–9]
which is reflected in a decrease of permittivity for high enough sur-
face charge densities of the charged surface [10–13].

In the absence of an explicit consideration of the orientational or-
dering of water molecules, the assumption of constant permittivity is
largely a consequence of the constant number of water molecules in
the Poisson–Boltzmann theory. Considering the orientational order-
ing of water, Outhwaite developed a modified PB theory of the elec-
trical double layer composed of a mixture of hard spheres with
point dipoles and finite sized ions [14,15]. The problem was also con-
sidered within lattice statistics [12,13,16] where the spatial depen-
dence of the relative (effective) permittivity in the form

εr ¼ 1þ n0wns
p0
ε0

F p0Eβð Þ
EH ϕ; Eð Þ : ð1Þ

was derived, where

F uð Þ ¼ L uð Þ sinh u
u

; ð2Þ

L uð Þ ¼ coth uð Þ−1=uð Þ; ð3Þ
+386 1 4768 850.

rights reserved.
is the Langevin function and

H ϕ; Eð Þ ¼ 2n0cosh e0ϕβð Þ þ n0w

p0Eβ
sinh p0Eβð Þ; ð4Þ

n0 and n0w are the bulk number densities of ions and water dipoles,
respectively, ns=1/a3 is the number density of lattice sites, a is the
width of a single lattice site, p0 the magnitude of a single water dipole
moment in the electrolyte solution, E the magnitude of the electric
field strength, ε0 the permittivity of free space, β=1/kT, kT the ther-
mal energy and ϕ the electric potential.

In the approximation of a small electrostatic energy and small en-
ergy of dipoles compared to the thermal energy, i.e. small e0ϕβ and
small p0Eβ, the relative permittivity within the Langevin–Bikerman
model for finite sized ions (Eq. (1)) can be expanded into a Taylor se-
ries to get (assuming ns≈n0w) [12]:

εr≅1þ n0wp0
2β

3ε0
−n0wp

2
0β

45ε0
p0Eβð Þ2−n0p

2
0β

3ε0
e0ϕβð Þ2: ð5Þ

Recently, Szalai et al. [17] published a mean spherical approxima-
tion (MSA) [18] based theory that is able to reproduce simulation re-
sults for the field dependence of the dielectric permittivity of a
dipolar fluid in saturation regime [19]. The Langevin–Bikerman ex-
pression for εr (Eq. (1)) also takes into account the orientational or-
dering of water in the saturation regime (i.e. the saturation effect
[19]) and the excluded volume effect. However the cavity and reac-
tion fields were not taken into account [19–22]. As a consequence
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the relative (effective) permittivity defined by Eq. (1) for zero electric
field strength and zero potential, i.e. the bulk value of εr, [12]:

εr≅1þ n0wp0
2β

3ε0
: ð6Þ

is equal to 78.5 for amagnitude of the effective dipolemoment of water
p0=4.79D [12] which is larger than the dipole moment of an isolated
water molecule (p0=1.85D) and also larger than the dipole moment
of a water molecules in clusters (p0=2.7D), and the dipole moment
of an average water molecule in the bulk solution (p0=2.4−2.6D)
[23], since the cavity and reaction fields as well as correlations between
water dipoles [22,24] are not explicitly taken into account.

In the past treatments of the cavity and reaction fields and the
structural correlations between water dipoles in the Onsager [20],
Kirkwood [21] and Fröhlich [22] models were limited to the case of
small electric field strengths, i.e. they were far away from the satura-
tion limit [17]. Later generalization of the Kirkwood–Onsager–
Fröhlich theory in the saturation regime was performed by Booth
[19]. However Booth's model does not consider the excluded volume
effect in an electrolyte solution near the charged surface, as is taken
into account in Eq.(1) within the Langevin–Bikerman model for the
finite sized ions [12]. Booth's expression for the relative permittivity
is therefore appropriate only for the Langevin Poisson–Boltzmann
model for point-like ions [12].

Therefore in this work Eq.(1) is generalized by also taking into ac-
count the cavity field (but not also correlations between water di-
poles) in the saturation regime at high electric field strengths
important when considering an electrolyte solution in contact with
highly charged implant and membrane surfaces [10,13].

2. Theory

In our model electronic polarization is taken into account consid-
ering a point-like and rigid (permanent) dipole located in the centre
of a sphere with a volume equal to the average volume of a water
molecule in the electrolyte solution. The permittivity of the sphere
is n2, where n=1.33 is the optical refractive index of water. The rel-
ative (effective) permittivity of the electrolyte solution (εr) can then
be expressed as:

εr ¼ n2 þ Pj j
ε0E

; ð7Þ

where P is the polarization vector due to orientation of permanent
point-like water dipoles having dipole moment p.

The external dipole moment (pe) of a point-like dipole at the cen-
tre of the sphere with permittivity n2 can then be expressed in the
form [22]: pe=3p/(2+n2), whence it follows p=(2+n2)pe/3. In
our analysis short range interactions between the point-like rigid di-
poles are neglected. The local electric field strength at the centre of
the sphere with a permanent (rigid) point-like dipole is [22]:

Ec ¼
3εr

2εr þ n2 Eþ g p; ð8Þ

where the first term represents the field inside a spherical cavity with
dielectric permittivity n2 embedded in a mediumwith permittivity εr,
and the second term g p is the reaction-field acting on p (due to the
dipole moment p of the point-like dipole itself). In the following,
Eq.(8) is simplified (assuming εr≫n2 ):

Ec ¼
3
2
Eþ g p: ð9Þ
The energy of the point like-dipole p in the local field Ec may be
then written as:

Wi ¼ −p⋅Ec ¼ −p⋅ 3
2
Eþ g p

� �
¼ γpo E cos ωð Þ−g p20; ð10Þ

where p0 is the magnitude of the single water dipole moment pe, ω
is the angle between the dipole moment vector p and the vector−E,
g (2+n2)2/32→g and

γ ¼ 3
2

2þ n2

3

 !
: ð11Þ

In the case of an electrolyte solution in contact with a charged pla-
nar surface, the polarization P(x) is then given by:

P xð Þ ¼ nw xð Þ 2þ n2

3

 !
p0 cos ωð Þh iB ¼ −nw xð Þ 2þ n2

3

 !
p0L γp0Eβð Þ;

ð12Þ

where

cosωh iB ¼
∫
π

0

cosω exp −γpoEβ cos ωð Þ þ βgp20
� �

dΩ

∫
π

0

exp −γpoEβ cos ωð Þ þ βgp20
� �

dΩ

¼ −L γp0Eβð Þ;

ð13Þ

and dΩ=2πsinω dω is an element of solid angle and x is the distance
from the charged surface in the perpendicular direction. Since σb0,
the projection of the polarization vector P on the x-axis points in
the direction from the bulk to the charged surface and P(x) is consid-
ered negative. Ion and water distribution functions can be written in
the form:

nþ xð Þ ¼ ns
n0e

−e0ϕβ

n0e
e0ϕβ þ n0e

−e0ϕβ þ n0w e−γpoEβcos ωð Þþβ g p20
D E

ω

; ð14Þ

n− xð Þ ¼ ns
n0e

e0ϕβ

n0e
e0ϕβ þ n0e

−e0ϕβ þ n0w e−γpoEβcos ωð Þþβ g p20
D E

ω

; ð15Þ

nw xð Þ ¼ ns

n0w e−γpoEβcos ωð Þþβ g p20
D E

ω

n0e
e0ϕβ þ n0e

−e0ϕβ þ n0w e−γpoEβcos ωð Þþβ g p20
D E

ω

: ð16Þ

For simplicity we neglect β g p2
0:

e−γpoEβcos ωð Þþβgp20
� 	

ω
¼

2π∫
0

π

d cosωð Þe−γpoEβcos ωð Þ

4π
¼ sinh γp0Eβð Þ

γp0Eβ
: ð17Þ

is the dipole Boltzmann factor after rotational averaging over all
possible angles ω. Eqs. (14)–(17) can be rewritten as:

nþ xð Þ ¼ n0e
−e0ϕβ ns

D ϕ; Eð Þ ; ð18Þ

n− xð Þ ¼ n0e
e0ϕβ ns

D ϕ; Eð Þ ; ð19Þ

nw xð Þ ¼ n0w ns

D ϕ; Eð Þ
1

γp0Eβ
sinh γp0Eβð Þ: ð20Þ
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Fig. 1. The relative number density of counter ions (n+/ns) and water dipoles (nw/ns)
(calculated using Eq. (18) and Eq. (20) as a function of distance from a planar charged
surface x calculated for three values of surface charge density: σ=−0.1As/m2

(dashed-dotted line), σ=−0.2As/m2 (full line) and σ=−0.3As/m2 (dashed line).
Values of parameters assumed: bulk concentration of salt n0/NA=0.15mol/l, dipole
moment of water p0=3.1D, optical refractive index n=1.33, bulk concentration of
water now/NA=55mol/l, where NA is Avogadro number.
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where:

D ϕ; Eð Þ ¼ 2n0cosh e0ϕβð Þ þ n0w

γp0Eβ
sinh γp0Eβð Þ: ð21Þ

Combining Eqs. (12) and (20) gives the polarization in the form:

P xð Þ ¼ − 2þ n2

3

 !
p0n0w ns

D ϕ; Eð Þ
1

γp0Eβ
sinh γp0Eβð ÞL γp0Eβð Þ: ð22Þ

Using the definition of F uð Þ (Eq.(2)), Eq.(22) reads:

P ¼ −p0n0wns
2þ n2

3

 !
F γp0Eβð Þ
D ϕ; Eð Þ : ð23Þ

Combining Eqs. (7) and (23) finally yields the relative (effective) per-
mittivity of the electrolyte solution in contact with a charged surface:

εr ¼ n2 þ n0wns
p0
ε0

2þ n2

3

 !
F γp0Eβð Þ
D ϕ; Eð ÞE : ð24Þ

The average microscopic volume charge density ρ(x) is the sum of the
contributions of the local net ion charges and the dipole moments,
represented by the polarization P (see for example [30,31]):

ρ xð Þ ¼ e0 nþ xð Þ−n− xð Þ� �
−dP

dx
: ð25Þ

Using Eq. (22) and distribution functions (18)–(19), the expression
for the average microscopic volume charge density of the electrolyte
solution (Eq. (25)) reads:

ρ xð Þ ¼ −2e0n0ns
sinh e0ϕβð Þ
D ϕ; Eð Þ þ n0wp0 ns

2þ n2

3

 !
d
dx

F γp0Eβð Þ
D ϕ; Eð Þ


 �
: ð26Þ

Inserting the volume charge density (26) into the Poisson Eq. (31)

ϕ″ ¼ − ρ xð Þ
ε0n

2 ; ð27Þ

where ϕ″ is the second derivative of the electric potential ϕ with re-
spect to x, we get:

ϕ″ ¼ 2e0n0ns

ε0n
2

sinh e0ϕβð Þ
D ϕ; Eð Þ −n0wnsp0

ε0n
2

2þ n2

3

 !
d
dx

F γp0Eβð Þ
D ϕ; Eð Þ


 �
: ð28Þ

Eq.(28)) can be rewritten in a more general form as (Appendix A):

∇⋅ ε0εr rð Þ∇ϕ rð Þ½ � ¼ −ρfree rð Þ; ð29Þ

where ρfree(r) is the macroscopic (net) volume charge density of
coions and counterions (see also Eqs. (18) and (19)):

ρfree rð Þ ¼ e0nþ rð Þ−e0n− rð Þ ¼ −2e0nsn0
sinh e0ϕβð Þ
D ϕ; Eð Þ ; ð30Þ

while εr(r) is defined by Eq. (24). The boundary conditions are:

∇ϕ r ¼ rσð Þ ¼ − σn
ε0εr r ¼ rσð Þ ; ð31Þ

ϕ r→∞ð Þ ¼ 0: ð32Þ

For γ→1 and n→1 the equations of the above described model
transform into equations of Langevin–Bikerman model [12,13].
3. Results and discussion

Eq. (29) was solved numerically for planar geometry using the
Finite Element Method (FEM) within the Comsol Multiphysics 3.5a
Software program package (COMSOL AB, Stockholm). The space
dependence of εr (Eq. (24)) in Eq. (29) was taken into account in an
iterative procedure, where the initial value of εr was a constant
equal to the permittivity of the bulk solution. The boundary condi-
tions (31) and (32) were taken into account.

Figs. 1 and 2 show the spatial dependence of n+/ns , nw/ns and εr in
planar geometry for three values of the surface charge density σ cal-
culated within the presented model. The decrease of εr towards the
charged surface is a consequence of the increased depletion of
water molecules near the charged surface (excluded volume effect)
and increased orientational ordering of water dipoles (saturation ef-
fect). The depletion of water molecules near the charged surface is
due to excluded volume effect as a consequence of accumulation of
counterions near the charged surface. Comparison between the pre-
dictions of our model for different values of σ shows that the decrease
of relative permittivity of the electrolyte solution near the highly
charged surface is pronounced with increasing σ.
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Fig. 2. The relative permittivity εr (Eq. (24)) as a function of distance from a planar
charged surface x calculated for three values of surface charge density: σ=−0.1As/
m2 (dashed-dotted line), σ=−0.2As/m2 (full line) and σ=−0.3As/m2 (dashed
line). Values of parameters are the same as in Fig. 1.
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In the approximation of a small electrostatic energy and small
energy of the dipoles compared to the thermal energy, i.e. small
e0ϕβ and small γp0Eβ, the relative permittivity within our model
for finite sized ions (Eq. (24)) can be expanded into a Taylor series
(assuming ns≈n0w) to get:

εr ≅ n2 þ 3
2

2þ n2

3

 !2
n0wp0

2β
3ε0

−27
8

2þ n2

3

 !4
n0wp

2
0β

45ε0
p0Eβð Þ2−

−3
2

2þ n2

3

 !2
n0p

2
0β

3ε0
e0ϕβð Þ2:

ð33Þ

In the limit of vanishing electric field strength (E→0) and zero po-
tential (ϕ→0) the above equation gives the Onsager expression for
bulk permittivity:

εr≅n
2 þ 2þ n2

3

 !2
n0wp0

2β
2ε0

: ð34Þ

In the above expression for the relative (effective) permitivitty
(Eq. (24)) the value of the dipole moment p0=3.1D corresponds to
the bulk permittivity εr=78.5 (Eq. (34)). This value is considerably
smaller than the corresponding value in the Langevin–Bikerman
model (where p0=4.79D) (see Eq. (6)) [12,13] which does not take
into account the cavity field [22], and is also close to the experimental
values of the effective dipole moment of water molecules in clusters
(p0=2.7D) and in bulk solution (p0=2.4−2.6D) [23]. The permittiv-
ity derived within the model presented (Eq. (24)) does not negate the
previous predictions of the Langevin–Bikerman model [12,13] where
all the equations (including the expression for the relative permittiv-
ity) have a similar structure as in the presented model, only the effec-
tive value of the water dipole moment (p0) in the old Langevin–
Bikerman model [12,13] is larger.

On comparison of the relative permittivity εr in the Langevin–
Bikerman model (Eqs. (1) and (5)) [12,13] with εr derived in this
work (Eqs. (24) and (33)) it can be seen that in both models εr de-
creases with increasing E and |ϕ|. It can be further seen that consider-
ing the cavity field in the presented model leads to a stronger
decrease of relative permittivity than by considering only the orienta-
tional ordering of water molecules and the excluded volume effect in
the Langevin–Bikerman model (compare Eqs.(5) and (33).
4. Conclusions

The orientation of water near a charged membrane surface and a
charged implant surface is important in many biological processes
such as binding of ligands to the active sites of enzymes, transport
of ions through channel proteins or interactions of cells with implant
surfaces [3,4,8,10,13,25–27]. As shown in the past, the properties of
the electric double layer may be influenced by the ordering of water
molecules [4,10,12,13,25,26,28] and the depletion of water molecules
[12,13] in the region of the electric double layer. Close to the charged
surface the saturation and excluded volume effects may result in a de-
crease of permittivity [10–14].

The effective dipole moment of the water molecule must be
known before a satisfactory statistical mechanical description of
water and aqueous solutions is possible [29]. The dipole moment of
a water molecule in liquid water differs from that of an isolated
water molecule because each water molecule is further polarized by
the electric field of the neighbouring water molecules [29]. In order
to capture this effect in the theoretical description of permittivity of
water, the concept of cavity and reaction fields and the correlations
between water dipoles [20–22] were introduced for small magni-
tudes of the electric field, i.e. far away from the saturation limit [17]
of the water orientational ordering. Later generalization of the
Kirkwood–Onsager–Fröhlich theory in the saturation regimewas per-
formed for constant electric field strength as well [17,19]. However, it
was shown recently within the Langevin–Bikerman model that in
an electrolyte solution in contact with a highly charged implant
(electrode) or membrane surface the influence of the excluded vol-
ume effect (not taken into account in Booth's model of permittivity)
should also be allowed for while considering the spatial variation of
relative permittivity of an electrolyte solution near the highly charged
surface [12,13].

The Langevin–Bikerman model [12,13] on the other hand does not
take into account the cavity field, therefore it was generalized in this
work by simultaneously considering the influence of water ordering
(saturation effect), the cavity field as well as the excluded volume ef-
fect. The corresponding analytical expression for the spatial depen-
dence of the relative (effective) permittivity (Eq.(24)) was derived.
Based on this formula it can be seen that the relative permittivity of
the electrolyte solution near the highly charged surface (i.e. in the
saturation regime) may be substantially decreased due to orienta-
tional ordering of water (saturation effect) and depletion of water
molecules due to accumulation of counterions (volume excluded ef-
fect) (see also [12]). Comparison between the predictions of the Lan-
gevin–Bikerman model [12,13] and the model presented in this work
shows that consideration of the cavity field makes the reduction of
permittivity of an electrolyte solution near the highly charged surface
even stronger.
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Appendix A

Eq. (28) can be rewritten in more general form as:

∇⋅ ε0n
2∇ϕ rð Þ

h i
þ n0wnsp0

2þ n2

3

 !
∇⋅ n

F γp0Eβð Þ
D ϕ; Eð Þ


 �
¼

¼ 2e0n0ns
sinh e0ϕβð Þ
D ϕ; Eð Þ ;

ðA:1Þ



203E. Gongadze, A. Iglič / Bioelectrochemistry 87 (2012) 199–203
where n=∇ϕ/|∇ϕ|=∇ϕ/E. It follows from Eq. (A.1) that

∇⋅ ε0 n2 þ n0wnsp0
ε0

2þ n2

3

 !
1
E
F γp0Eβð Þ
D ϕ; Eð Þ

 !
∇ϕ rð Þ

" #
¼

¼ 2e0n0ns
sinh e0ϕβð Þ
D ϕ; Eð Þ :

ðA:2Þ

The above Eq. (A.2) can finally be rewritten in the form:

∇⋅ ε0εr rð Þ∇ϕ rð Þ½ � ¼ −ρfree rð Þ; ðA:3Þ

where ρfree(r) is the macroscopic (net) volume charge density of
coions and counterions (Eq. (30)), while εr(r) is defined by Eq. (24).
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