Decrease of permittivity of an electrolyte solution near a charged surface due to saturation and excluded volume effects

Ekaterina Gongadze, Aleš Iglič *

Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

Article info
Received 4 August 2011
Received in revised form 22 October 2011
Accepted 1 December 2011
Available online 10 December 2011

Keywords:
Relative permittivity
Orientational ordering of water
Excluded volume effect
Cavity field
Saturation effect

Abstract
The dipole moment of a water molecule in liquid water differs from that of an isolated one because each molecule is further polarized by the electric field of its neighbours. In this work a formula for the spatial dependence of the relative permittivity of an electrolyte near a highly charged surface is obtained in which the mutual influence of the water molecules is taken into account by means of the cavity field. The orientational ordering of water dipoles is considered in the saturation regime. It is predicted that the relative permittivity of an electrolyte solution near the highly charged surface (i.e. in saturation regime) may be substantially decreased due to orientational ordering of water (saturation effect) and depletion of water molecules (excluded volume effect) due to accumulation of counterions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The contact between a charged metallic or membrane surface and an electrolyte imparts a particular spatial and orientational distributions of ion and water molecules near the charged surface [1–9] which is reflected in a decrease of permittivity for high enough surface charge densities of the charged surface [10–13].

In the absence of an explicit consideration of the orientational ordering of water molecules, the assumption of constant permittivity is largely a consequence of the constant number of water molecules in the Poisson–Boltzmann theory. Considering the orientational ordering of water, Outhwaite developed a modified PB theory of the electrolyte solution [12,13,16] where the spatial dependence of the relative (effective) permittivity in the form

$$
\varepsilon_r = 1 + n_{iw} p_0 \frac{F(p_0 E)}{E \mathcal{H}(\phi, E)}
$$

was derived, where

$$
F(u) = \frac{\sinh u}{u},
$$

$$
\mathcal{H}(\phi, E) = 2n_0 \cosh(\varepsilon_0 \phi E) + \frac{n_{iw}}{p_0 E} \sinh(p_0 E),
$$

is the Langevin function and

$$
\mathcal{L}(u) = (\coth(u) - 1/u).
$$

Recently, Szalai et al. [17] published a mean spherical approximation (MSA) [18] based theory that is able to reproduce simulation results for the field dependence of the dielectric permittivity of a dipolar fluid in saturation regime [19]. The Langevin–Bikerman expression for ε_r (Eq. (1)) also takes into account the orientational ordering of water in the saturation regime (i.e. the saturation effect [19]) and the excluded volume effect. However the cavity and reaction fields were not taken into account [19–22]. As a consequence...
the relative (effective) permittivity defined by Eq. (1) for zero electric field strength and zero potential, i.e. the bulk value of \(\varepsilon_r \) [12]:

\[
\varepsilon_r = n^2 + \left| \frac{P}{n\varepsilon E} \right|^2 \tag{6}
\]

is equal to 78.5 for a magnitude of the effective dipole moment of water \(\rho_0 = 4.79D \) [12] which is larger than the dipole moment of an isolated water molecule (\(\rho_0 = 1.85D \)) and also larger than the dipole moment of a water molecule in clusters (\(\rho_0 = 2.7D \)), and the dipole moment of an average water molecule in the bulk solution (\(\rho_0 = 2.4\text{–}2.6D \)) [23], since the cavity and reaction fields as well as correlations between water dipoles [22,24] are not explicitly taken into account.

In the past treatments of the cavity and reaction fields and the structural correlations between water dipoles in the Onsager [20], Kirkwood [21] and Fröhlich [22] models were limited to the case of small electric field strengths, i.e. they were far away from the saturation limit [17]. Later generalization of the Kirkwood–Onsager–Fröhlich theory in the saturation regime was performed by Booth [19]. However Booth’s model does not consider the excluded volume effect in an electrolyte solution near the charged surface, as is taken into account in Eq. (1) within the Langévin–Bikerman model for the finite sized ions [12]. Booth’s expression for the relative permittivity is therefore appropriate only for the Langévin Poisson–Boltzmann model for point-like ions [12].

Therefore in this work Eq. (1) is generalized by also taking into account the cavity field (but not structural correlations between water dipoles) in the saturation regime at high electric field strengths important when considering an electrolyte solution in contact with highly charged implant and membrane surfaces [10,13].

2. Theory

In our model electronic polarization is taken into account considering a point-like and rigid (permanent) dipole located in the centre of a sphere with a volume equal to the average volume of a water molecule in the electrolyte solution. The permittivity of the sphere is \(n^2 \), where \(n = 1.33 \) is the optical refractive index of water. The relative (effective) permittivity of the electrolyte solution (\(\varepsilon_r \)) can then be expressed as:

\[
\varepsilon_r = n^2 + \left| \frac{P}{n\varepsilon E} \right|^2
\]

where \(P \) is the polarization vector due to orientation of permanent point-like water dipoles having dipole moment \(p \).

The external dipole moment (\(\rho \)) of a point-like dipole at the centre of the sphere with permittivity \(n^2 \) can then be expressed in the form [22]:

\[
\rho = \frac{3p}{(2 + n^2)},
\]

whence it follows \(\rho = (2 + n^2)p/3 \). In our analysis short range interactions between the point-like rigid dipoles are neglected. The local electric field strength at the centre of the sphere with a permanent (rigid) point-like dipole is [22]:

\[
E_z = \frac{3e}{2e_r} + \frac{e}{n^2} E + g p
\]

where the first term represents the field inside a spherical cavity with dielectric permittivity \(n^2 \) embedded in a medium with permittivity \(e_r \), and the second term \(g p \) is the reaction-field acting on \(p \) (due to the dipole moment \(p \) of the point-like dipole itself). In the following, Eq. (8) is simplified (assuming \(e_r \gg n^2 \)):

\[
E_z = \frac{3}{2} E + g p
\]

The energy of the point like-dipole \(p \) in the local field \(E_z \) may be then written as:

\[
W_i = -p E_z = -p \left(\frac{3}{2} E + g p \right) = \gamma p_0 E \cos(\alpha) - g p_0^2.
\]

where \(p_0 \) is the magnitude of the single water dipole moment \(p_0 \), \(\alpha \) is the angle between the dipole moment vector \(p \) and the vector \(-E\), \(\gamma = 3(2 + n^2)/3 \) and

\[
\gamma = 3(2 + n^2)/3.
\]

In the case of an electrolyte solution in contact with a charged planar surface, the polarization \(P(x) \) is then given by:

\[
P(x) = \omega \left(\frac{2 + n^2}{3} \right) p_0 \left(\cos(\alpha) \right)_B = -\omega \left(\frac{2 + n^2}{3} \right) p_0 \mathcal{L}(\gamma p_0 E_B),
\]

where

\[
\left(\cos(\alpha) \right)_B = \frac{\int_0^{\pi} \cos \omega \exp \left(-\gamma p_0 E_B \cos(\alpha) + \beta g p_0^2 \right) \omega d\omega}{\int_0^{\pi} \exp \left(-\gamma p_0 E_B \cos(\alpha) + \beta g p_0^2 \right) \omega d\omega} = \mathcal{L}(\gamma p_0 E_B),
\]

\(\omega \) and \(\mathcal{D} = 2\sin x \cos x \) do is an element of solid angle and \(x \) is the distance from the charged surface in the perpendicular direction. Since \(\alpha < 0 \), the projection of the polarization vector \(P \) on the \(x \)-axis points in the direction from the bulk to the charged surface and \(P(x) \) is considered negative. Ion and water distribution functions can be written in the form:

\[
n_+ (x) = n_e n_0 e^{-e_o \phi (x)} n_0 e^{-e_o \phi (x)} + n_0 e^{-e_o \phi (x)} n_0 e^{-e_o \phi (x)} \frac{\exp \left(-\gamma p_0 E_B \cos(\alpha) + \beta g p_0^2 \right) \omega d\omega}{\exp \left(-\gamma p_0 E_B \cos(\alpha) + \beta g p_0^2 \right) \omega d\omega}.
\]

For simplicity we neglect \(\beta \) and \(p_0^2 \):

\[
\left(e^{-\gamma p_0 E_B \cos(\alpha) + \beta g p_0^2} \right) \omega d\omega = \frac{\pi}{4}\left(\frac{2 + n^2}{3} \right) p_0 \mathcal{L}(\gamma p_0 E_B),
\]

is the dipole Boltzmann factor after rotational averaging over all possible angles \(\alpha \). Eqs. (14)–(17) can be rewritten as:

\[
n_+ (x) = n_e n_0 e^{-e_o \phi (x)} \frac{n_i}{D(\phi, E)},
\]

\[
n_- (x) = n_e e^{e_o \phi (x)} \frac{n_i}{D(\phi, E)},
\]

\[
n_w (x) = \frac{n_0}{D(\phi, E)} - \frac{1}{\gamma p_0 E_B} \sinh (\gamma p_0 E_B).
\]
where:

\[D(\phi, E) = 2n_0 \cosh(\gamma_0 \phi \beta) + \frac{n_{0w}}{\gamma_0 \phi \beta} \sinh(\gamma_0 \phi \beta). \]

(21)

Combining Eqs. (12) and (20) gives the polarization in the form:

\[P(x) = -\left(2 + \frac{n^2}{3}\right) \frac{n_{0w} n_s}{D(\phi, E)} \frac{1}{\gamma_0 \phi \beta} \sinh(\gamma_0 \phi \beta) \mathcal{E}(\gamma_0 \phi \beta). \]

(22)

Using the definition of \(\mathcal{F}(u) \) (Eq. (2)), Eq. (22) reads:

\[P = -p_0 n_{0w} n_s \left(\frac{2 + n^2}{3}\right) \frac{\mathcal{F}(\gamma_0 \phi \beta)}{D(\phi, E)}. \]

(23)

Combining Eqs. (7) and (23) finally yields the relative (effective) permittivity of the electrolyte solution in contact with a charged surface:

\[\varepsilon_e = n^2 + n_{0w} p_0 \left(\frac{2 + n^2}{3}\right) \frac{\mathcal{F}(\gamma_0 \phi \beta)}{D(\phi, E)}. \]

(24)

The average microscopic volume charge density \(\rho(x) \) is the sum of the contributions of the local net ion charges and the dipole moments, represented by the polarization \(P \) (see for example [30,31]):

\[\rho(x) = e_0 [n_+ (x) - n_- (x)] - \frac{dP}{dx}. \]

(25)

Using Eq. (22) and distribution functions (18)–(19), the expression for the average microscopic volume charge density of the electrolyte solution (Eq. (25)) reads:

\[\rho(x) = -2e_0 n_{0w} n_s \frac{\sinh(e_0 \phi \beta)}{D(\phi, E)} + n_{0w} p_0 n_s \left(\frac{2 + n^2}{3}\right) \frac{d}{dx} \frac{\mathcal{F}(\gamma_0 \phi \beta)}{D(\phi, E)}. \]

(26)

Inserting the volume charge density (26) into the Poisson Eq. (31)

\[\phi^\nu = -\frac{\rho(x)}{\varepsilon_0 n^2}. \]

(27)

where \(\phi^\nu \) is the second derivative of the electric potential \(\phi \) with respect to \(x \), we get:

\[\phi^\nu = \frac{2e_0 n_{0w} n_s}{\varepsilon_0 n^2} \frac{\sinh(e_0 \phi \beta)}{D(\phi, E)} - n_{0w} p_0 n_s \left(\frac{2 + n^2}{3}\right) \frac{d}{dx} \frac{\mathcal{F}(\gamma_0 \phi \beta)}{D(\phi, E)}. \]

(28)

Eq. (28) can be rewritten in a more general form as (Appendix A):

\[\nabla \cdot [\mathcal{E}_0 \mathcal{E}_f (\mathbf{r}) \nabla \phi (\mathbf{r})] = -\rho_{\text{free}} (\mathbf{r}), \]

(29)

where \(\rho_{\text{free}} (\mathbf{r}) \) is the macroscopic (net) volume charge density of coions and counterions (see also Eqs. (18) and (19)):

\[\rho_{\text{free}} (\mathbf{r}) = e_0 n_+ (\mathbf{r}) - e_0 n_- (\mathbf{r}) = -2e_0 n_{0w} n_s \frac{\sinh(e_0 \phi \beta)}{D(\phi, E)}, \]

(30)

while \(\omega_e (\mathbf{r}) \) is defined by Eq. (24). The boundary conditions are:

\[\nabla \phi (\mathbf{r} = \mathbf{r}_d) = -\frac{\alpha n}{\varepsilon_p \mathcal{E}_f (\mathbf{r} = \mathbf{r}_d)}, \]

(31)

\[\phi (\mathbf{r} \to \infty) = 0. \]

(32)

For \(\gamma \to 1 \) and \(n \to 1 \) the equations of the above described model transform into equations of Langevin–Bikerman model [12,13].

3. Results and discussion

Eq. (29) was solved numerically for planar geometry using the Finite Element Method (FEM) within the Comsol Multiphysics 3.5a Software program package (COMSOL AB, Stockholm). The space dependence of \(\varepsilon_e \) (Eq. (24)) in Eq. (29) was taken into account in an iterative procedure, where the initial value of \(\varepsilon_e \) was a constant equal to the permittivity of the bulk solution. The boundary conditions (31) and (32) were taken into account.

Figs. 1 and 2 show the spatial dependence of \(n_+/n_- \), \(n_{0w}/n_s \), and \(\varepsilon_e \) in planar geometry for three values of the surface charge density \(\sigma \) calculated within the presented model. The decrease of \(\varepsilon_e \) towards the charged surface is a consequence of the increased depletion of water molecules near the charged surface (excluded volume effect) and increased orientational ordering of water dipoles (saturation effect). The depletion of water molecules near the charged surface is due to excluded volume effect as a consequence of accumulation of counterions near the charged surface. Comparison between the predictions of our model for different values of \(\sigma \) shows that the decrease of relative permittivity of the electrolyte solution near the highly charged surface is pronounced with increasing \(\sigma \).
In the approximation of a small electrostatic energy and small energy of the dipoles compared to the thermal energy, i.e. small $e_0\phi^2$ and small $\gamma_{ns}E^2$, the relative permittivity within our model for finite sized ions (Eq. (24)) can be expanded into a Taylor series (assuming $n_s \approx n_0w$) to get:

$$
\varepsilon_r \approx n^2 + \frac{3}{2} \left[2 + n^2 \right] n_{ow}P_0^2 \frac{\beta^2}{3n_0} - \frac{27}{8} \left[2 + n^2 \right]^2 \left(\frac{n_{ow}P_0^2\beta^2}{45n_0} \right)^2 \left(n_{wp}P_0^2 \left(\frac{\sigma}{\varepsilon_0} \right)^2 \right) \epsilon_0^2.
$$

In the limit of vanishing electric field strength ($E \to 0$) and zero potential ($\phi \to 0$) the above equation gives the Onsager expression for bulk permittivity:

$$
\varepsilon_r \approx \frac{3}{2} \left[2 + n^2 \right] n_{ow}P_0^2 \frac{\beta^2}{3n_0}.
$$

In the above expression for the relative (effective) permittivity (Eq. (24)) the value of the dipole moment $p_0 = 3.1D$ corresponds to the bulk permittivity $\varepsilon_c = 78.5$ (Eq. (34)). This value is considerably smaller than the corresponding value in the Langevin–Bikerman model (where $p_0 = 4.79D$) (see Eq. (6)) [12,13], which does not take into account the cavity field [22], and is also close to the experimental values of the effective dipole moment of water molecules in clusters ($p_0 = 2.7D$) and in bulk solution ($p_0 = 2.4 - 2.6D$) [23]. The permittivity derived within the model presented (Eq. (24)) does not negate the previous predictions of the Langevin–Bikerman model [12,13] where all the equations (including the expression for the relative permittivity) have a similar structure as in the presented model, only the effective value of the water dipole moment (p_0) in the old Langevin–Bikerman model [12,13] is larger.

On comparison of the relative permittivity ε_r in the Langevin–Bikerman model (Eqs. (1) and (5)) [12,13] with ε_c derived in this work (Eqs. (24) and (33)) it can be seen that in both models ε_r decreases with increasing E and $|\phi|$. It can be further seen that considering the cavity field in the presented model leads to a stronger decrease of relative permittivity than by considering only the orientational ordering of water molecules and the excluded volume effect in the Langevin–Bikerman model (compare Eqs.(5) and (33)).

4. Conclusions

The orientation of water near a charged membrane surface and a charged implant surface is important in many biological processes such as binding of ligands to the active sites of enzymes, transport of ions through channel proteins or interactions of cells with implant surfaces [3,4,8,10,13,25,27]. As shown in the past, the properties of the electric double layer may be influenced by the ordering of water molecules [4,10,12,13,25,26,28] and the depletion of water molecules [12,13] in the region of the electric double layer. Close to the charged surface the saturation and excluded volume effects may result in a decrease of permittivity [10–14].

The effective dipole moment of the water molecule must be known before a satisfactory statistical mechanical description of water and aqueous solutions is possible [29]. The dipole moment of a water molecule in liquid water differs from that of an isolated water molecule because each water molecule is further polarized by the electric field of the neighbouring water molecules [29]. In order to capture this effect in the theoretical description of permittivity of water, the concept of cavity and reaction fields and the correlations between water dipoles [20–22] were introduced for small magnitudes of the electric field, i.e. far away from the saturation limit [17] of the water orientational ordering. Later generalization of the Kirkwood–Onsager–Fröhlich theory in the saturation regime was performed for constant electric field strength as well [17,19]. However, it was shown recently within the Langevin–Bikerman model that in an electrolyte solution in contact with a highly charged implant (electrode) or membrane surface the influence of the excluded volume effect (not taken into account in Booth’s model of permittivity) should also be allowed for while considering the spatial variation of relative permittivity of an electrolyte solution near the highly charged surface [12,13].

The Langevin–Bikerman model [12,13] on the other hand does not take into account the cavity field, therefore it was generalized in this work by simultaneously considering the influence of water ordering (saturation effect), the cavity field as well as the excluded volume effect. The corresponding analytical expression for the spatial dependence of the relative (effective) permittivity (Eq.(24)) was derived. Based on this formula it can be seen that the relative permittivity of the electrolyte solution near the highly charged surface (i.e. in the saturation regime) may be substantially decreased due to orientational ordering of water (saturation effect) and depletion of water molecules due to accumulation of counterions (volume excluded effect) (see also [12]). Comparison between the predictions of the Langevin–Bikerman model [12,13] and the model presented in this work shows that consideration of the cavity field makes the reduction of permittivity of an electrolyte solution near the highly charged surface even stronger.

Acknowledgements

This work was supported by the Slovenian Research Agency (ARRS) grants J3-2120, J1-4109, J1-4136, J3-4108 and P2-0232.

Appendix A

Eq. (28) can be rewritten in more general form as:

$$
\nabla \cdot \left[\varepsilon_0 n^2 \nabla \psi(r) \right] + n_{ow}n_p n_0 \frac{2 + n^2}{3} \nabla \cdot \left[n^2 \frac{\partial \varepsilon_0 P_0^2 \phi^2}{\varepsilon_0} \right] = 2 \sigma n_p n_0 \frac{\sinh(\varepsilon_0 \phi^2)}{D(\phi, E)}.
$$

(A.1)
where \(n = \nabla \phi / |\nabla \phi| = \nabla \phi / E \). It follows from Eq. (A.1) that

\[
\nabla \cdot \left[\varepsilon_0 \left(n^2 + n_0 \varepsilon_0 \frac{n}{|n|} \right) \nabla \phi(r) \right] = 2 \varepsilon_0 n_0 \varepsilon_0 \sinh\left(\varepsilon_0 n_0 \frac{E}{D \phi(E)} \right) \nabla \phi(r)
\]

Therefore, the above Eq. (A.2) can finally be rewritten in the form:

\[
\nabla \cdot \left[\varepsilon_0 n_0 \varepsilon_0 \sinh\left(\varepsilon_0 n_0 \frac{E}{D \phi(E)} \right) \nabla \phi(r) \right] = -\rho_{\text{free}}(r).
\]

where \(\rho_{\text{free}}(r) \) is the macroscopic (net) volume charge density of ions and counterions (Eq. (30)), while \(\varepsilon_0(r) \) is defined by Eq. (24).

References

