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Abstract. The distribution of ions in an electrolyte solution close to a charged surface is
determined by competition between electrostatic interactions and the entropy of the ions.
The diffuse electric double layer (EDL) created influences the overall electrostatic interaction
of the charged surface with its environment. Different approaches were introduced through
the years to overcome some of the limitations of classical EDL Poisson-Boltzmann models
and to better capture the complex phenomena of the EDL. The core of these models is the
spatial variation of the relative permittivity, achieved by taking into account the spatial and
orientational distribution of water molecules and the excluded volume effect.

1. Introduction
The contact between a charged surface and an electrolyte solution implies a characteristic spatial
and orientational distribution of ions and water molecules which is reflected in the formation
of the electric double layer (EDL) [1–6]. Study of the electric double layer began in 1879 with
Hermann von Helmholtz, but today it still remains a scientific challenge. Helmholtz treated the
double layer as a simple capacitor, assuming that the surface charge density is neutralized by
the counterions located at a distance equal to their hydrated radius. Gouy [1] and Chapman
[1, 2] considered the thermal motion of ions and pictured a diffuse double layer composed of
ions of opposite charge (counterions) attracted to the surface, and ions of the same charge (co-
ions) repelled from it. Ions are embedded in a dielectric continuum while the electric potential
is subject to the Poisson-Boltzmann (PB) differential equation. Within the so-called Poisson-
Boltzmann theory [1–3], the ions in an electrolyte solution are treated as dimensionless and
a uniform permittivity of the electrolyte solution is assumed. Surfaces are considered to be
uniformly charged (see also Refs. [3–8]).

The Stern model [9] was the first attempt to incorporate the finite size of ions in EDL
theory by combining the Helmholtz [10] and Gouy-Chapman [1, 2] models Furthermore, in
1942, Bikermann introduced the first complete modified Poisson-Boltzmann (modified Gouy-
Chapman) model with consideration of steric effects in the electrolyte phase [11]. The tendency
was continued by Grimley and Mott [12, 13], and Freise [14] who included the excluded volume
effect with a pressure-dependent potential. Wicke and Eigen [15] used a thermodynamic
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approach, multiplying the numerical density of ions by a factor containing the number of vacant
sites. Also more recently, the finite size of particles has been incorporated into the electric
double layer theory in different ways [16], for example by using a lattice statistics model [17] or
by including surface charge correlations where ions and solvent molecules were treated as hard
spheres [5]. The properties of the electric double layer may thus be strongly influenced by the
ordering of water molecules [7, 8, 18–22] and their depletion in the region of the electric double
layer [23]. Outhwaite developed a modified Poisson-Boltzmann (PB) theory of the electrical
double layer composed of a mixture of hard spheres with point dipoles and finite sized ions. The
Langevin expression for the permittivity appeared as the first closure, while the second closure
led to the Onsager expression for the relative permittivity [18].

It was shown that close to the charged surface, water dipole ordering in the saturation
regime and depletion of water molecules may result in a strong local decrease of permittivity
[20, 21, 23, 24].

In this work EDL mean-field theories of electrolyte solution in contact with a charged surface
are reviewed. It is indicated that consideration of the orientational ordering of water molecules
near a highly charged (metal) surface, the finite size of molecules, electronic polarizability and
cavity field of water molecules is essential to better describe the physical properties of the EDL
at high values of the surface charge density [23].

2. Gongadze-Iglič model
The effective dipole moment of a water molecule should be known before a satisfactory statistical
mechanical study of water and aqueous solutions is possible [25–27]. The dipole moment of a
water molecule in liquid water differs from that of an isolated water molecule because each water
molecule is further polarized and orientationally perturbed by the surrounding water molecules
[25–28].

In the past treatment of the cavity and the correlations between water dipoles in the Onsager
[29], Kirkwood [30] and Fröhlich models [25] were limited to the case of small electric field
strengths. Generalization of the Kirkwood-Onsager-Fröhlich theory in the saturation regime
was performed later by Booth [26]. However, Booth’s model does not consider the excluded
volume effect in an electrolyte solution near a charged surface.

In order to develop an integrating framework to clarify the factors influencing the relative
permittivity, in this review a generalisation of the Langevin Poisson-Boltzmann (LPB) model
[22] is presented. The model takes into account the cavity field [25] (but not the structural
correlations between water dipoles), as well as the finite size of ions [8, 23] in the saturation
regime ( an important consideration for an electrolyte solution in contact with a highly charged
surface).

In the model electronic polarization is taken into account by assuming that the point-like
rigid (permanent) dipole is embedded in the centre of a sphere with a volume equal to the
average volume of a water molecule in the electrolyte solution (figure 1). The permittivity of
the sphere is taken to be n2, where n = 1.33 is the optical refractive index of water. The relative
(effective) permittivity of the electrolyte solution (εr) is then expressed as:

εr(r) = n2 +
|P|
ε0E

, (1)

where P is the polarization vector due to the net orientation of permanent point-like water
dipoles having dipole moment p. The external dipole moment (pe) of a point-like dipole at the
center of the sphere with permittivity n2 can then be expressed in the form [25] pe = 3p/(2 + n2)
whence it follows:

p =
2 + n2

3
pe . (2)

17ISCMP IOP Publishing
Journal of Physics: Conference Series 398 (2012) 012004 doi:10.1088/1742-6596/398/1/012004

2



Figure 1. In the model a single water molecule is considered as a sphere with permittivity
n2 = 1.332 and a point-like rigid (permanent) dipole with dipole moment p at the centre of the
sphere. Here n = 1.33 is the optical refractive index of water.

The short range interactions between dipoles are neglected. The local electric field strength at
the centre of the sphere at the location of the permanent (rigid) point-like dipole (figure 2) is
[25] :

Ec =
3 εr

2 εr + n2
E , (3)

where the expression represents the field inside a spherical cavity with dielectric permittivity n2

embedded in a medium with permittivity εr. In the following, Eq. (3) is simplified to the form
(strictly valid for εr ≫ n2 only): Ec =

3
2 E. The energy of the point-like dipole p in the local

field Ec may then be written as:

Wi = −p ·Ec = γ poE cos(ω) , (4)

where p0 is the magnitude of the dipole moment pe, ω is the angle between the dipole moment
vector p and the vector −E and γ is [23]:

γ =
3

2

(
2 + n2

3

)
. (5)

The polarization P (x) = nw(x)
⟨
p(x, ω)

⟩
B

is given by [23]:

P (x) = nw(x)

(
2 + n2

3

)
p0
⟨
cos(ω))

⟩
B
= −nw(x)

(
2 + n2

3

)
p0 L (γp0Eβ) , (6)

where we took into account the well known result (see for example [25]):

⟨
cos(ω))

⟩
B
=

π∫
0
cosωP(x, ω) 2π sinωdω

π∫
0
P(x, ω) 2π sinωdω

= −L (γp0Eβ) , (7)

and β = 1/kT , where kT is the thermal energy. Since σ < 0, the projection of the polarization
vector P on the x-axis points in the direction from the bulk to the charged surface and P (x) is
considered negative.
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Figure 2. Schematic figure of the EDL near a negatively charged planar metal surface. The
water dipoles in the vicinity of the charged surface are partially oriented towards the surface
(adapted from [23, 37]).

Since in the bulk solution the number densities of water molecules (n0w), counterions (n0) and
co-ions (n0) are constant, their number densities can be expressed in a simple way by calculating
the corresponding probabilities that a single lattice site in the bulk solution is occupied by one of
the three kind of particles in the electrolyte solution (counterions, co-ions and water molecules)
[8, 33, 34]. However, in the vicinity of a charged surface the number densities of ions and water
molecules are influenced by the charged surface (figure 2), so the probabilities that a single lattice
site is occupied by a particle of one of the three kinds should be corrected by the corresponding
Boltzmann factors, leading to ion and water dipole distribution functions in the form [23]:

n+(x) = ns
n0e

−e0ϕβ

n0ee0ϕβ + n0e−e0ϕβ + n0w

⟨
e−γ po Eβ cos(ω)

⟩
ω

, (8)

n−(x) = ns
n0e

e0ϕβ

n0ee0ϕβ + n0e−e0ϕω + n0w

⟨
e−γ po Eβ cos(ω)

⟩
ω

, (9)

nw(x) = ns

n0w

⟨
e−γ po Eβ cos(ω)

⟩
ω

n0ee0ϕβ + n0e−e0ϕω + n0w

⟨
e−γ po Eβ cos(ω)

⟩
ω

, (10)

where ns is the number density of lattice sites as defined above and

⟨
e−γ po Eβ cos(ω)

⟩
ω
=

2π
0∫
π
d(cosω) e−γ po Eβ cos(ω)

4π
=

sinh (γp0Eβ)

γp0Eβ
. (11)
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is the dipole Boltzmann factor after rotational averaging over all possible angles ω. Eqs. (8)-(11)
can be rewritten as [23]:

n+(x) = n0 e
−e0ϕβ ns

D(ϕ,E)
, (12)

n−(x) = n0 e
e0ϕβ ns

D(ϕ,E)
, (13)

nw(x) =
n0w ns

D(ϕ,E)

sinh (γp0Eβ)

γp0Eβ
. (14)

where D(ϕ,E) = 2n0 cosh (e0ϕβ)+
n0w

γp0Eβ sinh (γp0Eβ). Combining Eqs. (6) and (14) gives the
polarization in the form:

P (x) = −
(
2 + n2

3

)
p0 n0w ns

D(ϕ,E)

L (γp0Eβ)

γp0Eβ
sinh (γp0Eβ) . (15)

Using the definition of the function F(u): F(u) = L(u) (sinhu/u) Eq. (15) transforms into:

P = − p0 n0w ns

(
2 + n2

3

)
F (γp0Eβ)

D(ϕ,E)
. (16)

Combining Eqs. (1) and (16) yields the relative (effective) permittivity [23] :

εr(x) = n2 + n0w ns
p0
ε0

(
2 + n2

3

)
F (γp0Eβ)

D(ϕ,E)E
. (17)

Using the above expression for εr(x), we can then write the Poisson equation in the form [8, 23]:

∇ · [ε0 εr(x)∇ϕ(x) ] = −ρfree(x) , (18)

where ρfree(x) is the macroscopic (net) volume charge density of co-ions and counterions (see
also Eqs. (12) and (13)) [23] :

ρfree(x) = e0 n+(x)− e0 n−(x) = −2 e0 nsn0
sinh (e0ϕβ)

D(ϕ,E)
. (19)

The boundary conditions are [23]:

∇ϕ (x = 0) = − σ n

ε0 εr(x = 0)
, ϕ (x → ∞) = 0 . (20)

In the limit of vanishing electric field strength (E −→ 0) and zero potential (ϕ −→ 0),
the above derived expression for relative permittivity (Eq. (17)) gives the well-known Onsager
expression for permittivity:

εr ∼= n2 +

(
2 + n2

3

)2
n0wp0

2β

2 ε0
. (21)

In the above derived expression for the relative (effective) permitivitty (Eq. (17)), the value
of the dipole moment p0 = 3.1D (Debye is 3.336 · 10−30C/m) predicts a bulk permittivity
εr = 78.5. This value is considerably smaller than the corresponding value in previous similar
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Figure 3. The relative number density of counter ions (n+/ns) and water dipoles (nw/ns)
(calculated using Eqs. (12) and Eq. (14) as a function of distance from a planar charged surface
x calculated for three values of surface charge density: σ = −0.1As/m2 (dashed-dotted line),
σ = −0.2As/m2 (full line) and σ = −0.3As/m2 (dashed line) (from [23]). Values of parameters
assumed: dipole moment of water p0 = 3.1D, bulk concentration of salt n0/NA = 0.15mol/l,
optical refractive index n = 1.33, bulk concentration of water now/NA = 55mol/l, where NA is
the Avogadro number.

models (p0 = 4.79D) [22, 31, 32] which did not take into account the cavity field and electronic
polarizability of water molecules.

Figures 3 and 4 show the calculated spatial dependence of the relative number density of
counter ions (n+/ns), water dipoles (nw/ns) and εr(x) within the finite sized Gongadze-Iglič
(GI) model in planar geometry for three values of the surface charge density σ.

It can be seen in figure 3 that close to the charged plane there may be a considerable excluded
volume effect on the density profile of the counterions and on the solvent molecules. The
concentration of counterions there is comparable to the concentration of solvent lattice sites, so
that the concentration of solvent lattice sites deviates significantly from its value far from the
charged surface.

The ratio between the concentration of the counterions near the charged plane and the bulk
counter-ion concentration as a function of the surface charge density σ is higher for dimensionless
ions than for ions of finite size. The discrepancy between the results for dimensionless ions and
for ions of finite size grows with increasing |σ| [35]. The deviation can be attributed to the steric
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Figure 4. Relative permittivity εr (Eq. (17)) as a function of distance from a planar charged
surface x (from [23]). Three values of surface charge density were considered: σ = −0.1As/m2

(dashed-dotted line), σ = −0.2As/m2 (full line) and σ = −0.3As/m2 (dashed line). Eq. (18)
was solved numerically taking into account the boundary conditions as described in [23]. Values
of the model parameters are the same as in the previous figure.

effect of counterions and solvent molecules in the small region in the vicinity of the charged
surface. The counter-ion concentration profile shows a rapid decrease for small lattice constant
and a plateau region near the charged plane for large lattice constant. For large counterions
we can therefore distinguish between two regions within the electric double layer: the saturated
layer dominated by steric repulsion and the diffuse layer extending into the solution.

The decrease of εr(x) towards the charged surface is pronounced with increasing σ (figure 4)
and is a consequence of the increasing depletion of water molecules near the charged surface (due
to the excluded volume effect as a consequence of accumulation of counterions near the charged
surface) (figure 4) and increased orientational ordering of water dipoles (saturation effect).
Comparison between the predictions of the GI model [23] and the Langevin Poisson-Boltzmann
(LPB) model model [8, 22] which does not take into account the finite size of molecules (i.e.
assumes a constant density of water molecules), shows a stronger decrease of relative permittivity
of the electrolyte solution near the highly charged surface stronger in the GI model than in the
LPB model, mainly due to depletion of water molecules in the vicinity of the charged surface in
the GI model (see figure 3).

3. Langevin-Bikerman model
In order to differentiate between the influence of the finite size of ions and the influence of the
cavity field on the relative permittivity near the charged surface, the equations of the above
described Gongadze-Iglič (GI) [23] model may be written in the limit of γ → 1 and n → 1 [8] to
get [8, 36] :

∇ · [ε0 εr(x)∇ϕ(x) ] = −ρfree(x) , (22)

where ρfree(x) is the macroscopic (net) volume charge density of co-ions and counterions in the
Langevin-Bikerman (LB) model :

ρfree(x) = −2 e0 nsn0
sinh (e0ϕβ)

H(ϕ,E)
, (23)
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while εr(x) is the relative permittivity in the LB model [31, 32, 36] :

εr(x) = 1 + n0wns
p0
ε0

F(p0Eβ)

EH(ϕ,E)
, (24)

where H(ϕ,E) = 2n0 cosh (e0ϕβ) +
n0w
p0Eβ sinh (p0Eβ).

Comparison between the space dependency of the relative permittivity within the GI model
and within its limiting LB model for γ → 1 and n → 1 shows that consideration of the cavity
field and electronic polarizability of water molecules makes the reduction of permittivity of the
electrolyte solution near the charged surface stronger in the GI model [37]. More important, in
the LB model (i.e. limit of γ → 1 and n → 1 of the GI model) the value p0 = 4.79D [31, 32, 36]
(similarly as in the LPB model [8, 22]) should be used in order to get εr(x → ∞) = 78.5.

4. Bikerman model
In the limit of p0 → 0 the particle distribution functions (12)-(14) transform into Fermi-Dirac-
like Bikerman distribution functions [11–15, 17, 35, 38, 39] :

n+(x) =
n0ns

n0w

e−e0ϕβ

1 + (2n0/n0w) cosh (e0ϕβ)
, (25)

n−(x) =
n0ns

n0w

ee0ϕβ

1 + (2n0/n0w) cosh (e0ϕβ)
, (26)

nw(x) =
ns

1 + (2n0/n0w) cosh (e0ϕβ)
, (27)

while Eq. (18) transforms into the Bikerman equation [11–15, 17, 35, 38, 39] :

∇ · [ε0 εr∇ϕ(x) ] = −ρfree(x) (28)

where we made the transformation ε0 → εrε0 with εr = 78.5, while ρfree(x) is defined by
Eq.(23). Eq. (25) predicts a Fermi-Dirac-like distribution for counterions if the lattice constant
a is large enough. For higher values of the surface charge density (|σ|), the counter-ion density
saturates close to the charged surface to its close packing value, while the well-known Gouy-
Chapman model [1–3] predicts unreasonably high values beyond the close-packing values (see
also [11, 17, 35]).

5. Gouy-Chapman model
In the limit of a very dilute solution everywhere in the electrolyte solution:∑

j=+,−
nj(x) ≪ nw(x) , (29)

and by taking into account the approximation n0w ≃ ns , we can neglects the second term in the
denominator of Eqs. (25) and (26), so the particle distribution function (25) and (26) transform
into Boltzmann distribution functions within the Gouy-Chapman model [1–4, 7, 40]:

n+(x) = n0 e
−e0ϕβ , (30)

n−(x) = n0 e
e0ϕβ , (31)

while the number density of water molecules (Eq.(27)) becomes constant [17, 35] :

nw(x) = n0w . (32)

The Bikerman Eq.(28) transforms into the Poisson-Botzmann equation within the Gouy-
Chapman model [1–3]:

∇ · [ε0 εr∇ϕ(x) ] = 2e0n0 sinh(e0ϕβ) . (33)
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6. Discussion and Conclusions
In theoretical models of the EDL, the effect of a polarizing environment can be captured by
introducing the cavity field [25, 29, 30]. In the past, treatments of the cavity field in the Onsager
[29], Kirkwood [30] and Fröhlich [25] models were limited to the case of small electric field
strengths far away from the saturation limit [41]. Later a generalization in the saturation
regime was performed [23, 26, 41].

In this review it was shown that considering the cavity field of a single water molecule and the
finite size of the ions result in a more realistic description of the decrease of the permittivity near
the charged surface [8, 23]. The corresponding analytical expression for the spatial dependence
of relative permittivity of an electrolyte solution near the charged surface is given in [8, 23, 34].

The dipole moment of an isolated water monomer is 1.855 D, while the dipole moment of
a water molecule in bulk liquid water [27] is around 2.4 - 2.6 D [28, 42]. By considering the
cavity field at the centre of a water molecule and its electronic polarizability [25], a magnitude
of the external water dipole moment around 3 D was suggested within the mean-field lattice
statistics approach [23] in accordance with predictions of previous theoretical treatments within
the lattice model approach [27, 42]. Neglecting the cavity field and the electronic polarizability
within lattice statistics theoretical models leads to much higher predicted values of the water
external dipole moment around 5 D [22, 31].

To ascertain whether the described Gongadze-Iglič (GI) mean-field model (which includes
orientational ordering of water, cavity field, electronic polarizability of water and finite size of
molecules) has improved the agreement between theory and experiments with respect to the
classical Gouy-Chapman model, one should compare the measured and the predicted values of
electric potential and differential capacitance of the EDL in both models. Within the GI model
the predicted values of the electric potential at higher surface charge densities σ are substantially
more negative than the corresponding values within the Gouy-Chapman model (see Ref. [33]
and references therein).

Within the Gouy-Chapman model, we can estimate the electric potential ϕ0 at the surface
(of the electrode for example) by the using Grahame equation [20]:

σ =
√
8n0 ε0εr/β · sinh

(
e0 β ϕ0

2

)
, (34)

where ϕ0 is the surface potential, i.e. ϕ(x = 0) . The corresponding Gouy-Chapman differential
capacitance is [20]:

CGC =
dσ

dϕ0
=
√
2 e20 β n0 ε0εr · cosh

(
e0 β ϕ0

2

)
. (35)

The Gouy-Chapman model provides relatively good predictions for monovalent salts at
concentrations below 0.2 mol/l in aqueous solutions and magnitudes of surface potentials below
50−80mV [20]. However, by increasing the surface charge density (i.e. increasing the magnitude
of ϕ0) the differential capacitance calculated within the GI model decreases. By applying
a voltage of up to 1V, the differential capacitance drops to very small values in accordance
with experimental results (see also Refs. [20, 21, 33]). Obviously, the GI model also works
efficiently at higher surface charge densities or potentials, where the classical Gouy-Chapman
model completely fails as the differential capacitance CGC (unlike the experimental results)
strongly and monotonously increases with increasing ϕ0.

On the contrary, in the GI model, in accordance with the experimental results [20, 43], the
differential capacitance decreases with increasing ϕ0 after reaching its maximum. The predicted
values of differential capacitance at high values of ϕ0 are much smaller than the corresponding
values calculated using the empirical formula for ε(x) [21]. Moreover, if the Gongadze-Iglič (GI)
model is modified by also taking into account the distance of closest approach [8], the predicted
values of differential capacitance would closely approach to the experimental values [43].
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