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Influence of rigid inclusions on the bending elasticity of a lipid membrane
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We model the influence of rigid inclusions on the curvature elasticity of a lipid membrane. Our focus is on
conelike transmembrane inclusions that are able to induce long-range deformations in the host bilayer mem-
brane. The elastic properties of the membrane are described in terms of curvature and tilt elasticity. The latter

adds an additional degree of freedom that allows the membrane to accommodate an inclusion not only through
a curvature deformation but also via changes in lipid tilt. Using a (mean-field level) cell model for homoge-
neously distributed inclusions in a small membrane segment of prescribed (mesoscopic-scale) spherical shape,
we calculate the optimal microscopic-scale deviation of the membrane shape around the intercalated inclusions
and the corresponding free energy, analytically. We show that the lipid tilt degree of freedom can lead to local

softening of the inclusion-containing lipid bilayer segment. The predicted softening requires a sufficiently
small value of the tilt modulus; its origin lies in the reduction of the excess membrane-inclusion interaction
energy. We compare our results to the case of suppressed microscopic shape relaxation. Here, too, local

softening of the membrane is possible.

DOI: 10.1103/PhysRevE.74.051503

I. INTRODUCTION

Transmembrane proteins can be divided roughly into two
groups, flexible (often chainlike) proteins, which cross the
membrane bilayer a few times while forming with the inter-
acting lipids flexible complexes, and more rigid globular pro-
teins. In this work, only the second class of proteins, i.e.,
globular transmembrane proteins, will be considered. For the
sake of simplicity, they will be described as rigid objects (or
“inclusions”) of simple geometrical shapes [1].

A rigid protein, intercalated in a lipid bilayer, perturbs the
structure of the surrounding lipids. The corresponding
membrane-protein interaction energy is therefore mainly at-
tributed to the change in free energy of the surrounding lip-
ids. As recognized already by Marcelja [2,3], the internal
energy of a single lipid depends on the particular sequences
of trans, gauche*, and gauche™ conformers along its tail, on
the van der Waals interactions of the tail with its neighbors,
as well as on steric and electrostatic interactions. Added to
that must be a substantial—possibly even dominating
[4]—entropic contribution to the free energy that results
from the packing properties of lipids in the vicinity of a rigid
protein.

The change in the ordering of lipids that surround a pro-
tein leads to an indirect, lipid-mediated, interaction between
two proteins when they approach each other. A simple and
plausible scenario is that on the approach of two proteins, the
total lipid perturbation decreases, resulting in a net attractive
force and, possibly, protein aggregation [3]. On a more de-
tailed level, it is useful to distinguish between membrane
inclusions with and without up-down symmetry [5-7]. The
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former, such as cylinderlike inclusions, induce a short-range,
exponentially decaying, perturbation of the host membrane
[3,8-10]. This is in contrast to the latter (among them cone-
like inclusions), where the absence of a characteristic length
scale leads to long-range perturbations and long-range inter-
actions between inclusions. For example, two rigid conelike
inclusions experience a membrane-mediated ~1/r* repul-
sion as function of their distance r [11]. There can also be
attraction between conelike inclusions, arising among others
due to membrane fluctuation effects [12], due to the opposite
orientation of membrane inclusions, or due to lateral mem-
brane tension [13]. Attractive interactions are also predicted
for an ensemble of inclusions where multibody effects can
lead to quasistable clusters [14,15]. In all cases mentioned
thus far, the inclusions are isotropic, exhibiting cylindrical
symmetry about their axis normal to the membrane. More
generally, if cylindrical symmetry is absent, the free energy
depends on the inclusion’s in-plane orientation within the
membrane. Though not the subject of the present work, we
mention that the lateral organization of anisotropic inclu-
sions can be quite complex, ranging from chainlike assembly
[16] and saddlelike membrane regions [17] to periodic pat-
tern formation [18].

Conelike inclusions [1] are characterized by a cone angle
onto which the membrane shape has to adapt. On a suffi-
ciently coarse-grained (or mesoscopic) level of the mem-
brane, the inclusion’s cone shape can be identified with a
local discontinuity in the membrane curvature field. On a
more microscopic level, another degree of freedom of the
membrane becomes significant, namely, the #ilt of the lipid
molecules [19-21]. Helfrich and Prost [22] have shown that
a symmetric lipid bilayer may exhibit an intrinsic bending
force if the lipid molecules are collectively tilted. However,
membrane perturbations that involve lipid tilt are usually
short range with a characteristic length extending only over a
few lipids. Lipid tilt is thus important for processes where
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the local membrane geometry changes over short distances,
such as for fusion intermediates [23], for nonbilayer lipid
phases [24-26], or for the periodic “ripple” phase [27-29].
Also for a membrane that contains rigid inclusions, lipid tilt
may be a means to optimize the membrane-inclusion inter-
action [30]. The resistance of the lipids in a membrane leaflet
to tilt and to bend can be described by a tilt modulus «, and
a bare bending modulus k;, [19]. Change in tilt gives rise to
another deformation mode, splay, with corresponding splay
modulus «, [20]. (Note that the quantities «,, k;, and «, refer
to a single monolayer.)

A rigorously flat membrane (characterized, for example,
by vanishing spontaneous curvature and «;,— ) can still ac-
commodate a conelike inclusion through a tilt deformation.
On the other hand, for x,— %, the membrane must accom-
modate a conelike inclusion through a pure bending defor-
mation with corresponding bending rigidity «.=k),+ K.
(Here, k. is the bending stiffness of a single monolayer as it
appears in the familiar Helfrich expression [19] for the cur-
vature free energy.) The intermediate case results in a com-
promise where the lipid tilt deformation facilitates the
matching of the curved membrane to the shape of the inclu-
sion. Characterization of this compromise is one objective of
the present work.

A related issue that has received some attention recently is
how membrane inclusions affect the curvature elastic prop-
erties of the host membrane. Coupling between nonhomoge-
neous lateral distribution of membrane components and spe-
cific membrane shapes may be a general mechanism to
generate and stabilize highly curved membrane structures
such as spherical buds, membrane necks, and thin tubular
membrane protrusions [17,31-35]. On a phenomenological
level, membrane bending may couple energetically to the
local density of inclusions by introducing a composition-
dependent local bending constant and spontaneous curvature.
The underlying model (including direct interactions between
inclusions and their configurational entropy) was suggested
by Markin [31] and used in subsequent applications [36].
Leibler [37] proposed a similar thermodynamic model.

Another theoretical approach [17,38,39] starts from a phe-
nomenological expression for the energy of a single aniso-
tropic inclusion (derived by an expansion in terms of the
so-called mismatch tensor [40]), which, at the mesoscopic
scale, is a function of the two principal membrane curva-
tures, ¢, and ¢, [17,38,41],

E;=p, +(2K+K)(H-H,)*

— K[D*-2DD,, cos(2w) + D21, (1)

where u,,, K, and K are phenomenological parameters, H
=(cy+c,)/2 is the mean curvature, D=|c,—c,|/2 is the cur-
vature deviator, whereas H,,=(c;,,+¢C5,)/2 and D,,=|cy,
—C,,,|/2 are, respectively, the intrinsic mean and deviatoric
curvatures that reflect the preferred membrane curvature of
the inclusion, measured at the mesoscopic scale. The maxi-
mum and minimum of E; are adopted for an in-plane orien-
tation angle of the inclusion corresponding to w=0 and w
=1r/2, respectively. For D,,=0, Eq. (1) describes the case of
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FIG. 1. (Color online) Schematic illustration of a lipid bilayer of
prescribed mesoscopic-scale spherical curvature (c=c;=c,=H
=1/R;) with a conelike intercalated inclusion. In case A, the inclu-
sion induces a local microscopic (nanoscale) membrane shape re-
laxation, whereas in case B the shape of the membrane does not
differ locally from the mesoscopic spherical curvature ¢ of the
membrane. In case A, the lipids accommodate the inclusion through
the bending deformation and via changes in lipid tilt, whereas in
case B the microscopic-level relaxation of the membrane shape is
completely suppressed and the inclusion is accommodated only
through lipid tilt (see also [41]).

isotropic inclusions. The single-inclusion energy E; com-
prises the self-energy of the intercalated inclusion as well as
the contribution due to the deformation of the surrounding
lipids [17,38,41,42]. We emphasize the mesoscopic level that
underlies Eq. (1). That is, the possible microscopic (‘“nano-
scale”) perturbation of the membrane shape around the inter-
calated inclusion, illustrated in Fig. 1(a), is not explicitly
taken into account but rather hidden in the phenomenological

constants u,, K, K, H,, and D,,. Applications of the inclu-
sion energy from Eq. (1) include the self-consistent descrip-
tion of equilibrium shapes of a closed bilayer vesicle and the
corresponding lateral distribution of intercalated inclusions
[17,38,43]. The resulting lateral distribution of inclusions is
usually nonhomogeneous, indicating that the equilibrium
free energy of the membrane can be lowered through accu-
mulation of inclusions at regions of favorable curvatures
[37,38,43]. In accordance with previous results [31], cluster-
ing and lateral phase separation of inclusions is additionally
enhanced in the presence of direct, attractive, inclusion-
inclusion interactions [39]. Moreover, for anisotropic inclu-
sions, the possibility of their orientational ordering within the
membrane plane offers an internal degree of freedom that
acts toward a decrease of the local bending constant [17,42].
Finally, the influence of inclusions on the (local) curvature
elastic properties of a lipid bilayer has been calculated in
terms of the properties of the host membrane and the geom-
etry of the intercalated inclusions. It was found [41] that the
change in membrane elasticity depends linearly on the den-
sity of inclusions and that rigid inclusions may either soften
of stiffen the host membrane, depending on how strong the
interaction with the surrounding lipid bilayer is. The question
arises how the elastic behavior of a membrane is affected by
the inclusions if the local microscopic membrane shape per-
turbation (at the nanoscale level) due to each individual in-
clusion is taken into account [Fig. 1(a)]. Answering this
question is another objective of the present work.
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In general, the theoretical description of local microscopic
perturbations of lipid molecules around an intercalated inclu-
sion falls in between two limiting cases. In the first case the
inclusions are distributed over the whole surface of a closed
membrane (or at least over a major part of it). Here, a local,
microscopic, perturbation of the membrane shape around
each of the rigid inclusions [as schematically shown in Fig.
1(a)] would greatly increase the nonlocal bending energy of
the bilayer membrane (also called the relative stretching en-
ergy since it originates from different degree of stretching of
both monolayers during bending of the bilayer at constant
average membrane area) [44-46]

anknA(<H>_H0)2’ (2)

where (H)=[HdA/A is the average mean curvature, H, is
the spontaneous mean curvature [34], k, is the coefficient of
nonlocal bending rigidity [46], A is the membrane area, and
dA is the membrane area element. For a closed, nearly flat,
bilayer membrane (where (H)=0, H,~0), with N homoge-
neously distributed intercalated inclusions, the membrane’s
nonlocal bending energy W, can be approximately written as

W, = k,A(N(H), - NH,,))* = N°, 3)

where H, and (H), refer to the disturbed membrane patch
around the single membrane-intercalated inclusion [Fig.
1(a)]. Note that the energy W, increases quadratically with
the number of membrane-embedded inclusions. For large
enough N, the local microscopic perturbation of the mem-
brane shape around each intercalated inclusion [schemati-
cally shown in Fig. 1(a)] becomes energetically unfavorable.
Thus, the membrane shape remains locally unperturbed [Fig.
1(b)], and the lipids accommodate the inclusion only through
lipid tilt.

The opposite limit corresponds to an open system, where
the inclusions are spatially confined to a small membrane
segment, always maintaining contact with a large reservoir
of a relaxed bare lipid bilayer. Here, the lipids surrounding
the inclusion are free to adjust their conformation also by
optimizing the local membrane shape near the inclusion, as
schematically shown in Fig. 1(a). Analysis of this latter case
is the main subject of the present work.

To render the problem tractable, we shall adopt one major
(but not uncommon [9,10]) approximation: a cell model, i.e.,
we shall assume that the inclusions are homogeneously dis-
tributed over a membrane segment of prescribed spherical
curvature (c,=c,=c), defined at the mesoscopic level. The
cell model starts from a hexagonal arrangement of spatially
fixed conelike inclusions of (average) radius r, (see Fig. 4).
It approximates the corresponding (hexagonally symmetric)
Wigner-Seitz cell by a (cylindrically symmetric) circle of
radius approximately half the separation between neighbor-
ing inclusions (see Fig. 3). The radius R of the unit cell then
defines the (uniform) area fraction m=r3/ R? of inclusions in
the membrane segment. Our aim is to characterize—at the
mesoscopic scale—the bending stiffness of an inclusion-
containing membrane patch with prescribed spherelike mem-
brane curvature. Hence, the membrane curvatures at the
boundaries of each unit cell are fixed to be ¢;=c,=c, where
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¢ corresponds to the spherelike (mesoscopic-level) mem-
brane curvature c; see Fig. 1. The fact that the curvatures at
the cell boundaries are all equal is a consequence of both the
symmetry of the deformation and the isotropy of the inclu-
sions. Yet, the local, microscopic, membrane shape perturba-
tion within the unit cell is allowed to minimize the mem-
brane free energy (see also Fig. 3).

The bending stiffness of the inclusion-containing mem-
brane will be characterized by a modulus « that appears in a

quadratic curvature expansion f= kc?/2 of the free energy
density, measured per unit area. In terms of the commonly
used Helfrich expression [19] for the bending free energy
density of a bilayer membrane f=2k,(c,+cy—co)?/2
+2Kcc, [where 2k,, 2k, and ¢, are the (local) bending
modulus, the Gaussian modulus, and the spontaneous curva-
ture, respectively|—the individual quantities «, and k refer
to a single monolayer—the relevant modulus here is (be-
cause of ¢;=c,=c) given by k=8k,+4k. One of the major
results of the present work will be an analytical expression
for k as a function of the inclusion density m. In fact, it will
turn out to be more convenient to express « as a function of
the relative cell size p=R?/r3—1, implying p=(1-m)/m or,
equivalently, m=1/(1+p). We will show that inclusions can
locally either increase or decrease « depending on m and on
the material properties of the host membrane. The tilt modu-
lus «, plays a crucial role in determining whether inclusions
render the membrane more rigid or more flexible. For ex-
ample, the commonly considered limit x,— % always leads
to membrane stiffening, whereas the opposite limit «,— 0
can still lead to either softening or stiffening. We also ana-
lyze the role of the Gaussian modulus k and the situation
where the local microscopic membrane shape perturbations
are restricted [the latter corresponding to Fig. 1(b)]. Finally,

the phenomenological parameters K, K, and H,,, describing
the single inclusion energy in the mesoscopic curvature field
of the membrane [Eq. (1)], are estimated.

II. THEORETICAL MODEL AND RESULTS

A. Elastic energy of a perturbed membrane

We consider a lipid membrane that consists of two ap-
posed monolayers, an external (E) and an internal (/) one.
Both monolayers are described by a height profile, /i and Ay,
and by their local directors (unit vectors), t; and t;, that
describe the average orientation of the lipid chains; see Fig.
2. We assume a weakly perturbed membrane with respect to
the flat state where both &y and h; are constant (e.g., parallel
to the x,y plane of a Cartesian coordinate system) and where
all directors point normal to the monolayer interfaces (paral-
lel to the z axis).

The elastic free energy per unit area, fE, of the external
monolayer can be written up to quadratic order in Ay and tg
as

. B
Fe= DV e+ = Vg4 S = 7+ S

K
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The first term in Eq. (4) characterizes the splay energy of the
lipid chains with «, being the corresponding splay modulus.
The second term accounts for the energy cost of tilting the
director t; away from its orientation normal to the surface
hg; the prefactor «; is the tilt modulus. Thickness changes of
the monolayer are accounted for by the third term, where B
is the compression modulus and / is a reference surface with
respect to which the compression/expansion of the mono-
layer is measured. It is reasonable to assume that for given
membrane thickness hp—h; the thickness of each monolayer
is allowed to relax; this specifies h=(hz+h;)/2 to be the
average height profile of the bilayer. The fourth term in Eq.
(4) expresses the bare bending energy of the external mono-
layer with corresponding modulus «;,. Note that this term is
distinct from the splay energy; only for x,— % splay and bare
bending refer to the same deformation. The splay energy
mainly accounts for the splay deformation of the lipid
chains, whereas the bending term originates predominantly
in the head-group region of the monolayer. For example, the
electrostatic contribution to the bending modulus contributes
entirely to ;. One might therefore refer to the modulus «;, as
the head-group contribution to the bending stiffness. The last
two terms in Eq. (4) describe the energetic contribution of a
twist deformation of the chains (with corresponding modulus
K) and of a saddle deformation of i (with modulus k). We
note that Eq. (4) agrees with the free energy expansion de-
rived by Fournier [21]. The only difference is that the three
individual terms involving t2, t;Vhg, and (Vhg)> are com-
bined in Eq. (4) as (tz—Vhg)?, which accounts for tilt resis-
tance only with respect to the normal direction of the corre-
sponding external membrane leaflet. This is justified by the
fluidlike hydrocarbon core of the lipid bilayer and thus the
weak energetic intermonolayer coupling of the lipid direc-
tors.

Starting from f”E, we obtain the elastic free energy of the

internal leaflet, f‘,, by replacing hy— h; and tp;— —t; (the mi-
nus sign in the latter reflecting the opposite orientation of the
two apposed monolayers). Hence,

A K K B K
Fr= SV 02+ S V) Sy =+ (A2

K
+ E(V X t)% + ik det hy ;. (5)

The elastic free energy of the lipid bilayer per unit area is

then fy=fe+/1.

At this point it is convenient to switch to a new set of
variables, namely, to the average shape & and thickness dila-
tion u, defined through hg=h+u and h;=h—u. Similarly, we
define the average director t and the difference director d via
the relations ty=t+d and t;=t—d. This allows us to express

fb,= f‘m + f‘dh as the sum of the two independent contributions
[21]

]A‘m =k, (V- 1)? + k,(t = Vu)? + Bu® + k,(Au)?
+K(V X t)* + 2k det u ; (6)

and
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FIG. 2. Illustration of a perturbed lipid bilayer with indicated
local directors t; and t; and height profiles iy and h; of the external
and internal leaflet, respectively. The average height of the bilayer
is h=(hg+h;)/2. Two lipid molecules are shown schematically.

Fan= (V)% + k(d = Vi) + k,(AR)? + K(V X d)>
+2R det ;. (7)

The two contributions can be treated separately. The first one
depends on the tilt difference t and thickness dilation u,
which is relevant for inclusions with up-down symmetry, in-
cluding the case of hydrophobic mismatch. The correspond-
ing inclusion-induced deformation is short range and has
been studied intensively in the past (see Introduction). In the
present work, we focus our interest entirely on the second
contribution [namely, Eq. (7)]. In other words, we consider
membrane deformations due to isotropic, conelike inclusions
with no hydrophobic mismatch (implying f,,=0). We thus
seek to minimize the overall elastic free energy F,
=[fda, where da=dxdy[1+(Vh)*]"* denotes the area ele-
ment of the lipid bilayer. The corresponding Euler-Lagrange
equations pertaining to F, are

k(d=Vh) -k, V(V-d)+KV X (VXd)=0,

k Vi + k(V-d—Ah)=0. (8)

In the following, we solve these equations for cylindrical
symmetry and calculate the corresponding free energy Fy,.

B. Array of conelike inclusions

The assumption of cylindrical symmetry for the deforma-
tion of the membrane around each inclusion is a frequently
used approximation to account for the multibody nature of
membrane-mediated inclusion-inclusion interactions. As
mentioned in the Introduction, it corresponds to approximat-
ing the Wigner-Seitz cell of a hexagonal inclusion arrange-
ment by a circle; see Fig. 3. For the radius of the circle we
adopt the convenient choice R=0.5\ (a more accurate value
would be R=0.525\), where \ is the distance between two
neighboring inclusions in a hexagonal array. Another as-
sumption is that the array of inclusions is in contact with a
reservoir of lipid molecules, so that there is no further con-
straint on the number of lipid molecules. Hence, no influ-
ences of nonlocal bending elasticity [Eq. (2)] and area
stretching of the lipid bilayer [19,45] are accounted for in the
present work. Our assumptions render the following analysis

051503-4



INFLUENCE OF RIGID INCLUSIONS ON THE...
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FIG. 3. Top view: A hexagonal array of laterally fixed isotropic
conelike inclusions (shaded circles); the unit cell around each inclu-
sion is approximated by a circle. The depiction of the membrane
shape in the cross section is based on an actual calculation with
cone angle dy=-15°, cell radius R=10 nm, and an angle cR=10°
that defines the imposed spherical mesoscopic membrane curvature
¢ (broken line). All other parameters are as in Fig. 5(c). The shaded
cones represent cross sections through the inclusions.

somewhat less general but allow us to calculate an analytical
expression for F,.

The cylindrical symmetry of the unit cell suggests to use
cylindrical coordinates {r, ¢}. Then, only the radial compo-
nents, d(r) of d and V,a(r) of Vh, are nonvanishing. Figure
4 shows a cross section through the unit cell with the two
order parameters, the height profile 4(r) and the difference
director d(r), indicated. Up to second order in the two-order
parameters d(r) and h(r) (and their derivatives), the free en-
ergy per unit cell F,=[f;da [with ,, specified in Eq. (7)]
reads

Fdh R wz 7]2 5
=| drr (d=V,h)?+(V,-d)?+ 7 (V’h)?
27K, 1+

" 7
R
+4a(l + nz)f h'h'dr, 9)

where the radius of the inclusion is ry, the cell radius is R,
and where we have defined 7=k, / k,, @a=k/[2(k,+k;)], and

membrane

inclusion 0 7, R

FIG. 4. A cylindrically symmetric unit cell containing a single
cone-shaped inclusion. The calculated shape &(r) of the locally per-
turbed membrane with prescribed (mesoscopic-level) curvature c is
shown as the two thick solid lines. Here, the cone angle of the
inclusion is dy=15°, the angle defining the prescribed curvature is
cR=-5°, and the radius of the unit cell is R=5 nm. All other pa-
rameters are the same as in Fig. 5(c). The dashed line shows A(r)
for an inclusion-free membrane with curvature c.
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0*=K,/ K+ K,/ k. Tt follows that w®7?/(1+ 7°)= K,/ k. Note
that the prime denotes the derivative with respect to r and V,
denotes the radial component of the nabla operator. Thus,
V,h=h'(r), Vh=[rh'(r)]'/r, and V,-d=[rd(r)]'/r. The
Euler-Lagrange equations [see Egs. (8)] now read

2

1 z(d_ Vrh) - Vr(vr' d) =0
+7

w2
1+ 7

The boundary conditions at r=R are

Vin+ (V,-d=V*h)=0. (10)

h(R)=0, V,h(R)=-cR, d(R)=-cR. (11)

The first boundary condition specifies the reference point for
measuring the height profile, the second imposes the meso-
scopic curvature ¢ of the membrane (see also Fig. 1), and the
third, which corresponds to vanishing tilt at r=R, ensures
smoothness of the membrane at the cell boundary. At the
inclusion rim, the boundary conditions are

1+7h
d(rg) = d,, V%h(ro) +2a 2772& =0.
7 o
1+ 772 3
d(r()) - Vrh(rO) + —2V,h(r0) =0. (12)
W

The first expresses the matching of the difference director at
r=ry to the cone angle d, of the inclusion; see Fig. 4. The
second and third expressions are the natural boundary con-
ditions that allow optimization of h(ry) and V,A(ry).

Using the Euler-Lagrange equations and the boundary
conditions, Eqs. (11) and (12), we can carry out the integra-
tions in Eq. (9), resulting in

F
zi =—cR*V,d(R) - rydyV,d(ry) — cR>17Vh(R)
TK

s

+2a(l+ P)[V,h(R)T?. (13)

On the other hand, we can write F,, as an expansion with
respect to the prescribed spherelike reference curvature c
=C1=Cy as

K
Fup=Fop + WRZE(C‘—CO)Z, (14)

which contains three constants: the optimal (spherelike) cur-
vature ¢, (defined at a mesoscopic level), the bending stiff-
ness for spherical deformations «, and the elastic free energy
for optimal curvature Fo,=F(c=c).

Consider first an inclusion-free membrane. Here, r(=0,
and the boundary conditions in Eq. (12), must be replaced by
d(0)=0, V,h(0)=0, and th(O):O, which follow from the
smoothness and compactness of the inclusion-free membrane
at rp=0. We find that there is no tilt of the lipid directors and
a uniform curvature of the membrane. The former implies
d(r)=V,h(r) and the latter i(r)=c(R*~r?)/2. The two main
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curvatures, ¢;=—h'(r)/r=c and c,=-h"(r)=c, are thus equal
to each other. The elastic free energy Fy=F, in the absence
of an inclusion is

Fo =2(1+ ) (1 + @R, (15)
27K

s

We thus find Fou=0, ¢o=0, and x=ko=8k,(1+7°)(1+a)
=8(k,+k,)+4Kk. The latter relation, ky=8k.+4k, was al-
ready stated in the Introduction. We introduce the inclusion-
induced relative change of the membrane’s bending stiffness
for spherical deformation

K
Krelzk__l' (16)
0

For >0 (k. <0), the inclusion stiffens (softens) the
membrane. The hypothetical case of vanishing stiffness («
=0) corresponds to k=—1.

Also, for an inclusion-containing membrane, we can de-
rive analytical expressions for the bending constant, the op-
timal (spherelike) curvature, and the elastic energy for opti-
mal curvature. To this end we solve the Euler-Lagrange
equations, Egs. (10), subject to the boundary conditions, Egs.
(11) and (12), and insert the solutions for A(r) and d(r) into
F 4y in Eq. (13). The final results for Fy, ¢y, and k. can be
written in terms of the relative cell size p=(R/r;)*~1 and the
quantities 7=(1+7)/ 77=(k,/k;)+1 and

_ ill(wR)Kl(wro) — I, (wrg)K,(wR)
a wro I (oR)Ky(wry) + Iy(wrg) K (wR)’

(17)

where I, and K, give the modified Bessel functions of the
first and second kind, respectively. We find

Fop —2ad{(1+ )1 + @)p+ Pa7}

2wk, 1+ p(1+a)+Pagdl-71+p(1+a)]}

(18)
R’¢q - (1-Pay)(1+p)
doro 1+p(1+a) +Pay¥l-7[1+p(1+a)]}
(19)
and
— =2
1 1-P7(+ap) 20)

ST ap+ Pl - aip)

These expressions, particularly that for k., are the main re-
sult of this work. In the following, we analyze the influence
of ro, R, m, w, and @ on k., focusing on the question
whether rigid isotropic inclusions (which are homogeneously
distributed over a small membrane patch with prescribed me-
soscopic spherical curvature) act toward rigidification (r
>0) or softening (x,,;<<0) of this membrane patch.

We note that «, is independent of d,,. Hence, within our
cell model, the effect of rigid, isotropic inclusions on the
local membrane elasticity does depend on the inclusion size
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FIG. 5. The inclusion-induced relative change in membrane
stiffness, k., according to Eq. (22), plotted as a function of R (left
graph) and mzré/R2 (right graph) for (a) @=20/nm, (b) @=2/nm,
and (¢) w=0.2/nm. The remaining parameters are 7=1, ro=1 nm,
and @=0. The upper and lower broken lines correspond to Egs. (23)
and (24), respectively. The limiting value for R — o (or equivalently
m=0) of the lower broken line is according to Eq. (24) (with p
— ) given by kq=—177/(1+177)==1/2.

but not on the inclusion shape. In other words, cylinderlike
and conelike inclusions influence the bending stiffness « in
the same manner.

C. Vanishing Gaussian modulus

We first discuss the case of vanishing Gaussian modulus,
k=0, implying a=0. In this case, the result for F',, simplifies
considerably and is given by

Fy 201+ 77)

= dy + cR*ry)? 21
2w, p+772P(0 cR7/ry) (21)

from which we conclude F,=0, co=—dyro/ R*=—md,/ry,
and

1—772P

— . 22
ot P (22)

Krel =
The case F,;,=0 for the optimal curvature c=cy=—dyr,/R> is
particularly simple. Here, we find h(r)=dyryIn(r/R) and
d(r)=V ,h(r)=dyry/r, implying no tilt deformation of the
lipid tails and a catenoidlike saddle geometry for the mem-
brane that matches both the inclusion shape at r, and the
imposed geometry at R.

To motivate the following discussion we plot k. for some
cases that represent a typical lipid membrane. In the absence
of experimental data, estimations of the splay and bare con-
tribution to the bending stiffness yield for «, and «;, the same
order of magnitude of a few kT [21], where kT denotes the
thermal energy unit. Here we assume «,;=«;,=5 kT, implying
n=1. For the inclusion radius, we set ry=1 nm. A reasonable
choice for the tilt modulus is «,=10 kT/nm? [47], implying
w=2/nm. Curve (b) in Fig. 5 shows k. as a function of the
cell size R (left diagram) and area fraction m=r(2)/R2 of the
inclusions (right diagram). In addition, Figure 5 also shows
K. for @=20/nm [curve (a)] and w=0.2/nm [curve (c) in
Fig. 5], corresponding to very small (x,=0.1 kT/nm?) and
very large («,=1000 kT/nm?) tilt modulus, respectively. Fig-
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ure 5 suggests that, depending on the tilt modulus, inclusions
are principally able to locally either stiffen or soften the host
membrane segment. Particularly the possibility of local
membrane softening is a notable and, at the first glance, an
unexpected result. It adds another, previously unrecognized,
mechanism of inclusion-induced membrane softening. The
softening applies to a membrane bilayer segment with homo-
geneously distributed rigid inclusions and is a consequence
of the finite inclusion size. That is, on insertion of inclusions,
a lateral flow of lipid molecules must take place out of the
membrane patch into the surrounding, stress relaxed, bilayer
membrane where these lipids do no longer participate in the
bending deformation.

Let us now analyze the analytical expression for k. as
given in Eq. (22). The key role for the local softening of a
membrane segment with homogeneously distributed inclu-
sions is played by the tilt modulus «, (or equivalently by w).
We note the two limits

Krel(w - oc) = l (23)
p
and
1 7
Krel(w=0)=;[l—m(1+p)]- (24)

[These are the two extreme cases displayed graphically for
ro=1 nm in Fig. 5 by the two broken lines, the upper one
referring to Eq. (23) and the lower one to Eq. (24) with 7
=1.] Also notable are the two limits for the bare bending
stiffness k;, (or equivalently 7). They follow immediately
from Eq. (22) and are given by k.(7=0)=1/p, signifying
membrane stiffening, and (77— ©)=—1. The latter result
does not commute with Eq. (23). It requires a finite tilt
modulus so that a rigid inclusion can be incorporated into an
infinitely stiff membrane through a tilt deformation. Simi-
larly, Eq. (23) demands a finite 7 so that a bare membrane
bending deformation is still possible.

From Egs. (23) and (24), we draw two conclusions. First,
ignoring the lipid tilt degree of freedom (which corresponds
to k,— and thus w— ) always implies inclusion-induced
local stiffening of the membrane according to «.=1/p
=m/(1-m). Hence, for small area fraction m of inclusions in
the membrane k. =m, independent of any other material
properties. Second, for negligible resistance against a tilt de-
formation (w=0), Eq. (24) predicts local softening (that is
K1 <0) for sufficiently large cell size, namely, for R
>ro\/(1+77)/ 777 (Hence, the lower broken lines in both dia-
grams of Fig. 5 intersect with k=0 at R=y2 nm corre-
sponding to m=1/2.)

Consider now the case of intermediate w. For which re-
gion of R do we find softening and when is the membrane
rigidified? We find a simple answer in the limit of large in-
clusions where wry> 1. Because R>r(, we then also have
wR>1. Using the asymptotic behaviors of the modified
Bessel functions
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FIG. 6. The functions 7(wry)=/(wry/2)Ky(wry) /K, (wry) [solid
line; see Eq. (28)] and n(wrg) =V wry/2.

1 /
]n(x> 1)=ex’,=, Kn(x> 1)=€_X 1’ (25)
\‘1277-)‘- 2x

we find

R2
Ko = ~1. (6

277,
R -+ Z) % tanh[w(R - ro)]

In this case, k=0 implies

E =coth[w(R — r)]. (27)

wry
Hence, the smallest value for 77 that fulfills =0 is 7
= nf:wro/ 2, adopted for R>r,. We note that because of our
assumption wry>1, it is also 77?>1. In other words large
inclusions would only be able to locally soften the membrane
segment if «;,> k,. However, such a relation is not expected
to be fulfilled for a lipid membrane.

Abandoning the condition of large inclusions, we find
from Eq. (22) for k=0 the condition 7*P=1. Here again,
the smallest value for 77 that fulfills k=0 is adopted for
R>r,. It is given by the relation

297 _ Kolwry)
ory K(ory)’

(28)

which is displayed in Fig. 6 (solid line) together with the
large inclusion approximation Ky(wry)=K;(wry) (broken
line). We conclude that for small inclusions (where wry<<1)
small values of # are sufficient to induce local softening of
membrane segments by inclusions. [We note the limiting be-
havior 77=—(w?r3/2)In(wry/2) for wry<1]. Curve (b) in
Fig. 5 confirms that for a supposedly reasonable choice of
the elastic moduli of a lipid membrane one can easily obtain
(a small but notable) inclusion-induced softening of the
membrane segment. For small tilt modulus, the softening can
be substantial.

D. Influence of the Gaussian modulus

Up to this point, we were concerned with vanishingly
small Gaussian modulus (k=0), implying a@=0. In the fol-
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lowing, we discuss the case k<0 or, equivalently, @<<0. The
range within which & can vary should ensure stability of the
inclusion-free membrane, implying

-1<a<o. (29)

The first inequality follows from the stability with respect
to a spherelike membrane deformation (where ¢;=c,=c);
see Eq. (15). The second inequality ensures stability with
respect to a saddlelike membrane bilayer deformation (where
cC1=—C 2).

Recall that the Euler-Lagrange equations, Egs. (10), do
not depend on &, which is a manifestation of the Gauss-
Bonnet theorem. However, the free energy F,, in Eq. (9)
does depend on & because of the natural boundary conditions
that optimize h(r,) and k' (ry) [see Egs. (12)]. In the limit of
infinite tilt modulus, the inclusion-induced relative change in
the bending stiffness for spherical deformation is

1 1
Krel(w - oo) = _ (30)
l+ap
or, equivalently,
8(KS + Kh)
K(w — ®) = +4K. 31
( )= ro/R* G

This result generalizes Eq. (23). It shows that in the limit of
infinite @ a nonvanishing Gaussian modulus (-1 < @<0) in-
creases K. This is because the Gaussian part of the bending
stiffness for spherical deformations (which reduces «, since
K< 0) is not affected by the presence of an inclusion [see Eq.
GBI

Two other limiting cases, for small and large «;, can also
be derived from Eq. (20). For =0, we obtain «,=1/[p(1
+a)] and p— o implies k=-1/(1—-ap). Both results—the
former being identical to the limit w— % as specified in Eq.
(30)—imply an additional rigidification of the inclusion-
containing membrane segment due to a nonvanishing Gauss-
ian modulus k<<0.

A numerical analysis suggests that the increase of .
with increasing magnitude of the Gaussian modulus is a gen-
eral property, also valid for finite values of w. As an illustra-
tion, Fig. 7 shows some numerical results. It appears that the
Gaussian modulus acts effectively toward rigidification of
the inclusion-containing membrane segment. Note that the
value of the Gaussian modulus is not known for most bare
lipid membranes (for experimentally deduced values of & see
[48] and the references in [49]).

E. Membrane segment with uniform local curvatures

The present work analyzes the consequences that the lipid
tilt degree of freedom has on a membrane that contains rigid
conelike inclusions. As discussed in the Introduction, it is a
common approach to ignore this degree of freedom and to
base the analysis of the local free energy entirely on the
Helfrich bending free energy [which corresponds to the limit
k,— as analyzed above; see Egs. (23) and (30)]. Also, a
complementary approach has been considered recently where
the microscopic optimization of the membrane shape is sup-
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FIG. 7. The inclusion-induced relative change in membrane
stiffness, ., for a spherical membrane segment with homoge-
neously distributed inclusions, plotted as a function of R for a=0,
-0.2, 0.4, —0.6, —0.8 (solid lines from bottom to top). The param-
eters are w=2/nm, n=1, and ry=1 nm. The curve for @=0 corre-
sponds to curve (b) in Fig. 5.

pressed. Here, an inclusion can be accommodated into the
host membrane by the tilt degree of freedom of the lipids
[41,42]. More specifically, an inclusion interacts with a small
membrane segment of uniform local curvature [Fig. 1(b)].
Our present approach allows us—at least for prescribed
spherical curvature of the membrane segment (Fig. 1)—to
consider this case and to compare it to that of unconstrained
local curvatures.

We thus consider a membrane segment with homoge-
neous curvatures, c=c;=c,. That is we assume all local cur-
vatures of an inclusion-containing membrane segment to be
uniform [as illustrated in Fig. 1(b)]. Equivalently expressed,
we consider the case where the local microscopic shape re-
laxation of the membrane is suppressed. The expression for
the corresponding membrane free energy per unit cell fol-
lows from inserting the shape of an inclusion-free membrane
h(r)=c(R*~r*)/2 into Eq. (9), resulting in

F K d\?
i:f drr 62(d+cr)2+<d’+—) +477c?
. r

27K,
0

R
+4a(l+ ) J Adrr, (32)

0

where we have defined @*=w?7*/(1+ %) =«,/ k,. In equilib-
rium, the function d(r) must fulfill the Euler-Lagrange equa-
tion @>(d+cr)=[d'+d/r]" subject to the boundary condi-
tions d(ry)=d, and d(R)=—cR. The solution is

1,(&R)K,(&r) — I,(&r)K,(&R) B
I(@R)K,(&ry) — I)(wro)K,(®R)

d(r) = (d0+cr0)

(33)

Inserting d(r) back into Eq. (32) allows us to calculate F,
and from that to obtain the inclusion-induced relative change
of the membrane’s bending stiffness for spherical deforma-
tion, k., as defined in Eq. (16). The final result is

051503-8



INFLUENCE OF RIGID INCLUSIONS ON THE...

0.7 0.7
0.5 0.5
0.3 0.3
krer 0.1 0.1
—-0.1 —0.1
—-0.3 -0.3
—0.5 —0.5 l L~
0.0 02 04 0.6

m

FIG. 8. The inclusion-induced relative change in stiffness of the
membrane segment, x,, according to Eq. (34), plotted as a function
of R (left graph) and m:rS/R2 (right graph) for (a) @=20/nm, (b)
w=2/nm, (¢) w=0.2/nm. The remaining parameters are =1, ry
=1 nm, and a=0. The broken line displays the limiting case for
®=0, namely, k=—1/(1+p)=-m. Note that the parameters in
curves (a)—(c) of the two graphs correspond to those in Fig. 5.

1 1
Krel = - -1 B (34)
L+p| P(1+ (1 + @)
where the function
P 2 1Ii(@R)K,(@ry) — I;(&rp)K,(&R) (35)

aryIi(@R)Ky(&ro) + Io(0rp) K (@R)

is the same as in Eq. (17), yet with w replaced by @. It is
interesting to note that in the limit x,— % it is w=& and thus

P=P; but even in that limit «,.; in Eq. (34) remains different
from Egs. (20) [for which we recall k(77— ©)=-1]. Thus,
the case of uniform local curvature of the cell [Fig. 1(b)] is
not contained in Eq. (20) as a special case.

Let us analyze Eq. (34). In the limit of vanishing tilt
modulus (k,=0), the membrane can adjust to the shape of the
inclusion through a tilt deformation without an energetic

penalty. In this case, we have w=0 or, equivalently, P—oo,
Equation (34) then predicts ,q=—1/(1+p)=—(ry/R)>=-m,
which corresponds to a reduction of the bending stiffness by
the area fraction the inclusions occupy in the membrane.
This result is plausible because a fraction of m=(ry/R)?* lip-
ids is eliminated from participating in the curvature deforma-
tion, and there is no additional interaction between the inclu-
sion and the membrane.

In the opposite limit, that of infinitely large tilt modulus,
the membrane can no longer adjust its shape during bending
to that of the inclusion. Indeed, k,— o (or, equivalently @
—o0) implies P=0 and thus K,y — .

Figure 8 shows k., as a function of R (left graph) and
m=(ry/R)? (right graph) for the same parameters as Fig. 5.
Note that a major feature, i.e., the possibility to locally soften
the membrane (x,,;<0) is also present for suppressed relax-
ation of the membrane shape. On the other hand, in the limit
of large tilt modulus, local membrane softening is absent for
both constrained and unconstrained local membrane pertur-
bations. The main difference between the unconstrained
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[Fig. 1(a)] and the constrained [Fig. 1(b)] local microscopic
perturbations of the membrane shape around the intercalated
inclusion is the different lower bounds, k«,=-1 and
K =—m, respectively, the former being adopted for =
=k,/ k,— % and the latter for @w=«,/ k,=0. Hence, the mag-
nitude of the local membrane softening can, in principle, be
more pronounced in the case of unconstrained membrane
shape perturbations around the inclusion [Fig. 1(a)].

F. Relation to phenomenological interaction constants
and intrinsic curvatures of single-inclusion energy

Expressing F,, as an expansion with respect to c;=c,
=c=H [Eq. (14)] allows us to estimate the phenomenological
parameters 2K+K and H,,, describing the single inclusion
energy [Eq. (1)] of an isotropic inclusion (D,,=0) in a spheri-
cal membrane curvature field (H=c and D=0),

E;=u,+2K+K)(c-H,)>, (36)

where the curvature c is defined at the mesoscopic level. For
both restricted and unrestricted microscopic perturbations of
the membrane shape around the isotropic (and rigid) inclu-
sion, comparison of Egs. (14) and (36) yields

- 7
2K+ K = EszoKrel, (37)
1+ K
H, = (K—rd)co. (38)
rel

Recall that the energy of a single inclusion, E; in Eq. (1), is
assumed not to depend on the inclusion density m. Hence,
also 2K+K should be independent of m. According to Eq.
(37) (or, equivalently, xq=2m(2K+K)/ 7Tr(2);<0), this is the
case as long as k.~ m. Indeed, this relation is fulfilled for a
wide range of parameters, both for restricted and unrestricted
local microscopic membrane shape perturbations, as can be
seen in Figs. 5 and 8. In fact, it is always fulfilled in the
small m regime apart from the case x,— 0 for unrestricted
membrane shape relaxation (corresponding to the lower bro-

ken line in Fig. 5). This allows us to calculate 2K+K via a
small m expansion of k. Specifically, in the limit of van-
ishing Gaussian modulus, k=0, we deduce from Eq. (22) for
unconstrained local membrane shape relaxation

I_EKI(‘UVO)}

wro Ko(wrg) (39)

whereas the case of constrained local membrane shape relax-
ation yields according to Eq. (34)

wry  Ky(or)

2
2K+1€=m[—1+ =02 } (40)
2 2(1+7])K1(wr0)
Note that vanishing of 2K+K in Eq. (39) is consistent with
the condition for =0 in Eq. (28).
For a typical choice of material parameters [correspond-
ing to curve (b) in Fig. 5], the relation ,,~m holds up to
m=0.2 for unrestricted membrane shape relaxation. Note
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also that, as expected, . ~m is not fulfilled for large m
where the (long-range) lipid deformations around neighbor-
ing inclusions overlap.

In the case of restricted microscopic perturbation of the
membrane shape around the rigid inclusion [Fig. 1(b)], the
decay of lipid (tilt) perturbation around the membrane inclu-
sion is exponential (i.e., short range). Therefore, the overlap-
ping of the short-range lipid deformations around neighbor-
ing inclusions becomes important only if the inclusions are

very close. Consequently K, K, and H,, depend on the local
density of the inclusions only for very large m.

III. DISCUSSION AND CONCLUSIONS

For a bare lipid membrane (in absence of rigid inclu-
sions), spherelike bending leads to uniform curvature every-
where. That is, all lipids in each of the two membrane leaf-
lets are perturbed in the same way, and they all contribute to
the corresponding bending stiffness. If inclusions are present
within the membrane with a certain area fraction m=r(2)/R2,
the number of lipids that contribute to the deformation en-
ergy per unit area is reduced by a fraction m=1/(1+p). If,
hypothetically, the remaining lipids would not experience
any additional perturbation due to the inclusions (and thus
would remain with uniform local spherelike curvature c;
=c,=c and no tilt deformation everywhere), the correspond-
ing bending stiffness would be k. =-m which indeed ap-
peared as a special case in Sec. Il E for «,=0 [see Eq. (34),
and the discussion thereafter]. The corresponding mechanism
of this hypothetical case is obvious: previously perturbed
lipids do no longer contribute to the deformation energy (per
unit area) once they are replaced by rigid inclusions. To ap-
proach a more realistic scenario, the structural perturbation
of the membrane by rigid inclusions and the ability of the
lipids to locally adjust at a microscopic level should be ac-
counted for.

Consider first the structural perturbation of a small mem-
brane segment by the inclusions while still retaining locally
uniform spherelike mesoscopic curvature; c;=c,=c every-
where in the segment. This scenario was subject of Sec. I E.
Here, the membrane must adjust to the shape of the inclusion
through a tilt deformation [Fig. 1(b)]. This deformation is
short range and can thus be translated into a (positive) line
tension along the inclusion rim, or, equivalently, into a (posi-
tive) inclusion-membrane interaction energy. Whether inclu-
sions locally soften or rigidify the membrane segment then
depends on the magnitude of this interaction energy. The two
terms in Eq. (34) reflect the two opposite tendencies: local
membrane rigidification due to the interaction term and the
—m softening contribution. We note that the assumption of
the unperturbed local membrane shape around the
membrane-embedded inclusion [Fig. 1(b)] forms the basis
for a number of recent investigations [41,42] and allows one
to estimate the inclusion-membrane interaction energy also
for anisotropic inclusions.

Consider now the influence of adding the degree of free-
dom to adjust the local membrane shape at the microscopic
level [Fig. 1(a)]. This was the subject in Sec. II B. Here
again, the general result for k., Eq. (20) [and similarly the
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limit for @=0 in Eq. (22)], appears as a sum of two compet-
ing terms, favoring rigidification and softening. Yet, here the
competition cannot be straightforwardly interpreted in terms
of a line tension (or, equivalently, in terms of a membrane-
inclusion interaction energy). In fact, the concept of a
membrane-inclusion interaction energy independent of the
inclusion density is not generally valid because the
curvature-induced inclusion-inclusion interactions are long
range. The most notable consequence of the long-range na-
ture is that already very small inclusion densities can, in
principle, lead to dramatic local membrane softening. This
can happen for «,=0 and xk=0. To this end, compare the
small m limit of k., in Eq. (24), namely, x,q=—77/(1+17")
+m, to the corresponding expression for locally prescribed,
uniform spherelike, curvatures, k,,=-m (displayed as the
lower broken lines in the right graphs of Figs. 5 and 8). The
mechanism for the local softening at already small inclusion
densities m lies in maintaining a catenoidlike membrane
shape; that is, adopting the long-range membrane shape
h(r)=cR? In(R/r) for any imposed spherelike curvature ¢ at
the cell boundary R. Maintaining such a catenoidlike saddle
shape is favorable as it does, given that k=0, not infer a
bending penalty. At the same time, it can only be maintained
for variable curvature ¢ if a vanishingly small tilt modulus
(k,=0) decouples the membrane shape from the cone angle
imposed by the inclusion. Indeed, the corresponding mem-
brane shape A(r)=cR?In(R/r) is independent of the inclu-
sion structure (of size ry and cone angle d).

Despite the differences in the two approaches—
unconstrained or constrained local microscopic membrane
shape perturbation (Fig. 1)—both predict the possibility of
local membrane softening. This is in contrast to eliminating
the lipid tilt degree of freedom (x,— °) for which inclusions
always stiffen the host membrane [see Eq. (30) or (31)].
Hence, our major conclusion is that the lipid tilt degree of
freedom plays a significant role for the energetics of
inclusion-containing lipid membrane patches.

A notable result is the nontrivial influence of the Gaussian
modulus on the effective bending stiffness, k., of a spheri-
cal membrane segment. The Gaussian modulus k can usually
be ignored for topologically invariant membranes because of
the Gauss-Bonnet theorem. This is also the case in the pres-
ence of inclusions, if the inclusions are rigid and if the mem-
brane energetics is dominated entirely by bending energy.
Yet, the last requirement is not fulfilled in the present study
because of the additional tilt degree of freedom. Mathemati-
cally, the dependence on k (or, equivalently, on @) enters
through the second boundary condition of Egs. (12), which
specifies optimization of 4(r) at the inclusion rim r=r,. Only
in the limit x,— o does the dependence k= k(@) reduce
to a simple prefactor 1/(1+a); see Eq. (30). In this trivial
case, the only appearance of the Gaussian modulus in « is as
an additive contribution 4x; see Eq. (31). In the general case,
for finite «,, the Gaussian modulus enters into « in a non-
trivial way, but generally acts effectively toward local rigidi-
fication of the membrane.

The present work employs a number of approximations.
One is the cell model, which disregards correlations and the
true multibody nature of the membrane-mediated interac-
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tions between inclusions. Similar cell models are neverthe-
less a common method to describe inclusion-containing
membranes [9,10]. Another assumption is the presence of a
reservoir of lipid molecules (i.e., the presence of an ex-
tended, stress relaxed lipid bilayer). Taking into account a
fixed number of lipids can be accomplished through an ad-
ditional constraint, which, however, was not in the scope of
the present work. In addition, for closed vesicle shapes, the
nonlocal bending stiffness [Eq. (2)] and the area stretching of
the lipid bilayer [19,45] may be important. The first adds to
the overall elastic free energy F,, a term proportional to
k,(fAhda)?/ [da, where the value for the nonlocal bending
rigidity k,, is for lipid bilayers expected to be of the order of
the (local) bending rigidity [46]. The second contribution,
due to relative area change, adds to F, a term proportional
to K,(fAh>da)?/ [da. Although this is a fourth-order contri-
bution, the area compressibility modulus K| is quite large for
lipid bilayers (K,~0.2 J/m?~50 kT/nm? [50]). Therefore,
if the inclusions occupy a significant portion of the overall
membrane area, both “global” terms should be taken into
account for closed membrane shapes. As already mentioned
in the Introduction, at larger total number of membrane-
embedded inclusions (N), the nonlocal bending energy term
restricts the local microscopic perturbation of the membrane
shape around the intercalated inclusion (Fig. 1) [see also Eq.
3]

In the present work, we also adopt the assumption of uni-
form lateral distribution of the membrane inclusions. Aban-
doning this assumption would add an additional degree of
freedom to the system that would allow inclusions to accu-
mulate at regions of favorable curvatures and in this way
decrease the membrane bending constants [37,38,43].

In the presented model, we also did not account for a
spontaneous curvature of the “bare” lipid membrane. Hence,
if there are no inclusions present, a flat membrane is the
optimal free energy state and, as discussed at Eq. (15), this
implies for an inclusion-free membrane that ¢,=0. However,
we may introduce the spontaneous curvature of a lipid bi-
layer by changing the first and the third term in Eq. (7) to
k(V-d=c™)? and Kh(Ah—cf)h))z. Here, the constant terms
cff) and c(() represent a spontaneous splay and a bare spon-
taneous curvature. Note that the new constant terms contrib-
ute to the free energy only terms linear in V-d and Ah, and
thus do not affect the bending stiffness of a lipid membrane.
The spontaneous curvature, on the other hand, changes. An
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inclusion-free membrane now has the spontaneous curvature
cO:—2(Kscg)+th(()h))/Ko. Also for the inclusion-containing
membrane, the corresponding calculation can be carried out.
The result is especially simple in the case of cé‘r):cg') and for
vanishing Gaussian modulus, where the spontaneous curva-
ture depends linearly on the cone angle, radius, and density
of the membrane inclusions, namely, co=—mdy/ry—(1
—m)cg)/ 2.

From a biological perspective, a possible application of
our model of unrestricted membrane shape perturbation
around the inclusion [Fig. 1(a)] is accumulation and mutual
interaction of coat proteins during the process of local mem-
brane budding [49]. Here, a local membrane softening in-
duced by more rigid membrane constituents could possibly
facilitate the bud formation.

A possible application of our model for the case of re-
stricted local membrane shape perturbation around the mem-
brane inclusions [Fig. 1(b)] can be the membrane budding
during the crenation of erythrocyte membrane [39]. In eryth-
rocytes, the budding takes place over the whole cell mem-
brane surface (although is located predominately at the top of
membrane spicules) [34]. Because of that, the membrane
shape perturbation around the membrane inclusions are
strongly restricted [see Eq. (3)]. Therefore, the local mem-
brane softening in the budding region due to accumulation of
the membrane proteins [39] is a consequence of the change
of tilt of lipid molecules around the proteins only [Fig. 1(b)]
and not of the microscopic membrane shape perturbation
[Fig. 1(a)].

To summarize this work, we have shown that isotropic
conelike membrane-embedded rigid inclusions can locally
soften a lipid bilayer membrane. The crucial quantity respon-
sible for this ability is the lipid tilt degree of freedom. We
also argued that the constrained microscopic membrane
shape perturbation around the intercalated rigid inclusion
[Fig. 1(b)] still allows for local membrane softening whereas
ignoring the lipid tilt degree of freedom invariably leads to
local membrane stiffening.
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