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Contents
1. In
s in

554

spo
ddr

ator
ator
00 L
troduction
Planar Lipid Bilayers and Liposomes, Volume 7 # 2008

-4516, DOI: 10.1016/S1554-4516(08)00006-9 All rig

nding author. Tel.: þ 386 41 720766; Fax: þ 386 1 4768850;
ess: veronika. kralj-iglic@fe.uni-lj.s i (V. Kralj-Iglic).

y of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljublja
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Abstract

We present a theoretical approach to the study of flexible membrane inclusions and

membrane inclusions induced by rigid membrane-embedded proteins. We derive the

contribution to the free energy of the membrane bilayer for both kinds of inclusions.

For flexible membrane inclusions, the phenomenological interaction constants that

appear in the free energy expression depend on the physical and geometrical properties

of the molecules that constitute the inclusion. The cases of constrained and uncon-

strained local shape perturbations of the membrane around a rigid membrane inclusion

are discussed. The total free energy of membrane bilayer with membrane-embedded

inclusions (membrane nanodomains) is derived.
vier Inc.

reserved.
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1. Introduction

Membrane inclusions are important functional building blocks of biological
membranes. As an addition to the lipid bilayer(s), they can significantly increase the
complexity and alter the physical properties of biological membranes.

In this work, we divide membrane inclusions into two groups. In the first are
flexible membrane inclusions, which are small complexes composed of proteins and lipids
where the proteins are often chain-like biopolymers that cross themembrane bilayer a
few times (Fig. 1A) [1]. Membrane nanodomains and raft elements of biological
membranes usually fall into this category. The second group aremembrane inclusions
(membrane nanodomains) induced by a single rigid globular membrane protein, which can
be described in the first approximation as a rigid object of a simple geometrical shape
(Fig. 1B) [2]. Some of themembrane-embedded peptides may induce such inclusions
(nanodomains). The scope of this contribution is to derive a single-inclusion energy
for both kinds of biological inclusions (i.e., membrane nanodomains).

2. Flexible Anisotropic Membrane Inclusions

Thin surface of the membrane is in general anisotropic with respect to the
curvature of the normal cuts [3–5] and can attain various equilibrium shapes that are
not flat or spherical [6].
A

B

Figure 1 Schematic illustration of membrane inclusions (shaded area): a flexible membrane
inclusion (A) and a membrane inclusion induced by membrane-embedded rigid protein (B).
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The local shape of themembrane surface is described by two principal curvaturesC1

andC2 (Fig. 7). The flexible membrane inclusion is treated as a small two-dimensional
flexible plate with area a0. The inclusion is in general anisotropic; therefore, its intrinsic
shape can be described by the two intrinsic principal curvatures, C1m andC2m (Fig. 2)
and by the in-plane orientation of the inclusion in the membrane (Fig. 3).

Accordingly, we define the elastic energy of a small plate-like membrane
inclusion (1) with area a0 as the energy of the mismatch between the actual local
curvature of the membrane and the intrinsic (spontaneous) curvature of the inclu-
sion. Therefore, we define the tensor [5] M�� ¼ R�� C��m R�1

�� � C�� , where the tensor C��
describes the actual local curvature, the tensorC��m describes the intrinsic curvature of
the protein (Fig. 2), and

R
―
¼ coso � sino

sino coso

� �
ð1Þ

is the rotation matrix (see also Fig. 3). In the respective principal systems, the
matrices that represent curvature tensors include only the diagonal elements:
A B

w = 0 w ≠ 0

w

Figure 3 Schematic illustration of different orientations of a flexible membrane inclusion with
intrinsic principal curvatures C1m > 0 and C2m ¼ 0 (see also Fig. 2). The shape of the membrane
is cylindrical (C1 > 0 and C2 ¼ 0).

C2m= 0
C1m> 0

C2m< 0
C1m> 0

C2m= 0
C1m= 0

Figure 2 Schematic illustration of the most favorable shapes of flexible membrane inclusions
having different values of their intrinsic (spontaneous) curvatures C1m and C2m.
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C
―

¼ C1 0

0 C2

� �
; Cm ¼ C1m 0

0 C2m

� �
: ð2Þ

The principal systems of these two tensors are in general rotated in the tangent plane
of the membrane surface by an angle o with respect to each other (Fig. 3).

The elastic energy of the inclusion per unit area ðwÞ should be a scalar quantity.
Therefore, each term in the expression for wmust also be a scalar [7], that is, invariant
with respect to all transformations of the local coordinate system. In this work, the
elastic energy densityw is approximated by an expansion in powers of all independent
invariants of the tensorM�� up to the second order in the components ofM�� . The trace
and the determinant of the tensor are taken as the set of invariants [5, 8]:

w ¼ m0 þ
K1

2
ðTrM

―
Þ2 þ K2DetM

―
; ð3Þ

where m0 is the minimal possible value of w, while K1 and K2 are constants. For the
sake of simplicity, m0 � 0. Taking into account the definition of the tensor M�� , it
follows from Eqs. (2) and (3) that the elastic energy of the flexible membrane
inclusion can be written as:

E ¼ a0ð2K1 þ K2ÞðH �HmÞ2 � a0K2ðD2 � 2DDmcos2oþDm
2Þ; ð4Þ

where

H ¼ 1

2
ðC1 þ C2Þ; ð5Þ

is the membrane mean curvature,

D ¼ 1

2
jC1 � C2j; ð6Þ

is the membrane curvature deviator, Hm ¼ ðC1m þ C2mÞ=2 is the intrinsic (sponta-
neous) mean curvature, and Dm ¼ jC1m � C2mj=2 is the intrinsic (spontaneous)
curvature deviator.

It can be seen from Eq. (4) that the material properties of an anisotropic flexible
membrane inclusion can be expressed in a simple way by only two intrinsic
curvatures C1m and C2m and constants K1 and K2. Figure 2 shows a scheme of
a cylindrical, flat, and saddle-like intrinsic (spontaneous) shapes of the flexible
membrane inclusions.

The values of the membrane mean curvature H ¼ ðC1 þ C2Þ=2, the curvature
deviator D ¼ jC1 � C2j=2, and the orientation angle of the inclusion o that corre-
spond to the minimum of the function E for given values of Hm ¼ ðC1m þ C2mÞ=2



Flexible Membrane Inclusions and Membrane Inclusions 147

Author's personal copy
and Dm ¼ jC1m �C2mj=2, can be calculated from the necessary conditions for the
extremum of the function E [8]:

@E

@H
¼ 2a0ð2K1 þ K2ÞðH �HmÞ ¼ 0; ð7Þ

@E

@D
¼ �K2a0ð2D� 2Dm cos2oÞ ¼ 0; ð8Þ

@E

@o
¼ �4a0K2DDm sin2o ¼ 0; ð9Þ

and the sufficient conditions for the minimum of E [9]:

@2E

@H2
¼ 2a0ð2K1 þ K2Þ > 0; ð10Þ

@2E

@H2

� �
@2E

@D2

� �
� @2E

@H@D

� �2

¼ �4K2a
2
0ð2K1 þ K2Þ > 0; ð11Þ

@2E

@H2

@2E

@D2

� �
@2E

@o2

� �
� @2E

@D@o

� �2
" #

¼ 16K2
2 a

3
0

@2E

@H2
ðDDmcos2o�D2

msin
22oÞ > 0;

ð12Þ

where it was taken into account that @2E=@H@D ¼ 0 and @2E=@H@o ¼ 0.
Considering only positive values of o, it follows from Eqs. (7) to (9) and (12) that
at the minima of E:

H ¼ Hm; D ¼ Dm; o ¼ 0; p; ð13Þ

and [8]

K1 > �K2=2; K2 < 0: ð14Þ
If flexible membrane inclusions have C1m > 0 and C2m ¼ 0 (see Fig. 2), the

energetically favorable membrane shapes would be tubular or collapsed tubular
(in the form of a twisted strip—helix A, see Fig. 4). For C1m > 0 and C2m < 0
(see Fig. 2), the favorable membrane shape would be saddle like (constituting the
neck connecting the daughter vesicle and the parent cell) or the collapsed tubular,
twisted in the form of a helix B strip (see Fig. 4 and [5]).

The flexible membrane inclusion adapts its shape in order to fit its curvature to
the actual membrane curvature (which is also influenced by inclusions). Since all



Helix A Helix B

Figure 4 Schematic presentation of a helical (A and B) configuration.
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orientations of the single flexible inclusion do not have the same energy [see Eq. (4)],
the partition function of a single inclusion can be written in the form:

Q ¼ 1

o0

ð2p
0

exp �EðoÞ
kT

� �
do; ð15Þ

with o0 as an arbitrary angle quantum. The free energy of the flexible membrane
inclusion is then obtained by the expression fi ¼ �kT lnQ. Combining Eqs. (4) and
(15) allows us to write the free energy of a single flexible membrane inclusion up to
the constant as:

fi ¼ ð2K1 þ K2ÞðH �HmÞ2a0 � K2ðD2 þD2
mÞa0

�kT ln I0
2K2DDma0

kT

� �� �
:

ð16Þ
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By knowing the equilibrium density distribution of the membrane inclusions
over the membrane [10], the contribution of the inclusions to the overall mem-
brane’s free energy can be attained by integration of Eq. (16) over the whole
membrane surface. This possibility makes the above described approach an efficient
theoretical tool to study equilibrium (closed) shapes of membranes with (in general
anisotropic) membrane inclusions [11–13].
3. Membrane Inclusions Induced by the

Rigid Membrane-Embedded Protein

3.1. Perturbation of Lipid Molecules Around Rigid
Membrane-Embedded Proteins

A rigid protein, intercalated in the lipid bilayer, perturbs the structure of the
surrounding lipids. Therefore, we can define the membrane inclusion as the embed-
ded rigid protein and the surrounding lipids that are significantly distorted due to the
presence of the embedded rigid protein [11]. The energy of such membrane
inclusion induced by an embedded rigid protein is therefore mainly attributed to
the change of the energy of the surrounding lipids. The energy of lipid molecule
depends on the particular sequence of trans, gaucheþ, and gauche� orientations along
the lipid chain, the van der Waals interactions of lipid chain with its neighbors, steric
repulsion between hard cores of each atom of neighboring lipid chains, and ionic
interactions between polar lipid headgroups [14, 15]. The change in the ordering of
lipids that surround the rigid protein leads to an indirect lipid-mediated interaction
between two rigid proteins when they approach each other [15]. If the two proteins
are close enough, the total lipid perturbation decreases, which may result in a net
attractive force between the membrane-embedded rigid proteins and therefore in
their aggregation [15].

Cone-like rigid proteins [2] are characterized by a cone-angle onto which
the membrane shape has to adapt. The mesoscopic-level description of the mem-
brane identifies the rigid protein’s cone-shape with a local discontinuity in the
membrane curvature field. On a more microscopic level, another degree of freedom
of the membrane becomes significant, namely the tilt of the lipid molecules [16, 17].
Helfrich and Prost [3] have shown that symmetric lipid bilayer may exhibit an
intrinsic bending force if the lipid molecules are collectively tilted.

However, membrane perturbations that involve lipid tilt are often short-ranged,
with a characteristic length extending over a few lipids. Lipid tilt is thus important
for processes where the local membrane geometry changes over short distances such
as for non-bilayer lipid phases [18, 19], or for the periodic ‘‘ripple’’ phase [20–22].

In the theoretical works cited above, the membrane-embedded rigid proteins
exhibit cylindrical symmetry about their axis normal to the membrane, that is, they
are isotropic. More general, if cylindrical symmetry of rigid membrane protein is
absent (Fig. 5), the membrane inclusion free energy depends on the protein’s in-
plane orientation within the membrane. The intrinsic shape of the rigid protein is
then characterized by two intrinsic principal curvatures, C1m and C2m. The lateral
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Figure 5 Schematic illustration of an anisotropic membrane-embedded rigid protein.

A B

Rs Rs

C = 1
Rs

Figure 6 Schematic illustration of the lipid bilayer of prescribed spherical curvature
ðC ¼ C1 ¼ C2 ¼ H ¼ 1=RsÞ defined at mesoscopic scale level. The intercalated rigid protein has
conical shape. In the case A the local membrane shape does not differ from themesoscopic spherical
curvature of the membrane ðcÞ, while in the case B also the local microscopic (nano-scale) mem-
brane shape perturbation of the spherical surface with curvature c is induced due to the presence of
the rigid protein. In the case B lipids accommodate to the intrinsic shape of the intercalated rigid
protein through the curvature deformation and via changes in lipid tilt, while in the case A lipids
accommodate to the protein intrinsic shape via changes in lipid tilt (adapted from [28]).
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organization of anisotropic proteins can be quite complex, ranging from chain-like
assembly [23], saddle-like membrane regions [11] to periodic pattern formation [24].

Within the standard theory of elasticity of lipid bilayer, its elastic energy is
decomposed into contributions due to area stretching, tilt of the lipid molecules,
local bending, and non-local bending [16, 25, 26]. On a mesoscopic-scale level, the
local and non-local bending energies can be described in terms of its two local
principal membrane curvatures C1 and C2 [25, 26]. The question arises, how the
elastic behavior of a membrane bilayer is affected by membrane-embedded rigid
proteins, if the local microscopic membrane shape perturbation (at the nano-scale
level) due to each individual protein is taken into account (Fig. 6). In general, the
theoretical description of local microscopic perturbations of lipid molecules around
the intercalated rigid protein falls in between the two limiting cases.

In the first case, the membrane intercalated rigid proteins are distributed over the
whole membrane surface or at least over a large portion of it (see also [1]). Therefore,
possible local microscopic perturbations of the membrane shape around each of the
rigid proteins (as schematically shown in Fig. 6B) would greatly increase the non-
local bending energy of the bilayer membrane. This energy contribution, also called
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the relative stretching energy (since it originates from different stretching of
both monolayers during bending of the bilayer at constant average membrane
area) [25–27], can be written as

Wn ¼ knAðhHi �H0Þ2; ð17Þ
where hHi ¼ 1

A

Ð
HdA is the average mean curvature, H ¼ ðC1 þ C2Þ=2, H0 is the

spontaneous mean curvature [12], kn is the non-local bending rigidity [27], A is the
membrane area, and dA is the membrane area element. For a closed, nearly flat
bilayer membrane (where hHi � 0; H0 � 0), with N homogeneously distributed
intercalated rigid proteins, the membrane’s non-local bending energy Wn can be
approximately written as [28]

Wn ffi knAðNhHip�NH0pÞ2 / N 2; ð18Þ

where H0p and hHip refer to the disturbed membrane patch around single

membrane-intercalated rigid protein (Fig. 6B). Since the energy Wn increases
quadratically with the total number of membrane-embedded rigid proteins, the
local microscopic perturbation of the membrane shape around each of the inter-
calated rigid proteins (Fig. 6B) would be energetically less favorable for large enough
N than the locally unperturbed membrane shape where the lipids accommodate to
intrinsic shape of rigid protein predominantly via changes in the lipid tilt (Fig. 6A).

In the opposite limit, the membrane region with intercalated rigid proteins is
spatially confined (i.e., small) and in contact with a reservoir of relaxed lipid bilayer.
Therefore, the lipids surrounding the intercalated rigid protein are free to adjust their
conformation also by perturbation of the local membrane shape, as schematically
shown in Fig. 6B.

In biological membranes, the majority of the membrane proteins are laterally
distributed over the whole membrane area. In addition, the number of the mem-
brane proteins ðNÞ is very large. Therefore, the first scenario, that is, the case of
constrained microscopic deviations of the membrane shape around the intercalated
rigid inclusions (Fig. 6A), seems to be more relevant [see also Eq. (18)].
3.2. Energy of Membrane Inclusion Induced by a
Single Rigid Membrane Protein

Coupling between non-homogeneous lateral distribution of membrane-embedded
rigid proteins and membrane shapes may be a general mechanism of generation and
stabilization of highly curved membrane structures (spherical buds, membrane
necks, thin tubular membrane protrusions) [11, 12, 29–32].

On the phenomenological level, membrane bending may couple energetically to
the local density of membrane-embedded rigid proteins by introducing the
composition-dependent local bending constant and spontaneous curvature. The
underlying model (including also the direct interactions between rigid protein and
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configurational entropy of rigid proteins) was suggested by Markin [29] and used in
subsequent applications [33]. Leibler [34] proposed a similar thermodynamical model.

Another theoretical approach starts from a phenomenological expression for the
energy of a single membrane inclusion induced by intercalation of the rigid protein
[10, 11] where the term inclusion is used for an entity consisting of the embedded
rigid protein and lipids that are significantly distorted due to the presence of the
embedded rigid protein [11] (see also Fig. 1B).

It is proposed that the energy of such inclusion derives from the mismatch
between the local shape of the membrane and the intrinsic shape of the
membrane-embedded rigid protein. The local curvature of the membrane is repre-
sented by curvatures of all possible normal cuts of the surface through the site of the
inserted rigid protein. The energy of a single inclusion induced by intercalation of
single rigid protein is then given by a phenomenological expression consisting of
two terms [11],

E ¼ x
4p

ð2p
0

ðC � CmÞ2dcþ x�

16p

ð2p
0

d

dc
ðC � CmÞ

� �2

dc; ð19Þ

where x and x� are positive interaction constants, C is the curvature of the
membrane normal cut that is for an angle c rotated in the principal axes system of
the membrane surface, Cm is the curvature of the normal cut corresponding to the
protein intrinsic shape in the same direction. The first contribution takes into account
the differences of the curvatures of the normal cuts of the two systems while the
second contribution takes into account the coupling between the neighboring
curvatures of the normal cuts of the two systems.

The orientation of the membrane-embedded rigid protein is described by
considering that the principal directions of the membrane surface are in general
different from the principal directions of the protein intrinsic shape. The mutual
orientation of the two systems is determined by the angle o. We consider the Euler
equations for the curvatures of the respective normal cuts of the continuum

C ¼ C1 cos
2cþ C2 sin

2c ð20Þ
and

Cm ¼ C1m cos2ðcþ oÞ þ C2m sin2ðcþ oÞ; ð21Þ
where C1 and C2 are the principal curvatures describing the local shape of the
surface (Fig. 7), andC1m andC2m are the principal curvatures describing the intrinsic
shape of the membrane-embedded rigid protein.

By performing the integration in Eq. (19), we get

E ¼ mm þ x
2
ðH �HmÞ2 þ xþ x�

4
ðD2 � 2DDm cos2oþD2

mÞ; ð22Þ
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R2

n

C1= 1
R1

C2= 1
R2

Figure 7 Schematic illustration of the two principal curvatures of membrane surface.
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where mm is the constant, H ¼ ðC1 þC2Þ=2 is the mean curvature,
D ¼ jC1 � C2j=2 is the curvature deviator, while Hm ¼ ðC1m þ C2mÞ=2 and
Dm ¼ jC1m � C2mj=2 are the intrinsic mean and deviatoric curvatures that reflect
the preferred local macroscopic membrane curvature of the membrane-embedded
rigid protein. The membrane inserted protein is called isotropic if C1m ¼ C2m,
while it is called anisotropic if C1m 6¼ C2m. Figure 8 gives a schematic presentation
of different intrinsic shapes of inserted rigid proteins.

At this point, let us stress that the energy of a single membrane inclusion induced
by membrane-embedded rigid protein (Eq. 22) is mathematically equivalent to the
energy of a single flexible membrane inclusion (Eq. 4). Combining both equations
yields relations between the interaction constants, x ¼ 2a0ð2K1 þ K2Þ and
x� ¼ �2a0ð2K1 þ 3K2Þ. However, the origin of the interaction constants can be



Anisotropic constituents

Isotropic constituents

C1m = C2m

C1m = C2m

C1m = C2m

C1m = C2m > 0

C1m = C2m < 0

C1m = C2m = 0

C1m > 0, C2m = 0

C1m = 0, C2m < 0

C1m > 0, C2m < 0

C1m ≠ C2m

C1m ≠ C2m

C1m ≠ C2m

90�

90�

90�

90�

90�

90�

Figure 8 Schematic illustration of different isotropic and anisotropic shapes of the membrane-
embedded constituents (rigid proteins). The intrinsic shape of the protein is characterized by two
intrinsic principal curvatures C1m and C2m.
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different in each case. Namely, in the case of a membrane inclusion induced by the
membrane-embedded protein, the interaction constant originates in the deforma-
tion of the lipids surrounding the rigid protein, while in the case of a flexible
membrane inclusion, the biopolymer(s) itself is (are) also deformed.

The maximum and the minimum of EiðoÞ are for protein orientation angle
o ¼ 0 and o ¼ p=2, respectively. The single inclusion energy (Eq. 22) comprises
the contribution due to deformation of the lipids that surround the intercalated
protein (Fig. 6) [10, 11, 35].

The possible microscopic (nano-scale) perturbations of the membrane shape
around the intercalated rigid protein (Fig. 6B) are not explicitly taken into account
in Eq. (22), but rather hidden in the phenomenological constants mm, x, x

�,C1m, and
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C2m (or Hm and Dm) (Fig. 8), where it is assumed that the distorted regions of lipids
of the neighboring proteins do not overlap.

The concept of the single inclusion energy was taken as a base for a self-consistent
description of equilibrium shapes of a closed bilayer vesicle and the related lateral
distribution of intercalated inclusions [10, 11, 36]. In accordance with previous results
[29], clustering and lateral phase separation of the inclusion has been predicted [1].

Within the above described phenomenological (mean-field) approach, the influ-
ence of membrane-embedded rigid proteins on the elastic properties of the lipid
bilayer can be calculated in terms of the properties of the host membrane and the
properties (geometry) of the intercalated rigid proteins. The non-homogeneous
lateral distribution of the isotropic rigid proteins are an internal degree of freedom
that lowers the equilibrium free energy of the membrane and in this way contributes
to the decrease of the local bending modulus kc [10, 34, 36]. The change in the
membrane elasticity depends linearly on the density of membrane-embedded rigid
proteins. In the case of anisotropic rigid proteins, their rotational ordering is another
internal degree of freedom, which additionally decreases the membrane local
bending constant [11, 35].

4. Estimation of the Model Parameters

4.1. Basic Model

In the previous section, we derived the expression for the energy of the membrane
inclusion (membrane nanodomain) induced by the membrane-embedded rigid
protein. In this subsection, the phenomenological parameters describing the single
inclusion energy Hm, Dm, and x [see Eq. (22)] are estimated using a simple theoreti-
cal model describing the elasticity of lipid bilayer [13].

In this analysis, we assume that the local microscopic shape deformations of the
membrane around the membrane-embedded rigid protein are constrained (Fig. 6A)
and the lipids accommodate to the intrinsic shape of rigid protein only via changes in
the lipid tilt. This corresponds to the biologically relevant case of the membrane
proteins that are distributed all over the cell membrane.

Let us consider a single cone-like rigid protein. To render the induced inclusion
anisotropic, we introduce a dependency of the cone angle y ¼ yðoÞ on the
azimuthal angle o (Fig. 9). For small variations of y, we can write

yðoÞ ¼ y þ Dy cosð2oÞ; ð23Þ
where y

��
is the average ‘‘cone-ness’’ of the protein and Dy is the corresponding

deviator.
The rigid protein is embedded in a lipid bilayer of mean and deviatoric curva-

tures H and D, respectively. Hence, according to the lemma of Euler, the curvature
measured in the radial direction of the inclusion, at azimuthal angle o, is

CðoÞ ¼ H þD cosð2oÞ ð24Þ



r

Membrane

Protein
r0

R

−cR
w q (w)

h(r)

Figure 9 Schematic illustration of a protein in the membrane for the model of constrained (dark
gray—in front) local shape perturbation from Section 5.2, and unconstrained (light gray—in
back) local shape perturbations from Section 5.1. For anisotropic inclusions, the cone angle y
depends on the azimuthal angle o.
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Formally, the protein-induced perturbation free energy of the lipid bilayer can

be expressed as an integration of the free energy density ~EðoÞ per unit length of
the circumference of the inclusion’s core, L ¼ 2pr0, where r0 is the radius of the

inclusion’s core (i.e., rigid protein): E ¼ Ð
L
~EdL ¼ ðL=2pÞÐ ~EðoÞdo (see Fig. 9). For

sufficiently large radius r0, we expect that ~E ¼ ~E½CðoÞ; yðoÞ� depends only paramet-

rically on o, namely via the relations CðoÞ and yðoÞ. More generally, ~E should also
depend on the derivatives of CðoÞ and yðoÞ with respect to o. This additional
dependence should become relevant if the radius r0 were smaller than the characteris-
tic decay length z of membrane perturbations. Using membrane elasticity theory, the
characteristic decay length z has recently been calculated [37] for a planar (C ¼ 0)
lipid layer in contact with a wall tilted by an angle y; it depends on the thickness of the
lipid bilayer, the lateral stretching modulus, and the tilt modulus (kt). Typical values
for a lipid monolayer [13] yield z ¼ 0:9 nm. Hence, assuming that r0 � z, we can
write

E

L
¼ 1

2p

ð2p
0

~E½CðoÞ; yðoÞ�do ð25Þ

In this case, ~E can be calculated using a one-dimensional model for the elastic
interaction of a lipid layer with an infinitely extensive, rigid wall. Such model has
frequently been suggested in previous works [37, 38] and can be generalized to a
bent lipid layer of curvature C [13],

~EðC; yÞ ¼ k0
2z

ðy� Cr0Þ2 þ ðC0 � CÞðy� Cr0Þ; ð26Þ
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where k0 is the bending stiffness of the lipid monolayer and C0 is the spontaneous
curvature.

After inserting yðoÞ from Eq. (23) and CðoÞ from Eq. (24) into Eq. (26), the
comparison of the obtained expression with Eq. (22) yields [13]:

Hm;1 ¼ y
r0

r0 þ z
r0 þ 2z

� �
þ zC0

r0 þ 2z
;Dm;1 ¼ Dy

r0

r0 þ z
r0 þ 2z

� �
ð27Þ

x ¼ 2pr20k0
r0

z
þ 2

� �
; x� ¼ 0 ð28Þ

This confirms the expectation that the shape of the inclusion’s core (i.e., the
shape of membrane-embedded rigid protein) is incorporated in the expressions for
the spontaneous mean curvature and the spontaneous curvature deviator so that
Hm;1 ¼ y=r0 and Dm;1 ¼ Dy=r0, respectively. Note the strong dependence of the
interaction constant x 	 r30 on the protein radius (for r0
z); this is a consequence
of both the rigidity of the protein (contributing 	 r20 ) and the linear increase of the
circumference with r0. Dependence of x on the protein radius (r0) is plotted in
Fig. 12 for the characteristic decay length z ¼ 0:9 nm.

Note also that the last relation in Eq. (28), x� ¼ 0, follows from our assumption
that the rigid protein has a sufficiently large radius that ~E does not depend on the
derivatives of CðoÞ and yðoÞ with respect to o.
4.2. Advanced Model

In this subsection, we introduce more advanced theoretical model in order to
estimate the constants Hm and x, where now the tilt deformation is explicitly
taken into account [28]. In the model from Section 5.1, the tilt degree of freedom
enters the model only through the characteristic decay length z.

In the model [28] we consider a lipid membrane that consists of two opposed
monolayers, an external (E) and an internal (I) one. Both monolayers are described
by a height profile, hE and hI, and by their local directors (unit vectors), tE and tI, that
describe the average orientation of the lipid chains (see Fig. 10).

The elastic free energy per unit area, f̂ E, of the external monolayer can be written
up to quadratic order in hE and tE as

f̂ E ¼ ks
2
ðr�tEÞ2 þ kt

2
ðtE �rhEÞ2 þ B

2
ðhE � hÞ2 þ kh

2
ðDhEÞ2

þ K

2
ðr � tEÞ2 þ k det hE;ij

ð29Þ

The first term in Eq. (29) characterizes the splay energy of the lipid chains with ks
being the corresponding splay modulus. The second term accounts for the energy
cost of tilting the director tE away from its orientation normal to the surface hE; the
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Figure 10 Illustration of a perturbed lipid bilayer with indicated local directors tE and tI and
height profiles hE and hI of the external and internal leaflet, respectively. The average height of
the bilayer is h ¼ ðhE þ hIÞ=2. Two lipid molecules are shown schematically (adapted from [28]).
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prefactor kt is the tilt modulus [42]. Thickness changes of the monolayer are
accounted for by the third term where B is the compression modulus and h is the
height of the reference surface with respect to which the compression/expansion of
the monolayer is measured. It is reasonable to assume that for given membrane
thickness hE � hI, the thickness of each monolayer is allowed to relax; this specifies
h ¼ ðhE þ hIÞ=2 to be the average height profile of the bilayer. The fourth term in
Eq. (29) expresses the bare bending energy of the external monolayer with
corresponding modulus kh. Note that this term is distinct from the splay energy;
only for kt ! 1 splay and bare bending refer to the same deformation. While the
splay energy mainly accounts for the splay deformation of the lipid chains, the
bending term originates predominantly in the headgroup region of the monolayer.
For example, the electrostatic contribution to the bending modulus contributes
entirely to kh. One might therefore refer to the modulus kh as the head group
contribution to the bending stiffness. The last two terms in Eq. (29) describe the
energetic contribution of a twist deformation of the chains (with corresponding
modulus K) and of a saddle deformation of hE (with the modulus k ).

Starting from f̂ E, we obtain the elastic free energy of the internal leaflet, f̂ I, by
replacing hE ! hI and tE ! �tI (the minus sign in the latter reflecting the opposite
orientation of the two opposed monolayers). Hence,

f̂ I ¼
ks
2
ðr � tIÞ2 þ kt

2
ðtI þrhIÞ2 þ B

2
ðhI � hÞ2 þ kh

2
ðDhIÞ2

þ K

2
ðr � tIÞ2 þ k det hI; ij

ð30Þ
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The elastic free energy of the lipid bilayer per unit area f̂ bl is then

f̂ bl ¼ f̂ E þ f̂ I: ð31Þ
At this point it is convenient to switch to a new set of variables, namely to the

average shape h and thickness dilation u, defined through hE ¼ hþ u and hI ¼ h� u
(see also Fig. 10). Similarly, we define the average director t and the difference
director d via the relations tE ¼ tþ d and tI ¼ t� d. This allows us to express
f̂ bl ¼ f̂ tu þ f̂ dh as the sum of the two independent contributions [17]

f̂ tu ¼ ksðr � tÞ2 þ ktðt�ruÞ2 þ Bu2 þ khðDuÞ2
þ Kðr � tÞ2 þ 2 k det uij

ð32Þ

and

f̂ dh ¼ ksðr � dÞ2 þ ktðd�rhÞ2 þ khðDhÞ2
þ Kðr � dÞ2 þ 2k det hij

ð33Þ

The two contributions can be treated separately. The first one depends on the tilt
difference t and thickness dilation u which is relevant for proteins with up-down
symmetry including the case of hydrophobic mismatch. The corresponding rigid
protein-induced deformation is short-ranged and has been studied intensively in the
past [39, 40]. In the present chapter, we focus our interest entirely on the second
contribution (namely Eq. 33). In other words, we consider membrane deformations
due to isotropic, cone-like rigid proteins with no hydrophobic mismatch (implying
f̂ tu ¼ 0). We thus seek to minimize the overall elastic free energy Fdh ¼

Ð
f̂ dhda

where da ¼ dxdy½1þ ðrhÞ2�1=2 denotes the area element of the lipid bilayer. The
corresponding Euler-Lagrange equations pertaining to Fdh are

ktðd�rhÞ � ksrðr � dÞ þ Kr� ðr � dÞ ¼ 0

khr4hþ ktðr � d� DhÞ ¼ 0 ð34Þ
To make the model tractable analytically, we assume a cylindrical symmetry

around a rigid protein. In other words, we are in this subsection only interested in
inclusions (i.e., membrane nanodomains) induced by isotropic membrane-
embedded rigid proteins. Also, we adopt a cell model, that is, we assume that the
inclusions are homogeneously distributed over a membrane segment of prescribed spheri-
cal curvature (c1 ¼ c2 ¼ c), defined at the mesoscopic level. The cell model starts
from a hexagonal arrangement of spatially fixed cone-like inclusions of (average)
radius r0 [28] (see Fig. 11). The radius R of the unit cell (see Fig. 9) then defines the
(uniform) area fraction m ¼ r20=R

2 of rigid proteins in the membrane segment. Our
aim is to characterize—at the mesoscopic scale—the bending stiffness of a rigid
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Cross-section:

Unit cell

Protein
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Figure 11 Top view: Schematic illustration of a hexagonal array of laterally fixed isotropic cone-
like membrane-embedded rigid proteins (shaded circles). The unit cell around each protein is
approximated by a circle. The membrane shape in the cross-section is also given. The shaded
cones represent cross-sections through the inclusions (adapted from [28]).
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protein-containingmembrane patchwith prescribed sphere-likemembrane curvature.
Hence, the membrane curvatures at the boundaries of each unit cell are fixed to be
c1 ¼ c2 ¼ c, where c is the sphere-like (mesoscopic level) membrane curvature. The
fact that the curvatures at the cell boundaries are all equal is a consequence of both
the symmetry of the deformation and the isotropy of the protein. The local,
microscopic, membrane shape perturbation within the unit cell is allowed to
minimize the membrane free energy (see also Fig. 11).

Equation (34) can be solved analytically for cylindrical symmetry and the
corresponding free energy Fdh can be calculated. This derivation is explained in
detail elsewhere [28], here we discuss only the dependencies of the constantsHm and
x [see Eq. (22)] on the parameters of the microscopic model.

In the model presented in Section 2, the single inclusion energy [Eq. (22)]
induced by an isotropic rigid protein (Dm ¼ 0) in a spherical membrane curvature
field (H ¼ c ¼ const: and D ¼ 0) simplifies to:

E ¼ mm þ x
2
ðH �HmÞ2; ð35Þ

where curvature c is defined at the mesoscopic level. In other words, the possible local
microscopic curvature deformation around the rigid protein (Fig. 6B) is not shown
directly in c, instead, it is hidden in the phenomenological parameters x and Hm.

By comparing Eq. (35) with the free energy Fdh from the model described above,
we can obtain the relations [28]



Flexible Membrane Inclusions and Membrane Inclusions 161

Author's personal copy
Hm ’ ð1þ krelÞ
krel

c0; ð36Þ

x ’ pR2k0krel: ð37Þ
Here k0 is the (local) bending stiffness of the (rigid protein-free) lipid bilayer,R is the
radius of the cylindrically symmetric unit cell (Fig. 11), c0 is the spontaneous
curvature of the rigid protein-containing membrane, and krel is the relative change
of the bending stiffness k due to the presence of the rigid proteins in the membrane
bilayer; namely krel ¼ k=k0 � 1. The expressions for c0 and krel can be derived
analytically [28]. In the compact form they can be written in terms of the relative cell
size r ¼ ðR=r0Þ2 � 1 and the quantities

�2 ¼ kh
ks

; ð38Þ

~� ¼ ð1þ �2Þ
�2

¼ ks
kh

� �
þ 1; ð39Þ

a ¼ k
½2ðks þ khÞ� ; ð40Þ

~z ¼ kt
ks

þ kt
kh

� ��1=2

ð41Þ

and

P ¼ 2~z
r0

I1ðR=~zÞK1ðr0=~zÞ � I1ðr0=~zÞK1ðR=~zÞ
I1ðR=~zÞK0ðr0=~zÞ þ I0ðr0=~zÞK1ðR=~zÞ

ð42Þ

where In and Kn give the modified Bessel functions of the first and second kind,
respectively. We find that

R2c0

yr0
¼ �ð1� P a~�Þð1þ rÞ

1þ rð1þ aÞ þ Pa�2f1� ~�2½1þ rð1þ aÞ�g ð43Þ

and

krel ¼ 1

1þ a
1� P�2ð1þ a~�2Þ
rþ P�2ð1� a~�2rÞ ð44Þ
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Local stability condition implies k0 > �k=2 > 0 [12, 41] (where k0 and k are
local bending (splay) modulus and saddle-splay (Gaussian) modulus, respectively);
therefore, �0:5 < a < 0. The estimated values of kt [42, 43] yield ~z 	 0:2nm.

The above expressions contain the microscopic membrane shape perturbations
around a rigid protein through curvature deformation and through changes in lipid
tilt (Fig. 6B). However, the model described in the present subsection can also be
used for a biologically important case of restricted local shape perturbations
(Fig. 6A). Relations for Hm and x [Eqs. (36) and (37)] remain the same, but the
expression for the relative bending stiffness becomes

krel ¼ 1

1þ r
1

Pð1þ �2Þð1þ aÞ � 1

� �
; ð45Þ

where the function P is the same as in Eq. (42), with ~z now being replaced with
~zc ¼ ~zðkh ! 1Þ:

~zc ¼
kt
ks

� ��1=2

: ð46Þ

Relations (22), (36), and (37) are valid only as long as local deformations around the
membrane-embedded neighboring rigid proteins do not overlap. Otherwise the
interaction constant x [Eq. (22)] would depend on the area fraction of proteins
(m ¼ r20=R

2) in the considered membrane patch. For the case of unconstrained local
shape perturbations around the rigid proteins (Fig. 6B) the above relations are valid up
to a certain value of the area fraction of the proteins. For most of the relevant cases, the
actual area fraction of rigid proteins (m) is well below this value.

In the case of restricted local (microscopic) shape perturbations around the rigid
protein (Fig. 6A), the decay of lipid (tilt) deformation around the protein is
exponential (i.e., short-ranged). Therefore, the overlapping of the short-ranged lipid
deformations around neighboring proteins becomes important only if the proteins are
very close. Consequently, the interaction constants (x, x�, Hm, and Dm) depend on
the local density of the inclusions only for very large m.

For small values of m, we can expand the expression for x [Eq. (37)]. For
unconstrained local membrane shape relaxation (Fig. 6B), we get

x ¼ pr20k0
1� a

1� 2�2~zð1þ a~�2Þ
r0

K1ðr0=~zÞ
K0ðr0=~zÞ

" #
; ð47Þ

whereas the case of constrained local membrane shape relaxation (Fig. 6A) yields

x ¼ pr20k0
r0

2~zcð1þ �2Þð1þ aÞ
K0ðr0=~zcÞ
K1ðr0=~zcÞ

� 1

" #
: ð48Þ
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Figure 12 Interaction constant x [Eq. (22)] as a function of the average radius of the rigid protein
(r0 ) in the model of constrained local membrane microscopic shape perturbation ( Fig. 6A)
calculated from Eq. (28) for z ¼ 0:9 nm (gray full curve) and from Eq. (48) (dashed curve) for

�2 ¼ 1, a ¼ �0:2, and ~zc ¼ 0 :2 nm. The figure also shows the dependency of x on r 0 for
unconstrained local membrane microscopic shape perturbation ( Fig. 6B), as calculated from

Eq. (47) for ~z ¼ 0:2 nm and same values of �2 and a (black solid curve).
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It can be seen in Eqs. (47) and (48) that the interaction constant x adopts negative
values for r0 < 2~z�2ð1þ a~�2ÞK1ðr0=~zÞ=K0ðr0=~zÞ (unconstrained case) and

r0 < 2~zcð1þ �2Þð1þ aÞK1ðr0=~zcÞ=K0ðr0=~zcÞ (constrained case). Therefore, for

large enough a and ~z (or ~zc), and for small enough radius of the protein, rigid
inclusions could locally soften the membrane [28]. This could not be predicted
within the theory presented in Section 4.1, where the tilt degree of freedom is not
explicitly taken into account and enters the model only through the characteristic
decay length z.

In Fig. 12, the dependence of x on the average radius of the membrane-
embedded rigid protein r0 is shown for different presented models. The case of
constrained local membrane shape perturbations (Fig. 6A) is shown in gray curve for
the model from Section 4.1 and in dashed curve for the above described model
[Eq. (48)]. The case of unconstrained local shape perturbations (Fig. 6A) is shown in
black solid curve [see Eq. (47)].
5. Free Energy of Bilayer Membrane with

Membrane-Embedded Inclusions

As already mentioned, the expression for the energy of membrane inclusion
induced by single rigid membrane protein [Eq. (22)]:

EðoÞ ¼ x
2
ðH �HmÞ2 þ xþ x�

4
ðD2 � 2DDm cos2oþD2

mÞ; ð49Þ
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is mathematically equivalent to the expression for the energy of a single flexible
membrane inclusion [see Eq. (4) ], where

x ¼ 2a0 ð2 K1 þ K2 Þ; x� ¼ �2 a0 ð 2K1 þ 3K 2 Þ: ð50 Þ
Therefore, in the following, only the expression (49) is used to describe the energy
of a single inclusion.

It can be seen from Eq. (49) that the energy of a single inclusion attains a
minimum when cos ð2 oÞ ¼  1, while the single inclusion energy attains a maximum
when cos ð2 oÞ ¼ �1. In the first case, the energy of a single inclusion is

Emin ¼ x
2 
ð H � Hm Þ2 þ x þ x�

4
ðD 2 þ D2

m Þ �
x þ x�

2
DDm ; ð51 Þ

whereas in the second case it is

Emax ¼ x
2 
ðH � H m Þ2 þ x þ x �

4
ðD2 þ D2

m Þ þ
x þ x �

2
DDm : ð52 Þ

The states o ¼ 0; p and o ¼ p =2 ; 3 p= 2, respectively, are degenerate.
Since all orientations of the inclusion do not have the same energy, the partition

function [ 44] of a single inclusion can be described within the four-state model
(considering only orientations o ¼ 0; p =2 ; 3 p= 2; pÞ as:

Q ¼ 2 exp
�Emin

kT

� �
þ 2 exp

�Emax

kT

� �
: ð53 Þ

The free energy of a single membrane inclusion can then be obtained by the
expression

fi ¼�  kT lnQ ¼ x
2 
ðH � Hm Þ2 þ x þ x �

4
ðD2 þ D2

m Þ

� kT ln cosh ðx þ x�ÞDDm

2kT

� �� �
;

ð54 Þ

where we omitted the constant terms that can be neglected for the case of constant
total number of inclusions in the membrane.

In the following, we derive the free energy of a bilayer membrane with
membrane-embedded inclusion. The excluded volume principle, that is, the finite
volume of the membrane inclusions, is taken into account by applying the lattice
statistics [44]. Therefore, the membrane is divided into small patches, which still
contain a large number of molecules so that the methods of statistical physics can be
used. The mesoscopic membrane curvature (see also Fig. 6) is taken to be constant
over the patch. In a single patch, a lattice with M sites is imagined. There are
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N inclusions in a given patch, each contributing the free energy fi. The direct
interactions between the inclusions are not taken into account. The canonical
partition function of the patch is therefore:

QP ¼ QNM !

N !ðM �NÞ! ; ð55Þ

where the partition function of the single inclusion Q is defined by Eq. (53). The
Helmholz free energy of the patch is FP ¼ �kT lnQP:

FP � �NkT lnQ þ kTN ln
N

M
þ kTðM �NÞln 1� N

M

� �
; ð56Þ

where we applied the Stirling approximation ln x! ffi x ln x� x.
The free energy of all inclusions in the bilayer membrane can be obtained by

summing the contributions of all patches in the membrane:

Fi ¼
ð
A

nfim0dAþ kTm0

ð
A

ðn ln nþ ð1� nÞ ln ð1� nÞÞdA; ð57Þ

where n ¼ N=M is the local membrane area fraction occupied by the membrane
inclusions, dA is the membrane area element (area of the patch), and
m0 ¼ M=dA ¼ 1=a0, where a0 is the area of the single inclusion.

The total free energy of the bilayer membrane with the embedded inclusions (F )
can thus then be written as [1, 29]

F

m0A
¼ ð1� nÞ

ð
A

a0k0
2

ð2HÞ2daþ n

ð
A

fida

þ kT

ð
A

ðn ln nþ ð1� nÞ ln ð1� nÞÞda;
ð58Þ

where A is the membrane area, da ¼ dA=A, and k0 is the (local) bending constant of
the bilayer membrane. The first term accounts for the bending energy of the lipid
bilayer, while the last term accounts for the configurational entropy of the inclusions
[1, 29].
6. Conclusions

Theoretical approaches to study the coupling of non-homogeneous lateral
distribution of membrane inclusions and membrane shapes [10, 29] were described
for flexible membrane inclusions and for inclusions induced by rigid membrane
proteins [1, 17]. As it is shown in this work, both cases yield a mathematically
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equivalent result for the energy of a single membrane inclusion [see Eqs. (4) and
(22)]. In the first case of flexible inclusions, the phenomenological constants K1 and
K2 originate in the deformation of the small membrane complex (nanodomain)
composed of lipids and proteins (Fig. 1A) and depend on the elastic and geometric
properties of this complex (membrane nanodomain); while in the second case
(where inclusion is induced by the rigid globular protein), the globular proteins
are treated as rigid bodies (Fig. 1B) and the whole contribution to the interaction
constants x and x� [Eq. (22)] originate in the deformation of the surrounding lipid
molecules and the geometry of the rigid protein. The value of the interaction
constant x grows with the average radius of the rigid protein (r0) (Fig. 12).

In biological membranes, the majority of the membrane rigid proteins are
laterally distributed over the whole membrane area. In addition, the number of
the membrane proteins ðNÞ is very large. For such systems, the case of constrained
microscopic perturbation of the membrane shape around the intercalated rigid
protein (Fig. 6A) seems to be biologically more relevant than the case of unconstrained
microscopic perturbation of the membrane shape around the intercalated rigid
protein (Fig. 6B).

As for example in erythrocytes, the budding takes place over the whole cell
membrane surface (although it is located predominately at the top of membrane
spicules) [1, 12]. Because of that, local microscopic membrane shape perturbations
around the membrane-embedded proteins are strongly restricted (see Eq. 18). As a
consequence, the lipid deformation around the membrane-embedded proteins is
predominantly a consequence of the change of tilt of lipid molecules around the
proteins (Fig. 6A), and not of the microscopic membrane shape perturbation
(Fig. 6B).

Coupling between non-homogeneous lateral distribution of membrane-
embedded rigid proteins and specific membrane shapes may be an important
mechanism of generation and stabilization of highly curved membrane structures.
Therefore, the theoretical models of membrane inclusions described in this chapter
provide a tool to study processes in membranes that involve membrane regions with
high curvatures, like spherical buds [1], membrane necks [45, 46], or thin tubular
membrane protrusions [12, 47].
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[36] B. Božič, V. Kralj-Iglič, S. Svetina, Coupling between vesicle shape and lateral distribution of

mobile membrane inclusions, Phys. Rev. E 73 (2006) 041915/1–11.
[37] S. May, Membrane perturbations induced by integral proteins: Role of conformational restric-

tions of the lipid chains, Langmuir 18 (2002) 6356–6364.
[38] N. Dan, S.A. Safran, Effect of lipid characteristics on the structure of transmembrane proteins,

Biophys. J. 75 (1998) 1410–1414.
[39] N. Dan, P. Pincus, S.A. Safran, Membrane-induced interactions between inclusions, Langmuir

9 (1993) 2768–2771.
[40] C. Nielsen, M. Goulian, O.S. Andersen, Energetics of inclusion-induced bilayer deformations,

Biophys. J. 74 (1998) 1966–1983.
[41] A. Ben-Shaul, Molecular theory of chain packing, elasticity and lipid-protein interactions in lipid

bilayers, in: R. Lipowsky, E. Sackmann (Eds.), Structure and Dynamics of Membranes, Elsevier,
Amsterdam, 1995, p. 382.

[42] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch.
28c (1973) 693–703.

[43] S. May, Y. Kozlovsky, A. Ben-Shaul, M.M. Kozlov, Tilt modulus of lipid monolayer, Eur. Phys.
J. E 14 (2004) 299–308.

[44] T.L. Hill, An Introduction to Statistical Thermodynamics, General Publishing Company,
Toronto, 1986, pp. 209–211.
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anisotropy of membrane constituents in formation of a membrane neck during budding of a
multicomponent membrane, J. Biomech. 40 (2007) 579–585.
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